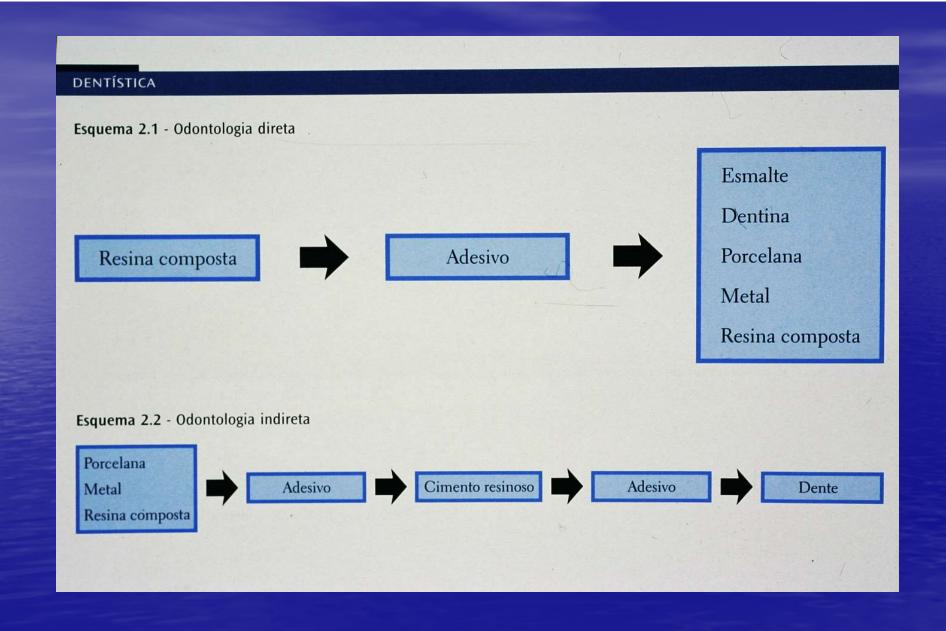
Odontologia Restauradora Avançada em Clínica Integrada 2020

ODONTOLOGIA ADESIVA Interfaces Adesivas

ODONTOLOGIA ADESIVAInterfaces Adesivas

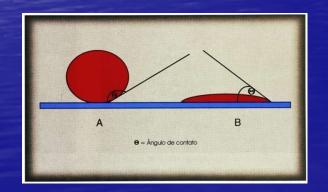

Conhecimentos Básicos de Aplicabilidade Clínica

ADESÃO -

- Reposição de estrutura dental perdida
- Correção de defeitos em áreas cervicais
- Correção de formas não estéticas, posições, dimensões ou colorações dentais
- União de restaurações cerâmicas posteriores e anteriores (veneers, inlays, onlays) com resinas de fixação
- União de restaurações em amálgama de prata

Versatilidade de Procedimentos

- Retenção de próteses cimentadas com sistemas resinosos
- União de brackets ortodônticos
- Splintagem periodontal e contenção ortodôntica
- Tratamento de hipersensibilidade
- Reparos de restaurações de amálgama, porcelana e resina composta
- Confecção de núcleos de preenchimento
- Restaurações diretas anteriores e posteriores



"Ao estudar o processo adesivo há que se ter cuidado especial, pois este mecanismo para ser entendido necessita da interpretação de inúmeros fatores interferentes, ou seja, o processo de adesão sofre influência multifatorial."

Elíades (1994)

"O estabelecimento de uma interface adesiva só será possível se a tensão superficial do agente adesivo for inferior à energia superficial do substrato sobre o qual será aplicado, o que resultará em maior e melhor capacidade de molhamento, gerando uma união efetiva."

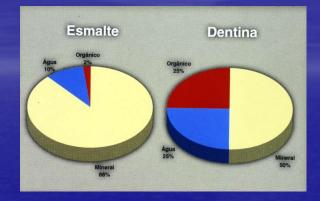
Erickson (1992)

Tipos de União

- Teoria Mecânica
- Teoria da Adsorção
- Teoria da Difusão
- Teoria eletrostática

Table 6-1 Bond energy and bond distance (equilibrium length)⁴

Bond type	Bond energy (kJmol ⁻¹)	Equilibrium length (Å)
	Primary	
Ionic	600-1200	2–4
Covalent	60-800	0.7–3
	Secondary	
Hydrogen	~50	3
Dipole interactions*	~20	4
London dispersion*	~40	<10


^{*}Dipole interactions and dispersion forces are often collectively referred to as van der Waals forces.

