6.9. Worksheet

Determination of the absorbed dose to water in a high-energy photon beam
--

User: Patrícia Nicolucci			Date: 25/09/2020	
1. Radiation treatment unit a Accelerator:	and reference Mevatron XII	conditions 1	or $D_{w,Q}$ determination Nominal Acc Potential:	10 _{MV}
Nominal dose rate:	300	MU min ⁻¹	Beam quality, <i>Q</i> (<i>TPR</i> _{20,10}):	
Reference phantom:	water		Set up: ■ SSD □ SAD	
Reference field size:	10x10	cm x cm	Reference distance (cm): 100	
Reference depth Z_{ref} :	10	g cm ⁻²		
2. Ionization chamber and el Ionization chamber model:		farmer	Serial no.: XB3216	
Chamber wall	material:	grafite	thickness: 0,065	_ g cm ⁻²
Waterproof sleeve	material:	latex	thickness: 0,082	_ g cm ⁻²
Phantom window	material:	PMMA	thickness:1,2	_ g cm ⁻²
Absorbed-dose-to-water cali Calibration quality Q_0 :	bration factor ¹		9,61 x 10^{-3} \boxtimes Gy nC ⁻¹ \square Calibration depth: 5	
If Q_0 is photon beam, give TPI	-	68	Canoration depth.	_g cm
			T _o : 20 °C Rel. humidity	. 60 %
Polarizing potential V_i : 300		_		
Foranzing potential V ₁ .	_		: ⊠ +ve □ -ve □ corrected for po	iarity effect
Calibration laborators IRD-	-	olarity: 🛛 +	Date: 23/03/2020	
Calibration laboratory: IRD-CNEN Electrometer model: PTW Unidos			Serial no.: 880001	
Electronicier model.				
Calibrated separately from chamber: ☐ yes ☒ no If yes Calibration laboratory:			Range setting: auto	
If yes Calibration laborate	ory:		Date:	
3. Dosimeter reading ^b and cor	rection for in	fluence qua	nntities	
Uncorrected dosimeter reading at V_I and user polarity: Corresponding accelerator monitor units:			83,44 ⊠ nC □ rdg 100 MU	
Ratio of dosimeter reading and	l monitor units:	M	$T_I = $ \square nC MU ⁻¹ \square rd	g MU ⁻¹
(i) Pressure P:101,21	cPa Temper	ature T:2	2 °C Rel. humidity (if known)	: 48 %
			$k_{TP} = \frac{(273.2 + T)}{(273.2 + T_o)} \frac{P_o}{P}$	=
(ii) Electrometer calibration f	actor c k _{elec} :	□ nC ı	$(2/3.2 + I_o) P$ $dg^{-1} \boxtimes dimensionless \qquad k_{elec}$	
	rdg at $+V_I$:			
			$k_{pol} = \frac{\left M_{+} \right + \left M_{-} \right }{2M} =$	=

(iv) Recombination correction (two-voltage method)
Readings e at each V: $M_{I} = $ $M_{2} = $ 83,33
Voltage ratio $V_1 / V_2 =$ Ratio of readings $M_1 / M_2 =$
Use Table 4.VII for a beam of type: ■ pulsed □ pulsed-scanned
$a_o = \underline{} \qquad a_1 = \underline{} \qquad a_2 = \underline{}$
$k_s = a_0 + a_1 \left(\frac{M_1}{M_2} \right) + a_2 \left(\frac{M_1}{M_2} \right)^2 = \underline{\qquad}$
Corrected dosimeter reading at the voltage V_I :
$M_Q = M_1 \ k_{TP} \ k_{elec} \ k_{pol} \ k_z = $ \square nC MU ⁻¹ \square rdg MU ⁻¹
4. Absorbed dose to water at the reference depth, z_{ref} Beam quality correction factor for user quality $Q: k_{Q,Q_o} = $
taken from Table 6.III Other, specify:
$D_{w,\mathcal{Q}}\!\left(z_{\mathit{ref}} ight) = M_{\mathcal{Q}} N_{D,w,\mathcal{Q}_o} k_{\mathcal{Q},\mathcal{Q}_o} = \underline{\hspace{1cm}} \operatorname{Gy} \operatorname{MU}^{-1}$
5. Absorbed dose to water at the depth of dose maximum, z_{max} Depth of dose maximum: $z_{max} = 2.5$ g cm ⁻² (i) SSD set-up
Percentage depth-dose at z_{ref} for a 10 cm x 10 cm field size: PDD ($z_{ref} = 10 \text{ g cm}^{-2}$) = 80,1 %
Absorbed-dose calibration of monitor at Z_{max} :
$D_{w,Q}(z_{max}) = 100 D_{w,Q}(z_{ref}) / PDD(z_{ref}) = Gy MU^{-1}$
(ii) SAD set-up
TMR at z_{ref} for a 10 cm x 10 cm field size: $TMR (z_{ref} = g \text{ cm}^{-2}) =$
Absorbed-dose calibration of monitor at Z_{max} :
$D_{w,Q}(z_{max}) = D_{w,Q}(z_{ref}) / TMR(z_{ref}) = \underline{\qquad} Gy MU^{-1}$
^a Note that if Q_o is ⁶⁰ Co, N_{D,w,Q_o} is denoted by $N_{D,w}$. ^b All readings should be checked for leakage and corrected if necessary
^c If the electrometer is not calibrated separately set $k_{elec} = 1$
^d M in the denominator of k _{pol} denotes reading at the user polarity. Preferably, each reading in the equation should be the average of the ratios of M (or M+ or M-) to the reading of an external monitor, M _{em} .

It is assumed that the calibration laboratory has performed a polarity correction. Otherwise k_{pol} is determined according to

rdg at
$$+V_I$$
 for quality Q_o : $M_+ = \underline{\qquad}$ rdg at $-V_I$ for quality Q_o : $M_- = \underline{\qquad}$
$$k_{pol} = \frac{\left[\left(M_+ \big| + \big| M_- \big|\right) \big/ \big| M \big| \right]_Q}{\left[\left(M_+ \big| + \big| M_- \big|\right) \big/ \big| M \big| \right]_{Q_o}} = \underline{\qquad}$$

g Check that
$$k_{\rm s}-1 \approx \frac{M_1/M_2-1}{V_1/V_2-1}$$

e Strictly, readings should be corrected for polarity effect (average with both polarities). Preferably, each reading in the equation should be the average of the ratios of M₁ or M₂ to the reading of an external monitor, M_{em}.

^fIt is assumed that the calibration laboratory has performed a recombination correction. Otherwise the factor $k_z^2 = k_z/k_{z,Q_o}$ should be used instead of k_z . When Q_o is ⁶⁰Co, k_{z,Q_o} (at the calibration laboratory) will normally be close to unity and the effect of not using this equation will be negligible in most cases.

^h Note that if Q_o is ⁶⁰Co, k_{Q,Q_o} is denoted by k_Q , as given in Table 6.III.