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BO®K I1i.

DEFINITIONS.

1. Equal citcles are those the diameters of which are
equal, or the radii of which are equal.

2. A straight line is said to touch a circle which,
meeting the circle and being produced, does not cut the
circle.

3. Circles are said to touch one another which,
meeting one another, do not cut one another.

4. In a circle straight lines are said to be equally
distant from the centre when the perpendiculars drawn
to them from the centre are equal.

5. And that straight line is said to be at a greater
distance on which the greater perpendicular falls.

6. A segment of a circle is the figure contained by a
straight line and a circumference of a circle.

7. An angle of a segment is that contained by a
straight line and a circumference of a circle.

8. An angle in a segment is the angle which, when
a point is taken on the circumference of the segment and
straight lines are joined from it to the extremities of the
Stl‘dtht line which is the base of the segment, is contained
by the straight lines so joined.

0. And, when the straight lines containing the angle cut
off a circumference, the angle is said to stand upon that
circumference.

H. E. IL 1
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10. A sector of a circle is the figure which, when an
angle is constructed at the centre of the circle, is contained by
the straight lines containing the angle and the circumference
cut off by them.

11. Similar segments of circles are those which
admit equal angles, or in which the angles are equal to one
another.

DEFINITION 1I.
3 ’ ¥ Ve A\ R ~ 4 LS » 7
"Ioou kikAot eloly, dv al Sudperpor loar eloiy, ) dv al ék TGV kévTpwy oot eloiv.

Many editors have held that this should not have been included among
definitions. Some, e.g. Tartaglia, would call it a postulate; others, e.g. Borelli
and Playfair, would call it an axiom ; others again, as Billingsley and Clavius,
while admitting it as a dgfmition, add explanations based on the mode of
constructing a circle; Simson and Pfleiderer hold that it is a theorem. 1
think however that Euclid would have maintained that it is a definition in
the proper sense of the term; and certainly it satisfies Aristotle’s requirement
that a “definitional statement” (épworkds Aéyos) should not only state the
Jact (6 ér) but should indicate the cawse as well (De anima 11. 2, 413 a
13). The equality of circles with equal radii can of course be proved by
superposition, but, as we have seen, Euclid avoided this method wherever he
could, and there is nothing technically wrong in saying “ By egra/ circles 1
mean circles with equal radii.” No flaw is thereby introduced into the system
of the Elements ; for the definition could only be objected to if it could be
proved that the equality predicated of the two circles in the definition was
not the same thing as the equality predicated of other equal figures in the
Elements on the basis of the Congruence-Axiom, and, needless to say, this
cannot be proved because it is not true. The exisfence of equal circles (in
the sense of the definition) follows from the existence of equal straight lines
and 1. Post. 3.

The Greeks had no distinct word for radius, which is with them, as here,
the (straight line drawn) from the centre 7 éx Tob kévrpov (ebbeia); and so
definitely was the expression appropriated to the radius that é 7o% «xévrpou
was used without the article as a predicate, just as if it were one word. Thus,
e.g., in 1L 1 & kévrpov ydp means “for they are radii”: cf. Archimedes, On
the Sphere and Cylinder 11. 2, 77 BE ék Tob xévrpov éori 10, ..kikhov, BE is a
radius of the circle.

DEFINITION 2.

3 4 /’ e K4
Edbeta :cwc)\’ov épamrecfar Méyerar, s drrouéiy 103 kixdov kol éxBardopévy
5
ob Téuver TOV kikAov.

Euclid’s phraseology here shows the regular distinction between drrecfac
and its compound épdrrerfar, the former meaning ““to meer” and the latter
“to Zowch.” 'The distinction was generally observed by Greek geometers
from Euclid onwards. There are however exceptions so far as drrecfor is
concemed ; thus it means “to Zwch™ in Eucl 1v. Def. 5 and sometimes in
Archimedes, On the other hand, épdmrecfac is used by Aristotle in certain
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cases where the orthodox geometrical term would be drrecfar. Thus in
Meteorologica 111. 5 (376 b 9) he says a certain circle will pass through all the
angles (amacdv époperar tdv yondv), and (376 a 6) M will lie on a given
(circular) cirauwmference (8eBopévns mepipepelas épdderar 7o M),  We shall find
arreobou used in these senses in Book 1v. Deff. 2, 6 and Deff. 1, 3 respectively.
The latter of the two expressions quoted from Aristotle means that #ke Jocus
of M is @ given circle, just as in Pappus diyerar 70 onuelov éoe Sedopévys
edfelas means that 2%e Jocus of the point is a straight line given in position.

DEFINITION 3.

Kixdot éptimrectar A wy Méyovrar olrwes dmrrduevor dAAjAwy of Téuvovaw
aAXPAovs.

Todhunter remarks that different opinions have been held as to what is,
or should be, included in this definition, one opinion being that it only means
that the circles do not cut in the neighbourhood of the point of contact,
and that it must be shown that they do not cut elsewhere, while another
opinion is that the definition means that the circles do not cut at all
Todhunter thinks the latter opinion correct. I do not think this is proved ;
and I prefer to read the definition as meaning simply that the circles meet
at a point but do not cut af zhat point. 1 think this interpretation
preferablé for the reason that, although Euclid does practically assume in
I 11—13, without stating, the theorem that circles touching at one point
do not intersect anywhere else, he has given us, before reaching that
point in the Book, means for proving for ourselves the truth of that
statement. In particular, he has given us the propositions 1L 7, 8 which,
taken as a whole, give us more information as to the general nature of a
circle than any other propositions that have preceded, and which can be used,
as will be seen in the sequel, to solve any doubts arising out of Euclid’s
unproved assumptions. Now, as a matter of fact, the propositions are not used
in any of the genuine proofs of the theorems in Book 1. ; 111. 8 is required
for the second proof of 111. g which Simson selected in preference to the first
proof, but the first proof only is regarded by Heiberg as genuine. Hence it
would not be easy to account for the appearance of 11. 7, 8 at all unless as
affording means of answering possible obsections (cf. Proclus’ explanation of
Euclid’s reason for inserting the second part of 1. 3).

External and internal contact are not distinguished in Euclid until 111
11, 12, though the figure of 111. 6 (not the enunciation in the original text)
represents the case of internal contact only. But the definition of touching
circles here given must be taken to imply so much about énternal and external
contact respectively as that (@) a circle touching another internally must,
immediately before “meeting” it, have passed through points zwithin the
circle that it touches, and (4) a circle touching another externally must,
immediately before meeting it, have passed through points owzside the circle
which it touches. These facts must indeed be admitted if snzernal and
external are to have any meaning at all in this connexion, and they constitute
a minimum admission necessary to the proof of 111 6.

DEFINITION 4.

2 ’ L 3 ’ 2 \ ~ /. 3 ~ I < 3 2 A ~
Ev xdxhy loov dméyery amd tod xévrpov ebflelar Aéyovray drav al awd Tob
3 ’ 2 > *
kévtpou ér abdris kalferor dybpevar iout wow.

I—2
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DEFINITION §.

Meilov 8% dméyew Aéyerar, &g v 7 peilwv kdferos winTer

DEFINITION 6.

-~ 7 k] N\ A ’ ~ e ’ 3 / Ay 4
Tufpa Kikhov é&ori T0 meptexouerov oxfma twé Te edfelas ral xiklov
Tepipepeias.

DEFINITION 7.

Tusjporos 8¢ yuvia éoriv 1 wepiexouévn vrd e ebfelas kal kdkov mepipepeias.

This definition is only interesting historically. The angle of @ segment,
being the “angle” formed by a straught line and a c1rcumference ” is of the
kind described by Proclus as “mixed.” A particular “angle” of this sort is
the “angle of a semicircle)” which we meet with again in 111 16, along with
the so-called “horn-like angle” (keparoadys), the supposed ‘“angle” between
a tangent to a circle and the circle itself. The “angle of a semicircle” occurs
once in Pappus (VIL p. 670, 19), but it there means scarcely more than the
corner of a semicircle regarded as a point to which a straight line is directed.
Heron does not give the definition of the angle of a .reamem‘ and we may
conclude that the mention of it and of the ang/e of a .vemzcznle in Euclid is a
survival from earlier text-books rather than an indication that Euclid considered
either to be of importance in elementary geometry (cf. the note on nr 16
below).

We have however, in the note on 1. 5 above (Vol. 1. pp. 252—3), seen evi-
dence that the angle of a segment had played some part in geometrical proofs up
to Euclid’s time. It would appear from the passage of Aristotle there quoted
(Anal. prior. 1. 24, 41 b 13 5qq.) that the theorem of 1. 5 was, in the text-books
immediately preceding Euclid, proved by means of the equality of the two
“angles of 7 any one segment. This latter property must therefore have been
regarded as more elementary (for whatever reason) than the theorem of 1. 5;
indeed the definition as given by Euclid practically implies the same thing,
since it speaks of only one ““angle of a segment,” namely “#%e angle contained
by a straight line and a circumference of a circle.” Euclid abandoned the
actual use of the “angle” in question, but no doubt thought it unnecessary
to break with tradition so far as to strike the definition out also.

DEFINITION 8.
Ev ‘rp.r],uaﬂ, de& -ycowa EU'TLI' Srav &l 08 wepad)epsm; T0D T/.L'I]fLO.TOS‘ )w]gbﬁ'q TL

oqueloy kol an uvrov érl 1o repa'ra 1'779 ev@eeas‘ 7 &t Bdois Tob Tppatos,
emésvxewa'w ebBetat, 1) wepLexopéry ya)wa vTwo TGV eanéevxﬂewwv edfeadv.

DEFINITION o.

’ A\ ~
i ",O‘rlo.v Sélaf_ mepiexovaaL Ty yw,w'av ebbelor amoraufdvwal twva wepipeperar,
&’ éxelvms Méyerar Befnréval v yovia.
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DEFINITION I0O.

Topevs 8¢ xikhov éoriv, rav wpds T® xévtpy 70 Kkikhov ovoradf yovia,
10 wepLexbuevoy oxAua VTE Te TGV TN ywviay wepiexovady eilfedy kal Tis
dmolapSavopérns vr adrdy wepupepelns.

A scholiast says that it was the shoemaker’s kuife, oxvroropuds Touels,
which suggested the name rouevs for a sector of a circle. The derivation of
the name from a resemblance of shape is parallel to the use of dpBylos (also
a shoemaker’s knife) to denote the well known figure of the Book of Lemmas
partly attributed to Archimedes.

A wider definition of a sector than that given by Euclid is found in a
Greek scholiast (Heiberg’s Euclid, Vol. v. p. 260) and in an-Nairizi (ed. Curtze,
p- 112). ‘“There are two varieties of sectors; the one kind have the angular
vertices at the centres, the other at the circumferences. Those others which
have their vertices neither at the circumferences nor at the centres, but at
some other points, are for that reason not called sectors but sector-like
figures (ropoed oxfpara).” The exact agreement between the scholiast and
an-Nairlzi suggests that Heron was the authority for this explanation.

The sector-itke figure bounded by an arc of a circle and two lines drawn
from its extremities to meet at any point actually appears in Euclid’s book On
divisions (mepi Siupeoewr) discovered in an Arabic ms. and edited by
Woepcke (cf. Vol. L. pp. 8-—10 above). This treatise, alluded to by Proclus,
had for its object the division of figures such as triangles, trapezia,
quadrilaterals and circles, by means of straight lines, into parts equal or
in given ratios. One proposition e.g. is, 7v divide a triangle into fwo equal
parts by a straight line passing through a given point on one side. The
proposition (28) in which the guasi-sector occurs is, 7v divide such a figure by a
straight line into two equal parts. The solution in this case is given by Cantor
(Gesch. d. Math. 1,, pp. 287—38).

If ABCD be the given figure, £ the middle point
of BD and EC at right angles to BD, A
the broken line 4ZC clearly divides the figure into
two equal parts.

Join AC, and draw EF parallel to it meeting
ABin F. -

Join CF;, when it is seen that CF divides the <
figure into two equal parts.

F

DEeFINITION II.

o ’ ’ A 3 \ \ 8 ’ Id £ Ny k) € ’ 3
Opowe Tumpara KikAwy €Tl 18 dexopeva ywvias loas, 3 év ols al ywvial toat
XA ats eloiv.

De Morgan remarks that the use of the word similar in “similar
segments ” is an anticipation, and that similarity of form is meant. He adds
that the definition is a theorem, or would be if “similar” had taken its final
meaning.



BOOK III. PROPOSITIONS.

ProPOSITION 1.

To find the centre of a given circle.

Let ABC be the given circle;
thus it is required to find the centre of the circle 4AB5C.

Let a straight line 4% be drawn
s through it at random, and let it be bisected
at the point 0 ;
from D let DC be drawn at right angles
to AB and let it be drawn through to £;
let CE be bisected at 7'

10] say that /7 is the centre of the circle
ABC.

For suppose it is not, but, if possible,
let & be the centre,

and let GA, GD, GB be joined.
13 Then, since 4D is equal to DA,
and DG is common, _
the two sides 4D, DG are equal to the two sides
BD, DG respectively ;
and the base G4 is equal to the base G5, for they are
20 radii ;
therefore the angle 4.DG is equal to the angle GDA. [1. 8]
But, when a straight line set up on a straight line makes
the adjacent angles equal to one another, each of the equal
angles is right; [1. Def. 10]
2 therefore the angle GD2A is right,
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But the angle FDA is also right ;

therefore the angle ZDZ is equal to the angle GDB, the
greater to the less: which is impossible.

Therefore G is not the centre of the circle 4 BC.

3 Similarly we can prove that neither is any other point
except /.

Therefore the point £ is the centre of the circle 4.B8C.

PORISM. From this it is manifest that, if in a circle a
straight line cut a straight line into two equal parts and at
35 right angles, the centre of the circle is on the cutting straight

line.
Q. E. F.

12. For suppose it is not. This is expressed in the Greek by the two words M# vydp,
but such an elliptical phrase is impossible in English.

17. the two sides AD, DG are equal to the two sides BD, DG respectively.
As before observed, Euclid is not always careful to put the equals in corresponding order.
The text here has “ GD, DB.”

Todhunter observes that, when, in the construction, .DC is said to be
produced to E, it is assumed that D is within the circle, a fact which Euclid
first demonstrates in 1. 2. This is no doubt true, although the word Sujxfe,
“let it be drawn tirough,” is used instead of éxBefSArjobw, “let it be produced.”
And, although it is not hecessary to assume that D is within the circle, it is
necessary for the success of the construction that the straight line drawn
through D at right angles to 42 shall meet the circle in two points (and no
more): an assumption which we are not entitled to make on the basis of what
has gone before only.

Hence there is much to be said for the alternative procedure recommended
by De Morgan as preferable to that of Euclid. De Morgan would first prove
the fundamental theorem that “the line which bisects a chord perpendicularly
must contain the centre,” and then make n1 1, 111. 25 and 1v. 5 immediate
corollaries of it. The fundamental theorem is a direct consequence of the
theorem that, if P is any point equidistant from A4
and B, then 2P lies on the straight line bisecting 458
perpendicularly. We then take any two chords A5,

AC of the given circle and draw D0, EO bisecting 8

them perpendicularly. Unless B4, AC are in one

straight line, the straight lines 20, £0 must meet

in some point O (see note on 1v. 5 for possible

methods of proving this). And, since both DO, 6
£ O must contain the centre, O must be the centre. /

This method, which seems now to be generally
preferred to Euclid’s, has the advantage of showing
that, in order to find the centre of a circle, it is sufficient to know three points
on the circumference. If therefore two circles have three points in common,
they must have the same centre and radius, so that two circles cannot have
three points in common without coinciding entirely. Also, as indicated by
De Morgan, the same construction enables us (1) to draw the complete circle
of which a segment or arc only is given (11 25), and (2) to circumscribe a
circle to any triangle (1v. 5).
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But, if the Greeks had used this construction for finding the centre of a
circle, they would have considered it necessary to add a proof that no other
point than that obtained by the construction can be the centre, as is clear
both from the similar reductio ad absurdum in 11 1 and also from the fact
that Euclid thinks it necessary to prove as a separate theorem (1L g9) that, if
a point within a circle be such that three straight lines (at least) drawn from it
to the circumference are equal, that point must be the centre. In fact,
however, the proof amounts to no more than the remark that the two
perpendicular bisectors can have no more than one point common.

And even in De Morgan’s method there is a yet unproved assumption.
In order that DO, £O may meet, it is necessary that 4.5, 4C should not be
in one straight line or, in other words, that BC should not pass through A.
This results from nr. 2, which therefore, strictly speaking, should precede.

To return to Euclid’s own proposition 111. 1, it will be observed that the
demonstration only shows that the centre of the circle cannot lie on either
side of CD, so that it must lie on €D or CD produced. It is however taken
for granted rather than proved that the centre must be the middle point of
CE. The proof of this by reductio ad absurdum is however so obvious as to
be scarcely worth giving. The same consideration which would prove it may
be used to show that a circle cannot have more than one centre, a proposition
which, if thought necessary, may be added to 111. I as a corollary.

Simson observed that the proof of 1. 1 could not but be by reductio ad
absurdum. At the beginning of Book 111. we have nothing more to base the
proof upon than the definition of a circle, and this cannot be made use of
unless we assume some point to be the centre.  We cannot however assume
that the point found by the construction is the centre, because that is the
thing to be proved. Nothing is therefore left to us but to assume that some
other point is the centre and then to prove that, whatever other point is
taken, an absurdity results; whence we can infer that the point found is
the centre.

The Porism to 111. 1 is inserted, as usual, parenthetically before the words
dwep &er Tooar, which of course refer to the problem itself.

ProrosiTiON 2.

If on the civcumfevence of a civcle two points be taken at
random, the straight line joining the points will fall within
the civcle.

Let ABC be a circle, and let two points 4, B be taken
at random on its circumference ;

I say that the straight line joined from
A to B will fall within the circle. N

For suppose it does not, but, if
possible, let it fall outside, as 4 £5 ;
let the centre of the circle ABC be
taken [m. 1], and let it be D; let DA,

DE be joined, and let DFE be drawn
through. ETB
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Then, since DA is equal to DB,
the angle DA is also equal to the angle DBE. [1. 3]
And, since one side AERB of the triangle DA E is produced,
the angle DB is greater than the angle DAE. [1 16]
But the angle DA E is equal to the angle DBE ;
therefore the angle DZZB is greater than the angle DBE.
And the greater angle is subtended by the greater side; [1. 19]
therefore DA is greater than DE.
But D75 is equal to DF;
therefore D/ is greater than DZ,
the less than the greater: which is impossible.

Therefore the straight line joined from 4 to & will not
fall outside the circle.

Similarly we can prove that neither will it fall on the
circumference itself ;

therefore it will fall within.

Therefore etc.
Q. E. D.

The reductio ad absurdum form of proof is not really necessary in this case,
and it has the additional disadvantage that it requires the destruction of two
hypotheses, namely that the chord is (1) outside, (2) on
the circle. To prove the proposition directly, we have
only to show that, if £ be any point on the straight line
AZB between 4 and B, DE is less than the radius of the
circle. This may be done by the method shown above,
under 1. 24, for proving what is assumed in that
proposition, namely that, in the figure of the proposition,
£ falls below EGif DE is not greater than DF  The Ava
assumption amounts to the following proposition, which
De Morgan would make to precede 1. 24: ‘“Every
straight line drawn from the vertex of a triangle to the base is less than
the greater of the two sides, or than either if they be equal.” The case
here is that in which the two sides are equal; and, since the angle D4R is
equal to the angle DB A, while the exterior angle DZA is greater than the
interior and opposite angle DB 4, it follows that the angle DEA is greater
than the angle DAZ, whence DE must be less than D4 or DB,

Camerer points out that we may add to this proposition the further
statement that all points on A48 produced in either direction are outside the
circle. This follows from the proposition (also proved by means of the
theorems that the exterior angle of a triangle is greater than either of the
interior and opposite angles and that the greater angle is subtended by
the greater side) which De Morgan proposes to introduce after 1. 21, namely,

“The perpendicular is the shortest straight line that can be drawn from a
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given point to a given straight line, and of others that which is nearer to the
perpendicular is less than the more remote, and the converse; also not more
than two equal straight lines can be drawn from the point to the line, one on
each side of the perpendicular.”

The fact that not more than two equal straight lines can be drawn from a
given point to a given straight line not passing through it is proved by Proclus
on 1. 16 (see the note to that proposition) and can alternatively be proved by
means of 1. 7, as shown above in the note on 1. 12. It follows that

A straight line cannot cut a circle in more than two points :

a proposition which De Morgan would introduce here after 1. 2. The proof
given does not apply to a straight line passing through the centre; but that
such a line only cuts the circle in two points is self-evident.

ProrosiTiON 3.

If n a circle a sivaight line through the centre bisect a
strarght line not through the centre, it also culs it af right
angles ; and if it cut it at right angles, it also bisects it.

Let ABC be a circle, and in. it let a straight line CD
s through the centre bisect a straight line
AZB not through the centre at the point c

F
I say that it also cuts it at right angles.
For let the centre of the circle ABC E
10 be taken, and let it be £; let £4, EB
be joined. A\j

Then, since AF is equal to FB,
and F£ is common, D
two sides are equal to two sides;
15 and the base £A4 is equal to the base £75;
therefore the angle 4/ Z is equal to the angle £FE. [1.8]
But, when a straight line set up on a straight line makes
the adjacent angles equal to one another, each of the equal
angles is right ; [1. Def. 10]
20 therefore each of the angles 4/ E, BFFE is right.
Therefore €D, which is through the centre, and bisects
APFB which is not through the centre, also cuts it at right
angles.
Again, let CD cut A5 at right angles ;

25 I say that it also bisects it, that is, that 4/ is equal to F5.




L 3, 4] PROPOSITIONS 2—4 I1

For, with the same construction,
since £A is equal to £5,

the angle ZA4F is also equal to the angle £BF. [ 5]
But the right angle 4 FF is equal to the right angle BFE,
so therefore £AF, EBF are two triangles having two angles
equal to two angles and one side equal to one side, namely
EF, which is common to them, and subtends one of the equal
angles ;
therefore they will also have the remaining sides %ual to
35 the remaining sides; [1. 26]
therefore 4/ is equal to F5.
Therefore etc.
Q. E. D.

26. with the same construction, rév adrdy karasxevacdévrwy.

This proposition asserts the two parzial converses (cf. note on 1. 6) of the
Porism to 111. 1. De Morgan would place it next to 11 1.

Prorosition 4.

If in a civcle two straight lines cut one another whick arve
not through the centve, they do not bisect one another.

Let ABCD be a circle, and in it let the two vstraight lines
AC, BD, which are not through the
centre, cut one another at £;

I say that they do not bisect one
another. D

For, if possible, let them bisect one
another, so that A is equal to £C, A
and FFE to ED;

let the centre of the circle- ABCD be
taken [ur 1], and let it be 7; let Z£ be B
joined.
Then, since a straight line #£ through the centre bisects
a straight line AC not through the centre,
it also cuts it at right angles ; (1. 3]
therefore the angle £ A4 is right.
Again, since a straight line Z#Z bisects a straight line 50,
it also cuts it at right angles; [ 3]

therefore the angle /EA is right.

(@)



12 BOOK 1III [ 4, 5

But the angle #£.4 was also proved right;
therefore the angle FZA is equal to the angle FED,
the less to the greater : which is impossible.
Therefore AC, BLD do not bisect one another.

Therefore etc.
Q. E. D.

ProrosiTION 5.

If two civcles cut one another, they will not have the same
cenire. '

For let the circles 48C, CDG cut one another at the
points 5, C;

I say that they will not have the same
centre.

For, if possible, let it be Z; let £C
be joined, and let £#/G be drawn
through at random.

Then, since the point £ is the
centre of the circle ABC,

£C is equal to £F. [1 Def. 15]

Again, since the point £ is the centre of the circle CDG,

EC is equal to £G.
But £C was proved equal to £/ also ;
therefore £/ is also equal to £G, the less to the
greater : which is impossible.

Therefore the point £ is not the centre of the circles
ABC, CDG.

Therefore etc.

Q. E. D.

The propositions 11 5, 6 could be combined in one. It makes no
difference whether the circles cut, or meet without cutting, so long as they do
not coincide altogether; in either case they cannot have the same centre.
The two cases are covered by the enunciation : Jf #ke circumferences of two
circles meet at a point they cannot have the same centre. On the other hand, I
Hwo circles have the same centre and one point in their circumiferences common,
they must coincide altogether.
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Prorosition 6.

If two circles touch one another, they will not have the
same centye.

For let the two circles 4BC, CDE touch one another
at the point C;

I say that they will not have the
same centre.

For, if possible, let it be #; let
FC be joined, and let #£5 be drawn
through at random.

Then, since the point /7 is the
centre of the circle 45C,

FCis equal to FAB.

Again, since the point /# is the
centre of the circle CDZ, :

FC is equal to FF.
But #C was proved equal to 5 ;

therefore /°Z is also equal to /75, the less to the greater:
which is impossible.

Therefore # is not the centre of the circles 48C, CDE.

Therefore etc.
Q. E. D.

The English editions enunciate this proposition of circles touching
internally, but the word (évrés) is a mere interpolation, which was no doubt
made because Euclid’s figure showed only the case of snfernal contact. The
fact is that, in his usual manner, he chose for demonstration the more difficult
case, and left the other case (that of exzernal contact) to the intelligence of
the reader. It is indeed sufficiently self-evident that circles touching externally
cannot have the same centre ; but Euclid’s proof can really be used for this
case too.

Camerer remarks that the proof of 11 6 seems to assume tacitly that the
points £ and B cannot coincide, or that circles which touch internally at C
cannot meet in any other point, whereas this fact is not proved by Euclid till
1 13. But no such general assumption is necessary here; it is only
necessary that oz¢ line drawn from the assumed common centre should meet
the circles in different points; and the very notion of internal contact requires
that, before one circle meefs the other on its inner side, it must have passed
through points witkin the latter circle.
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ProrosiTION 7.

If on the diameter of a civcle a point be taken which is not
the centre of the civcle, and from: the point straight lhines fall
upon the civcle, that will be greatest on which the centre is, the
vemainder of the same diameter will be least, and of the rest

5the nearer to the straight line through the centrve s always
greater than the more remole, and only two equal strvaight
lines will fall from the poini on the circle, one on eack side
of the least straight line.

Let ABCD be a circle, and let 40 be a diameter of it ;

roon AD let a point 7 be taken which is not the centre of the
circle, let £ be the centre of the circle,
and from £ let straight lines 75, #C, /G fall upon the circle
ABCD;
[ say that 74 is greatest, /D is least, and of the rest 75 is
15 greater than ~C, and #C than FG.
For let BE, CE, GE be joined. o

Then, since in any triangle two
sides are greater than the remaining 8 i

one, [r. 20]
20 EPB, EF are greater than 57

But A £ is equal to BE;
therefore A F is greater than BE.
Again, since BZ£ is equal to CZ,
and #% is common,
25 the two sides BE, £/ are equal to the two sides CE, EF.
But the angle £/ is also greater than the angle CEF;
therefore the base B/ is greater than the base CZ. [1. 24]
For the same reason
CFis also greater than FG.
30 Again, since GF, FFE are greater than £G,
and £¢ is equal to £D,
GF, IFE are greater than £D.
Let £F be subtracted from each ;
therefore the remainder G/ is greater than the remainder
35 FD.
Therefore /74 is greatest, /7D is least, and /5 is greater
than #C, and /C than #G.
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I say also that from the point # only two equal straight
lines will fall on the circle ABCD, one on each side of the
40 least FD.
For on the straight line £/ and at the point £ on it, let
the angle /£ // be constructed equal to the angle GEF [1. 23],
and let // be joined.
Then, since G£ is equal to £H,

45 and £ is common,
the two sides G £, £/ are equal to the two sides HE, £F;
and the angle GEF is equal to the angle HZEF;
therefore the base #G is equal to the base #A.  [i 4]

I say again that another straight line equal to #G will not
s fall on the circle from the point /.

For, if possible, let /X so fall.

Then, since /7K is equal to /G, and FH to FG,

FK is also equal to /A,

the nearer to the straight line through the centre being
55 thus equal to the more remote : which is impossible.

Therefore another straight line equal to G/ will not fall
from the point & upon the circle ;

therefore only one straight line will so fall.
Therefore etc.
Q. E. D.

4. of the same diameter. I have inserted these words for clearness’ sake. The text
has simply éhaxlory 8¢ % howrs, * and the remaining (straight line) least.”

7, 39. one on each side. The word - one” is not in the Greek, but is necessary to
give the force of é¢p’ éxdrepa Ths é\aylorys, literally ** on both sides,” or “ on each of the two
sides, of the least.”

De Morgan points out that there is an unproved assumption in this
demonstration. We draw straight lines from X as FB, FC, such that the
angle DFFB is greater than the angle DFC and then assume, with respect to
the straight lines drawn from the centre £ to B, C, that
the angle DZB is greater than the angle DEC. This
is most easily proved, I think, by means of the converse G
of part of the theorem about the lengths of different B
straight lines drawn to a given straight line from an

. R . . A
external point which was mentioned above in the note
on 1. 2. This converse would be to the effect that, 7f
fwo unequal straight lines be drazon from a point to a

Siven straight line which are not perpendicular fo the
straight line, the greater of the two is the furiher from the perpendicular from the
point o the given straight line. This can either be proved from its converse by
reductio ad absurdum, or established directly by means of 1. 47. Thus, in the
accompanying figure, #8 must cut £C in some point 4, since the angle BFE
is less than the angle CFEZ.

Therefore EM is less than £C, and therefore than £25.
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Hence the point B in which #5 meets the circle is further from the foot

of the perpendicular from £ on FB than M is;
therefore the angle BEZF is greater than the angle CEZ

Another way of enunciating the first part of the proposition is that of
Mr H. M. Taylor, viz. ¢ Of all straight lines drawn to a circle from an internal
point not the centre, the one which passes through the centre is the greatest,
and the one which when produced passes through the centre is the least; and
of any two others the one which swbiends the greater angle at the centre is the
greater.” 'The substitution of the angle subtended at the centre as the criterion
no doubt has the effect of avoiding the necessity of dealing with the unproved
assumption in Euclid’s proof referred to above, and the similar substitution in
the enunciation of the first part of 1. 8 has the effect of avoiding the necessity
for dealing with like unproved assumptions in Euclid’s proof, as well as the
complication caused by the distinction in Euclid’s enunciation between lines
falling from an external point on the convex circumjerence and on the concave
cireumference of a circle respectively, terms which are not defined but taken as
understood.

Mr Nixon (Buclid Revised) similarly substitutes as the criterion the angle
subtended at the centre, but gives as his reason that the words “nearer” and
“more remote” in Euclid’s enunciation are scarcely clear enough without
some definition of the sense in which they are used, Smith and Bryant make
the substitution in 1. 8, but follow Euclid in 111. 7.

On the whole, I think that Euclid’s plan of taking straight lines drawn from
the point which is not the centre direct to the circumference and making
greater or less angles az #hat point with the straight line containing it and the
centre is the more instructive and useful of the two, since it is such lines
drawn in any manner to the circle from the point which are immediately useful
in the proofs of later propositions or in resolving difficulties connected with
those proofs.

Heron again (an-Nairizi, ed. Curtze, pp. 114—5) has a note on this
proposition which is curious. He first of all says that Euclid proves that lines
nearer the cemfre are greater than those more remote jrom 2. This is a
different view of the question from that taken in Euclid’s proposition as we
have it, in which the lines are not nearer to and more remote from the cenzre
but from #ke line through the centre. Euclid takes lines inclined to the latter
line at a greater or less angle ; Heron introduces distance from #he centre in
the sense of Deff. 4, 5, i.e. in the sense of #e length of the perpendicular drawn
to the line from the centre, which Euclid does not use till 111. 14, 15. Heron
then observes that in Euclid’s proposition the lines compared are all drawn on
one side of the line through the centre, and sets himself to prove the same
truth of lines on gpposite sides which are more or less distant from the centre.
The new point of view necessitates a quite different line of proof, anticipating
the methods of later propositions.

The first case taken by Heron is that of two straight lines such that the
perpendiculars from the centre on them fall on the lines themselves and not
in either case on the line produced.

Let 4 be the given point, D the centre, and let
AZE be nearer the centre than A7, so that the £
perpendicular DG on 4 is less than the perpen- © 4
dicular DH on AF.

Then sgs. on DG, G£ =sqgs. on DH, HE,
and  sgs. on DG, G4 =sqs. on DH, HA.
But sq. on DG <sq. on DA, =
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Therefore sq. on G£ > sq. on HZ,
and sq. on G4 > sq. on HA,
whence GE > HF,

GA > HA.

Therefore, by addition, 4Z > AF.

The other case taken by Heron is that where
one perpendicular falls on the line produced, as in
the annexed figure. In this case we prove in like

manner that GE > HF, G
and G4 > AH.
Thus 4.Z is greater than the sum of A#, AH,

whence, a_fortiori, AE is greater than the difference
of AF, AH, i.e. than AF

Heron does not give the third possible case, that, namely, where doz
perpendiculars fall on the lines produced, The fact

is that, in this case, the foregoing method breaks
down. Though 4Z be nearer to the centre than l

N

-n

AFin the sense that DG is less than DA,
AZE is not greater but Jess than A4 k

M hi b d by th ’
oreover this cannot be prove y the same
method as before. V Q
For, while we can prove that k
GE > HF,
GA > AH,

we cannot make any inference as to the comparative length of 4Z, AF

To judge by Heron’s corresponding note to 111. 8, he would, to prove this
case, practically prove ni. 35 first, i.e. prove that, if £4 be produced to &
and #4 to Z,

rect. FA, AL =rect. £A, AK,
from which he would infer that, since 4X > 4Z by the first case,
AE < AF.

An excellent moral can, I think, be drawn from the note of Heron.
Having the appearance of supplementing, or giving an alternative for, Euclid’s
proposition, it cannot be said to do more than confuse the subject. Nor was
it necessary to find a new proof for the case where the two lines which are
compared are on opposite sides of the diameter, since Euclid shows that for each
line from the point to the circumference on one side of the diameter there is
another of the same length equally inclined to it on the other side.

ProrosiTion 8.

If a point be taken oulside a circle and from the point
strawght lines be drawn through to the circle, one of whick
s through the centre and the others are drawn at random,
then, of the straight lines which fall on the concave circum-

Serence, that through the cenire is greatest, while of the rest

H. E. 1L 2
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the nearer to that through the centve is always greater than
the more vemote, but, of the strazght lines falltng on the convex
civcumference, that belween the pornt and the diameter is least,
while of the vest the nearer to the least 1s always less than the
move vemote, and only two equal straight lines will fall on the
civele from the point, one on eack side of the least.

Let ABC be a circle, and let a point D be taken outside
ABC; let there be drawn through
from it straight lines DA, DE, DF,
DC, and let DA be through the centre;
I say that, of the straight lines falling
on the concave circumference A£FC,
the straight line 2.4 through the centre
is greatest,
while D £ is greater than D/ and DF
than DC;
but, of the straight lines falling on the
convex circumference HLKG, the
straight line D& between the point
and the diameter AG is least; and
the nearer to the least DG is always
less than the more remote, namely DA
than 2L, and DL than DA,

For let the centre of the circle A5C be taken [m 1], and
let it be M7 ; let ME, MF, MC, MK, ML, MH be joined.

Then, since AN is equal to £M,
let MDD be added to each ;

therefore A0 is equal to £M, MD.

But £M, MD are greater than £D; [L 20]

therefore A0 is also greater than £D.

Again, since M E is equal to MF,

and MDD is common,
therefore ZM, MD are equal to ZM, MD;

and the angle ZMD is greater than the angle FMD
therefore the base Z0 is greater than the base 7D,

[1 24]
Similarly we can prove that 7D is greater than CD;

therefore A is greatest, while D is greater than DF,
and DF than DC.
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Next, since MK, KD are greater than MDD, 1. 20]
and MG is equal to MK,

therefore the remainder XD is greater than the remainder
GD,

so that G is less than K.

And, since on M.D, one of the sides of the triangle /LD,
two straight lines /1/[]( KD were constructed meeting within
the triangle,

therefore- WK, KD are less than ML, LD ; [1. 21]
and MK is equal to ML ;

therefore the remainder DX is less than the remainder
DL,

Similarly we can prove that 2L is also less than D/7;

therefore G is least, while 2K is less than 2L, and
DL than DH.

I say also that only two equal straight lines will fall from
the point D on the circle, one on each side of the least DG.
On the straight line /D, and at the point 47 on it,
let. the angle DM B be constructed equal to the angle AMD,
and let D27 be joined.
Then, since MK is equal to M5B,
and MDD is common,

the two sides KM, MD are equal to the two sides B,
MD respectively ;

and the angle KM D is equal to the angle MDD ;
therefore the base DX is equal to the base DB.  [r 4]

I say that no other straight line equal to the straight line
DK will fall on the circle from the point 2.

For, if possible, let a straight line so fall, and let it be DNV,
Then, since DK is equal to DLV,
while DK is equal to D5,
DA is also equal to DN,
that is, the nearer to the least DG equal to the more remote:
which was proved impossible.

Therefore no more than two equal straight lines will fall
on the circle ABC from the point D, one on each side of
DG the least.

Therefore etc. Q. E. D.

2—2
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As De Morgan points out, there are here two assumptions similar to
that tacitly made in the proof of 11 7, namely that
K falls within the triangle DZM and E outside

the triangle DZM. These facts can be proved L ¢ /
in the same way as the assumption in 11 7. Let £ @

DE meet FM in ¥V and ZM in Z. Then, as
before, MZ is less than ML and therefore than
MEK. Therefore X les further than Z from E
the foot of the perpendicular from A on DE.
Similarly £ lies further than ¥ from the foot of the
same perpendicular.
Heron deals with lines on ggposite sides of the
diameter through the external point in a manner similar to that adopted in
his previous note. o A
For the case where £, 7 are the second pownts in
which 4E, AF meet the circle the method answers
well enough.
If AE is nearer the centre D than AF is,

sqs. on DG, GE =sqs. on DH, HF

and sgs. on DG, GA =sqs. on DH, HA,
whence, since DG < DH,
it follows that GE > HF,

and AG> AH,

so that, by addition, AE > AF

But, if X, L be the points in which 4Z, AF first
meet the circle, the method fails, and Heron is reduced to proving, in the first
instance, the property usually deduced from 111. 36. He argues thus:

AKD being an obtuse angle,
sq. on 4D =sum of sgs. on AKX, KD and twice rect. 4&, KG. [11. 12]
ALD is also an obtuse angle, and it follows that ]
sum of sgs. on 4K, XD and twice rect. AKX, KG is equal to
sum of sqs. on 4AZ, LD and twice rect. AL, LH.
Therefore, the squares on XD, LD being equal,
sq. on AKX and twice rect. 4K, KG =sq. on AL and twice rect. AL, LH,
or sq. on AKX and rect. 4K, KE =sq. on AL and rect. AL, LF,

Le. rect. AKX, AE =vrect. AL, AF.
But, by the first part, AE > APF.
Therefore AK < AL.

1L 7, 8 deal with the lengths of the several lines drawn to the circum-
ference of a circle (1) from a point within it, (2) from a point outside it; but a
similar proposition is true of straight lines drawn from a point on the
circumference itself: Jf any point be taken on the circumference of a civcle,
then, of all the straight lines which can be drawn from it fo the circumference, the
greatest is that in whick the centre is ; of any others that which is nearer fo the
straight line which passes through the centre is greater than one more remote ;
and from the same point there can be drawn to the circumference two straight
lines, and only two, which are equal o one another, one on cack side of the
greatest line.
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The converses of 11 7, 8 and of the proposition just given are also true
and can easily be proved by »eductio ad absurdum. They could be employed
to throw light on such questions as that of internal contact, and the relative
position of the centres of circles so touching. This is clear when part of the
converses is stated : thus (1) if from any point in the plane of a circle a
number of straight lines be drawn to the circumference of the circle, and one
of these is greater than any other, the centre of the circle must lie on that one,
(2) if one of them is less than any other, then, (@) if the point is within the
circle, the centre is on the minimum straight line produced deyond the point,
(&) if the point is outside the circle, the centre is on the minimum straight line
produced beyond the point in whick it meets the circle.

ProrosiTION 9.

If a point be taken within a circle, and more than two
equal straight lines fall from the point on the civcle, the point
laken is the centre of the circle.

Let 4ABC be a circle and D a point within it, and from
D let more than two equal straight
lines, namely DA, DB, DC, fall on L
the circle ABC;

I say that the point D is the centre
of the circle 4 5C.

For let A5, BC be joined and
bisected at the points £, 7, and let
ED, FD be joined and drawn through
to the points G, K, H, L.

Then, since AZ is equal to £5,
and £ is common,

the two sides AE, £D are equal to the two sides BE, ED;
and the base DA is equal to the base D5 ;

therefore the angle AZD is equal to the angle BED.
[1. 8]

Therefore each of the angles AED, BED is right ;

[1. Def. 10]
therefore GK cuts A5 into two equal parts and at right
angles. '

And since, if in a circle a straight line cut a straight line
into two equal parts and at right angles, the centre of the
circle is on the cutting straight line, [u1r. 1, Por.]

the centre of the. circle is on GX.
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For the same reason
the centre of the circle A5C is also on HL.

And the straight lines GX, AL have no other point
common but the point 2 ;

therefore the point 2 is the centre of the circle 45C.
Therefore etc. Q. E. D.

The result of this proposition is quoted by Aristotle, Meteorologica 111. 3,
373a 13—16 (cf. note on 1. 8).

L. ¢ is, as De Morgan remarks, a Jogica/ equivalent of part of ur 7,
where it is proved that every non-central point is #of a point from which three
equal straight lines can be drawn to the circle. Thus 111. 7 says that every
not-A is not-B, and 11l. ¢ states the equivalent fact that every 5 is A.
Mr H. M. Taylor does in effect make a logical inference of the theorem that,
If from a point three equal straight lines can be drawn to a circle, that point is
the centre, by making it a corollary to his proposition which includes the part of
11 7 referred to. Euclid does not allow himself these logical inferences, as we
shall have occasion to observe elsewhere also.

Of the two proofs of this proposition given in earlier texts of Euclid,
August and Heiberg regard that translated above as genuine, relegating the
other, which Simson gave alone, to a place in an Appendix. Camerer remarks
that the genuine proof should also have contemplated the case in which one
or other of the straight lines 4.8, BC passes through .0. This would however
have been a departure from Euclid’s manner of taking the most obscure case
for proof and leaving others to the reader.

The other proof, that selected by Simson, is as follows:

“For let a point D be taken within the circle 45C, and from D let more
than two equal straight lines, namely 4D, D5, DC,
fall on the circle AAC;

I say that the point D so taken is the centre of the
circle ABC.

For suppose it is not; but, if possible, let it be o
£, and let DF be joined and carried through to the =
points 7, G. o

A

Therefore #G is a diameter of the circle 4.B8C.

Since, then, on the diameter G of the circle
ABC a point has been taken which is not the centre
of the circle, namely D,

D@ is greatest, and DC is greater than DB, and DB than DA.

But the latter are also equal: which is impossible.

Therefore £ is not the centre of the circle.

Similarly we can prove that neither is any other point except D ;

therefore the point D is the centre of the circle 48C.
Q. E. D.”

On this Todhunter correctly points out that the point Z might be
supposed to fall within the angle ADC. It cannot then be shown that DC
is greater than DB and DA than DA, but only that either JC or DA is less
than D5 ; this however is sufficient for establishing the proposition.
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ProrosiTION IO,
A cirele does not cut a circle at more points than two.

For, if possible, let the circle ABC cut the circle DEF
at more points than two, namely
B, G, F, H;

let BH, BG be joined and
bisected at the points X, Z,
and from K, L let KC, LM be
drawn at right angles to B4,
BG and carried through to the
points A, E.

Then, since in the circle
ABC a straight line AC cuts a
straight line £/ into two equal
parts and at right angles,

the centre of the circle ABC is on AC. [1r. 1, Por.]
Again, since in the same circle 45C a straight line VO

cuts a straight line B¢ into two equal parts and at right
angles,

the centre of the circle A5C is on NO.

But it was also proved to be on A4C, and the straight
lines AC, NO meet at no point except at P;

therefore the point 2 is the centre of the circle 4BC.

Similarly we can prove that 2 is also the centre of the
circle DEF;

therefore the two circles ABC, DEF which cut one
another have the same centre 2: which is impossible. [mr 5]

Therefore etc. Q. E. D.

1. The word circle (kfxhos) is here employed in the unusual sense of the circumference
(repipépera) of a circle. Cf. note on 1. Def. 15.

There is nothing in the demonstration of this proposition which assumes
that the circles cx# one another; it proves that two circles cannot meef at more
than two points, whether they cut or meet without cutting, ie. Zouck one
another.

Here again, of two demonstrations given in the earlier texts, Simson chose
the second, which August and Heiberg relegate to an Appendix, and which is
as follows: )

“ For again let the circle 4BC cut the circle DEZF at more points than
two, namely B, G, A, F;
let the centre K of the circle 48C be taken, and let XB, KG, KF be
joined.
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Since then a point & has been taken within the circle DEZ,

and from K more than two straight lines, namely
KB, KF, KG, have fallen on the circle DEF,
the point X is the centre of the circle DEZ [11. 9]
But X is also the centre of the circle ABC.
Therefore two circles cutting one another have
the same centre X : which is impossible. [1mn 5]

Therefore a circle does not cut a circle at more
points than two.,

Q. E. D.”

This demonstration is claimed by Heron (see an-Nairlzi, ed. Curtze,
pp. 120—1). It is incomplete because it assumes that the point X which is
taken as the centre of the circle ABC is within the circle DEF It can
however be completed by means of 11 8 and the corresponding proposition
with reference to a point oz the circumference of a circle which was enunciated
in the note on 1i1. 8. For (1) if the point K is on the circumference of the
circle DEF, we obtain a contradiction of the latter proposition which asserts
that only zwo equal straight lines can be drawn from X to the circumference
of the circle DEF; (2) if the point & is outside the circle DEF, we obtain a
contradiction of the corresponding part of mrL 8.

Euclid’s proof contains an unproved assumption, namely that the lines
bisecting BG, BAH at right angles w2/l meet in a point 2 For a discussion
of this assumption see note on Iv. 5.

ProrosiTION 11.

Lf two civcles touckh one another internally, and thetr centres
be taken, the straight line joining their centves, if it be also
produced, will fall on the point of contact of the civcles.

For let the two circles ABC, ADFE touch one another
internally at the point A, and let
the centre / of the circle ABC, and H

the centre G of 4DE, be taken ; ]
I say that the straight line joined A
from G to F and produced will fall \
on A.
For suppose it does not, but,
if possible, let it fall as #GH, and
let AF, AG be joined.
Then, since AG, GF are greater
than 74, that is, than F#, S
let G be subtracted from each:

tcl;lerefore the remainder 4G is greater than the remainder
H.
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But 4G is equal to GD;
therefore G.D is also greater than G,
the less than the greater : which is impossible.

Therefore the straight line joined from F to G will not
fall outside ;

therefore it will fall at A4 on the point of contact.

Therefore etc.
Q. E. D.

2. the stralght line Jommg their centres, literally *the straight line joined to their
centres” (7 érl 7 kéyrpa abr@y émferyrupdey euﬂeta)
3. point of contact is here owagd, and in the enunciation of the next proposition

émagy.

Again August and Heiberg give in an Appendix the additional or
alternative proof, which however shows little or no variation from the genuine
proof and can therefore well be dispensed with.

The genuine proof is beset with difficulties in consequence of what it
tacitly assumes in the figure, on the ground, probably, of its being obvious to
the eye. Camerer has set out these difficulties-in a most careful note, the
heads of which may be given as follows :

He observes, first, that the straight line joining the centres, when produced,
must necessarily (though this is not stated by Euclid) be produced in #ke
divection of the centre of the circle which touches the other internally. (For
brevity, I shall call this circle the “inner circle,” though I shall imply nothing
by that term except that it is the circle which touches the other on the inner
side of the latter, and therefore that, in accordance with the definition of
fouching, points on it in the immediate neighbourhood of the point of contact
are necessarily wét4in the circle which it touches.) Camerer then proceeds by
the following steps.

1. The two circles, touching at the given point, cannot Zwfersect at any
point.  For, since points on the “inner” in the immediate neighbourhood of
the point of contact are within the “outer” circle, the inner circle, if it
intersects the other anywhere, must pass outside it and then return. This is
only possible (2) if it passes out at one point and returns at another point, or
() if 1t passes out and returns through one and the same point. () is impossible
because it would require two circles to have #47¢¢ common points ; (5) would
require that the inner circle should have a zode at the point where it passes
outside the other, and this is proved to be impossible by drawing any radius
cutting both loops.

2. Since the circles cannot intersect, one must be emffredy within the
other.

3. Therefore the outer circle must be greater than the inner, and the
radius of the outer greater than that of the inner.

4. Now, if F be the centre of the greater and & of the inner circle, and
if FG produced beyond G does zor pass through 4, the given point of
contact, then there are three possible hypotheses.

(@) A may lie on GF produced beyond 7.
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(6) A may lie outside the line #G altogether, in which case #G produced
beyond G must, in consequence of result 2 above, either

(i) meet the circles in a point common to both, or

(i) meet the circles in two points, of which that which is on the inner
circle is nearer to & than the other is.

(a) is then proved to be impossible by means of the fact that the radius of the
inner circle is less than the radius of the outer.
(&) (ii) is Euclid’s case; and his proof holds equally of (4) (i), the hypothesis,
namely, that 2 and A in the figure coincide.

Thus all alternative hypotheses are successively shown to be impossible,
and the proposition is completely established.

I think, however, that this procedure may be somewhat shortened in the
following manner.

In order to make Euclid’s proof absolutely conclusive we have only (1) to
take care to produce FG beyond G, the centre of the “inner” circle, and then
(2) to prove that the point in which #G so produced meets the “inner” circle
is not furtker from G than is the point in which it meets the other circle.
Euclid’s proof is equally valid whether the first point is nearer to G than the
second or the first point and the second coincide.

If FG produced beyond & does not pass through 4, there are two

X D

conceivable hypotheses: (a) 4 may lie on G/# produced beyond # or (5) A
may be outside #G produced either way. In either case, if #G produced
meets the “‘inner” circle in D and the other in &, and if G is greater than
GH, then the “inner” circle must cut the “outer” circle at some point
between 4 and D, say X.

But, if two circles have a common point X lying on one side of the line of
centres, they must have another corresponding point on the other side of the
line of centres. This is clear from 11 7, 8; for the point is determined by
drawing from # and &, on the opposite side to that where X is, straight
lines £¥, GY making with FD angles equal to the angles DFX, DGX
respectively.

Hence the two circles will have at least three points common: which is
impossible. )

Therefore G cannot be greater than G/A; accordingly GD must be
either equal to, or less than, G/, and Euclid’s proof is valid.

The particular hypothesis in which #G is supposed to be in the same
straight line with A4 but G is on the side of Faway from 4 is easily disposed
of, and would in any case have been left to the reader by Euclid.

For GD 1s either equal to or less than GA.

Therefore G0 is less than FH, and therefore less than #4.

But GD is equal to G4, and therefore greater than F4: which is
impossible. '
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Subject to the same preliminary investigation as that required by Euclid’s
proof, the proposition can also be proved directly from 111, 7.

For, by 1. 7, GH is the shortest straight line that can be drawn from &
to the circle with centre F;

therefore G A is less than G4,
and therefore less than G.D: which is absurd.

This proposition is the crucial one as regards circles which touch internally;
and, when it is once established, the relative position of the circles can be
completely elucidated by means of itand the propositions which have preceded
it. Thus, in the annexed figure, if # be the centre
of the outer circle and & the centre of the inner,
and if any radius #Q of the outer circle meet the
two circles 'in Q, 2 respectively, it follows, from
ut 7, n. 8, or the corresponding theorem with
reference to a point oz the circumference, that £4 ¢ 5 : A
is the maximum straight line from 7 to the circum- \ e
ference of the inner circle, #P is less than Fd, Q
and FP diminishes in length as #Q moves round
from FA until FP reaches its minimum length \ —/
£B. Hence the circles do not meet at any other
point than 4, and the distance PQ cut off between them on any radius FQ
of the outer circle becomes greater and greater as #Q moves round from 74
to FC and is a maximum when FQ coincides with ZC, after which it
diminishes again on the other side of #C.

The same consideration gives the partial converse of 11 11 which forms
the 6th lemma of Pappus to the first book of the Zactiones of Apollonius
(Pappus, vIL p. 826). This is to the effect that, i AB, AC are iz one straight
line, and on one side of A, the circes described on AB, AC as diameters touch
A(internally at the point A). Pappus concludes this from the fact that the
circles have a common tangent at A ; but the truth of it is clear from the fact
that #2 diminishes as FQ moves away from FA4 on either side ; whence the
circles meet at 4 but do not cut one another. )

Pappus’ 5th lemma (virL p. 824) is another partial converse, namely that,
given two circles touching internally at A, and a line ABC drawn from A cutting
both, then, if the centre of the outer civcle lies on ABC, so does the centre of the
inner. Pappus himself proves this, by means of the common tangent to the
circles at 4, in two ways. (1) The tangent is at right angles to 4C and
therefore to 4B : therefore the centre of the inner circle lies on A58, (2) By
111 32, the angles in the alternate segments of both circles are right angles, so
that 4B C is a diameter of both.

[ PROPOSITION I2.

If two civeles touch ome another externally, the strazpht
line jotming their centves will pass through the point of
contact.

For let the two circles ABC, ADE touch one another

s externally at the point 4, and let the centre 7 of 45C, and
the centre G of ADFE, be taken ;
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I say that the straight line joined from # to G will pass
through the point of contact at A.

For suppose it does not, B
10 but, if possible, let it pass as
FCDG, and let AF, AG be
joined.
Then, since the point 7 is 7
the centre of the circle ABC,

15 FA is equal to £C.
Again, since the point & is
the centre of the circle ADE,
GA is equal to GD.
But 74 was also proved equal to #C;
20 therefore F A, AG are equal to C, GD,
so that the whole /G is greater than 74, AG;
but it is also less [ 20]: which is impossible.

Therefore the straight line joined from / to G will not
fail to pass through the point of contact at A4 ;

25 therefore it will pass through it. ,
Therefore etc. Q. E. D.]

23. will not fail to pass. The Greek has the double negative, ovx dpa 7...e0f¢€lu...
ok é\edoerar, literally ¢ the straight line...will not zzof-pass....”

Heron says on 11 11: “Euclid in proposition 11 has supposed the two
circles to touch internally, made his proposition deal with this case and proved
what was sought in it. But 7 will show how it is fo be proved if the contact is
external” He then gives substantially the proof and figure of mr r2. It
seems clear that neither Heron nor an-Nairizi had 111. 12 in this place.

Campanus and the Arabic edition of Nasiraddin at-T1si have nothing more
of 1i1. 12 than the following addition to 11 11. “In the case of external
contact the two lines ae and ¢b will be greater than b, whence ad and b will
be greater than the whole @4, which 1s false.” (The points @, 4, ¢, 4, ¢ cor-
respond respectively to &, F, C, D, 4 in the above figure.) It is most
probable that Theon or some other editor added Heron’s proof in his edition
and made Prop. 12 out of it (an-Nairizi, ed. Curtze, pp. 121—2). An-Nairizl
and Campanus, conformably with what has been said, number Prop. 13 of
Heiberg’s text Prop. 12, and so on through the Book.

What was said in the note on the last proposition applies, mutatis mutandis,
to this. Camerer proceeds in the same manner as before ; and we may use
the same alternative argument in this case also.

Euclid’s proof is valid provided only that, if #G, joining the assumed
centres, meets the circle with centre #in C and the other circle in D, C is
not within the circle A DE and D is not within the circle ABC. (The proof
is equally valid whether C, D coincide or the successive points are, as drawn
in the figure, in the order F, C, D, G.) Now, if C is within the circle 4 DE
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and D within the circle 45, the circles must have cut between 4 and C
and between 4 and D. Hence, as before, they must also have another
corresponding point common on the other side of CD. That is, the circles
must have #4ree common points : which is impossible.

Hence Euclid’s proof is valid if 7, A4, & form a triangle, and the only
hypothesis which has still to be disproved is the
hypothesis which he would in any case have left to
the reader, namely that 4 does not lie on #G but
on FG produced in either direction. In this case, as
before, either C, .D must coincide or C is nearer
Fthan D is. Then the radius #C must be equal
to #A : which is impossible, since #C cannot be G
greater than #D, and must therefore be /Zss than v
FA.
Given the same preliminaries, 111. 12 can be proved by means of 1 $.
Again, when the proposition 111. 12 is once proved, 111. 8 helps us to prove

at once that the circles lie entirely outside each other and have no other
common point than the point of contact.

Among Pappus’ lemmas to Apollonius’ Factiones are the two partial
converses of this proposition corresponding to those given in the last note.
. Lemma 4 (vi. p. 824) is to the effect that, 2/ AB, AC be iz one straight line, B
and C being on oppostte sides of A, the civeles drawn on AB, AC as diameters
touch externally ai A. Lemma 3 (VIL p. 822) states that, if fwo cirdes touch
externally at A and BAC is drawn through A cutting both circles and containing
the cenire of ome, BAC will also coniain ike centre of the other. The proofs, as
before, use the common tangent at 4.

Mr H. M. Taylor gets over the difficulties involved by 1L 11, 12 in a
manner which is most ingenious but not Euclidean. He first proves that, ¢/ #wo
civeles meet al a point not in the same straight line witk their centres, the circles
intersect at that point; this is very easily established by means of 111. 7, 8 and
the third similar theorem. Then he gives as a corollary the statement that,
fwo cireles touch, the point of comtact is in the same straight line with their
centres. It is not explained how this is inferred from the substantive
proposition ; it seems, however, to be a Jgica/ inference simply. By the
proposition, every A (circles meeting at a point not in the same straight Iine
with the centre) is & (circles which intersect); therefore every not-B is not-A,
i.e. circles which do not intersect do not meet at a point not in the same
straight line with the centres. Now non-intersecting circles may either meet
(i.e. touch) or not meet. In the former case they must meet oz the line of
centres: for, if they met at a point not in that line, they would intersect. But
such a purely Jogical/ inference is foreign to Euclid’s manner. As De Morgan
says, ““ Euclid may have been ignorant of the identity of ‘Every Xis ¥’ and
¢ Every not- Y is not-X,” for anything that appears in his writings ; he makes
the one follow from the other by a new proof each time” (quoted in Keynes’
Formal Logic, p. 81).

There is no difficulty in proving, by means of 1. 20, Mr Taylor’s next
proposition that, if fwe circles meet af a point which les in the same straight
line as their cenires and is between the centres, the civeles touck at that point, and
each circle lies without the other. But the similar proof, by means of I 2o, of
the corresponding theorem for internal contact seems to be open to the same
objection as Euclid’s proof of I11. 11 in that it assumes without proof that the
circle which has its centre nearest to the point of meeting is the “inner”
circle. Lastly, in order to prove that, &f fwo cirdes have a point of contact, they
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do not meet at any other point, Mr Taylor uses the questionable corollary.
Therefore in any case his alternative procedure does not seem preferable to
Euclid’s.

The alternative to Eucl. 11, 11—13 which finds most favour in modern
continental text-books (e.g. Legendre, Baltzer, Henrici and Treutlein,
Veronese, Ingrami, Enriques and Amaldi) connects the number, position and
nature .of the coincidences between points on two circles with the relation in
which the distance between their centres stands to the length of their radii.
Enriques and Amaldi, whose treatment of the different cases is typical, give
the following propositions (Veronese gives them in the converse form).

1. If the distance betwween the centres of two civcles is greater than the sum
of the radii, the two civcles have no point common and are external lo one
anotter.

Let O, O be the centres of the circles (which we will call “the circles
0, 0'”), , # their radii respectively.

Since then OO ># + #/, a fortior:i OO > r, and O is therefore exterior to
the circle O.

Next, the circumference of the circle O intersects OO in a point 4, and
since OO0 >r+#, A0 >7#, and 4 is
external to the circle 0.

But 0’4 is less than any straight
line, as OB, drawn to the circum-
ference of the circle O {11 8}; hence
all points, as B, on the circumference
of the circle O are external to the circle
0.

Lastly, if € be any point internal
to the circle 0, the sum of OC, 0'Cis
greater than O'0, and a fortiori greater than » + #

But OC is less than »: therefore O'C is greater than #/, or C is external
to O.

Similarly we prove that any point on or within the circumference of the
circle O’ is external to the circle O.

2. If the distance berween the centres of two unequal civcles is less than the
difference of the radis, the two circumferences have no common point and the lesser
cirele is entively within the greafer.

Let O, O be the centres of the two circles, #, # their radii respectively
(r<#).

Since OO0 < # — 7, a fortiori OO <+, 50 that O'is
internal to the circle O'.

If 4, 4" be the points in which the straight line
0’0 intersects respectively the circumferences of the
circles 0, O, ATA

0’0 is less than 0’4’ — 04,
sothat 0’0+ 04, or O'4, is less than 0’4/,
and therefore A4 is internal to the circle O'.

But, of all the straight lines from O’ to the circumference of the circle O,

O’ A passing through the centre O is the greatest [ 7];

whence all the points of the circumference of O are internal to the circle ¢

. A similar argument to the preceding will show that all points within the
circle O are internal to the circle 0.
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3. df the distance between the centres of two civcles is equal to the sum of the
radit, the two circumferences fove one point common and one only, and that point
is on the line of centres. Eack circe is external to the ofher.

Let O, O be the centres, #, 7 the radii of the circles, so that 00’ is equal
to 7+ 7.

Thus OO is greater than 7, so that ¢
is external to the circle O, and the circumn-
ference of the circle O cuts 00 in a
point 4.

And; since 00 is equal to » + 7, and
04 to #, it follows that O'4 is equal to #,
so that A belongs also to the circumference
of the circle 0.

The proof that all other points on, and
all points within, the circumference of the circle O are external to the circle O
follows the similar proof of prop. 1 above. And similarly all points (except 4)
on, and all points within, the circumference of the circle O are external to the
circle O. .

The two circles, having one common point only, Zouc/ at that point, which
lies, as shown, on the line of centres. And, since the circles are external to
one another, they touch externally.

4. Lf the distance between the centres of fwo unequal circles is egual fo the
difference between the radii, the two circumferences have one point and one only in
common, and that point lies on the line of centres. The lesser cirele is within the
other.

The proof is that of prop. 2 above, mutatis mutandis.

The circles here touch snlernally at the point on the line of centres.

5. If the distance between the centres of two circles is less than the sum, and
greater than the difference, of the radii, the two circumferences have two common
points symmetrically situated with respect to the line of centres but not lying on
that line.

Let O, O be the centres of the two circles, 7, 7 their radiy, # being the
greater, so that

¥—r< 00 <7+7.

It follows that in any case OO’ + »> 7, so that, if OM be taken on 00
produced equal to 7 (so that A/ is on the circumference of the circle 0), M is
external to the circle 0.

We have to use the same Postulate as in Eucl. 1. 1 that

An arc of a circle which has one extremity within and the other without a
Stven circle has one point common with the ’
latter and only one ; from which it follows,
if we consider two such arcs making a
complete circumference, that, & a cirewm-
Jerence of a cirde passes through onme point
internal to, and one point external fo a
given circle, it cuts the latter circle in two
points.

We have then to prove that the circle 0,
besides having one point M of its circum-
ference external to the circle O, has one other point of its circumference (L)
internal to the latter circle.
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Three cases have to be distinguished according as OO is greater than, equal
to, or less than, the radius » of the lesser circle.

(1) OO > (See the preceding figure.) A

Measure OZ along OO’ equal to 7, so that
L lies on the circumference of the circle O.

Then, since OO0 <7+ 7, O'L will be less

than #, so that Z is within the circle O ™ '6'
(2) 00'=r. ‘v
In this case the circumference of the circle
O passes through @, or L coincides with O'. s

(3) 00 <~

If we measure OL along OO equal to 7, the point Z will lie on the

circumference of the circle O.
Then OL=7»- 00, A

so that O'Z <», and a fortiori O'L <#, so that L
lies within the circle O'.
Thus, in all three cases, since the circumference  ,

of O passes through one point (#/) external to, and
one point (Z) internal to, the circle O, the two
circumferences intersect in two points 4, B [Post.]

And A4, B cannot lie on the line of centres OO, B
since this straight line intersects the circle O in
L, M only, and of these points one is inside, the other outside, the circle .
Since A8 is a common chord of both circles, the straight line bisecting it
at right angles passes through both centres, L.e. is identical with 0O.
And again by means of u1. 7, 8 we prove that all points except 4, B on
the arc AL5 lie within the circle O, and all points except 4, B on the arc
AMB outside that circle ; and so on.