Fatores Interferentes na Adesão

- Substrato: superfícies limpas e secas, energia de superfície, superfícies lisas e rugosas
- Sistema Adesivo: tensão superficial, capacidade de molhamento, estabilidade dimensional, resistência mecânica
- Material Restaurador: composição

Substrato

- localização da cavidade
- composição e estrutura do substrato (esmalte X dentina X cemento)
- profundidade do preparo
- idade do paciente

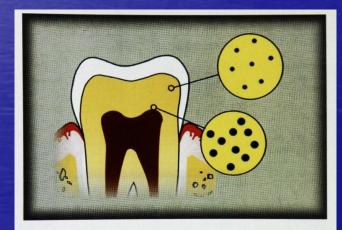
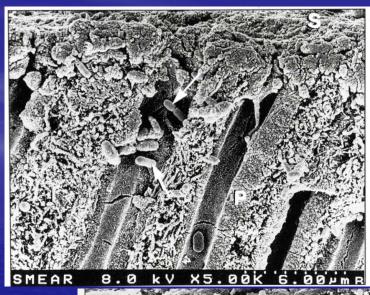



Fig. 4-18 Esquema mostrando a variação da estrutura da dentina com a profundidade. Na dentina profunda existe um maior número de túbulos por unidade de superfície, sendo esses túbulos de maior diâmetro que em dentina superfícial.



Esmalte



III

Dentina

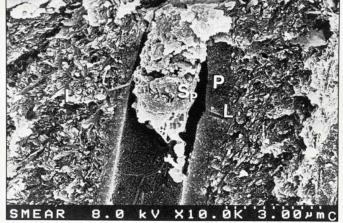
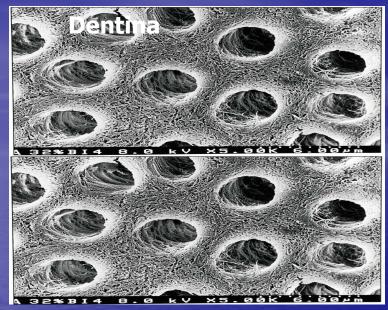
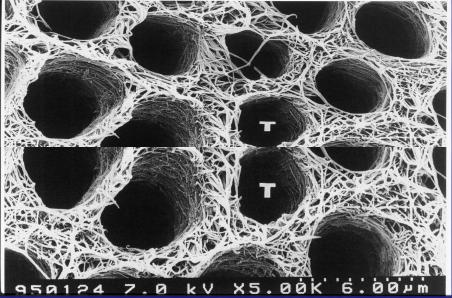
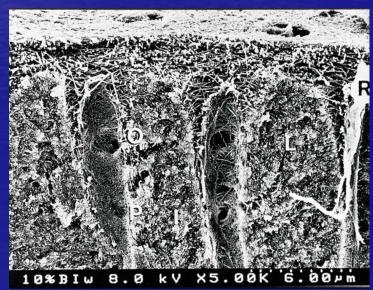





Fig 6-8c Note the smear plug (S_P) . (L) Lateral tubule branch; (P) peritubular dentin; (I) intertubular dentin.

Material Restaurador

Resina Composta

Ionômero de Vidro

Cerâmica

Amálgama

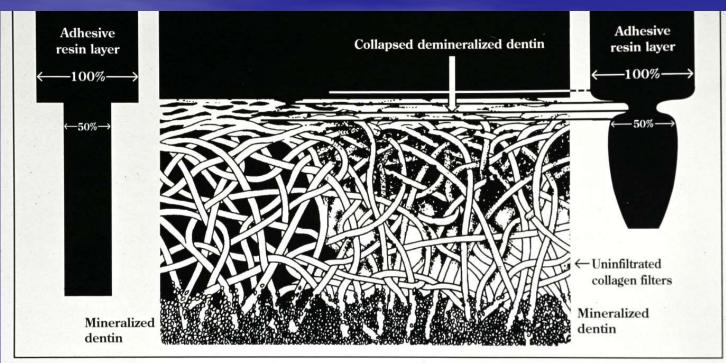
Ligas Metálicas

Material Restaurador...

