6.9. Worksheet 3. | Determination of the ab | bsorbed dose to water | r in a high-energy | photon beam | |-------------------------|-----------------------|--------------------|-------------| | | | | | | User: Patrícia Nicolucci | Date: 25/09/2020 | | | |--|---|--|--| | Radiation treatment unit and reference conditions f Accelerator: Mevatron XII | for $D_{w,Q}$ determination Nominal Acc Potential:10MV | | | | Nominal dose rate: 300 MU min ⁻¹ | Beam quality, Q (TPR _{20,10}): 0,736 | | | | Reference phantom: water | Set up: ⊠ SSD □ SAD | | | | Reference field size:10x10 cm x cm | Reference distance (cm): 100 | | | | Reference depth z_{ref} : 10 g cm ⁻² | | | | | 2. Ionization chamber and electrometer Ionization chamber model: NE 2571 farmer | _ Serial no.: XB3216_ | | | | Chamber wall material: grafite | thickness: 0,065 g cm ⁻² | | | | Waterproof sleeve material: latex | thickness: _0,082 g cm ⁻² | | | | Phantom window material: PMMA | thickness: 1,2 g cm ⁻² | | | | | 9,61 x 10 ⁻³ | | | | Dosimeter reading b and correction for influence qua-
Uncorrected dosimeter reading at V_{I} and user polarity:
Corresponding accelerator monitor units:
Ratio of dosimeter reading and monitor units: | antities | | | | (ii) Electrometer calibration factor c k_{elec} : \square nC r | °C Rel. humidity (if known):48% $k_{TP} = \frac{(273.2 + T)}{(273.2 + T_o)} \frac{P_o}{P} = \frac{1,007}{\text{cdg}^{-1}} \boxtimes \text{ dimensionless}$ $k_{elec} = \underline{1}$ | | | | (iii) Polarity correction d rdg at $+V_1$: $M_+ = 83,44$ | rdg at $-V_1$: $M_{} = 83,47$ $k_{pol} = \frac{ M_{+} + M_{-} }{2M} = \frac{1,0002}{2M}$ | | | 2M | ı | (iv) | Red | combina | tion co | rrection (| two-vol | tage | method | ١ | |---|------|-----|---------|---------|------------|---------|------|--------|---| | ١ | IV | | жилоша | uon co | meenon (| two-voi | tage | memoa | ı | $V_I ext{ (normal)} = \underline{\qquad 300}$ V_2 (reduced)= Polarizing voltages: $M_{l} = 83,44$ $M_{2} = 83,33$ Readings e at each V: Voltage ratio $V_1 / V_2 = 2$ Ratio of readings $M_1/M_2 = 1,001$ Use Table 4.VII for a beam of type: ■ pulsed □ pulsed-scanned $$a_0 = 2.337$$ $a_1 = -3.636$ $a_2 = 2.299$ $$k_{\rm s} = a_0 + a_1 \left(\frac{M_1}{M_2}\right) + a_2 \left(\frac{M_1}{M_2}\right)^2 = 1,001$$ Corrected dosimeter reading at the voltage V_1 : ## 4. Absorbed dose to water at the reference depth, z_{ref} Beam quality correction factor for user quality $Q: k_{Q,Q_o} = 0.987$ taken from Table 6.III Other, specify: $$D_{\mathit{w},\mathcal{Q}}\!\left(z_\mathit{ref}\right) \!\!= \! M_{\mathcal{Q}} N_{\mathit{D},\mathit{w},\mathcal{Q}_o} k_{\mathit{Q},\mathcal{Q}_o} = \underline{\mathsf{0,00798}} \; \mathsf{Gy} \, \mathsf{MU}^1$$ ## 5. Absorbed dose to water at the depth of dose maximum, z_{max} Depth of dose maximum: $z_{max} = 2.5$ g cm⁻² (i) SSD set-up Percentage depth-dose at z_{ref} for a 10 cm x 10 cm field size: PDD (z_{ref} = 10 g cm⁻²) = 80,1 % Absorbed-dose calibration of monitor at Z_{max} : $$D_{w,Q}(z_{max}) = 100 D_{w,Q}(z_{ref}) / PDD(z_{ref}) = \underline{0,00996}$$ Gy MU⁻¹ = 0,996 cGy/MU (ii) SAD set-up TMR at z_{ref} for a 10 cm x 10 cm field size: $TMR (z_{ref} = ___ g \text{ cm}^{-2}) = ___$ Absorbed-dose calibration of monitor at Z_{max} : $$D_{w,Q}(z_{max}) = D_{w,Q}(z_{ref}) / TMR(z_{ref}) = \underline{\qquad} Gy MU^{-1}$$ It is assumed that the calibration laboratory has performed a polarity correction. Otherwise k_{pol} is determined according to ed that the calibration laboratory has performed a polarity correction. Otherwise $$k_{pol}$$ is determined according rdg at $+V_I$ for quality Q_o : $M_+ = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right) + \left| M_- \right| \right]_Q} = \underline{ \left[\left(M_+ \right) + \left| M_- \right| \right]_Q} = \underline{ \left(M_+ \right) + \left| M_- \right| M_-$ g Check that $$k_s - 1 \approx \frac{M_1/M_2 - 1}{V_1/V_2 - 1}$$ ^a Note that if Q_o is ⁶⁰Co, N_{D,w,Q} is denoted by N_{D,w}. b All readings should be checked for leakage and corrected if necessary ^c If the electrometer is not calibrated separately set $k_{elec} = 1$ $^{^{}d}M$ in the denominator of k_{pol} denotes reading at the user polarity. Preferably, each reading in the equation should be the average of the ratios of M (or M_+ or M_-) to the reading of an external monitor, M_{em} . e Strictly, readings should be corrected for polarity effect (average with both polarities). Preferably, each reading in the equation should be the average of the ratios of M_1 or M_2 to the reading of an external monitor, M_{om} fIt is assumed that the calibration laboratory has performed a recombination correction. Otherwise the factor $k_z = k_z/k_{z,Q_z}$ should be used instead of k_{δ} . When Q_0 is 60 Co, k_{δ,Q_0} (at the calibration laboratory) will normally be close to unity and the effect of not using this equation will be negligible in most cases. ^h Note that if Q_o is ⁶⁰Co, k_{Q,Q_o} is denoted by k_Q , as given in Table 6.III.