ProrosiTiON 13.

A circle does not touch a civcle at more points then one,
whether it touch it internally or externally.

For, if possible, let the circle ABDC touch the circle
EBFD, first internally, at more
points than one, namely 0, B.

Let the centre G of the circle
ABDC, and the centre H of
EBFD, be taken.

Therefore the straight line

5, D. [ 11)
Let it so fall, as BGHD.
Then, since the point G is

the centre of the circle 4BCD,

BG is equal to GD;
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therefore BG is greater than A0 ;
therefore B/ is much greater than #ZD.
Again, since the point /A is the centre of the circle
EBFD,
20 BH is equal to D ;

but it was also proved much greater than it: which is
impossible.

Therefore a circle does not touch a circle internally at
more points than one.

25 I say further that neither does it so touch it externally.
For, if possible, let the circle 4ACK touch the circle
ABDC at more points than one, namely 4, C,

and let 4C be joined.

Then, since on the circumference of each of the circles

30 ABDC, ACK two points A, C have been taken at random,
the straight line joining the points will fall within each
circle ; ' (1L 2]

but it fell within the circle 4B5CPD and outside ACK
[t Def. 3] : which is absurd.

35 Therefore a circle does not touch a circle externally at
more points than one.
And it was proved that neither does it so touch it
internally.
Therefore etc. Q. E. D.

3, 7» 14, 27, 30, 33. ABDC. Euclid writes 4BCD (here and in the next proposition),
notwithstanding the order in which the points are placed in the figure.

25, 37. does it so touch it. It is necessary to supply these words which the Greek
(87c oUBé éxros and B ovd¢ évrés) leaves to be understood.

The difficulties which have been felt in regard to the proofs of this
proposition need not trouble us now, because they have already been disposed
of in the discussion of the more crucial propositions IIL. 11, 12.

Euclid’s proof of the first part of the proposition differs from Simson’s ;
and we will deal with Euclid’s first. On this Camerer remarks that it is
assumed that the supposed second point of contact lies on the line of centres
produced beyond the centre of the ““outer” circle, whereas all that is proved in
111 11 is that the line of centres groduced beyond the cenire of the “ inner” circle
passes through a point of contact. But, by the same argument as that given
on 11 11, we show that the circles cannot have a point of contact, or even
any common point, outside the line of centres, because, if there were such a
point, there would be a corresponding common point on the other side of the
line, and the circles would have #fre¢ common points. Hence the only
hypothesis left is that the second point of contact may be oz the line of
centres but in the direction of the centre of the “ouzer” circle ; and Euclid’s
proof disposes of this hypothesis.

H. E. IL 3
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Heron (in an-Nairiz, ed. Curtze, pp. 122—4), curiously enough, does not
question Euclid’s assumption that the line of centres passes through both
points of contact (if double contact is possible) ; but he devotes some space to
proving that the centre of the “outer” circle must lie within the “inner” circle, a
fact which he represents Euclid as asserting (* sicut dixit Euclides”), though
there is no such assertion in our text. The proof of the fact is of course easy.
If the line of centres passes through doz4 points of contact, and the centre of
the “outer” circle lies either on or outside the “inner” circle, the line of
centres must cut the “inner” circle in #47e¢e points in all: which is impossible,
as Heron shows by the lemma, which he places here (and proves by 1. 16),
that a straight line cannol cut the civcumference of a circle in move points
than two.

Simson’s proof is as follows (there is no real need for giving two figures as
he does).

“If it be possible, let the circle £BF touch the circle 4B8C in more
points than one, and first on the inside, in the
points B, D ; join BD, and draw GFH bisecting
B.D at right angles.

Therefore, because the points B, D are in the E
circumference of each of the circles, the straight
line BD falls within each of them: And their
centres are in the straight line G A which bisects
BD at right angles :

Therefore GH passes through the point of
contact 111 11]; but it does not pass through it
because the points B, D are without the straight line G//4: which is absurd.

Therefore one circle cannot touch another on the inside in more points
than one.”

On this Camerer remarks that, unless 111. 11 be more completely elucidated
than it is by Euclid’s demonstration, which Simson has, it is not sufficiently
clear that, besides the point of contact in which GA meets the circles, they
cannot have another point of contact either (1) on GH or (2) outside it.
Here again the latter supposition (2) is rendered impossible because in that
case there would be a third common point on the opposite side of G/A'; and
the former supposition (1) is that which Euclid’s proof destroys.

Simson retains Euclid’s proof of the second part of the proposition, though
his own proof of the first part would apply to the second part also if a
reference to 1I. 12 were substituted for the reference to 111, 11. Euclid might
also have proved the second part by the same method as that which he
employs for the first part.
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ProrositioN 14.

In a circle equal straight lines are equally distant from
the centre, and those which are equally distant frowe the centre
are equal to one anothier.

Let ABDC be a circle, and let 48, CD be equal straight
lines in it;

I say that 45, CD are equally distant from the centre.
For let the centre of the circle 4BDC be taken [u1 1],
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and let it be £; from £ let £F, £G be drawn perpendicular
to AB, CD, and let AE, E£C be joined.

Then, since a straight line £/ through D
the centre cuts a straight line 4 A5 not through
the centre at right angles, it also bisects it. 8
(L 3]
Therefore AF is equal to /B ;
therefore A5 is double of 4 F. ¢

For the same reason
CD is also double of CG;
and A5 is equal to CD ;
therefore 4/ is also equal to CG.
And, since AZ is equal to £C,
the square on AZ is also equal to the square on £C.
But the squares on 47, £F are equal to the square on AZ,
for the angle at # is right;
and the squares on £G, G'C are equal to the square on ZC,
for the angle at & is right; [1. 47]
therefore the squares on AF, FE are equal to the
squares on CG, GZE,
of which the square on AF is equal to the square on CG,
for AF is equal to CG ;
therefore the square on FZ which remains is equal to
the square on £G,
therefore £/ is equal to £G.

But in a circle straight lines are said to be equally distant
from the centre when the perpendiculars drawn to them from
the centre are equal; (111. Def. 4]

therefore 48, CD are equally distant from the centre.

Next, let the straight lines 45, CD be equally distant
from the centre; that is, let Z/ be equal to £G.

I say that A5 is also equal to CD.

For, with the same construction, we can prove, similarly,
that A8 is double of AF, and CD of CG.

And, since A £ is equal to CE,

the square on AZ is equal to the square on CE.
But the squares on £/, /4 are equal to the square on AZ,
and the squares on £G, GC equal to the square on CZ. [1 47]

3—2

Q9
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Therefore the squares on £/, A4 are equal to the

squares on £G, GC,
of which the square on £/ is equal to the square on £,
for £F is equal to £G ;
therefore the square on A/ which remains is equal to the
square on CG ;

therefore A F is equal to CG.
And AR5 is double of AF, and CD double of CG;

therefore A8 is equal to CD.

Therefore etc.
Q. E. D.

Heron (an-Nairlzi, pp. 125—7) has an elaborate addition to this proposition
in which he proves, first by reductio ad absurdumn, and then directly, that the
centre of the circle falls between the two chords.

Prorosition 135.

Of straight lines tn a circle the diameler s greatest,
and of the vest the nearver to the centre is always grealer than
the more remote.

Let ARCD be a circle, let 4D be its diameter and £
the centre; and let BC be nearer to the
diameter A0, and G more remote ;

I say that 40 is greatest and ABC
greater than FG.

For from the centre £ let £EH, EK
be drawn perpendicular to BC, FG.

Then, since BC is nearer to the
centre and /4G more remote, £K is
greater than £ /. (11 Def. 5]

Let £L be made equal to EH,
through L let LM be drawn at right

angles to £ZK and carried through to N, and let ME, EN,
FE, EG be joined.

Then, since £H is equal to £/,

BC is also equal to MN. (11 14]
Again, since 4 £ is equal to £M, and E£D to EN,

AD is equal to ME, EN.
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But ME, EN are greater than M N, - [r. 20]
and MV is equal to BC;
therefore 4D is greater than BC.

And, since the two sides M E, ENV are equal to the two
sides FE, EG,

and the angle MEN greater than the angle FEG,
therefore the base MV is greater than the base /G. [r 24]

But M NV was proved equal to BC.

Therefore the diameter 40 is greatest and BC greater
than FG.

Therefore etc.
Q. E. D.

1. Of straight lines. The Greek leaves these words to be understood.

It will be observed that Euclid’s proof differs from that given in our text-
books (which is Simson’s) in that Euclid introduces another line MV, which
is drawn so as to be equal to BC but at right angles to £X and therefore
parallel to FG. Simson dispenses with A2V and bases his proof on a similar
proof by Theodosius (Sphaerica 1. 6). He proves that the sum of the squares
on EH, HB is equal to the sum of the squares on £X, KF'; whence he
infers that, since the square on Z 4 is less than the square on £X| the square
on BH is greater than the square on FX. It may be that Euclid would have
regarded this as too complicated an inference to make without explanation or
without an increase in the number of his axioms. But, on the other hand,
Euclid himself assumes that the angle subtended at the centre by MV is
greater than the angle subtended by #G, or, in other words, that 44, /V both
fall outside the triangle F£G. This is a similar assumption to that made in
1L 7, 8, as already noticed; and its truth 1s obvious because £M, EN, being
radii of the circle, are greater than the distances from £ to the points in which
MN cuts EF, EG, and therefore the latter points are nearer than M, Vare to
Z, the foot of the perpendicular from £ to MN.

Simson adds the converse of the proposition, proving it in the same way
as he proves the proposition itself.

ProrosiTiON 16.

The straight line drawn at right angles fo the diameter
of a circle from its extvemity will fall outside the circle, and
wnto the space between the straight line and the civcumference
another straight line cannot be interposed ; further the angle
of the semzctrecle is greater, and the vemaining angle less, than
any acute vectilineal angle.

Let ABC be a circle about I as centre and AZ5 as
diameter ;
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I say that the straight line drawn from A4 at right angles
to AR from its extremity will fall
outside the circle. B
For suppose it does not, but,
if possible, let it fall within as CA,
and let DC be joined.
Since DA is equal to DC,
the angle DA Cis also equal to o
the angle 4CD. [t 5] - i
But the angle DAC is right;
therefore the angle 4ACD is also right:
thus, in the triangle. ACD, the two angles DAC, ACD are
equal to two right angles : which is impossible. (1. 17]
Therefore the straight line drawn from the point A4 at
right angles to B4 will not fall within the circle.
Similarly we can prove that neither will it fall on the
circumference ;
therefore it will fall outside.
Let it fall as A £ ;

I say next that into the space between the straight line 4 £
and the circamference CH A another straight line cannot be
interposed.

For, if possible, let another straight line be so interposed,
as A, and let DG be drawn from the point D perpendicular
to FA.

Then, since the angle 4GD is right,

and the angle D AG is less than a right angle,
AD is greater than DG. [1. 19]

But DA is equal to DH ;

therefore D/ is greater than DG, the less than the
greater : which is impossible.
Therefore another straight line cannot be interposed into
the space between the straight line and the circumference.

I say further that the angle of the semicircle contained by
the straight line 54 and the circumference C/H A4 is greater
than any acute rectilineal angle,

and the remaining angle contained by the circumference CH.A
and the straight line 4 Z is less than any acute rectilineal angle.

For, if there is any rectilineal angle greater than the
angle contained by the straight line A4 and the circumference
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CHA, and any rectilineal angle less than the angle contained
by the circumference CH A and the straight line 4 £, then
into the space between the circumference and the straight line
AE a straight line will be interposed such as will make an
angle contained by straight lines which is greater than the
angle contained by the straight line 5.4 and the circumference
CHA, and another angle contained by straight lines which
is less than the angle contained by the circumference CH.A
and the straight line AZ.
But such a straight line cannot be interposed ;

therefore there will not be any acute angle contained by
straight lines which is greater than the angle contained by
the straight line B4 and the circumference CA.A4, nor yet
any acute angle contained by straight lines which is less than
the angle contained by the circumference CAA and the
straight line 4£.—

Porism.  From this it is manifest that the straight line
drawn at right angles to the diameter of a circle from its

extremity touches the circle. o E. D

4. cannot be interposed, literally ‘¢ will not fall in between (o0 wapepreseirar).

This proposition is historically interesting because of the controversies to
which the last part of it gave rise from the 13th to the 17th centuries.
History was here repeating itself, for it is certain that, in ancient Greece, both
before and after Euclid’s time, there had been a great deal of the same sort
of contention about the nature of the “angle of a semicircle” and the
“remaining angle” between the circumference of the semicircle and the
tangent at its extremity. As we have seen (note on 1. Def. 8), the latter angle
had a recognised name, kepatoadys ywvia, forn-like or cornicular angle;
though this term does not appear in Euclid, it 15 often used by Proclus,
evidently as a term well understood. While it is from Proclus that we get the
best idea of the ancient controversies on this subject, we may, I think, infer
their prevalence in Euclid’s time from this solitary appearance of the two
“angles” in the Elements. Along with the definition of the angle of a
segment, it seems to show that, although these angles are only mentioned to
be dropped again immediately, and are of no use in elementary geometry, or
even at all, Euclid thought that an allusion to them would be expected of
him ; it is as if he merely meant to guard himself against appearing to ignore
a subject which the geometers of his time regarded with interest. If this
conjecture is right, the mention of these angles would correspond to the
insertion of definitions of which he makes no use, e.g. those of a rhombus and
a rhomboid.

Proclus has no hesitation in speaking of the “angle of a semicircle” and
the “horn-like angle” as true angles. Thus he says that “angles are contained
by a straight line and a circumference in two ways; for they are either
contained by a straight line and a convex circumference, like that of the semi-
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circle, or by a straight line and a concave circumference, like the keparoedijs ”
(p. 127, 11—14). “There are mixed lines, as spirals, and angles, as the angle
of a semicircle and the xeparoedrs” (p. 104, 16—18). The difficulty which
the ancients felt arose from the very fact which Euclid embodies in this
proposition.  Since an angle can be divided by a line, it would seem to be a
magnitude; “but if it is a magnitude, and all homogeneous magnitudes which
are finite have a ratie to one another, then all homogeneous angles, or rather
all those on surfaces, will have a ratio to one another, so that the (_Wnim/ar
will also have a ratio to the rectilineal. But things which have a ratio to one
another can, if multiplied, exceed one another. Therefore the cornicular
angle will also sometime exceed the rectilineal ; which is impossible, for it is
proved that the former is less than any rectilineal angle” (Proclus, p. 1271,
24—122, 6). The nature of contact between straight lines and circles was
also involved in the question, and that this was the subject of controversy
before Euclid’s time is clear from the title of a work attributed to Democritus
(fl. 420—400 B.C.) mepl Swapopiis yvdpovos 7 wepl Yadoios xiklov kal opaipys,
On a difference in a gnomon or on contact of a circle and a sphere. There 1s,
however, another reading of the first words of this title as given by Diogenes
Laertius (1X. 47), namely wept Swadpopiis yvduns, On a difference of opinion, etc.
May it not be that neither reading is correct, but that the words should be
mepl Sagpopifs yovins ) mwepl Yavaios xixhov xal opaipys, On a differerce in an
angle or on confact with a circle and a spheve? There would, of course,
hardly be any “angle” in connexion with the sphere ; but I do not think that
this constitutes any difficulty, because the sphere might easily be tacked on as
a kindred subject to the circle. A curiously similar collocation of words
appears in a passage of Proclus, though this may be an accident. He says
(p- 50, 4) wds 82 yovidv Sradopds Méyoper kal addijoeas adrdv ... and then, in
the next line but one, w@ds 88 ras dpds 7év wxixdov § Tav edfeady, “In what
sense do we speak of differences of angles and of increases of them ...and in
what sense of the comfacts (or meetings) of circles or of straight lines?”
I cannot help thinking that this subject of cornicular angles would have had
a fascination for Democritus as being akin to the question of infinitesimals,
and very much of the same character as the other question which Plutarch
(On Common Notions, XXXIX. 3) says that he raised, namely that of the
relation between the base of a cone and a section of it by a plane parallel to
the base and apparently, to judge by the context, infinitely near to it: “if
a cone were cut by a plane parallel to its base, what must we think of the
surfaces of the sections, that they are equal or unequal? For, if they are
unequal, they will make the cone irregular, as having many indentations like
steps, and unevennesses; but, if they are equal, the sections will be equal,
and the cone will appear to have the property of the cylinder, as being made
up of equal and not unequal circles, which is the height of absurdity.”

The contributions by Democritus to such investigations are further attested
by a passage in a new fragment of Archimedes (see Heiberg, Line neue
Archimedes-Handschrift in Hermes XL11. 1907, pp. 235—303), which says
(oc. cit., Pp. 245, 246) that, though Eudoxus was the first to discover the
scientific proof of the propositions (attributed to him) that the cone and the
pyramid are one-third of the cylinder and prism respectively which have
the same base and height, they were first sfezed, without proof, by Democritus.

A full history of the later controversies about the cornicular ““angle”
cannot be given here; more on the subject will be found in Camerer’s
Euclid (Excursus 1v. on 1. 16) or in Cantor's Geschichte der Mathematik,
Vol. 1. (see Contingenzwinke/ in the index). But the following short note
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about the attitude of certain well-known mathematicians to the question will
perhaps not be out of place. Johannes Campanus, who edited Euclid in
the 13th century, inferred from 111, 16 that there was a flaw in the principle
that the transition from the less to the greater, or vice versd, takes place through
all intermediate quantities and therefore through the equal. If a diameter of a
circle, he says, be moved about its extremity until it takes the position of the
tangent to that circle, then, as long as it cuts the circle, it makes an acute
angle /ess than the “angle of a semicircle”; but the moment it ceases to cut,
it makes a right angle greaser than the same “angle of a semicircle.” The
rectilineal angle is never, during the transition, egwal to the “angle of a semi-
circle.” There is therefore an apparent inconsistency with x. 1, and Campanus
could only observe (as he does on that proposition), in explanation of the
paradox, that “these are not angles in the same sense (univoce), for the
curved and the straight are not things of the same kind without qualification
(simpliciter).” The argument assumes, of course, that the right angle Zs
greater than the “angle of a semicircle.”

Very similar is the statement of the paradox by Cardano (1501—1576)
who observed that a guantity may continually increase without limit, and
another diminish without limit ; and yer the first, lowever increased, may be less
than the second, however diminished. The first quantity is of course the angle
of contact, as he calls it, which may be ““increased ” indefinitely by drawing
smaller and smaller circles touching the same straight line at the same point,
but will always be less than any acute rectilineal angle however small.

We next come to the French geometer, Peletier (Peletarius), who edited the
Elements in 1557, and whose views on this subject seem to mark a great advance.
Peletier’s opinions and arguments are most easily accessible in the account of
them given by Clavius (Christoph Schliissel, 1537—1612) in the 1607 edition
of his Euclid. The violence of the controversy between the two will be
understood from the fact that the arguments and counter-arguments (which
sometimes run into other matters than the particular question at issue) cover,
in that book, 26 pages of small print. Peletier held that the “angle of
contact” was not an angle at all, that the “contact of two circles,” i.e. the
‘“angle” between the circumferences of two circles touching one another
internally or externally, is not a guwantify, and that the “contact of a straight
line with a circle” is not a gquantity either; that angles contained by a
diameter and a circumference whether inside or outside the circle are 7ight
angles and equal to rectilineal right angles, and that angles contained by a
diameter and the circumference in a// circles are egual. The proof which
Peletier gave of the latter proposition in a letter to Cardano is sufficiently
ingenious. If a greater and a less semicircle be placed with their diameters
terminating at a common point and lying in a straight line, then (x) the angle
of the larger obviously cannot be Jess than the angle of the smaller. Neither
(2) can the former be greafer than the latter; for, if it were, we could obtain
another angle of a semicircle greater still by drawing a still larger semicircle,
and so on, until we should ultimately have an ang/e of a semicircle greater than
a right angle : which is impossible. Hence the angles of semicircles must all
be egual, and the differences between them notking. Having satisfied himself
that all angles of contact are not-angles, noz-quantities, and therefore nothings,
Peletier holds the difficulty about x. 1 to be at an end. He adds the
interesting remark that the essence of an angle is in cu##ing, not contact, and
that a tangent is not #ncined to the circle at the point of contact but is, as it
were, immersed in it at that point, just as much as if the circle did not diverge
from it on either side.



42 BOOK III [UL 16

The reply of Clavius need not detain us. He argues, evidently appealing
to the eye, that the angle of contact can be divided by the arc of a circle
greater than the given one, that the angles of two sermc1rc1¢s of different sizes
cannot be equal, since they do not coincide if they are applied to one another,
that there is nothing to prevent angles of contact from being guantities, it being
only necessary, in view of X. 1, to admit that they are not of the same kind as
rectilineal angles; lastly that, if the angle of contact had been a zothing,
Euclid would not have given himself so much trouble to prove that it is less
than any acute angle. (The word is desudasset, which is certainly an
exaggeration as applied to what is little more than an obifer dictum in 111, 16.)

Vieta (1540—1603) ranged himself on the side of Peletier, maintaining
that the angle of confact is no angle; only he uses a new method of proof.
The circle, he says, may be regarded as a plane figure with an infinite number
of sides and angles; but a straight line touching a straight line, however short
it may be, will coincide with that straight line and will not make an angle.
Never before, says Cantor (11, p. 540), had it been so plainly declared what
exactly was to be understood by contact.

Galileo Galilei (r564--1642) seems to have held the same view as Vieta
and to have supported it by a very similar argument derived from the com-
parison of the circle and an inscribed polygon with an infinite number of
sides.

The last writer on the question who must be mentioned is John Wallis
(1616—1703). He published in 1656 a paper entitled De angulo contoctus ef
semicirenli tractafus in which he also maintained that the so-called angle was
not a true angle, and was not a guantity. Vincent Leotaud (r595-—1672)
took up the cudgels for Clavius in his Cyclomathia which appeared in 1663.
This brought a reply from Wallis in a letter to Leotaud dated 17 February,
1667, but not apparently published till it appeared in A defense of 2he treatise
of the angle of contact which, with a separate title-page, and date 1684, was
included in the English edition of his Algebra dated 1685. The essence of
Wallis’ position may be put as follows. According to Euclid’s definition, a
plane angle is an sme/ination of two lines; therefore two lines forming an angle
must ncline to one another, and, if two lines meet without being znelined to
one another at the point of meeting (which is the case when a circumference
is touched by a straight line), the lines do not form an angl. The “angle of
contact ” is therefore no angle, because af the point of contact the straight line
1s not inclined to the circle but lies on it dxAwds, or is coincident with it.
Again, as a point is not a line but a begimning of a line, and a line is not a
surface but a beginaing of a surface, so an angle is not the distance between
two lines, but their initial tendency towards separation: Angwlus (sen gradus
divaricationis) Distantia non est sed Inceptivus distantiae. How far lines, which
at their point of meeting do not form an angle, separate from one another as
they pass on depends on the degree of curvature (gradus curvitatis), and it is
the latter which has to be compared in the case of two lines so meeting. The
arc of a smaller circle is more curved as having as much curvature in a lesser
length, and is therefore curved in a greater degree. Thus what Clavius called
angulus contactus becomes with Wallis gradus curvitatis, the use of which
expression shows that curvature and curvature can be compared according to
one and the same standard. A straight line has the least possible curvature ;
but of the “angle” made by it with a curve which it touches we cannot say that
it is greater or less than the “angle” which a second curve touching the same
straight line at the same point makes with the first curve; for in both cases
there is no true angle at all (cf. Cantor 1y, p. 24).
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The words usually given as a part of the corollary “and that a straight line
touches a circle at one point only, since in fact the straight line meeting it in
two points was proved to fall within it” are omitted by Heiberg as being an
undoubted addition of Theon’s. It was Simson who added the further remark

that it is evident that there can be but one straight line which touches the
circle at the same point.”

Prorosition 17.
From a given point to draw a straight line touching a
given cirvcle.

Let A4 be the given point, and BCD the given circle ;
thus it is required to draw from the point 4 a straight line
touching the circle BCD.

For let the centre £ of the circle

be taken ; (111 1]
let A be joined, and with centre £ F
and distance ZA let the circle A5G ‘

be described ;

from D let DF be drawn at right
angles to £4,

and let £F, AB be joined; G

I say that A8 has been drawn from
the point 4 touching the circle BCD.

For, since £ is the centre of the circles BCD, AFG,
£A 1s equal to £F, and £D to £5;
therefore the two sides AFE, £B are equal to the two sides
FE, ED;
and they contain a common angle, the angle at £ ;
therefore the base J/F is equal to the base 45,
and the triangle DZEF is equal to the triangle 5£A4,
and the remaining angles to the remaining angles; [1 4]
therefore the angle £/ is equal to the angle Z5A4.
But the angle ZDF is right;
therefore the angle £58.4 is also right.
Now £25 is a radius;
and the straight line drawn at right angles to the diameter
of a circle, from its extremity, touches the circle; [mm. 16, Por.]
therefore 4.5 touches the circle ZCD.
Therefore from the given point A the straight line A5
has been drawn touching the circle £CD. Q. E. F.
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The construction shows, of course, that two straight lines can be drawn
from a given external point to touch a given circle; and it is equally obvious
that these two straight lines are equal in length and equally inclined to the
straight line joining the external point to the centre of the given circle.
These facts are given by Heron (an-Nairizi, p. 130).

It is true that Euclid leaves out the case where the given point lies oz the
circumference of the circle, doubtless because the construction is so directly
indicated by 111. 16, Por. as to be scarcely worth a separate statement.

An easier solution is of course possible as soon as we know (111 31) that
the angle in a semicircle is a right angle; for we have only to describe a
circle on AZ as diameter, and this circle cuts the given circle in the two points
of contact.

ProprosiTION 18.

If a straight line touck a circle, and a straight line be
Joined from the centre to the point of contact, the stvaight line
50 joined will be perpendicular to the tangent.

For let a straight line DZ£ touch the circle ABC at the
point C, let the centre / of the
circle ABC be taken, and let FC
be joined from #to C; A

I say that #C is perpendicular to D
DE.

For, if not, let /G be drawn ‘,
from /" perpendicular to DE.
Then, since the angle FGC is ¢
-right,
the angle #CG is acute; [ 17] E

and the greater angle is subtended
by the greater side ; [1 19]

therefore 7C is greater than FG.
But #C is equal to FB;
therefore /5 is also greater than FG,
the less than the greater: which is impossible.
Therefore /G is not perpendicular to DE.

Similarly we can prove that neither is any other straight
line except #C;

therefore /C is perpendicular to DE.
Therefore etc.
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3. the tangent, 9 éparToudm.

Just as 1. 3 contains two parfial converses of the Porism to 1l 1, so
the present proposition and the next give two partial converses of the
corollary to 111. 16. We may show their relation thus: suppose three things,
(1) a tangent at a point of a circle, (2) a straight line drawn from the centre to
the point of contact, (3) right angles made at the point of contact {with (x) or
(2) as the case may be]. Then the corollary to 1L 16 asserts that (2) and (3)
together give (1), 1t 18 that (1) and (2) give (3), and 1L 19 that (x) and (3)
give (2), ie. that the straight line drawn from the point of contact at right
angles to the tangent passes through the centre.

ProrosiTiON 19.

If @ straight line fouch a civcle, and from the point of
contact a straight hine be drawn at right angles to the tangent,
the centre of the civcle will be on the straight line so dratwn.

For let a straight line DZ£ touch the circle 45C at the
point C, and from C let CA be
drawn at right angles to DE;

I say that the centre of the circle
is on AC.

For suppose it is not, but, if
possible, let /" be the centre, F
and let C/ be joined.

Since a straight line £ touches
the circle ABC,

and FC has been joined from the © c E
centre to the point of contact,
FC is perpendicular to DE ; (1. 18]
therefore the angle #CZ is right.
But the angle ACZ is also right;
therefore the angle /CE is equal to the angle 4CE,
the less to the greater : which is impossible,

Therefore 7 is not the centre of the circle 4 BC.

Similarly we can prove that neither is any other point
except a point on AC.

Therefore etc.

Q. E. D.

We may also regard 111. 19 as a partial converse of 1. 18.  Thus suppose
(1) a straight line through the centre, (2) a straight line through the point of
contact, and suppose (3) to mean perpendicular to the tangent; then 1. 18
asserts that (1) and (z) combined produce (3), and 11 19 that (2) and (3)
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produce (1); while again we may enunciate a second partial converse of 111. 18,
corresponding to the statement that (1) and (3) produce (2), to the effect that
a straight line drawn through the centre perpendicular to the tangent passes
through the point of contact.

We may add at this point, or even after the Porism to 111. 16, the theorem
that fzv0 circles which touch one another internally ov externally have a common
tangent at their point of contact. For the line joining their centres, produced
if necessary, passes through their point of contact, and a straight line drawn
through that point at right angles to the line of centres is a tangent to both
circles.

ProrosiTion zo.

In a circle the angle at the cenire is double of the angle
at the circumference, when the angles have the same circum-
Sference as base.

Let ABC be a circle, let the angle FZC be an angle
sat its centre, and the angle 5AC an
angle at the circumference, and let
them have the same circumference 5C
as base;
I say that the angle BZ£C is double of &
10 the angle 5A4C. c
For let AZ be joined and drawn E
through to 7.
Then, since £4 is equal to £5, B
the angle £4 7 is also equal to the
15 angle £5A4 ; [t 5]
therefore the angles £A4PB, £BA are double of the angle
EAD.
But the angle BZEF is equal to the angles £4A B, ERA ;
[1. 32]
therefore the angle BEF is also double of the angle
w0 EAB.
For the same reason
the angle /#Z£C is also double of the angle £A4C.
Therefore the whole angle BAZC is double of the whole
angle £A4C.

28 Again let another straight line be inflected, and let there
be another angle BZDC; let DE be joined and produced
to G.
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Similarly then we can prove that the angle GEC is
double of the angle ZDC,

of which the angle GEZB is double of the angle £DB ;

therefore the angle £ZC which remains is double of the
angle BDC.

Therefore etc. Q. E. D.

25. let another straight line be inflected, rexhdofw 8% wi\w (without edfela). The
verb ¥\dw (to éreak off) was the regular technical term for drawing from a point a (broken)
straight line which first meets another straight line or curve and is then denf dack from it
to another point, or (in other words) for drawing straight lines from two points meeting at a
point on a curve or another straight line. «xexAdsfac is one of the geometrical terms the
definition of which must according to Aristotle be assumed (A#nal. Post. 1. 10, 76 bg).

The early editors, Tartaglia, Commandinus, Peletarius, Clavius and others,
gave the extension of this proposition to the case where the segment is less
than a semicircle, and where accordingly the “angle” corresponding to
Euclid’s “angle at the centre” is greater than two right angles. The
convenience of the extension is obvious, and the proof of it is the same as the
first part of Euclid’s proof. By means of the extension 111 21 is demonstrated
without making two cases; 11 2z will follow immediately from the fact that
the sum of the “angles at the centre” for two segments making up a whole
circle is equal to four right angles; also 111 31 follows immediately from the
extended proposition. ’

But all the editors referred to were forestalled in this matter by Heron, as
we now learn from the commentary of an-Nairizi (ed. Curtze, p. 131 sqq.).
Heron gives the extension of Euclid’s proposition which, he says, it had been
left for him to make, but which is necessary in order that the caviller may not
be able to say that the next proposition (about the equality of the angles
in any segment) is not established generally, i.e. in the case of a segment less
than a semicircle as well as in the case of a segment greater than a semicircle,
inasmuch as 1. 20, as given by Euclid, only enables us to prove it in the
latter case. Heron’s enunciation is important as showing how he describes
what we should now call an “angle” greater than two right angles. (The
language of Gherard’s translation is, in other respects, a little obscure; but
the meaning is made clear by what follows.)

“The angle,” Heron says, “which is at the centre of any circle is double
of the angle which is at the circamference of it when one arc is the base of both
angles; and the remaining angles which are at the centre, and fill up the four
right angles, are double of the angle at the circumference of the arc which is
subtended by the [original] angle which is at the centre.”

Thus the “angle greater than two right angles” is for Heron the sum of
certain “angles” in the Euclidean sense of angles less than two right angles.
The particular method of splitting up which Heron adopts will be seen from
his proof, which is in substance as follows.

Let CDAB be an angle at the centre, CAB that at the circumference.

Produce BD, CD to F, G;

take any point £ on BC, and join BE, EC, ED.

Then any angle in the segment BAC is half of the angle ZDC; and
the sum of the angles BDG, GDY, FDC is double of any angle in the
segment BEC.
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Progf.  Since CD is equal to £D,
the angles DCE, DEC are equal.

Therefore the exterior angle GDZE is equal to
twice the angle DEC.
Similarly the exterior angle FDE is equal to
twice the angle DEB.
By addition, the angles GDZ, FDE are double
of the angle BEC.

But

the angle BDC is equal to the angle FDG,

therefore the sum of the angles BDG, GDF, FDC
is double of the angle BEC.

And Euclid has proved the first part of the
proposition, namely that the angle ZDC is double
of the angle BA4C.

Now, says Heron, BAC is any angle in the segment £4C, and therefore
any angle in the segment B4 C is half of the angle ZDC.

Therefore all the angles in the segment 54 C are equal.

Again, BEC is any angle in the segment BEC and is equal to Zalf e
sum of the angles BDG, GDF, FDC.

Therefore all the angles in the segment BEC are equal.

Hence 111 21 is proved generally.

Lastly, says Heron,
since #he sum of the angles BDG, GDF, FDC is double of the angle BZC,
and the angle BDC is double of the angle BAC,

therefore, by addition, the swm of four 7ight angles is double of the sum of
the angles BAC, BEC.

Hence the angles 54 C, BEC are together equal to two right angles, and
1l 22 is proved.

The above notes of Heron show conclusively, if proof were wanted, that
Euclid had no idea of 11 20 applying iz Zerms (either as a matter of
enunciation or proof) to the case where the angle at the circumference, or the
angle in the segment, is obzuse. He would not have recognised the “angle”
greater than two right angles or the so-called “straight angle” as being an
angle at all. This is indeed clear from his definition of an angle as the
inclination x.v.é, and from the language used by other later Greek mathe-
maticians where there would be an opportunity for introducing the extension.
Thus Proclus’ notion of a “foursided triangle” (cf. the note above on the
definition of a triangle) shows that he did not count a re-entrant angle as an
angle, and Zenodorus’ application to the same figure of the word “hollow-
angled ” shows that in that case it was the exterior angle only which he would
have called an angle. Further it would have been inconvenient to have
introduced at the beginning of the Elements an “angle” equal to or greater
than two right angles, because other definitions, e.g. that of a #ight angle,
would have needed a qualification. If an *angle” might be equal to two
right angles, one straight line in a straight line with another would have
satisfied Euclid’s defimition of a right angle. This is noticed by Dodgson
(p. 160), but it is practically brought out by Proclus on 1. 13. “For he did
not merely say that ‘any straight line standing on a straight line either makes
two right angles or angles equal to two right angles’ but ‘Zf & make angles’
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If it stand on the straight line at its extremity and make one angle, is it
possible for this to be equal to two right angles? It is of course.impossible;
Jor every rectilineal angle is less than two right angles, as every solid angle is
less than four right angles (p. 292, 13—=20).” [It is true that it has been
generally held that the meaning of “angle ” is tacitly extended in vi 33, but
there is no real ground for this view. See the note on the proposition. ]

It will be observed that, following his usual habit, Euclid omits the
demonstration of the case which some editors, e.g. Clavius, have thought it
necessary to give separately, the case namely where one of the lines forming
the angle in the segment passes through the centre. Euclid’s proof gives so
obviously the means of proving this that it is properly left out.

Todhunter observes, what Clavius had also remarked, that there are two
assumptions in the proof of 1iI. 20, namely that, if 4 is double of B and C
double of D, then the sum, or difference, of 4 and C is equal to double the
sum, or difference, of B and D respectively, the assumptions being particular
cases of v. 1 and V. 5. But of course it is easy to satisfy ourselves of the
correctness of the assumption without any recourse to Book v.

Prorosition 21,

In a circle the angles in the same segment are equal to one
another.

Let ABCD be a circle, and let the angles BAD, BED
be angles in the same segment B4 ED;
I say that the angles 84D, BED are
equal to one another.

For let the centre of the circle
ABCD be taken, and let it be #'; let
BF, FD be joined.

Now, since the angle BFD is at
the centre,

and the angle 5AJD at the circum- c
ference,

A

and they have the same circumference SCD as base,
therefore the angle B£D is double of the angle BAD. [ 20]

For the same reason

the angle BFD is also double of the angle BED ;
therefore the angle BA4 D is equal to the angle BZD.
Therefore etc.
Q. E. D.
Under the restriction that the “angle at the centre” used in 1. 2o must
be less than two right angles, Euclid’s proof of this proposition only applies
to the case of a segment greater than a semicircle, and the case of a segment

equal to or less than a semicircle has to be considered separately. The
simplest proof, of many, seems to be that of Simson.

H. E. 1L 4
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“But, if the segment BAED be not greater than a semicircle, let BA4D,
BED be angles in it: these also are equal to one
another.

Draw AF to the centre, and produce it to C, and
join CE.

Therefore the segment BADC is greater than a
semicircle, and the angles in it B4 C, BEC are equal,
by the first case.

For the same reason, because CHED is greater
than a semicircle,

the angles CAD, CED are equal.
Therefore the whole angle 4D is equal to the whole angle BZD.”

We can prove, by means of reductio ad absurdum, the important converse
of this proposition, namely that, if #here be any two triangles on the same base
and on the same side of it, and with equal vertical angles, the circle passing
through the extremuties of the base and the wertex of one triangle will pass
through the wertex of the other triangle also. That a circle can be thus
described about a triangle is clear from Euclid’s construction in 11 g, which
shows how to draw a circle passing through any three points, though it is
in 1v. 5 only that we have the problem stated. Now,
suppose a circle BAC drawn through the angular D
points of a triangle BAC, and let OC be another A
triangle with the same base AC and on the same side
of it, and having its vertical angle U equal to the
angle 4. Then shall the circle pass through 0.

For, if it does not, it must pass through some point
E on BD or on BD produced. If then ZC be g
joined, the angle BEC is equal to the angle BAC,
by 1 21, and therefore equal to the angle BDC.

Therefore an exterior angle of a triangle is equal to
the interior and opposite angle : which is impossible, by 1. 16.

Therefore D lies on the circle B4 C.

Similarly for any other triangle on the base FC and with vertical angle
equal to 4. Thus, if any number of triangles be constructed on the same base
and on the same side of it, with equal vertical angles, the vertices will all lie on
the circumference of @ segment of a civele.

(9]

A useful theorem derivable from 111 21 is given by Serenus (De sectione
cont, Props. 52, 53).
If ADB be any segment of a circle, and C be such a point on the
circumference that AC is equal to CB, and if
there be described with C as centre and radius E
CA or CB the circle AHB, then, AD.B being
any other angle in the segment 4CB, and BD
being produced to meet the outer segment in
E, the sum of 4D, DB is equal to BE. E
If BC be produced to meet the outer
segment in &, and #4 be joined,

CAd, CB, CF are by hypothesis equal.
Therefore the angle Z4C is equal to the

angle AFC. A B
Also, by 1. 21, the angles 4CB, ADB are equal ;
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therefore their supplements, the angles 4 C# ADE, are equal.

Further, by 111. 21, the angles 4£8, AFPF are equal.

Hence in the triangles 4 C#, ADE two angles are respectively equal ;

therefore the third angles £4.0, #4( are equal.

But the angle #4C is equal to the angle 4 #C, and therefore equal to the
angle AZD.

Therefore the angles 4ED, EAD are equal, or the triangle DEA is
isosceles,

and 4D is equal to DE.
Adding BD to both, we see that
BE is equal to the sum of AD and DA.

Now, BF being a diameter of the circle of which the outer segment is
a part,

BF is greater than BE ;

therefore AC, CB are together greater than 4D, DB.

And, generally, of all triangles o the same base and on the same side of it
which have equal vertical angles, the isosceles triangle is that which has the
grealest perimeler, and of the others ihat has the lesser perimeter which is
Jurther from being isosceles.

The theorem of Serenus gives us the means of solving the following
problem given in Todhunter's Euclid, p. 324.

T find a point i the circumference of a given segment of a circle such that
the straight lines whick join the point to the extremities of the straight line on
whick the segment stands may be fogether equal fo o given straight line (the
length of which is of course subject to limits).

Let ACB in the above figure be the given segment. Find, by bisecting
APB at right angles, a point € on it such that AC is equal to CB.

Then with centre C and radius CA or C5 describe the segment of a
circle AHF on the same side of 45.

Lastly, with 4 or B as centre and radius equal to the given straight line
describe a circle. ‘This circle will, if the given straight line be greater than
AB and less than twice A4 C, meet the outer segment in two points, and if we
join those points to the centre of the circle last drawn (whether A or 5), the
joining straight lines will cut the inner segment in points satisfying the given
condition. If the given straight line be egual to twice AC, C is of course
the required point. If the given straight line be greater than twice 4 C, there
is no possible solution.

ProrosITION 22,
The opposite angles of quadrilaterals wn circles ave equal
to two right angles.
Let ABCD be a circle, and let ABCD be a quadrilateral
in it;
I say that the opposite angles are equal to two right angles.

Let AC, BD be joined.
Then, since in any triangle the three angles are equal to
two right angles, [L 32]

4—2
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the three angles CAB, ABC, BCA of the triangle 45C
are equal to two right angles.

But the angle CAZB is equal to the
angle BDC, for they are in the same A 8
segment BADC; (1. 21]
and the angle ACAB is equal to the angle
ADB, for they are in the same segment
ADCE; c
therefore the whole angle ADC is equal 5]
to the angles BAC, ACB.

Let the angle 4B8C be added to each;
therefore the angles ABC, BAC, ACB are equal to the
angles ABC, ADC.
But the angles 4BC, BAC, ACE are equal to two right
angles;
therefore the angles ABC, ADC are also equal to two right
angles.

Similarly we can prove that the angles 540D, DCB are
also equal to two right angles.

Therefore etc.

Q. E. D.

As Todhunter remarks, the converse of this proposition is true and very
important : if Zwo gpposite angles of a quadrilateral be together egual fo fwo
#ight angles, a circle may be circumscribed about the guadrilateral. We can, by
the method of 11 g, or by 1v. 5, circumscribe a circle about the triangle
ABC; and we can then prove, by reductio ad absurdum, that the circle
passes through the fourth angular point D.

ProrosiTION 23.
On the same straight line there cannot be constructed two
similar and unequal segments of civcles on the same side.

For, if possible, on the same straight line A8 let two
similar and unequal segments of circles
ACB, ADB be constructed on the same

side ; 2
let ACD be drawn through, and let 25, %C\

DB be joined. A B

Then, since the segment A4CRA is
similar to the segment ADA,
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and similar segments of circles are those which admit equal

angles, [1r. Def. 11]
the angle ACAB is equal to the angle 4B, the exterior
to the interior : which is impossible. [1. 16]

Therefore etc.
Q. E. D.

1. cannot be constructed, o) gusrafioeras, the same phrase as in L. 4.

Clavius and the other early editors point out that, while the words “on
the same side” in the enunciation are necessary for Euclid’s proof, it is
equally true that neither can there be two similar and unequal segments on
opposite sides of the same straight line; this is at once made clear by causing
one of the segments to revolve round the base till it is on the same side with
the other.

Simson observes with reason that, while Euclid in the following proposition,
L 24, thinks it necessary to dispose of the hypothesis that, if two similar
segments on equal bases are applied to one another with the bases coincident,
the segments cannot cut in any other point than the extremities of the base
(since otherwise two circles would cut one another in more points than two),
this remark is an equally necessary preliminary to 11 23, in order that we
may be justified in drawing the segments as being one inside the other.
Simson accordingly begins his proof of 111. 23 thus:

“ Then, because the circle 4CB cuts the circle ADB in the two points
A, B, they cannot cut one another in any other point:

One of the segments must therefore fall within the other.
Let ACAB fall within 4058 and draw the straight line 4CD, ete.”

Simson has also substituted “not coinciding with one another” for
“gunequal” in Euclid’s enunciation.

Then in 11. 24 Simson leaves out the words referring to the hypothesis
that the segment 4 £ B when applied to the other CFD may be “otherwise
placed as CGD”; in fact, after stating that 48 must coincide with CD, he
merely adds words quoting the result of 11 23: “Therefore, the straight line
A B coinciding with CD, the segment 4ZB must coincide with the segment
CFD, and is therefore equal to it.”

ProrosiTION 24.

Stmzlar segments of civcles on equal straight lines are equal
to one another.

For let AEBR, CFD be similar segments of circles on
equal straight lines A5, CD;
51 say that the segment 4 £B is equal to the segment CFD.
For, if the segment 4 EB be applied to CFD, and if the
point A be placed on C and the straight line 458 on (D,
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the point B will also coincide with the point [, because
AB is equal to CD;

1o and, A8 coinciding with CD,
the segment AZ£5 will also coincide with CFD.

E F G

NN

A B8 c D

For, if the straight line 428 coincide with CD but the
segment A£F5 do not coincide with CFD,

it will either fall within it, or outside it;

15 or it will fall awry, as CGD, and a circle cuts a circle at more
points than two : which is impossible. [11. 10]

Therefore, if the straight line A8 be applied to CD, the
segment 4 £ will not fail to coincide with CFD also;

therefore it will coincide with it and will be equal to it.

20 Therefore etc.
Q. E. D.

15. fall awry, wapadidfe:, the same word as used in the like case in 1. 8. The word
implies that the applied figure will partly fall short of, and partly overlap, the figure to
which it is applied.

Compare the note on the last proposition. I have put a semicolon instead
of the comma which the Greek text has after “outside it,” in order the better
to indicate that the inference ““and a circle cuts a circle in more points than
two” only refers to the third hypothesis that the applied segment is “otherwise
placed (mapodddfe) as CG.D.” The first two hypotheses are disposed of by
a Zacit reference to the preceding proposition 111. 23.

ProrositTion 25.
Given a segment of a circle, to descvibe the complete civcle
of which tt is a segment.
Let 45C be the given segment of a circle ;

thus it is required to describe the complete circle belonging
to the segment A4 BC, that is, of which it is a segment.

For let AC be bisected at D, let DB be drawn from the
point [ at right angles to AC, and let A5 be joined ;
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the angle 48D is then greater than, equal to, or less
than the angle 5A4D.

First let it be greater;

and on the straight line B4, and at the point 4 on it, let
the angle BAE be constructed equal to

the angle A50D; let DB be drawn through A

to £, and let £C be joined.

Then, since the angle 4ABZ is equal to
the angle BAZ, B E

the straight line £7 is also equal to
EA. [ 6]
And, since 4D is equal to DC,
and DFE is common,
the two sides 4D, DE are equal to the two sides CD, DE
respectively ;
and the angle 4D £ is equal to the angle CDE, for each is
right ;
therefore the base A Z is equal to the base CZ.
But AFE was proved equal to BF ;
therefore BE is also equal to C£;
therefore the three straight lines AZ, £5, EC are equal to
one another.

Therefore the circle drawn with centre £ and distance
one of the straight lines A £, £5, EC will also pass through
the remaining points and will have been completed. [ 9]

Therefore, given a segment of a circle, the complete circle
has been described.

And it is manifest that the segment A5C is less than a
semicircle, because the centre £ happens to be outside it.

Similarly, even if the angle 457 be equal to the angle
BAD,

AD being equal to each of the two BD, DC, A
the three straight lines DA, DB, DC will |
be equal to one another, B D
D will be the centre of the completed circle,
c

and A4 BC will clearly be a semicircle.
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But, if the angle 48D be less than the angle 54D,

and if we construct, on the straight line B4
and at the point A4 on it, an angle equal to

the angle ABD, the centre will fall on DB A
within the segment A BC, and the segment

ARBC will clearly be greater than a semi- ° °
circle. G

Therefore, given a segment of a circle,
the complete circle has been described.
Q. E. F.

1. to describe the complete circle, mposavaypdiar Tov Kkibxhov, literally ““to describe
the circle o 0 2.7

It will be remembered that Simson takes first the case in which the angles
ABD, BAD are equal to one another, and then takes the other two cases
together, telling us to “produce B0, if necessary.” This is a little shorter
than Euclid’s procedure, though Euclid does not repeat the proof of the first
case In giving the third, but only refers to it as equally applicable.

Campanus, Peletarius and others give the solution of this problem in
which we take two chords not parallel and bisect each at right angles by
straight lines, which must meet in the centre, since each contains the centre
and they only intersect in one point. Clavius, Billingsley, Barrow and others
give the rather simpler solution in which the two chords have one extremity
common (cf. Euclid’s proofs of 111 9, ro). This method De Morgan favours,
and (as noted on 1. 1 above) would make w1 1, this proposition, and
w. 5 all crollaries of the theorem that “the line which bisects a chord
perpendicularly must contain the centre.” Mr . M. Taylor practically
adopts this order and method, though he finds the centre of a circle by
means of any two non-parallel chords; but he finds #%e centre of the cirde of
which a given arc is a part (his proposition corresponding to 11 25) by
bisecting at right angles first the base and then the chord joining one extremity
of the base to the point in which the line bisecting the base at right angles
meets the circumference of the segment. Under De Morgan’s alternative the
relation between Euclid 1m1. 1 and the Porism to it would be reversed, and
Euclid’s notion of a Porism or crol/ary would have to be considerably
extended.

If the problem is solved after the manner of 1v. s, it is still desirable to
state, as Euclid does, after proving 4Z, £8, EC to be all equal, that “the
circle drawn with centre £ and distance one of the straight lines 4%, E5,
EC will also pass through the remaining points of the segment” [11L 9], in
order to show that part of the circle described actually coincides with the
given segment. This is not so clear if the centre is determined as the
intersection of the straight lines bisecting at right angles chords which join
pairs of four different points.

ProrosiTion 26.

In equal circles equal angles stand on equal circumferences,
whether they stand at the centres or at the civcumferences.
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Let ABC, DEF be equal circles, and in them let there
be equal angles, namely at the centres the angles BGC,
EHF, and at the circumferences the angles BAC, EDF;

I say that the circumference BKXC is equal to the circum-
ference £LF.

A

For let BC, £F be joined.
Now, since the circles ABC, DEF are equal,

the radii are equal.
Thus the two straight lines BG, GC are equal to the
two straight lines £H, HF;
and the angle at G is equal to the angle at /7 ;
therefore the base BC is equal to the base £F.  [1 4]
And, since the angle at 4 is equal to the angle at 2,
the segment BAC is similar to the segment ZDF;
[rn Def. 11]
and they are upon equal straight lines.
But similar segments of circles on equal straight lines are
equal to one another ; (1. 24]
therefore the segment BZAC is equal to £DF.

But the whole circle ABC is also equal to the whole circle
DEF;

therefore the circumference ZKC which remains is equal to
the circumference £LF.

Therefore etc. Q. E. D.

Asin 1 z1, if Euclid’s proof is to cover all cases, it requires us to take
cognisance of “angles at the centre” which are equal to or greater than two
right angles. Otherwise we must deal separately with the cases where the
angle at the circumference is equal to or greater than a right angle. The
case of an obruse angle at the circumference can of course be reduced by
means of 1. 22 to the case of an acute angle at the circumference ; and, in
case the angle at the circumference is right, it is readily proved, by drawing
the radii to the vertex of the angle and to the other extremities of the lines
containing it, that the latter two radii are in a straight line, whence they make
equal bases in the two circles as in Euclid’s proof.
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Lardner has another way of dealing with the right angle or obtuse angle
at the circumference. In either case, he says, “bisect them, and the halves
of them are equal, and it can be proved, as above, that the arcs upon which
these halves stand are equal, whence it follows that the arcs on which the
given angles stand are equal.”

PRrOPOSITION 27.

In equal civcles angles standing on equal civcumferences
are equal to one another, whether they stand at the centres or
at the civcumferences.

For in equal circles ABC, DEF, on equal circumferences
BC, EF, let the angles BGC, EHF stand at the centres G,
H, and the angles 54C, EDF at the circumferences ;

I say that the angle BGC is equal to the angle ZAF,
and the angle BA4C is equal to the angle EDF.

For, if the angle BGC is unequal to the angle Z/AF,
one of them is greater.

Let the angle £GC be greater; and on the straight line BG,
and at the point G on it, let the angle ZGK be constructed

equal to the angle ZAF. [x. 23]
Now equal angles stand on equal circumferences, when
they are at the centres; [11. 26]

therefore the circumference 5K is equal to the circum-
ference EF.

But £F is equal to BC;

therefore BX is also equal to BC, the less to the
greater : which is impossible.

Therefore the angle BGC is not unequal to the angle
EHF;

therefore it is equal to it.
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And the angle at A4 is half of the angle BGC,
and the angle at D half of the angle FHF; [111. 20]
therefore the angle at A is also equal to the angle at D.
Therefore etc. -
Q. E. D.

This proposition is the converse of the preceding one, and the remarks
about the method of treating the different cases apply here also.

ProrosiTion 28.

In equal civcles equal stvaight lines cut off equal civcum-
Serences, the grealer equal to the greater and the less to the
less.

Let ABC, DEF be equal circles, and in the circles let
AZB, DE be equal straight lines cutting off ACB, DFE as
greater circumferences and 4GB, DHE as lesser;

I say that the greater circumference 4CH is equal to the
greater circumference D/ E, and the less circumference 4GB
to DHE.

For let the centres X, L of the circles be taken, and let
AK, KB, DL, LE be joined.
Now, since the circles are equal,
the radii are also equal ;
therefore the two sides 4K, KB are equal to the two
sides DL, LE;
and the base A5 is equal to the base DE;
therefore the angle A KB is equal to the angle DLfZ . :
1. 8
But equal angles stand on equal circumferences, when
they are at the centres; [111. 26]
therefore the circumference AGZ5 is equal to DHE.
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And the whole circle A5C is also equal to the whole
circle DEF;
therefore the circumference A4 CJA which remains is also equal
to the circumference DFE which remains.

Therefore etc.
Q. E. D.

Euclid’s proof does not in terms cover the particular case in which the
chord in one circle passes through its centre; but indeed this was scarcely
worth giving, as the proof can easily be supplied. Since the chord in one
circle passes through its centre, the chord in the second circle must also be a
diameter of that circle, for equal circles are those which have equal diameters,
and all other chords in any circle are less than its diameter f1ir. 15]; hence
the segments cut off in each circle are semicircles, and these must be equal
because the circles are equal.

ProrosiTiON 20,

In equal civeles equal circumferences ave subtended by equal
strazght lines.

Let ABC, DEF be equal circles, and in them let equal
circumferences BGC, EAF be cut off; and let the straight
lines BC, £F be joined ;

I say that BC is equal to £F.

H
For let the centres of the circles be taken, and let them
be X, L; let BK, KC, EL, LF be joined.

Now, since the circumference BGC is equal to the
circumference EHF,

the angle BKC is also equal to the angle £ZF. [1n. 27]

And, since the circles ABC, DEF are equal,
the radii are also equal;
therefore the two sides BK, KC are equal to the two sides
EL, LF; and they contain equal angles ;

therefore the base 5C is equal to the base £F.  [1 4]

Therefore etc.
Q. E. D.
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The particular case of this converse of 111 28 in which the given arcs are
arcs of semicircles is even easier than the corresponding case of 1L 28 itself.

The propositions 11L. 26—z29 are of course equally true if the same circle
is taken instead of fwo egual circles.

ProrosiTion 3o.
To bisect a given civcumference.

Let AD2B be the given circumference ;
thus it is required to bisect the circumference 4.0 A5.
Let 4B be joined and bisected at

C; from the point C let CD be drawn D
at right angles to the straight line 45, -
and let 40, DB be joined.
Then, since AC is equal to C5, A C B

and CD is common,
the two sides 4C, CD are equal to the two sides BC, CD;

and the angle ACD is equal to the angle BCD, for each is
right ;

therefore the base 4.0 is equal to the base DB.  [1 4]

But equal straight lines cut off equal circumferences, the
greater equal to the greater, and the less to the less; [i. 28]

and each of the circumferences A0, DA is less than a
semicircle ;

therefore the circumference 40 is equal to the circum-
ference DB,

Therefore the given circumference has been bisected at
the point D.
Q. E. F.

ProrosiTiOoN 31I.

In a circle the angle in the semicivile is vight, that in a
greater segment less than a right angle, and that in a less
segment greater than a vight angle,; and further the angle of
the greater segment is greater than a right angle, and the angle
of the less segment less than a right angle.
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Let ABRCD be a circle, let BC be its diameter, and £ its
centre, and let BA, AC, AD, DC
be joined ;
I say that the angle BAC in the o
semicircle BAC is right,
the angle ABC in the segment 45C
greater than the semicircle is less
than a right angle,
and the angle ADC in the segment
ADC less than the semicircle is 5
greater than a right angle.
Let AE be joined, and let B4
be carried through to /.
Then, since BE is equal to £4,
the angle A B is also equal to the angle A4 Z. [1. 5]
Again, since C£ is equal to £4,
the angle ACE is also equal to the angle CAZ. [1 5]
Therefore the whole angle B4 C is equal to the two angles
ABC, ACB.
But the angle 7.4 C exterior to the triangle A/5C is also

equal to the two angles ABC, ACH; [r 32]
therefore the angle BA4C is also equal to the angle 7 4C;
therefore each is right; [1. Def. 10]

therefore the angle BAC in the semicircle BAC is right.

Next, since in the triangle 45C the two angles 45C,
BAC are less than two right angles, [r. 17]

and the angle 54 C is a right angle,
the angle 4 BC is less than a right angle

and it is the angle in the segment ABC greater than the
semicircle.

Next, since ABCD is a quadrilateral in a circle,
and the opposite angles of quadrilaterals in circles are equal
to two right angles, (1. 22]
while the angle 45C is less than a right angle,
therefore the angle 420C which remains is greater than a
right angle ;
a.nd1 it is the angle in the segment 4DC less than the semi-
circle.
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I say further that the angle of the greater segment, namely
that contained by the circumference 4ABC and the straight
line AC, is greater than a right angle ;
and the angle of the less segment, namely that contained by
the circumference ADC and the straight line 4 C, is less than
a right angle.

This is at once manifest.
For, since the angle contained by the straight lines 84, AC
is right,

the angle contained by the circumference 45C and the
straight line 4C is greater than a right angle.

Again, since the angle contained by the straight lines
AC, AF is right,

the angle contained by the straight line CA and the
circumference 40C is less than a right angle.

Therefore etc. Q. E. D.

As already stated, this proposition is immediately deducible from 111. 20 if
that theorem is extended so as to include the case where the segment is equal
to or less than a semicircle, and where consequently the “ angle at the centre”
is equal to two right angles or greater than two right angles respectively.

There are indications in Aristotle that the proof of the first part of the
theorem in use before Euclid’s time proceeded on different lines. Two
passages of Aristotle refer to the proposition that the angle in a semicircle
is a right angle. The first passage is Anal. FPost. 11. 11, 94 a 28: “Why is
the angle in a semicircle a right angle? Or what makes it a right angle?
(Tivos dvros opbij;) Suppose 4 to be a right angle, B half of two right
angles, C the angle in a semicircle. Then B is the cause of A4, the right
angle, being an attribute of C, the angle in the semicircle. For 2 is equal to
A, and C to B; for Cis half of two right angles. Therefore it is in virtue of
B being half of two right angles that 4 is an attribute of C; and the latter
means the fact that the angle in a semicircle is right.” Now this passage
by itself would be consistent with a proof like Euclids or the alternative
interpolated proof next to be mentioned. But the second passage throws a
different light on the subject. Thisis Metaph. 1051 a 26: “Why is the angle
in a semicircle a right angle invariably (xaBdhov)? Because, if #here be three
straight lines, two forming the base, and the third set up at right angles at its
middle point, the fact is obvious by simple inspection to any one who knows
the property referred to” (éxeivo is the property that the angles of a triangle
are together equal to two right angles, mentioned two
lines before). That is to say, the angle a? #he middle
point of the circumference of the semicircle was taken
and proved, by means of the two isosceles right-angled
triangles, to be the sum of two angles each equal to i S
one-fourth of the sum of the angles of the large triangle
in the figure, or of two right angles; and the proof
must have been completed by means of the theorem of 1. 21 (that angles

aa
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in the same segment are equal), which Euclid’s more general proof does
not need.

In the Greek texts before that of August there is an alternative proof
that the angle B4 C (in a semicircle) is right. August and Heiberg relegate
it to an Appendix.

“Since the angle 4£C is double of the angle BAE (for it is equal to the
two interior and opposite angles), while the angle 4Z 5 is also double of the
angle ZAC,

the angles 4£B, AEC are double of the angle BAC.

But the angles 4 £B, AEC are equal to two right angles ;

therefore the angle £A4C is right.”

Lardner gives a slightly different proof of the second part of the theorem.
If ABC be a segment greater than a semicircle,

draw the diameter A0, and join CD, CA.
Then, in the triangle ACD, the angle ACD is right

(being the angle in a semicircle) ;

therefore the angle ADC is acute.

But the angle 4DC is equal to the angle 48C in
the same segment;
therefore the angle 4ABC is acute.

Euclid’s references in this proposition to the angle of a segment greater
or less than a semicircle respectively seem, like the part of 11 16 relating to
the angle ¢f a semicircle, to be a survival of ancient controversies and not to
be put in deliberately as being an essential part of elementary geometry. Cf.
the notes on 111. Def. 7 and 11 16.

The corollary ordinarily attached to this proposition is omitted by Heiberg
as an interpolation of date later than Theon. It is to this effect: “ From
this it is manifest that, if one angle of a triangle be equal to the other two,
the first angle is right because the exterior angle to it is also equal to the
same angles, and if the adjacent angles be equal, they are right.” No doubt
the corollary is rightly suspected, because there is no necessity for it here, and
the words dmwep e deifar come before it, not after it, as is usual with Euclid.
But, on the other hand, as the fact stated does appear in the proof of ni. 31,
the Porism would be a Porism after the usual type, and I do not quite follow
Heiberg’s argument that, “if Euclid had wished to add it, he ought to have
placed it after 1. 32.”

It has already been mentioned above (p. 44) that this proposition supplies
us with an alternative construction for the problem in 1. 17 of drawing the
two tangents to a circle from an external point.

Two theorems of some historical interest which follow directly from 1131
may be mentioned.

The first is a lemma of Pappus on “the B
24th problem” of the second Book of Apol- N
lonius’ lost treatise on veoes (Pappus viL E
p- 812) and is to this effect. If a circle, as
DEF, pass through D, the centre of a circle
ABC, and if through # the other point in
which the line of centres meets the circle # D c F
DEUF, any straight line be drawn (and produced
if necessary) meeting the circle DEF in £ and the circle 4B8C in B, G,
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then £ is the middle point of BG, For, if DZ be joined, the angle DEF
(in a semicircle) is a right angle [111, 31]; and DZ, being at right angles to
the chord B¢ of the circle 48, also bisects it [111. 3].

The second is a proposition in the Ziber Assumptorum, attributed (no
doubt erroneously as regards much of it) to Archimedes, which has reached
us through the Arabic (Archimedes, ed. Heiberg, 11. pp. 439—440).

If two chords AB, CD in a circle intersect af right angles in a point O,
i’i/z'm the sum of the squares on AO, BO, CO, DO is equal 1o the square on the

1ameter.

For draw the diameter CE, and join AC, CB, AD, BE.
C

iy

O

E

Then the angle C4O is equal to the angle CZB. (This follows, in the
first figure, from 1L 21 and, in the second, from 1. 13 and 11 22.) Also the
angle COA4, being right, is equal to the angle CAZ which, being the angle in a
semicircle, is also right [ 31].

Therefore the triangles 40C, EBC have two angles equal respectively ;
whence the third angles 4CO, ECPB are equal. (In the second figure the
angle ACO is, by 1. 13 and 111. 22, equal to the angle 480, and therefore
the angles 48D, ECE are equal.) '

Therefore, in both figures, the arcs A.D, BE, and consequently the chords
AD, BE subtended by them, are equal. nr. 26, 29]

Now the squares on 40, DO are equal to the square on 4D [1. 47], that
is, to the square on BE.

And the squares on CO, BO are equal to the square on BC.

Therefore, by addition, the squares on 40, B0, CO, DO are equal to the
squares on £B, B, ie. to the square on CE. [t 47]

ProposiTiON 32.

If a straight line touckh a civcle, and from the point of
contact theve be drawn across, n the civcle, a stvaight line
cutting the cirvcle, the angles which it makes with the tangent
will be equal to the angles in the alternate segments of the
civele.

