6.9. Worksheet | Determination of the absorbed dose to water in a high-energy photon beam | |--| |--| | User: Patrícia Nicolucci | | | Date: 25/09/2020 | | |---|-------------------------------|----------------------|---|----------------------| | 1. Radiation treatment unit a Accelerator: | and reference
Mevatron XII | conditions 1 | or $D_{w,Q}$ determination Nominal Acc Potential: | 10 _{MV} | | Nominal dose rate: | 300 | MU min ⁻¹ | Beam quality, <i>Q</i> (<i>TPR</i> _{20,10}): | | | Reference phantom: | water | | Set up: ■ SSD □ SAD | | | Reference field size: | 10x10 | cm x cm | Reference distance (cm): 100 | | | Reference depth Z_{ref} : | 10 | g cm ⁻² | | | | 2. Ionization chamber and el
Ionization chamber model: | | farmer | Serial no.: XB3216 | | | Chamber wall | material: | grafite | thickness: 0,065 | _ g cm ⁻² | | Waterproof sleeve | material: | latex | thickness: 0,082 | _ g cm ⁻² | | Phantom window | material: | PMMA | thickness:1,2 | _ g cm ⁻² | | Absorbed-dose-to-water cali
Calibration quality Q_0 : | bration factor ¹ | | 9,61 x 10^{-3} \boxtimes Gy nC ⁻¹ \square Calibration depth: 5 | | | If Q_0 is photon beam, give TPI | - | 68 | Canoration depth. | _g cm | | | | | T _o : 20 °C Rel. humidity | . 60 % | | Polarizing potential V_i : 300 | | _ | | | | Foranzing potential V ₁ . | _ | | : ⊠ +ve □ -ve □ corrected for po | iarity effect | | Calibration laborators IRD- | - | olarity: 🛛 + | Date: 23/03/2020 | | | Calibration laboratory: IRD-CNEN Electrometer model: PTW Unidos | | | Serial no.: 880001 | | | Electronicier model. | | | | | | Calibrated separately from chamber: ☐ yes ☒ no If yes Calibration laboratory: | | | Range setting: auto | | | If yes Calibration laborate | ory: | | Date: | | | 3. Dosimeter reading ^b and cor | rection for in | fluence qua | nntities | | | Uncorrected dosimeter reading at V_I and user polarity: Corresponding accelerator monitor units: | | | 83,44 ⊠ nC □ rdg
100 MU | | | Ratio of dosimeter reading and | l monitor units: | M | $T_I = $ \square nC MU ⁻¹ \square rd | g MU ⁻¹ | | (i) Pressure P:101,21 | cPa Temper | ature T:2 | 2 °C Rel. humidity (if known) | : 48 % | | | | | $k_{TP} = \frac{(273.2 + T)}{(273.2 + T_o)} \frac{P_o}{P}$ | = | | (ii) Electrometer calibration f | actor c k _{elec} : | □ nC ı | $(2/3.2 + I_o) P$ $dg^{-1} \boxtimes dimensionless \qquad k_{elec}$ | | | | rdg at $+V_I$: | | | | | | | | $k_{pol} = \frac{\left M_{+} \right + \left M_{-} \right }{2M} =$ | = | | (iv) Recombination correction (two-voltage method) | |--| | | | | | Readings e at each V: $M_{I} = $ $M_{2} = $ 83,33 | | Voltage ratio $V_1 / V_2 =$ Ratio of readings $M_1 / M_2 =$ | | Use Table 4.VII for a beam of type: ■ pulsed □ pulsed-scanned | | $a_o = \underline{} \qquad a_1 = \underline{} \qquad a_2 = \underline{}$ | | $k_s = a_0 + a_1 \left(\frac{M_1}{M_2} \right) + a_2 \left(\frac{M_1}{M_2} \right)^2 = \underline{\qquad}$ | | Corrected dosimeter reading at the voltage V_I : | | $M_Q = M_1 \ k_{TP} \ k_{elec} \ k_{pol} \ k_z = $ \square nC MU ⁻¹ \square rdg MU ⁻¹ | | 4. Absorbed dose to water at the reference depth, z_{ref} Beam quality correction factor for user quality $Q: k_{Q,Q_o} = $ | | taken from Table 6.III Other, specify: | | $D_{w,\mathcal{Q}}\!\left(z_{\mathit{ref}} ight) = M_{\mathcal{Q}} N_{D,w,\mathcal{Q}_o} k_{\mathcal{Q},\mathcal{Q}_o} = \underline{\hspace{1cm}} \operatorname{Gy} \operatorname{MU}^{-1}$ | | 5. Absorbed dose to water at the depth of dose maximum, z_{max} Depth of dose maximum: $z_{max} = 2.5$ g cm ⁻² (i) SSD set-up | | Percentage depth-dose at z_{ref} for a 10 cm x 10 cm field size: PDD ($z_{ref} = 10 \text{ g cm}^{-2}$) = 80,1 % | | Absorbed-dose calibration of monitor at Z_{max} : | | $D_{w,Q}(z_{max}) = 100 D_{w,Q}(z_{ref}) / PDD(z_{ref}) = Gy MU^{-1}$ | | | | (ii) SAD set-up | | TMR at z_{ref} for a 10 cm x 10 cm field size: $TMR (z_{ref} = g \text{ cm}^{-2}) =$ | | Absorbed-dose calibration of monitor at Z_{max} : | | $D_{w,Q}(z_{max}) = D_{w,Q}(z_{ref}) / TMR(z_{ref}) = \underline{\qquad} Gy MU^{-1}$ | | ^a Note that if Q_o is ⁶⁰ Co, N_{D,w,Q_o} is denoted by $N_{D,w}$. ^b All readings should be checked for leakage and corrected if necessary | | ^c If the electrometer is not calibrated separately set $k_{elec} = 1$ | | ^d M in the denominator of k _{pol} denotes reading at the user polarity. Preferably, each reading in the equation should be the average of the ratios of M (or M+ or M-) to the reading of an external monitor, M _{em} . | It is assumed that the calibration laboratory has performed a polarity correction. Otherwise k_{pol} is determined according to rdg at $$+V_I$$ for quality Q_o : $M_+ = \underline{\qquad}$ rdg at $-V_I$ for quality Q_o : $M_- = \underline{\qquad}$ $$k_{pol} = \frac{\left[\left(M_+ \big| + \big| M_- \big|\right) \big/ \big| M \big| \right]_Q}{\left[\left(M_+ \big| + \big| M_- \big|\right) \big/ \big| M \big| \right]_{Q_o}} = \underline{\qquad}$$ g Check that $$k_{\rm s}-1 \approx \frac{M_1/M_2-1}{V_1/V_2-1}$$ e Strictly, readings should be corrected for polarity effect (average with both polarities). Preferably, each reading in the equation should be the average of the ratios of M₁ or M₂ to the reading of an external monitor, M_{em}. ^fIt is assumed that the calibration laboratory has performed a recombination correction. Otherwise the factor $k_z^2 = k_z/k_{z,Q_o}$ should be used instead of k_z . When Q_o is ⁶⁰Co, k_{z,Q_o} (at the calibration laboratory) will normally be close to unity and the effect of not using this equation will be negligible in most cases. ^h Note that if Q_o is ⁶⁰Co, k_{Q,Q_o} is denoted by k_Q , as given in Table 6.III.