6.9. Worksheet

3.

Determination of the ab	bsorbed dose to water	r in a high-energy	photon beam

User: Patrícia Nicolucci	Date: 25/09/2020		
Radiation treatment unit and reference conditions f Accelerator: Mevatron XII	for $D_{w,Q}$ determination Nominal Acc Potential:10MV		
Nominal dose rate: 300 MU min ⁻¹	Beam quality, Q (TPR _{20,10}): 0,736		
Reference phantom: water	Set up: ⊠ SSD □ SAD		
Reference field size:10x10 cm x cm	Reference distance (cm): 100		
Reference depth z_{ref} : 10 g cm ⁻²			
2. Ionization chamber and electrometer Ionization chamber model: NE 2571 farmer	_ Serial no.: XB3216_		
Chamber wall material: grafite	thickness: 0,065 g cm ⁻²		
Waterproof sleeve material: latex	thickness: _0,082 g cm ⁻²		
Phantom window material: PMMA	thickness: 1,2 g cm ⁻²		
	9,61 x 10 ⁻³		
Dosimeter reading b and correction for influence qua- Uncorrected dosimeter reading at V_{I} and user polarity: Corresponding accelerator monitor units: Ratio of dosimeter reading and monitor units:	antities		
(ii) Electrometer calibration factor c k_{elec} : \square nC r	°C Rel. humidity (if known):48% $k_{TP} = \frac{(273.2 + T)}{(273.2 + T_o)} \frac{P_o}{P} = \frac{1,007}{\text{cdg}^{-1}} \boxtimes \text{ dimensionless}$ $k_{elec} = \underline{1}$		
(iii) Polarity correction d rdg at $+V_1$: $M_+ = 83,44$	rdg at $-V_1$: $M_{} = 83,47$ $k_{pol} = \frac{ M_{+} + M_{-} }{2M} = \frac{1,0002}{2M}$		

2M

ı	(iv)	Red	combina	tion co	rrection (two-vol	tage	method	١
١	IV		жилоша	uon co	meenon (two-voi	tage	memoa	ı

 $V_I ext{ (normal)} = \underline{\qquad 300}$ V_2 (reduced)= Polarizing voltages: $M_{l} = 83,44$ $M_{2} = 83,33$ Readings e at each V:

Voltage ratio $V_1 / V_2 = 2$

Ratio of readings $M_1/M_2 = 1,001$

Use Table 4.VII for a beam of type: ■ pulsed □ pulsed-scanned

$$a_0 = 2.337$$
 $a_1 = -3.636$ $a_2 = 2.299$

$$k_{\rm s} = a_0 + a_1 \left(\frac{M_1}{M_2}\right) + a_2 \left(\frac{M_1}{M_2}\right)^2 = 1,001$$

Corrected dosimeter reading at the voltage V_1 :

4. Absorbed dose to water at the reference depth, z_{ref}

Beam quality correction factor for user quality $Q: k_{Q,Q_o} = 0.987$

taken from Table 6.III Other, specify:

$$D_{\mathit{w},\mathcal{Q}}\!\left(z_\mathit{ref}\right) \!\!= \! M_{\mathcal{Q}} N_{\mathit{D},\mathit{w},\mathcal{Q}_o} k_{\mathit{Q},\mathcal{Q}_o} = \underline{\mathsf{0,00798}} \; \mathsf{Gy} \, \mathsf{MU}^1$$

5. Absorbed dose to water at the depth of dose maximum, z_{max}

Depth of dose maximum: $z_{max} = 2.5$ g cm⁻²

(i) SSD set-up

Percentage depth-dose at z_{ref} for a 10 cm x 10 cm field size: PDD (z_{ref} = 10 g cm⁻²) = 80,1 %

Absorbed-dose calibration of monitor at Z_{max} :

$$D_{w,Q}(z_{max}) = 100 D_{w,Q}(z_{ref}) / PDD(z_{ref}) = \underline{0,00996}$$
 Gy MU⁻¹ = 0,996 cGy/MU

(ii) SAD set-up

TMR at z_{ref} for a 10 cm x 10 cm field size: $TMR (z_{ref} = ___ g \text{ cm}^{-2}) = ___$

Absorbed-dose calibration of monitor at Z_{max} :

$$D_{w,Q}(z_{max}) = D_{w,Q}(z_{ref}) / TMR(z_{ref}) = \underline{\qquad} Gy MU^{-1}$$

It is assumed that the calibration laboratory has performed a polarity correction. Otherwise k_{pol} is determined according to

ed that the calibration laboratory has performed a polarity correction. Otherwise
$$k_{pol}$$
 is determined according rdg at $+V_I$ for quality Q_o : $M_+ = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right| + \left| M_- \right| \right) / \left| M \right| \right]_Q} = \underline{ \left[\left(M_+ \right) + \left| M_- \right| \right]_Q} = \underline{ \left[\left(M_+ \right) + \left| M_- \right| \right]_Q} = \underline{ \left(M_+ \right) + \left| M_- \right| \left(M_+ \right) + \left| M_-$

g Check that
$$k_s - 1 \approx \frac{M_1/M_2 - 1}{V_1/V_2 - 1}$$

^a Note that if Q_o is ⁶⁰Co, N_{D,w,Q} is denoted by N_{D,w}.

b All readings should be checked for leakage and corrected if necessary

^c If the electrometer is not calibrated separately set $k_{elec} = 1$

 $^{^{}d}M$ in the denominator of k_{pol} denotes reading at the user polarity. Preferably, each reading in the equation should be the average of the ratios of M (or M_+ or M_-) to the reading of an external monitor, M_{em} .

e Strictly, readings should be corrected for polarity effect (average with both polarities). Preferably, each reading in the equation should be the average of the ratios of M_1 or M_2 to the reading of an external monitor, M_{om}

fIt is assumed that the calibration laboratory has performed a recombination correction. Otherwise the factor $k_z = k_z/k_{z,Q_z}$ should be used instead of k_{δ} . When Q_0 is 60 Co, k_{δ,Q_0} (at the calibration laboratory) will normally be close to unity and the effect of not using this equation will be negligible in most cases.

^h Note that if Q_o is ⁶⁰Co, k_{Q,Q_o} is denoted by k_Q , as given in Table 6.III.