For let a straight line £F touch the circle ABCD at
the poirt B, and from the point 7 let there be drawn across,
in the circle ABCD, a straight line BD cutting it;

I say that the angles which B0 makes with the tangent £/
will be equal to the angles in the alternate segments of the

H. E. IL 5
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circle, that is, that the angle ZBD is equal to the angle
constructed in the segment BAD, and the angle £BD is
equal to the angle constructed in the
segment DCB. A
For let BA be drawn from 5 at
right angles to £7,
let a point C be taken at random on
the circumference 5D,
and let 4D, DC, CB be joined.
Then, since a straight line £
touches the circle ABCD at B, E g E
and B4 has been drawn from the point
of contact at right angles to the tangent,
the centre of the circle ABCD is on BA. [1r. 19]
Therefore BA is a diameter of the circle ABCD;

therefore the angle 4D 5, being an angle in a semicircle,

is right. (1. 31]
Therefore the remaining angles 54D, ABD are equal to
one right angle. [x. 32]

But the angle 4 /£ F is also right ;
therefore the angle 4BF is equal to the angles 2AD, ABD.
Let the angle 450D be subtracted from each;
therefore the angle /B F which remains is equal to the angle
BAD in the alternate segment of the circle.
Next, since A BCD is a quadrilateral in a circle,
its opposite angles are equal to two right angles. (1 22]
But the angles DBF, DBE are also equal to two right
angles ;
therefore the angles DBF, DBE are equal to the angles
BAD, BCD,
of which the angle BAD was proved equal to the angle
DBF; _
therefore the angle JBE which remains is equal to the
angle DCA in the alternate segment DCPB of the circle.
Therefore etc. Q. E. D.

The converse of this theorem is true, namely that, /f a straight line
drawn through one extremity of a chord of @ cirde make with that chord
angles equal vespectively to the angles in the alternate segments of the civile,
the straight line so drawn fouches the civcle.
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This can, as Camerer and Todhunter remark, be proved indirectly ; or we
may prove it, with Clavius, directly. Let BD be the given chord, and let £F
be drawn through 7 so that it makes with B0 angles equal to the angles in
the alternate segments of the circle respectively.

Let BA be the diameter through B, and let € be any point on the
circumference of the segment DCA which does not contain 4, Join 4D,
DC, CB.

Then, since, by hypothesis, the angle 750D is equal to the angle 84D,
let the angle 480 be added to both;

therefore the angle A8 Fis equal to the angles 48D, BAD.
But the angle 5D4d, being the angle in a semicircle, is a right angle ;

therefore the remaining angles 48D, BAD in the triangle ABD are
equal to a right angle.

Therefore the angle 4 BFis right ;
hence, since 54 is the diameter through 5,
EF touches the circle at B. (11 16, Por.]

Pappus assumes in one place (iv. p. 196) the consequence of this
proposition that, Jf fwo circles touch, any straight line drawn through the point
of contact and terminated by both circes cufs off segments in each whick are
respectively similar. Pappus also shows how to prove this (vir. p. 826) by
drawing the common tangent at the point of contact and using this proposition,
I 32.

PROPOSITION 33.

On a given straight line lo describe a segment of a circle
admitting an angle equal to a given rectilineal angle.

Let A8 be the given straight line, and the angle at C the
given rectilineal angle ;
thus it is required to describe 5

on the given straight line #
AB a segment of a circle ad- ]
mitting an angle equal to the E
angle at C. c G
The angle at C is then B
acute, or right, or obtuse.
First let it be acute, L

and, as in the first figure, on
the straight line 43, and at the point A4, let the angle 54 D
be constructed equal to the angle at C;
therefore the angle 84D is also acute.
Let AFE be drawn at right angles to DA, let A5 be

5—2
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bisected at /#, let /G be drawn from the point /" at right
angles to A5, and let G:B be joined.

Then, since AF is equal to 75,
and G is common,
the two sides AF, F'G are equal to the two sides 57, FG ;
and the angle AFG is equal to the angle BFG;
therefore the base 4G is equal to the base BG. [1 4)

Therefore the circle described with centre & and distance
GA will pass through 5 also.
Let it be drawn, and let it be ABE ;

let £2 be joined.

Now, since A0 is drawn from A, the extremity of the
diameter A £, at right angles to 4Z,

therefore 4D touches the circle ABE. [111. 16, Por.]
Since then a straight line 4D touches the circle 4 BE,

and from the point of contact at A4 a straight line A5 is
drawn across in the circle ABE,

the angle DAPB is equal to the angle A £5 in the alternate
segment of the circle. [11. 32]

But the angle D.A25 is equal to the angle at C;
therefore the angle at Cis also equal to the angle A£5.

Therefore on the given straight line 45 the segment
AEDP of a circle has been described admitting the angle 4 £5
equal to the given angle, the angle at C.

Next let the angle at C be right;

b A

‘J F
c E

B

and let it be again required to describe on 42 a segment
of a circle admitting an angle equal to the right angle at C.

Let the angle BA4D be constructed equal to the right
angle at C, as is the case in the second figure ;
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let A5 be bisected at F, and with centre / and distance
either /74 or /B let the circle A £ B be described.
Therefore the straight line 4D touches the circle 4BE,
because the angle at 4 is right. (11 16, Por.]
And the angle 240 is equal to the angle in the segment
AEB, for the latter too is itself a right angle, being an
angle in a semicircle. [m 31]
But the angle BAD is also equal to the angle at C.
Therefore the angle 4 Z5 is also equal to the angle at C.
Therefore again the segment AZZF of a circle has been
described on 44 admitting an angle equal to the angle at C.

Next, let the angle at C be obtuse;

A D
H
\ E
c— G
B
E

and on the straight line 425, and at the point A, let the
angle BAD be constructed equal to it, as is the case in the
third figure ;
let AE be drawn at right angles to 40D, let A5 be again
bisected at 7, let #G be drawn at right angles to 425, and
let GB be joined.
Then, since 4 F is again equal to 75,
and /G is common,
the two sides AF, /G are equal to the two sides BF, G
and the angle 4/G is equal to the angle B/ G
therefore the base 4G is equal to the base BG. [t 4]
Therefore the circle described with centre & and distance
G A will pass through B also; let it so pass, as AZEB.
Now, since 4D is drawn at right angles to the diameter
AE from its extremity,
AD touches the circle A£Z5. [u1. 16, Por.]
And AP has been drawn across from the point of contact
at 4;
therefore the angle 240 is equal to the angle constructed
in the alternate segment 4 /75 of the circle. [mr 32]
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But the angle BAD is equal to the angle at C.
Therefore the angle in the segment 4/ 5 is also equal to

the angle at C. .
Therefore on the given straight line 475 the segment

AHP of acircle has been described admitting an angle equal

to the angle at C. ,
Q. E. F.

Simson remarks truly that the first and third cases, those namely in which
the given angle is acute and obtuse respectively, have exactly the same
construction and demonstration, so. that there is no advantage in repeating
them. Accordingly he deals with the cases as one, merely drawing two
different figures. It is also true, as Simson says, that the demonstration of
the second case in which the given angle is a right angle “is done in a round-
about way,” whereas, as Clavius showed, the problem can be more easily
solved by merely bisecting 47 and describing a semicircle on it. A glance
at Euclid’s figure and proof will however show a more curious fact, namely
that he does not, in the proof of the second case, use the angle in the
alternate segment, as he does in the other two cases. He might have done so
after proving that 4D touches the circle; this would only have required his
point £ to be placed on the side of 4.5 opposite to 1. Instead of this, he
uses 1II. 31, and proves that the angle 4£25 is equal to the angle C, because
the former is an angle in a semicircle, and is therefore a right angle as C is.

The difference of procedure is no doubt owing to the fact that he has not,
in 1L 32, distinguished the case in which the cutting and touching straight
lines are at right angles, i.e. in which the two alternate segments are semicircles.
To prove this case would also have required 111. 31, so that nothing would
have been gained by stating it separately in 1. 32 and then quoting the
result as part of 11 gz, instead of referring directly to 111 31.

It is assumed in Euclid’s proof of the first and third cases that AZ and
FG will meet; but of course there is no difficulty in satisfying ourselves
of this,

ProrosiTiON 34:

From a given circle to cut off a segnent adinitting an angle
equal to @ given rectilineal angle.

Let ABC be the given circle, and the angle at D the
given rectilineal angle;
thus it is required to cut off from the circle ABC a segment
admitting an angle equal to the given rectilineal angle, the
angle at D,

Let £/ be drawn touching 4 BC at the point 5, and on
the straight line #5, and at the point B on it, let the angle
FBC be constructed equal to the angle at D). [r 23]

Then, since a straight line £ touches the circle 45C,
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and ZC has been drawn across from the point of contact
at B,

the angle #BC is equal to the angle constructed in the alternate
segment 5AC. " [ 32]

C

But the angle F5C is equal to the angle at D ;

therefore the angle in the segment £A4C is equal to the
angle at D.

Therefore from the given circle 45C the segment BAC
has been cut off admitting an angle equal to the given recti-
lineal angle, the angle at D.

Q E. F.
An alternative construction here would be to make an “angle at the

centre” (in the extended sense, if necessary) double of the given angle ; and,
if the given angle is right, it is only necessary to draw a diameter of the circle.

ProrosiTiON 35.

If in a crcle two straight lines cut one another, the
rectangle contained by the segments of the one is equal -to the
rectangle contained by the segments of the other.

For in the circle ABCD let the two straxght lines AC,
BD cut one another at the point £ ;

I say that the rectangle contained by A Z,
EC is equal to the rectangle contained by = A
DE, EB.

If now A C, BD are through the centre,
so that Z is the centre of the circle ABCD,

it is manifest that, AE, EC, DE, EB

being equal,

the rectangle contained by 4Z, EC is also equal to the
rectangle contained by DE, EB.
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Next let AC, DB not be through the centre;
let the centre of ABCD be taken, and

let it be /'
from F let FG, A be drawn perpen-
dicular to the straight lines AC, DB, A D

and let /B, FC, FE be joined.
Then, since a straight line GF
through the centre cuts a straight line
AC not through the centre at right
angles, 87C
it also bisects it; [ 3]
therefore AG is equal to GC.
Since, then, the straight line AC has been cut into equal
parts at G and into unequal parts at Z,
the rectangle contained by 4 Z, £C together with the square
on EG is equal to the square on & C; [11. 5]
Let the square on G/ be added ;
therefore the rectangle 4Z, EC together with the squares
on GE, GF is equal to the squares on CG, GZ.
But the square on /Z is equal to the squares on £G, GF,
and the square on #C is equal to the squares on CG, GF;
[r. 47]
therefore the rectangle 4Z, EC together with the square
on £ is equal to the square on #C.
And FC is equal to B ;
therefore the rectangle 4 E, EC together with the square on
EF'is equal to the square on F25.
For the same reason, also,
the rectangle DE, EB together with the square on FZ is
equal to the square on F25.
But the rectangle 4 £, EC together with the square on
FE was also proved equal to the square on £ ;
therefore the rectangle AZ, EC together with the square on
FE is equal to the rectangle DZ, EB together with the
square on FE.
Let the square on 7Z be subtracted from each ;
therefore the rectangle contained by AE, EC which remains
is equal to the rectangle contained by DZ, EB.
Therefore etc.

Q E. D,
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In addition to the two cases in Euclid’s text, Simson (following Campanus)
gives two intermediate cases, namely (1) that in which one chord passes through
the centre and bisects the other which does not pass through the centre at right .
angles, and (2) that in° which one passes through the centre and cuts the other
which does not pass through the centre but not at right angles. Simson then
reduces Euclid’s second case, the most general one, to the second of the two
intermediate cases by drawing the diameter through Z. His note is as
follows: “As the 25th and 33rd propositions are divided into more cases,
so this 3sth is divided into fewer cases than are necessary. Nor can it be
supposed that Euclid omitted them because they are easy; as he has given
the case which by far is the easiest of them all, viz. that in which both the
straight lines pass through the centre: And in the following proposition he
separately demonstrates the case in which the straight line passes through the
centre, and that in which it does not pass through the centre: So that it
seems Theon, or some other, has thought them too long to insert: But cases
that require different demonstrations should not be left out in the Elements,
as was before taken notice of: These cases are in the translation from the
Arabic and are now put into the text.” Notwithstanding the ingenuity of the
argument based on the separate mention by Euclid of the simplest case of
all, T think the conclusion that Euclid himself gave jour cases is unsafe; in
fact, in giving the simplest and most difficult cases only, he seems to be
following quite consistently his habit of avoiding Zo0 greas multiplicity of cases,
while not ignoring their existence.

The deduction from the next proposition (111. 36) which Simson, following
Clavius and others, gives as a corollary to it, namely that, Jf from any point
without a circle there be drawn lwo straighl lines cutting it, the rectangles
contained by the whole lines and the parts of them without the circle are equal Yo
one another, can of course be combined with 111 35 in one enunciation.

As remarked by Todhunter, a large portion of the proofs of 1L 3s, 36
amounts to proving-the proposition, Jf any point be taken on the base, or the
base produced, of an isosceles triangle, the rectangle contained by the segments of
the base (i.e. the respective distances of the ends of the base from the point) is
equal to the difference between the square on the straight line joining the point fo
the vertex and the square on one of the equal sides of the triangle. ‘This is of
course an immediate consequence of L 47 combined with 1. 5 or 1L 6.

The converse of 111. 35 and Simson’s corollary to 111. 36 may be stated
thus. Jf #wo straight lines AB, CD, produced if necessary, intersect at O, and if
the rectangle AQ, OB be equal fo the rectangle CO, OD, the circumference of a
circle will pass through the four points A, B, C, D. The proof is indirect.
We describe a circle through three of the points, as 4, B, C (by the method
used in’ Euclid’s proofs of 111. 9, 10), and then we prove, by the aid of 1L 35
and the corollary to 111. 36, that the circle cannot but pass through 2 also.

ProrosITION 36.

If @ point be taken outside a civele and from it there fall
on the circle two straight lines, and if one of them cut the
civcle and the other touch it, the rectangle contained by the
whole of the straight line which cuts the civcle and the straight
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line intevcepted on it outside between the point and the convex
circumjerence will be equal to the square on the tangent.
For let a point D be taken outside the circle 45C,
and from D let the two straight lines DCA,
DB fall on the circle ABC; let DCA cut A
the circle ABC and let BD touch it;
I say that the rectangle contained by A0,
DC 1s equal to the square on D25.
Then DCA is either through the centre
or not through the centre. c
First let it be through the centre, and
let # be the centre of the circle ABC;
let 7B be joined ;
therefore the angle #BD is right. (1. 18]
And, since AC has been bisected at /, and C2D is added
to 1it,
the rectangle 4D, DC together with the square on FC is
equal to the square on /0. [1. 6]
But FC is equal to /5 ;
therefore the rectangle 4.0, DC together with the square on
FB is equal to the square on FD.

And the squares on FB, BD are equal to the square on
FD; [r. 47]

therefore the rectangle 40, DC together with the square on
FB is equal to the squares on #5, BD.

Let the square on /5 be subtracted from each ;

therefore the rectangle A0, DC which remains is equal to
the square on the tangent DA.

Again, let DCA not be through the centre of the circle
ABC;

let the centre £ be taken, and from E
let £/ be drawn perpendicular to AC;

let £8, EC, £D be joined. E
Then the angle £5D is right. A
[ur 18]
And, since a straight line £/ D B

through the centre cuts a straight line
AC not through the centre at nght angles,
it also bisects it ; [ 3]
therefore AF is equal to FC.
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Now, since the straight line 4C has been bisected at the
point 7 and.CD is added to it,
the rectangle contained by 4D, DC together with the square
on FC is equal to the square on F~D. (1. 6]

Let the square on ~Z be added to each;
therefore the rectangle 40, DC together with the squares
on CF, FE is equal to the squares on FD, FE.

But the square on £C is equal to the squares on CF, FE,
for the angle £/C is right ; [1.-47]
and the square on £ is equal to the squares on DF, FE ;
therefore the rectangle 4D, DC together with the square on
EC is equal to the square on £D,

And Z£Cis equal to £B;

thérefore the fectangle 4D, DC together with the square on
EZB is equal to the square on £D.

- But the squares on £, BD are equal to the square on
ED, for the angle £BD is right ; [r. 47]
therefore the rectangle 4.0, DC together with the square on
EPB is equal to the squares on £5B, BD.

Let the square on £25 be subtracted from each ;
therefore the rectangle 40, DC which remains is equal to
the square on DBA5.

Therefore etc. Q. E. D.

Cf. note on the preceding proposition. Observe that, wheréas it would
be natural with us to prove first that, if 4 is an external point, and two
straight lines 4£5, AFC cut the circle in £, B and & C respectively, the
rectangle B4, AE is equal to the rectangle C4, 4%, and thence that, the
tangent from A4 being a straight line like ABEB in ils limiting position when
E and B coincide, either rectangle is equal to the square on the tangent
(cf. Mr H. M. Taylor, p. 253), Euclid and the Greek geometers generally did
not allow themselves to infer the truth of a proposition in a dmiting case
directly from the general case including it, but preferred a separate proof of
the limiting case (cf. Apollonius of Perga, p. 40, 139—140). This accounts for
the form of 111. 36.

ProrositiON 37.

If a point be taken outside a civile and from the point
therve fall on the circle two straight lines, 1f one of thent cut
the circle, and the other fall on ¢, and if further the rect-
angle contained by the whole of the straight line which cuts
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the circle and the straight line intercepled on it outside
between the point and the convex circumference be equal lo
the square on the straight line whick falls on the circle, the
straight line whick falls on it will touck the circle.

For let a point 2 be taken outside the circle 4BC;
from D let the two straight lines
DCA, DB fall on the circle ACH;
let DCA cut the circle and DA
fall on it ; and let the rectangle 4D,
DC be equal to the square on D5.

I say that D2 touches the circle
ABC. B A

For let DE be drawn touching
ABC ; let the centre of the circle 4B8C be taken, and let it
be F; let FE, FB, FD be joined.

Thus the angle F£D is right. (1. 18]

Now, since L E touches the circle 4 5C, and DCA cuts it,
the rectangle 4D, DC is equal to the square on DE. [ 36]

But the rectangle AD, DC was also equal to the square
on DF; '
therefore the square on DZ is equal to the square on DF;

therefore DE is equal to DB.

And FE is equal to /5 ;
therefore the two sides DZ, EF are equal to the two sides
DB, BF;
and FD is the common base of the triangles;

therefore the angle DEF is equal to the angle DAF.

1. 8
But the angle D£F is right ; .
therefore the angle DB /F is also right.
And FB produced is a diameter ;
and the straight line drawn at right angles to the diameter
of a circle, from its extremity, touches the circle; [ur 16, Por.]
therefore DB touches the circle.
Similarly this can be proved to be the case even if the
centre be on AC.
Therefore etc. Q. E. D.

E

D

De Morgan observes that there is here the same defect as in 1. 48, i.e. an
apparent avoidance of indirect demonstration by drawing the tangent DE on
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the opposite side of DF from DB. The case is similar to the apparently
direct proof which Campanus gave. He drew the straight line from D
passing through the centre, and then (without drawing a second tangent)
proved by the aid of 1. 6 that the square on DF is equal to the sum of the
squares on DB, BF; whence (by 1. 48) the angle DBF is a right angle,
But this proof uses I 48, the very proposition to which De Morgan’s original
remark relates.

The undisguised indirect proof is easy. If DB does not touch the circle,
it must cut it if produced, and it follows that the square on 2.8 must be
equal to the rectangle contained by 25 and a longer line: which is absurd,



BOOK 1IV.
DEFINITIONS.

1. A rectilineal figure is said to be inscribed in a
rectilineal figure when the respective angles of the
inscribed figure lie on the respective sides of that in which
it is inscribed.

2. Similarly a figure is said to be circumscribed about
a figure when the respective sides of the circumscribed
figure pass through the respective angles of that about which
it is circumscribed.

3- A rectilineal figure is said to be inscribed in a
circle when each angle of the inscribed figure lies on the

circumference of the circle.

4. A rectilineal figure is said to be circumscribed
about a circle, when each side of the circumscribed figure
touches the circumference of the circle.

5. Similarly a circle is said to be inscribed in a figure
when the circumference of the circle touches each side of the
figure in which it is inscribed.

6. A circle is said to be circumscribed about a figure
when the circumference of the circle passes through each
angle of the figure about which it is circumscribed.

7. A straight line is said to be fitted into a circle when
its extremities are on the circumference of the circle.

DEFINITIONS 1—7.
I append, as usual, the Greek text of the definitions.

1. EX‘I”LQ, ev@v'ypap.;wv els O'Xr/pta ev@vypa/.zp.ov eyypad)ecr@a.c keye-rou, orav
édory TéY 'rov tyypagopévov exriparos yowdy ékdorns mhevpds Tod, €ls &

eyypdeperal, dmryra.
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2. Sxjpa 8¢ & o,umws mepl a'xr]p.a wepLypa.quBaL )\eyercu ora.v ékdoTy TXevpd
10D meprypapopévov ikaoTys yovias Tol, wepl § weprypdperar, drTyrac

3. 2x9pa ev@v-ypa,u.,uov eis kixhov éyypdpeahar )\eye‘mt, oray éxdoTn yuvia
Tob éyypacpopévor dmryTar THS TV KUkAov wepipepelus.

4. 2)(1”/.:1 8¢ edfiypappov wepl kixlov wepLypaqbetrﬁaL }xq/era.z, orav ékdaTn
TAevpd TOV meprypaopévov épdrryrar Ths Tod Kikhov Tepipepelas.

5. Kvm\os & els oxdpe o,u.ouu; eyypaqSea-BaL )\eyertu, Srav 1 Tob KUxAou
wepupépera éxdorys whevpds 1o, els & éyypdeperar, GmTyrar.

6. Kiklos 8¢ wepi o'XV]p.a wepzypa(;bea'9m. Aéyerar, Srav 1 70D kikAov Tepidépera
ékdaTns yovias Tod, wepl 6 weptypdperas, drryrat.

7. Evﬂem. eis xikhov évapusleaBar Néyerar, drav 7d wépara adrfs émi ris
Tepiepelas 3 Tob riklov.

In the first two definitions an English translation, if it is to be clear, must
depart slightly from the exact words used in the Greek, where “each side” of
one figure is said to pass through “each angle ” of another, or “each angle”
(le angular point) of one lies on “each side” of another (éxdary wAevpd,
EKU.O’T‘T] yovia).

It is also necessary, in the five definitions 1, 2, 3, 5 and 6, to translate
the same Greek word dwryra: in three different ways. It was observed on
1t Def. 2 that the usual meaning of drrecfar in Euclid is to meef, in contra-
distinction to épdrrerfar, which means to fouck. Exceptionally, as in Def. 5,
anrecfar has the meaning of Zouck. But two new meanings of the word appear,
the first being to Jie on, as in Deff. 1 and 3, the second to pass tirough, as in
Deff. 2 and 6; “each angle” lies on (dwrerar) a side or on a circle, and
“each side,” or a circle, passes through' (amrerar) an angle or “each angle.”
The first meaning of /ymcr on is exemplified in the phrase of Pappus alﬁETaL 76
aquetov Béaee Sedopévs edfelas, “will lie on a straight line given in position ”;
the meaning of passing through seems to be much rarer (I have not seen it in
Archimedes or Pappus), but, as pointed out on 1. Def. 2, Aristotle uses the
compound éparrecfar In- this sense.

Simson proposed to read épdmryrac in the case (Def. 5) where dnmrac
means fouches. He made the like suggestion as regards the Greek text of 11
11, 12, 13, 18, 19; in the first four of these cases there seems to be Ms.
authorxty for the compound verb, and in the fifth Heiberg adopts_ Simson’s.
correction.
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Prorosition 1.

Into a given circle lo fit a straight line equal to a given
straight line whick is not greater than the diameler of the
civele.

Let ABC be the given circle, and D the given straight
line not greater than the diameter
of the circle ;

thus it is required to fit into the
circle ABC a straight line equal
to the straight line D.

Let a diameter BC of the
circle ABC be drawn.

Then, if £C is equal to D,
that which was enjoined will have
been done; for £ZC has been fitted into the circle 45C equal
to the straight line 2.

But, if £C is greater than D,

let CE be made equal to 0, and with centre C and distance
CFE let the circle £AF be described ;

let C4 be joined.
Then, since the point C is the centre of the circle £A4F,
CA is equal to CE.
But CE is equal to D ;
therefore D is also equal to CA.

Therefore into the given circle A5C there has been fitted
CA equal to the given straight line D.

Q. E. F.
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Of this problem as it stands there are of course an infinite number of
solutions ; and, if a particular point be chosen as cne extremity of the chord
to be “fitted in,” there are two solutions. More difficult cases of “fitting
into” a circle a chord of given length are arrived at by adding some further
condition, e.g. (1) that the chord is to be parallel to a given straight line, or
(2) that the chord, produced if necessary, shall pass through a given point.
The former problem is solved by Pappus (111 p. 132); instead of drawing the
chord as a tangent to a circle concentric with the given circle and having as
radius a straight line the square on which is equal to the difference between
the squares on the radius of the given circle and on half the given length, he
merely draws the diameter of the circle which is parallel to the given direction,
measures from the centre along it in each direction a length equal to half the
given length, and then draws, on one side of the diameter, perpendiculars to it
through the two points so determined. ,

The second problem of drawing a chord of given length, being less than
the diameter of the circle, and passing through a given point, is more
important as having been one of the problems discussed by Apollonius in his
work entitled vevoes, now lost. Pappus states the problem thus (vi1. p. 670):
“A circle being given in position, to fit into it a straight line given in
magnitude and verging (vevovoar) towards a given (point).” To do this we
have only to place any chord Z& in the given
circle (with centre O) equal to the given length,
take Z the middle point of it, with O as centre and
OL as radius describe a circle, and lastly through
the given point C draw a tangent to this circle
meeting the given circle in 4, B. 4B is then one M
of fwo chords which can be drawn satisfying the ~
given conditions, if C is outside the inner circle; if A
C is o the inner circle, there is one solutidn only;
and, if C is within the inner circle, there is no
solution. Thus, if C is within the outer (given)
circle, besides the condition that the given length must not be greater than the
diameter of the circle, there is another necessary condition of the possibility
of a solution, viz. that the given length must not be Zss than double of the
straight line the square on which is equal to the difference between the squares
(1) on the radius of the given circle and (2) on the distance between its
centre and the given point.

K

PropdsITION 2.

In a given civcle Lo inscribe a triangle equiangular with o
grven triangle.

Let ABC be the given circle, and LDEF the given
triangle ;
thus it is required to inscribe in the circle AB8C a triangle
equiangular with the triangle DEF. '

Let G A be drawn touching the circle A5 Cat A 1. 16,Por.];

H. B IL 6
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on the straight line 4/, and at the point 4 on it, let the
angle /7AC be constructed equal to the angle DEF,

and on the straight line 4G, and at the point 4 on it, let
the angle GAZB be constructed equal to the angle DFZ;

[r. 23]
let BC be joined.

- Then, since a straight line A4/ touches the circle 48C,

and from the point of contact at 4 the straight line 4C is
drawn across in the circle,

therefore the angle ZAC is equal to the angle ABC in the
alternate segment of the circle. [t 32]

But the angle /. AC is equal to the angle DEF;
therefore the angle 4BC is also equal to the angle DEF.
For the same reason
the angle ACH is also equal to the angle DFE;
therefore the remaining angle BZAC is also equal to the

remaining angle ZDF. [L 32]
Therefore in the given circle there has been inscribed a
triangle equiangular with the given triangle. Q. E. F.

Here again, since any point on the circle may be taken as an angular
point of the triangle, there are an infinite number of solutions. Even when a
particular point has been chosen to form one angular point, the required
triangle may be constructed in six ways. For any one of the three angles
may be placed at the point; and, whichever is placed there, the positions of
the two others relatively to it may be interchanged. The sides of the triangle
will, in all the different solutions, be of the same length respectively; only
their relative positions will be different.

This problem can of course be reduced (as it was by Borelli) to 1. 34,
namely the problem of cutting off from a given circle a segment containing an
angle equal to a given angle. It can also be solved by the alternative method
applicable to 111 34 of drawing “angles at the centre” equal to double the
angles of the given triangle respectively ; and by this method we can easily
solve this problem, or 111, 34, with the further condition that one side of the
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required triangle, or the base of the required segment, respectively, shall be
parallel to a given straight line.

As a particular case, we can, by the method of this proposition, describe
an eguilateral triangle in any circle after we have first constructed any
equilateral triangle by the aid of 1. 1. The possibility of this is assumed in
1v. 16. It is of course equivalent to dividing the circumference of a circle
into #hree equal parts. As De Morgan says, the idea of dividing a revolution
into equal parts should be kept prominent in considering Book 1v.; this
aspect of the construction of regular polygons is obvious enough, and the
reason why the division of the circle into #4ree equal parts is not given by
Euclid is that it happens to be as easy to divide the circle into three parts
which are in the ratio of the angles of any triangle as to divide it into three
equal parts.

ProrosiTiON 3.

About a given civele to civcumscribe a triangle equiangular
with a given triangle.
Let ABC be the given circle, and DEF the given
triangle ;
sthus it is required to circumscribe about the circle 48C a
triangle equiangular with the triangle DEZ.

L (o] N

Let £F be produced in both directions to the points
G, H,
let the centre X of the circle ABC be taken [mn. 1], and let
10 the straight line A& be drawn across at random ;
on the straight line A3, and at the point K on it, let the
angle BK A be constructed equal to the angle DEG,

and the angle BXC equal to the angle DF /T ; [L 23]
and through the points 4, 5, Clet LAM, MBN, NCL be
rs drawn touching the circle 45C. [111. 16, Por.]

Now, since LM, MN, NL touch the circle ABC at the
points A, B, C,
and XA, KB, KC have been joined from the centre K to
the points 4, B, C,
6—2
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20 therefore the angles at the points A4, 5, C are right.  [ut 18]

And, since the four angles of the quadrilateral AMBK
are equal to four right angles, inasmuch as AMBK is in fact
divisible into two triangles,

and the angles KXAM, KBM are right,

25 therefore the remaining angles AK/5, AMDPB are equal to two
right angles.

But the angles DEG, DEF are also equal to two right
angles; [t 13]
therefore the angles AKB, AMPEB are equal to the angles

30 DEG, DEF,
of which the angle AKX is equal to the angle DEG;

therefore the angle 4/M B which remains is equal to the
angle D £/ which remains.

Similarly it can be proved that the angle ZNJZ is also
35 equal to the angle DFE;

therefore the remaining angle ML/ is equal to the
angle EDF. {1 32]
Therefore the triangle LMN is equiangular with the

triangle DZZF; and it has been circumscribed about the
4o circle ABC.

Therefore about a given circle there has been circum-
scribed a triangle equiangular with the given triangle.
Q. E. T.

10. at random, literally ‘¢ as it may chance,” ds #rvxer. The same expression is used
in 111. 1 and commonly. . )
22, 1is in fact divisible, kai Siatpelrar, literally “ is actually divided.”

The remarks as to the number of ways in which Prop. 2 can be solved
apply here also.

Euclid leaves us to satisfy ourselves that the three tangents 707/ meet and
form a triangle. This follows easily from the fact that each of the angles
AKB, BKC, CKA4 is less than two right angles. The first two are so by
construction, being the supplements of two angles of the given triangle re-
spectively, and, since all three angles round X are together equal to four
right angles, it follows that the third, the angle 4XC, is equal to the sum
of the two angles %, F of the triangle, i.e. to the supplement of the angle D,
and is therefore less than two right angles.

Peletarius and Borelli gave an alternative solution, first inscribing a triangle
equiangular to the given triangle, by 1v. 2, and then drawing tangents to the
circle parallel to the sides of the inscribed triangle respectively. This method
will of course give two solutions, since two tangents can be drawn parallel to
each of the sides of the inscribed triangle.

If the three pairs of paralle] tangents be drawn and produced far enough,
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they will form ejg/is triangles, two of which are the triangles circumscribed to
the circle in the manner required in the proposition. The other six triangles
are so related to the circle that the circle touches two of the sides in each
produced, i.e. the circle is an escribed circle to each of the six triangles.

ProrosiTiON 4.

In a given triangle to inscribe a civcle.

Let ABC be the given triangle ;
thus it is required to inscribe a circle in the triangle 4BC.
Let the angles ARC, ACB
s be bisected by the straight lines
BD, CD [1 g], and let these meet
one another at the point D ;
from D let DE, DF, DG be
drawn perpendicular tothestraight
wlines AB, BC, CA.
Now, since the angle 48D
is equal to the angle CBD,
and the right angle BZD is also equal to the right angle
BFD,
15s EBD, FBD are two triangles having two angles equal to two
angles and one side equal to one side, namely that subtending
one of the equal angles, which is B0 common to the
triangles ;
therefore they will also have the remaining sides equal to
20 the remaining sides; (L 26]
therefore £ is equal to DZF.
For the same reason

DG is also equal to DF.
Therefore the three straight lines DE, DF, DG are equal

25 to one another ;
therefore the circle described with centre 2 and distance
one of the straight lines DE, DF, DG will pass also
through the remaining points, and will touch the straight
lines A5, BC, CA, because the angles at the points £, /, &
30 are right.
For, if it cuts them, the straight line drawn at right angles
to the diameter of the circle from its extremity will be found
to fall within the circle: which was proved absurd ; [111. 16]
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therefore the circle described with centre /[ and distance
one of the straight lines DZ, DF, DG will not cut the
straight lines A58, BC, CA;

therefore it will touch them, and will be the circle inscribed
in the triangle 45C. [1v. Def. 5]

Let it be inscribed, as FGE.
Therefore in the given triangle A5C the circle £ZFG has
been inscribed.
Q. E. F.

26, 34. and distance one of the {straight lines D)E, (D)F, (D)G. The words
and letters here shown in brackets are put in to fll out the rather careless language of the
Greek. Here and in several other places in Book 1v. Euclid says literally ‘“and with distance
one of the (points) Z, 7, G (xal Scacriuare évl &y B, Z, Hjand the like. In onecase{iv.13)
he actually has ““ with distance one of the points G, H, K, L, M’ (dworiuare évl 78 H, O,
K, A, M oqpuelwy). Heiberg notes“ Graecam locutionem satis miram et negligentem,” but,
in view of its frequent occurrence in good Mss., does not venture to correct it.

Euclid does not think it necessary to prove that B.D, CD) wi// meet ; this
is indeed obvious, for the angles DEC, DCB are together half of the angles
ABC, ACB, which themselves are together less than two right angles, and
therefore the two bisectors of the angles 5, C must meet, by Post. 5.

It follows from the proof of this proposition that, if the bisectors of two
angles B, C of a triangle meet in D, the line joining D to A also bisects the
third angle 4, or the bisectors of the three angles of a triangle meet in
a point.

pIt will be observed that Euclid uses the zudirect form of proof when
showing that the circle touches the three sides of the triangle. Simson proves
it directly, and points out that Euclid does the same in 11 17, 33 and 37,
whereas in 1v. 8 and 13 as well as here he uses the /udirect form. The
difference is unimportant, being one of form and not of substance; the
indirect proof refers back to 1L 16, whereas the direct refers back to the
Porism to that proposition.

We may state this problem in the more general form : 7o descride a circle
touching three given straight lines which do not all meet in one point, and of
which not more than two are parallel.

In the case (1) where two of the straight lines are parallel and the third
cuts them, two pairs of interior angles are formed, one on each side of the
third straight line. If we bisect each of the interior angles on one side, the
bisectors will meet in a point, and this point will be the centre of a circle
which can be drawn touching each of the three straight lines, its radius being
the perpendicular from the point on any one of the three. Since the alfernate
angles are equal, two equal circles can be drawn in this manner satisfying the
given condition.

In the case (2) where the three straight lines form a triangle, suppose each
straight line produced indefinitely. Then each straight line will make two
pairs of interior angles with the other two, one pair forming two angles of the
triangle, and the other pair being their supplements. By bisecting each angle
of either pair we obtain, in the manner of the proposition, two circles
satisfying the conditions, one of them being the inscribed circle of the triangle
and the other being a circle eserdbed to it, 1.e. touching one side and the other
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two sides produced. Next, taking the pairs of interior angles formed by a
second side with the other two produced indefinitely, we get two circles
satisfying the conditions, one of which is the same inscribed circle that we had
before, while the other is a second escribed circle. Similarly with the third side.
Hence we have the inscribed circle, and three escribed circles (one opposite
each angle of the triangle), i.e. four circles in all, satisfying the conditions of
the problem.

It may perhaps not be inappropriate to give at this point Heron’s elegant
proof of the formula for the area of a triangle in terms of the sides, which we
usually write thus:

A=Js(s—a)(s=8)(s—9)

although it requires the theory of proportions and uses some ungeometrical
expressions, e.g. the product of two areas and the “side” of such a product,
where of course the areas are so many square units of length. The proof is
given in the Metrica, 1. 8, and in the Dioptra, 30 (Heron, Vol. 11, Teubner,
1903, pp- 20—24 and pp. 280—4, or Heron, ed. Hultsch, pp. 235—7).
Suppose the sides of the triangle 48 C to be given in length.
Inscribe the circle D£F, and let & be its centre.

A

Join 4G, BG, CG, DG, EG, FG.

Then BC.EG=2.4BGC,
Cd. FG=2.0ACG,
AB.DG=2.45 ABG.

Therefore, by addition,
© g p.EG=12.0A48C,

where p is the perimeter.
Produce CB to A, so that BH=AD.
Then, since 4D =AF, DB = BE, FC=CE,
CH=1%p.
Hence CH.EG=AABC.



88 BOOK 1V [1v. 4, 5

But CH.EG is the “side” of the product CH?®. EG? that is

JCH EG®;

therefore (AABCY= CH®*. EG*

Draw G at right angles to C&, and BL at right angles to CB, mecting
at Z. Join CZ.

Then, since each of the angles CGZ, CBL is right, CGBL is a quadri-
lateral in a circle.

Therefore the angles CG B, CLAB are equal to two right angles.

Now the angles CG.B, AGD are equal to two right angles, since 4G, BG,
CG bisect the angles at G, and the angles CGB, AGD are equal to the
angles AGC, DG B, while the sum of all four is equal to four right angles.

Therefore the angles AGD, CLB are equal.

So are the right angles 4.DG, CBL.

Therefore the triangles 4 GD, CLB are similar.

Hence BC:BL=AD:DG
= BH: EG,
and, alternately, CB:BH=BL:EG
= BK:KE,
whence, componendo, CH:HB = BE:EX.
It follows that CH?*: CH.HB=BE.EC:CE.EK
=BE.EC: EG™
Therefore

(A ABCY=CH*. EG*= CH.HB . CE.EB
=32 (32~ BC) (32— 4B) (kp—- AC).

ProrosiTIiON 5.

About a given triangle to circumscribe a circle.

Let ABC be the given triangle ;
thus it is required to circumscribe a circle about the given

triangle 4 BC.
N ]

Let the straight lines 48, AC be bisected at the points
D, E [1. 10], and from the points D, £ let DF, EF be drawn
at right angles to A8, AC:

they will then meet within the triangle 4BC, or on the
straight line BC, or outside BC,
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First let them meet within at /7, and let #B, #C, F.A be

joined. '
Then, since 4D is equal to DB,

and D/ is common and at right angles,

therefore the base 47 is equal to the base #5. 1. 4]

Similarly we can prove that
CF'is also equal to AF;
so that ~B is also equal to #C; :

therefore the three straight lines 74, B, FC are equal
to one another.

Therefore the circle described with centre # and distance
one of the straight lines /4, /75, FC will pass also through
the remaining points, and the circle will have been circum-
scribed about the triangle 4 5C.

Let it be circumscribed, as 4A5C.

Next, let DF, EF meet on the straight line BC at £
as is the case in the second figure ; and let 4/ be joined.

Then, similarly, we shall prove that the point /& is the
centre of the circle circumscribed about the triangle A8C.

Again, let DF, EF meet outside the triangle A8C at F,
as is the case in the third figure, and let 47, BF, CF be
joined.

-Then again,since AD is equal to D5,
and DF is common and at right angles,
therefore the base A4/ is equal to the base BF. [ 4]

Similarly we can prove that

CF is also equal to AF;
so that BF is also equal to #C;
therefore the circle described with centre 7 and distance one
of the straight lines 74, /B, FC will pass also through
the remaining points, and will have been circumscribed about
the triangle 4A5C.

Therefore about the given triangle a circle has been
circumscribed.

Q. E. F.

And it is manifest that, when the centre of the circle falls
within the triangle, the angle £AC, being in a segment
greater than the semicircle, is less than a right angle ;
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when the centre falls on the straight line BC, the angle BAC,
being in a semicircle, is right;

and when the centre of the circle falls outside the triangle,
the angle BA4C, being in a segment less than the semicircle,
is greater than a right angle. (11 31}

Simson points out that Euclid does not prove that DF, EF will meet, and
he inserts in the text the following argument to supply the omission.

“ DF, EF produced meet one another. For, if they do not meet, they
are parallel, wherefore 45, AC, which are at right angles to them, are
parallel [or, he should have added, in a straight line] : which is absurd.”

This assumes, of course, that straight lines which are at right angles to two
parallels are themselves parallel ; but this is an obvious deduction from 1. 28.

On the assumption that DA, £F will meet Todhunter has this note: “It
has been proposed to show this in the following way: join DE; then the
angles £DF and DEF are together less than the angles A.DF and 4 E7, that
is, they are together less than two right angles; and therefore DF and £F
will meet, by Axiom 12 [Post. 5]. This assumes that 4DE and AED are
acute angles ; it may, however, be easily shown that DZ is parallel to BC, so
that the triangle 4DF is equiangular to the triangle 45C; and we must
therefore select the two sides 48 and AC such that A5C and ACB may be
acute angles.”

This 1s, however, unsatisfactory. Euclid makes no such selection in 111. ¢
and 1L 10, where the same assumption is tacitly made; and it is unnecessary,
because it is easy to prove that the straight lines DF, £F meet in a// cases,
by considering the different possibilities separately and drawing a separate
figure for each case.

Simson thinks that Euclid’s demonstration had been spoiled by some
unskilful hand both because of the omission to prove that the perpendicular
bisectors meet, and because “without any reason he divides the proposition
into three cases, whereas one and the same construction and demonstration
serves for them all, as Campanus has observed.” However, up to the usual
words mep e morfjoor there seems to be no doubt about the text. Heiberg
suggests that Euclid gave separately the case where /7 falls on B C because, in
that case, only 4. needs to be drawn and not BF, CF as well.

The addition, though given in Simson and the text-books as a “corollary,”
has no heading wdptopa in the best Mss. ; it is an explanation like that which
is contained in the penultimate paragraph of 111 25.

The Greek text has a further addition, which is rejected by Heiberg as not
genuine, “So that, further, when the given angle happens to be less than a
right angle, DF, EF will fall within the triangle, when it is right, on B, and,
when it is greater than a right angle, outside ZC': (being) what it was required
to do.” Simson had already observed that the text here is vitiated *“where
mention is made of a given angle, though there neither is, nor can be, any-
thing in the proposition relating to a given angle.”
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ProrosiTion 6.

In a given circle to inscribe a sguare,

Let ABCD be the given circle ;
thus it is required to inscribe a square in the circle 4BCD.

Let two diameters 4C, BD of the
circle ABCD be drawn at right angles A
to one another, and let 48, BC, CD
DA be joined.

Then, since BZ is equal to £D, for [
£ is the centre, B 0

and £A is common and at right angles,

therefore the base 425 is equal to the
base AD. [1. 4] c

For the same reason

each of the straight lines 5C, CD is also equal to each of
the straight lines . AB, AD;

therefore the quadrilateral 4BCD is equilateral.
I say next that it is also right-angled.
For, since the straight line 22 is a diameter of the circle
ABCD,
therefore BAD is a semicircle ;
therefore the angle 24D is right. [ 31]
For the same reason
each of the angles ABC, BCD, CDA is also right ;
therefore the quadrilateral AB5CD is right-angled.
But it was also proved equilateral ;
therefore it is a square; [1. Def. 22]
and it has been inscribed in the circle 4BCD.
Therefore in the given circle the square A4 BCD has been
inscribed.

Q. E. F.

Euclid here proceeds to consider problems corresponding to those in
Props. 2—5 with reference to figures of four or more sides, but with the
difference that, whereas he dealt with triangles of any form, he confines
himself henceforth to regular figures. It happened to be as easy to divide a
circle into #4ree parts which are in the ratio of the angles, or of the supplements
of the angles, of a triangle as into three egzal/ parts.  But, when 1t is required to
inscribe in a circle a figure equiangular to a given guadrilateral, this can only be
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done provided that the quadrilateral has either pair of opposite angles equal
to two right angles. Moreover, in this case, the problem may be solved in the
same way as that of 1v. 2, i.e. by simply inscribing a triangle equiangular to one
of the triangles into which the quadrilateral is divided by either diagonal, and
then drawing on the side corresponding to the diagonal as base another
triangle equiangular to the other triangle contained in the quadrilateral. But
this is not the onfy solution; there are an Iinfinite
number of other solutions in which the inscribed
quadrilateral will, unlike that found by this particular
method, not be of the same form as the given quadri-
lateral. For suppose 4BCD to be the quadrilateral
inscribed in the circle by the method of 1v. 2. Take
any point B on AB, join A8, and then make the
angle DAL (measured towards AC) equal to the
angle B4AB'. Join B'C, CD'. Then AB'CD is also
equiangular to the given quadrilateral, but not of the
same form. Hence the problem is indeterminate in the case of the general
quadrilateral. It is equally so if the given quadrilateral is a rectangle ; and it
is determinate only when the given quadrilateral 1s a sguare.

ProrosiTION 7.

About a grven civcle to circumscribe a square.

Let ABCD be the given circle ;

thus it is required to circumscribe a square about the circle
ABCD.

Let two diameters AC, BD of the
circle ABCD be drawn at right angles G A F

to one another, and through the points
A, B, C, D let FG, GH, HK, KF be
E

drawn touching the circle ABCD. B
[111. 16, Por.]
Then, since /G touches the circle
ABCD, ‘

and £A has been joined from the centre
£ to the point of contact at A4,

therefore the angles at A are right. [111. 18]
For the same reason
the angles at the points B, C, D are also right.
Now, since the angle 4 £2B is right,
and the angle £8G is also right,
therefore G/7 is parallel to AC. [1. 28]
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For the same reason

AC is also parallel to FX,
so that G /7 is also parallel to 7K. (1 39]
Similarly we can prove that

each of the straight lines GF, AKX is parallel to BED.
Therefore GK, GC, AK, FB, BK are parallelograms;
therefore G/ is equal to 7K, and GH to FK. [r 34]
And, since 4C is equal to 5D,
and AC is also equal to each of the straight lines GH, FXK,
while £D is equal to each of the straight lines GF, 7K,

L 34
therefore the quadrilateral FGHK is equilateral. o

I say next that it is also right-angled.
For, since GBEA is a parallelogram,
and the angle 4 Z27 is right,
therefore the angle 4 G2 is also right. [r 34]
Similarly we can prove that
the angles at /A, X, /" are also right.
Therefore FGHK is right-angled.
But it was also proved equilateral ;
therefore it is a square ;
and it has been circumscribed about the circle A BCD.

Therefore about the given circle a square has ‘been
circumscribed.
Q. E. F.

It is just as easy to describe about a given circle a polygon equiangular to
any given polygon as it is to describe a square about a given circle. We have
only to use the mcthod of 1v. 3, i.e. to take any radius of the circle; to
measure round the centre successive angles in one and the same direction
equal to the supplements of the successive angles of the given polygon and,
lastly, to draw tangents to the circle at the extremities of the several radii so
determined ; but again the polygon would in general not be of the same form
as the given one ; it would only be so if the given polygon happeried to be
such that a circle could be inscribed in it. To take the case of a quadrilateral
only: it is easy to prove that, if a quadrilateral be described about a circle,
the sum of one pair of opposite sides must be equal to the sum of the other
pair. It may be proved, conversely, that, if a quadrilateral has the sums of the
pairs of opposite sides equal, a circle can be inscribed in it. If then a given
quadrilateral has the sums of the pairs of opposite sides equal, a quadrilateral
can be described about any given circle not only equiangular with it but
having the same fo7m or, in the words of Book vi., similar to it.
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ProrosITION 8.

In a given square to inscribe a civcle.

Let ABCD be the given square ;
thus it is required to inscribe a circle in the given square

ABCD.

Let the straight lines 4D, AR be A 2 P

bisected at the points £, respect[ivel%r \
I 10),

through £ let £/A be drawn parallel p G/

to either 48 or CD, and through \

£ let FK be drawn parallel to either
AD or BC; [r 31]
therefore each of the figures 4 X, KB,
AH, HD, AG, GC, BG, GD is a parallelogram,

and their opposite sides are evidently equal. [r 34]

Now, since 4D is equal to A5,
and AE is half of AD, and AF half of AB,

therefore A £ is equal to AF,
so that the opposite sides are also equal ;
therefore /G is equal to GE.

Similarly we can prove that each of the straight lines G4,
G K is equal to each of the straight lines G, G £ ;

therefore the four straight lines GZ, GF, G/, GK are
equal to one another.

Therefore the circle described with centre G and distance
one of the straight lines GZ, GF, GH, GK will pass also
through the remaining points.

And it will touch the straight lines A8, BC, CD, DA,
because the angles at £, 7, A, K are right.

For, if the circle cuts 4B, BC, CD, DA, the straight
line drawn at right angles to the diameter of the circle from
its extremity will fall within the circle: which was proved
absurd ; (11 16]

therefore the circle described with centre & and distance
one of the straight lines GZ, GF, GH, GK will not cut
the straight lines 48, BC, CD, DA.
Therefore it will touch them, and will have been inscribed
in the square 4BCD.
Therefore in the given square a circle has been inscribed.
Q. E. F.

B H C
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As was remarked in the last note, a circle can be inscribed in any
quadrilateral which has the sum of one pair of opposite sides equal to the sum

of the other pair. In particular, it follows that a circle can be inscribed in a
square or a rhombus, but not in a rectangle or a rhomboid.

ProrosiTion g,

About a given square to circumscribe a civcle.
Let ABCD be the given square ;

thus it is required to circumscribe a circle about the square
ABCD. :

For let AC, BD be joined, and let them A
cut one another at £,

Then, since DA is equal to 4B, /
and A4 C is common, B D
therefore the two sides DA, AC are equal
to the two sides B4, AC;
and the base DC is equal to the base 5C; ¢

therefore the angle DAC is equal to
the angle BAC. [1. 8]

Therefore the angle DA Z is bisected by AC.

Similarly we can prove that each of the angles ABC,
BCD, CDA is bisected by the straight lines AC, DB.

Now, since the angle D45 is equal to the angle 45C,
and the angle £A4 75 is half the angle DA 5,
and the angle £Z5 A4 half the angle 458C,
therefore the angle ZA425 is also equal to the angle £5.4 ;
so that the side £A4 is also equal to £B5. 1. 6]

Similarly we can prove that each of the straight lines
EA, EPB is equal to each of the straight lines £C, £D.

Therefore the four straight lines ZA4, £B, EC, ED are
equal to one another.

Therefore the circle described with centre £ and distance
one of the straight lines £4, £B, EC, ED will pass also
through the remaining points ;
and it will have been circumscribed about the square A5CD.

Let it be circumscribed, as A5CD.

Therefore about the given square a circle has been

circumscribed.
Q. E. F.
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ProposITION 10.

To construct an isosceles triangle having eack of the angles
at the base double of the remaining one.

Let any straight line 4.5 be set out, and let it be cut at
the point C so that the rectangle
contained by A28, BC is equal to
the square on CA; [1. 11]

with centre 4 and distance A8 let \
the circle BDE be described, D
and let there be fitted in the circle )
BDE the straight line BD equal to
the straight line 4C which is not
greater than the diameter of the
circle BDE. [iv. 1]

Let AD, DC be joined, and let
the circle ACD be circumscribed about the triangle 4CD.

] . [1v. 5]
Then, since the rectangle A8, BCis equal to the square
on AC, ‘

and AC is equal to 5D,

therefore the rectangle 45, BC is equal to the square on BD.
And, since a point 5 has been taken outside the circle

ACD,

and from 5 the two straight lines B4, BD have fallen on

the circle ACD, and one of them cuts it, while the other falls

on it,

and the rectangle 48, BC is equal to the square on 5D,
therefore B0 touches the circle ACD. [un 37]

Since, then, B0 touches it, and DC is drawn across
from the point of contact at D,

therefore the angle Z0C is equal to the angle DAC in the
alternate segment of the circle. [ 32]

Since, then, the angle £DC is equal to the angle DAC,
let the angle €A be added to each;

therefore the whole angle £D.4 is equal to the two angles
CDA, DAC.
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‘But the exterior angle BCD is equal to the angles CDA,
DAC [1. 32]

therefore the angle DA is also equal to the angle BCD.

But the angle ZD.A4 is equal to the angle CBD, since the
side A0 is also equal to 45 ; [r 5]

so that the angle DB A is also equal to the angle BCD.
Therefore the three angles DA, DBA, BCD are equal

to one another.
And, since the angle DABC is equal to the angle BCD,
the side £ is also equal to the side DC. [1. 6]
But BD is by hypothesis equal to CA ;
therefore C4 is also equal to CD,

so that the angle CD A4 is also equal to the angle DAC;

(& 5]
therefore the angles CD A4, D AC are double of the angle DAC.

But the angle ZCD is equal to the angles CDA, DAC;
therefore the angle ZCJD is also double of the angle CAD.

" But the angle BCD is equal to each of the angles BDA,
DBA;

therefore each of the angles DA, DABA is also double of
the angle DAB.

Therefore the isosceles triangle 4 50 has been constructed
having each of the angles at the base DB double of the
remaining one.

Q. E. F.

There is every reason to conclude that the connexion of the triangle
constructed in this proposition with the regular pentagon, and the construction
of the triangle itself, were the discovery of the Pythagoreans. In the first
place the Scholium 1v. No. z (Heiberg, Vol. v. p. 273) says “this Book is the
discovery of the Pythagoreans.” Secondly, the summary in Proclus (p. 65, 20)
says that Pythagoras discovered ‘“the construction of the cosmic figures,”
by which must be understood the five regular solids. This is confirmed by
the fragment of Philolaus (Boeckh, p. r6o sqq.) which speaks of the “five
bodies in the sphere,” and by the statement of Iamblichus (it Pyth. c. 18,
s. 88) that Hippasus, a Pythagorean, was said to have been drowned for the
impiety of claiming the credit of inscribing in a sphere the figure made of the
twelve pentagons, whereas the whole was HIS discovery (éxelvou Tod dv8pos);
“for it is thus they speak of Pythagoras, and they do not call him by his
name.” Cantor has (I,, pp. 176 sqq.) collected notices which help us to form
an idea how the discovery of the Euclidean construction for a regular
pentagon may have been arrived at by the Pythagoreans.

Plato puts into the mouth of Timaeus a description of the formation from

H. E. 1L 7
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right-angled triangles of the figures which are the faces of the first four regular
solids. The face of the cube is the square which is formed from isosceles
right-angled triangles by placing four of these triangles contiguously so that
the four right angles are in contact at the centre. The
equilateral triangle, however, which is the form of the faces of
the tetrahedron, the octahedron and the icosahedron, cannot
be constructed from isosceles right-angled triangles, but is
constructed from a particular scalene right-angled triangle
which Timaeus (54 A, B) regards as the most beautiful of all
scalene right-angled triangles, namely that in which the square on one of the
sides about the right angle is three times the square on the other. This is, of
course, the triangle forming half of an equilateral triangle bisected by the
perpendicular from one angular point on the opposite side. The Platonic
Timaeus does not construct his equilateral triangle from two such triangles
but from six, by placing the latter contiguously round a '

point so that the hypotenuses and the smaller of the sides

about the right angles respectively adjoin, and all of them

meet at the common centre, as shown in the figure

(Timaeus, 54 D, £.). The probability that this exposition

was Pythagorean is confirmed by the independent testimony

of Proclus (pp. 304—5), who attributes to the Pythagoreans

the theorem that six equilateral triangles, or three "hexagons, or four squares,
placed contiguously with one angular point of each at a common point, will
just fill up the four right angles round that point, and that no other regular
polygons in any numbers have this property.

How then would it be proposed to split up into triangles, or to make up
out of triangles, the face of the remaining solid, the dodecahedron? It would
easily be seen that the pentagon could not be constructed by means of the
two right-angled triangles which were used for constructing the square and the
equilateral triangle respectively. But attempts would naturally be made to
split up the pentagon into elementary triangles, and traces of such attempts
are actually forthcoming. Plutarch has in two passages spoken of the division
of the faces of the dodecahedron into triangles, remarking in one place
(Quaest. Platon. v. 1) that each of the twelve faces is made up of 30 elemen-

tary scalene triangles, so that, taken together, they give 360 such triangles,
and in another (De defectu oraculorum, c. 33) that the elementary triangle of
the dodecahedron must be different from that of the tetrahedron, octahedron
and icosahedron. Another writer of the 2nd cent., Alcinous, has, in his
1atroduction to the study of Plato (De doctrina Platonss, c. 11), spoken
similarly of the 360 elements which are produced when every one of the
pentagons is divided into g isosceles triangles, and each of the latter into
6 scalene triangles. Now, if we proceed to draw lines in a pentagon separating
it into this number of small triangles as shown in the above figure, the figure
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which stands out most prominently in the mass of lines is the “star-pentagon,”
as drawn separately, which then (if the consecutive corners be joined) suggests
the drawing, as part of a pentagon, of a triangle of a definite character. Now
we are expressly told by Lucian and the scholiast to the Clowds of Aristophanes
(see Bretschneider, pp. 85—86) that the triple interwoven triangle, the penta-
gram (v6 7perhodv Tpiywvoy, 10 & dAjAwy, 16 Tevrdypappor), was used by the
Pythagoreans as a symbol of recognition between the members of the same
school (oupBAe mpds Tods bpodifovs éxpdvro), and was called by them Health.
There seems to be therefore no room for doubt that the construction of a
pentagon by means of an isosceles triangle having each of its base angles
double of the vertical angle was due to the Pythagoreans.

The construction of this triangle depends upon 1L 11, or the problem of
dividing a straight line so that the rectangle contained by the whole and one
of the parts is equal to the square on the other part. This problem of course
appears again in Eucl. v 30 as the problem of cutting a given straight line 7
extreme and mean ratio, ie. the problem of the goiden section, which is no
doubt “the section” referred to in the passage of the summary given by
Proclus (p. 67, 6) which says that Eudoxus “greatly added to the number
of the theorems which Plato originated regarding the section.” This idea that
Plato began the study of the “golden section” as a subject in itself is not in
the least inconsistent with the supposition that the problem of Eucl. 1. 11 was
solved by the Pythagoreans. The very fact that Euclid places it among other
propositions which are clearly Pythagorean in origin is significant, as is also
the fact that its solution is effected by “applying to a straight line a rectangle
equal to a given square and exceeding by a square,” while Proclus says plainly
(p- 419, 15) that, according to Eudemus, ‘“the application of areas, their
exceeding and their falling short, are ancient and discoveries of the Muse of
the Pythagoreans.”

We may suppose the construction of 1v. 1o to have been arrived at by
analysis somewhat as follows (Todhunter’s Euclid, p. 325)-

Suppose the problem solved, ie. let 48D be an isosceles triangle having
each of its base angles double of the vertical angle.

Bisect the angle 4D 28 by the straight line DC meeting 45 in C. [1 g]

Therefore the angle BDC is equal to the angle BAD; and the angle
CDA is also equal to the angle 540,

so that 2C is equal to CA.
Again, since, in the triangles BCD, 504,
the angle BLC is equal to the angle 54D,
and the angle 5 is common,
the third angle ZCD is equal to the third angle £204, and therefore to
the angle DBC.

Therefore DC is equal to DB,
Now, if a circle be described about the triangle 4CD [iv. 5], since the
angle BDC is equal to the angle in the segment C4.D,

B.D must touch the circle [by the converse of 1. 32 easily proved from it
by reductio ad absurdum).

Hence [u1 36] the square on B2 and therefore the square on €2, or
AC, is equal to the rectangle 4B, BC.

Thus the problem is reduced to that of cutting 45 at C so that the
rectangle AB, BC is equal to the square on 4C. [r1. 11]

7—2
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When this is done, we have only to draw a circle with centre 4 and radius
AB and place in it a chord A0 equal in length to 4C. [1v. 1]

Since each of the angles 480D, ADF is double of the angle BAD, the
latter is equal to one-fifth of the sum of all three, i.e. is one-fifth of two right
angles, or two-fifths of a right angle, and each of the base angles is four-fifths
of a right angle.

If we bisect the angle BAD, we obtain an angle equal to one-fifth of a
right angle, so that the proposition enables us o drvide a 7ight angle into five
equal pares.

It will be observed that B0 is the side of a regular decagon inscribed in
the larger circle.

Proclus, as remarked above (Vol. 1. p. 130), gives 1v. 10 as an instance in
which two of the six formal divisions of a proposition, the sef#fng-ou? and the
“definition,” are left out, and explains that they are unnecessary because
there is no dafum in the enunciation. This is however no more than formally
true, because Euclid does begin his proposition by seffing out “any straight
line 4.B,” and he constructs an isosceles triangle having 4.8 for one of its
equal sides, i.e. he does practically imply a datum in the enunciation, and a
corresponding seffing-out and ““ definition” in the proposition itself.

PROPOSITION I1I.

In a grven circle to inscribe an equilateral and eguiangular
pentagon.

Let ABCDE be the given circle ;

thus it is required to inscribe in the circle ABCDE an equi-
lateral and equiangular pentagon.

Let the isosceles triangle FGH

A F
be set out having each of the angles
at G, A double of the angle at /; 8 E A
[1v. 10]
let there be inscribed in the circle G H
ABCDE the triangle 4CD equi- c °
angular with the triangle /G /A, so
that the angle C 4D is equal to the angle at / and the angles
at G, A respectively equal to the angles ACD, CDA ; [w. 2]

therefore each of the angles 4CD, CDA is also double of the
angle CAD.

Now let the angles ACD, CDA be bisected respectively
by the straight lines CZ, DB [1. 9], and let AB, BC, DE, EA
be joined.

Then, since each of the angles 4CD, CDA is double of
the angle CAD,

and they have been bisected by the straight lines C&, D25,
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therefore the five angles DAC, ACE, ECD, CDB, BDA
are equal to one another.

But equal angles stand on equal circumferences ; (1L 26]

therefore the five circumferences 45, BC, CD, DE, EA are
equal to one another,

. But equal circumferences are subtended by equal straight
lines ; [z 29]

therefore the five straight lines 42, BC, CD, DE, EA are
equal to one another ;

therefore the pentagon ABCDE is equilateral.

I say next that it is also equiangular.
For, since the circumference A58 is equal to the circum-

ference DE, let ZCD be added to each ;

therefore the whole circumference 4BCD is equal to the
whole circumference ZDCAB.

And the angle A£D stands on the circumference 4 BCD,
and the angle A4 E on the circumference £DCHB ;

therefore the angle ZAF is also equal to the angle 4£D.

(1, 27]
For the same reason

each of the angles ABC, BCD, CDE is also equal to each
of the angles AL, AED

therefore the pentagon 4ABCDE is equiangular.
But it was also proved equilateral ;

therefore in the given circle an equilateral and equi-
angular pentagon has been inscribed.
Q. E. F.

De Morgan remarks that ‘“the method of v. 11 is not so natural as
making a direct use of the angle obtained in the last.” On the other hand,
if we look at the figure and notice that it shows the whole of the penfagram-
star except one line (that connecting B and ), I think we shall conclude
that the method is nearer to that used by the Pythagoreans, and therefore of
much more historical interest.

Another method would of course be to use 1v. 10 to describe a decagon in
the circle, and then to join any vertex to the next alternate one, the latter to
the next alternate one, and so on,
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Mr H. M. Taylor gives “a complete geometrical construction for in-
scribing a regular decagon or pentagon in a given circle,” as follows.

“Find O the centre.

Draw two diameters 40C, BOD at right 8
angles to one another.

Bisect OD in E.

Draw AZ and cut off £F equal to OF.

Place round the circle ten chords equal
to A

These chords will be the sides of a regular
decagon. Draw the chords joining five alternate
vertices of the decagon; they will be the sides
of a regular pentagon.”

The construction is of course only a com-
bination of those in 1. 11 and 1v. 1; and the
proof would have to follow that in 1v. 10.

ProrosiTiON 12.

About a given civcle lo civcumscribe an equilateval and
equiangular pentagon.

Let ABCDE be the given circle ;

thus it is required to circumscribe an equilateral and equi-
angular pentagon about the circle

ABCDE.

Let 4, B, C, D, E be conceived to
be the angular points of the inscribed
pentagon, so that the circumferences
AB, BC, CD, DE, EA are equal ;

[v. 11]
through 4, B, C, D, E let GH, HK,
KL, LM, MG be drawn touching the
circle ; [u1. 16, Por.]
let the centre / of the circle ABCDE be taken [un 1], and
let 7B, FK, FC, FL, FD be joined.

ghen,since the straight line KZ touches the circle A BCDE
at C,

and ZC has been joined from the centre / to the point of
contact at C,

therefore /C is perpendicular to KL ; [t 18]
therefore each of the angles at C is right.

For the same reason

the angles at the points B, D are also right.
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And, since the angle #CK is right,

therefore the square on 7K is equal to the squares on #C, CX.
For the same reason [1. 47]
the square on /X is also equal to the squares on 7B, BK ;

so that the squares on FC, CK are equal to the squares
on R, BK,

of which the square on #C is equal to the square on 75 ;

therefore the square on CA which remains is equal to the
square on 5K.

Therefore BK is equal to CK.
And, since FB is equal to FC,
and ~K common,

the two sides BF, K are equal to the two sides CF, FK ;
and the base AKX equal to the base CKX;

therefore the angle 57K is equal to the angle KFC, [1 8]
and the angle ZK 7 to the angle FKC.
Therefore the angle 5/C is double of the angle AFC,
and the angle ZKC of the angle FKC.
For the same reason
the angle C/ZD is also double of the angle CFLZ,
and the angle DLC of the angle FLZC.
Now, since the circumference 5C is equal to C2,
the angle B#C is also equal to the angle C#D. [1mn. 27]
And the angle BFC is double of the angle KX7C, and the
angle DFC of the angle LFC;
therefore the angle X/C is also equal to the angle LZC.
But the angle /CK is also equal to the angle #CL ;

therefore FKC, FLC are two triangles having two angles
equal to two angles and one side equal to one side, namely
FC which is common to them;
therefore they will also have the remaining sides equal to the
remaining sides, and the remaining angle to the remaining
angle ; (1. 26]
therefore the straight line AC is equal to CZ,
and the angle 7AC to the angle FLC.
And, since AC is equal to CL,
therefore KL is double of KC.
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For the same reason it can be proved that
HK is also double of 5K

And BK is equal to XC';

therefore A K is also equal to KL.

Similarly each of the straight lines ZG, GM, ML can
also be proved equal to each of the straight lines 7K, KL ;

therefore the pentagon GH KL M is equilateral.

I say next that it is also equiangular.

For, since the angle 7K C is equal to the angle FZC,
and the angle /KL was proved double of the angle FX'C,

and the angle K'Z A/ double of the angle #LC,

therefore the angle /KL is also equal to the angle XZ M.

Similarly each of the angles KH G, HGM, GML can also
be proved equal to each of the angles 7KL, KLM ;
therefore the five angles GHK, HKL, KLM, LMG, MGH
are equal to one another.

Therefore the pentagon GHKLM is equiangular.

And it was also proved equilateral; and it has been
circumscribed about the circle ABCDE.

Q E. F.

De Morgan remarks that 1v. 12, 13, 14 supply the place of the following :
Having given a regular polygon of any number of sides inscribed in a circle, to
descride the same about the circle; and, having given the polygon, to inscribe and
circumscribe a circle. For the method can be applied generally, as indeed
Euclid practically says in the Porism to 1v. 15 about the regular hexagon and
in the remark appended to 1v. 16 about the regular fifteen-angled figure.

The conclusion of this proposition, *therefore about the given circle an
equilateral and equiangular pentagon has been circumscribed,” is omitted in
the Mss.

ProrosiTioN 13.

In a given pentagon, whick is equilateral and equiangular,
to inscribe a circle.

Let ABCDE be the given equilateral and equiangular
pentagon ;

thus it is required to inscribe a circle in the pentagon
ABCDE.

For let the angles BCD, CDE be bisected by the
straight lines CF, DF respectively; and from the point 7, at
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which the straight lines CF, DF meet one another, let the
straight lines /B, F4, FE be joined.
Then, since BC is equal to CD,
and CF common,
the two sides BC, CF" are equal to the
two sides DC, CF';
and’ the angle BCF is equal to the
angle DCF;
therefore the base BF is equal
to the base DF,
and the triangle 5CF is equal to the
triangle DCF,
and the remaining angles will be equal to the remaining angles,
namely those which the equal sides subtend. [ 4]
Therefore the angle CB/F is equal to the angle CDF.
And, since the angle CO £ is double of the angle CDZ,
and the angle CDZ is equal to the angle A45C,
while the angle CDF is equal to the angle CBF;
therefore the angle CBA is also double of the angle C5F;
therefore the angle 4B F is equal to the angle F5C;
therefore the angle 4/5C has been bisected by the straight
line BF.
Similarly it can be proved that
the angles BAE, AED have also been bisected by the straight
lines /A4, FFE respectively.
Now let FG, FH, FK, FL, FM be drawn from the point
F perpendicular to the straight lines 4.8, BC, CD, DE, £A.
Then, since the angle Z/CF is equal to the angle KCF,
and the right angle F/ZC is also equal to the angle #XC,
FHC, FKC are two triangles having two angles equal to two
angles and one side equal to one side, namely #C which is
common to them and subtends one of the equal angles ;
therefore they will also have the remaining sides equal to the
remaining sides; [1. 26]
therefore the perpendicular #/ is equal to the perpendicular
FK.
Similarly it can be proved that
each of the straight lines 7L, FM, F G is also equal to each
of the straight lines FH, FK;
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therefore the five straight lines /G, FH, FK, 'L, FM are
equal to one another.

Therefore the circle described with centre / and distance
one of the straight lines /G, FH, FK, FL, FM will pass
also through the remaining points ;

and it will touch the straight lines A8, BC, CD, DE, EA,
because the angles at the points G, 7, K, L, M are right.

For, if it does not touch them, but cuts them,

it will result that the straight line drawn at right angles to
the diameter of the circle from its extremity falls within the
circle : which was proved absurd. [111. 16]

Thetrefore the circle described with centre /~ and distance
one of the straight lines G, FH, FK, FL, FM will not
cut the straight lines A8, BC, CD, DE, EA;

therefore it will touch them.

Let it be described, as GHKLM.
Therefore in the given pentagon, which is equilateral and
equiangular, a circle has been inscribed.

Q. E. F.

PROPOSITION 14.

About a given pentagon, which is equilateral and egui-
angular, to circumscribe a civcle.

Let ABCDE be the given pentagon, which is equilateral
and equiangular ;

thus it is required to circumscribe a circle
about the pentagon ABCDE.

Let the angles 5CD, CDE be bisected
by the straight lines CF, DF respectively,
and from the point 7, at which the straight
lines meet, let the straight lines 7B, FA4,
FE be joined to the points B, 4, E.

Then in manner similar to the pre-
ceding it can be proved that the angles
CBA, BAE, AED have also been bisected by the straight
lines 7B, F.A, FE respectively.
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Now, since the angle BCD is equal to the angle CDE,
and the angle #CD is half of the angle BCD,
and the angle COF half of the angle CDE,
therefore the angle #CD is also equal to the angle CDF,
so that the side 7C is also equal to the side /#D. [1. 6]
Similarly it can be proved that
each of the straight lines /B, F 4, FE is also equal to each
of the straight lines 7C, FD; :
therefore the five straight lines #4, FB, FC, FD, FE are
equal to one another.

Therefore the circle described with centre 7 and distance
one of the straight lines 74, FB, FC, FD, FE will pass
also through the remaining points, and will have been
circumscribed.

Let it be circumscribed, and let it be ABCDE.

Therefore about the given pentagon, which is equilateral
and equiangular, a circle has been circumscribed.

Q. E. F.

ProrosiTION 13.

In a given civcle to inscribe an equilateral and equiangular
hexagon.

Let ABCDEF be the given circle ;
thus it is required to inscribe an equilateral and equiangular
hexagon in the circle ABCDEF.

Let the diameter A0 of the circle
ABCDEF be drawn;
let the centre G of the circle be taken, and
with centre D and distance DG let the
circle £GCH be described ;
let £G, CG be joined and carried through
to the points B, £,
and let 4B, BC, CD, DE, EF, FA be
joined.

I say that the hexagon ABCDEF is

equilateral and equiangular.
For, since the point G is the centre of the circle A BCDEF,

GE is equal to GD.
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Again, since the point D is the centre of the circle GCH,
DE is equal to DG.
But G £ was proved equal to G ;
therefore G£ is also equal to £D;
therefore the triangle £GD is equilateral ;

and therefore its three angles £GD, GDE, DEG are equal
to one another, inasmuch as, in isosceles triangles, the angles
at the base are equal to one another. [1 5]

And the three angles of the triangle are equal to two
right angles; [L 32]

therefore the angle £GJ0 is one-third of two right angles.

Similarly, the angle DGC can also be proved to be one-
third of two right angles.

And, since the straight line (G standing on £8 makes
the adjacent angles £ZGC, CG B equal to two right angles,

therefore the remaining angle CGA5 is also one-third of two
right angles.

Therefore the angles £GD, DGC, CGAB are equal to one
another ;

so that the angles vertical to them, the angles BGA, AGF,
FGE are equal. [r 5]

Therefore the six angles £GD, DGC, CGB, BGA, AGF,
FGE are equal to one another.

But equal angles stand on equal circumferences;  [ur 26]
therefore the six circumferences A8, BC, CD, DE, EF, FA
are equal to one another.

And equal circumferences are subtended by equal straight
lines ; [ur 29]

therefore the six straight lines are equal to one another;
therefore the hexagon ABCDEF is equilateral.
I say next that it is also equiangular.

For, since the circumference A4 is equal to the circum-
ference £ D,

let the circumference ABCD be added to each;

therefore: the whole FABCD is equal to the whole
EDCBA ;
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and the angle #ZED stands on the circumference F4BCD,
and the angle 47X on the circumference £ZDCBA ;

therefore the angle 47 is equal to the angle DEF,

[1m. 24]

Similarly it can be proved that the remaining angles- of

the hexagon ABCDEF are also severally equal to each of
the angles AFE, FED ;

therefore the hexagon 4 BCDEF is equiangular.
But it was also proved equilateral ;
and it has been inscribed in the circle ABCDEF.

Therefore in the given circle an equilateral and equiangular
hexagon has been inscribed.

Q. E. F.

Porism. From this it is manifest that the side of the
hexagon is equal to the radius of the circle.

And, in like manner as in the case of the pentagon, if
through the points of division on the circle we draw
tangents to the circle, there will be circumscribed about the
circle an equilateral and equiangular hexagon in conformity
with what was explained in the case of the pentagon.

And further by means similar to those explained in the
case of the pentagon we can both inscribe a circle in a given
hexagon and circumscribe one about it.

Q E. F.

Heiberg, I think with good reason, considers the Porism to this proposition
to be referred to in the instance which Proclus (p. 304, 2) gives of a porism
following a problem. As the text of Proclus stands, “the (porism) found
in the second Book (16 8 & 76 devrépy BifSAiy kelpevov) is a porism to a
problem ”; but this is not true of the only porism that we find in the second
Book, namely the porism to 1. 4. Hence Heiberg thinks that for =g
Sevrépw BuBAw should be read 7¢ & ByBAly, ie. the fourth Book. Moreover
Proclus speaks of #ie porism in the particular Book, from which we gather
that there was only oze porism in Book 1v. as he knew it, and therefore that
he did not regard as a porism the addition to 1v. 5. Cf note on that
proposition. )

It appears that Theon substituted for the first words of the Porism to
1v. 15 “And in like manner as in the case of the pentagon” (opoiws 3¢
Tois éml Tob wevraydvov) the simple word “and” or “also” (xai), apparently
thinking that the words had the same meaning as the similar words lower
down. This is however not the case, the meaning being that “if, as in the
case of the pentagon, we draw tangents, we can prove, glso as was done in
the case of the pentagon, that the figure so formed is a circumscribed regular
hexagon.”
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ProrosiTion 16.

In a given civele to inscribe a fifteen-angled figure which
shall be both equilateral and equiangular.

Let ABCD be the given circle ;
this it is required to inscribe in the circle ABCD a fifteen-
angled figure which shall be
both equilateral and equi- A
angular.

In the circle ABCD let
there be inscribed a side AC
of the equilateral triangle
inscribed in it, and a side A5
of an equilateral pentagon ;
therefore, of the equal seg- &
ments of which there are

fifteen in the circle AFCD, c D
there will be five in the cir- \ /
cumference AABC which is =

one-third of the circle, and
there will be three in the cir-
cumference 4 /5 which is one-fifth of the c1rcle

therefore in the remainder AC there will be two of the
equal segments. A
Let BC be bisected at £; [u1. 30]

therefore each of the circumferences FE, £C is a fifteenth
of the circle ABCD.

If therefore we join A&, £ and fit into the circle 4B8CD
straight lines equal to them and in contiguity, a fifteen-angled
figure which is both equilateral and equiangular will have been
inscribed in it.

Q. E. F.

And, in like manner as in the case of the pentagon, if
through the points of division on the circle we draw
tangents to the circle, there will be circumscribed about the
circle a fifteen-angled figure which is equilateral and equi-
angular.

And further, by proofs similar to those in the case of the
pentagon, we can both inscribe a circle in the given fifteen-
angled figure and circumscribe one about it.

Q. E. F,
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Here, as in 1. 10, we have the term “circle” used by Euclid in its
exceptional sense of the cireumference of a circle, instead of the “plane figure
contained by one line” of 1. Def. 15. Cf. the note on that definition (Vol. 1.
Pp. 184—5).

Proclus (p. 269) refers to this proposition in illustration of his statement
that Euclid gave proofs of a number of propositions with an eye to their use
in astronomy. “With regard to the last proposition in the fourth Book in
which he inscribes the side of the fifteen-angled figure in a circle, for what
object does anyone assert that he propounds it except for the reference of this
problem to astronomy? For, when we have inscribed the fifteen-angled figure
in the circle through the poles, we have the distance from the poles both of
the equator and the zodiac, since they are distant from one another by the
side of the fifteen-angled figure.” This agrees with what we know from other
sources, namely that up to the time of Eratosthenes (¢irca 275—194 B.C.) 24°
was generally accepted as the correct measurement of the obliquity of the
ecliptic. This measurement, and the construction of the fifteen-angled figure,
were probably due to the Pythagoreans, though it would appear that the
former was not known to Oenopides of Chios (fl. cirea 460 B.C.), as we learn
from Theon of Smyrna (pp. 198-—g, ed. Hiller), who gives Dercyllides as his
authority, that Eudemus (fl. ciea 320 B.C.) stated in his dorpoloyiar that,
while Oenopides discovered certain things, and Thales, Anaximander and
Anaximenes others, it was the rest (of Aowrol) who added other discoveries
to these and, among them, that “the axes of the fixed stars and of the planets
respectively are distant from one another by the side of a fifteen-angled figure.”
Eratosthenes evaluated the angle to iirds of 180°, i.e. about 23° 51" 20",
which measurement was apparently not improved upon in antiquity (cf. Ptolemy,
Syntaxis, ed. Heiberg, p. 68).

Euclid has now shown how to describe regular polygons with 3, 4, 5, 6
and 15 sides. Now, when any regular polygon is given, we can construct a
regular polygon with twice the number of sides by first describing a circle
about the given polygon and then bisecting all the smaller arcs subtended by
the sides. Applying this process any number of times, we see that we can by
Euclid’s methods construct regular polygons with 3.2% 4.2% 5.2% 15.2" sides,
where 7 is zero or any positive integer.



BOOK V.

INTRODUCTORY NOTE.

The anonymous author of a scholium to Book v. (Euclid, ed. Heiberg,
Vol. v. p. 280), who is perhaps Proclus, tells us that “some say” this Book,
containing the general theory of proportion which is equally applicable to
geometry, arithmetic, music, and all mathematical science, “is the discovery
of Eudoxus, the teacher of Plato.” Not that there had been no theory of
proportion developed before his time ; on the contrary, it is certain that the
Pythagoreans had worked out such a theory with regard to zumders, by which
must be understood commensurable and even whole numbers (a number
being a “multitude made up of units,” as defined in Eucl vir). Thus we
are told that the Pythagoreans distinguished three sorts of wmeans, the
arithmetic, the geometric and the harmonic mean, the geometric mean
being called proportion (dvadoyia) par excellence; and further Iamblichus
speaks of the “most perfect proportion consisting of four terms and specially
called Zarmonic,” in other words, the proportion

a+b  2ab

2 a+bd’ %

which was said to be a discovery of the Babylonians and to have been first
introduced into Greece by Pythagoras (Iamblichus, Comm. on Nicomachus,
p-118). Now the principle of similitude is one which is presupposed by all
the arts of design from their very beginnings; it was certainly known to the
Egyptians, and it must certainly have been thoroughly familiar to Pythagoras
and his school. This consideration, together with the evidence of the
employment by him of the geometric proportion, makes it indubitable that the
Pythagoreans used the theory of proportion, in the form in which it was
known to them, i.e. as applicable to commensurables only, in their geometry.
But the discovery, also due to Pythagoras, of the incommensurable would
of course be seen to render the proofs which depended on the theory of
proportion as then understood inconclusive; as Tannery observes (Za
Géométrie grecque, p. 98), “the discovery of incommensurability must have
caused a veritable logical scandal in geometry and, in order to avoid it, they
were obliged to restrict as far as possible the use of the principle of similitude,
pending the discovery of a means of establishing it on the basis of a theory of
proportion independent of commensurability.” The glory of the latter dis-
covery belongs then most probably to Eudoxus. Certain it 1s that the complete
theory was already familiar to Arstotle, as we shall see later.
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It seems probable, as indicated by Tannery (lor. cit.), that the theory
of proportions and the principle of similitude took, in the earliest Greek
geometry, an earlier place than they do in Euclid, but that, in consequence
of the discovery of the incommensurable, the treatment of the subject was
fundamentally remodelled in the period between Pythagoras and Eudoxus.
An indication of this is afforded by the clever device used in Euclid 1. 44
for applying to a given straight line a parallelogram equal to a given triangle ;
the equality of the “complements” in a parallelogram is there used for doing
what 1s practically finding a fourth proportional to three given straight lines.
Thus Euclid was no doubt following for the subject-matter of Books 1.—1v.
what had become the traditional method, and this is probably one of the
reasons why proportions and similitude are postponed till as late as Books
V., VL

It is a remarkable fact that the theory of proportions is twice treated in
Euclid, in Book v. with reference to magnitudes in general, and in Book viL
with reference to the particular case of numbers. The latter exposition
referring only to commensurables may be taken to represent fairly the theory
of proportions at the stage which it had reached before the great extension of
it made by Eudoxus. The differences between the definitions etc. in Books v.
and viL. will appear as we go on; but the question naturally arises, why did
Euclid not save himself so much repetition and treat numbers merely as a
particular case of magnitude, referring back to the corresponding more
general propositions of Book v. instead of proving the same propositions
over again for numbers? It could not have escaped him that numbers
fall under the conception of magnitude. Aristotle had plainly indicated
that magnitudes may be numbers when he observed (Anal post. 1. 7,
75 b 4) that you cannot adapt the arithmetical method of proof to the
properties of magnitudes if the magnitudes are not numbers. Further
Aristotle had remarked (4#al. post. 1. 5, 74 a 17) that the proposition that
the terms of a proportion can be taken alternately was at one time proved
separately for numbers, lines, solids and times, though it was possible to prove -
it for all by one demonstration ; but, because there was no common name
comprehending them all, namely numbers, lengths, times and solids, and their
character was different, they were taken separately. Now however, he adds,
the proposition is proved generally. Vet Euclid says nothing to connect
the two theories of proportion even when he comes in x. 5 to a proportion
two terms of which are magnitudes and two are numbers (““ Commensurable
magnitudes have to one another the ratio which a number has to a number”).
The probable explanation of the phenomenon is that Euclid simply followed
tradition and gave the two theories as he found them. This would square
with the remark in Pappus (viL. p. 678) as to Euclid’s fairness to others and
his readiness to give them credit for their work.

DEFINITIONS.

1. A magnitude is a part of a magnitude, the less of
the greater, when it measures the greater.

2. The greater is a multiple of the less when it is
measured by the less.

H. E. IL 3
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3. Aratio is a sort of relation in respect of size between
two magnitudes of the same kind.

4. Magnitudes are said to have a ratio to one another
which are capable, when multiplied, of exceeding one another.

5. Magnitudes are said to be in the same ratio, the
first to the second and the third to the fourth, when, if any
equimultiples whatever be taken of the first and third, and
any equimultiples whatever of the second and fourth, the
former equimultiples alike exceed, are alike equal to, or alike
fall short of, the latter equimultiples respectively taken in
corresponding order.

6. Let magnitudes which have the same ratio be called
proportional. ‘

7. When, of the equimultiples, the multiple of the first
magnitude exceeds the multiple of the second, but the multiple
of the third does not exceed the multiple of the fourth, then
the first is said to have a greater ratio to the second than
the third has to the fourth.

8. A proportion in three terms is the least possible.

9. When three magnitudes are proportional, the first is
said to have to the third the duplicate ratio of that which
it has to the second.

10. When four magnitudes are < continuously > propor-
tional, the first is said to have to the fourth the triplicate
ratio of that which it has to the second, and so on con-
tinually, whatever be the proportion.

11. The term corresponding magnitudes is used of
antecedents in relation to antecedents, and of consequents in
relation to consequents.

12. Alternate ratio means taking the antecedent in
relation to the antecedent and the consequent in relation to
the consequent.

13. Inverse ratio means taking the consequent as
antecedent in relation to the antecedent as consequent.



V. DEFF.] DEFINITIONS 115

14. Composition of a ratio means taking the ante-
cedent together with the consequent as one in relation to
the consequent by itself.

15. Separation of a ratio means taking the excess
by which the antecedent exceeds the consequent in relation
to the consequent by itself.

16. Conversion of a ratio means taking the ante-
cedent in relation to the excess by which the antecedent
exceeds the consequent.

17. A ratio ex aequali arises when, there being several
magnitudes and another set equal to them in multitude which
taken two and two are in the same proportion, as the first is
to the last among the first magnitudes, so is the first to the
last among the second magnitudes ;

Or, in other words, it means taking the extreme terms
by virtue of the removal of the intermediate terms.

18. A perturbed proportion arises when, there being
three magnitudes and another set equal to them in multitude,
as antecedent is to consequent among the first magnitudes,
so is antecedent to consequent among the second magnitudes,
while, as the consequent is to a third among the first
magnitudes, so is a third to the antecedent among the second
magnitudes.

DEFINITION 1.

Mépos éori péyefos peyéfovs 16 Easoov Tob pelloves, Srav karaperpyi T8
petlov.

The word part (népos) is here used in the restricted sense of a submultiple
or an aliguo? part as distinct from the more general sense in which it is used
in the Common Notion (5) which says that “the whole is greater than the
part.” It is used in the same restricted sense in vir. Def. 3, which is the same
definition as this with “‘number” (dpfpds) substituted for “magnitude.”
vir. Def. 4, keeping up the restriction, says that, when a number does not
measure another number, it is pgar#s (in the plural), not e pasf of it. Thus,
1, 2, or 3, is a.part of 6, but 4 is not a pars of 6 but parts. The same
distinction between the restricted and the more general sense of the word
part appears in Aristotle, Mefaph. 1023 b 12: “In one sense a part is
that into which quantity (r6 woadv) can anyhow be divided ; for that which is
taken away from quantity, gud quantity, is always called a ‘part’ of it, as
e.g. two is said to be in a sense a part of three. But in another sense a
‘part’ is only what measures (td xaraperpovyra) such quantities. Thus two
is in one sense said to be a part of three, in the other not.”

8—2
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DEFINITION 2.

ToMarhdowy 8¢ 70 pellov 7o &Ndrroves, OTav KkaraperpfiTai vwo ToD
é\drrovos,

DEFINITION 3.

Adyos éori dbo peyeddy opoyevdv 7 kard mnplikdmTa Tod oxéTis.

The best explanation of the definitions of #azio and proportion that I have
seen is that of De Morgan, which will be found in the articles under those
titles in the Penny Cyclopaedia, Vol. x1x. (1841); and in the following notes
I shall draw largely from these articles. Very valuable also are the notes on
the definitions of Book v. given by Hankel (fragment on Euclid published as
an appendix to his work Zur Geschichte der Mathematik in Alterthum und
Mitielalter, 1874).

There has been controversy as to what is the proper translation of the
word wmAwdrys in the definition. oxéows xard wphikdryra has generally been
translated “relation in respect of gwantity.” Upon this De Morgan remarks
that it makes nonsense of the definition; “for magnitude has hardly a
different meaning from quantity, and a relation of magnitudes with respect to
quantity may give a clear idea to those who want a word to convey a notion
of architecture with respect to building or of battles with respect to fighting,
and to no others.” The true interpretation De Morgan, following Wallis and
Gregory, takes to be guantuplicity, referring to the number of times one
magnitude is contained in the other. For, he says, we cannot describe
magnitude in language without quantuplicitative reference to other magni-
tude ; hence he supposes that the definition simply conveys the fact that the
mode of expressing quantity in terms of quantity is entirely based upon the
notion of quantuplicity or that relation of which we take cognizance when we
find how many times one is contained in the other. While all the rest of
De Morgan’s observations on the definition are admirable, it seems to me
that on this question of the proper translation of #gAwdrys he is in error. He
supports his view mainly by reference (1) to the definition of a compounded
ratio usually given as the sth definition of Book vi., which speaks of the
myhudmyres of two ratios being multiplied together, and (2) to the comments
of Eutocius and a scholiast on this definition. Eutocius says namely
(Archimedes, ed. Heiberg, 1L p. 140) that “the term wyAwdrys is evidently
used of the number from which the given ratio is called, as (among others)
Nicomachus says in his first book on music and Heron in his commentary
on the Introduction to Arithmetic.” But it now appears certain that this
definition is an interpolation ; it is never used, it is not found in Campanus,
and Peyrard’s Ms. only has it in the margin. At the same time it is clear
that, if the definition is admitted at all, any commentator would be obliged to
explain it in the way that Eutocius does, whether the explanation was consistent
with the proper meaning of myAwdrys or not. Hence we must look elsewhere
for the meaning of my\ixos and mpAwdrys. If we do this, I think we shall find
no case in which the words have the sense attributed to them by De Morgan.
The real meaning of wylikos is kow great. 1t is so used by Aristotle, e.g. in
Eth. Nic. v. 1o, 1134 b 11, where he speaks of a man’s child being as it were
a part of him so long as he is of a certain age (fws dv §} wyhikov). Again
Nicomachus, to whom Eutocius appeals, himself (1. 2, 5, p. 5, ed. Hoche)
distinguishes wnAios as referring to magnitude, while woods refers to multitude.
So does Tamblichus in his commentary on Nicomachus (p. 8, 3—5); besides
which Tamblichus distinguishes myiikov as the subject of geometry, being w#-
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tinuous, and woodv as the subject of arithmetic, being discrete, and speaks of a
point being the origin of myAikov as a unit is of woger, and so on. Similarly,
Ptolemy (Syntaxis, ed. Heiberg, p. 31) speaks of the size (mphucdys) of the
chords in a circle (wepi mis mphicdryros Tév &v 7§ rixre ebbasr). Consequently
I think we can only translate aylwdeys in the definition as size. This
corresponds to Hankel’s translation of it as ““ Grésse,” though he uses this
same word for a concrete “magnitude” as well; size seems to me to give
the proper distinction between myAwdrys and péyefos, as size is the attribute,
and a magnitude (in its ordinary mathematical sense) is the thing which
possesses the attribute of size.

The view that “relation in respect of siz¢” is meant by the words in the
text is also confirmed, I think, by a later remark of De Morgan himself,
namely that a synonym for the word rafis may be found in the more in-
telligible term redative magnitude. In fact oxéous in the definition corresponds
to relative and mylixdmps to magnitude. (By magnitude De Morgan here
means the attribute and not the thing possessing it.)

Of the definition as a whole Simson and Hankel express the opinion that
it is an interpolation. Hankel points to the fact that it is unnecessary and
moreover so vague as to be of no practical use, while the very use of the
expression xata wpAwkétyra seems to him suspicious, since the only other
place in which the word mjAwdrys occurs in Euclid is the sth definition of
Book v1., which is admittedly not genuine. Yet the definition of ratio appears
in all the Mss., the only variation being that some add the words wpds dAAnha,
“to one another,” which are rejected by Heiberg as an interpolation of
Theon ; and on the whole there seems to be no sufficient ground for regarding
it as other than genuine. The true explanation of its presence would appear
to be substantially that given by Barrow (Zectiones Caniadrig., London, 1684,
Lect. 111. of 1666), namely that Euclid inserted it for completeness’ sake, more
for ornament than for use, intending to give the learner a general notion of
ratio by means of a metaphysical, rather than a mathematical definition; *“for
metaphysical it is and not, properly speaking, mathematical, since nothing
depends on it or is deduced from it by mathematicians, nor, as I think, can
anything be deduced.” This is confirmed by the fact that there is no
definition of Adyos in Book viL, and it could equally have been dispensed
with here. Similarly De Morgan observes that Euclid never attempts this
vague sort of definition except when, dealing with a wellknown term of
common life, he wishes to bring it into geometry with something like an
expressed meaning which may aid the conception of the thing, though it does
not furnish a perfect criterion. Thus we may compare the definition with
that of a straight line, where Euclid merely calls the reader’s attention to the
well-known term edfeia ypopps, tries how far he can present the conception
which accompanies it in other words, and trusts for the correct use of the
term to the axioms (or postulates) which the universal conception of a straight
line makes self-evident.

We have now to trace as clearly as possible the development of the
conception of Xéyos, »atis, or relative magnitude. In its primitive sense
Adyos was only used of a ratio between commensurables, i.e. a ratio which
could be expressed, and the manner of expressing it is indicated in the
proposition, Eucl. X. 5, which proves that commensurable magnitudes kave to
one another the ratio which @ number has to a number. That this was the
primitive meaning of Adyos is proved by the use of the term dXoyos for the
incommensurable, which means i7rational in the sense of not having a ratio
to something taken as rational (fnrés).
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Euclid himself shows us how we are to set about finding the ratio, or
relative magnitude, of two commensurable magnitudes. He gives, in X. 3,
practically our ordinary method of finding the greatest common measure.
If 4, B be two magnitudes of which £ is the less, we cut off from A a part
equal to 5, from the remainder a part equal to B, and so on, until we leave a
remainder less than B, say £;. We measure off &; from 5 in the same way
until a remainder X, is left which is less than &;. We repeat the process
with &;, R,, and so on, until we find a remainder which is contained in the
preceding remainder a certain number of times exactly. If account is taken
of the number of times each magnitude is contained (with something over,
except at the last) in that upon which it is measured, we can calculate how
many times the last remainder is contained in 4 and how many times the
last remainder is contained in B; and we can thus express the ratio of 4 to
B as the ratio of one number to another.

But it may happen that the two magnitudes have no common measure,
i.e. are incommensurable, in which case the process described would never
come to an end and the means of expression would fail; the magnitudes
'would then Aave 7o ratio in the primitive sense. But the word Adyos, ratio,
acquires in Euclid, Book v., a wider sense covering the relative magnitude of
incommensurables as well as commensurables; as stated in Euclid’s 4th
definition, “magnitudes are said to have a sa#b to one another which can,
when multiplied, exceed 6ne another,” and finite incommensurables have this
property as much as commensurables. De Morgan explains the manner of
transition from the narrower to the wider signification of rzafio as follows.
“Since the relative magnitude of two quantities is always shown by the
quantuplicitative mode of expression, when that is possible, and since pro-
portional quantities (pairs which have the same relative magnitude) are pairs
which have the same mode (if possible) of expression by means of each other ;
in all such cases sameness of relative magnitude leads to sameness of mode of
expression ; or proportion is sameness of ratios (in the primitive sense). But
sameness of relative magnitude may exist where quantuplicitative expression
is impossible ; thus the diagonal of a larger square is the same compared with
its side as the diagonal of a smaller square compared with 77 side. It is an
easy transition to speak of sameness of ratio even in this case; that is, to use
the term ratio in the sense of relative magnitude, that word having originally
only a reference to the mode of expressing relative magnitude, in cases which
allow of a particular mode of expression. The word 7rational (dhoyos) does
not make any corresponding change but continues to have its primitive
meaning, namely, incapable of quantuplicitative expression.”

It remains to consider how we are to describe the relative magnitude of
two incommensurables of the same kind. That they have a definite relation
is certain. Suppose, for precision, that .S is the side of a square, D its
diagonal ; then, if S is given, any alteration in D or any error in 2 would
make the figure cease to be a square. At the same time, a person altogether
ignorant of the relative magnitude of D and .S might say that drawing two
straight lines of length § so as to form a right angle and joining the ends by
a straight line, the length of which would accordingly be 2, does not help
him to realise the relative magnitude, but that he would like to know how
many diagonals make an exact number of sides. We should have to reply
that no number of diagonals whatever makes an exact number of sides; but
that he may mention any fraction of the side, a hundredth, a thousandth or
a millionth, and that we will then express the diagonal with an error not so
great as that fraction. We then tell him that 1,000,000 diagonals exceed
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1,414,213 sides but fall short of 1,414,214 sides; consequently the diagonal
lies between 17414213 and 17414214 times the 51de, and these differ only by
one-millionth of the side, so that the error in the diagonal is less still. To
enable him to continue the process further, we show him how to perform the
arithmetical operation of approximating to the value of /2. This gives the
means of carrying the approximation to any degree of accuracy that may be
desired. In the power, then, of carrying approximations of this kind as far as
we please lies that of expressing the ratio, so far as expression is possible, and
of comparing the ratio with others as accurately as if expression had been
possible, -

Euclid was of course aware of this, as were probably others before him ;
though the actual approximations to the values of ratios of incommensurables
of which we find record in the works of the great Greek geometers are very
few. The history of such approximations up to Archimedes is, so far as
material was available, sketched in Z%e Works of Archimedes (pp. lxxvii and
following) ; and it is sufficient here to note the facts (1) that Plato, and even
the Pythagoreans, were familiar with I as an approximation to /2, (z) that
the method of finding any number of successive approximations by the system
of side- and diagonalnumbers described by Theon of Smyrna was also
Pythagorean (cf. the note above on Euclid, 11. ¢, 10), (3) that Archimedes,
without a word of preliminary explanation, gives out that

1331
155> V3> 455,

gives approximate values for the square roots of several large numbers, and
proves that the ratio of the circumference of a circle to its diameter is less
than 3% but greater than 313, (4) that the first approach to the rapidity with
which the decimal system enables us to approximate to the value of surds
was furnished by the method of sexagesimal fractions, which was almost as
convenient to work with as the method of decimals, and which appears fully
developed in Ptolemy’s odvrafis. A number consisting of a whole number
and any fraction was under this system represented as so many units, so
many of the fractions which we should denote by &, so many of those which
we should write (%)% (4)% and so on. Theon of Alexandria shows us how
to extract the square root of 4500 in this sexagesimal system, and, to show
how ‘effective it was, it is only necessary to mention that Ptolemy gives

16003 g g, + 6—— as an approximation to ./ 3 which approximation is equivalent

to 1°732050¢ in the ordinary decimal notation and is therefore correct to
6 places.

Between Def. 3 and Def. 4 two manuscripts and Campanus insert “ Pro-
portion is the sameness of ratios” (dvaloyia 8¢ 7] T@v Aéywv radrorys), and even
the best Ms. has it in the margin. It would be altogether out of place, since
it is not till Def. 5 that it is explained what sameness of ratios is. The words
are an interpolation later than Theon (Heiberg, Vol. v. pp. xxxv, Ixxxix),
and are no doubt taken from arithmetical works (cf. Nicomachus and Theon
of Smyrna). It is true that Aristotle says similarly, ““ Proportion is equality
of ratios” (E#h. Nie. v. 6, 1131 2 31), and he appears to be quoting from
the Pythagoreans; but the reference is to numbers.

Similarly two MSS. (inferior) insert after Def. 7 “Proportion is the similarity
(buowsrns) of ratios.” Here too we have a mere interpolation.
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DEFINITION 4.

Adyov &ew mpds dApha peyédy Néyeras, & Stvarw molhamlaocialdpeva
dA\\jhov Drepéyew.

This definition supplements the last one. De Morgan says that it amounts
to saying that the magnitudes are of the same species. But this can hardly
be all; the definition seems rather to be meant, on the one hand, to exclude
the relation of a finite magnitude to a magnitude of the same kind which is
either infinitely great -or infinitely small, and, even more, to emphasise the
fact that the term atio, as defined in the preceding definition, and about to
be used throughout the book, includes the relation between any two iom-
mensurable as well as between any two commensurable finite magnitudes of
the same kind. Hence, while De Morgan seems to regard the extension of
the meaning of 7a#i to include the relative magnitude of incommensurables
as, so to speak, taking place between Def. 3 and Def. 5, the 4th definition
appears to show that it is ratio in its extended sense that is being defined in
Def. 3.

DEFINITION 3.

"Ev 16 adrd Aoyo peyéfn Méyerar elvar mpdrov mpds Sevrepov kal rpirov mpds
réroprov, dtav T4 TOD mpwrov Kal Tpirov lodkis wolamAdaowe Tdv Tod Seurépov
kal Terdprou ilodxis moldamlaglwv xef Smoiovodv woldawhaciaoudy éxdrepov
ixarépov 3 dpa Ymepéxy 7 ope loa 3 dua E\helmy Apphévra xardAAnia.

In my translation of this definition I have compromised between an
attempted lteral translation and the more expanded version of Simson. The
difficulty in the way of an exactly literal translation is due to the fact that the
words (xaf émowovody mollawlacieondy) signifying that the equimultiples 7z
eact case are any equimultiples w/aZever occur only once in the Greek, though
they apply dot% to &...lodkis molhamrddota in the nominative and 7dév...lodsis
moMamhaciowy in the genitive. I have preferred “alike” to *simultaneously”
as a translation of aua because “simultaneously ” might suggest that time was
of the essence of the matter, whereas what is meant is that any particular
comparison made between the equimultiples must be made between #ie same
equimultiples of the two pairs respectively, not that they need to be compared
at the same time.

Aristotle has an allusion to a definition of “the same ratio” in Zbpics
vHI 3, 158 b 29: “‘In mathematics too some things appear to be not easy to
prove (ypddesfar) for want of a definition, e.g. that the parallel to the side
which cuts a plane [a parallelogram] divides the straight line [the other side]
and the area similarly. But, when the definition is expressed, the said property
is immediately manifest ; for the areas and the straight lines Zave the same
avrovaipeots, and this is the definition of ‘the same watio”” Upon this
passage Alexander says similarly, “This is the definition of proportionals
which the ancients used: magnitudes are proportional to one another which
have (or show) the same dvBvpaipesis, and Aristotle has called the latter
avravaipesis.” Heiberg (Mathematisches su Aristoteles, p. 22) thinks that
Aristotle is alluding to the fact that the proposition referred to could not be
rigorously proved so long as the Pythagorean definition applicable to com-
mensurable magnitudes only was adhered to, and is quoting the definition
belonging to the complete theory of Eudoxus ; whence, in view of the positive
statement of Aristotle that the definition quoted #s the definition of “the same
ratio,” it would appear that the Euclidean definition (which Heiberg describes
as a careful and exact paraphrase of dvravaipeots) is Euclid’s own. I do not
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feel able to subscribe to this view, which seems to me to involve very grave
difficulties. The Euclidean definition is regularly appealed to in Book v. as
the criterion of magnitudes being in proportion, and the use of it would appear
to constitute the whole essence of the new general theory of proportion; if then
this theory is due to Eudoxus, it seems impossible to believe that the definition
was not also due to him. Certainly the definition given by Aristotle would
be no substitute for it; dvfvdalpeos and dvraveipesis are. words almost as
vague and “ metaphysical” (as Barrow would say) as the words used to define
ratio, and it is difficult to see how any mathematical facts could be deduced
from such a definition. Consider for 2 moment the etymology of the words.
dpaipeois or dveipeois means “removal,” “taking away” or “destruction” of
a thing; and the prefix dvri indicates that the “taking away” from one
magnitude answers fo, corresponds with, alternates with, the “taking away”
from the other. So far therefore as the etymology goes, the word seems
rather to suggest the “taking away ” of corresponding fracsions, and therefore
to suit the old imperfect theory of proportion rather than the new one. Thus
Waitz (ad Joc.) paraphrases the definition as meaning that “as many parts as
are taken from one magnitude, so many are at the same time taken from the
other as well” A possible explanation would seem to be that, though
Eudoxus had formulated the new definition, the old one was still current in
the text-books of Aristotle’s time, and was taken by him as being a good
enough 1llustration of what he wished to bring out in the passage of the
Topics referred to.

From the revival of learning in Europe onwards the Euclidean definition
of proportion was the subject of much criticism. Campanus had failed to
understand it, had in fact misinterpreted it altogether, and he may have
misled others such as Ramus (1515—72), always a violently hostile critic of
Euclid. Among the objectors to it was no less a person than Galileo. For
particulars of the controversies on the subject down to Thomas Simpson
(Elem. of Geometry, Lond. 1800) the reader is referred to the Excursus at the
end of the second volume of Camerer’s Euclid (1825). For us it is interesting
to note that the unsoundness of the usual criticisms of the definition was
never better exposed than by Barrow. Some of the objections, he pointed out
(ZLect. Cantabr.vi1.of 1666), are due to misconception on the part of their authors
as to the nature of a definition. Thus Euclid is required by these objectors
(e.g- Tacquet) to do the impossible and to show that what is predicated in the
definition is true of the thing defined, as if any one should be required to
show that the name “circle” was applicable to those figures alone which
have their radii all equal! As we are eatitled to assign to such figures and
such figures only the name of “circle,” so Euclid is entitled (“ quamvis non
temere nec imprudenter at certis de causis iustis illis et idoneis”) to describe
a certain property which four magnitudes may have, and to call magnitudes
possessing that property magnitudes “in the same ratic.” Others had argued
from the occurrence of the other definition of proportion in vii. Def. 20 that
Euclid was dissatisfied with the present one ; Barrow pointed out that, on the
contrary, it was the fact that vi. Def. 20 was not adequate to cover the case
of incommensurables which made Euclid adopt the present definition here.
Lastly, he maintains, against those who descant on the “obscurity” of v.
Def. 5, that the supposed obscurity is due, partly no doubt to the inherent
difficulty of the subject of incommensurables, but also to faulty translators,
and most of all to lack of effort in the learner to grasp thoroughly the meaning
of words which, in themselves, are as clearly expressed as they could be.

To come now to the merits of the case, the best defence and explanation
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of the definition that I have seen is that given by De Morgan. He first
translates it, observes that it applies equally to commensurable or incom-
mensurable quantities because no attempt is made to measure one by an
aliquot part of another, and then proceeds thus. ) ]

“The two questions which must be asked, and satisfactorily answered,
previously to its [the definition’s] reception, are as follows: ,

1. What right had Euclid, or any one else, to expect that the preceding
most prolix and unwieldy statement should be received by the beginner as
the definition of a relation the perception of which is one of the most common
acts of his mind, since it is performed on every occasion where similarity or
dissimilarity of figure is looked for or presents itself?

2. If the preceding question should be clearly answered, how can the
definition of proportion ever be used; or how is it possible to compare every
one of the infinite number of multiples of 4 with every one of the multiples
of B? '

To the first question we reply that not only is the test proposed by
Euclid tolerably simple, when more closely examined, but that it is, or might
be made to appear, an easy and natural consequence of those fundamental
perceptions with which it may at first seem difficult to compare it.”

To elucidate this De Morgan gives the following illustration. :

Suppose there is a straight colonnade composed of equidistant columns
(which we will understand to mean the vertical lines forming the axes of the
columns respectively), the first of which is at a distance from a bounding wall
equal to the distance between consecutive columns. In front of the colonnade-
let there be a straight row of equidistant railings (regarded as meaning their
axes), the first being at a distance from the bounding wall equal to the
distance between consecutive railings. Let the columns be numbered from
the wall, and also the railings. We suppose of course that the column distance
(say, C) and the railing distance (say, &) are different and that they may bear
to each other any ratio, commensurable or incommensurable ; ie. that there
need not go any exact number of railings to any exact number of columns.
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If the construction be supposed carried on to any extent, a spectator can,
by mere inspection, and without measurement, compare C with & to any
degree of accuracy. For example, since the 1oth railing falls between the 4th
and sth columns, 10/ is greater than 4C and less than 5C, and therefore &
lies between ths of Cand J5ths of C. To get a more accurate notion, the
ten-thousandth railing may be taken ; suppose it falls between the 4674th and
4675th columns. Therefore 10,000 lies between 4674C and 4675C, or R les
between %74 and %%’ of C.  There is no limit to the degree of accuracy
thus obtainable ; and the ratio of &R to C is determined when the order of
distribution of the railings among the columns is assigned ad infinitum ; or, in
other words, when the position of any given railing can be found, as to the
numbers of the columns between which it lies. Any alteration, however
small, in the place of the first railing must at last affect the order of
distribution. Suppose e.g. that the first railing is moved from the wall by one
part in a thousand of the distance between the columns; then the second
railing is pushed forward by —ﬂ%m(g-the third by 1+, and so on, so that
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the railings after the thousandth are pushed forward by more than C; i.e. the
order with respect to the columns is disarranged.

Now let it be proposed to make a model of the preceding construction in
which ¢ shall be the column distance and  the railing distance. It needs no
definition of proportion, nor anything more than the conception which we
have of that term prior to definition (and with which we must show the agree-
ment of any definition that we may adopt), to assure us that C must be to &
in the same proportion as ¢ to # if the model be truly formed. Nor is it
drawing too largely on that conception of proportion to assert that the
distribution of the railings among the columns in the model must be every-
where the same as in the original ; for example, that the model would be owt
of proportion if its 37th railing fell between the 18th and 19th columns, while
the 37th railing of the original fell between the 17th and 18th columns. Thus
the dependence of Euclid’s definition upon common notions is settled; for the
obvious relation between the construction and its model which has just been
described contains the collection of conditions, the fulfilment of which,
according to Euclid, constitutes proportion. According to Euclid, whenever
m C exceeds, equals, or falls short of nR, then mc must exceed, equal, or fall
short of 7»; and, by the most obvious property of the constructions, according
as the mth column comes after, opposite to, or before the nth railing in the
original, the mth column must come after, opposite to, or before the zth
railing in the correct model

Thus the test proposed by Euclid is necessary. It is also sufficient. For
admitting that, to a given original with a given column-distance in the model,
there is one correct model railing distance (which must therefore be that
which distributes the railings among the columns as in the original), we have
seen that any other railing distance, however slightly different, would at last
give a different distribution; that is, the correct distance, and the correct
distance only, satisfies all the conditions required by Euclid’s definition.

The use of the word dis¢ribution having been well learnt, says De Morgan,
the following way of stating the definition will be found easier than that of
Euclid. “Four magnitudes, 4 and B of one kind, and C and D of the same
or another kind, are proportional when all the multiples of 4 can be
distributed among the multiples of B in the same intervals as the correspond-
ing multiples of C among those of D.” Or, whatever numbers », # may be,
if mA4 lies between #B and (# + 1)8, mC lies between »D and (» + 1).0.

It is important to note that, if the test be always satisfied from and after
any given multiples of 4 and C, it must be satisfied before those multiples. For
instance, let the test be always satisfied from and after 1004 and 100 ; and
let 54 and 5C be instances for examination. Take any multiple of 5 which
will exceed 100, say 5o times five ; and let it be found on examination that
2504 lies between 67858 and 6795 ; then 250C lies between 678D and
6790. Divide by 50, and it follows that 54 lies between 13285 and 13235,
and a _fortiori between 135 and 145. Similarly, 5C lies between 1323.0 and
13330, and therefore between 130 and 140. Or 54 lies in the same
interval among the multiples of B in which 5C lies among the multiples of .
And so for any multiple of 4, C less than 1004, 100C.

There remains the second question relating to the infinite character of the
definition ; four magnitudes 4, B, C, U are not to be called proportional
until it is shown that ezery multiple of 4 falls in the same intervals among
the multiples of & in which the same multiple of C is found among the
multiples of 0. Suppose that the distribution of the railings among the
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columns should be found to agree in the model and the original as far as
the millionth railing. This proves only that the railing distance of the model
does not err by the millionth part of the corresponding column distance. We
can thus fix limits to the disproportion, if any, and we may make those limits
as small as we please, by carrying on the method of observation; but we
cannot odserve an infinite number of cases and so enable ourselves to affirm
proportion absolutely. Mathematical methods however enable us to avoid
the difficulty. We can take any multiples whatever and work with them as if
they were particular multiples. De Morgan gives, as an instance to show that
the definition of proportion can in practice be used, notwithstanding its
infinite character, the following proof of a proposition to the same effect as
Eucl. v1. 2.

By

B T L p o

A

(o] a A &2 A2 éL3 A,g Ay

“Let 04 B be a triangle to one side 48 of which @/ is drawn parallel, and
on 04 produced set off 44,, 4,4, etc. equal to 04, and aa,, a.a; etc. equal
to Oa.

Through every one of the points so obtained draw parallels to 4.5,
meeting OB produced in 4, B, etc.

Then it is easily proved that 44, 8,0; etc. are severally equal to 08, and
BAB,, B,B, etc. to OF.

Consequently a distribution of the multiples of 04 among the multiples
of Oz is made on one line, and of OB among those of 04 on the other.

The examination of this distribution in all its extent (which is impossible,
and hence the apparent difficulty of using the definition) is rendered
unnecessary by the known property of parallel lines. For, since 4, lies
between a; and a,, B, must lie between &; and 4,; for, if not, the line 4,5,
would cut either 2.0, or @.4,.

Hence, without inquiring where 4,, does fall, we know that, if it fall
between @, and a,,,, B, must fall between &, and 4, ; or,if m. 04 fall in
magnitude between z.O0a and (7 +1)Oa, then .08 must fall between
n.0b and (n+1)05”

Max Simon remarks (Ewclid und die sechs planimetrischen Biicker, p. 110),
after Zeuthen, that Euclid’s definition of equal ratios is word for word the
same as Weierstrass’ definition of equal numbers. So far from agreeing in
the usual view that the Greeks saw in the irrational no mwmber, Simon thinks
it is clear from Eucl. v. that they possessed a notion of number in all its
generality as clearly defined as, nay almost identical with, Weierstrass’ con-
ception of it.

Certain it is that there is an exact correspondence, almost coincidence,
between Euclid’s definition of equal ratios and the modern theory of irrationals
due to Dedekind. Premising the ordinal arrangement of natural numbers in
ascending order, then enlarging the sphere of numbers by including
(1) negative numbers as well as positive, (2) fractions, as a/5, where a, 4 may
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be any natural numbers, provided that 4 is not zero, and arranging the
fractions ordinally among the other numbers according to the definition :

¢
) a
Dedekind arrives at the following definition of an irrational number.

An irrational number a is defined whenever a law is stated which will
assign every given rational number to one and only one of two classes 4 and
B such that (1) every number in 4 precedes every number in B, and (2) there
is no last number in 4 and no first number in B; the definition of e being
that it is the one number which lies between all numbers in 4 and all
numbers in B.

Now let x/y and x'/y" be equal ratios in Euclid’s sense.

let % be <=> - according as ad is <=> &

Then Z will divide all rational numbers into two groups 4 and 5 ;

J
x, 4 14
37 » ”» 3] A and B'.
Let % be any rational number in 4, so that
a_x
&y’

This means that ey <bx.
But Euclid’s definition asserts that in that case ay’< 4z’ also.

7

a X
Hence also =< =3
6y

therefore every member of group A is also a member of group 4"
Similarly every member of group B is a member of group 5.

For, if 5;- belong to 5,

ol R
L1y

which means that gy > &x.
But in that case, by Euclid’s definition, @y’ > #x”;

a x

therefore also ;v
y

Thus, in other Wordé, A4 and B are coextensive with 4’ and 5
respectively ;
therefore ad =§7, according to Dedekind, as well as according to Euclid.
¥

If x/y, «'[y’ happen to be rational,
then one of the groups, say 4, includes x/y,
and one of the groups, say A4', includes a'[y'.
a

3 might coincide with —;

In this case

iy

that is

8 oin
i}
ol
£

which means that
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Therefore, by Euclid’s definition, ay’ = bx’;
a &
A

Thus the groups are again coextensive.

In a word, Euclid’s definition divides all rational numbers into two
coextensive classes, and therefore defines equal ratios in a manner exactly
corresponding to Dedekind’s theory.

so that

Alternatives for Eucl. V. Def. 5.

Saccheri records in his Zuclides ob omni naevo vindicatus that a distinguished
geometer of his acquaintance proposed to substitute for Euclid’s the following
definition :

“ A first magnitude has to a second the same ratio that a third has to a
fourth when the first contains the aliquot parts of the second, acording o any
number [ie. with any denominator] w/hafever, the same number of times as
the number of times the third contains the same aliquot parts of the fourth”;
on which Saccheri remarks that he sees no advantage in this definition, which
presupposes the notion of dzvisipn, over that of Euclid which uses multiplication
and the notions of greater, equal, and less.

This definition was, however, practically adopted by Faifofer (Elementi di
Srometria, 3 ed., 1882) in the following form:

“ Four magnitudes taken in a certain order form a proportion when, by
measuring the first and the third respectively by any equi-submultiples
whatever- of the second and of the fourth, equal quotients are obtained.”

Ingrami (Elementi di geometriz, 1904) takes multiples of the first and third
instead of submultiples of the second and fourth :

“ Given four magnitudes in predetermined order, the first two homogeneous
with one another, and likewise also the last two, the magnitudes are said to
form a proportion (or to be in proportion) when any multiple of the first
contains the second the same number of times that the equimultiple of the
third contains the fourth.”

Veronese’s definition (Elementi di geometria, Pt. 11., 1905) is like that of
Faifofer ; Enriques and Amaldi (Element; di geometria, 1g905) adhere to
Euclid’s,

Proportionals of VII, Def. 20 a particular case.

It has already been observed that Euclid has nowhere proved (though the
fact cannot have escaped him) that the proportion of numbers is included in
the proportion of magnitudes as a special case. This is proved by Simson as
being necessary to the gsth and 6th propositions of Book x. Simson’s proof is
contained in his propositions C and D inserted in the text of Book v. and in
the notes thereon. Proposition C and the note on it prove that, 7 four
magnitudes are proportionals according to vi1. Def. 20, they are also proportionals
according #0 v. Def. 5. Prop. D and the note prove the partial converse,
namely that, if four magnitudes are proportionals according to the sth definition
of Book V., and if the first be any multiple, or any part, or parts, of the second,
the third is the same multiple, part, or parts, of the fourth. The proofs use
certain results obtained in Book v.

Prop. C is as follows :

If the first be the same multiple of the second, or the same part of i, that the
third is of the fourth, the first is to the second as the third to the fourth.
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Let the first 4 be the same multiple of B the second that C the third is of
the fourth D

Aisto Bas Cisto D

A — E
B e
© F
D— R

Take of 4, C any equimultiples whatever £, #; and of B, D any
equimultiples whatever &, H.

Then, because 4 is the same multiple of B that Cis of D,
and £ is the same multiple of A that Fis of C,
£ is the same multiple of B that #is of D. [v. 3]
Therefore £, F are the same multiples of B, D.
But G, A are equimultiples of B, D;

therefore, if £ be a greater multiple of B than G is, Fis a greater multiple of
D than His of D;

that is, if Z be greater than G, Fis greater than .
In like manner,
if £ be equal to G, or less, #is equal to A, or less than it,
But £, Fare equimultiples, any whatever, of 4, C;
and G, & any equimultiples whatever of B, D.
Therefore 4 is to B as Cis to D. [v. Def. 5]

Next, let the first 4 be the same par? of the second B that the third Cis
of the fourth D :

Aisto Bas Cisto D. A

For B is the same multiple of 4 that D 15 of C; B
wherefore, by the preceding case, C—

Bisto das Disto C; o

and, snwersely, A is to B as Cis to D.

[For this last inference Simson refers to his Proposition B. That
proposition is very simply proved by taking any equimultiples Z, F of B, D
and any equimultiples &, A of 4, C and then arguing as follows:

Since 4 isto B as Cisto D,

G, H are simultancously greater than, equal to, or less than &, &
respectively ; so that |

E, F are simultancously less than, equal to, or greater than G, A
respectively,

and therefore [Def. 5] Bisto 4 as D is to C.]

We have now only to add to Prop. C the case where 4.8 contains the

same parts of CD that EF does of GH:
in this case likewise 48 is to CD as EFto GH.

Let CK be a part of CD, and G L the same part of GH; let 4.5 be the

same multiple of CX that £Fis of G L.
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Therefore, by Prop. C,
ABisto CK as EFto GL.

asl

A—m———— B E
) G—

C—K

And CD, GH are equimultiples of CX, G Z, the second and fourth.

Therefore 48 is to CD as EF to'GH [Simson’s Cor. to v. 4, which
however is the particular case of v. 4 in which the “equimultiples” of one
pair are the pair itself, i.e. the pair multiplied by unity].

To prove the partial converse we begin with Prop. D.

If the first be to the second as the thivd to the fourth, and if the first be a
multiple or part of the second, the thivd is the same multiple or the same part of
the fourth.

LetAbeto Bas Cisto D;
and, first, let 4 be a multiple of 5;

C is the same multiple of .D.
Take E equal to 4, and whatever multiple 4 or £ is of B, make & the

same multiple of D.
Then, because 4 isto B as Cis to D,

and of B the second and D the fourth equimultiples have been taken £
and £
Aisto Eas Cis fo 7 [v. 4, Cor.]
But 4 is equal to £;
therefore C'is equal to 7.

[In support of this inference Simson cites his Prop. A, which however we
can directly deduce from v. Def. 5 by taking any, but £4e same, equimultiples
of all four magnitudes.]

A C

B——m—m— —_—

E F

Now Fis the same multiple of D that 4 is of B; )
therefore C is the same multiple of D that 4 is of B.
Next, let the first 4 be a part of the second B ;
C the third is the same part of the fourth 2.
Because 4 is to B as Cis to D,
inversely, Bisto A as D isto C. [Prop. B]
But A4 is a part of B; therefore B is a multiple of 4;
and, by the preceding case, D is the same multiple of C,
that is, C is the same part of D that 4 is of B.

We have, again, only to add to Prop. D the case where 4.8 contains any
parts of CD, and AB isto CD as EFto GH;
then shall £F contain the same parts of GH that 4.8 does of C.D.
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For let CK be a part of C.D, and GZ the same part of G&; and let 45
be a multiple of CX.

EF shall be the same multiple of GZ.

Take Af the same multiple of GZ that 4.8 is of CK;

therefore ABisto CK as Mis to GL. [Prop. C]
A ———————8 F
C e D G L H ™

And CD, GH are equimultiples of CX, GL;

therefore ) ABisto CDas Misto GH.
But, by hypothesis, ABisto CDas EFisto GH;
therefore M is equal to EF, [v. 9]

and consequently £F'is the same multiple of GZ that 458 is of CX.

DEFINITION 6.

Tao 8¢ Tov adrov Egovra AMdyov peyély dvdloyov kaheloba.

"Avdloyov, though usually written in one word, is equivalent to dva Adyov, 2
proportion. It comes however in Greek mathematics to be used practically as
an indeclinable adjective, as here; cf. ai réooapes ebfeiar dvdloyov Erovrac,
“the four straight lines will be proportional,” rpiywra tds wAevpis dvdloyov
éxovra, “triangles having their sides proportional.” Sometimes it is used
adverbially: dvdhoyov dpa éoriv ws 1] BA mpos Ty AT, ovrws 4 HA wpds mijv AZ,
“proportionally therefore, as 54 is to 4C, so is GD to DF”; so too, ap-
parently, in the expression 7j péon dvdloyor (ebfela), “the mean proportional.”
I do not follow the objection of Max Simon (Euclid, p. 110) to “proportional”
as a translation of dvdhoyor. “We ask,” he says, “in vain, what is proportional
to what? We say e.g. that weight is proportional to price because double, treble
etc. weight corresponds to double, treble etc. price. But here the meaning must
be ‘standing in a relation of proportio'n.’ ¥ Yet he admits that the Latin word
proportionalis is an adequate expression. He translates by ““in proportion”
in the text of this definition. But I do not see that *“in proportion ” is better
than “proportional.” The fact is that both expressions are elliptical when
used of four magnitudes ““in proportion”; but there is surely no harm in
using either when the meaning is so well understood.

The use of the word xeheiofo, /et magnitudes having the same ratio de
called proportional,” seems to indicate that this definition is Euclid’s own.

DEFINITION 7.

“Orav 8¢ 7&v lodkis molamiagiov 10 pév Tod mpuTov mollamhdotov Tmrepéxy
700 70D Sevrépov wodhamhagiov, T& 8¢ 76D Tpirov woldamAderor uy Vmepéyy Tov
709 rerdpTov molhariaciov, Tére 10 wpdrov wpds T0 dedrepov weilova Adyor Exew
Aéyerar, 7jrep 0 TpiTov wpds TO TéTaprov.

As De Morgan observes, the practical test of dusproportion is simpler than
that of proportion. For, whereas no examination of individual cases, however

H. E. II. 9
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extensive, will enable an observer of the construction and its model (the
illustration by means of columns and railings described above) to affirm
proportion or deny disproportion, and all it enables us to do is to fix limits
(as small as we please) to the disproportion (if any), a single instance may
enable us to deny proportion or affirm disproportion, and also to state which
way the disproportion lies. Let the rgth railing in the original fall beyond
the 11th column, while the 1gth railing of the (so-called) model does not
come up to the 1ith column. It follows from this one instance that the
railing distance of the model is too small relatively to the column distance, or
that the column distance is too great relatively to the railing distance. That
is, the ratio of # to ¢ is less than that of & to C, or the ratio of ¢ to # is greater
than that of C to &.

Saccheri (¢p. ¢it.) remarks (as Commandinus had done) that the ratio of
the first magnitude to the second will also be greater than that of the third to
the fourth if, while the multiple of the first is egua/ to the multiple of the
second, the multiple of the third is Zess than that of the fourth: a case not
mentioned in Euclid’s definition. Saccheri speaks of this case being included
in Clavius’ interpretation of the definition. I have, however, failed to find a
reference to the case in Clavius, though he adds, as a sort of corollary, in his
note on the definition, that if, on the other hand, the multiple of the first is
Jess than the multiple of the second, while the multiple of the third is »of less
than that of the fourth, the ratio of the first to the second is Zess than that of
the third to the fourth.

Euclid presumably left out the second possible criterion for a greater ratio,
and the definition of a less ratio, because he was anxious to reduce the
definitions to the minimum necessary for his purpose, and to leave the rest to
be inferred as soon as the development of the propositions of Book v. enabled
this to be done without difficulty.

Saccheri tried to reduce the second possible criterion for a greater ratio to
that given by Euclid in his definition without recourse to anything coming
later in the Book, but, in order to do this, he has to use “multiples” produced
by multipliers which are not integral numbers, but integral numbers p/us proper
fractions, so that Euclid’s Def. 7 becomes inapplicable.

De Morgan notes that “proof should be given that the same pair of
magnitudes can never offer both tests [i.e. the test in the definition for a
greater ratio and the corresponding test for a less ratio, with “less” substituted
for “greater” in the definition] to another pair; that is, the test of greater
ratio from one set of multiples, and that of less ratio from another.” In other
words, if m, 7, p, ¢ are integers and 4, B, C, D four magnitudes, none of the
pairs of equations

(1) mA>nB, mC=or<nD,
(2) mA=nB, mC<nD
can be satisfied simultaneously with any one of the pairs of equations

(3) 24=¢B, pC>g¢D,
(4) pA<g¢gB, pC>or=9D.
There is no difficulty in proving this with the help of two simple
assumptions which are indeed obvious.
We need only take in illustration one of the numerous cases. Suppose, if
possible, that the following pairs of equations are simultaneously true:
(1) md>nB, mC<nlD
and (2) pd<gB, pC»qD.
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Multiply (1) by 7 and (2) by 2.

(We need here to assume that, where X, ¥ are any equimultiples of any
magnitudes X, ¥,

accordingas X >=< ¥, 7X>=<#¥,
This is contained in Simson’s Axioms 1 and 3.)
We have then the pairs of equations
mgd >ngB, mgC < ngD,
npd <ngB, npC> ngD.
From the second equations in each pair it follows that
mgC < npC.

(We now need to assume that, if ».X, sX are any multiples of X, and
7Y, sV the same multiples of ¥, then,

according as X > =< sX, 7V>=< sV
Simson uses this same assumption in his proof of v. 18.)
Therefore mgA <npA.
But it follows from the first equations in each pair that
mg A > npA:
which is impossible.

Nor can Euclid’s criterion for a greater ratio coexist with that for equal
ratios.

DEFINITION 8.
’Avadoyla 8¢ & Tpioiv Gpois éaxlory doriv.

This is the reading of Heiberg and Camerer (who follow Peyrard’s Ms.)
and is that translated above. The other reading has é\axicrows, which can
only be translated “consists in three terms af Zast.” Hankel regards the defi-
nition as a later interpolation, because it is superfluous, and because the word
8pos for a Zerm in a proportion is nowhere else used by Euclid, though it is
common in later writers such as Nicomachus and Theon of Smyrna. The
genuineness of the definition is however supported by the fact that Aristotle
not only uses dpos in this sense (E#4. Nie. v. 6, 7, 1131 b 5, 9), but has a similar
remark (#0id. 1131 a 31) that a “proportion is in four terms at least.” The
difference from Euclid is only formal; for Aristotle proceeds: “The discrete
(Bugppévny) (proportion) is clearly in four (terms), but so also is the continuous
(ouvexrs).  For it uses one as two and mentions it twice, e.g. (in stating) that,
as a is to B, so also is 8 to y; thus 8is mentioned twice, so that, if 8 be twice
put down, the proportionals are four.” The distinction between discrefe and
continuous seems to have been Pythagorean (cf. Nicomachus, 1. 21, 5; 23,
2, 3; where however curpuérn is used instead of ouvexys); Euclid does not
use the words Suyjpyuéry and cwveyifs in this connexion.

So far as they go, the first words of the next definition (9), “When three
magnitudes are proportionals,” which seemingly refer to Def. 8, also support
the view that the latter is, at least in substance, genuine.

9—2
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DEFINITIONS g, IO

- ,
9. "Orav 8¢ rpla peyéfy dvdloyov §, 76 wpdTov wpds 70 Tpitov Surhaciova
Ayov &ew Méyerar fep wpds 16 Selirepor.

~ N by ’
1o. "Orav 8¢ téooapa peyédn dvdloyov §, 76 wpérov mpos TO TETapTOV
s e, T
Tpurhaciove Adyov Exew Aéyerar fimep mpds 1O devrepov, xal ael &&ffs dpolus, ws
dv 1 dvaroyla vwdpyy.

Here, and in connexion with the definitions of duplicate, triplicate, etc.
ratios, would be the place to expect a definition of “compound ratio.” None
such is however forthcoming, and the only “definition” of it that we find is
that forming vi. Def. 5, which is an interpolation made, perhaps, even before
Theon’s time. According to the interpolated definition, “ A ratio is said to
be compounded of ratios when the sizes (=gAwdmres) of the ratios multiplied
together make some (? ratio).” But the multiplication of the sizes (or
magnitudes) of two ratios of incommensurable, and even of commensurable,
magnitudes is an operation unknown to the classical Greek geometers.
Eutocius (Archimedes, ed. Heiberg, 111. p. 140) is driven to explain the
definition by making mpAwdrys mean the mumber from which the given ratio
is called, or, in other words, the number which multiplied into the consequent
of the ratio gives the antecedent. But he is only able to work out his idea with
reference to ratios between numbers, or between commensurable magnitudes ;
and indeed the definition is quite out of place in Euclid’s theory of
proportion.

There is then only one statement in Euclid’s text as we have it indicating
what is meant by compound ratio; this is in vi 23, where he says abruptly
“But the ratio of X to A/ is compounded of the ratio of X to Z and that of
Z to M Simson accordingly gives a definition (A of Book v.) of compound
ratio directly suggested by the statement in vi. 23 just quoted.

“ When there are any number of magnitudes of the same kind, the first
is said to have to the last of them the ratio compounded of the ratio which
the first has to the second, and of the ratio which the second has to the third,
and of the ratio which the third has to the fourth, and so on unto the last
magnitude.

For example, if 4, B, C, D be four magnitudes of the same kind, the
first 4 is said to have to the last D the ratio compounded of the ratio of
A to B, and of the ratio of B to €, and of the ratio of C to D ; or the ratio
(éf: A to D is said to be compounded of the ratios of 4 to B, B to C, and

to J.

And if 4 has to B the same ratio which £ has to #; and B to C the
same ratio that G has to &; and C to D the same that £ has to Z; then,
by this definition, 4 is said to have to D the ratio compounded of ratios
which are the same with the ratios of £ to #, G to A, and Xto L: and the
same thing is to be understood when it is more briefly expressed, by saying,
ﬁ' has Lto D the ratio compounded of the ratios of £ to F, G to H, and

to L.

In like manner, the same things being supposed, if A7 has to MV the
same ratio which A has to 2; then, for shortness’ sake, A/ is said to have to
AV the ratio compounded of the ratios of Eto F, G to H, and Kto L.»

De Morgan has some admirable remarks on compound ratio, which
not only give a very clear view of what is meant by it but at the same time
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supply a plausible explanation of the orégin of the term. “Treat ratio,” says
De Morgan, “as an engine of operation. Let that of 4 to & suggest the
power of altering any magnitude in that ratio.” (It is true that it is not yet
proved that, B being any magnitude, and P and Q two magnitudes of the
same kind, there does exist a magnitude 4 which is to & in the same ratio
as Pto Q. It is not till vi. 12 that this is proved, by construction, in the
particular case where the three magnitudes are straight lines. The proof in the
Greek text of v. 18 which assumes the truth of the more general proposition
is, by reason of that assumption, open to objection; see the note on that
proposition.) Now “every alteration of a magnitude is alteration in some
ratio, two or more successive alterations are jointly equivalent to but one, and
the ratio of the initial magnitude to the terminal one is as properly said to be
the compound ratio of alteration as 13 to be the compound addend in lieu of
8 and 5, or 28 the compound multiple for 7 and 4. Composition is used
here, as elsewhere, for the process of detecting one single alteration which
produces the joint effect of two or more. The composition of the ratios of
Pto R, Rto S Tto U, is performed by assuming 4, altering it in the first
ratio into B, altering & in the second ratio into C, and C in the third ratio
into D. The joint effect turns A4 into D, and the ratio of 4 to D is the
compounded ratio.” .

Another word for compounded ratio is ownppévos (cuvdrrw) which is
common in Archimedes and later writers.

It is clear that duplicate ratio, triplicate ratio etc. defined in v. Deff. g
and 1o are merely particular cases of compound ratio, being in fact the
ratios compounded of two, three etc. egual ratics. The use which the Greek
geometers made of compounded, duplicate, triplicate ratios etc. is well
llustrated by the discovery of Hippocrates that the problem of the duplication
of the cube (or, more generally, the construction of a cube which shall be to
a given cube in any given ratio) reduces to that of finding “two mean
proportionals in continued proportion.” This amounted to seeing that, if
x, y are two mean proportionals in continued proportion between any two
lines a, 4, in other words, if @is to x as x to ¥, and x is to ¥ as y to §, then a
cube with side a is to a cube with side x as ¢ is to #; and this is equivalent
to saying that ¢ has to & the triplicate ratio of « to a.

Euclid is careful to use the forms Surlaci{wv, rpiriaciov, etc. to express what
we translate as duplicate, triplicate etc. ratios; the Greek mathematicians, -
however, commonly used SirAdotos Adyes, “ double ratio,” rpirAdoios Adyos,
“triple ratio” etc. in the sense of the ratios of 2 to 1, 3 to 1 etec. The effort,
if such it was, to keep the one form for the one signification and the other for
the other was only partially successful, as there are several instances of the
contrary use, e.g. in Archimedes, Nicomachus and Pappus.

The expression for having the ratio which is “duplicate (triplicate) of that
which it has to the second ” is curious—8urhaciova (Tpirhaciova) Aoyov Eyew
Hmwep wpos 70 devrepov—rimep being used as if Surdaciove or Tpirdaciora were a
sort of comparative, in the same way as it is used after peifova or édeoove.
Another way of expressing the same thing is to say Adyos Surhaaior (rpurdacior)
700, 8v &et... the ratio “duplicate of that (ratio) which...” The explanation
of both constructions would seem to be that SirAdows or dumhaciwv is, as
Hultsch translates it in his edition of Pappus (cf. p. 59, 17), duplo maior,
where the ablative duplo implies not a difference but a proportion.

The four magnitudes in Def. 1o must of course be in continued proportion
(kara 76 cwvexés). The Greek text as it stands does not state this.
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DEFINITION I1.

*Opdhoya peyéin Aéyerar 70, pdv 1ryotpevo, TOTS Pyovpévars T 8¢ émopeva Tols
Eropévats.

It is difficult to express the meaning of the Greek in as few words. A
translation more literal, but conveying less, would be, “Antecedents are called
corresponding magnitudes to antecedents, and consequents to consequents.”

I have preferred to translate éuéAoyos by © corresponding ” rather than by
“ homologous.” I do not agree with Max Simon when he says (Euclid, p. 111)
that the technical term “homologous” is not the adjective 6udhoyos, and does
not mean “corresponding,” “agreeing,” but “like in respect of the proportion”
(“dhnlich in Bezug auf das Verhéltniss”). The definition seems to me to be
for the purpose of appropriating to a technical use precisely the ordinary
adjective &udloyos, “agreeing” or “corresponding.”

Antecedents, vyodpeve, are literally “leading (terms),” and consequents,
ércpeva, “ following (terms).”

DEFINITION I2.

"Evad\df Myos ori Ajdis 70D 1jyovpévov mpds 70 qyolpevov kal Tob émopévov
7Tpos TO émdpevov.

We now come to a number of expressions for the transformation of ratios
or proportions. The first is évadXdf, alternately, which would be better
described with reference to a proportion of four terms than with reference to
a ratio. But probably Euclid defined all the terms in Deff. 12—16 with
reference to rafios because to define them with reference to proportions would
look like assuming what ought to be proved, namely the legitimacy of the
various transformations of proportions (cf. v. 16, 7 Por,, 18, 17, 19 Por.). The
word &valAdf is of course a common term which has no exclusive reference to
mathematics. But this same use of it with reference to proportions already
occurs in Aristotle: 4nal. post. 1. 5, 74 a 18, kal T8 dvdloyov dre dvadrdf,
“and that a proportion (is true) alternately, or alternando.” Used with Adyos,
as here, the adverb évadAd¢ has the sense of an adjective, “alternate”; we
have already had it similarly used of “alternate angles” (ai vad\df yoviar) in
the theory of parallels.

DEFINITION 13.

"Avdmalw Myos éori Mjgns Tob éropévov ds ryovpévoy wpds 1o Fyolpevor os
éndpevov.

"Avdzadw, “inversely,” ““the other way about,” is also a general term with
no exclusive reference to mathematics. For this use of it with reference to
proportion c,f. Aristotle, De Caelo 1. 6, 273 b 32 v dvaloylav v v& Bdpy e,
ot xpover avdmadw &ovow, “the proportion which the weights have, the times

will have inzersely.” As here used with Adyos, dvdmaw is, exceptionally,
adjectival.

DEFINITION 14.

. 2 Ayn o e , -
. ?‘U}G(O'LS Adyov éorl Aijdus Toi fyovuévou perd Tob émopdvov ds Evds mpds avrd
70 &rcpevov,

_The womposition of a rqtio is to be distinguished from the compounding of
ratios and compounded ratio (cvyxeipevos Aéyos) as explained above in the note
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on Deff. g, to. The fact is that cvrrifym and what serves for the passive of
it (ovykeyar) are used for adding as well as compounding in the sense of
compounding ratios. In order to distinguish the two senses, I have always
used the word cmponends where the sense is that of this definition, though
this requires a slight departure from the literal rendering of some passages.
Thus the enunciation of v. 17 says, literally, “if magnitudes compounded be
in proportion they will also be in proportion separated™ (édv ovyxelpeva
peyebn dvdhoyov B, kai Siapefévra dvdloyov &rrar). This practically means
that, if 4 + Bisto B as C+ D is to D, then 4 is to B as C 1s to D.
I have accordingly translated as follows: “if magnitudes be proportional
componendo, they will also be proportional sgparands.” (It will be observed
that separando, a term explained in the next note, is here used, not relatively
to the proportion 4 is to B as Cis to D, but relatively to the proportion
componendo, viz. 4 + B is to B as C+ D is to D.) The corresponding
term for componende in the Greek mathematicians is owBéry literally “to one
who has compounded,” i.e. “if we compound.” (For this absolute use of the
dative of the participle cf. Nicomachus 1. 8, g w0 povddos...xard vov Swhdoioy
Aéyov wpoxwpodvTi péypts dmeipov, door kal dv yévovrar, odrol wdvres dpridis
dprwof elow. A very good instance from Aristotle is ¢4, Nic. 1. 5, 1097 b 12
émexTe(vovTL yap éml Tovs yovels kai Tovs dwoydvovs kai TEv ¢ilwv Tols Pilous
els dmepov wpoéeown) A variation for ewfém found in Archimedes is xara
ovvfesw. Perhaps the more exclusive use of the form ovvfér. by geometers
later than Euclid to denote the compositiorn of a ratio, as compared with
Euclid’s more general use of ovvfesis and other parts of the verb cuvwrifym
or avyketpar, may point to a desire to get rid of ambiguity of terms and to
make the terminology of geometry more exact.

DEFINITION 13,

Awipeqis Aéyov éorl Ajfns Ths vmepoxis, 7 vwepéxer 7O vyolpmevov Tob
éropévov, Tpos alTd TO émbpevor.

As composition of a rafio means the transformation, e.g., of the ratio of
A to B into the ratio of 4+ B to B, so the separation of a ratio indicates
the transformation of it into the ratio of 4 — 58 to B. Thus, as the new
antecedent is in one case got by adding the original antecedent to the original
consequent, so the antecedent in the other case is obtained by swbtracting the
original consequent from the original antecedent (it being assumed that the
latter is greater than the former). Hence the literal translations of Swipeois
Aéyov, “division of a ratio,” and of SeAdvr: (the corresponding term to
ouvbévry) as dividendo, scarcely give a sufficiently obvious explanation of the
meaning. Heiberg accordingly translates by “subtractio rationis,” which
again may be thought to depart too far from the Greek. Perhaps “separation”
and separando may serve as a COmpromise.

DEFINITION 16.

*Avacrpody Adyou édori Afjns Tob nyovpévou mpds Tiv vmepoxiv, 3 vwepéxe
7O 1pyovpevoy TOU émopévov.

Conversion of a ratio means taking, e.g., instead of the ratio of 4 to 5,
the ratio of 4 to 4 —25B (A being again supposed greater than 5). As
dvactpog is used for conversion, so avaorpépavr. is used Tor comreriendo
(corresponding to the terms owférre and Sekdvry).
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DEFINITION I7.

AC oou Méyos éori mhedvay Svroy peyeldy kal dXov avrols lowy T6 'n)\ﬁeos
civdvo AapBavopérov kai & 1§ aitd Aoy, Sravy os & Tols rpuf‘roz\; p.f-ye@sm 70
wp@rov Tpds TS dryaTov, ovTws évTols Sevrépots peyébeat o mpdtov wpos 0 éoxaTov”
# d\ws* Afus Tév drpav kel Urefaipeaw Tév pégwy.

8 Trov, ex aequali, must apparently mean ex aeguali distantia, at an equal
distance or interval, ie. after an equal number of intervening terms. The
wording of the definition suggests that it is rather a proportion ex acqual
than a ratio ex aequali which 1s being defined (cf. Def. 12). The meaning is
clear encugh. If @, 4, ¢ d... be one set of magnitudes, and 4, B, C, D...
another set of magnitudes, such that

aisto bas Aisto B,

bistocas Bisto G
and so on, the last proportion being, e.g.,

kisto/ as Kisto L,
then the inference ex aeguali is that

aistolas 4 isto L.

The fact that this is so, or the #zutk of the inference from the hypothesis,
is not proved until v. 22. The definition is therefore merely verbal; it gives
a convenient mane to a certain inference which is of constant application in
mathematics. But ex aegrali could not be intelligibly defined except with
reference to two sets of ratios respectively equal.

DEFINITION 18.

Terapaypévy 3¢ dvaloyia dorilv, Srav Tpidv Syrov peyefdy kel d\hov adrols
{owv 70 wAnfos ylvyrac os pdv & Tols mparos peyéfeaw fyodpevor wpds émdueroy,
obrws &v Tols Sevrépots peyéfeoiy fyolperor wpds émdpevor, os 82 &v rols mpdros
peyéfeow Emopevor wpds AAdo 71, ottws & Tois Sevrépois Ao T Tpds Tyovpevor.

Though the words 8¢ ioov, ex acguali, are not in this definition, it gives a
description of a case in which the inference ex aegual? is still true, as will be
hereafter proved in v. 23. A perfurbed proportion is an expression for the
case when, there being three magnitudes &, 4, ¢ and three others 4, B, C,

aistobas Bisto C,
and bistocas 4 isto B.

Another description of this case is found in Archimedes, “#he ratios being
dissimilarly ordered” {dvopolws reraypévov T6v Aéyov). The full description of
the fmference in this case {(as proved in V. 23), namely that

aistocas 4 isto G,

is ex aequali in perturbed proportion (& loov &v Terapiypém dvadoyiy).
Archimedes sometimes omits the & ooy, first giving the two proportions and
proceeding thus: “therefore, the proportions being dissimilarly ordered, a has
to ¢ the same ratio as A has to C.”

The fact that Def. 18 describes a particular case in which the inference
8¢ Yoou will be proved true seems to have suggested to some one after
Theon’s time the interpolation of another defimtion between 17 and 18 to
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describe the ordinary case where the argument ex aequali holds good. The
interpolated definition runs thus: “an ordercd proportion (veraypéry dvaloyia)
arises when, as antecedent is to consequent, so is antecedent to consequent,
and, as consequent is to something else, so is consequent to something else.”
This case needed no description after Defl 17 itself; and the supposed
definition is never used.

After the definitions of Book v. Simson supplies the following axioms.

1. Equimultiples of the same or of equal magnitudes are equal to one
another.

2. Those magnitudes of which the same or equal magnitudes are
equimultiples are equal to one another.

3. A multiple of a greater magnitude is greater than the same multiple
of a less.

4. ‘That magnitude of which a multiple is greater than the same multiple
of another is greater than that other magnitude.



BOOK V. PROPOSITIONS.

ProrosiTION 1.

If theve be any nuinber of magnitudes whatever whick are,
respectively, equinulizples of any magnitudes equal in muliiiude,
then, whatever multiple one of the magnitudes is of one, that
muliiple also will all be of all.

Let any number of magnitudes whatever 45, CD be
respectively equimultiples of any magnitudes £, # equal in
multitude ;

I say that, whatever multiple A5 is of £, that‘multiple will
AB, CD also be of £, F.

For, since A8 is the same multiple of £ that CD is of 7,

as many magnitudes as there are in 4.5 equal to £, so many
also are there in CD equal to /.

Let A48 be divided into the magnitudes 4G, GB equal
to £,

and CD into CH, AD equal to F;

then the multitude of the magnitudes A&, GB will be equal
to the multitude of the magnitudes C/A, AD.

Now, since 4G is equal to £, and CH to 7,
therefore AG is equal to £, and AG, CH to E, F.

For the same reason

GABis equal to £, and GB, HD to E, F;

therefore, as many magnitudes as there are in 45 equal to £,
so many also are there in A8, CD equal to E, F;
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therefore, whatever multiple 45 is of £, that multiple will
AB, CD also be of £, F.

Therefore ete.
Q. E. D.

De Morgan remarks of v. 1—6 that they are “simple propositions of
concrete arithmetic, covered in language which makes them unintelligible to
modern ears. The first, for instance, states no more than that % acres and
fen roods make Zen times as much as one acre and one rood.” One aim
therefore of notes on these as well as the other propositions of Book v.
should be to make their purport clearer to the learner by setting them side by
side with the same truths expressed in the much shorter and more familiar
modern (algebraical) notation. In doing so, we shall express magnitudes by
the first letters of the alphabet, a, 4, ¢ etc.,, adopting small instead of capital
letters so as to avoid confusion with Euclid’s lettering ; and we shall use the
small letters 72, #, p etc. to represent integral numbers. Thus ma will always
mean # times a or the »™ multiple of  (counting 1. @ as the first, 2. a as the
second multiple, and so on).

Prop. 1 then asserts that, if ma, m&, mc etc. be any equimultiples of 4, 4, ¢
etc., then

ma+mb+met...=m{@+b+c+..).

ProrosiTioN 2.

If a forst magnitude be the same multiple of a second
that a third is of a fourth, and a fifth also be the same multiple
of the second that a sixth is of the fourth, the sum of the first
and _fifth will also be the same multiple of the second that the
sum of the thivd and sixith is of the fourth.

Let a first magnitude, A3, be the same multiple of a
second, C, that a third, DZE,

is of a fourth, #/, and leta , . . B _ @

fifth, B, also be the same '

multiple of the second, C, that ©7 £ H
a sixth, £/, is of the fourth P 1 = : —
F; F——

I say that the sum of the
first and fifth, 4G, will be the same multiple of the second, C,
that the sum of the third and sixth, D/, is of the fourth, /.
For, since A8 is the same multiple of C that DZ is of 7,
therefore, as many magnitudes as there are in 45 equal to C,
so many also are there in D£ equal to 7.
For the same reason also,
as many as there are in BG equal to C, so many are there
also in £/ equal to /7;
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therefore, as many as there are in the whole 4G equal to C,
so many also are there in the whole D/ equal to £

Therefore, whatever multiple 4G is of C, that multiple
also is DH of F.

Therefore the sum of the first and fifth, 4G, is the same
multiple of the second, C, that the sum of the third and sixth,
DH, is of the fourth, £.

Therefore etc.

Q. E. D.

To find the corresponding formula for the result of this proposition, we
may suppose @ to be the *“second” magnitude and & the “fourth.” If now
the “first” magnitude is ma, the “third” is, by hypothesis, 76 ; and, if the
“fifth ” magnitude is za, the “sixth” is #6. The proposition then asserts that
ma + na is the same multiple of a that mé + #4 is of 6.

More generally, if pa, ga... and pé, ¢b4... be any further equimultiples of
a, & respectively, ma + na + pa+ga+ ... is the same multiple of a that md+
nb+pb+gb+ ... is of &. This extension is stated in Simson’s corollary to
v. 2 thus:

“From this it is plain that, if any number of magnitudes 45, BG, GH
be multiples of another C; and as many DE, EK, KL be the same
multiples of F, each of each; the whole of the first, viz. A4, is the same
multiple of C that the whole of the last, viz. DZ, is of £”

The course of the proof, which separates »z into its units and also # into
its units, practically tells us that the multiple of & arrived at by adding the
#wo multiples is the (m + z)th multiple ; or practically we are shown that

ma+7za—(m+n)cz
or, more generally, that

matna+pat...=(m+n+p+..)a.

ProposiTION 3.

If a first magnitude be the same multiple of a second
that a third is of a fourth, and if equimultiples be taken
of the first and third, then also ex aequali the magnitudes
taken will be equimultiples respectively, the one of the second
and the other of the fourth.

Let a first magnitude 4 be the same multiple of a second
B that a third Cis of a fourth D, and let equimultiples £7,
GH be taken of 4, C;

I say that £F is the same multiple of & that GA is of D.
For, since £F is the same multiple of A that G/ is of C,

therefore, as many magnitudes as there are in £F equal to
A, so many also are there in G/ equal to C.
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Let £F be divided into the magnitudes £&, A7 equal
to A4, and G/ into the magnitudes GL, LH equal to C;

then the multitude of the magnitudes £X, KZ will be equal
to the multitude of the magnitudes GZ, LA.

A —
B ————

E K F
¢ ——t—p—

D —

o L 4

And, since A4 is the same multiple of 5 that C is of D,
while ZK is equal to 4, and GZL to C,
therefore £K is the same multiple of 5 that GL is of D.
For the same reason
K F'is the same multiple of 5 that LA is of D.

Since, then, a first magnitude ZX is the same multiple
of a second B that a third G L is of a fourth D,

and a fifth AF is also the same multiple of the second A that
a sixth Z /A is of the fourth D,

therefore the sum of the first and fifth, £/, is also the same
multiple of the second B that the sum of the third and sixth,
GH, is of the fourth . [v. 2]

Therefore ete.
Q. E. D,

Heiberg remarks of the use of ex aegral’ in the enunciation of this propo-
sition that, strictly speaking, it has no reference to the definition (17) of a
ratio ex aeguali. But the uses of the expression here and in the definition
are, I think, sufficiently parallel, as may be secen thus. The proposition
asserts that, if

na, nb are equimultiples of a, 5,

and if m.na, m.nd are equimultiples of za, 7,
then #. na is the same multiple of 2 that »2. 26 is of 5. Clearly the proposi-
tion can be extended by taking further equimultiples of the last equimultiples
and so on; and we can prove that

#.g...m.nais the same multiple of @ that p.g...m. 2 1s of &,
where the series of numbers p.g¢..m.7 is exactly the same in both
expressions ;
and ex aeguali (8 loov) expresses the fact that the equimultiples are a7 tke
same distance from g, b in the series na, 7. na... and nb, m . nb... respectively.
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Here again the proof breaks = into its units, and then breaks # into its
units ; and we are practically shown that the multiple of 2 arrived at, viz.
m.na, is the multiple denoted by the product of the numbers m, #, ie. the
(man)th multiple, or in other words that

m.na=mn.a.

Prorosrtion 4.

If @ first magnitude have to a second the same ratio as a
third to a fourth, any equimultiples whatever of the first and
third will also have the same ratio to any equimultiples
whatever of the second and fourth respectively, taken in
corresponding ovder.

For let a first magnitude A4 have to a second B the same
ratio as a third C to a fourth 2 ; and let equimultiples £, 7
be taken of A4, C, and G, H other chance, equ1mult1ples of
B, D;

[ say that, as £ is to G, so is & to /.

A———
B
E—rt——or
G ——— .
K
M t ¥
G ——

D.___
Fe——t

H—t—

L
N

For let equimultiples X, Z be taken of £, F, and other,
chance, equimultiples M, &V of G, H.
Since £ is the same multiple of A4 that # is of C,

and equimultiples X, L of £, F have been taken,
therefore K is the same multiple of 4 that LZ isof C.  [v. 3]
For the same reason

M is the same multiple of 2 that NV is of 1.
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And, since, as 4 is to B, so is C to D,

and of 4, C equimultiples X, L have been taken,

and of 5, D other, chance, equimultiples 47, &V,

therefore, if X is in excess of M, L also is in excess of &V,

if it 1s equal, equal, and if less, less. {v. Def. 5]
And KX, L are equimultiples of &, 7,

and M, IV other, chance, equimultiples of G, & ;

therefore, as £ is to G, so is Fto H. [v. Def. 5]
Therefore etc.

Q. E. D.

This proposition shows that, if 4, 4, 4 4 are proportionals, then
ma is to nb as wc is to nd ;
and the proof is as follows:

Take pma, pme any equimultiples of ma, me, and ¢grd, gnd any equimulti-
ples of #d, nd.
Since @ : b=¢: 4, it follows [v. Def. 5] that,

according as pma > = <gnb, pmc> = < gud.
But the p- and g-equimultiples are azy equimultiples ;

therefore [v. Def. 5]
ma : nb=mc : nd.

It will be observed that Euclid’s phrase for taking any equimultiples of
A, C and any other equimultiples of B, D is “let there be taken equimmlti-
ples £, F of 4, C, and G, H other, chance, equimultiples of B, D,” E, F
being called iodxis modldarddew simply, and &, H dAda, & érvyey, lodxs
wodomAdowe.  And similarly, when azy equimultiples (&, Z) of £, F
come to be taken, and azy other equimultiples (#, V) of &, H. But
later on Euclid uses the same phrases about the zezw equimultiples with
reference to the original magnitudes, reciting that “there have been taken, of
A, C, equimultiples X, Z and of B, D, other, chance, equimultiples M, V”;
whereas M, N are not any equimultiples whatever of B, D, but are any
equimultiples of the parzicuiar multiples (G, &) which have been taken of B,
D respectively, though #hese Jatter have been taken at random. Simson would,
in the first place, add & &vyev in the passages where ezy equimultiples £, 7
are taken of 4, C and any equimultiples &, Z are taken of £, F, because the
words are “wholly necessary” and, in the second place, would leave them
out where M, IV are called dA\a, & &ruyev, lodris moddamhdoie of B, D, because
it is not true that of B, .D have been taken “any equimultiples whatever (&
Truxe), M, N Simson adds: “And it is strange that neither Mr Briggs, who
did right to leave out these words in one place of Prop. 13 of this book, nor
Dr Gregory, who changed them into the word ‘some’ in three places, and
left them out in a fourth of that same Prop. 13, did not also leave them out
in this place of Prop. 4 and in the second of the two places where they occur
in Prop. 17 of this book, in neither of which they can stand consistent with
truth ; And in none of all these places, even in those which they corrected in
their Latin translation, have they cancelled the words & &ruyxe in the Greek
text, as they ought to have done. The same words & é&rvye are found in
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four places of Prop. 11 of this book, in the first and last of which they are
necessary, but in the second and third, though they are true, they are quite
superfluous ; as they likewise are in the second of the two places in which
they are found in the 12th prop. and in the like places of Prop. 22, 23 of this
book ; but are wanting in the last place of Prop. 23, as also in Prop. 23,
Book x1.”

As will be seen, Simson’s emendations amount to alterations of the text
so considerable as to suggest doubt whether we should be justified in making
them in the absence of MS. authority. The phrase ““equimultiples of 4, C
and other, chance, equimultiples of B, D7 recurs so constantly as to suggest
that it was for Euclid a quasi-stereotyped phrase, and that it is equally genuine
wherever it occurs. Is it then absolutely necessary to insert d &ruye in places
where it does not occur, and to leave it out in the places where Simson holds
it to be wrong? I think the text can be defended as it stands. In the first
place to say ‘““take equimultiples of 4, C” is a fair enough way of saying
take any equimultiples whatever of 4, C. The other difficulty is greater, but
may, 1 think, be only due to the adoption of any whatever as the translation
of & &vxe As a matter of fact, the words only mean ckance equimultiples,
equimultiples which are the result of random selection. Is it not justifiable
to describe the product of two chance numbers, numbers selected at random,
as being a “ chance number,” since it is the result of two random selections ?
1 think so, and I have translated & &vye accordingly as implying, in the case
in question, “other equimultiples whatever they may happen to be.”

To this proposition Theon added the following :

“Since then it was proved that, if X is in excess of M, Z is also in excess
of N, if it is equal, (the other is) equal, and if less, less,
it is clear also that,
if M is in excess of X, /V is also in excess of Z, if it is equal, (the other is)
equal, and if less, less;
and for this reason,
as G is to E, so also is H to A

Porism. From this it is manifest that, if four magnitudes be proportional,
they will also be proportional inversely.”

Simson rightly pointed out that the demonstration of what Theon intended
to prove, viz. that, if &, &, F A be proportionals, they are proportional
inversely, i.e. G is to £ as A is to £, does not in the least depend upon this
4th proposition or the proof of it; for, when it is said that, “if & exceeds 47,
L also exceeds V etc.,” this is not proved from the fact that Z, G, £, H are
proportionals (which is the conclusion of Prop. 4), but from the fact that
A, B, C, D are proportionals.

The proposition that, if 4, B, C, D are proportionals, they are also
proportionals inversely is not given by Euclid, but Simson supplies the proof
in his Prop. B. The fact is really obvious at once from the 5th definition
of Book v. {cf. p. 127 above), and Euclid probably omitted the proposition
as unnecessary.

Simson added, in place of Theon’s corollary, the following:

“ Likewise, if the first has the same ratio to the second which the third
has to the fourth, then also any equimultiples whatever of the first and third
have the same ratio to the second and fourth: And, in like manner, the first
and the third have the same ratio to any equimultiples whatever of the second
and fourth.”
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The proof, of course, follows exactly the method of Euclid’s proposition
itself, with the only difference that, instead of one of the two pairs of equi-

maultiples, the magnitudes themselves are taken. In other words, the conclu-
sion that

ma 1s to nb as mc is to nd
is equally true when either #z or 7 is equal to unity.

As De Morgan says, Simson’s corollary is only necessary to those who will
not admit M into the list M, 24, 30 etc.; the exclusion 1s grammatical and
nothing else. The same may be said of Simson’s Prop. A to the effect that,
““If the first of four magnitudes has to the second the same ratio which the
third has to the fourth : then, if the first be greater than the second, the third
is also greater than the fourth; and if equal, equal; if less, less.”” This is
needless to those who believe omce A to be a proper component of the list of
multiples, in spite of mulfus signifying many.

ProrosiTiON 5.

If a magnitude be the same multiple of a magnitude that
a part subtracted is of a part sublvacted, the remainder will
also be the same multiple of the remainder that the whole s of
the whole.

5 For let the magnitude 45 be the same multiple of the
magnitude CD that the part 4Z subtracted is of the part CF
subtracted ;

I say that the remainder £2B is also the same multiple of the
remainder #0 that the whole 47 is of the whole CD.

lh\ L3 L E 4. A B
—

T T t t —t

6 ¢ F D

1o For, whatever multiple 4Z is of CF, let £5 be made
that multiple of CG. .
Then, since AF is the same multiple of CF that £5 is
of GC,
therefore A Z is the same multiple of C# that 45 is of G[F :
V. I
15 But, by the assumption, AF is the same multiple of CF
that AP is of CD.

Therefore A5 is the same multiple of each of the magni-
tudes GF, CD ;

therefore GF is equal to CD.
20 Let CF be subtracted from each;
therefore the remainder GC is equal to the remainder /.

H. E. IL 10
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And, since A is the same multiple of C# that £5 is of
GG,

and GC is equal to DF,

25 therefore A is the same multlple of CF that £B is of FD.
But, by hypothesis,
AE is the same multiple of C# that A5 is of CD;
therefore £75 is the same multiple of 7D that 45 is of CD.

That is, the remainder Z8 will be the same multiple of
3o the remainder 7D that the whole 45 is of the whole CD..
Therefore etc.

Q. E. D.

10, let EB be made that multiple of CG, rocavrarhdoioy yeyovérw xal 76 EB 7of
TH. From this way of stating the construction one might suppose that CG was given and
ZEB had to be found equal to a certain multiple of it. But in fact ZB is what is given and
CG has to be found, i.e. CG has to be constructed as a certain swémultiple of Z5.

This proposition corresponds to V. 1, with subtraction taking the place of
addition. It proves the formula

ma—mb=m(a—0b).

Euclid’s construction assumes that, if 4Z is any multiple of CZ, and £E5
is any other magnitude, a-fourth straight line can be found such that £8 is
the same multiple of it that 4Z is of C# or in other words that, given any
magnitude, we can divide it into any number of equal parts. This is however
not proved, even of straight lines, much less other magnitudes, until vi. 9.
Peletarius had already seen this objection to the construction. The difficulty
is not got over by regarding it merely as a kypothetical construction ; for
hypothetical constructions are not in Euclid’s manner. The remedy i to
substitute the alternative construction given by Simson, after Peletarius and
Campanus’ translation from the Arabic, which only requires us to add a
magnitude to itself a certain number of times. The demonstration follows
Euclid’s line exactly.

“Take 4G the same multiple of #D that A is of CF; G

therefore AZ is the same multiple of C# that £G is of CD.

(v. 1]

But A4E, by hypothesis, is the same multiple of CF that 4
AB is of CD; therefore £G is the same multiple of CD that
ABis of CD;

wherefore £G is equal to 45.

Take from them the common magnitude 4Z ; the remainder
AG is equal to the remainder £5.

Wherefore, since AZ is the same multiple of C# that 4G is
of FD, and since 4G is equal to £5, E
therefore 4.£ is the same multiple of C# that £7 is of FD.

But 4 is the same multiple of C#that 48 is of CD;
therefore £7 is the same multiple of FD that 4B is of CD.” 8

Q. E. D.

o]
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Euclid’s proof amounts to this.
Suppose a magnitude «x taken such that
ma —mb=mz, say.
Add mb to each side, whence (by v. 1)
ma = (x+ b).

Therefore a=x+dorx=a-—24,
so that ma — mb=m(a - b).

Simson’s proof, on the other hand, argues thus.

Take x =m (a— £), the same multiple of (¢ — &) that mb is of .

Then, by addition of m4 to both sides, we have [v. 1]

x + mb=1ma,

or x = ma —mb.
That is, ma —mb=m(e—0b).

ProrosiTiON 6.

LIf two magnrtudes be equimultiples of two magnitudes, and
any magnitudes subtracted from them be equinntltiples of the
same, the remainders also ave cither equal to the same ov equi-
multiples of them.

For let two magnitudes 4.5, CD be equimultiples of two
magnitudes £, £, and let 4G, CH
subtracted from them be equi- A G 8
multiples of the same two £, F; '

. E
I say that the remainders also, G5, K o 4 D
HD, are either equal to £, F or ettt
equimultiples of them. F—

For, first, let GB be equal to £;
I say that A D is also equal to /.

For let CK be made equal to 7.

Since A G is the same multiple of £ that C/ is of A,
while G5 is equal to £ and XC to 7,
therefore 45 is the same multiple of £ that K/ is of 7.

R [v. 2]

But, by hypothesis, 4B is the same multiple of £ that

CD is of F;

therefore K/ is the same multiple of # that CD is of .

Since then each of the magnitudes K77, CD is the same
multiple of 7,

therefore K/ is equal to CD.

10—2
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Let CH be subtracted from each ;

therefore the remainder KC is equal to the remainder AD.
But £ is equal to KC;

therefore A D is also equal to 7.

Hence, if GB is equal to £, AD is also equal to 7.
Similarly we can prove that, even if G& be a multiple
of £, HD is also the same multiple of /.
Therefore etc.
Q. E. D.

This propositien corresponds to v. 2, with subtraction taking the place of
addition. It asserts namely that, if # is less than m, ma —na is the same
multiple of @ that mé—nb is of 4. The enunciation distinguishes the cases in
which 7 — 7 is equal to 1 and greater than 1 respectively.

Simson observes that, while only the first case (the simpler one) is proved
in the Greek, both are given in the Latin translation from the Arabic; and
he supplies accordingly the proof of the second case, which Euclid leaves to
the reader. The fact is that it is exactly the same as the other except that, in
the construction, CX is made the same multiple of #that GB is of Z, and
at the end, when it has been proved that KC is equal to A0, instead of
concluding that A0 is equal to /4 we have to say *“ Because GB is the same
multiple of Z that £C is of F, and KC is equal to HAD, therefore AD is
the same multiple of #that G5 is of £.”

ProrosiTioN 7.

Equal magnitudes have to the same the same vatio, as also
has the same to equal magnitudes.

Let 4, B be equal magnitudes and C any other, chance,
magnitude ;
I say that each of the magnitudes 4, B has the same ratio

to C, and C has the same ratio to each of the magnitudes
A, B.

1
—3

For let equimultiples D, £ of A, B be taken, and of C
another, chance, multiple 7.

Then, since D is the same multiple of A4 that £ is of 5,
while 4 is equal to 5,

therefore D is equal to £.
But £is another, chance, magnitude.



v. 7, 8] PROPOSITIONS 6—8 149

If therefore D is in excess of F, £ is also in excess of 7,
if equal to it, equal ; and, if less, less.
And D, E are equimultiples of 4, B,
while / is another, chance, multiple of C;
therefore, as A is to C, so is B to C. [v. Def. 5]

I say next that C also has the same ratio to each of the
magnitudes A4, 5.
For, with the same construction, we can prove similarly

that D is equal to £
and £ is some other magnitude.

If therefore # is in excess of D, it is also in excess of £,
if equal, equal; and, if less, less.
And F is a multiple of C, while D, £ are other, chance,
equimultiples of 4, 5 ;
therefore, as Cis to 4, so is C to 5. [v. Def. 5]
Therefore etc.

Porism. From this it is manifest that, if any magnitudes
are proportional, they will also be proportional inversely.
Q. E. D.

In this proposition there is a similar use of § &vxer to that which has
been discussed under Prop. 4. Azny multiple # of C is taken and then,
four lines lower down, we are told that “ # is another, chance, magnitude.”
It is of course not any magnitude whatever, and Simson leaves out the
sentence, but this time without calling attention to it.

Of the Porism to this proposition Heiberg says that it is properly put here
in the best wms.; for, as August had already observed, if it was in its right
place where Theon put it (at the end of v. 4), the second part of the proof of
this proposition would be unnecessary. But the truth is that the Porism is no
more in place here. The most that the proposition proves is that, if 4, B
are equal, and C any other magnitude, then two conclusions are simultaneously
established, (1) that 4 is to Cas Bisto Cand (2) that Cisto 4 as Cis to
B. The second conclusion is not established from the first conclusion (as
it ought to be in order to justify the inference in the Porism), but from a
hypothesis on which the first conclusion itself depends; and moreover it is
not a proportion in its general form, i.e. between fou» magnitudes, that is in
question, but only the particular case in which the consequents are equal.

Aristotle tacitly assumes #nwversion (combined with the solution of the
problem of Eucl. v1. 11) in Meteorologica 11. 5, 376 a 14—16.

ProrosiTiOoN 8.

Of unequal magnitudes, the greater has to the same a
greater vatio than the less has; and the same has to the less
a greater vatio than it has lo the greater.
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[v.8

Let 4B, C be unequal magnitudes, and let 45 be greater;

let D be another, chance,

magnitude ; A E B
[ say that A5 has to D a |
greater ratio than C has to - G H
D, and D has to C a greater '
ratio than it has to A5. K

For, since 4B is greater D
than C, let BE be made equal -
to C; M

N

then the less of the magni-
tudes AZ, EB, if multiplied,
will sometime be greater than 2.

[Case 1.]

First, let A E be less than £5;

let 4 £ be multiplied, and let #G be a multiple of it which is
greater than D ;

then, whatever multiple #G is of AZ, let GH be made the
same multiple of £5 and X of C;

and let Z be taken double of D, M triple of it, and successive
multiples increasing by one, until what is taken is a multiple
of D and the first that is greater than K. Let it be taken,
and let it be &V which is quadruple of D and the first
multiple of it that is greater than X.

Then, since X is less than /V first,
therefore X is not less than 7.

And, since G is the same multiple of A that GH is of
EB,

therefore G is the same multiple of AZ that /A is of AB.

[v. 1]
But G is the same multiple of A Z that X is of C;

therefore /A is the same multiple of 4B that K is of C;
therefore /A, K are equimultiples of 4B, C.

Again, since G/ is the same multiple of £8 that X is
of C,

and £B is equal to C,
therefore G/ is equal to X

[v. Def. 4]
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But A is not less than A7;

therefore neither is G4 less than M.

And FG is greater than D ;
therefore the whole 77/ is greater than D, M together.

But D, M together are equal to A, inasmuch as J/ is
triple of D, and 4/, D together are quadruple of D, while
N }\Sf also quadruple of D; whence M, D together are equal
to 4V.

But #H is greater than M, D ;

therefore /4 is in excess of NV,
while A is not in excess of M.

And FH, K are equimultiples of 475, C, while NV is
another, chance, multiple of D;

therefore A5 has to D a greater ratio than C has to D.

[v. Def. 1]

I say next, that 2 also has to C a greater ratio than D
has to AB.

For, with the same construction, we can prove similarly
that /V is in excess of X, while /V is not in excess of F /.

And & is a multiple of [,

while /#/, K are other, chance, equimultiples of 4.5, C;
therefore D has to C a greater ratio than 0 has to 45.

{v. Def. 7]
[Case 2.]

Again, let AFE be greater than £5.
Then the less, £25, if multiplied, will sometime be greater
than 2. [v. Def. 4]

Let it be multiplied, and E B
let GH be a multiple of £B  * '

and greater than J; c— " "
and, whatever multiple GH is - ‘
of EB, let FG be made the
same multiple of A£,and X P?7
of C. A
Then we can prove simi- M ' § al
larly that £/, K are equi- N ! * —t

multiples of A5, C;
and, similarly, let V be taken a multiple of D but the first
that is greater than 7G,

so that G is again not less than /.
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But GH is greater than D ;
therefore the whole /A is in excess of DD, M, that is, of V.

Now X is not in excess of /V, inasmuch as /G also, which
is greater than G/, that is, than X, is not in excess of V.

“And in the same manner, by following the above argu-
ment, we complete the demonstration.

Therefore etc.

Q. E. D.

The two separate cases found in the Greek text of the demonstration can
practically be compressed into one. Also the expositor of the two cases
makes them differ more than they need. It is necessary in each case to
select the smaller of the two segments 4E, EB of AB with a view to taking
a multiple of it which is greater than D; in the first case therefore AE is
taken, in the second £8. But, while in the first case successive multiples of
D are taken in order to find the first multiple that is greater than G & {(or X)),
in the second case the multiple is taken which is the first that is greater than
FG. This difference is not necessary; the first multiple of D that is greater
than G A would equally serve in the second case. Lastly, the use of the
magnitude X might have been dispensed with in both cases; it is of no
practical use and only lengthens the proofs. For these reasons Simson
considers that Theon, or some other unskilful editor, has vitiated the
proposition. This however seems an unsafe assumption; for, while it was
not the habit of the great Greek geometers to discuss separately a number. of
different cases {e.g. in 1. 7 and 1. 35 Euclid proves one case and leaves the
others to the reader), there are many exceptions to prove the rule, e.g. Eucl.
mn 25 and 33; and we know that many fundamental propositions, after-
wards proved generally, were first discovered in relation to particular cases
and then generalised, so that Book v, presenting a comparatively new
theory, might fairly be expected to exhibit more instances than the earlier
books do of unnecessary subdivision. The use of the X is no more con-
clusive against the genuineness of the proofs.

Nevertheless Simson’s version of the proof is certainly shorter, and more-
over it takes account of the case in which AZ is equal to EB, and of the case
in which 4Z, EB are both greater than D (though these cases are scarcely
worth separate mention).

“If the magnitude which is not the greater of the two AZ, £25 be (1)
not less than D, take G, GH the doubles of A&, EB.

But if that which is not the greater of the two 4.E, £2B be (2) less than
D, this magnitude can be multiplied so as to become greater than D whether
it be 4E or EB.

Let it be multiplied until it becomes greater than D, and let the other be
multiplied as often ; let #G be the multiple thus taken of 4Z and G the
same multiple of EB
therefore #G and G'H are each of them greater than D.

And, in every one of the cases, take Z the double of D, M its triple and
so on, till the multiple of D be that which first becomes greater than GA.

Let .V be that multiple of D which is first greater than GH, and M the
multiple of 2 which is next less than &V,
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Then, because &V is the multiple of 2 which is the first that becomes
greater than G4,

the next preceding multiple is not greater than GH;
that is, G/ is not less than M.

And, since #G is the same multiple of AZ that GH is of Z 5,
G H is the same multiple of ZB that FH is of 45; [v. 1]
wherefore #H, GH are equimultiples of 48, £B.

And it was shown that GA was not less than Ji/;

and, by the construction, G is greater than 2 ;

therefore the whole F/ is greater than .}/, D together.

But M, D together are equal to V;
therefore FH is greater than V.

But G A is not greater than V;
and FH, GH are equimultiples of 458, BE,

and /Vis a multiple of D;

therefore 4.5 has to D a greater ratio than BE (or C) has to D. [v. Def. 7]

Also D has to BE a greater ratio than it has to 4 /5.
For, having made the same construction, it may be shown, in like manner,
that /V'is greater than G A but that it is not greater than ##;

and 4V is a multiple of D,
and G H, FH are equimultiples of £5, AZ;
s Therefore D has to £5 a greater ratio than it has to AB.”  [v. Def. 7]
The proof may perhaps be more readily grasped in the more symbolical
form thus.

Take the mth equimultiples of C, and of the excess of 4.8 over C (thatis,
of AE), such that each is greater than D ;

and, of the multiples of D, let p.D be the first that is greater than 2 C, and zD
the next less multiple of .
Then, since 2 ( is not less than nD,

and, by the construction, #(4 E) is greater than D,
the sum of 7#C and m(A4 E) is greater than the sum of 20 and 0.

That is, (4 B) is greater than p.D.

And, by the construction, 72 is less than g.D.

Therefore [v. Def. 7] A8 has to .D a greater ratio than C has to 0.
Again, since p0 is less than m(A5),

and p.D is greater than mC,
D has to C a greater ratio than D has to 4.5.

ProrosiTioN 0.

Magnitudes whick have the sawie vatio to the same are
equal to one another ; and magnitudes to whick the same has
the same ratio ave equal.
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For let each of the magnitudes 4, B have the same
ratio to C;
I say that A4 is equal to 5.

For, otherwise, each of the
magnitudes A, B would not
have had the same ratio to C; [v. 8]

but it has;
therefore A is equal to 5.

Again, let C have the same ratio to each of the magni-
tudes A, B;

I say that A4 is equal to 5.

For, otherwise, C would not have had the same ratio to
each of the magnitudes A4, 5; [v. 8]

but it has;
therefore 4 is equal to 5.

Therefore etc.
Q. E. D.

IfA4isto Cas Bisto C,
orif Cis to 4 as Cis to B, then 4 is equal to B. .

Simson gives a more explicit proof of this proposition which has the
advantage of referring back to the fundamental sth and 7th definitions,
instead of quoting the results of previous propositions, which, as will be seen
from the next note, may be, in the circurnstances, unsafe.

“Let A, B have each of them the same ratio to C;

A is equal to B.

For, if they are not equal, one of them is greater than the other;
let 4 be the greater.

Then, by what was shown in the preceding proposition, there are some
equimultiples of 4 and B, and some multiple of C, such that the multiple of

< is greater than the multiple of C, but the multiple of 7 is not greater than
that of C.

Let such multiples be taken, and let D, £ be the equimultiples of 4, B,

and F the multiple of C, so that D may be greater than 5, and £ not greater
than Z, .

But, because 4 is to Cas Bisto C,
and of 4, B are taken equimultiples D, £, and of C is taken a multiple #
and D is greater than £,
£ must also be greater than .7 [v. Def. 5]
But £ is not greater than #": which is impossible.
Next, let € have the same ratio to each of the magnitudes 4 and B;
4 is equal to B.
For, if not, one of them is greater than the other ;
let A4 be the greater.
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Therefore, as was shown in Prop. 8, there is some multiple # of C, and
some equimultiples £ and D of B and 4, such that F is greater than £ and
not greater than 2.

But, because Cisto Bas Cis to 4,

and # the multiple of the first is greater than Z the multiple of the second,

Z the multiple of the third is greater than D the multiple of the fourth.
[v. Def. 5]

But Fis not greater than 2 : which is impossible.

Therefore A4 1s equal to B.”

PROPOSITION IO.

Of magnitudes which have a vatio fo the same, that
which has a greater vatio is grealer,; and that to which the
same has a greater vatio is less.

For let 4 have to C a greater ratio than 5 has to C;
I say that A is greater than 5.

A B
C

For, if not, A is either equal to & or less.
Now A is not equal to B;

for in that case each of the magnitudes 4, 5 would have
had the same ratio to C; [v. 7]
but they have not;
therefore 4 is not equal to 5.
Nor again is A less than 5;
for in that case A4 would have had to C a less ratio than &
has to C; [v. 8)
but it has not;
therefore A is not less than A.
But it was proved not to be equal either;
therefore 4 is greater than 5.
Again, let C have to B a greater ratio than C has to 4 ;
I say that & is less than A.
For, if not, it is either equal or greater.
Now B is not equal to 4 ;
for in that case C would have had the same ratio to each of
the magnitudes 4, Z; [v. 7]
but it has not;
therefore A is not equal to 5.
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Nor again is £ greater than 4 ;
for in that case C would have had to & a less ratio than it
has to A ; [v. 8]
but it has not;
therefore B is not greater than 4.
But it was proved that it is not equal either;
therefore B is less than A4.
Therefore etc. Q. E. D.

No better example can, I think, be found of the acuteness which Simson
brought to bear in his critical examination of the Zlements, and of his great
services to the study of Euclid, than is furnished by the admirable note on
this proposition where he points out a serious flaw in the proof as given in
the text. . )

For the first time Euclid is arguing about greafer and Jess ratios, and it
will be found by an examination of the steps of the proof that he assumes
more with regard to the meaning of the terms than he is entitled to assume,
having regard to the fact that the definition of greater ratio (Def. 7) is all
that, as vet, he has to go upon. That we cannot argue, at present, about
ereater and less as applied to »atios in the same way as about the same terms
in relation to magnifudes is indeed sufficiently indicated by the fact that Euclid
does not assume for ratios what is in Book L. an axiom, viz. that things which
are equal to the same thing are equal to one another; on the contrary, he
proves, in Prop. 11, that ratios which are the same with the same ratio are the
same with one another. )

Let us now examine the steps of the proof in the text. First we are told
that

“4 is greater than B.
For, if not, it is either equal to B or less than it.
Now A is not equal to 5 ;
for in that case each of the two magnitudes 4, B would have had the
same ratio to C: [v. 7]
but they have not :
therefore 4 is not equal to B.”

As Simson remarks, the force of this reasoning is as follows.

If 4 has to C the same ratio as & has to C,
then—supposing any equimultiples of 4, 5 to be taken and any multiple
of C—
by Def. 5, if the multiple of £ be greater than the multiple of C, the multiple
of B is also greater than that of C.

But it follows from the hypothesis (that 4 has a greater ratio to C than B
has to C) that,

by Def. 7, there must be some equimultiples of 4, B and some multiple of
C such that the multiple of 4 is greater than the muitiple of C, but the
multiple of B is nof greater than the same multiple of C.

And this directly contradicts the preceding deduction from the supposition
that 4 has to Cthe same ratio as B has to C;

>
therefore that supposition is impossible.
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The proof now goes on thus:
“Nor again is A less than 5 ;
for, in that case, 4 would have had to C a less ratio than & has to C;
. [v. 8]
but it has not;
therefore 4 is not less than B.”

It is here that the difficulty arises. As before, we must use Def. Y |
would have had to C a less ratio than 2 has to C,” or the equivalent state-
ment that B would have had to C a greater ratio than A has to €, means
that there would have been some equimultiples of B, 4 and some multiple of
C such that

(z) the multiple of B is greater than the multiple of C, but

(2) the muiltiple of 4 is not greater than the multiple of C,
and it ought to have been proved that this can never happen if the hypothesis
of the proposition is true, viz. that 4 has to C a greater ratio than 2 has to
C: that is, it should have been proved that, in the latter case, the multiple of
A is always greater than the multiple of C whenever the multiple of B is
greater than the multiple of C (for, when this is demonstrated, it will be
evident that B cannot have a greater ratio to C than A has to C). But this
is not proved (cf. the remark of De Morgan quoted in the note on v. Def. 7,
p. 130), and hence it is not proved that the above inference from the supposi-
tion that A is less than 5 is inconsistent with the hypothesis in the enunciation.
The proof therefore fails. :

Simson suggests that the proof is not Euclid’s, but the work of some one
who apparently “has been deceived in applying what is manifest, when
understood of magnitudes, unto ratios, viz. that a magnitude cannot be both
greater and less than another.”

The proof substituted by Simson is satisfactory and simple.

“Let A4 have to C a greater ratio than B has to C;

A is greater than 5.

For, because 4 has a greater ratio to C than 2 has to C, there are some
equimultiples of 4, B and some multiple of € such that

the multiple of A4 is greater than the multiple of C, but the multiple of B
is not greater than it. [v. Def. 4]

Let them be taken, and let D, £ be equimultiples of 4, B, and F a
multiple of C, such that

D is greater than 7,
but Z is not greater than &

Therefore D is greater than Z.

And, because D and E are equimultiples of 4 and B, and D is greater
than £,

therefore A is greater than B. [Simson’s 4th-Ax.]
Next, let C have a greater ratio to B than it has to 4 ;
B is less than 4.

For there is some multiple & of C and some equimultiples £ and D of B
and 4 such that

F is greater than & but not greater than D. [v. Def. 7]

Therefore Z is less than D ;
and, because £ and D are equimultiples of & and 4,

therefore B is less than 4.”
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ProrosiTION 11

Ratios whick are the same with the same ratio are also
the same with one another.

For, as A is to B, so let C be to D,
and, as Cis to D, so let £ be to £
I say that, as A is to B, so is £ to /.

A C E ~———
B D F—
G H K

L. M N

For of A, C, £ let equimultiples &, A, K be taken, and
of B, D, F other, chance, equimultiples L, M, V.
Then since, as 4 is to B, so is C to D,
and of 4, C equimultiples &, /A have been taken,
and of B, D other, chance, equimultiples Z, 47,
therefore, if G is in excess of L, /A is also in excess of
if equal, equal,
and if less, less.
Again, since, as Cis to [, sois £ to 7,
and of C, £ equimultiples /, K have been taken,
and of D, F other, chance, equimultiples M, /V,
therefore, if /A is in excess of M, K is also in excess of /V,
if equal, equal,
and if less, less.

But we saw that, if &/ was in excess of M, G was also
in excess of L ; if equal, equal; and if less, less;

so that, in addition, if G is in excess of Z, X is also in excess
of IV,
if equal, equal,
and if less, less.
And G, K are equimultiples of 4, &,
while Z, &V are other, chance, equimultiples of B, F;
therefore, as 4 is to B, so is £ to F.
Therefore etc.
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Algebraically, if
and
then

The idiomatic use of the 1mperfect in quotmg a result prev1ously obtained
is noteworthy. Instead of saying “But ## was proved that, if H is in excess
of M, G is also in excess of Z,” the Greek text has “But if A was in excess
of M, G was also in excess of L,” dA\Ad €l Tmepelye 70 ® Tob M, Smepeiye xai
76 H 7ob AL

This proposition is tacitly used in combination with v. 16 and v. 24 in the
geometrical passage in Aristotle, Meteorologica 111. 5, 376 a 22——26.

i

I

&ﬁh
b‘&‘b«
Na s

PRrROPOSITION 12.

If any number of magnitudes be proportional, as one o
the antecedents is to one of the comsequents, so will all the
antecedents be to all the consequents.

Let any number of magnitudes 4, B, C, D, £, F be
proportional, so that, as 4 is to B, so is € to D and £
to £

I say that, as 4 is to B, soare 4, C, £ to B, D, F.

A B G—
D E— F—
t——— L

H

K—— N

For of 4, C, E let equimultiples &, 7, K be taken,
and of B, D, F other, chance, equimultiples L, 3, V.

Then since, as A isto B, sois C to D, and E to F,
and of 4, C, £ equimultiples G, A, K have been taken,
and of B, D, F other, chance, equimultiples L, M, NV,

therefore, if & is in excess of L, A is also in excess of A7,
and X of WV,

if equal, equal,

and if less, less;

so that, in addition,

if G is in excess of Z, then G, A, X are in excess of L, M, N,
if equal, equal,

and if less, less.
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Now G and G, A, K are equimultiples of 4 and 4, C, E,
since, if any number of magnitudes whatever are respec-
tively equimultiples of any magnitudes equal in multitude,
whatever multiple one of the magnitudes is of one, that
multiple also will all be of all. : [v. 1]

For the same reason
L and L, M, N are also equimultiples of B and B, D, F;

therefore, as A isto B, soare A, C, £ to B, D, F.
[v. Def. 5]
Therefore etc.
Q. E. D.
Algebraically, if @ : @' =8 : 6 =¢: ¢ etc., each ratio is equal to the ratio
(g+d+ec+ ) {ad +8++...).
This theorem is quoted by Aristotle, £tk Nic. v. 7, 1131 b 14, in the

shortened form ‘“the whole is to the whole what each part is to each part
(respectively).”

ProrosiTioN 13.

If a first magnitude have to a second the same ratio as a
thivd to a fourth, and the third have to the fourth a greater
ratio than a fifth has to a sixth, the first will also have to the
second a greater vatio than the fifth to the sixth.

For let a first magnitude 4 have to a second Z the
same ratio as a third C has to a fourth D),

and let the third C have to the fourth D a greater ratio than
a fifth £ has to a sixth 7

I say that the first 4 will also have to the second 5 a greater
ratio than the fifth Z to the sixth 7.

A C M G

B——- D N K

r I awam

For, since there are some equimultiples of C, Z,

and of D, F other, chance, equimultiples, such that the
multiple of C is in excess of the multiple of D,
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while the multiple of £ is not in excess of the multiple of 7,

{v. Def. 7]
let them be taken,

and let &, /A be equimultiples of C, £,
and K, L other, chance, equimultiples of D, £,
so that & is in excess of X, but /A is not in excess of L ;

and, whatever multiple & is of C, let A/ be also that multiple
of A4,

and, whatever multiple X is of [, let V be also that multiple
of 5. :

Now, since, as A is to B, so is C to D,
and of A4, C equimultiples JZ, G have been taken,
and of B, D other, chance, equimultiples V, X,
therefore, if 4/ is in excess of &V, & is also in excess of X
if equal, equal,
and if less, less. [v. Def. 5]
But & is in excess of X;
therefore M is also in excess of V.
But /4 is not in excess of L ;
and M, A are equimultiples of A, £,
and AV, L other, chance, equimultiples of 5, F;
therefore A4 has to B a greater ratio than Z has to /.

[v. Def. 7]
Therefore etc.
Q. E. D.
Algebraically, if a:b=c:d,
and c:d>e:f
then a:b>e:f

After the words “for, since” in the first line of the proof, Theon added
“( has to D a greater ratio than £ has to /7 so that ‘“there are some
equimultiples” began, with him, the principal sentence.

The Greek text has, after “of D, F other, chance, equimultiples,” “and
the multiple of C is in excess of the multiple of D....” The meaning being -
“such that,” I have substituted this for “and,” after Simson.

The following will show the method of Euclid’s proof.
Since c:d>e:f

there will be some equimultiples 7, me of ¢, ¢, and some equimaultiples #d, #f
of &, f, such that
me > nd, while me} uf.

H. E. IL II
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But, since @:b=c:d,
therefore, according as ma >=<ud, wc>=<nd,

And 2> nd;

therefore ma > nb, while (from above) me 3 nf.
Therefore a:b>e:f

Simson adds as a corollary the following :

“If the first have a greater ratic to the second than the third has to the
fourth, but the third the same ratio to the fourth which the fifth has to the
sixth, it may be demonstrated in like manner that the first has a greater ratio
to the second than the fifth has to the sixth.”

This however scarcely seems to be worth separate statement, since it only
amounts to changing the order of the two parts of the hypothesis.

ProrposiTiON 14.

If a first magnitude have o a second the same ratio as a
thivd has to a fourth, and the first be greater than the third,
the second will also be greater than the fourth; tf equal, equal;
and tf less, less.

For let a first magnitude 4 have the same ratio to a
second B as a third C has to a fourth 2; and let 4 be
greater than C;

I say that B is also greater than .

Am——— C
B D

For, since A4 is greater than C,

and B is another, chance, magnitude,

therefore 4 has to 5 a greater ratio than C has to B.  [v. 8]
But,as A isto B,sois Cto D;

therefore C has also to D a greater ratio than C has to 5.
[v. 13]

But that to which the same has a greater ratio is less ;
[v. 10]

therefore D is less than #;
so that B is greater than .
Similarly we can prove that, if 4 be equal to C, B will
also be equal to D ;
and, if A4 be less than C, B will also be less than .

Therefore etc.
Q. E. D.
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Algebraically, if a:b=c:d,
then, according as a >=<¢, b>=<d.

Simson adds the specific proof of the second and third parts of this
proposition, which Buclid dismisses with “Similarly we can prove....”

“Secondly, if 4 be equal to C, B is equal to D; for A is to B as C, that
is 4, 1s to D;

therefore B is equal to .D. [v. 9]

Thirdly, if 4 be less than C, 7 shall be less than ..

For C is greater than 4 ;
and, because Cis to D as A is to B,

D is greater than B, by the first case.

Wherefore B is less than D.”
Aristotle, Meleorol. 111. 5, 376 a 11—14, quotes the equivalent proposition
that, if a>8, ¢>4d.

ProrosiTION 15.
Parts have the same vatio as the same mulliples of them
taken tn corvesponding ovder.

For let A8 be the same multiple of C that D£ is of F;
I say that, as Cisto #, so is AB to DE.

For, since A B is the same multiple of C that DZ£ is of F,
as many magnitudes as there are in 45 equal to (, so many
are there also in J£ equal to 7.

Let AR be divided into the magnitudes AG, GH, HB

equal to C,

and DZ into the magnitudes DX, KL, LE equal to F;

then the multitude of the magnitudes 4G, GH, A B will be

equal to the multitude of the magnitudes DX, KL, LE.
And, since 4G, GH, HB are equal to one another,

and DK, KL, LE are also equal to one another,

therefore, as AG is to DK, so is GH to KL,and HB to LE.

[v. 1]

“Therefore, as one of the antecedents is to one of the

consequents, so will all the antecedents be to all the

consequents ; {v. 12]
therefore, as AG is to DK, sois AB to DE.

Ir—=2
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But 4G is equal to C and DX to F;

therefore, as C is to /&, so is AB to DE.
Therefore etc. Q. E. D.
Algebraically, a:b=ma: mb.

ProrosiTiOoN 16.

If four magnitudes be proportional, they will also be
proporiional alternately.
Let 4, B, C, D be four proportional magnitudes,

so that,as A isto B,so1s Cto D;

I say that they will also be so alternately, that is, as 4 is
to C, sois 5 to D.

A——— Cc

B D—

Er —+— ; —4 Gr—
F——t———— Hr————

For of A, B let equimultiples £, 7 be taken,
and of C, D other, chance, equimultiples G, /.

Then, since £ is the same multiple of 4 that F'is of B,
and parts have the same ratio as the same multiples of
them, [v. 15]
therefore, as 4 is to B, so is £ to F.

Butas A isto B,sois Cto D;

therefore also, as C is to D, so is £ to 7. [v. 11]
Again, since G, /7 are equimultiples of C, D,

therefore, as Cis to D, so is G to AH. [v. 15]
But,as Cis to D, so is £ to F;

therefore also, as Z is to 7, so is & to A. [v. 1]

But, if four magnitudes be proportional, and the first be
greater than the third,

the second will also be greater than the fourth;
if equal, equal;
and if less, less. [v. 14]
Therefore, if £ is in excess of &, F is also in excess of Z,
if equal, equal,
and if less, less.
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Now £, F are equimultiples of 4, B,
and G, A other, chance, equimultiples of C, D;
therefore, as 4 is to C, so is B to D. [v. Def. 5]

Therefore etc.
Q. E. D.

3. ‘“Let A, B, C, D be four proportional magnitudes, so that, as A is to B, so is
C to D.” In a number of expressions like this it is absolutely necessary, when translating
into English, to interpolate words which are not in the Greek. Thus the Greek here is:
"Borw réooapa ueyéfny dvddoyor v A, B, T, A, & 70 A mpbs 70 B, ofirws 78 T wpds 7 A,
literally «“ Let 4, B, C, D be four proportional magnitudes, as A4 to B, so Cto 0.” The
same remark applies to the corresponding expressions in the next propositions, V. 17, 18,
and to other forms of expression in v. 20—23 and later propositions : e.g. in V. 20 we have
a phrase meaning literally “ Let there be magnitudes...which taken two and two are in the
same ratio, as 4 to B, so D to £,” etc.: in v. 21 “ (magnitudes}...which taken two and
two are in the same ratio, and let the proportion of them be perturbed, as A to B, so
£ to 7 etc. In all such cases {(where the Greek is so terse as to be almost ungrammatical)
I shall insert the words necessary in English, without further remark.

Algebraically, if a:b=c:d
then a:c=h:4d
Taking equimultiples ma, mé of a, 5, and equimultiples e, #d of ¢, 4, we

have, by v. 13,
a:b=wma:mb,

c:d=nc:nd
And, since a:b=c:d,
we have [v. 11] ma : mb=nc: nd.
Therefore [v. 14], according as ma > = <ng, mb>=< nd,
so that a:c=0:4d.

Aristotle tacitly uses the-theorem in Mefeorologica 1L 5, 376 & 22 —24.
The four magnitudes in this proposition must all be ¢f ke same kind, and
Simson inserts “of the same kind ” in the enunciation.

This is the first of the propositions of Eucl. v. which Smith and Bryant
(Buckid’s Elements of Geometry, 1901, pp. 298 sqq.) prove by means of vI. 1
so far as the only geometrical magnitudes in question are sfraight lines or
vectilineal areas; and certainly the proofs are more easy to follow than
Euclid’s. The proof of this proposition is as follows.

To prove that, Jf four magnitudes of the same kind [straight lines or
rectilineal areas] de proportionals, they will be proportionals when taken
alternately.

Let 2, Q, R, S be the four magnitudes of the same kind such that

P:Q=R:S;
then it is required to prove that
P:R=Q:S
First, let all the magnitudes be areas.
Construct a rectangle aéed equal to the area £, and to 4éc apply the

rectangle eef equal to Q.
Also to ab, &f apply rectangles ag, 5% equal to &, .S respectively.
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Then, since the rectangles ac, fe have the same height,

[v. 16, 17

they are to one

another as their bases. [vi. 1]
Hence P Q=ab: bf d c
But P:Q=R:S
Therefore R:S=ab: & [v. 11]
i.e. rect. ag: rect. bk =ab : bf.
Hence (by the converse of vi. 1) the rect- b f
angles ag, 5% have the same height, so that %2
is on the line 4g.
Hence the rectangles a¢, ag have the same 7 A
height, namely a#; also be, 6% have the same
height, namely 4/
Therefore rect. ac : rect. ag="bc: &g,
and rect. de : rect. bk =1tc : &g [vi. 1]
Therefore rect. ac : rect. ag = rect. be : rect. b4 [v. 11]
That is, P:R=0Q:S .
Secondly, let the magnitudes be straight lines 48, BC, CD, DE.
Construct the rectangles 44, Be, Cd, De with the same height.
a [ c 4
A B &} D
Then Ab: Be=AB : BC,
and Cd:De=CD: DE. [vi 1]
But AB:BC=CD: DE.
Therefore Ab : Be=Cd : De. [v. 11]

Hence, by the first case,
A : Cd= Be: De,
and, since these rectangles have the same height,

AB: CD=B8C: DE.

ProrositiON 17.

If magnitudes be proportional componendo, they will also

be proportional separando.

Let AB, BE, CD, DF be magnitudes proportional comz-
ponendo, so that, as AL is to BE, sois CD to DF;

I say that they will also be proportional separando, that is,

as AF is to EB, sois CF to DF.

For of AE, EB, CF, FD let equimultiples GH, HKX,

LM, MN be taken,

and of £5, D other, chance, equimultiples, KO, NP,
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Then, since G /7 is the same multiple of A4 £ that 7K is
of £5,

therefore G/ is the same multiple of A £ that GK is of A 5.
[v. 1]

But G/ is the same multiple of 4E that LM is of CF;
therefore GA is the same multiple of A5 that ZM is of CF.

[P A B ——

A E B G F D
G H K Q

i N P

Again, since LM is the same multiple of CF that MN
is of /7D,

therefore L/ is the same multiple of CF that LNV is of C.

{v. 1]

But LM was the same multiple of CF that GK is of AF;

therefore GK is the same multiple of 42 that LNV is of CD.
Therefore GK, LN are equimultiples of A58, CD.

Again, since /7K is the same multiple of £5 that WV is
of FD,

and KO is also the same multiple of £5 that NP is of D,

therefore the sum A O is also the same multiple of £ that
MP is of FD. [v. 2]

And, since, as A8 is to BE, sois CD to DF,
and of A5, CD equimultiples GK, LNV have been taken,
and of £B, FD equimultiples 70, MP,

therefore, if GX is in excess of A0, LN is also in excess of
MP,

if equal, equal,
and if less, less.
Let GX be in excess of O ;
then, if Z K be subtracted from each,
GH is also in excess of KO.

But we saw that, if GX was in excess of Z0, LN was
also in excess of M P ;

therefore LV is also in excess of M P,
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and, if MV be subtracted from each,
LM is also in excess of V7

so that, if G/A is in excess of KO, LM is also in excess of
NP.

Similarly we can prove that,
if GH be equal to KO, LM will also be equal to V2P,
and if less, less.
And GH, LM are equimultiples of 4£, CF,
while KO, VP are other, chance, equimultiples of £5, FD;
therefore, as AE is to £5, so is CF to FD.

Therefore etc.

Q. E. D.

Algebraically, if a:b=c:a,

then (a—b):b=(c—4):d

I have already noted the somewhat strange use of the participles of
cvykelofar and Swpeofar to convey the sense of the technical odvfesis and
dwalpeois Adyov, or what we denote by wmponendo and separando. éiv
cuykeipeva peyébn dvdloyov 3, xal SuapeBévra avaloyoy dorar is, literally, “if
magnitudes compounded be proportional, they will also be proportional
separated,” by which is meant “if one magnitude made up of two parts is to
one of its parts as another magnitude made up of two parts is to one of its
parts, the remainder of the first whole is to the part of it first taken as the
remainder of the second whole is to the part of it first taken.” In the
algebraical formula above &, ¢ are the wholes and 4, a— 4 and &, ¢—4 are the
parts and remainders respectively. The formula might also be stated thus:

If a+d:b=c+d:d,
then a:b=c:d,

in which case @¢+4, ¢+d are the wholes and «, 4 and 4 4 the parts and
remainders respectively. Looking at the last formula, we observe that
“separated,” Sarpefévra, is used with reference not to the magnitudes ¢, 4, ¢, 4
but to the compounded magnitudes a+ 8, &, c+d, d.

As the proof is somewhat long, it will be useful to give a conspectus of it
in the more symbolical form. To avoid minuses, we will take for the
hypothesis the form

a+bisto b asc+dis to 4.

Take any equimultiples of the four magnitudes ¢, 4, ¢, d, viz.
ma, mb, me md,
and any other equimultiples of the consequents, viz.
. nb and nd.
Then, by v. 1, m (a+8), m (c+ 4) are equimultiples of a + &, ¢+ 4,
and, by v. 2, (m +#) 4, (m + ) d are equimultiples of 4, 4.
Therefore, by Def. 5, since a+éistodasc+dis to d,
according as m (@ + ) >=<(m+n)b, m(c+d)>=<(m+n)d.
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Subtract from » (a+8), (m+#)% the common part mé, and from
m(¢c+d), (m+n)d the common part md; and we have,

according as ma > =< ub, me>=<nd.

; dBut ma, mc are any equimultiples of g, ¢, and #8, #d any equimultiples of
H 2

therefore, by v. Def. 3,
aistodascisto d

Smith and Bryant's proof follows, muiatis mutandis, their alternative proof
of the next proposition (see pp. 173—4 below).

ProrosiTion 18.

If magnitudes be proporizonal separando, they will also be
proportional componendo.

Let AE, EB, CF, FD be magnitudes proportional
sepavando, so that, as AL is
to £B, sois CFto FD;

I say that they will also be
proportional componendo, that g
is, as AB is to BE, so is
CD to FD.

For, if CD be not to DF as AR to BE,

then, as A5 is to BE, so will CD be either to some
magnitude less than DZF or to a greater.

First, let it be in that ratio to a less magnitude DG.
Then, since, as AF is to BE, so is CD to DG,
they are magnitudes proportional conponendo ;

so that they will also be proportional s¢parando. [v. 17]
Therefore, as AF is to £B, so is CG to GD.
But also, by hypothesis,

as AF is to EB, sois CF to FD.

Therefore also, as CG is to GD, so is CF to FD. [v. 11]
But the first CG is greater than the third CF;

therefore the second G0 is also greater than the fourth
FD. [v. 14]
But it is also less: which is impossible.
Therefore, as A8 is to BE, so is not CD to a less
magnitude than #0.
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Similarly we can prove that neither is it in that ratio to
a greater;
it is therefore in that ratio to 7D itself.

Therefore etc.
Q. E. D.
Algebraically, if a:b=c:d,
then (a+8)y:b=(c+d): d.
In the enunciation of this proposition there is the same special use of
Suppypéva and owrefévra as there was of cvykeipera and Swpebévra in the

last enunciation. Practically, as the algebraical form shows, Sqpypéva might
have been left out.

The following is the method of proof employed by Euclid.
Given that a:b=c:d,
suppose, if possible, that
(a+d):b=(c+d): (d*x).
Therefore, separando [v. 17,
a:b=(Fx): (d+x),

whence, by v. 11, (¢Fx): (dxx)=c:d
But (¢e—x)<¢, while (d+x)>4,
and (c+x)>¢, while (d~x) <4,

which relations respectively contradict v. 14.

Simson pointed out {as Saccheri before him saw) that Euclid’s demonstra-
tion is not legitimate, because it assumes without proof that % any Zhree
magnitudes, fwo of whick, at least, are of the same kind, there exists a fourth
proportional. Clavius and, according to him, other editors made this an
axiom. But it is far from axiomatic; it is not till vi. 12 that Euclid shows,
by construction, that it is true even in the particular case where the three
given magnitudes are all straight lines.

In order to remove the defect it is necessary either (1) to prove beforehand
the proposition thus assumed by Euclid or (2) to prove v. 18 independently
of it.

Saccheri ingeniously proposed that the assumed proposition should be
proved, for areas and straight lines, by means of Euclid vi. 1, 2 and 12. As
he says, there was nothing to prevent Euclid from interposing these proposi-
tions immediately after v. 17 and then proving v. 18 by means of them.
vi. 12 enables us to construct the fourth proportional when the three given
magnitudes are straight lines; and vi. 1z depends only on VvI. 1 and 2.
“Now,” says Saccheri, “when we have once found the means of constructing
a straight line which is a fourth proportional to three given straight lines, we
obviously have the solution of the general problem ‘To construct a straight
line which shall have to a given straight line the same ratio which two polygons
have (to one another).”” For it is sufficient to transform the polygons into
two triangles of equal height and then to construct a straight line which shall
?e a fourth proportional to the bases of the triangles and the given straight

ine.

The method of Saccheri is, as will be seen, similar to that adopted by
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Smith and Bryant (%e. ¢i2.) in proving the theorems of Euclid v. 16, 17, 18, 22,
so far as straight lines and rectilineal areas are concerned, by means of vi. 1.
De Morgan gives a sketch of a general proof of the assumed proposition
that, Z being any magnitude, and P and Q two magnitudes of the same kind,
there does exist a magnitude 4 which is to B in the same ratio as £ to Q.

“The right to reason upon any aliquot part of any magnitude is assumed ;
though, in truth, aliquot parts obtained by continual bisection would suffice :
and it is taken as previously proved that the tests of greater and of less ratio
are never both presented in any one scale of relation as compared with
another” (see note on v. Def. 7 ad fin.).

“(1) If M beto Bina greater ratio than Pto , so is every magnitude
greater than A, and so are some less magnitudes; and if A be to B in
a less ratio than 2 to @, so is every magnitude less than A, and so are
some greater magnitudes. Part of this is In every system: the rest is proved
thus. If M be to Bin a greater ratio than P to Q, say, for instance, we find
that 154/ lies between 225 and 235, while 152 lies before 22Q.  Let 154/
exceed 225 by Z; then, if /V be less than & by anything less than the 15th
part of Z, 15V is between 228 and 23.8: or /V, less than J, is in a greater
ratio to B than Pto Q. And similarly for the other case.

{2) M can certainly be taken so small as to be in a less ratio to 5 than
P to Q, and so large as to be in a greater ; and since we can never pass from
the greater ratio back again to the smaller by increasing A7, it follows that,
while we pass from the first designated value to the second, we come upon an
intermediate magnitude 4 such that every smaller is in a less ratio to B than
P to Q,and every greater in a greater ratio. Now A cannot be in a less ratio
to B than P to Q, for then some greater magnitudes would also be in a less
ratio; nor in a greater ratio, for then some less magnitudes would be in a
greater ratio; therefore 4 is in the same ratio to B as Pto (. The previously
proved proposition above mentioned shows the three alternatives to be the
only ones.”

Alternative proofs of V. 18.

Simson bases his alternative on v. 5, 6. As the 18th proposition is the
converse of the 17th, and the latter is proved by means of v. t and 2, of
which v. 5 and 6 are converses, the proof of v. 18 by v. 5 and 6 would be
natural ; and Simson holds that Euclid must have proved v. 18 in this way
because “the sth and 6th do not enter into the demonstration of any
proposition in this book as we have it, nor can they be of any use in any
proposition of the Elements,” and “the 5th and 6th have undoubtedly been
put into the sth book for the sake of some propositions in it, as all the other
propositions about equimultiples have been.”

Simson’s proof is however, as it seems to me, intolerably long and difficult
to follow unless it be put in the symbolical form as follows.

Suppose that 2 is to & as cis to &;
it is required to prove that e+ is to b as c+d is to 4.
Take any equimultiples of the last four magnitudes, say
mla+b), mb, wm(c+d), md,

and any equimultiples of 4, 4, as
nb, nd.
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Clearly, if nb is greater than ms,
nd is greater than md ;
if equal, equal ; and if less, less.

I. Suppose 74 not greater than ¥, so that #d is also not greater than md.

Now m (@ + b) is greater than »é :
therefore m (@ + b is greater than 75,
Similarly . m (¢ + d) is greater than zd.

II. Suppose »é greater than mb.
Since 7 {a+8), mb, m{(c+d), md are equimultiples of (a+8), &, (¢ +4), 4,
ma is the same multiple of @ that m (@ + 8) is of (a + 0),
and me is the same multiple of ¢ that 7 (¢ + &) is of (¢ + &),
so that ma, me are equimultiples of «, c. [v. 5]
Again nd, nd are equimultiples of 4, 4,
and so are mé, md;
therefore (—m)b, (n—m)d are equimultiples of &, 7 and, whether z-m

is equal to unity or to any other integer [v. 6], it follows, by Def. 5, that,
since @, &, , & are proportionals,

if ma is greater than (n—m) &,
then mc is greater than (n—m)d;
if equal, equal ; and if less, less.
(1) If now m(a+5) is greater than 75, subtracting m#& from each, we have
ma is greater than (m—m) b ;

therefore me is greater than (z —m) d,
and, if we add md to each,

m ¢+ d) is greater than sd.
(2) Similarly it may be proved that,

if m{a +b) is equal to #4,
then m (¢+d) is equal to zd,
and (3) that, if m (a + ) is less than #5,
then m {c+d) is less than zd.

But (under I. above) it was proved that, in the case where 4 is not
greater than mé,

me (@ + ) is always greater than »,
and m (¢ + d) is always greater than zd.

Hence, whatever be the values of » and #, # (c + d) is always greater than,

-equal to, or less than #d according as » (a + 5) is greater than, equal to, or
less than #é.

Therefore, by Def. 5,
at+bistobasc+rdistod.
Todhunter gives the following short demonstration from Austin (Exani-
nation of the first six books of Euclid’s Elements).
“Let 4E be to £B as CFisto FD:

AB shall be to BE as CD is to DK
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For, because AE is to EB as CFis to FD,
therefore, alternately,

AE is to CFas EBis to FD. [v. 16]
And, as one of the antecedents is to its consequent, so is the sum of the
antecedents to the sum of the consequents: [v. 12]

therefore, as £8 is to FD, so are 4, EB together to CF, A
FD together;

thatis, ~ ABisto CDas EB s to FD. ©
Therefore, alternately, E
ABisto BE as CD is to FD.” Fr

The objection to this proof is that it is only valid in the case
where the proposition v. 16 used in it is valid, i.e. where all four
magnitades are of the same kind.

Smith and Bryant’s proof avails where all four magnitudes a8} p
are straight lines, where all four magnitudes are rectilineal areas,
or where one antecedent and its consequent are straight lines and the other
antecedent and its consequent rectilineal areas.

Suppose that A:B=C:D.

First, let all the magnitudes be areas.

Construct a rectangle aded equal to A4, and to & apply the rectangle beef
equal to B.

Also to a#, &f apply the rectangles ag, 2%

equal to C, D respectively. a £
Then, since the rectangles 4¢, ¢ have equal
heights &, they are to one another as their ¢ 7 S
bases. {vi 1]
Hence &b :5f =rect. ac:rect. de -
=4:8 g ] i
=C:D

=rect. ag: rect. b4

Therefore [v1. 1, converse] the rectangles ag 4% have the same height, so
that £ is on the straight line 4g.

Hence A + B : B =rect. ae:rect. be
=af:8f
rect. ak : rect. &
=C+D0:D.

Secondly, let the magnitudes A, B be straight lines and the magnitudes
C, D areas.

Let @b, &f be equal to the straight lines 4, B, and to ad, 4f apply the
rectangles ag, &% equal to C, D respectively. )

Then, as before, the rectangles ag, 5% have the same height,

i

Now A+ B:B=af : of
=rect. ak:rect. bk
=C+D:D.

Thirdly, let all the magnitudes be straight lines. ) )
Apply to the straight lines C, D rectangles £, Q having the same height.
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Then P:Q0=C:D. v 1]
Hence, by the second case,
" A+B:B=P+0Q:0Q.
Also P+Q:Q=C+D:D.
Therefore A+B:B=C+D:D.

ProrosiTION 10.

If, as a whole is lo a whole, so 7s a part subtracted fo a
part subtvacted, the remainder will also be to the remainder
as whole to whole.

For, as the whole 42 is to the whole CD, so let the
part AE subtracted be to the part CF
subtracted ;

I say that the remainder £Z2 will also be
to the remainder #0 as the whole A8 to ¢ £ __b»
the whole CD.
For since, as AB is to CD, so is AE
to CF,
alternately also, as BA4 is to AZ, so is DC to CF. [v. 16]
And, since the magnitudes are proportional componendo,
they will also be proportional separando, [v. 17]
that is, as BE is to £EA, so is DF to CF,
and, alternately,
as BE isto DF, sois £A to FC. [v. 16]
But, as AF is to CF, so by hypothesis is the whole 45
to the whole CD. A
Therefore also the remainder £Z2Z will be to the remainder
FD as the whole A28 is to the whole CO. [v. 11]
Therefore etc.

E B

[Porism. From this it is manifest that, if magnitudes be
proportional componendo, they will also be proportional
convertendo. ]

Q. E. D.

Algebraically, if @: 6 =c:d (where ¢ <a and 4 < ), then
(e-¢):(b—-d)=a:b.
The “Porism ” at the end of ‘this proposition is led up to by a few lines
which Heiberg brackets because it is not Euclid’s habit to explain a
Porism, and indeed a Porism, from its very nature, should not need any
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explanation, being a sort of by-product appearing without effort or trouble,
ampoyparesros (Proclus, p. 303, 6). But Heiberg thinks that Simson does
wrong in finding fault with the argument leading to the “Porism,” and that
it does contain the true demonstration of conwersion of a ratio. In this it
appears to me that Heiberg is clearly mistaken, the supposed proof on the
basis of Prop. 19 being no more correct than the similar attempt to prove the
inversion of a ratio from Prop. 4. The words are: “And since it was
proved that, as 4B is to CD, so is £B to FD,

alternately also, as 4.8 is to BE, so is CD to FD:
therefore magnitudes when compounded are proportional.

But it was proved that, as B4 is to AE, sois DC to CF and this is
convertendp.”

It will be seen that this amounts to proving from the hypothesis a :b=c:d
that the following transformations are simultaneously true, viz. :

a:a-c=6:0-d,
and aic=b6:4d.

The former is not proved from the latter as it ought to be if it were intended
to prove conversion.

The inevitable conclusion is that both the “Porism” and the argument
leading up to it are interpolations, though no doubt made, as Heiberg says,
before Theon’s time.

The conversion of ratios does not depend upon v. 19 at all but, as Simson
shows in his Proposition E (containing a proof already given by Clavius), on
Props. 17 and 18. Prop. E is as follows.

Lf four magnitudes be proportionals, they are also proportionals by conversion,
that is, the first is 1o its excess above the second as the third is fo
its excess above the fourth.

Let 4B be to BE as CD to DF: A
then BA is to AE as DC to CF. e c
Because AB isto BE as CD to DF, F
by division {separands),
AE isto EB as CFto FD, [v. 17] 5

and, by inversion,
BEisto EA as DF to FC.
[Simson’s Prop. B directly obtained from v. Def. 5]
Wherefore, by composition [componendo),
BAdisto AE as DCto CF, [v. 18]

Prorosition zo.

If there be three magnitudes, and others equal to them in
multitude, which laken two and two are in the same ratio, and
if ex aequali the first be greater than the third, the fourth will
also be greatey than the sixth; tf equal, equal; and, if less, less.
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Let there be three magnitudes 4, B, C, and others
D, E, F equal to them in multitude, which taken two and
two are in the same ratio, so that,

as A isto B,sois D to £,
and as B isto C, sois £ to /7
and let A be greater than C ex aeguali;

I say that D will also be greater than 77; if 4 is equal to C,
equal; and, if less, less.

A——m—— D
B—— E—
c——— F——t

For, since A is greater than C,
and B is some other magnitude,
and the greater has to the same a greater ratio than the less
has, [v. 8]
therefore .4 has to B a greater ratio than C has to 5.

But, as 4 is to B, sois D to E,
and, as C is to B, inversely, so is 7 to £;
therefore [ has also to £ a greater ratio than # has to £. [v. 13]

But, of magnitudes which have a ratio to the same, that
which has a greater ratio is greater ; [v. 10]

therefore [ is greater than /.

Similarly we can prove that, if 4 be equal to C, D will
also be equal to #; and if less, less.
Therefore etc.
Q. E. D.

Though, as already remarked, Euclid has not yet given us any definition
of compounded ratios, Props. zo—23 contain an important part of the theory
of such ratios. The term “compounded ratio” is not used, but the propositions
connect themselves with the definitions of ex aeguali in its two forms, the
ordinary form defined in Def. 17 and that called persurded proportion in
Def. 18. The compounded ratios dealt with in these propositions are those
compounded of successive ratios in which the consequent of one is the
antecedent of the next, or the antecedent of one is the consequent of
the next.

Prop. 22z states the fundamental proposition about the ratio ex aegual in
its ordinary form, to the effect that,

if aistobasdistoe,

and bistocaseistof,
then aistocasdistof,
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with the extension to any number of such ratios; Prop. 23 gives the
corresponding theorem for the case of persurbed proportion, namely that,

if aistobaseistof,
and bfistocas distoe,
then aistocas distof

Each depends on a preliminary proposition, Prop. 22 on Prop. 2o and

Prop. 23 on Prop. 21.  The course of the proof will be made most clear by
using the algebraic notation.

The preliminary Prop. zo asserts that,
if a:b=d:e,
and bic=e:f
then, according as a>=<¢, d>=<f
For, according as a is greater than, equal to, or less than ¢,
the ratio @ : 4 is greater than, equal to, or less than the ratio ¢:8, [v. 8 or v. 7]
or (since d:ie=a:,
and c:b=f1e)
the ratio 4: e is greater than, equal to, or less than the ratio f: ¢,
{by aid of v. 13 and v. 11]
and therefore 4 is greater than, equal to, or less than £ [v. 10 or v. 9]
It is next proved in Prop. 22 that, by v. 4, the given proportions can be
transformed into
mea :nb=md : ne,
and né : pc = ne : pf,
whence, by v. 20,
according as  ma is greater than, equal to, or less than g,
md is greater than, equal to, or less than g/,
so that, by Def. 5,
a:c=d: [
Prop. 23 depends on Prop. 21 in the same way as Prop. 22 on Prop. 20,
but the transformation of the ratios in Prop. 23 is to the following :

(1) ma :mb=ne:nf
(by a double application of v. 15 and by v. 11),
(2) mb : ne=md : ne

(by V. 4, or equivalent steps),
and Prop. 21 is then used.
Simson makes the proof of Prop. zo slightly more explicit, but the main

difference from the text is in the addition of the two other cases which Euclid
dismisses with ¢ Similarly we can prove.” These cases are:

“Secondly, let 4 be equal to C'; then shall D be equal to &
Because 4 and C are equal to one another,

4 isto Bas Cisto B. fv. 7]

But Aisto Bas Dis to £,

and Cisto Bas Fisto Z,
wherefore Disto Eas Fto E; fv. 11}
and therefore D is equal to Z. [v. 9]

H. E. 1L I2
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Next, let 4 be less than C'; then shall D be less than £
For € is greater than 4,
and, as was shown in the first case,

Cisto Bas Fto E,
and, in like manner,
Bisto 4das EtoD;

therefore F is greater than D, by the first case; and therefore D is less
than /77

ProrosiTION 21.

If theve be three magnitudes, and others equal to them in
multitude, which taken two and two together are in the same
ratio, and the proportion of then: be perturbed, then, if ex
aequali Zke jfirst magnitude is greater than the third, the
Jourth will also be greater than the sixth; if equal, equal,

and if less, less.
Let there be three magnitudes 4, 5, C, and others D, £, F

equal to them in multitude, which taken two and two are in
the same ratio, and let the proportion of them be perturbed,
so that,

as A is to B, so is £ to £,

and, as Bisto C,sois D to E,
and let 4 be greater than C ex aeguals;

I say that D will also be greater than /; if 4 is equal to
C, equal; and if less, less.

A D
B E
C F

For, since A is greater than C,

and B is some other magnitude,

therefore 4 has to B a greater ratio than C has to B.  [v. 8]
But, as 4 is to B, so is £ to F,

and, as Cis to B, inversely, so is £ to D.

Therefore also £ has to # a greater ratio than £ has to D.
{v. 13]
But that to which the same has a greater ratio is less;

[v. 10]
therefore # is less than D ;

therefore [ is greater than 7.
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Similarly we can prove that,
if 4 be equal to C, D will also be equal to Z;
and if less, less.

Therefore etc. Q. E. D.
Algebraically, if ab=e:f,
and bic=d:e

then, according as a>=<¢, d>=<f.
Simson’s alterations correspond to those which he makes in Prop. zo. After
the first case he proceeds thus.
“Secondly, let 4 be equal to C; then shall D be equal to #.

Because 4 and C are equal,

Adisto Bas Cisto B. {v. 7]
But Aisto Bas Eis to £
and CistoBas Eisto D:
wherefore Eisto Fas Eto D, v. 11}
and therefore D is equal to £ [v. 9}

Next, let A4 be less than C'; then shall D be less than A
For C is greater than 4,

and, as was shown,
Cisto Bas Eto D,

and, in like manner,
Bisto das Fto E;

. therefore #'is greater than 0, by the first case,
and therefore D is less than 7"
The proof may be shown thus.
According as a>=<¢ @:d>=<c:b.
But a:b=e¢:f, and, by inversion, c: d=¢:4.
Therefore, according as a>=<¢, ¢:f>=<e:4d,
and therefore >=</.

Prorosition 22,

If theve be any number of magnitudes whatever, and others
equal to them in multitnde, which taken two and two together
are tn the same ratio, they will also be in the same ratio ex
aequali.

Let there be any number of magnitudes 4, 5, C, and
others D, E, F equal to them in multitude, which taken two
and two together are in the same ratio, so that,

as A isto B, sois D to £,
and, as B isto C, sois £ to F;
I say that they will also be in the same ratio ex aeguals,

<thatis, as Aisto C, sois Dto F>.
I12——2
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For of A, D let equimultiples G, /A be taken,
and of B, E other, chance, equimultiples X, L ;
and, further, of C, 7 other, chance, équimultiples A7, /V.

A B—— o]
D E—- F
G t K ¢ M
H L N

Then, since, as A is to B, sois D to £,

and of A, D equimultiples &, /7 have been taken,

and of B, E other, chance, equimultiples X, Z,
therefore, as G is to X, so is /7 to L. [v. 4]
For the same reason also,

as K is to M, so is L to V.

Since, then, there are three magnitudes G, K, M, and
others A, L, NV equal to them in multitude, which taken two
and two together are in the same ratio,

therefore, ex aegualt, if G is in excess of M/, [ is also in excess
of V;

if equal, equal ; and if less, less. [v. 20]
And G, /A are equimultiples of 4, D,
and M, IV other, chance, equimultiples of C, 7.

Therefore, as A is to C, so is D to F. [v. Def. 5]
Therefore etc.

Q. E. D.

Euclid enunciates this proposition as true of amy mumber of magnitudes
whatever forming two sets connected in the manner described, but his proof is
confined to the case where each set consists of three magnitudes only. The
g{ctension to any number of magnitudes is, however, easy, as shown by

imson.

“Next let there be four magnitudes 4, B, €, D, and other four £, %, G, H,
which two and two have the same ratio, viz. :

as 4 is to B, so is £ to A,
and as Bisto C, sois Fto G, ABGCOD
and as Cisto D, sois Gto H; E FGH

A shall be to D as £ to A.

Because 4, B, C are three magnitudes, and £, 5, G other three, which
taken two and two have the same ratio,

by the foregoing case,

Aisto Cas E to G.
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But Cis to Das Gisto H;
wherefore again, by the first case,
Aisto D as E to H.
And so on, whatever be the number of magnitudes.”

ProrosiTION 23.

Lf there be three magnitudes, and others equal to them in
multitude, whick taken two and two together are in the same
ratio, and the proportion of them be perturbed, they will also
be tn the same ratio ex aequali.

Let there be three magnitudes A4, B, C, and others equal
to them in multitude, which, taken two and two together, are
in the same proportion, namely D, £, F; and let the propor-
tion of them be perturbed, so that,

as A isto B, sois £ to F,
and, as Bisto C,sois D to £

[ say that, as A is to C, so is D to 7.

A——— B— C
D——— E——mm F—
G : H +——t L
K + — M + N+

Of 4, B, D let equimultiples &, /A, K be taken,
and of C, £, F other, chance, equimultiples Z, 47, V.
Then, since G, /A are equimultiples of A4, 5,
and parts have the same ratio as the same multiples of

them, [v. 15]
therefore, as A is to 5, sois & to A.

For the same reason also,
as £ is to F, sois A to V.
And, as A isto B, sois £ to F;

therefore also, as G is to /A, so is 4/ to .V. [v. 11]
Next, since, as B is to (, so is D to £,
alternately, also, as B is to D, so is (' to £. [v. 16]

And, since A, K are equimultiples of 5, D),
and parts have the same ratio as their equimultiples,
therefore, as B is to D, so is A to K. [v. 15]
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But, as B is to D, sois Cto E;

therefore also, as A is to X, so is C to Z. [v. 11]
Again, since Z, M are equimultiples of C, Z,
therefore, as C is to £, so is L to M. [v. 15]
But,as Cis to £, so is H to K;
therefore also, as A is to X, so is L to M, [v. 11]
and, alternately, as A is to L, so is X to M. [v. 16]

But it was also proved that,
as Gisto H, sois M to V.

Since, then, there are three magnitudes &, A, L, and
others equal to them in multitude &, A, &V, which taken two
and two together are in the same ratio,

and the proportion of them is perturbed,

therefore, ex aequalz, if G is in excess of L, K is also in excess

of NV;

if equal, equal ; and if less, less. [v. 21]
And G, K are equimultiples of 4, D, ’

and L, NV of C, F.

Therefore, as 4 is to C, so is D to F.
Therefore etc.
Q. E. D.

There is an important difference between the version given by Simson of
one part of the proof of this proposition and that found in the Greek text of
Heiberg. Peyrard’s ms. has the version given by Heiberg, but Simson’s
version has the authority of other Mss. The Basel edizio princeps gives both
versions (Simson’s being the first). After it has been proved by means of
v. 15 and v. 11 that,

as Gisto A, sois M to IV,
or, with the notation used in the note on Prop. 2o,
ma : mb = ne : 1,
it has to be proved further that,
as Histo L, sois K to M,
or mb 2 7ic = md : ne,
and it is clear that the latter result may be directly inferred from v. 4. The
reading translated by Simson makes this inference :

“ And because, as B is to C, so is D to £,
and A, X are equimultiples of B, D,
and Z, M of C, E,

therefore, as A is to Z, so is K to M. [v. 4]

The version in Heiberg’s text is not only much longer (it adopts the

roundabout method of using each of three-Propositions v. 11, 15, 16 twice
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over), but it is open to the objection that it uses v. 16 which is only applicable
if the four magnitudes are of #%e same kind ; whereas v. 23, the proposition
now in question, is not subject to this restriction.

Simson rightly observes that in the last step of the proof it should be
stated that “ G, K are any equimultiples wwhatever of A, D, and Z, N any
whatever of C, £

He also gives the extension of the proposition to any number of magnitudes,
enunciating it thus :

“If there be any number of magnitudes, and as many others, which, taken
two and two, in a cross order, have the same ratio ; the first shall have to the
last of the first magnitudes the same ratio which the first of the others has to
the last”;
and adding to the proof as follows :

“Next, let there be four magnitudes 4, B, C, D, and other four £, 7, G, H,
which, taken two and two in a cross order, have the same ratio, viz.:

A to Bas 7 to H,
Bto Cas Fto G, ABCOD
and CtoDas £ to F; E FGH

then 4 is to D as Z to A.

Because 4, B, C are three magnitudes, and £ &, A other three which,
taken two and two in a cross order, have the same ratio,

by the first case, Aisto Cas Fto H.
But . Cisto Das Eisto F;
wherefore again, by the first case,
Aisto Das Eto A
And so on, whatever be the number of magnitudes.’

)

ProrosiTION 24.

If a first magnitude have lo a second the same vatio as @
thivd has to a fourth, and also a fifth have to the second the
same vatio as a sixth to the fourth, the first and fifth added
together will have to the second the same ratio as the third and
sixth have to the fourth.

Let a first magnitude 45 have to a second C the same
ratio as a third DZ has to a

fourth F; A B G
and let also a fifth G haveto ¢

the second C the same ratioas o £ f

a sixth £/ has to the fourth ¢

F

I say that the first and fifth added together, 4G, will have
to the second C the same ratio as the third and sixth, DA,
has to the fourth #.
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For since, as BG is to C, so is £H to £,
inversely, as Cis to BG, so is /7 to E/.
Since, then, as 4B is to C, so is DE to F,
and, as Cis to BG, so is Fto EH,
therefore, ex aegual, as AB is to BG,s0is DE to EH. [v. 22]
And, since the magnitudes are proportional separando, they
will also be proportional conzponendo ; [v. 18]
therefore, as AG is to GB, so is DH to HE.
But also, as BG is to C, so is EH to F;
therefore, ex aequali, as AG is to C, so is DH to F. [v. 22]

Therefore etc. Q. E. D.
Algebraically, if aic=d:f
and bic=e:f,
then (a+d):c=(d+e): f

This proposition is of the same character as those which precede the
propositions relating to compounded ratios ; but it could not be placed earlier
than it is because v. 22 is used in the proof of it.

Inverting the second proportion to

c:bo=f:e,
it follows, by v. 22, that a:b=d:e
whence, by v. 18, (@a+8):b=(d+¢):¢

and from this and the second of the two given proportions we obtain, by a
fresh application of v. 22,
(a+b8)ic=(d+e): f

The first use of v. 22 is important as showing that the opposite process to
compounding ratios, or what we should now call dswision of one ratio by
another, does not require any new and separate propositions.

Aristotle tacitly uses v. 24 in combination with v. 11 and v. 16, Medeorologica
1L 5, 3762 22—26.

Simson adds two corollaries, one of which (Cor. 2) notes the extension to
any number of magnitudes.

“The proposition holds true of two ranks of magnitudes whatever be their
number, of which each of the first rank has to the second magnitude the same
ratio that the corresponding one of the second rank has to a fourth magnitude;
as is manifest.”

Simson’s Cor. 1 states the corresponding proposition to the above with
s¢parando taking the place of componendo, viz., that corresponding to the

algebraical form
(a—8y:e=(d—e):f

“Cor. 1. If the same hypothesis be made as in the proposition, the
excess of the first and fifth shall be to the second as the excess of the third
and sixth to the fourth. The demonstration of this is the same with that of
the proposition if division be used instead of composition.” That is, we use
v. 17 instead of v. 18, and conclude that

(a~B:b=(d—¢):e.
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ProrosrTioN 23.

If four magnitudes be proportional, the greatest and the
least are greater than the remaining fwo.

Let the four magnitudes 458, CD, E, F be proportional
so that, as AR is to CD, so is E to
£, and let 45 be the greatest of them

and / the least; A G B
I say that 4B, F are greater than g
CD, E. H D

For let AG be made equal to Z,
and C/7 equal to /.

Since, as AP is to CD, so is £
to £,

and £ is equal to AG, and F to CH,
therefore, as 48 is to CD, so is AG to CH.

And since, as the whole 48 is to the whole CD, so is
the part 4G subtracted to the part C/ subtracted,

the remainder G5 will also be to the remainder D as
the whole A5 is to the whole C2. ' [v. 19]

But A28 is greater than CD;
therefore G5 is also greater than AZ0.
And, since AG is equal to £, and CH to £,
therefore 4G, F are equal to CH, E.
And if, GB, HD being unequal, and G5 greater, AG,
be added to GB and CH, £ be added to A,
it follows that 45, F are greater than (D, £.

Therefore etc.
Q. E. D.

Algebraically, if ab=c:d,
and a is the greatest of the four magnitudes and £ the least,
a+d=>b+c
Simson is right in inserting a word in the setting-out, “let A5 be the
greatest of them and <consequently> F the least.” This follows from the
particular case, really included in Def. 5, which Simson makes the subject of
his proposition A, the case namely where the equimultiples taken are once the
several magnitudes.
The proof is as follows.
Since a:b=c:d,
b.

=c
a—c:b—d=a: [v. 19]
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But @ > &; therefore (a—¢) > (6—d). [v. 16 and 14]
Add to each (c+4d);
therefore (a+d)y>(&+0).

There is an important particular case of this proposition, which is,
however, not mentioned here, viz. the case where é=¢  The result shows, in
this case, that fhe arithmetic mean betfween two magnitudes is greater than
thetr geometric mean. The truth of this is proved for straight lines in v1. 27
by “geometrical algebra,” and the theorem forms the Siopiopds for equations
of the second degree.

Simson adds at the end of Book v. four propositions, F, G, H, K, which,
however, do not seem to be of sufficient practical use to justify their inclusion
here. But he adds at the end of his notes to the Book the following
paragraph which deserves quotation word for word.

“The sth book being thus corrected, I most readily agree to what the
learned Dr Barrow says, ‘that there is nothing in the whole body of the
elements of a more subtile invention, nothing more solidly established, and
more accurately handled than the doctrine of proportionals.” And there is
some ground to hope that geometers will think that this could’not have been
said with as good reason, since Theon’s time till the present.”

Simson’s claim herein will readily be admitted by all readers who are
competent to form a judgment upon his criticisms and elucidations of Book v.
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INTRODUCTORY NOTE.

The theory of proportions has been established in Book v. in a perfectly
general form applicable to all kinds of magnitudes (although the representahon
of magnitudes by straight lines gives it a geomefrical appearance) ; it is now
necessary to apply the theory to the partlcular case of geometrical investigation.
The only thing still required in order that this may be done is a proof of the
existence of such a magnitude as bears to any given finite magnitude any
given finite ratio; and this proof is supplied, so far as regards the subject
matter of geometry, by vi. 12z which shows how to construct a fourth pro-
portional to three given straight lines.

A few remarks on the enormous usefulness of the theory of proportions
to geometry will not be out of place. We have already in Books 1. and 1I.
made acquaintance with one important part of what has been well called
geometrical algebra, the method, namely, of application of areas. We have
seen that this method, working by the representation of products of two
quantities as rectangles, enables us to solve some particular quadratic equations.
But the limitations of such a method are obvious. So long as general
quantities are represented by séraight lZines only, we cannot, if our geometry
is plane, deal with products of more than two such quantities; and, even
by the use of three dimensions, we cannot work with products of more
than three quantities, since no geometrical meaning could be attached to
such a product. This limitation disappears so soon as we can represent any
genera|, quantity, corresponding to what we denote by a letter in algebra, by
a ratio; and this we can do because, on the general theory of proportion
established in Book v., a ratio may be a ratio of two incommensurable
quantities as well as of commensurables. Ratios can be compounded ad
infinitum, and the division of one ratio by another is equally easy, since it is
the same thing as compounding the first ratio with the inverse of the second.
Thus e.g. it is seen at once that the wefficients in a quadratic of the most
general form can be represented by ratios between straight lines, and the
solution by means of Books 1. and 11. of problems corresponding to quadratic
equations with particular coefficients can now be extended to cover any
quadratic with real roots. As indicated, we can perform, by composition of
ratios, the operation corresponding to multiplying algebraical quantities, and
this to any extent. We can divide quantities by compounding a ratio with
the inverse of the ratio representing the divisor. For the addition and
subtraction of quantities we have only to use the geometrical equivalent of
bringing to a common denominator, which is effected by means of the fourth
proportional.
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DEFINITIONS.

1. Similar rectilineal figures are such as have their
angles severally equal and the sides about the equal angles
proportional.

[2. Reciprocally related figures. See note. ]

3. A straight line is said to have been cut in extreme
and mean ratio when, as the whole line is to the greater
segment, so is the greater to the less.

4. The height of any figure is the perpendicular drawn
from the vertex to the base.

DEFINITION 1I.

< ’ i ’ 2 3 b ’ s Ed » by ’ b
Ouowa oxnjuare efvypappd éorw, 6oa Tas Te yuvias ioas &ger katd piav kal
p
Ths wepl TS loas yovias TAevpas draloyov.

This definition is quoted by Aristotle, Anal. post. 11. 17, 99 a 13, where
he says that séimilarity (76 Spowov) in the case of figures *consists, let us say
{fows), in their having their sides proportional and their angles equal”” The
use of the word icws may suggest that, in Aristotle’s time, this definition had
not quite established itself in the text-books (Heiberg, Mathematisches zu
Aristoteles, p. g).

It was pointed out in Van Swinden’s Elements of Geometry (Jacobi’s
edition, 1834, pp. 114—5) that Euclid omits to state an essential part of the
definition, namely that “the corresponding sides must be opposite to equal
angles,” which is necessary in order that the corresponding sides may follow
in the same order in both figures.

At the same time the definition states more than is absolutely necessary,
for it is true to say that Jww polygons are similar when, if the sides and angles
are taken in the same order, the angles are equal and the sides about the equal
angles are proportional, omiiting

(1) three consecutive angles,
or (2) two consecutive angles and the side common to them,
or (3) two conscculive sides and the angle included by them,
and making no assumption with regard ty the omitted sides and angles.

Austin objected fo this definition on the ground that it is not obvious that
the properties (1) of having their angles respectively equal and (z) of having
the sides about the equal angles proportional can co-exist in two figures ; but,
a definition not being concerned to prove the exiszence of the thing defined,
the objection falls to the ground. We are properly left to satisfy ourselves as
to the existence of similar figures in the course of the exposition in Book vi.,
where we learn how to construct on any given straight line a rectilineal figure
similar to a given one (VI 18}.
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DEFINITION 2.

The Greek text gives here a definition of reciprocally related figures
(dvreremovfora oxipara). “[Two] figures are reciprocally related when there
are in each of the two figures antecédent and consequent ratios’ (Avnreroyéom
3¢ oyfpard éorw, dTav v exa‘repw TGV CYYUATOV nyrmpevoa Te kal émopevol )\oym
adow). No intelligible meaning can be attached to “antecedent and con-
sequent ratios ¥ here; the sense would require rather “an antecedent and a
consequent of (two equal) ratios in each figure.” Hence Candalla and
Peyrard read Adywv dpor (“terms of ratios”) instead of Adyo. Camerer reads
Aoywv without Gpo..  But the objection to the definition lies deeper. It is
never used; when we come, in VL 14, 15, XI. 34 etc. to parallelograms,
triangles etc. having the property indicated, they are not called “reciprocal ”
parallelograms ete, but parallelograms ete. “the sides of whick are reciprocally
proportional,” &v a.l'rm'ermﬁamv ai mhevpai. Hence Simson appears to be
right in condemning the definition; it may have been interpolated from Heron,
who has it.

Simson proposes in his note to substitute the following definition. “Two
magnitudes are said to be reciprocally proportional to two others when one
of the first is to one of the other magnitudes as the remaining one of the last
two is to the remaining one of the first.” This definition requires that the
magnitudes shall be all of the same kind.

DEFINITION 3.

3

"Axpov kai pfoov Moyov edfela rerpusobar Aéyerar, drav 7 ds 7 Gy wpds TO
- P -~ [: N Ya N N ,,"1-71 7 > 7 K 1) P
petlov Tpijpa, ovrws TO peilov wpos o EkarTov.

DEFINITION 4.

Yijos éori mavtds oyjpatos B 4w THS kopvdis émi iy Bdow xdferos
Syouévy.

The definition of “height” is not found in Campanus and is perhaps
rightly suspected, since it does not apply in terms to parallelograms, parallele-
pipeds, cylinders and prisms, though it is used in the Z/ements with reference
to these latter figures. Aristotle does not appear to know altitude (¥¢os) In
the mathematical sense; he uses xdfleros of triangles (Meworologica L. 3,
373 a 11). The term is however readily understood, and scarcely requires
definition.

[DEFINITION 5.

Adyos &k Aoyuwy ovyxeiofar Aéyerar, dray ai Tov Adywv mphidryres &’ éavras
wolareoaoleicar Todoi Tva.

“ A ratio is said to be compounded of ratios when the sizes (wpAwdryres) of
the ratios multiplied together make some (? ratio, or size).”]

As already remarked (pp. 116, 132), it is beyond doubt that this definition
of ratio is interpolated. It has little ms. authority. The best Ms. (P) only has
it in the margin; it is omitted altogether in Campanus’ translation from the
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Arabic; and the other mss. which contain it do not agree in the position
which they give to it. There is no reference to the definition in the place
where compound ratio is mentioned for the first time (VL 23), nor anywhere
else in Euclid ; neither is it ever referred to by the other great geometers,
Archimedes, Apollonius and the rest. It appears to be only twice mentioned
at all, (1) in the passage of Eutocius referred to above (p. 116) and (2z) by
Theon in his commentary on Ptolemy’s oidvrafis. Moreover the content of
the definition is in itself suspicious. It speaks of the “sizes of ratios being
multiplied together (literally, into themselves),” an operation unknown to
geometry. There is no wonder that Eutocius, and apparently Theon also, in
their efforts to explain it, had to give the word wyAwdérys a meaning which has
no application except in the case of such ratios as can be expressed by
numbers (Eutocius e.g. making it the “number by which the ratio is called”).
Nor is it surprising that Wallis should have found it necessary to substitute
for the “quantitas” of Commandinus a different translation, “quantuplicity,”
which he said was represented by the “expoment of the rafio” (rationis
exponens), what Peletarius had described as “denominatio ipsae proportionis”
and Clavius as “denominator.” The fact is that the definition is ungeometrical
and useless, as was already seen by Savile, in whose view it was one of the
two blemishes in the body of geometry (the other being of course Postulate 5).
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ProrosiTion 1.

Triangles and parallelograms which are under the same
hewght are to one another as their bases.

Let ABC, ACD be triangles and £C, CF parallelograms

under the same height ;

51 say that, as the base BC is to the base CD, so is the
triangle ABC to the triangle ACD, and the parallelogram
£C to the parallelogram CF.

H G B € D K L

For let BD be produced in both directions to the points
H, L and let [any number of straight lines] G, GH be
10 made equal to the base BC, and any number of straight lines
DK, KL equal to the base CD;
let AG, AH, AK, AL be joined.
Then, since CB, BG, G are equal to one another,
the triangles A8C, AGE, AHAG are also equal to one
15 another. [r. 38]
Therefore, whatever multiple the base /ZC is of the base
BC, that multiple also is the triangle AHC of the triangle
ABC.
For the same reason,
20 whatever multiple the base ZC is of the base (CJ), that
multiple also is the triangle AL C of the triangle ACD;

and, if the base AC is equal to the base CLZ, the triangle
AHC is also equal to the triangle ACL, [1. 38]
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if the base A C is in excess of the base C'Z, the triangle AHC
25 is also in excess of the triangle 4CZ,
and, if less, less.
Thus, there being four magnitudes, two bases BC, CD
and two triangles A5C, ACD,
equimultiples have been taken of the base ZC and the
so triangle A4 B C, namely the base /7C and the triangle A HC,

and of the base (2 and the triangle 4D C other, chance, equi-
multiples, namely the base ZC and the triangle 42C;

and it has been proved that,

if the base /ZC is in excess of the base CZ, the triangle 4H7C
35is also in excess of the triangle ALC;

if equal, equal; and, if less, less.
Therefore, as the base BC is to the base €/, so is the

triangle 4.5C to the triangle ACD. [v. Def. 5]
‘ Next, since the parallelogram £ is double of the triangle
40 ABC, [ 41]

and the parallelogram #C is double of the triangle 4CD,

while parts have the same ratio as the same multiples of

them, [v. 15]

therefore, as the triangle 45C is to the triangle 4CD, so is
45 the parallelogram £C to the parallelogram #C.

Since, then, it was proved that, as the base ACis to CD,
so is the triangle ABC to the triangle ACD,

and, as the triangle 4A5C is to the triangle ACD, so is the
parallelogram £ZC to the parallelogram CZ,

so therefore also, as the base BC is to the base C/D, so is the
parallelogram £C to the parallelogram /C. [v. 11]

Therefore etc.
Q. E. D.

4. Under the same height. The Greek text has ‘‘under the same height 4C,” with
a figure in which the side 4C common to thé two triangles is perpendicular to the base and
is therefore itself the ““height.” But, even if the two triangles are placed contiguously so as
to have a common side 4C, it is quite gratuitous to require it to be perpendicular to the base.
Theon, on this occasion making an improvement, altered to ¢‘ which are (évra) under the
same height, (namely) the perpendicular drawn from 4 to 80.” I have ventured to alter so
far as to omit “AC” and to draw the figure in the usual way.

4. ABC,AGB, AHG. Euclid, indifferent to exact order, writes “4AHG, AGR, ABC.”

46. . Since then it was proved that, as the base BC is to CD, so is the triangle
ABC to the triangle ACD. Here again words have to be supplied in translating the
extremely terse Greek émwel ofw &elxfn, ds uév % Bdows BL wpds vhy TA, offrws 78 ABD
Tplywvor wpds 16 ATA Tplywrov, literally ** since was proved, as the base BC to €D, so the
triangle A BC to the triangle 4CD.” Cf. note on V. 16, p. 165.
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The proof assumes—what is however an obvious deduction from 1. 38—
that, of triangles or parallelograms on uzegual bases and between the same
parallels, the greater is that which has the greater base.

It is of course not necessary that the two given triangles should have a
common side, as in the figure; the proof is just as easy if they have not.
The proposition being equally frue of triangles and parallclograms of egua/
heights, Simson states this fact in a corollary thus:

“From this it is plain that triangles and parallelograms that have equal
altitudes are to one another as their bases.

Let the figures be so placed as to have their bases in the same straight
line ; and, if we draw perpendxcular:. from the vertices of the triangles to the
bases, the straight line which joins the vertices is parallel to that in which
their bases are, because the perpendiculars are both equal and parallel to one
another {1. 3 3]. Then, if the same construction be made as in the proposition,
the demonstration will be the same.”

The object of placing the bases in one straight line is to get the triangles
and parallelograms within the same parallels. Cf. Proclus’ remark on 1. 38
(p. 405, 17) that having the same height is the same thing as being in the
same parallels.

Rectangles, or right-angled triangles, which have one of the sides about
the right angle of the same length can be placed so that the equal sides
coincide and the others are in a straight line. If then we call the common
side the base, the rectangles or the right-angled triangles are to one another
as their heights, by vi. 1. Now, instead of each right-angled triangle or
rectangle, we can take any other triangle or parallelogram respectively with an
equal base and between the same parallels. Thus

Triangles and parallelograms having equal bases are fo one ancither as their
heights.

Legendre and those authors of modern text-books who follow him in
basing their treatment of proportion on the algebraical definition are obliged
to divide their proofs of propositions like this into two parts, the first of
which proves the particular theorem in the case where the magnitudes are
commensurable, and the second extends it to the case where they are
incommensurable.

Legendre (Ekmenis de Géométrie, 1. 3) uses for this extension a rigorous
method by reductio ad absurdum similar to that
used by Archimedes in his treatise Oz ke p FK c

|
l

equilibrium of planes, 1. 7. The following is
Legendre’s proof of the extension of vi. 1 to in-
commensurable parallelograms and bases.

The proposition having been proved for
commensurable bases, let there be two rectangles
ABCD, AEFD as in the figure, on bases A5, K ET O B
A Ewhich are incommensurable with one another.

To prove that rect. ABCD :rect. AEFD=AB: AE.

For, if not, let rect. ABCD :rect. AEFD =AB: AO, cceveneninnann... (1)
where A4 O is (for instance) greater than AZ.

Divide 4.5 into equal parts each of which is less than £0, and mark off
on A0 lengths equal to one of the parts; then there will be at least one point
of division between £ and O.

Let it be 7, and draw /X parallel to ZF

H. E. 1L 13
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Then the rectangles 4BCD, AIKD are in the ratio of the bases 4.8, A7,
since the latter are commensurable..
Therefore, inverting the proportion,
rect. AIKD irect. ABCD = AT AB..cccocvvivvieni. (2).
From this and (1), ex aegrali,
rect. AIKD :rect. AEFD = A7: A0.

But 4O > A7; thereforerect. AEFD >rect. AIKD.

But this is impossible, for the rectangle 4ZFD is less than the rectangle
AIKD. )

Similarly an impossibility can be proved if 40 < AE.

Therefore rect. ABCD :rect. AEFD=AB: AE.

Some modern American and German text-books adopt the less rigorous
method of appealing to the theory of Zimifs.

ProprosITION 2.

If a straight line be drawn parallel to one of the sides of a
triangle, it will cut the sides of the triangle proporiionally ;
and, if the sides of the triangle be cut propovtionally, the line
Joining the points of section will be parallel to the vemaining
side of the triangle.

For let DE be drawn parallel to BC, one of the sides of
the triangle ABC;

I say that, as 5D is to DA, so is CE to A
£EA.

For let BE, CD be joined.
Therefore the triangle BDE is equal to

the triangle CDE y X
for they are on the same base DZ and in ® ¢
the same parallels DE, BC. [r 38]

And the triangle 4DF is another area.

But equals have the same ratio to the same; [v. 71

therefore, as the triangle BDE is to the triangle ADE, so
is the triangle CDE to the triangle ADE.

But, as the triangle BDE is to ADE, sois 5D to DA ; -

for, being under the same height, the perpendicular drawn
from £ to AB, they are to one another as their bases. [vi. 1]

For the same reason also,
as the triangle CDE is to ADE, so is CE to £A4.
Therefore also, as 8D is to DA, sois CE to EA. [v. 11]
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Again, let the sides 48, AC of the triangle ABC be cut
proportionally, so that, as B0 is to DA, so is CE to £A4;
and let DE be joined.

I say that JZ is parallel to AC.

For, with the same construction,

since, as BD isto DA, sois CE to £ A,

but, as B0 is to DA, so is the triangle BDE to the triangle
ADE,

and, as CZ is to £ A4, so is the triangle CDE to the triangle
ADE, (v 1]

therefore also,

as the triangle BDE is to the triangle ADE, so is the
triangle COE to the triangle ADE. [v. 11]

Therefore each of the triangles BDZ, CDZ has the same
ratio to ADE.

Therefore the triangle BDE is equal to the triangle CDE;

V.

and they are on the same base DZ, ol

But equal triangles which are on the same base are also
in the same parallels. [1 39]

Therefore DE is parallel to BC.

Therefore etc.

Q. E. D.

Euclid evidently did not think it worth while to distinguish in the
enunciation, or in the figure, the cases in which the parallel to the base cuts
the other two sides produced (a) beyond the point in which they intersect,
(4) in the other direction. Simson gives the three figures and inserts words
in the enunciation, reading “it shall cuat the other sides, or those sides produced,
proportionally” and “if the sides, o» #4e sides prodieced, be cut proportionally.”

Todhunter observes that the second part of the enunciation ought to
make it clear which segments in the proportion correspond to which. Thus
e.g., if 4.0 were double of DB, and CZE double of £4, the sides would be
cut proportionally, but DZ would not be parallel to ZC. The omission
could be supplied by saying “and if the sides of the triangle be cut
proportionally so that the segments adjacent to the third side are corresponding
terins in the proportion.”

ProrosiTiON 3.

If an angle of a triangle be bisected and the stvaight line
cutting the angle cul the base also, the segments of the base
will have the same ratio as the remaining sides of the triangle,
and, tf the segments of the base have the sanme wvatio as the

13—z
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remaining sides of the tviangle, the straight line joined from
the vertex to the point of section will bisect the angle of the
triangle.

Let ABC be a triangle, and let the angle 84 C be bisected
by the straight line A0 ;
I say that, as B0 is to (D, so
is BA to AC.

Forlet C£ be drawn through A
C parallel to DA, and let 54
be carried through and meet it
at £.

Then, since the straight line L Y
AC falls upon the parallels 4D, B
EC,

the angle 4 CE is equal to the angle CAD.  [1 29]

But the angle CAD is by hypothesis equal to the angle
BAD;

therefore the angle 840D is also equal to the angle 4CE.

Again, since the straight line 54 E falls upon the parallels
AD, EC,

the exterior angle 54D is equal to the interior angle
AEC. ' (r. 29]

But the angle ACE was also proved equal to the angle
BAD ;

therefore the angle ACE is also equal to the angle 4Z£C,
so that the side 4 Z is also equal to the side AC. (1 6]

And, since A0 has been drawn parallel to ZC, one of
the sides of the triangle ZCEZ,

therefore, proportionally, as 5D is to DC, so is BA to AE.
But AZ is equal to 4C; [vr. 2]
therefore, as BD is to DC, so is BA to AC.

Again, let B4 be to AC as BD to DC, and let AD be
joined ;
I say that the angle ZA4C has been bisected by the straight
line AD.

For, with the same construction,
since, as BLD is to DC, sois BA to AC,
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and also, as BD is to DC, so is BA to AE: for AD has
been drawn parallel to ZC, one of the sides of the triangle

BCE: (v 2]
therefore also, as A4 is to AC, sois BA to AE. [v. 11]
Therefore AC is equal to AE, [v. o]

so that the angle 4£C is also equal to the angle ACE. [1. 5]
But the angle 4ZC is equal to the exterior angle ZAD,

fr. 29]
and the angle 4CZ is equal to the alternate angle CAD; [id.]

therefore the angle 540 is also equal to the angle CAD.

Therefore the angle 2.4 C has been bisected by the straight
line AD.

Therefore etc.
Q. E. D.

The demonstration assumes that CZ wi// meet BA produced in some
point Z. This is proved in the same way as it is proved in vI. 4 that BA, £D
will meet if produced. The angles 48D, BDA in the figure of VL. 3 are
together less than two right angles, and the angle 204 is equal to the angle
BCE, since DA, CE are parallel. Therefore the angles ABC, BCE are
together less than two right angles; and B4, CZ must meet, by 1. Post. 3.

The corresponding proposition about the segments into which BC is
divided externally by the bisector of the external angle at A when that
bisector meets BC produced (i.e. when the sides A5, AC are not equal) is
important. Simson gives it as a separate proposition, A, noting the fact that
Pappus assumes the result without proof (Pappus, VIL p. 730, 24).

The best plan is however, as De Morgan says, to combine Props. 3 and A
in one proposition, which may be enunciated thus: Jf an axgle of a triangle

" be bisected internally or exlernally by a straight line which cuts the opposite side
or the opposite side produced, the segments of that side will have the same ratio
as the other sides of the triangle; and, if a side of a triangle be divided internally
or externally so that its segments have the same ratio as the other sides of lhe
triangle, the straight line draten from the point of section to the angular point
which is opposite to the first mentioned side toill bisect the interior or exterior angle
at that angular point.

A A—F
F E
B D [¢} B8 (o] D
Let AC be the smaller of the two sides 45, AC, so that the bisector 4.0
of the exterior angle at 4 may meet ZC produced beyond C. Draw CZ
through C parallel to D4, meeting 54 in £.

Then, if £A4C is the exterior angle bisected by 4.D in the case of external
bisecticn, and if a point Z'is taken on 4.5 in the figure of vi. 3, the proof of
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VL. 3 can be used almost word for word for the other case. We have only to
speak of the angle “ #4C” for the angle “ B4 C,” and of the angle “ F4.D”
for the angle “ BA.D ” wherever they occur, to say “let 54, or B4 produced,
meet CE in E,” and to substitute “ B4 or B4 produced” for “BAE”
lower down.

B D C E

If AD, AE be the internal and external bisectors of the angle 4 in a
triangle of which the sides 4.8, AC are unequal, 4C being the smaller, and
if 4D, AE meet BC and BC produced in D, £ respectively,

the ratios of BD to DC and of BE to EC are alike equal to the ratio of
BAto AC.

Therefore BEis to ECas BD to DC,

that is, BZ is to EC as the difference between BE and ED is to the
difference between £.0 and £C,

whence BE, £D, EC are in harmonic progression, or DE is a harmonic mean
between BE and £C, or again B, D, C, £ is a harmonic range.

Since the angle DAC is half of the angle B4C,
and the angle CAZE half of the angle CAZ,
while the angles B4 C, CAF are equal to two right angles,
the angle DAE is a right angle.

Hence the circle described on D.E as diameter passes through 4.

Now, if the ratio of B4 to AC is given, and if BC is given, the points
D, E on BC and BC produced are given, and therefore so is the circle on
D, E as diameter. Hence the locus of a point such that ifs distances from tfwo
given potnts are in a given ratio (not being a ratio of equality) is a drcle.

This locus was discussed by Apollontus in his Plane Zoci, Book 1L, as we
know from Pappus (vir. p. 666), who says that the book contained the
theorem that, if from two given points straight lines inflected to another
point are in a given ratio, the point in which they meet will lie on either a
straight line or a circumference of a circle. The straight line is of course the
locus when the ratio is one of equality. The other case is quoted in the
following form by Eutocius (Apollcnius, ed. Heiberg, 11. pp. 180—4).

Gizen fawo points in a plane and a proportion between unequal straight lines,
it Is possible to describe a circle in the plane so that the straight lines inflected
Jrom the given points to the circumference of the civcle shall have a ratio the
same as the given one.

Apollonius’ construction, as given by Eutocius, is remarkable because he
makes no use of either of the points 2, £. He finds O, the centre of the
required circle, and the length of its radius directly from the data £Cand the
given ratio which we will call 4: 2  But the construction was not discovered
by Apollonius; it belongs to a much earlier date, since it appears in exactly
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the same form in Aristotle, Meteorologica 11 5, 376 a 3 sqq. The
analysis leading up to the construction is, as usual, not given either by
Aristotle or Eutocius. We are told to take three straight lines x, CO (a
length measured along BC produced beyond C, where B, C are the points at
which the greater and smaller of the inflected lines respectively terminate),
and 7, such that, if Z:% be the given ratio and 4> &,

Bil=Ri 24X, i e e (a)
1 BC=k:CO=L:17 criiiriirnnciaieieinennanans (B)

5 ¢ o E)

This determines the position of O, and the length of 7, the radius of the
required circle. The circle is then drawn, azy point £ is taken on it and
joined to B, C respectively, and it is proved that

PB:PC=1h:4

We may conjecture that the analysis proceeded somewhat as follows.

It would be seen that 5, C are *“conjugate points” with reference to the
circle on DE as diameter. (Cf. Apollonius, Conics, 1. 36, where it is proved,
in terms, for a circle as well as for an ellipse and a hyperbola, that, if the
polar of B meets the diameter DZ in C, then £C: CD=EB: BD.)

If O be the middle point of DZE, and therefore the centre of the circle,
D, E may be eliminated, as in the Conics, 1. 37, thus,

Since EC:CD=FEB:BD,
it follows that EC+ CD: EC~CD=EB+BD: EF~EBD,
or 20D :20C=208:20D,
that is, BO.0C= 0D =7 say.

If therefore 2 be any point on the circle with centre O and radius 7,
BO:0F=0P: 0C,
so that BOFP, POC are similar triangles.
In addition, A:24=BD : DC=BE: EC
=RD+ BE:DE=ZFBO0:r.
Hence we require that
BO:r=r:0C=BP:PC=hk .coeveeiriirei.. (&)

Therefore, alternately,
k:CO=lk:7
which is the second relation in (8) above.
Now assume a length x such that each of the last ratios is equal to x: BC,

as in (B).
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Then x:BC=k:CO=/:7
Therefore x+k:BO=r1:7,
and, alternately, x+k:£=80:7

=/ : 4, from (8) above;
and this is the relation () which remained to be found.

Apollonius’ proof of the construction is given by Eutocius, who begins by
saying that it is manifest that » is a mean proportional between B0 and OC.
This 1s seen as follows :

From (B) we derive
x:BC=k:CO=h:r=_(k+x): BO,

whence BO:r={(k+x):k
=/%: £, by (a),
=7 €O, by (),
and therefore »*=R0.CO.

But the triangles Z0F£, POC have the angle at O common, and, since
BO:0OP=0F: OC, the triangles are similar and the angles OPC, OBP
are equal

{Up to this point Aristotle’s proof is exactly the same; from this point it
diverges slightly.]

If now CZ be drawn parallel to B meeting OF in L, the angles BPC
LCP are equal also.

Therefore the triangles BPC, PCL are similar, and
BP: PC=PC:CL,
whence BP?*. PC*=BP:CL
=.B50: 0C, by parallels,
=B0%: OF® (since BO: OFP = 0F:0C).
Therefore BP:PC=B0:0F
=4k (for OFP=7).

[Aristotle infers this more directly from the similar triangles POB, COP.
Since these triangles are similar,

OP:CP=0R8:BP,
whence BP:PC=B0O:0P
=h:k]

Apollonius proves lastly, by »eductio ad absurdum, that the last equation

cannot be true with reference to any point £ which is not on the circle so
described.

PROPOSITION 4.

In equiangular friangles the sides about the equal angles
are proportional, and those are corvesponding sides which
subtend the equal angles.
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Let ABC, DCE be equiangular triangles having tle
angle ABC equal to the angle
DCE, the angle BAC to the
angle CDZE, and further the angle
ACBH to the angle CED ;

I say that in the triangles 4 5C,
DCE the sides about the equal
angles are proportional, and those
are corresponding sides which
subtend the equal angles. 8 c E

For let BC be placed in a
straight line with CZ.

Then, since the angles 4B8C, ACPB are less than two right
angles, [ 17]
and the angle A4CF is equal to the angle DEC,
therefore the angles 4BC, DEC are less than two right
angles ;
therefore 54, £, when produced, will meet. [1. Post. 5]

Let them be produced and meet at /.

Now, since the angle DCE is equal to the angle 45C,

F

BF is parallel to CD. [1. 28]
Again, since the angle 4CB is equal to the angle DEC,
AC is paralle] to FE. (1. 28]
Therefore FACD is a parallelogram ;
therefore /4 is equal to DC, and AC to FD. [1. 34]

And, since AC has been drawn parallel to FZ, one side
of the triangle FBE,

therefore, as BA is to AF, so is BCto CE. [¥1 2]
But AF'is equal to CD;
therefore, as BA is to CD, so is BC to CE,

and alternately, as 458 is to BC, sois DC to CE. [v. 16]
Again, since CD is parallel to 57,
therefore, as BC is to CE, so is FD to DE. [vi 2]

But FD is equal to AC;
therefore, as BC is to CE, sois AC to DE,
and alternately, as BC is to CA, sois CE to ED. [v. 16]
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Since then it was proved that,
as AB is to BC, sois DC to CE,
and, as BCisto CA, sois CE to £D;
therefore, ex aequali, as BA is to AC, so is CD to DE. [v. 22]
Therefore etc.
Q. E. D.

Todhunter remarks that “the manner in which the two triangles are to be
placed is very imperfectly described; their bases are to be in the same straight
line and contiguous, their vertices are to be on the same side of the base, and
each of the two angles which have a common vertex is to be equal to the
remote angle of the other triangle.” But surely Euclid’s description is
sufficient, except for not saying that B and D must be on the same side
of BCE.

VI. 4 can be immediately deduced from vi. 2 if we superpose one triangle
on the other three times in succession, so that each angle successively
coincides with its equal, the triangles being similarly situated, e.g. if (4, B, C
and D, E, F being the equal angles respectively) we apply the angle DEZF to
the angle A.8C so that D lies on 45 (produced if necessary) and #on BC
(produced if necessary). De Morgan prefers this method. “ Abandon,” he
says, ‘“the peculiar mode of construction by which Euclid proves two cases at
once; make an angle coincide with its equal, and suppose this process repeated
three times, one for each angle.”

ProrosiTiON 5.

If two triangles have their sides proportional, the triangles
will be equiangular and will have those angles equal which the
corvesponding sides subtend.

Let ABC, DEF be two triangles having their sides
proportional, so that,

as AB is to BC, so is DE to EF,
as BCisto CA, sois EF to FD,
and further, as B4 is to AC, sois £D to DF;
I say that the triangle 4BC is equiangular with the triangle
DEF, and they will have those angles equal which the corre-
sponding sides subtend, namely the angle 45C to the angle
DEF, the angle BCA to the angle £/, and further the
angle BAC to the angle £DF.
For on the straight line £7, and at the points £, # on
it, let there be constructed the angle #£G equal to the angle
ABC, and the angle £FG equal to the angle ACH;  [1 23]
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therefore the remaining angle at A is equal to the remaining
angle at G. (1 32]
Therefore the triangle ABC is equiangular with the

triangle GEZ.
4
E

G G
8

Therefore in the triangles 4BC, GEF the sides about
the equal angles are proportional, and those are corresponding
sides which subtend the equal angles; [v1. 4]

therefore, as 45 is to BC, sois GE to EF.
But, as 45 is to BC, so by hypothesis is DE to E£F;
therefore, as DE is to £EF, so is GE to EF. [v. 11]

Therefore each of the straight lines DZ, GE has the
same ratio to £F';

therefore DZ is equal to GE. [v. 9]
For the same reason
DF'is also equal to GF.
Since then DE is equal to EG,
and £/ is common,
the two sides DE, EF are equal to the two sides GE, EF;
and the base D/F is equal to the base FG;
therefore the angle £ /F is equal to the angle GEF,  [1 8]
and the triangle DEF is equal to the triangle GEF,

and the remaining angles are equal to the remaining angles,
namely those which the equal sides subtend. {r 4]

Therefore the angle DFZ is also equal to the angle GFEZ,
and the angle £DF to the angle £GZ.
And, since the angle FZD is equal to the angle GEZ,
while the angle GEF is equal to the angle A5C,
therefore the angle 4ABC is also equal to the angle DZF.



204 BOOK VI [vi 5,6

For the same reason
the angle A (A is also equal to the angle DFZ,
and further, the angle at 4 to the angle at [;

therefore the triangle A4 5C is equiangular with the triangle
DEF.

Therefore etc.
Q. E. D.

This proposition is the complete converse, V1. 6 a partial converse, of vi. 4.

Todhunter, after Walker, remarks that the enunciation should make it
clear that the sides of the triangles /aken in order are proportional. It is quite
possible that there should be two triangles 45C, DZF such that

ABisto BCas DE to EF,
and BCisto C4 as DFis to ED (instead of EFto FD),

so that ABisto AC as DFto EF

(ex aequali in perturbed proportion);
in this case the sides of the triangles are proportional, but not in the same
order, and the triangles are not necessarily equiangular to one another. Fora
numerical illustration we may suppose the sides of one triangle to be 3, 4 and
5 feet respectively, and those of another to be 12, 15 and 20 feet respectively.

In vi. 3 there is the same agparent avoidance of indirect demonstration
which has been noticed on 1. 48.

ProrositTion 6.

If two triangles have one angle equal to one angle and the
sides about the equal angles proportional, the triangles will be
equiangular and will have those angles equal which the corve-
sponding sides subtend.

Let 4BC, DEF be two triangles having one angle BA4C
equal to one angle ZDZF and the sidés about the equal angles
proportional, so that,

as BA isto AC, so1s ED to DF;

I say that the triangle 42C is equiangular with the triangle
DEF, and will have the angle A5C equal to the angle DEF,
and the angle 4 (A to the angle DFE.

For on the straight line D/, and at the points D, F on it,
let there be constructed the angle #DG equal to either of the
angles ZAC, EDF, and the angle DFG equal to the angle
ACB; [ 23]

therefore the remaining angle at B is equal to the remaining

angle at G. [r. 32]
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Therefore the triangle 4BC is equiangular with the
triangle DGF.

Therefore, proportionally, as 24 is to AC, so is GD to

DF. [vi 4]
But, by hypothesis, as 84 is to AC, so also is £D to DF;
therefore also, as £D is to DF, sois GD to DF. [v. 11]
A
D,
G
E F
B c
Therefore £D is equal to DG ; [v. 9]

and DF is common ;.

therefore the two sides £D, DF are equal to the two sides
GD, DF; and the angle £DF is equal to the angle GD/F;

therefore the base £/ is equal to the base G £,
and the triangle D £/ is equal to the triangle DGZF,

and the remaining angles will be equal to the remaining angles,
namely those which the equal sides subtend. {r 4]

Therefore the angle DFG is equal to the angle DFE,

and the angle DGF to the angle DEF.

But the angle DG is equal to the angle 475 ;
therefore the angle 4CZA is also equal to the angle DFE.

And, by hypothesis, the angle BAC is also equal to the
angle EDF; '

therefore the remaining angle at 5 is _lso equal to the
remaining angle at &; 1s (1. 32]

therefore the triangle A B is equiangliar viith the triangle
DEF.

Therefore etc.



206 BOOK VI [vi. 7

ProrosiTion 7.

If two triangles have one angle equal to one angle, the
sides about other angles proportional, and the remaining angles
etther both less ov both not less than a vight angle, the triangles
will be equiangular and will have those angles equal, the sides
about which are propovtional.

Let ABC, DEF be two triangles having one angle equal
to one angle, the angle BAC to
the angle £/ F, the sides about
other angles AB8C, DEF propor- A y
tional, so that, as AFZ is to BC,
so is DE to EF, and, first, each

of the remaining angles at C, £

less than a right angle ; F
I say that the triangle 4BC is g G
equiangular with. the triangle c

DEF, the angle ABC will be
equal to the angle DZF, and the remaining angle, namely

the angle at C, equal to the remaining angle, the angle
at f~.

For, if the angle ABC is unequal to the angle DEF, one
of them is greater.
Let the angle 4BC be greater ;
and on the straight line 45, and at the point 2 on it, let the
angle 4.BG be constructed equal to the angle DEF. [ 23]
Then, since the angle 4 is equal to D,
and the angle 458G to the angle DEF,
therefore the remaining angle 4GB is equal to the remaining
angle DFE, [L 32]
Therefors. the triangle 4ABG is equiangular with the
triangle DEF |
Therefore, as, 15 is to BG, so is DE to EF. [vt. 4]
But, as DE . °tc?~ EF, so by hypothesis is A5 to BC,;
therefore A8 ha¢ ithe same ratio to each of the straight
lines BC, BG; [v. 11]
therefore BC is equal to BG, [v. 9]
so that the angle at C is also equal to the angle BGC.  [1 5]
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But, by hypothesis, the angle at C is less than a right
angle ;

therefore the angle ZGC is also less than a right angle;

so that the angle 4GB adjacent to it is greater than a right
angle. 5. 13]
And it was proved equal to the angle at /#;

therefore the angle at # is also greater than a right angle.

But it is by hypothesis less than a right angle: which is
absurd.

Therefore the angle ABC is not unequal to the angle
DEF,

therefore it is equal to it.
But the angle at A is also equal to the angle at D ;

therefore the remaining angle at C is equal to the remaining
angle at /. 1. 32]

Therefore the triangle 4 5C is equiangular with the triangle
DEF.

But, again, let each of the angles at C, # be supposed not
less than a right angle;
I say again that, in this case too, the

A
triangle 4 BC is equiangular with the b
triangle DEF.
For, with the same construction, A
we can prove similarly that G >
BC is equal to BG; ¢ E
so that the angle at C is also equal to
the angle BGC. [ 5]
But the angle at C is not less than a right angle;
therefore neither is the angle BGC less than a right angle.

Thus in the triangle ZGC the two angles are noi- less
than two right angles : which is impossible. [r 17]

Therefore, once more, the angle AB8C is not unequal o0
the angle DEF;
therefore it is equal to it.

But the angle at A4 is also equal to the angle at D ;

B

therefore the remaining angle at C is equal to the remaining
angle at /. (1 32]
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Therefore the triangle 4 BC is equiangular with the triangle
DEF.
Therefore etc.
Q. E. D.

Todhunter points out, after Walker, that some more words are necessary
to make the enunciation precise: “If two triangles have one angle equal to one
angle, the sides about other angles proportional <so 2haf the sides sublending
the equal angles are homologous>...."

This proposition is the extension to similar triangles of the ambiguous case
already mentioned as omitted by Euclid in relation to eguaity of triangles in
all respects {(cf. note following 1. 26, Vol. 1. p. 306). The enunciation of v1. 7
has suggested the ordinary method of enunciating the amébiguous case where
eguality and not similarity 1s in question. Cf. Todhunter’s note on 1. 26.

Another possible way of presenting this proposition is given by Todhunter.
The essential theorem to prove is:

If two triangles have two sides of the one proportional fo two sides of the
other, and ke angles opposite to one pair of corresponding sides equal, the angles
which are opposite to the other pair of corresponding sides shall either be equal or
be together equal fo tuo right angles.

For the angles included by the proportional sides must be either equal or
unequal.

If they are equal, then, since the triangles have two angles of the one
equal to two angles of the other, respectively, they are equiangular to one
another.

We have therefore only to consider the case in which the angles included
by the proportional sides are unequal.

The proof is, except at the end, like that of vi. 7.

Let the triangles 48C, DEF have the angle at 4 equal to the angle at D ;

let A8 beto BCus DE to EF,

baut let the angle A4 .8C be nof equal to the angle DEF.

D

8 c E

The angles 4CB, DFE shall be together equal to two right angles.
For one of the angles A 8(, DEF must be the greater.

Let ABC be the greater; and make the angle 4G equal to the angle
DEE,

Then we prove, as in V1. 7, that the triangles ABG, DEF are equiangular,
whence

ABisto BG as DE is to EF,
But A8 iste BC as DE is to EF, by hypothesis.
Therefore BG is equal to BC,
and the angle BGC is equal to the angle 5CA4.



VL 7, 8] PROPOSITIONS 7, 8 209

Now, since the triangles A 8G, DEF are equiangular,
the angle £G4 is equal to the angle ZFD.
Add to them respectively the equal angles BGC, BCA; therefore the
angles BCA, EFD are together equal to the angles BG4, BGC, ie. to two
right angles.

It follows therefore that the angles BCA4, £/D must be either equal or
supplementary.

But (1), if each of them is less than a right angle, they cannot be
supplementary, and they must therefore be equal;

(z) 1if each of them is greater than a right angle, they cannot be
supplementary and must therefore be equal;

(3) if one of themis a right angle, they are supplementary and also equal.

Simson distinguishes the last case (3) in his enunciation: “then, if each of
the remaining angles be either less or not less than a right angle, or #f one of
them be a right angle....”

The change is right, on the principle of restricting the conditions to the
minimum necessary to enable the conclusion to be inferred. Simscn adds a
separate proof of the case in which one of the remaining angles is a right
angle.

“ Lastly, let one of the angles at C, &, viz. the angle at C, be a right angle;
in this case likewise the triangle 48C
is equiangular to the triangle DEF. A

For, if they be not equiangular, D
make, at the point B of the straight
line 4.5, the angle ABG equal to the G
angle DZEF; then it may be proved,
as in the first case, that B¢ is equal
to BC. A

But the angle BCG is a right
angle ;
therefore the angle BGC is also a G
right angle; )
whence two of the angles of the tri-
angle BGC are together not less than
two right angles: which is impossible.

Therefore the triangle A BC is equiangular to the triangle DEZ”

w
(9]

o,

ProrosiTioN 8.

If in a right-angled triangle a perpendicular be drawn
Srom the right angle to the base, the triangles adjorning the
perpendicular arve similar both to the whole and to one another.

Let ABC be a right-angled triangle having the angle
BAC right, and let A0 be drawn from A perpendicular
to BC;

I say that each of the triangles 48D, ADC is similar to
the whole 4 BC and, further, they are similar to one another.

H. E. 1L 14
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For, since the angle BAC is equal to the angle 4D25,
for each is right, ‘

and the angle at 5 is common to the

two triangles 45C and ABD, A
therefore the remaining angle 4CH

is equal to the remaining angle

BAD [r. 32]

therefore the triangle 4B8C is equi- B o c

angular with the triangle AB8D.

Therefore, as BC which subtends the right angle in the
triangle ABC is to BA which subtends the right angle in
the triangle 458D, so is AF itself which subtends the angle
at C in the triangle A5C to BD which subtends the equal
angle BALD in the triangle 480D, and so also is AC to AD
which subtends the angle at & common to the two triangles.

[vi 4]

Therefore the triangle 4ZBC is both equiangular to the
triangle 450 and has the sides about the equal angles
proportional.

Therefore the triangle ABC is similar to the triangle
ABD. [vi. Def. 1]

Similarly we can prove that
the triangle 4 5C is also similar to the triangle 4.DC;
therefore each of the triangles 480D, ADC is similar to the
whole ABC.

I say next that the triangles 48D, ADC are also similar
to one another. ’

For, since the right angle B4 is equal to the right angle
ADC,
and moreover the angle 4D was also proved equal to the
~angle at C,
therefore the remaining angle at 5 is also equal to the
remaining angle DAC; [ 32]
therefore the triangle 45D is equiangular with the triangle
ADC.

Therefore, as A0 which subtends the angle ZA40D in the
triangle 48D is to DA which subtends the angle at C in the
triangle 4DC equal to the angle BAD, so is AD itself
which subtends the angle at & in the triangle 458D to DC
which subtends the angle DAC in the triangle 4DC equal
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to the angle at B, and so also is B4 to AC, these sides

subtending the right angles ; [vi. 4]
therefore the triangle 48D is similar to the triangle 4DC.
[vi. Def. 1]

Therefore etc.

Porism. From this it is clear that, if in a right-angled
triangle a perpendicular be drawn from the right angle to the
base, the straight line so drawn is a mean proportional
between the segments of the base. Q. E. D.

Simson remarks on this proposition: “It seems plain that some editor
has changed the demonstration that Euclid gave of this proposition: For,
after he has demonstrated that the triangles are equiangular to one another,
he particularly shows that their sides about the equal angles are proportionals,
as if this had not been done in the demonstration of prop. 4 of this book:
this superfluous part is not found in the translation from the Arabic, and is
now left out.”

This seems a little hypercritical, for the “particular showing” that the
sides about the equal angles are proportionals is really nothing more than
a somewhat full citation of vi. 4. Moreover to shorten his proof still
more, Simson says, after proving that each of the triangles ABD, ADC is
similar to the whole triangle A8C, “And the triangles 48D, ADC being
both equiangular and similar to ABC are equiangular and similar to one
another,” thus assuming a particular case of vi. 21, which might well be
proved here, as Euclid proves it, with somewhat more detail.

We observe that, here as generally, Euclid seems to disdain to give the
reader such small help as might be afforded by arranging the letters used to
denote the triangles so as to show the corresponding angular points in the
same order for each pair of triangles; A is the first letter throughout, and the
other two for each triangle are in the order of the figure from left to right. It
may be in compensation for this that he states at such length which side
corresponds to which when he comes to the proportions,

In the Greek texts there is an addition to the Porism inserted after
“(Being) what it was required to prove,” viz. “and further that between the
base and any one of the segments the side adjacent to the segment is a2 mean
proportional.” Heiberg concludes that these words are an interpolation
(1) because they come after the words dmep &e deifaw which as a rule follow the
Porism, (2) they are absent from the best Theonine Mss,,-though P and
Campanus have them without the dwep e Seifa. Heiberg's view seems to
be confirmed by the fact noted by Austin, that, whereas the first part of the
Porism is quoted later in vi. 13, in the lemma before X. 33 and in the lemma
after X111 13, the second part is proved in the former lemma, and elsewhere,
as also in Pappus (IIL p. 72, 9—23).

ProrosiTiON 0.

From a given straight kine to cut off a prescribed part.
Let A B be the given straight line ;
thus it is required to cut off from A5 a prescribed part.

14—2
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Let the third part be that prescribed.
5 Let a straight line 4C be drawn through from A con-
taining with 45 any angle ;
let a point 2 be taken at random on

AC, and let DE, EC be made equal S
to AD. [ 3] E

1o Let BC be joined, and through D
let DF be drawn parallel to it.  [r 31] g s 5
Then, since £ has been drawn
parallel to BC, one of the sides of the triangle ABC,
therefore, proportionally, as CD is to DA, so is BF to FFA.
{vi 2]

15 But €D is double of DA ;
therefore BF is also double of /4 ;
therefore BA is triple of AF.

Therefore from the given straight line 45 the prescribed
third part A/ has been cut off.
Q. E. F.

6. any angle. The expression here and in the two following propositions is rvyolea
ywria, corresponding exactly to Tuxdr onuelor which I have translated as *‘a point (taken)
at random™; but “an angle (taken} at random” would not be so appropriate where it is a
question, not of faking any angle at all, but of drawing a straight line casually so as to make
any angle with another straight line.

Simson observes that “this is demonstrated in a particular case, viz. that
in which the third part of a straight line is required to be cut off; which is
not at all like Euclid’s manner. Besides, the author of that demonstration,
from four magnitudes being proportionals, concludes that the third of them is
the same multiple of the fourth which the first is of the second ; now this is
nowhere demonstrated in the sth book, as we now have it; but the editor
assumes it from the confused notion which the vulgar have of proportionals.”

The truth of the assumption referred to is proved by Simson in his
proposition D given above (p. 128); hence he is
able to supply a general and legitimate proof
of the present proposition. A

“Let AB be the given straight line; it is
required to cut off any part from it.
From the point 4 draw a straight line 4C E o
making any angle with 458; in 4C take any
point D, and take 4 C the same multiple of 4.0
that AP is of the part which is to be cut off
from it;

join BC, and draw DZ parallel o 1t : B C
then A £ is the part required to be cut off.
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Because £.D is parallel to one of the sides of the triangle 4 B, viz. to BC,

as CDisto D4, sois BE to E4, [¥1. 2]
and, componendo,
CAisto AD, as B4 to AE. [v. 18]
But C4 is a multiple of 4D
therefore B4 is the same multiple of 4. [Prop. D]

Whatever part therefore 4D is of 4C, AE is the same part of 4B ;
wherefore from the straight line 4.8 the part required is cut off.”

The use of Simson’s Prop. D can be avoided, as noted by Camerer after
Baermann, in the following way. We first prove, as above, that

CAisto AD as BA is to 4E.
Then we infer that, alternately,

CA4isto BA as AD to AE. [v. 16]

But AdDisto AEasn. ADton. AE
(where 7 is the number of times that 4D is contained in 4C); [v. 135
whence ACisto ABasn.ADiston.AE. [v. 11]

In this proportion the first term is equal to the third; therefore [v. 14]
the second 1s equal to the fourth,

so that AR is equal to » times A Z.
Prop. ¢ is of course only a particular case of Prop. 0.

ProrosiTioN 10.

To cut a given uncut straight line similarly to a given cut
straight line.

Let 4B be the given uncut straight line, and AC the
straight line cut at the points 2,
£ ; and let them be so placed as c
to contain any angle ;

let CB be joined, and through D, £

E let DF, EG be drawn parallel / /

to BC, and through D let DHK D H

be drawn parallel to 45.  [i 31] | / 7
F G B

Therefore each of the figures A
FH, HB is a parallelogram ;

therefore DH is equal to /G and AKX to GB. [r. 34]

Now, since the straight line /£ has been drawn parallel
to KC, one of the sides of the triangle DKC,

therefore, proportionally, as C£ is to ED, so is KA to HD.
[vi 2]
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But K/ is equal to BG, and D to GF;
therefore, as CE is to ED, so is BG to GF.

Again, since /D has been drawn parallel to GZ, one of
the sides of the triangle 4G E,

therefore, proportionally, as £ is to DA, so is GF to FA.
[vi. 2]

But it was also proved that,
as CE isto £D, so is BG to GF;
therefore, as CE is to £D, so is BG to GF,
and, as ED isto DA, sois GF to FA.
Therefore the given uncut straight line 45 has been cut

similarly to the given cut straight line 4 C.
Q E. F.

ProrosITION 11.
To two given straight lines to find a third proportional.

Let BA, AC be the two given straight lines, and let
them be placed so as to contain any
angle ;
thus it is required to find a third pro-
portional to 54, AC.

For let them be produced to the ¢
points D, £, and let B0 be made equal
to AC; (r 3]
let BC be joined, and through D let D £
be drawn parallel to it. [r. 31] &

Since, then, AC has been drawn
parallel to DZ, one of the sides of the triangle ADE,

proportionally, as 45 is to BD, so is AC to CE. [vi. 2]
But BD is equal to AC; :
therefore, as A8 isto AC, sois AC to CE.

Therefore to two given straight lines 48, AC a third
proportional to them, CZ, has been found.

A

O,

Q. E. F.

_ 1. to find. The Greek word, here and in the next two propositions, is 7 pocevpeiv,
literally ““to find /1 addition.”

This proposition is again a particular case of the succeeding Prop. 12.
‘Gn:er{ a ratio between straight lines, vi. 11 enables us to find the ratio
which is its duplicate,
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ProrposiTioN 12.

To three given straight lines to find a _fourth proportional.
Let A4, B, C be the three given straight lines;
thus it is required to find a fourth proportional to 4, B, C.

E

@

D H F

Let two straight lines DZ, JF be set out containing any
angle ZDF;

let DG be made equal to A, GE equal to B, and further DH
equal to C;

let GAH be joined, and let £/ be drawn through £ parallel
to it. [ 31]

Since, then, G/ has been drawn parallel to £F, one of
the sides of the triangle DEF,

therefore, as DG is to GE, so is DH to HF. [vi. 2]
But DG is equal to A, GE to B, and DH to C;
therefore, as 4 is to B, so is Cto HF.

Therefore to the three given straight lines A4, B, C a fourth
proportional /7 has been found.
Q. E. F.

We have here the geometrical equivalent of the “rule of three.”

It is of course immaterial whether, as in Euclid’s proof, the first and
second straight lines are measured on one of the lines forming the angle and
the third on the other, or the first and third are measured on one and the
second on the other.

If it should be desired that the first and the required fourth be measured
on one of the lines, and the second and third on
the other, we can use the following construction.

Measure D ZE on one straight line equal to ./, and

on any other straight line making an angle with £C

the first at the point D measure JDF equal to 5,
and DG equal to C. Join £F and through &
draw GH anti-parallel to EF, i.e. make the angle
DGH equal to the angle DEF; let GH meet P H E
DE (produced if necessary) in A
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DH is then the fourth proportional. )
For the triangles ZDF, GDH are similar, and the sides about the equal

angles are proportional, so that
DE isto DFas DG to DH,
or Aisto Bas Cto DH.

ProrosiTION 13.

To two given straight lines to find a mean proportional.

Let AB, BC be the two given straight lines;
thus it is required to find a mean

proportional to 4B, BC.

Let them be placed in a straight
line, and let the semicircle A0C be
described on 4C;

let BD be drawn from the point B at A B ©
right angles to the straight line AC,
and let 4D, DC be joined.
Since the angle ADC is an angle in a semicircle, it is
right. [11. 31]
And, since, in the right-angled triangle ADC, DB has
been drawn from the right angle perpendicular to the base,
therefore DA is a mean proportional between the segments of
the base, A8, BC. [vi. 8, Por.]
Therefore to the two given straight lines 4.5, BC a mean
proportional 2.5 has been found.

Q. E. F.

This proposition, the Book v1. version of 1. 14, is equivalent to the
extraction of the square root. It further enables us, given a ratio between
straight lines, to find the ratio which is its swé-@uplicate, or the ratio of which
it is duplicate.

ProrosiTiON 14.

In equal and equiangular parallelograms the sides about
the equal angles ave reciprocally proportional; and equiangular
parallelograms in whick the sides about the equal angles are
reciprocally proportional are equal.
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Let 45, BC be equal and equiangular parallelograms
having the angles at 5 equal, and
let DB, BE be placed in a straight
line;

therefore 75, BG are also in
a straight line. [t 14]

I say that, in A8, BC, the
sides about the equal angles are
reciprocally proportional, that is to
say, that, as DB is to BE, so is
GFB to BF.

For let the parallelogram /£ be completed.

Since, then, the parallelogram A5 is equal to the parallelo-

G
7

/

gram BC,
and F£ is another area,
therefore, as A5 is to FE, sois BC to FE. [v. 7]
But, as 4B isto FE, sois DB to BE, [vt. 1]
and, as BC1s to /£, sois G5 to 5F. [id.]
therefore also, as DB is to BE, sois GB to BE. [v. 11]

Therefore in the parallelograms 45, £C the sides about
the equal angles are reciprocally proportional.
Next, let G5 be to BF as DB to BE;

I say that the parallelogram 47 is equal to the parallelogram
BC.

For since, as DB is to BE, sois GB to BF,
while, as DZF is to BE, so is the parallelogram 425 to the

parallelogram FZ, [vi 1]
and, as GB is to BF, so is the parallelogram BC to the
parallelogram FZE, [vi. 1}
therefore also, as A8 is to FK, sois BC to FE : [v. 11]
therefore the parallelogram A5 is equal to the parallelogram
BC. {v. 9]

Therefore etc.
Q. E. D.

De Morgan says upon this proposition : “ Owing to the disjointed manner
in which Euclid treats compound ratio, this propesition is strangely out of
place. It is a particular case of vi. 23, being that in which the ratio of the
sides, compounded, gives a ratio of equality. The proper definition of four
magnitudes being reciprocally proportional is that the ratio compounded of
their ratios is that of equality.”
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It is true that v 14 is a particular case of vi 23, but, if either is out of
place, it is rather the latter that should be placed before VI. 14, since most of
the propositions between vi. 15 and vi. 23 depend upon vi. 14 and 15. But
it is perfectly consistent with Euclid’s manner to give a particular case first
and its extension later, and such an arrangement often has great advantages
in that it enables the more difficult parts of a subject to be led up to more
easily and gradually. Now, if De Morgan’s view were here followed, we
should, as it seems to me, be committing the mistake of explaining what is
relatively easy to understand, viz. two ratios of which one is the inverse of
the other, by a more complicated conception, that of compound ratio. In
other words, it is easier for a learner to realise the relation indicated by the
statement that the sides of equal and equiangular parallelograms are “recipro-
cally proportional  than to form a conception of parallelograms such that
“the ratio compounded of the ratio of their sides is one of equality.” For
this reason I would adhere to Euclid’s arrangement.

The conclusion that, since DB, BE are placed in a straight line, FB, BG
are also in a straight line is referred to 1. 14. The deduction is made clearer
by the following steps.

The angle DB Fis equal to the angle GBE;
add to each the angle FBE ;
therefore the angles DB5F, FBE are together equal to the angles GBE, FBE.
[C. M. 2]
But the angles DBF, FBE are together equal to two right angles, [1. 13]
therefore the angles GBE, FBE are together equal to two right angles,
[C. N 1]
and hence FB, B are in one straight line. [1. 14]

The result is also obvious from the converse of 1. 15 given by Proclus
(see note on L 135).

The proposition viL 14 contains a theorem and one partial converse of it ;
so also does vi. 13. To each proposition may be added the other partial
converse, which may be enunciated as follows, the words in square brackets
applying to the case of triangles (vi. 15).

Equal parallelograms {triangles| whick have the sides about one angle in

eack reciprocally proportional are equiangular [have the angles included by those
sides either equal or sugplementary.]

Let AB, BC be equal parallelograms, or let ZBD, ZBG be equal
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triangles, such that the sides about the angles at B are reciprocally propor-
tional, i.e. such that
DB : BE =GB : BF.
We shall prove that the angles #BD, ZBG are either equal or supple-
mentary.
Place the figures so that DB, BE are in one straight line.
Then FB, BG are either in a straight line, or not in a straight line.
(1) If FB, BG are in a straight line, the figure of the proposition
(with the diagonals 7ZD, £G drawn) represents the facts, and
the angle ZBD is equal to the angle £8G. {r 15]
(2) If 7B, BG are not in a straight line,
produce FB to A so that BA may be equal to BG.
Join £.A, and complete the parallelogram EBHK.
Now, since DB :BE=GB:BF
and GB = HB,
DB : BE=HB: BF
and therefore, by vi 14 or 13,
the parallelograms A4 B, BX are equal, or the triangles FBD, EBH are equal.
But the parallelograms 4B, BC are equal, and the triangles FBD, £EBG
are equal ;
therefore the parallelograms BC, BX are equal, and the triangles EBA,
EBG are equal.

Therefore these parallelograms or triangles are within the same parallels:
that is, &, C, H, K are in a straight line which is parallel to DE. {1 39]
Now, since BG, BH are equal,

the angles G H, BHG are equal.
By parallels, it follows that
the angle £5G is equal to the angle DB A,
whence the angle £B8G is supplementary to the angle FB.D.

ProrosiTiON T15.

In equal triangles whick have one angle equal to one angle
the sides about the equal angles are reciprocally proportional ;
and those triangles whick have one angle equal to one angle,
and in whick the sides about the equal angles are reciprocally
proporvivonal, are equal.

Let ABC, ADE be equal triangles having one angle
equal to one angle, namely the angle 5A4C to the angle
DAE;

I say that in the triangles 4ABC, ADFE the sides about the
equal angles are reciprocally proportional, that is to say, that,
as CA 1sto AD, sois £A to AB.
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For let them be placed so that CA4 is in a straight
line with 420;
therefore £A4 is also in a straight line with 8
AB. [1. 14] D

Let D be joined.
Since then the triangle ABC is equal to A
the triangle ADE, and BAD is another

area,

therefore, as the triangle CAB is to the
triangle BAD, so is the triangle £AD to E
the triangle 5A4D. [v. 7]
But, as CAB is to BAD, sois CA to AD, [vi. 1]
and, as £AD is to BAD, sois £A to AB. [id.]
Therefore also, as CA is to AD, sois £A to AB. [v. 11]

Therefore in the triangles ABC, ADE the sides about
the equal angles are reciprocally proportional.

Next, let the sides of the triangles 4 B5C, ADE be reci-
procally proportional, that is to say, let £4 be to A5 as CA
to AD;

I say that the triangle 4 BC is equal to the triangle 4 DE.
For, if BD be again joined,
since, as CA is to AD, so is £A to AB,

while, as CA4 is to AD, so is the triangle ABC to the triangle
BAD,

and, as £4 is to A8, so is the triangle ZA4D to the triangle

[¢]

BAD, [ve 1]
therefore, as the triangle 4 BC is to the triangle BAD, so is
the triangle £A4.0 to the triangle BAD. [v. 11]

Therefore each of the triangles 4 8C, EAD has the same
ratio to BAD.

Therefore the triangle 4.8C is equal to the triangle £A4D.
[v- 9]

Therefore etc.
Q. E. D.

_ As indicated in the partial converse given in the last note, this proposition
is equally true if the angle included by the two sides in one triangle is

supplementary, instead of being equal, to the angle included by the two sides
in the other.
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Let ABC, ADE be two triangles such that the angles BAC, DAE are
supplementary, and also

CA:4D=FEA4 . AB. B
In this case we can place the triangles so that /
C4 is in a straight line with 4.0, and 4B lies £

along 4Z£ (since the angle £A4C, being supple-
mentary to the angle ZA4.D, is equal to the angle
BAC).

If we join BD, the proof given by Euclid
applies to this case also.

It is true that vI 15 can be immediately inferred from VI 14, since a
triangle is half of a parallelogram with the same base and height. But,
Euclid’s object being to give the student a grasp of methods rather than
results, there seems to be no advantage in deducing one proposition from the
other instead of using the same method on each.

ProrosiTiON 16.

If four straight lines be proportional, the rectangle con-
tained by the extremes is equal to the rectangle contained by
the means ; and, if the rectangle contained by the extremes be
equal to the rectangle contained by the means, the four straight
lines will be proportional.

Let the four straight lines 45, CD, £, F be proportional,
so that, as AF isto C, so is £ to F;

I say that the rectangle contained by 45, F is equal to the
rectangle contained by CD, £.

G H :

i

I |

A B & 3
€ F

Let AG, CH be drawn from the points A, C at right
angles to the straight lines A5, CD, and let 4G be made
equal to £, and C/{ equal to £.

Let the parallelograms 5G, DA be completed.

Then since, as A8 is to CD, so is E to F,
while £ is equal to C/, and F to AG,
therefore, as AB isto CD, so is CH to AG.

Therefore in the parallelograms BG, DH the sides about
the equal angles are reciprocally proportional.
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But those equiangular parallelograms in which the sides
about the equal angles are reciprocally proportional are e[qual ],
. VL 14
therefore the parallelogram BG is equal to the parallelogram
DH.
And BG is the rectangle 458, F, for AG is equal to £7;
and DA is the rectangle CD, E, for £ is equal to CH;

therefore the rectangle contained by A5, F is equal to the
rectangle contained by €D, £.

Next, let the rectangle contained by 45, / be equal to
the rectangle contained by C0, Z;

I say that the four straight lines will be proportional, so that,
as AB is to CD, so is £ to F.

For, with the same construction,
since the rectangle 4B, F is equal to the rectangle CD, £,
and the rectangle 4B, Fis BG, for AG is equal to £,
and the rectangle CD, E is DH, for CH is equal to £,
therefore BG is equal to DA.

And they are equiangular.
But in equal and equiangular parallelograms the sides about
the equal angles are reciprocally proportional. [vr. 14]
" Therefore, as AB is to CD, so is CH to AG.
But C/ is equal to £, and AG to £

therefore, as A8 is to CD, so is £ to F.
Therefore etc. Q. E. D,

This proposition is a particular case of vi. 14, but one which is on all
gccofunts worth separate statement. It may also be enunciated in the follow-
ing form:

Rectangles which have their bases reciprocally proportional to their heights
are egual in area; and equal rectangles have their bases veciprocally proportional
10 thetr heights.

Since any parallelogram is equal to a rectangle of the same height and
on the same base, and any triangle with the same height and on the same
base is equal to half the parallelogram or rectangle, it follows that Eguwal
parallelograms or triangles have their bases reciprocally proportional fo their
heights and vice versa.

. The present place is suitable for giving certain important propositions,
including those which Simson adds to Book vI. as Props. B, C and D, which
are proved directly by means of v1. 16.

1. Proposition B is a particular case of the following theorem.

If a circle be_ circumscribed about a triangle ABC and there be drawn through
A any two straight lines either both within or both without the angle BAC, wiz.
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AD meeting BC (produced if necessaryy in D and AE meeting the circle again
in B, suck that the angles DAB, EAC are equal, then the reclangle AD, AE is
equal to the rectangle BA, AC.

A /\E
N

|

D B

Join CE.
The angles BAD, EAC are equal, by hypothesis;
and the angles 45D, AEC are equal. [11n 21, 22]
Therefore the triangles 48D, AEC are equiangular.
Hence Bdisto AD as EA is to 4C,
and therefore the rectangle B4, 4C is equal to the rectangle 4D, AE.

[vr 16]
There are now two particular cases to be considered.

(¢) Suppose that 4D, AZ coincide;
ADE will then bisect the angle B4C.

(&) Suppose that 40, AFK are in one straight line but that D, Z are on
opposite sides of 4 ;

AD will then bisect the external angle at A.

E

In the first case (@) we have
the rectangle B4, AC equal to the rectangle £4, 4D ;

and the rectangle £4, 4D is equal to the rectangle £D, D4 together with
the square on 4D, [ 3]

i.e. to the rectangle BD, DC together with the square on AD. [m 35]

Therefore the rectangle B4, AC is equal to the rectangle BD, DC
together with the square on 4.D. [This is Simson’s Prop. B]

In case (4) the rectangle £4, AD is equal to the excess of the rectangle
ED, DA over the square on AD;

therefore the rectangle 54, 4C is equal to the excess of the rectangle 5D,
DC over the square on AD.
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The following converse of Simson’s Prop. B may be given: If a straight
line AD be drawon from the vertex A of a triangle to meet the base, so that the
square on AD together with the rectangle BD, DC is equal to the rectangle BA,
AC, the line AD will bisect the angle BAC except when the sides AB, AC are
equal, in which case every line drawn fo the base will have the property men-
Zigned.

Let the circumscribed circle be drawn, and let 4.0 produced meet it in
E; join CE.

The rectangle BD, DC is equal to the rectangle £.D, DA. [ 35]

Add to each the square on 4D ;
therefore the rectangle B4, AC is equal to the rectangle £A4, A.D.

{hyp. and 1. 3]

Hence ABisto ADas AE to AC. [vi. 16]

But the angle 48D is equal to the angle A£C. [11. 21]

Therefore the angles BDA, £CA are either equal or supplementary.

{vi. 7 and note]

(@) If they are equal, the angles BAD, EAC
are also equal, and 4.0 bisects the angle B4 C. A

(8) If they are supplementary, the angle 4DC m
B C

must be equal to the angle 4CE.

Therefore the angles 84D, ABD are together
equal to the angles ACB, BCE, ie. to the angles
ACD, BAD.

Take away the common angle 540D, and

the angles 45D, ACD are equal, or B
AR is equal to AC.

Euclid himself assumes, in Prop. 67 of the Data, the result of so much of
this proposition as relates to the case where B4 = 4C. He assumes namely,
without proof, that, if B4 =A4C, and if D be any point on BC, the rectangle
BD, DC rogether with the square on 42 is equal to the square on 45.

PROPOSITION C,

If from any angle of a triangle a straight line be drawn perpendicular to the
apposite side, the rectangle contained by the other two sides of the triangle is equal
to the rectangle contained by the perpendicular and the diameter of the circle
arcumscribed about the friangle.

. Let ABC be a triangle and 4D the perpendicular on 4B. Draw the
diameter 4Z of the circle circumscribed about the triangle 4BC.

I

Then shall the rectangle B4, 4C be equal to the rectangle £4, AD.
Join EC.




V1. 16] PROPOSITION 16 225

Since the right angle D4 is equal to the right angle £C4 in a semi-

circle, {rmn 31]

and the angles 480, AEC in the same segment are equal, [z 21]
the triangles 48D, AEC are equiangular.

Therefore, as BAis to AD, so is EA to AC, [v1 4]

whence the rectangle B4, 4C is equal to the rectangle 24, 4D.  [vL 16]
This result corresponds to the trigonometrical formula for &, the radius of
the circumscribed circle,
abe

R=—.
45

ProrosITION D.

This is the highly important lemma given by Ptolemy (ed. Heiberg, Vol. 1,
pp. 36—7) which is the basis of his calculation of the table of chords in the
section of Book 1. of the peyd\y odvralis entitled “ concerning the size of the
straight lines [i.e. chords] in the circle” (wept 17s TpAxdmros 7dv & 7 xikdy
ebfemy).

The theorem may be enunciated thus.

The rectangle contained by the diagonals of any quadvilateral inscribed in a
cirele is equal to the sum of the reclangles contained by the pairs of opposite sides.

I shall give the proof in Ptolemy’s words, with the addition only, in
brackets, of two words applying to a second figure not given by Ptolemy.

“Let there be a circle with any quadrilateral 48CD inscribed in it, and
let AC, BD be joined.

It is to be proved that the rectangle contained by 4Cand BD is equal
to the sum of the rectangles 45, DC and 4D, BC.

For let the angle 4AB8£ be made equal to the angle contained by D5, BC.

If then we add [or subtract] the angle ZBD,
the angle 48D will also be equal to the angle £FC.
But the angle BDA is also equal to the angle BCE, [11. 21
for they subtend the same segment ;
therefore the triangle 480 is equiangular with the triangle 8.
Hence, proportionally,
as BCis to CE, sois BD to DA. [vr. 4]
Therefore the rectangle BC, 4D is equal to the rectangle B0, CJ%'. 6
VL I
Again, since the angle 4BE is equal to the angle DB,
and the angle BAE is also equal to the angle BDC, [am. 21]
the triangle 4 BZ is equiangular with the triangle DB5C.

H. BE. II. 15
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Therefore, proportionally,
as BA isto AE, sois BD to DC; [vL. 4]

therefore the rectangle B4, DC is equal to the rectangle B0, AE. [vi 16]

But it was also proved that

the rectangle BC, AD is equal to the rectangle B0, CE;
therefore the rectangle 4C, BD as a whole is equal to the sum of the
rectangles 4.8, DCand AD, BC: ‘
(being) what it was required to prove.”

Another proof of this proposition, and of its converse, is indicated by
Dr Lachlan (Elements of Euclid, pp. 273—4). It depends on two preliminary
proposttions.

(1) If two circles be divided, by a chord in each, inlto segments which are
similar respectively, the chords are proportional lo the corresponding diameters.

The proof is instantaneous if we join the ends of each chord to the centre
of the circle which it divides, when we obtain two similar triangles.

(2) I D be any poini on the circle circumscribed about a triangle ABC, and
DX, DY, DZ be¢ perpendiculor fo the sides BC, CA, AB of the triangle
respectively, then X, ¥, 7 lie in one strasght line ; and, conversely, if ke feet of
the perpendiculars from any point D on the sides of a triangle lie in one straight
line, D lies on the circle circumscribed about the triangle.

The proof depending on 111 21, 22 is well known.

Now suppose that D is any point in the plane of a triangle 458C, and
that DX, DY, DZ are perpendicular to the sides
BC, CA, AB respectively.

Join ¥2Z, DA4.
Then, since the angles at ¥, Z are right,
4, Y, D, Z lie on a circle of which DA is the
diameter.
And YZ divides this circle into segments which A X /.
\{
D

are similar respectively to the segments into which
BC divides the circle circumscribing 45C, since
the angles ZA4 Y, BAC coincide, and their supple-
ments are equal.

Therefore, if 4 be the diameter of the circle
circumscribing A BC,

BCistodas VZisto D4 ;

and therefore the rectangle 4.0, BC is equal to the rectangle 4, ¥Z.

Similarly the rectangle B0, C4 is equal to the rectangle &, ZX, and the
rectangle CD, A5 is equal to the rectangle 4, X Y.

Hence, in a quadrilateral in general, the rectangle z
contained by the diagonals is less than the sum of the D A
rectangles contained by the pairs of opposite sides.

Next, suppose that D lies on the circle circum-
scribed about 4B8C, but so that 4, B, C, D follow
each other on the circle in this order, as in the figure © \—/ B

annexed.

Let DX, DY, DZ be perpendicular to BC, C4,
A B respectively, so that X, ¥, Zare in a straight line.

Then, since the rectangles 4D, BC; BD, CA; CD, AB are equal to the
rectangles &, Y Z; d, ZX; d, X ¥ respectively, and XZ is equal to the sum of
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XY, YZ, so that the rectangle o, XZ is equal to the sum of the rectangles
d, XY and 4, YZ, it follows that

the rectangle 4C, BD is equal to the sum of the rectangles 4D, BC and
AB, CD.

Conwversely, if the latter statement is true, while we are supposed to know
nothing about the position of D, it follows that

XZ must be equal to the sum of XV, ¥Z,
so that X, ¥, Z must be in a straight line.
Hence, from the theorem (2) above, it follows that D must lie on the

circle circumscribed about 45C, ie that 4BCD is a quadrilateral about
which a circle can be described.

All the above propositions can be proved on the basis of Book i1 and
without using Book vL, since it is possible by the aid of 111. 21 and 35 alone
to prove that 7z equiangular triangles the wectangles contained by the non-
corresponding sides abour equal angles are egual to one another (a result arrived
at by combining vi1. 4 and v1. 16). This is the method adopted by Casey,
H. M. Taylor, and Lachlan ; but I fail to see any particular advantage in it.

Lastly, the following proposition may be given which Playfair added as
vi. E. It appears in the Da#r of Euclid, Prop. 93, and may be thus
enunciated.

If the angle BAC of a friangle ABC be bisected by the straight fine AD
meeting the civele circumscribed about the triangle in D, and if BD &e joindd,
then

the sum of BA, AC #5 f0 AD as BC s fo BD.

Join €D. Then, since 4D bisects the angle £4C, the subtended arcs
BD, DC, and therefore the chords BD, DC, are
equal.

(1) The result can now be easily deduced from
Ptolemy’s theorem.

For the rectangle 4.0, BC'is equal to the sum of |
the rectangles 48, DC and AC, BD, ie. (since |
BD, CD are equal) to the rectangle contained by |
BA + AC and BD. \

Therefore the sum of B4, AC is to 4D as BC B
is to BD. [vi 16]

(2) ZEuclid proves it differently in Data, Prop. 93.

Tet 4D meet BC in E.
Then, since AE bisects the angle BA4C,

yan
/

BAisto AC as BE to EC, [vi. 3]
or, alternately,
ABistoc BE as AC to CE. [v. 16]
Therefore also
B4+ ACisto BCas AC to CE. [v. 12]
Again, since the angles B4.D, EAC are equal, and the angles ADB, ACE
are also equal, [m 21]
the triangles 48D, AEC are equiangular.
Therefore ACisto CE as AD to BD. [vi. 4]

13—=2
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Hence BA+ACisto BCas AD to BD, [v. 11]

and, alternately,
BA+ACisto AD as BCis to BD. [v..16]

Tuclid concludes that, if the circle 4B C is given in magnitude, and the
chord BC cuts off a segment of it containing a given angle (so that, by Dasa
Prop. 87, BC and also B.D are given in magnitude),

the ratio of B4 + AC to AD is given,

and further that (since, by similar triangles, D is to DE as ACis to CE,
while B4 +ACisto BCas ACis to CE),

the rectangle (B4 + AC), DE, being equal to the rectangle 5C, BD, is
also given.

PROPOSITION 17.

If three straight lines be propovitonal, the rectangle con-
tained by the exivemes is equal to the square on the mean ;
and, tf the rectangle contained by the extremes be equal to the
square on the mean, the three strawght lines will be proportional.

Let the three straight lines A4, B, C be proportional, so
that,as A isto B, sois Bto C;

I say that the rectangle contained by 4, C is equal to the
square on 5.

A

B D

c

Let D be made equal to 5.
Then, since, as 4 is to 5, sois B to C,

and B is equal to D,
therefore, as 4 is to B, so 1s D to C.
But, if four straight lines be proportional, the rectangle

contained by the extremes is equal to the rectangle contained
by the means. [vi 16]

Therefore the rectangle 4, C is equal to the rectangle
B, D.

But the rectangle B, D is the square on B, for B is
equal to D ;

therefore the rectangle contained by 4, C is equal to the
square on 5.

Next, let the rectangle A4, C be equal to the square on 5 ;
[ say that, as 4 is to 5, sois B to C.
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For, with the same construction,
since the rectangle 4, C is equal to the square on 5,
while the square on B is the rectangle A2, D, for B is equal
to 1,
therefore the rectangle 4, C is equal to the rectangle B, D.

But, if the rectangle contained by the extremes be equal
to that contained by the means, the four straight lines are
proportional. [v1 16]

Therefore, as A4 is to B, so is D to C.

But B is equal to D ;

therefore, as 4 is to B, sois B to C.
Therefore etc. Q. E. D.

VL 17 is, of course, a particular case of vI. 16.

ProrosiTion 18.

On a giwen straight line to descride o rectilineal figure
simelar and sinularly situated fo a grven rectilineal figure.

Let AF be the given straight line and CZ the given
rectilineal figure;
thus it is required to describe on the straight line A5 a
rectilineal figure similar and similarly situated to the recti-

lineal figure CE.

.

C D A B

Let DF be joined, and on the straight line 4.5, and at
the points 4, B on it, let the angle GAZB be constructed
equal to the angle at C, and the angle A5G equal to the

angle CDF. (1. 23]
Therefore the remaining angle CFD is equal to the angle
AGB; [ 32]

therefore the triangle #CD is equiangular with the triangle
GAB.

Therefore, proportionally, as 7D is to G5, so is FC o
GA, and CD to AB.
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Again, on the straight line BG, and at the points 5, G on
it, let the angle BG A be constructed equal to the angle DFE,

and the angle GBH equal to the angle FDE. (1. 23]
Therefore the remaining angle at Z is equal to the re-
maining angle at /7 ; (L 32]

therefore the triangle ZDZ is equiangular with the triangle
GBH;

therefore, proportionally, as FD is to GB, so is FE to
GH, and £D to HZB. [vi. 4]

But it was also proved that, as /D is to G5B, so is FC to
GA,and CD to AB;

therefore also, as FCis to AG, so is CD to AB, and F £
to GH, and further £D to HB.

And, since the angle CFD is equal to the angle 4GP,
and the angle DFE to the angle G/,

therefore the whole angle CFE is equal to the whole angle
AGH.

For the same reason
the angle CDZ is also equal to the angle 487
And the angle at C is also equal to the angle at 4,
and the angle at £ to the angle at /.
Therefore AH is equiangular with CZ;
and they have the sides about their equal angles proportional;

therefore the rectilineal figure A/ is similar to the
rectilineal figure CZ. [vi. Def. 1]

Therefore on the given straight line A5 the rectilineal
figure A/ has been described similar and similarly situated
to the given rectilineal figure CZ.

Q. E. F.

Simson thinks the proof of this proposition has been vitiated, his grounds
for this view being (1) that it is demonstrated only with reference to
quadrilaterals, and does not show how it may be extended to figures of five or
more sides, (2) that Euclid infers, from the fact of two triangles being
equiangular, that a side of the one is to the corresponding side of the other as
another side of the first is to the side corresponding to it in the other, i.e. he
permutes, without mentioning the fact that he does so, the proportions
obtained in vI. 4, whereas the proof of the very next proposition gives, in a
similar case, the intermediate step of permutation. I think this is hyper-
criticism.  As regards (2) it should be noted that the permuted form of the
proportion is arrived at first_in-trie progf of vi. 4; and the omission of the
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intermediate step of affernando, whether accidental or not, is of no importance.
On the other hand, the use of this form of the proportion certainly simplifies
the proof of the proposition, since it makes unnecessary the subsequent
ex aequali steps of Simson’s proof, their place being taken by the inference
[v. 1 1’:] that ratios which are the same with a third ratio are the same with one
another.

Nor is the first objection of any.importance. We have only to take as the

F

NN/

C

given polygon a polygon of five sides at least, as CDEFG, join one extremity
of CD, say D, to each of the angular points other than C and E, and then
use the same mode of construction as Euclid’s for any number of successive
triangles as 4B, LRK, etc, that may have to be made. Euclid’s con-
struction and proof for a quadrilateral are quite sufficient to show how to deal
with the case of a figure of five or any greater number of sides.

Clavias has a construction which, given the power of moving a figure

B

bodily from one position to any other, is easier. CDZFG being the given
polygon, join CE, CF. Place AB on CD so that 4 falls on C and let B
fall on 2, which may either lie on CD or on CD produced.

Now draw D'E’ parallel to DZ, meeting CZ, produced if necessary, in £,
E'F' parallel to EF, meeting CF, produced if necessary, in #*, and so on.

Let the parallel to the last side but one, #G, meet CG, produced if
necessary, in G.

Then COE'F'G is similar and similarly situated to CDEFG, and it is
constructed on CZ, a straight line equal to 4.5.

The proof of this is obvious. )

A more general construction is indicated in the subjoined figure. If
CDEFG be the given polygon, suppose its angular points all joined to any
point O and the connecting straight lines produced both ways. Then, if D,
a straight line equal to 4B, be placed so that it is parallel to €D, and C', 2¥
lie respectively on OC, OD (this can of course be done by finding fourth
proportionals), we have only to draw D'E, E'F, etc, parallel to the
corresponding sides of the original polygon in the manner shown.
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De Morgan would rearrange Props. 18 and 20 in the following manner.

He would combine Prop. 18 and the first part of Prop. 20 into one, with the
enunciation :

Pairs of similar triangles, similarly put together, give similar figures ; and
every paty of similar figures is composed of pairs of similar triangles similarly
put Zogether.

He would then make the problem of vi. 18 an application of the first part.
In form this would certainly appear to be an improvement; but, provided that
the relation of the propositions is understood, the matter of form is perhaps
not of great importance.

ProrosiTION 19.
Sumilar triangles ave to one another in the duplicate vatio
of the corvesponding sides.

Let ABC, DEF be similar triangles having the angle at
B equal to the angle at £, and such that, as 45 is to 5C, so
sis DE to EF, so that BC corresponds to EF; [v. Def. 11]

[ say that the triangle 4BC has to the triangle DEF a ratio
duplicate of that which BC has to £F.

A
D

A\

B G G E F

For let a third proportional BG be taken to BC, £F, so
that, as BC is to £F, so is EF to BG; [vi. 11]

o and let 4G be joined.
Since then, as A8 is to BC, so is DE to EF,
therefore, alternately, as 4.8 is to DE, so is BC to EF. [v.16]
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But, as BCisto EF, sois EF to BG ;
therefore also, as A8 is to DE, so is EF to BG. [v. 11]
15 Therefore in the triangles 458G, DEF the sides about

the equal angles are reciprocally proportional.

But those triangles which have one angle equal to one
angle, and in which the sides about the equal angles are
reciprocally proportional, are equal; [vi. 15]

20 therefore the triangle ABG is equal to the triangle DEF.
Now since, as BC is to £F, so is EF to BG,

and, if three straight lines be proportional, the first has to
the third a ratio duplicate of that which it has to the second,
[v. Def. 9]
therefore 5C has to BG a ratio duplicate of that which C8
25 has to £F.

But, as €A is to BG, so is the triangle ABC to the
triangle ABG; [vi. 1]
therefore the triangle 42C also has to the triangle A5G a
ratio duplicate of that which BC has to £/

3  But the triangle ABG is equal to the triangle DEF;

therefore the triangle 4AC also has to the triangle DEF a
ratio duplicate of that which BC has to £F.

Therefore etc.

Porism. From this it is manifest that, if three straight
35 lines be proportional, then, as the first is to the third, so is
the figure described on the first to that which is similar and

similarly described on the second.
Q. E. D.

4. and such that, as AB is to BC, so is DE to EF, literally ‘‘(triangles) having
the angle at B equal to the angle at &, and {aving), as AB #0 BC, 50 DE to EF.”

Having combined Prop. 18 and the first part of Prop. zo as just indicated,
De Morgan would tack on to Prop. 19 the second part of Prop. 20, which
asserts that, if similar polygons be divided into the same number of similar
triangles, the triangles are “/komologous to the wholes ” (in the sense that the
polygons have the same ratio as the corresponding triangles have), and that
the polygons are to one another in the duplicate ratio of corresponding sides.
This again, though no doubt an improvement of form, would necessitate the
drawing over again of the figure of the altered Proposition 18 and a certain
amount of repetition.

Agreeably to his suggestion that Prop. 23 should come before Prop. 14
which is a particular case of it, De Morgan would prove Prop. 19 for
parallelograms by means of Prop. 23, and thence infer the truth of it for
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triangles or the halves of the parallelograms. He adds: “The method of
Euclid is an elegant application of the operafion requisite to compound equal
ratios, by which the conception of the process is lost sight of.” For the
general reascn given in the note on v 14 above, I think that Euclid showed
the sounder discretion in the arrangement which he adopted. Moreover it is
not easy to see how performing the actual operation of compounding two
equal ratios can obscure the process, or the fact that two equal ratios are
being compounded. On the definition of compounded ratios and duplicate
ratio, De Morgan has himself acutely pointed out that “composition” 1s here
used for the process of detecting the single alteration which produces the
effect of two or more, the duplicate ratio being the result of compounding two
equal ratios. The proof of vL 19 does In fact exhibit the single alteration
which produces the effect of two. And the gperasion was of the essence of
the Greek geometry, because it was the manipulation of ratios in this manner,
by simplification and transformation, that gave it so much power, as every one
knows who has read, say, Archimedes or Apollonius. Hence the introduction
of the necessary ogeration, as well as the theoretical proof, in this proposition
seems to me to have been distinctly worth while, and, as it is somewhat
simpler in this case than in the more general case of vI. 23, it was in
accordance with the plan of enabling the difficulties of Book vi. to be more
easily and gradually surmounted to give the simpler case first.

That Euclid wished to emphasise the importance of the mettod adopted,
as well as of the result obtained, in v 19 seems to me clearly indicated by
the Porism which follows the proposition. It is as if he should say: “I have
shown you that similar triangles are to one another in the duplicate ratio of
corresponding sides; but I have also shown you incidentally how it is possible
to work conveniently with duplicate ratios, viz. by transforming them into
simple ratios between straight lines. I shall have occasion to illustrate the
use of this method in the proof of vi 227

The Porism to vI. 19 presents one difficulty. It will be observed that it
speaks of the jigure (elbos) described on the first straight line and of that which
is similar and similarly described on the second. If “figure” could be
regarded as loosely used for the figure of #he proposition, i.e. for a triangle,
there would be no difficulty. If on the other hand “the figure” means any
rectilineal figure, i.e. any polygon, the Porism is not really established until
the next proposition, VI. zo, has been proved, and therefore it is out of place
here. Yet the correction rpiywvor, friangle, for eldos, figure, is due to Theon
alone; P and Campanus have “figure,” and the reading of Philoponus and
Psellus, rerpaywvor, sguare, partly supports s, since it can be reconciled with
€ldos but not with 7plywvor. Again the second Porism to VI zo, in which this
Porism is reasserted for any rectilineal figure, and which is omitted by
Campanus and only given by P in the margin, was probably interpolated by
Theon. Heiberg concludes that Euclid wrote “figure” (ldos), and Theon,
seeing the difficulty, changed the word into “triangle” here and added Por. 2
to V1. 20 in order to make the matter clear. If one may hazard a guess as to
how Euclid made the slip, may it be that he first put it after vi. 20 and then,
observing that the expression of the duplicate ratio by a single ratio between
two straight lines does not come in V1. 20 but in vI. 19, moved the Porism to
the end of V1. 19 in order to make the connexion clearer, without noticing
that, if this were done, e8os would need correction ?

The following explanation at the end of the Porism is bracketed by
Heiberg, viz. “Since it was proved that, as CB is to BG, so is the triangle
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AZBC to the triangle ABG, that is DEF” Such explanations in Porisms are
not in Euclid’s manner, and the words are not in Campanus, though they date
from a time earlier than Theon,

ProrosiTioN 20.

Sunilar polygons are divided into similar triangles, and
into triangles equal in muliitude and in the same ratio as
the wholes, and the polygon has to the polygon a ratio duplicate
of that whickh the corresponding side has to the corresponding

5 s2de.

Let ABCDE, FGHKL be similar polygons, and let A5
correspond to /G ;

I say that the polygons ABCDE, FGHKL are divided into
similar triangles, and into triangles equal in multitude and in

10 the same ratio as the wholes, and the polygon A5CDE has
to the polygon FGH KL a ratio duplicate of that which 45
has to #G.

Let BE, EC, GL, LH be joined.

H

Now, since the polygon A BCDE is similar to the polygon
15 FGHKL,
the angle BAE is equal to the angle GFL ;
and, as BA isto AFE, so is GF to FL. [vi Def. 1]
Since then ABE, FGL are two triangles having one
angle equal to one angle and the sides about the equal angles
20 proportional,

therefore the triangle ABE is equiangular with the triangle
FGL ; [vr. 6]

so that it is also similar;  [v1. 4 and Def. 1]

therefore the angle 4B is equal to the angle FGL.
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23 But the whole angle A8C is also equal to the whole angle
FGH because of the similarity of the polygons ;

therefore the remaining angle ZZC is equal to the angle
LGH.

And, since, because of the similarity of the triangles 4B Z,
3 FGL,
as ERisto BA, sois LG to GF,

and moreover also, because of the similarity of the polygons,
as ABisto BC, sois FG to GH,
therefore, ex aeguals, as EB is to BC, sois LG to GH ; [v. 22]

35 that is, the sides about the equal angles £BC, LGH are
proportional ;

therefore the triangle £8C is equiangular with the triangle

LGH, [vi. 6]
so that the triangle ZBC is also similar to the triangle
w0 LGH. [vL. 4 and Def. 1]

For the same reason
the triangle £CD is also similar to the triangle ZA K.
Therefore the similar polygons ABCDE, FGHKL have

been divided into similar triangles, and into triangles equal in
45 multitude.

I say that they are also in the same ratio as the wholes,
that is, in such manner that the triangles are proportional,
and ABE, EBC, ECD are antecedents, while #GL, LGH,
LHK are their consequents, and that the polygon ABCDE

sohas to the polygon FGHKL a ratio duplicate of that which

the corresponding side has to the corresponding side, that is
AB to FG.

For let AC, FH be joined.
Then since, because of the similarity of the polygons,

55 the angle 4 BC is equal to the angle FGH,
and, as A8 is to BC, so is FG to GH,

the triangle 4 BC is equiangular with the triangle FG/7;

[vi. 6]
therefore the angle BAC is equal to the angle GF/H,

and the angle 5CA to the angle GHZ.
6  And, since the angle BAM is equal to the angle GFN,
and the angle A58/ is also equal to the angle FGN,
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therefore the remaining angle AMB is also equal to the

remaining angle FNG; [ 32]

therefore the triangle 4847 is equiangular with the triangle
65 FGV.

Similarly we can prove that
the triangle B4/C is also equiangular with the triangle GV A.
NGTherefore, proportionally, as A3/ is to MB, so is FN to

70 and, as BM is to MC, sois GN to NH ;
so that, in addition, ex aeguali,
as AM is to MC, so is FN to NH.

But, as AM is to MC, so is the triangle 4AB.17 to M BC,

and AME to EMC; for they are to one another as their
75 bases. v 1]
Therefore also, as one of the antecedents is to one of the
consequents, so are all the antecedents to all the consequents;
V. 12
therefore, as the triangle 4475 is to BI/C, so is Ab’[E tg
CBE.
8o But, as AMPB is to BMC, so is AI to M C;
therefore also, as AM is to M, so is the triangle ABE to
the triangle £5C.

For the same reason also,
as FNV is to N, so is the triangle #GL to the triangle

8s GLH.

And, as AM is to MC, sois FN to NH ;
therefore also, as the triangle A8Z is to the triangle BEC,
so is the triangle /G L to the triangle GL A ;
and, alternately, as the triangle A5 Z is to the triangle FGL,

90 so is the triangle BZC to the triangle GLA.

Similarly we can prove, if 50, GX be joined, that, as the
triangle BEC is to the triangle ZG /A, so also is the triangle
ECD to the triangle LHK.

And since, as the triangle ABE is to the triangle FGL,

95 so is EBC to LGH, and further £CD to LHK,
therefore also, as one of the antecedents is to one of the
consequents, so are all the antecedents to all the consequ[ents j
V.12
therefore, as the triangle ABZ is to the triangle #GL,
so is the polygon A BCDE to the polygon FGHKL.
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wo  But the triangle ABE has to the triangle #GL a ratio
duplicate of that which the corresponding side 4.5 has to the
corresponding side FG; for similar triangles are in the
duplicate ratio of the corresponding sides. [vL. 19]
Therefore the polygon ABCDE also has to the polygon
105 FGHKL a ratio duplicate of that which the corresponding
side 45 has to the corresponding side /G.
Therefore etc.

Porism.  Similarly also it can be proved in the case of
quadrilaterals that they are in the duplicate ratio of the
1o corresponding sides.  And it was also proved in the case of
triangles ; therefore also, generally, similar rectilineal figures
are to one another in the duplicate ratio of the corresponding

sides.
Q. E. D.

2. in the same ratio as the wholes. The same word éuéloyos is used which I have
generally translated by “ corresponding.” But here it is followed by a dative, duéhoya Tols
ohois *“ homologous with the wholes,” instead of being used absolutely. The meaning can
therefore here be nothing else but “in the same ratio with” or ‘‘ proportional to the
wholes”; and Euclid seems to recognise that he is making a special use of the word,
because he explains it lower down (l. 46): ‘‘the triangles are homologous to the wholes, that
is, in such manner that the triangles are proportional, and 4BE, EBC, ECD are ante-
cedents, while AGL, LGH, LHK are their consequents.”

49. émbueva avTdv, *lheir consequents,” is a little awkward, but may be supposed to
indicate which triangles correspond to which as consequent to antecedent.

An alternative proof of the second part of this proposition given after the
Porisms is relegated by August and Heiberg to an Appendix as an interpolation.
It is shorter than the proof in the text, and is the only one given by many
editors, including Clavius, Billingsley, Barrow and Simson. It runs as follows:

“Wewill now also prove that the triangles are homologous in another and
an easier manner,

C D H K

Again, let the polygons 4 BCDE, FGHKL be set out, and let BE, EC,
GL, LH be joined.

I say that, as the triangle ABE is to FGZL,s0 is EBCto LGH and CDE
to HKL.

For, since the triangle ABZ is similar to the triangle FGZ, the triangle
ABE has to the triangle #GL a ratio duplicate of that which BZ hasto GZ.



VI 20, 21] PROPOSITIONS 20, 21 239

For the same reason also

the triangle BEC has to the triangle GZA a ratio duplicate of that which
BE has to GL.

Therefore, as the triangle ABZ is to the triangle FGZ, so is BEC
to GLA.

Again, since the triangle Z8C is similar to the triangle LG A,

EBC has to LGH a ratio duplicate of that which the straight line CZ has
to HL.

For the same reason also

the triangle ZCD has to the triangle ZAXK a ratio duplicate of that which
CE has to L.

Therefore, as the triangle £BCis to LGH, so is ECD to LHK.
But it was proved that,

as EBCisto LGH, so also is ABE to FGL.

Therefore also, as ABE is to FGL, so is BEC to GLA and ECD to
LHAK.

Q. E D.7

Now Euclid cannot fail to have noticed that the second part of his
proposition could be proved in this way. It seems therefore that, in giving
the other and longer method, he deliberately wished to avoid using the result
of vi. 19, preferring to prove the first two parts of the theorem, as they can be
proved, independently of any relation between the areas of similar triangles.

The first part of the Porism, stating that the theorem is true of guadrilaterals,
would be superfluous but for the fact that technically, according to Book 1
Def. 19, the term “polygon” (or figure of many sides, moAvwAevpor) used in the
enunciation of the proposition is confined to rectilineal figures of more than
Jour sides, so that a quadrilateral might seem to be excluded. The mention
of the triangle in addition fills up the tale of “similar rectilineal figures.”

The second Porism, Theon’s interpolation, given in the text by the editors,
but bracketed by Heiberg, is as follows:

“And, if we take O a third proportional to 4B, FG, then BA hasto O a
ratio duplicate of that which 42 has to #G.

But the polygon has also to the polygon, or_the quadrilateral to the
quadrilateral, a ratio duplicate of that which the corresponding side has to
the corresponding side, that is 458 to FG;
and this was proved in the case of triangles also;

so that it is also manifest generally that, if three straight lines be proportional,
as the first is to the third, so will the figure described on the first be to the
similar and similarly described figure on the second.”

ProrosiTiON 21.

Figures whick are similav to the same rectilineal figure
are also similar to ome another.

For let each of the rectilineal figures A, B be similar to C;
I say that A is also similar to 5.
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For, since A is similar to C,

it is equiangular with it and has the sides about the equal
angles proportional. [ve. Def. 1]

“ 0

Again, since B is similar to C,

it is equiangular with it and has the sides about the equal
angles proportional.

Therefore each of the figures 4, 5 is equiangular with C
and with C has the sides about the equal angles proportional;

therefore A is similar to 5.
Q. E. D.
1t will be observed that the text above omits a step which the editions
generally have before the final inference “Therefore A4 is similar to B.” The
words omitted are “so that A4 is also equiangular with B and [with 5] has the

sides about the equal angles proportional.” Heiberg follows P in leaving
them out, conjecturing that they may be an addition of Theon’s.

ProrosiTiON 22.

If four straight lines be proportional, the rectilineal figures
stmilar and similavly described upon them will also be pro-
portional; and, if the vectilineal figures somilar and similarly
descrided upon them be proportional, the straight lines will
themselves also be proportional.

Let the four straight lines 45, CD, EF, GH be pro-
portional,
so that, as AR isto CD, sois EFto GH,

and let there be described on 4.5, CD the similar and similarly
situated rectilineal figures KA 5, LCD,

and on £F, GH the similar and similarly situated rectilineal
figures MF, NH ;

I say that, as KAB isto LCD, sois MF to NAH.

For let there be taken a third proportional O to 48, CD,
and a third proportional P to £F, GH. [vi. 11]
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Then since, as 4B is to CD, so is £F to GH,
and, as (D is to O, so is GH to P,
therefore, ex aequalz, as AB is to O, so is EF to P. [v. 22]
But, as A8 is to O, so is KAB to LCD, ’
and, as £F'is to P, so is MF 1o NH;
therefore also, as KA B is to LCD, so is MF to NH. fv. 11]

AN

7

{vi. 19, Por.]

Q R

Next, let MF be to NH as KAB isto LCD ;
[ say also that, as AR is to CD, so is £F to GH.
For, if £F is notto GH as AB to CD,
let ZF be to QR as AF to CD, [vi. 12]

and on QR let the rectilineal figure SR be described similar
and similarly situated to either of the two M7, NA.  [vi 18]

Since then, as AR is to CD, so is EF to QR,

and there have been described on A5, CD the similar and
similarly situated figures K48, LCD,

and on EF, QR the similar and similarly situated figures
MF, SR,
therefore, as K AB isto LCD, so is MF to SR.

But also, by hypothesis,

as KAB isto LCD, sois MF to NH ;

therefore also, as MFis to SR, so is MF to NH. [v.11]

Therefore M/ F has the same ratio to each of the figures
NH, SR ;

therefore N4 is equal to SA. [v. 9]
But it is also similar and similarly situated to it ;

therefore GH is equal to OR.

H. E. 1L 16
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And, since, as 4B is to CD, sois £F to OR,
while QR is equal to G /A,
therefore, as A5 is to CD, so is £/ to GH.

Therefore etc.
Q. E. D.

The second assumption in the first step of the first part of the proof, viz.
that, as CD is to O, so GH to P, should perhaps be explained. It is a
deduction [by V. 11] from the facts that

ABisto CDas CD to O,
EFisto GHas GHto P,
and ABisto CDas EFto GH.

The defect in the proof of this proposition is well known, namely the
assumption, without proof, that, because the figures VA, SR are equal,
besides being similar and similarly situated, their corresponding sides GH, QR
are equal. Hence the minimum addition necessary to make the proof
complete is a proof of a lemma to the effect that, if fwo similar figures are also
egual, any pair of corresponding sides are equal.

To supply this lemma is one alternative; another is to prove, as a
preliminary proposition, a much more general theorem, viz. that, i e
duplicate rafios of two ralios are equal, the two ratios are themselves egual.
When this is proved, the second part of vi. 22 is an immediate inference from
it, and the effect is, of course, to substitute a new proof instead of
supplementing Euclid’s.

1. Itisto be noticed that the lemma required as a minimum is very like
what is needed to supplement vi. 28 and 29, in the proofs of which Euclid
assumes that, if fwo similar parallelograms are unequal, any side in the greater
is grealer than the corvesponding side in the smaller. Therefore, on the whole, it
seems preferable to adopt the alternative of proving the simpler lemma which
will serve to supplement all three proofs, viz. that, 7 of fwo similar rectilineal
Jigures the first is greater than, equal to, or less than, the second, any side of the
first is greater than, egual io, or less than, the corresponding side of the second
respectively.

The case of eguality of the figures is the case required for vi. 22 ; and the
proof of it is given in the Greek text after the proposition. Since to give such
a “lemma” after the proposition in which it is required is contrary to Euclid’s
manner, Heiberg concludes that it is an interpolation, though it is earlier than
Theon. The lemma runs thus:

“But that, if rectilineal figures be equal and similar, their corresponding
sides are equal to one another we will prove thus.

Let VA, SR be equal and similar rectilineal figures, and suppose that,
as HG is to G, sois RQ to OS;
I say that RQ is equal to HG.
For, if they are unequal, one of them is greater;
let RQ be greater than HG.



VL. 22] PROPOSITION 22 243

Then, since, as #Q is to @S, so is HG to G,
alternately also, as £Q is to HG, sois QSto GN;
and QR is greater than G ;

therefore Q@S is also greater than GA;
so that RS is also greater than HN*,

But it is also equal : which is impossible.

Therefore Q& is not unequal to GH ;
therefore it is equal to it.”

[The step marked * is easy to see if it is remembered that it is only
necessary to prove its truth in the case of #éangles (since similar polygons are
divisible into the same number of similar and similarly situated triangles
having the same ratio to each other respectively as the polygons have). If the
triangles be applied to each other so that the two corresponding sides of each,
which are used in the question, and the angles included by them coincide,
the truth of the inference is obvious.]

The lemma might also be arrived at by proving that, if’ a ratio is greater than
a ratio of equalily, the ratio which is its duplicate is also greater than a ratio of
equality; and tf the ratio whick is duplicate of another ratio is greater than a
ratio of equality, the ratio of whick it is the duplicate is also greater than a rafio
of equality. It is not difficult to prove this from the particular case of v. 23 in
which the second magnitude is equal to the third, 1.e. from the fact that in
this case the sum of the extreme terms is greater than double the middle term.

II. We now come to the alternative which substitutes a new proof for the
second part of the proposition, making the whole proposition an immediate
inference from one to which it is practically equivalent, viz. that

(1) If two ratios be equal, their duplicate ratios are equal, and (2) con-
versely, if the duplicate ratios of two ratios be equal, the ratios are equal.

The proof of part (1) is after the manner of Euclid’s own proof of the first
part of vi. 22.

Let A beto Bas Cto D,

and let X be a third proportional to 4, B, and ¥ a third proportional to C, .1,

so that
Aisto Bas Bto X,

and Cisto Das Dto ¥;
whence A is to X in the duplicate ratio of 4 to 5,
and C is to Yin the duplicate ratio of C to D.
Since Aisto Bas Cisto D,
and Bisto X as A isto B,
1e. as Cisto D, [v. t1]

ie as Disto ¥,
therefore, ex aeguali, Aisto Xas Cisto ¥

Part (2) is much more difficult and is the crux of the whole thing.

Most of the proofs depend on the assumption that, B being any magnitude
and P and Q two magnitudes of the same kind, there does exist a magnitude
A which is to B in the same ratio as Z to @. It is this same assumption

16—2
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which makes Euclid’s proof of v. 18 illegitimate, since it is nowhere proved
in Book v. Hence any proof of the proposition now 1in question which
involves this assumption even in the case where B, £, Q are all straight lines
should not properly be given as an addition to Book v.; it should at least be
postponed until we have learnt, by means of vi. 12, giving the actual
construction of a fourth proportional, that such a fourth proportional exists.

Two proofs which are given of the proposition depend upon the following
lemma.

If A, B, C be three magnitudes of one kind, and D, E, F three magnitudes
of ome kind, then, if

the ratio of A to B is greater than that of D fo E,
and the ratio of B to C greater than that of E fo F,
ex aequali,  tke ratio of A fo C is greater than that of D Zo F.

One proof of this does not depend upon the assumption referred to, and
therefore, if this proof is used, the theorem can be added to Book v. The
proof is that of Hauber (Camerer’s Euclid, p. 358 of Vol. 11.) and is reproduced
by Mr H. M. Taylor. For brevity we will use symbols.

Take equimultiples mA4, mD of 4, D and 2B, nE of B, £ such that

mA>nB, but mD P nk.

Also let pB, pZ be equimultiples of B, £ and ¢C, ¢ equimultiples of
C, Fsuch that
pB>gC, but pE BgF.
Therefore, multiplying the first line by  and the second by #, we have
pmd >pnB, pmD b pnE,

and npB >ngC, npE PbngF,

whence pmA >ngC, pmD PnglF.
Now pmd, pmD are equimultiples of mA, m.D,

and ngC, ngF equimultiples of ¢C, ¢F.
Therefore [v. 3] they are respectively equimultiples of 4, D and of C, 7.
Hence [v. Def. 7] A:C>D:F

Another proof given by Clavius, though depending on the assumption
referred to, 1s neat.
Take G such that

G:C=E:F
A D
B E
C F
G
H
Therefore B:C>G: C, [v. x3]
and B>CG. [v. 10]

Therefore A:G>4: B [v. 8]
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But A4:B>D:E.
Therefore, a_fortiori, A:G>D:E.
Suppose A taken such that
H:G=D:E
Therefore A>H. [v. 13, 10]
Hence A:C>H:C. {v. 8]
But H:G=D:E,
G:C=E:F
Therefore, ex aequali, H:C=D:F [v. 22]
Hence 4:C>D: F [v. x3]

Now we can prove that
Ratios of whitk equal ratios are duplicate are equal.

Suppose that A:B=28:C(,
and D E=E:F
and further that A:C=D:F

it is required to prove that
A:B=D:E.

For, if not, one of the ratios must be greater than the other.
Let A : B be the greater.

Then, since A:B=2B8:C(,
and D:E=FE:F
while A:B>D:E,
it follows that B:C>E:F [v. 13]
Hence, by the lemma, ex aequals,
A4:C>D:F

which contradicts the hypothesis.
Thus the ratios 4 : B and D : £ cannot be unequal; that is, they are equal.

Another proof, given by Dr Lachlan, also assumes the existence of a
fourth proportional, but depends upon a simpler lemma to the effect that

It is impossible that fwo different rativs can have the same duplicate ratio.

For, if possible, let the ratio .4 : £ be duplicate bothof 4: Yand 4 : ¥,
so that

A:X=X:25
and A:Y=Y:5.
Let X be greater than Y.
Then A: X<4d:Y; [v. 8}
that is, X:B<Y: 5, [v. 11, 13]
or X<V [v. 16]

But X is greater than ¥ : which is absurd, etc.
Hence X=F
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Now suppose that A:B=8:C
D E=FE:F
and A:C=D:F
To prove that A:B=D:E
If this is not so, suppose that
A:B=D:Z
Since A:C=D: 7
therefore, inversely, C:4=F:D
Therefore, ex aequali,
C:B=F:2 [v. 22]
or, inversely, B:C=2:F
Therefore 4:B=7:F [v. 11]
But A : B=D: Z by hypothesis.
Therefore D:Z=2Z:F [v. 11]
Also, by hypothesis, D E=E:F;
whence, by the lemma, E=Z
Therefore A:B=D:E.

De Morgan remarks that the best way of remedying the defect in Euclid
is to insert the proposition (the lemma to the last proof) that i# is impossible
that two different ratios can have the same duplicate ratio, “which,” he says,
“immediately proves the second (or defective) case of the theorem.” But this
seems to be either too much or too little : too much, if we choose to make
the minimum addition to Euclid (for that addition is a lemma which shall prove
that, if a duplicate ratio is a ratio of equality, the ratio of which it is duplicate
is also one of equality), and too little if the proof is to be altered in the more
fundamental manner explained above.

I think that, if Euclid’s attention had been drawn to the defect in his
proof of vI. 22 and he had been asked to remedy it, he would have done so
by supplying what I have called the minimum lemma and not by making the
more fundamental alteration. This I infer from Prop. 24 of the Dafa, where
he gives a theorem corresponding to the proposition that ratios of whick equal
ratios are duplicate are equal. The proposition in the Dafa is enunciated
thus: Jf three straight lines be proportional, and the first have to the third a
Siven ratio, it will also have to the second a given ratio.

A, B, C being the three straight lines, so that

A:B=2F8:C,
and 4 : C being a given ratio, it is required to prove that 4 : B is also a
given ratio.
Euclid takes any straight line D, and first finds another, %, such that
D:F=4:C¢C,
whence D : F must be a given ratio, and, as D is given, # is therefore given.
Then he takes £ a mean proportional between D, £, so that
LPrE=E:F
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It follows [v1. 17] that
the rectangle D, F'is equal to the square on £.
But D, F are both given;
therefore the square on £ is given, so that Z is also given.

(Observe that De Morgan’s lemma is here assumed without proof. It
may be proved (1) as it is by De Morgan, whose proof is that given above,
p- 245, (2) in the manner of the “minimum lemma,” pp. 242—3 above, or
(3) as it is by Proclus on L 46 (see note on that proposition).]

Hence the ratio D : £ is given.

Now, since 4:C=D:F
and A : C= (square on A): (rect. 4, C),
while D : F=(square on D): (rect. D, F), [vi. 1]
therefore (square on A4) : (rect. 4, C') = (square on D) : (rect. D, F). [v. 11]
But, since 4 : B=25:C, (rect. A, C)=(sq. on B); [vi 17]

and (rect. D, F)=(sq. on E), from above ;
therefore (square on A4) : (square on B) = (sq. on D) : (sq. on E).
Therefore, says Buclid,
A:B=D:E,
that is, ke assumes the truth of V1. 22 jfor squares.

Thus he deduces his proposition from Vi 22, instead of proving vI. 22 by
means of it (or the corresponding proposition used by Mr Taylor and
Dr Lachlan).

ProrosiTiON 23.
Equiangular parallelograms have to one another the ratio
compounded of the ratios of their sides.

Let AC, CF be equiangular parallelograms having the
angle BCD equal to the angle £(G;

s I say that the parallelogram AC has to the parallelogram
CF the ratio compounded of the ratios of the sides.

1
B = /”G
EL—JF
For let them be placed so that AC is in a straight line
with CG ;
therefore DC is also in a straight line with CZ£.
1o Let the parallelogram DG be completed ;
let a straight line & be set out, and let it be contrived that,

as BCisto CG,sois Kto L,
and, as DCisto CE, sois L to M. [vi 12]

L

¥i
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Then the ratios of K to L and of Z to M are the same
15 as the ratios of the sides, namely of BC to CG and of DC
to CE.
But the ratio of X to M is compounded of the ratio of X
to L and of that of L to M ;
so that X has also to 4/ the ratio compounded of the ratios
2 of the sides.
Now since, as BC is to CG, so is the parallelogram AC

to the parallelogram C/, [v1. 1]

while, as BC is to CG, sois K to L,

therefore also, as K is to L, sois AC to CH. [v. 11]
25 Again, since, as DC is to CE, so is the parallelogram CAH

to CF, [vi. 1]

while, as DCis to CE, so is L to M,

therefore also, as L is to M, so is the parallelogram C/H to
the parallelogram CZ£. [v. 11]

3o Since then it was proved that, as KX is to L, so is the
parallelogram AC to the parallelogram C/7,

and, as L is to M, so is the parallelogram CZ/ to the
parallelogram C#,

therefore, ex aequali, as K is to M, so is AC to the parallelo-
35 gram CF.

But X has to M the ratio compounded of the ratios of
the sides;

therefore AC also has to CF the ratio compounded of the
ratios of the sides.

40 Therefore etc.
Q. E. D.

1,6, 19, 36. the ratio compounded of the ratios of the sides, Aéyov 7dv cuyreiperor
éx 7@ wheupdy which, meaning literally ¢ the ratio compounded gf zke sides,” is negligently
written here and commonly for Moyov 7ov ouyreluevor ék 1@y tdv Thevpdr (sc. Aéywr),

11. let it be contrived that, as BC is to CG, so is K to L. The Greek phrase is
of the usual terse kind, untranslatable literally: kel yeyovérew @s pév 5 BD mpds miw I'H,
ofirws % K wpds 70 A, the words meaning “ and let (there) be made, as BC to CG, so K to
L,” where L is the straight line which has to be constructed.

The second definition of the Data says that 4 ratio is said fo be given if
we can find (wopioaclal) [another ratio that is) the same with it.  Accordingly
VI 23 not only proves that equiangular parallelograms have to one another a
ratio which is compounded of two others, but shows that that ratio is “given”

when its component ratios are given, or that it can be represented as a simple
ratio between straight lines.
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Just as vi. 23 exhibits the operation necessary for compounding two
ratios, a proposition (8) of the Dafa indicates the operation by which we may
divide one ratio by another. The proposition proves that Things whick
have a given ratio fo the same thing have also a given ratio lo one another.
Euclid’s procedure is of course to compound one ratio with the znrerse of the
other ; but, when this is once done and the result of Prop. 8 obtained, he
uses the result in the later propositions as a substitute for the- method of
composition. Thus he uses the dsvision of ratios, instead of composition,
in the propositions of the Dafe which deal with the same subject-matter as
vL. 23. The effect is to represent the ratio of two equiangular parallelograms
as a ratio between straight lines one of which is one side of onme of the
parallelograms. Prop. 56 of the Dafa shows us that, if we want to express
the ratio of the parallelogram AC to the parallelogram CF in the figure

-

[ ]
B

of V1. 23 in the form of a ratio in which, for example, the side BC is the
antecedent term, the required ratio of the parallelograms is £C : X, where

DC:CE=CG: X,
or X is a fourth proportional to DC and the two sides of the parallelogram CF.
Measure CX along CB, produced if necessary, so that
DC:CE=CG:CK
(whence CX is equal to X).
[This may be simply done by joining DG and then drawing £X& parallel
to it meeting CB in K]
Complete the parallelogram AX.

Then, since DC:CE=CG: CK,
the parallelograms DK, C# are equal. [vi 14]
Therefore (AC)y: (CF)=(4C) : (DK) [v. 7]
=BC: CK [v1. 1]
=BC: X.

Prop. 68 of the Dafa uses the same construction to prove that, [f fao
equiangular parallelograms have lo one another a given ratio, ond one side have
to one side a given ratio, the remaining side will also have fo the remaining side
a given ratio.

I do not use the figure of the Data but, for convenience’ sake, I adhere
to the figure given above. Suppose that the ratio of the parallelograms is
given, and also that of CDto CE.

Apply to CD the parallelogram DX equal to C# and such that CX, CcB

coincide in direction. {1 45]
Then the ratio of 4C to KD is given, being equal to that of AC to CK
And (AC)Y: (KD)=CB : CK;

therefore the ratio of C5 to CK is given.
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But, since KD =CEF,
CD:CE=CG: CK. [vi 14]
Hence CG : CK is a given ratio. )
And CB : CK was proved to be a given ratio.
Therefore the ratio of CB to CG is given. {Data, Prop. 8]
Lastly we may refer to Prop. 7o of the Data, the first part of which proves
what corresponds exactly to V1. 23, namely that, If @z fwo equiangular paral-
lelograms the sides containing the equal angles have a given ratto fo one another
[i-e. one side in one to one side in the other}, #ie parallelograms themselves will
also have @ given ratio fo one another. [Here the ratios of BC to CG and of
CD to CE are given.]
The construction is the same as in the last case, and we have XD equal
to CF, so that
CD:CE=CG: CK [vi. 14]
But the ratio of €D to CE is given;
therefore the ratio of CG to CK is given.

And, by hypothesis, the ratio of CG to CF is given.

Therefore, by diwiding the ratios [ Dafa, Prop. 8], we see that the ratio of
CBto CK, and therefore [vL 1] the ratio of AC to DX, or of AC to CF
is given.

Euclid extends these propositions to the case of two parallelograms which
have géven but not equal angles.

Pappus (vi1. p. 928) exhibits the result of vi. 23 in a different way,
which throws new light on compounded ratios. He proves, namely, that a
parallelogram is to an equiangular parallelogram as the rectangle contfained by
the adjacent sides of the first is to the rectangle contained by the adjacent sides

of the second.
A
G C E H

Let 4C, DF be equiangular parallelograms on the bases BC, EF, and let
the angles at B, £ be equal.

Draw perpendiculars 4 &, DH to BC, EF respectively.
Since the angles at B, G are equal to those at £, Z,

the triangles 4.8G, DEH are equiangular.

B F

Therefore BA4:AG=ED: DH. [v1. 4]
But BA : AG =(rect. BA, BC): (rect. AG, BC),
and ED:DH=(rect. ED, EF): (rect. DH, EF). [vr. 1]

Therefore [v. 11 and v. 16]

(rect. AB, BC) : (tect. DE, EF) = (rect. AG, BC) : (rect. DH, EF)
=(AC): (DF).
Thus it is proved that the ratio compounded of the ratios 458 : DE and

BC: EF is equal to the ratio of the rectangle 45, BC to the rectangle
DE, EF,
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Since each parallelogram in the figure of the proposition can be dividéd
into pairs of equal triangles, and all the triangles which are the halves of either
parallelogram have two sides respectively equal and the angles included by
them equal or supplementary, it can be at once deduced from vi. 23 (or it
can be independently proved by the same method) that #riangles which have
one angle of the one equal or supplementary to one angle of the other are in the
ratio compounded of the ratios of ihe sides about the equal or supplementary
angles. Cf. Pappus viL. pp. 8g4—6.

Vi 23 also shows that rectangles, and therefore parailelograms or triangles,
are lo ome another in the ratio compounded of the ratios of their bases and
heights.

The converse of vi. 23 is also true, as is easily proved by reductio ad
absurdum. More generally, if troo parallelograms or triangles are in the ratio
compounded of the rativs of fwo adjacent sides, the angles included by those sides
are either equal or supplementary.

ProrosiTion 24.
In any parallelogram the parallelograms about the diameter
are simzlar both to the whole and to one another.

Let ABCD be a parallelogram, and AC its diameter,
and let £G, AKX be parallelograms

about AC; A__E B
I say that each of the parallelograms | A
EG, HK is similar both to the whole GNF QH

ABCLD and to the other.

5
For, since £F has been drawn |
parallel to BC, one of the sides of the ©° K c
triangle A5C,

proportionally, as B is to £A4, sois CFto FA4. [v.:z

Again, since /G has been drawn parallel to CD, one of
the sides of the triangle A CD,

proportionally, as CFis to £ A4, sois DG to GA. [w
But it was proved that,
as CFis to F.A, so also is BE to £A ;
therefore also, as BE is to £A, sois DG to GA,
and therefore, componendo,

[8]
L

as BA isto AE, sois DA to AG, [v. 18]
and, alternately,
as BA isto AD, sois £A to AG. [v. 16]

Therefore in the parallelograms AB8CD, EG, the sides
about the common angle 540 are proportional.

And, since GF is parallel to DC,
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the angle A£G is equal to the angle DCA ;
and the angle DAC is common to the two triangles 4ADC,
AGF,
therefore the triangle 4 DC is equiangular with the triangle
AGF.
For the same reason
the triangle ACAB is also equiangular with the triangle
AFE,
and the whole parallelogram 4BCD is equiangular with the
parallelogram £G.
Therefore, proportionally,
as AD isto DC, sois AG to GF,
as DCisto CA, sois GF to FA,
as ACisto CB, so is AF to FE,
and further, as CB is to BA, so is FE to EA.
And, since it was proved that,
as DCisto CA, sois GF to FA,
and, as ACis to CB, sois AF to FE,
therefore, ex aeguals, as DC is to CB, so is GF to FE. [v. 22]
Therefore in the parallelograms ABCD, EG the sides
about the equal angles are proportxonal
therefore the parallelograrn ABCD is similar to the parallelo-
gram £G. [vL. Def. 1]
For the same reason
the parallelogram A BCD is also similar to the parallelogram
therefore each of the parallelograms £G, AK is similar to
ABCD.

But figures similar to the same rectilineal figure are also
similar to one another; [v1. 21]

therefore the parallelogram £ is also similar to the parallelo-
gram HAK.

Therefore etc.

Q. E. D.

Simson was of opinion that this proof was made up by some unskilful
editor out of rwo others, the first of which proved by parallels (vi. z) that
the sides about the common angle in the parallelograms are proportional,
while the other used the similarity of triangles (vi. 4). It is of course true
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that, when we have proved by vi. 2 the fact that the sides about the common
angle are proportional, we can infer the proportionality of the other sides
directly from 1. 34 combined with v. 7. But it does not seem to me unnatural
that Euclid should (1) deliberately refrain from making any use of 1. 34 and
(2) determine beforehand that he would prove the sides proportional iz «
definite order beginning with the sides £, AG and B4, 4D about the
common angle and then taking the remaining sides in the order indicated
by the order of the letters 4, &, #, £. Given that Euclid started the proof
with such a fixed intention in his mind, the course taken presents no difficulty,
nor is the proof unsystematic or unduly drawn out. And its genuineness
seems to me supported by the fact that the proof, when once the first two
sides about the common angle have been disposed of, follows closely the
order and method of vi. 18. Moreover, it could readily be adapted to the
more general case of two polygons having a common angle and the other
corresponding sides respectively parallel.

The parallelograms in the proposition are of course similarly situated as
well as similar; and those “‘about the diameter” may be ““about” the
diameter produced as well as about the diameter itself.

From the first part of the proof it follows that parallelograms which have
one angle equal to one angle and the sides about those angles proportional
are similar.

Prop. 26 is the converse of Prop. 24, and there seems to be no reason
why they should be separated as they are in the text by the interposition of
vl 25. Campanus has v1. 24 and 26 as vI. 22 and 23 respectively, VL. 23 as
V1. 24, and VI. 25 as we have it.

ProrosiTiON 23.
To construct one and the same figure similar to a given
vectilineal figure and equal to another given rectilineal figure.

Let ABC be the given rectilineal figure to which the
figure to be constructed must be similar, and 2 that to which
it must be equal ;

thus it is required to construct one and the same figure similar
to . ABC and equal to D.

T <\
A E— &

L

Let there be applied to BC the parallelogram BZ equal
to the triangle 4 BC [v. 44], and to C£ the parallelogram CA/
equal to D in the angle FCE which is equal to the angle
CBL. [r. 45]
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Therefore BC is in a straight line with €/, and L £ with
EM.

Now let G/ be taken a mean proportional to BC, CF
[v. 13}, and on GH let KGH be described similar and similarly
situated to A5C. [VL 18]

Then, since, as BC is to GH, so is GH to CF,
and, if three straight lines be proportional, as the first is to
the third, so is the figure on the first to the similar and
similarly situated figure described on the second, [vi. 19, Por.]
therefore, as BC is to CF, so is the triangle 45C to the
triangle KG/H.

But, as BC is to CF, so also is the parallelogram BZ to
the parallelogram £7. [vi 1]

Therefore also, as the triangle 45C is to the triangle
KGH, so is the parallelogram B Z to the parallelogram ZF;

therefore, alternately, as the triangle 45C is to the parallelo-
gram BE, so is the triangle KG /7 to the parallelogram £/,
[v. 16]
But the triangle 4BC is equal to the parallelogram BE';

therefore the triangle KG/ is also equal to the parallelogram
EF.

But the parallelogram £/F is equal to D ;
therefore KG /A is also equal to 2.

And KGH is also similar to 4ABC.

Therefore one and the same figure AG/ has been con-
structed similar to the given rectilineal figure 48C and equal
to the other given figure [.

Q. E. D.

3. to which the figure to be constructed must be similar, literally * to which it
is required to construct (one) similar,” ¢ 3¢l §uoiov srorioractac.

This is the highly important problem which Pythagoras is credited with
having solved. Compare the passage from Plutarch (Symp. vl 2, 4) quoted
in the note on 1. 44 above, Vol. 1. pp. 343—4.

We are bidden to construct a rectilineal figure which shall have the form of
one and the sise of another rectilineal figure. The corresponding proposition
of the Data, Prop. 55, asserts that, “if an area (xwpiov) be given in form
(d8e) and in magnitude, its sides will also be given in magnitude.”

Simson sees signs of corruption in the text of this proposition also. In
the first place, the proof speaks of the #77angle 4B C, though, according to the
enunciation, the figure for which 4B8C is taken may be azy rectilineal figure,
evfiypappov “rectilineal figure” would be more correct, or €l8os, “figure”; the
mistake, however, of using 7piywrov is not one of great importance, being no
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doubt due to the accident by which the figure was drawn as a triangle in the
diagram.

The other observation is more important. After Euclid has proved that
(fig. ABC): (fig. KGH)=(BE): (EF),

he might have inferred dérectly from v. 14 that, since 4BC is equal to BE,
KGH is equal to EF.  For v. 14 includes the proof of the fact that, if A is
to B as Cisto D, and 4 is equal to C, then B is equal to D, or that of four
proportional magnitudes, if the first is equal to the third, the second is equal
to the fourth. Instead of proceeding in this way, Euclid first permutes the
proportion by v. 16 into
(fig. ABC) : (BE)=(fig KGH):(EF),

and then infers, as if the inference were easier in this form, that, since the
Jerst is equal to the second, the zhird is equal to the jfourth.  Yet there is no
proposition to this effect in Euclid. The same unnecessary step of permutation
1s also found in the Greek text of x1. 23 and XIL 2, 5, 11, 12 and 18. In
reproducing the proofs we may simply leave out the steps and refer to v. 14.

ProprosiTION 26.

If from a parallelogram therve be taken away a parallelo-
gram similar and similarly sitwated fo the whole and having
a common angle with it, it 15 about the same diameter with the
whole.

For from the parallelogram AB5CD let there be taken
away the parallelogram 4/ similar and
similarly situated to .4 8CD, and having
the angle VA8 common with it ;

I say that ABCD is about the same
diameter with A/

For suppose it is not, but, if possible,
let 4 /HC be the diameter <of ABCD >,

let GF be produced and carried through
to A, and let K be drawn through #Z

parallel to either of the straight lines 40, BC. [r. 31]
Since, then, 4 BCD is about the same diameter with A'G,
therefore, as DA is to AR, sois GA to AK. [vL 24]

But also, because of the similarity of A5CD, £G,
as DA isto AB,sois GA to AE;
therefore also, as G4 is to AK, sois GA to AL. [v. 11]

Therefore G.A has the same ratio to each of the straight
lines AKX, AE.
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Therefore AZ is equal to AK [v. 9], the less to the

greater : which is impossible.
Therefore ABCD cannot but be about the same diameter

with AF;

therefore the parallelogram 4B CD is about the same diameter
with the parallelogram AZ.

Therefore etc.
Q. E. D.

“ For suppose it is not, but, if possible, let A A be the diameter.” What
is meant is “For, if 4FC is not the diameter of the parallelogram AC, let
AHC be its diameter.” The Greek text has &orw adbrdy Siduerpos 7 ABT ;
but clearly afrév is wrong, as we cannot assume that one straight line is the
diameter of both parallelograms, which is just what we have to prove. F and
V omit the adray, and Heiberg prefers this correction to substituting adrod
after Peyrard. I have inserted “ <of 4 BCD >” to make the meaning clear.

If the straight line 44C does not pass through 7 it must meet either
GF or GF produced in some point A. The reading in the text “and let
GF be produced and carried through to T (xal éBAyfeica 7 HZ Sujyfw érl
10 8) corresponds to the supposition that A is on GF produced. The words
were left out by Theon, evidently because in the figure of the Mss. the letters
E, Z and K, ® were interchanged. Heiberg therefore, following August, has
preferred to retain the words and to correct the figure, as well as the passage in
the text where AE, 4K were interchanged to be in accord with the wms. figure.

It is of course possible to prove the proposition directly, as is done by
Dr Lachlan. Let 4F 4C be the diagonals, and let us make no assumption
as to how they fall.

Then, since ZFis parallel to 4G and therefore to 5C,

the angles AEF, ABC are equal.
And, since the parallelograms are similar,
AE : EF=AB: BC. [vi. Def. 1]
Hence the triangles 4£F, ABC are similar, [vi. 6]
and therefore the angle F4Z is equal to the angle CAB.
Therefore AF falls on AC.

The proposition is equally true if the parallelogram which is similar and
similarly situated to the given parallelogram is not “taken
away” from it, but is so placed that it is entirely outside the ¢ g
other, while two sides form an angle vertically opposite to
an angle of the other. In this case the diameters are not D
“the same,” in the words of the enunciation, but are in G
a straight line with one anothér. This extension of the
proposition is, as will be seen, necessary for obtaining,
according to the method adopted by Euclid in his solu-
tion of the problem in vi 28, the second solution of that 8
problem.
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ProrosritioN 27.

Of all the parallelograms applied to the same straight line
and deficient by purallelogrammic figures similay and sinilarly
sttuated to that descrited on the half of the straight line, that
parallelogram is greatest which is applied to the half of the
strazght line and ts similar to the defect.

Let AF be a straight line and let it be bisected at C;
let there be applied to the straight

line A5 the parallelogram AD ) E
deficient by the parallelogrammic | N
figure DA described on the half of oM
AP, that is, CB; \ Si\\
I say that, of all the parallelograms \ \ ‘ \
applied to AA and deficient by A o —

parallelogrammic figures similar and
similarly situated to DB, AD is greatest.

For let there be applied to the straight line A2 the
parallelogram A/ deficient by the parallelogrammic figure
£ B similar and similarly situated to D5
I say that 40 is greater than A4 /.

For, since the parallelogram 27 is similar to the parallelo-
gram £5,

they are about the same diameter. [vi. 26]

Let their diameter /2 be drawn, and let the figure be
described.

Then, since CF is equal to FZ, (1 43]
and /B is common,
therefore the whole C/ is equal to the whole A'Z.

But C/ is equal to CG, since A( is also equal to C5.

. 1 36
Therefore GC is also equal to £X. -3¢
Let CF be added to each;

therefore the whole A/F is equal to the gnomon LV ;

so that the parallelogram D25, that is, 440, is greater than
the parallelogram A7,

Therefore etc.
Q. E. D.

H. B IL 17
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We have already (note on I 44) seen the significance, in Greek geometry,
of the theory of “the application of areas, their exceeding and their falling-
short” In 1. 44 it was a question of “applying to a given straight line
(exactly, without ‘excess’ or ‘defect’) a parallelogram equal to a given
rectilineal figure, in a given angle” Here, in VI. 27-—29, it is a question
of parallelograms applied to a straight line but “deficient (or exceeding) by
paralllograms similar and similarly

situated to a given parallelogram.” 5

Apart from size, it is easy to construct £

any number of parallelograms “de- y i H
ficient” or “exceeding” in the manner Al / \é L
described. Given the straight line G F ,
AB to which the parallelogram has to £ / /

be applied, we describe on the base M N K
CB, where C is on AB, or on BA

produced beyond 4, any parallelogram “similarly situated ” and either equal
or similar to the given parallelogram (Euclid takes the similar and similarly
situated parallelogram on half the line), draw the diagonal B0, take on it
(produced if necessary) any points as £, X, draw ZF, or KZ, parallel to CD
to meet A8 or A5 produced and complete the parallelograms, as 44, ML.

If the point Z is taken on BD or B.D produced beyond D, it must be so
taken that £F meets 45 between 4 and B. Otherwise the parallelogram
AE would not be applied to 425 itself, as it is required to be.

The parallelograms B.D, BE, being about the same diameter, are similar
[v1 24], and BE is the defect of the parallelogram A4Z relatively to 45.
AE is then a parallelogram applied to 42 but deficient by a parallelogram
similar and similarly situated to B2D.

If K is on DB produced, the parallelogram BX is similar to BD, but it
i5 the excess of the parallelogram AKX relatively to the base 48, A& is a
parallelogram applied to 45 but exceeding by a parallelogram similar and
similarly situated to B.D.

Thus it is seen that 5D produced both ways is the Jocws of points, such
as £ or K, which determine, with the direction of CD, the position of A, and
the direction of 425, parallelograms applied to 48 and deficient or exceeding
by parallelograms similar and similarly situated to the given parallelogram.

The importance of vi. 27—29 from a historical point of view cannot be
overrated. They give the geometrical equivalent of the algebraical solution
of the most general form of quadratic equation when that equation has a real
and positive root. It will also enable us to find a real negusve root of a
quadratic equation ; for such an equation can, by altering the sign of x, be
turned into another with a real posiZize root, when the geometrical method
again becomes applicable. It will also, as we shall see, enable us to represent
doth roots when both are real and positive, and therefore to represent both
roots when both are real but either positive or negative.

The method of these propositions was constantly used by the Greek
geometers in the solution of problems, and they constitute the foundation of
Book x. of the Elements and of Apollonius’ treatment of the conic sections.
Simson’s observation on the subject is entirely justified. He says namely on
VL. 28, 29: “These two problems, to the first of which the 27th Prop. is
necessary, are the most general and useful of all in the Elements, and are
most frequently made use of by the ancient geometers in the solution of
other problems; and therefore are very ignorantly left out by Tacquet and

7
4 l/
/
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Dechales in their editions of the Elements, who pretend that they are scarce
of any use.”

It is strange that, with this observation before him, even Todhunter should
have written as follows. Ve have omitted in the sixth Book Propositions
27, 28, 29 and the first solution which Euclid gives of Proposition 3o, as they
appear now to be never required, and have been condemned as useless by
various modern commentators; see Austin, Walker and Lardner.”

vI. 27 contains the Swopiouds, the condition for a real solution, of the
problem contained in the proposition following it. The maximum of all the
parallelograms having the given property which can be applied to a given
straight line is that which is described upon half the line (7o d=d Tijs fjpeoelas
avaypogpouevor). This corresponds to the condition that an equation of the
form

ax -px*=A

may have a real root. The correctness of the result may be seen by taking
the case in which the parallelograms are

rectangles, which enables us to leave out D E

of account the sine of the angle of the \\

parallelograms without any real loss of g f
generality. Suppose the sides of the rect- { ;
angle to which the defert is to be similar x L
to be as 4 to ¢ & corresponding to the i

side of the defect which lies along 425. A cCK B

Suppose that AKXFG is any parallelogram

applied to 4.8 having the given property, that 48 =g, and that FK =x.
Then

KB = ? x, and therefore AKX =a- ; X

Hence <a — f x) x =S, where Sis the area of the rectangle AKXFG.

Thus, given the equation
b .
ax—-x>=S5,
¢
where .S is undetermined, vi. 27 tells us that, if x is to have a real value, .S
cannot be greater than the rectangle CE.
Now CB= g, and therefore CD =

[FR ]

>

el ey

¢ a

whence S:’PZ. 7’

which is just the same result as we obtain by the algebraical method.

In the particular case where the defect of the parallelogram is to be a
square, the condition becomes the statement of the fact that, if a straight line
Be divided into two parts, the rectangle contained by the parts cannot exceed the
square on half the line. )

Now suppose that, instead of taking # on B2 as in the figure of the
proposition, we take & on BD produced beyond 2 but so that DF is less
than B.D.

Complete the figure, as shown, after the manner of the construction in
the proposition.

17—2
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Then the parallelogram ZXBH is similar to the given parallelogram to
which the defect is to be similar. Hence the parallelogram GA4&F is also a

parallelogram applied to 425 and satisfying

the given condition. ) Prec- v \Q
We can now prove that GAKF is less i
than CE or AD. ) VONF 1
Let £D produced meet 4G in O. G N ' J\H
Now, since BF is the diagonal of the 0\ D} £
parallelogram KA, the complements KD, V X NF' \
DH are equal. §
ik
DH= DG, and D@ is greater than OF. A e )

Therefore KD > OF.

Add OKX to each;
and AD, or CE, > AF.

This other “case ” of the proposition is found in all the mss., but Heiberg
relegates it to the Appendix as being very obviously interpolated. The
reasons for this course are that it is not in Euclid’s manner to give a separate
demonstration of such a “case”; it is rather his habit to give one case only
and to leave the student to satisfy himself about any others (cf. 1. 7). Internal
evidence is also against the genuineness of the separate proof. It is put after
the conclusion of the proposition instead of before it, and, if Euclid had intended
to discuss two cases, he would have distinguished them at the beginning of
the proposition, as it was his invariable practice to do. Moreover the second
“case” is the less worth giving because it can be so easily reduced to the
first.  For suppose £ to be taken on B.D so that FD = F'D. Produce BF
to meet 4G produced in 2 Complete the parallelogram 54 2Q, and draw
through #' straight lines parallel to and meeting its opposite sides.

Then the complement #'Q is equal to the complement 47",

And it is at once seen that A& F'Q are equal and similar. Hence the
solution of the problem represented by AF or F'(Q gives a parallelogram of
the same size as AF" arrived at as in the first “ case.”

It is worth noting that the actual difference between the parallelogram
AF and the maximum area 4.0 that it can possibly have is represented in
the figure. The difference is the small parallelogram DZ#

Prorosition 28.

70 a given straight line to apply a parallelogram equal to
a gien rectilineal figure and deficient by a parallelogrammic
Jigure similar to a given one: thus the grven vectilineal figure
must not be greater than the parallelogram described on the
kalf of the straight line and similay to the defect.

Let A5 be the given straight line, C the given rectilineal
figure to which the figure to be applied to A5 is required to
be equal, not being greater than the parallelogram described
on the half of 424 and similar to the defect, and D the
parallelogram to which the defect is required to be similar;
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thus it is required to apply to the given straight line 45 a
parallelogram equal to the given rectilineal figure C and
deficient by a parallelogrammic figure which is similar to D.

Let 47 be bisected at the point £, and on EB let ERFG
be described similar and similarly situated to D ; [vL 18]

let the parallelogram 4G be completed.

If then 4G is equal to C, that which was enjoined will
have been done ;

for there has been applied to the given straight line A2
the parallelogram 4G equal to the given rectilineal figure C
and deficient by a parallelogrammic figure G which is similar

to 1.
H G P F\
N o)
‘:l ¥

T o)
E S B K N
But, if not, let ZZ be greater than C.
Now HE is equal to G5 ;

therefore G5 is also greater than C.

Let KLMN be constructed at once equal to the excess
by which GZis greater than C and similar and similarly

T

A

situated to 2. [vt. 23]
But 2 is similar to G5 ;
therefore KM is also similar to G 5. [v1. 21]

Let, then, KL correspond to GZ, and L.J/ to GF.
Now, since G5 is equal to C, K},

therefore G5 is greater than K./ ;
therefore also GZ is greater than AZ, and G/ than LJ1.

Let GO be made equal to AZ, and GP equal to LZI/;
and let the parallelogram OGPQ be completed ;

therefore it is equal and similar to K.
Therefore GQ is also similar to G5; [vr 21]
therefore GQ is about the same diameter with G 5. [vi 26]
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Let GQB be their diameter, and let the figure be described.
Then, since BG is equal to C, KM,

and in them GQ is equal to K/,
therefore the remainder, the gnomon UMWV, is equal to the
remainder C.
And, since PR is equal to OS,
let OB be added to each;
therefore the whole 225 is equal to the whole O&.

But OB is equal to 7, since the side A% is also equal
to the side £5 ; [1. 36]

therefore 7 is also equal to P25.
Let OS be added to each;

therefore the whole 7'S is equal to the whole, the gnomon
Vwu.

But the gnomon VWU was proved equal to C;
therefore 7S is also equal to C.

Therefore to the given straight line 45 there has been
applied the parallelogram S7 equal to the given rectilineal
figure C and deficient by a parallelogrammic ﬁgure QF which
is similar to D.

Q. E. F.

The second part of the enunciation of this proposition which states the
Siopiouos appears to have been considerably amplified, but not improved in
the process, by Theon. His version would read as follows. “But the given
rectilineal figure, that namely to which the applied parallelogram must be
equal ($ 8¢l {oov mapaBaleiv), must not be greater than that applied to the half
{rapafBallonérov instead of dvaypagouévouv), the defects being similar, (namely)
that (of the parallelogram applied) to the half and that (of the required
parallelogram) which must have 2 similar defect” (Spolwv Svrov Tdv éAAeyp-
p.a.fuw 7OV Te amd 7'7)9 'r”.ucrﬂag Kkat a.\ dei g ojLOLOV e/\Kemew) The first amphﬁcamon
‘“that to which the applied parallelocrram must be equal” is quite unnecessary,
since “the given rectilineal figure” could mean nothing else. The above
attempt at a translation will show how difficult it is to make sense of the
words at the end ; they speak of fuw defects apparently and, while one may
well be the “defect on the half,” the other can hardly be #4¢ given paral/e/ogmm
“to which the defect (of the requlred parallelogram) must be similar.” Clearly
the reading given above (from P) is by far the better.

In this proposmon and the next there occurs the tacit assumption (already
alluded to in the note on Vi. 22) that &/, of fwo similar paralielograms, one is
greater than the other, either side of the greater is greater than the corresponding
side of the less,
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As already remarked, vi. 28 is the geometrical equivalent of the solution
of the quadratic equation

b o
ax — - 2" =S,
¢
subject to the condition necessary to admit of a real solution, namely that
¢ a°
SPHo. .
P

The corresponding proposition in the Dafa is {Prop. 581, If a given (arca)
be applied (i.e. in the form of a parallelogram) Zo a grven siraight line and be
deficient by a jfigure (i.e. a parallelogram) griven in spectes, the breadiles of the
defect are given.

To exhibit the exact correspondence between Euclid’s geometrical and
the ordinary algebraical method of solving the equation we will, as before
(in order to avoid bringing in a constant dependent on the sine of the angle
of the parallelograms), suppose the parallelograms to be rectangles. To solve
the equation algebraically we change the signs and write it

éxﬁ—zzxz—S.
¢
We may now complete the square by adding Z[ . % .
Th btan+ £ 02% s,
us - R il A ;

and, extracting the square root, we have

5 ¢ a ¢ &
\/z-"‘ i EN TS

a -2y [E(E2 )
an x=5.o% b(b';; .

Now let us observe Euclid’s method.

\
(s} N !
a1} ¢

|
A E S B b

He first describes GERF on EB (half of AB) similar to the given

parallelogram . o o
He then places in one angle FGE of GEBF a similar and similarly

situated parallelogram GQ, equal to the difference between the parallelogram
GB and the area C.

With our notation, GO:0Q@Q=c:4,
5
whence O0Q=GO. Z
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a V/
Simnilarly == EB=GE. =
¢ a
so that GE:Z-;.
g b
Therefore the parallelogram GQ= GO*. =

and  the parallelogram G5B = g .

Qg

Thus, in taking the parallelogram G

equal to (GB—.S), Euclid really
finds GO from the equation

GO*.-=
The value which he finds is - o
cfc &
GO:N/ZQ'Z“S)
and he finds QS (or &) by subtracting GO from GZ ; whence

c a ¢ /c @& )
x-;;‘x/z&-4 S)-

It will be observed that Euclid only gives one solution, that corresponding
to the negatize sign before the radical. But the reason must be the same as that
for which he only gives one “case”in v1. 27. He cannot have failed to see how
to add GO to GE would give another solution. As shown under the last
proposition, the other solution can be arrived at
(1) by placing the parallelogram GOQZP in B
the angle vertically opposite to #FGZ so that @

GQ lies along BG produced. The parallelo- o’
gram A Q' then gives the second solution. The
side of this parallelogram lying along 48 is P’

b_c v s
I

c &
67 4

A
T
\
\
\
¢
\
\
!

i
1}
'
t

equal to SB. The other side is what we have G PP
called x, and in this case |
x=ECG+ GO o Q

T 2
e @ A (i | i
¢ a cfc &
—é'2+'\/b<l7':1.- S). A E S B
(2) A perallelogram similar and equal to 4Q' can also be obtained by
producing B¢ till it meets 47 produced and completing the parallelogram
B ABA, whence it is seen that the complement QA is equal to the comple-
ment A (), besides being equal and similar and similarly situated to 4.

A particular case of this proposition, indicated in Prop. 85 of the Datg, is
that in which the sides of the defect are equal, so that the defect is a rhomdus
with a given angle. Prop. 85 proves that, /f fwo straight lines confain a
given area in a given angle, and the sum
of the straight lines be given, each of them

E A
will be given also. AB, BC being the
given straight lines “containing a given
area AC in a given angle 4FC” one
D B [¢

side CB is produced to 2 so that BD
1s equal to 4.5, and the parallelograms are

completed. Then, by hypothesis, CD is of given length, and A4 C is a parallelo-
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gram applied to C.D falling short by a rhombus (4.D) with a given angle
EZDB. The case is thus a particular case of Prop. 58 of the Data quotcd
above (p. 263) as corresponding to vI. 28.
A particular case of the last, that namely in which the defect is a sgueaze,
corresponding to the equation
ax — x° = &

is important. This is the problem of agplying to a gizen straight line a
rectangle equal to a given aréa and falling short by a square; and it can be
solved, without the aid of Book vi., as shown above under 1. 5 (Vol. L

pp- 383-4)

ProrosiTion 29.

7o a given straight line to apply a parallelogram equal to
a given rectilineal figure and exceeding by a parallelogrammic
Jigure similar to @ grven one.

Let 425 be the given straight line, C the given rectilineal
figure to which the figure to be applied to A5 is required to
be equal, and D that to which the excess is required to be
similar;
thus it is required to apply to the straight line 45 a parallelo-
gram equal to the rectilineal figure C and exceeding by a
parallelogrammic figure similar to 2.

\

f//\

Let .45 be bisected at £ ;

let there be described on £75 the parallelogram B/ similar
and similarly situated to 0 ;
and let GH be constructed at once equal to the sum of 57,
C and similar and similarly situated to 2. [vi. 25]
Let KA correspond to L and KG to FE.
Now, since G/ is greater than 75,

therefore KA is also greater than F#Z, and KG than FE£.
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Let FL, FE be produced,
let FLM be equal to KH, and FEN to KG,
and let MV be completed ;

therefore MV is both equal and similar to GA.
But G/ is similar to £L ; _
therefore MV is also similar to £L ; [vi. 21]
therefore £L is about the same diameter with M.  [vi 26]

Let their diameter #O be drawn, and let the figure be
described.

Since G/ is equal to £, C,
while G/ is equal to MV,
therefore MV is also equal to ZZ, C.

Let £ be subtracted from each ;

therefore the remainder, the gnomon X ¥V, is equal to C.

Now, since AE is equal to £5,

AN is also equal to VB [ 36], that is, to LP [1. 43].
Let £0 be added to each;

therefore the whole 40 is equal to the gnomon VWX,
But the gnomon VWX is equal to C;

therefore 4O is also equal to C.

Therefore to the given straight line 45 there has been
applied the parallelogram 4O equal to the given rectilineal
figure C and exceeding by a parallelogrammic figure QP
which is similar to D, since PQ is also similar to £L [vi. 24].

Q E. F.

The corresponding proposition in the Data is (Prop. 59), If a given (areq)
be applied (i.e. in the form of a parallelogram) 2o a grven straight line exceeding
by a figure given in species, the breadths of the excess are given.

The problem of v1. 29 corresponds of course to the solution of the
quadratic equation

b,
ax+;x-=5.

The algebraical solution of this equation gives

c a cfc a
~T—~;.;_’t\/z<z.—4“+s)

The exact correspondence of Euclid’s method to the algebraical solution
may be seen, as in the case of vi. 28, by supposing the paralielograms to be
rectangles. In this case Euclid’s construction on ZB of the parallelogram
EZL similar to D is equivalent to finding that

FE=:.2, and EL=
b 2

a2
Z .

A TN
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His determination of the similar parallelogram A equal to the sum of £Z
and S corresponds to proving that

FN®,

- ¢ a
or Fj\ﬂ./é<b.4+S),

whence x is found as

cfc & <
x—FN'“FE—,\/Z (z.:'i's)—z.

Euclid takes, in this case, the solution corresponding to the pesifize sign
before the radical because, from his point of view, that would be the only
solution.

No 8ioptouds is necessary because a real geometrical solution is always
possible whatever be the size of S.

Again the Dafa has a proposition indicating the particular case in which
the excess is a #hombus with a given angle. Prop. 84 proves that, Jf fwo
straight lines contain a given area in a given angle, and one of the stroight lines
is greater than the other by a given straight line, each of the two straight lines is
geven also. The proof reduces the proposition to a particular case of Data,
Prop. 59, quoted above as corresponding to vi. 29.

Again there is an important particular case which can be solved by means
of Book 11 only, as shown under 11. 6 above (Vol. I. pp. 386—38), the case namely
in which the excess is a sguare, corresponding to the solution of the equation

ax + =0
This is the problem of applving to a given straight line a rectangle equal to a
given area and exceeding by a square.

iR

ProrosiTION 30.

o cut a given finite straight line in extveme and nican
ratio.

Let 425 be the given finite straight line ;

thus it is required to cut 45 in extreme and mean ratio.

On AZB let the square BC be described ;

and let there be applied to AC the parallelo- ¢ F o
gram CD equal to BC and exceeding by
the figure A0 similar to 5C. [Vi. 29]

Now BC( is a square ;
therefore A0 is also a square.
And, since BC is equal to €D, A E B
let CE be subtracted from each;

therefore the remainder BF is equal to
the remainder AD.
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But it is also equiangular with it ;

therefore in BF, AD the sides about the equal angles are
reciprocally proportional ; fvr. 14]

therefore, as F£ is to £D, sois AE to EB.

But £ is equal to A5, and £D to AE.
Therefore, as BA4 is to AE, sois AFE to EB.
And AZF is greater than A£;

therefore A £ is also greater than £5.

Therefore the straight line 43 has been cut in extreme
and mean ratio at £, and the greater segment of it is AZ.
Q. E. F.

It will be observed that the construction in the text is a direct application
of the preceding Prop. 29 in the particular case where the excess of the
parallelogram which is applied is a sgware. This fact coupled with the
position of V1. 30 is a sufficient indication that the construction is Euclid’s.

In one place Theon appears to have amplified the argument. The text
above says “But £Z is equal to 45,” while the Mss. B, F, V and p have
“But FE is equal to AC, that is, to 4.B8.”

The mss. give after dwep &8e mojoar an alternative construction which
Heiberg relegates to the Appendix. The text-books give this construction
alone and leave out the other. It will be remembered that the alternative
proof does no more than refer to the equivalent construction in Ir. 1I.

“Let AFB be cut at C so that the rectangle 4.8, BC is equal to the

square on CA. [ 11]
Since then the rectangle 45, BC is equal to the square on C4,
therefore, as B4 is to AC, sois ACto CB. [vi. 17]

Therefore A8 has been cut in extreme and mean ratio at C.”

It is intrinsically improbable that this alternative construction was added
to the other by Euclid himself. It is however just the kind of interpolation
that might be expected from an editor. If Euclid had preferred the alternative
construction, he would have been more likely to give it alone.

ProrosiTION 31.

In right-angled triangles the figuve on the side subtending
the vight angle 1s equal o the sunilar and similarly described
ﬁgures on the sides containing the right angle.

Let ABC be a right-angled triangle having the angle 3AC
right;
I say that the figure on BC is equal to the s1mllar and
similarly described figures on 54, AC.

Let AD be drawn perpendicular.

Then since, in the right-angled triangle ABC, 4D has
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been drawn from the right angle at 4 perpendicular to the
base BC,

the triangles 48D, 4DC adjoin-

ing the perpendicular are similar

both to the whole 4B8C and to 4
one another. [vi. 8]
And, since ABC is similar to
ABD, 5 A
therefore, as CB is to B4, so is °
AB to BD. [vL Def. 1]

And, since three straight lines
are proportional,
as the first is to the third, so is the figure on the first to the
similar and similarly described figure on the second. [vi.1g,Por.]

Therefore, as C5 is to B0, so is the figure on CB to the
similar and similarly described figure on B.A.

For the same reason also,

as BCis to CD, so is the figure on BC to that on CA ;
so that, in addition,

as BC is to BD, DC, so is the figure on BC to the similar
and similarly described figures on 54, AC.

But ZC is equal to BD, DC;

therefore the figure on BC is also equal to the similar and
similarly described figures on 54, AC.

Therefore etc.
Q. E. D.

As we have seen (note on I. 47), this extension of 1. 47 is credited by

Proclus to Euclid personally. ) ) o )
There is one inference in the proof which requires examination. Euclid

proves that .
CB : BD=(figure on CB) : (figure on BA),
and that BC: CD=(figure on BC) : (figure on CA),
and then infers directly that

BC: (BD+ CD)=(fig. on BC) : (sum of figs. on B4 and 4C).
Apparently v. 24 must be re