Resina Composta

- Tipo de União
 - camada híbrida
 - camada de união elástica
 - adesão

- Sistemas Adesivos


Mecanismo de Adesão à Dentina

Nakabayashi (1994)

Capacidade de Molhamento do Substrato pelo Adesivo

Reações Físicas e Químicas entre Adesivo e Substrato

Formação da Camada Híbrida Formação de *Tags*

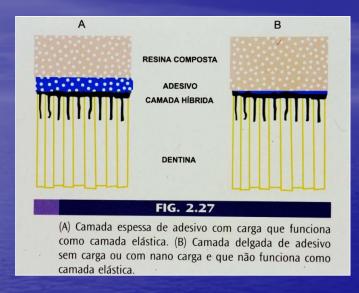
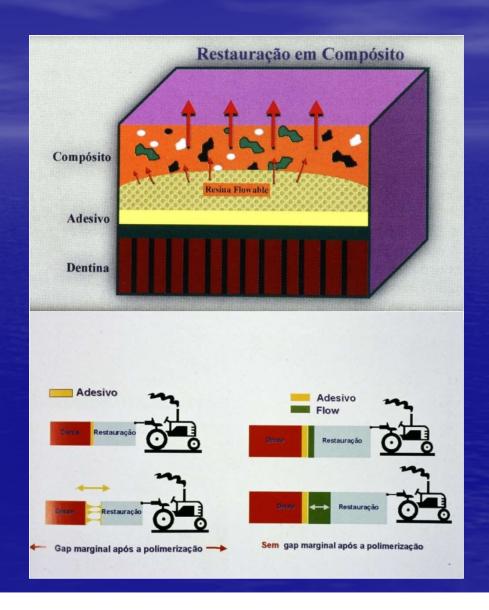


Figure IV-19


Difference between the formation of a perfect hybrid layer (left) and poorly infiltrated demineralized dentin (right) that leaves some subsurface collagen fibrils unprotected by either resin or apatite crystals. Black material designates resin. The width of the figures on either end are meant to show the concentration of resin. The adhesive layer is 100% resin, while the fully infiltrated demineralized layer is about 50 vol% resin and 50 vol% collagen (left). Collapse of the surface of the demineralized dentin (right) permits little resin at that interface. The parallel horizontal lines indicate regions of sampling discussed in the text. (Modified from Pashley $et\ al$, 1993a.)

Camada Híbrida

Camada de União Elástica

Sistema Adesivo

- Gerações atuais
- Classificação dos adesivos
 - número de passos, número de frascos (tratamento da smear layer)
- Características dos produtos
 - composição

CLASSIFICAÇÃO DOS SISTEMAS ADESIVOS CONTEMPORÂNEOS (GÓES & CONCEIÇÃO, 2005; 2010; 2014; 2015; atualizado 2018 e 2020)

Interação com os tecidos dentais e Número de etapas clínicas

Total Etch

- 1. Ácido fosfórico
- 2. Primer
- 3. Adesivo

Scotch Bond
Multipurpose
(3M-ESPE)
All Bond 2
All Bond 3
(Bisco)
Syntac
(Ivoclar Vivadent)

- 1. Ácido fosfórico
- 2. Primer + Adesivo
- Adper Single Bond (3M ESPE) Prime & Bond NT

(Dentsply)
One Step (Bisco)

ExciTE

(Ivoclar Vivadent)
Gluma Comfort Bond

(Heraus-Kulzer)

- 1. Primer ácido
- 2. Adesivo
- Clearfil SE Bond (Kuraray Co.) Tyrian (Bisco) AdheSE

(Ivoclar Vivadent)
Adper SE Plus
(3M Espe)

Optbond XTR (Kerr)

- **Autocondicionante**
 - 1. Ácido + Primer

Adesivo

- Adper Prompt (3M-ESPE)
- One-Up Bond F
 - (J. Morita)
- Xeno V (Dentsply)
 - Single Bond Universal (3M ESPE)
- Adhese One F (Ivoclar Vivadent) Ybond (Yller)

Composição química

- monômeros adesivos
- potencial químico de adesão

Table 6-3 Chemical design of dentin adhesives with potential chemical bonding°

Potential Ca²⁺-bonding dentin adhesives

M-R ₁ -POYZ	Phosphate group
M-R ₂ -NZ-R ₃ -COOH	Amino acid
M-R ₃ -OH	Amino alcohol
M-R ₄ -COOH	Dicarboxylic acid
СООН	

Potential collagen-bonding dentin adhesives

M-R ₁ -NCO	Isocyanate group
M-R ₂ -COCI	Acid chloride
M-R ₃ -CHO	Aldehyde group
M-R ₄ -CO	Carboxylic acid anhydride
СООН	

 $^{\circ}M$ = methacrylate; $R_{1.4}$ = variable spacers; Y, Z = variable substituents. From Asmussen and Hansen. 15 Reprinted with permission.

Table 6-2 Abbreviations for chemicals used in dental adhesive technology°

AA	Acetic acid		
4-AETA	4-Acryloxyethyl trimeric acid		
bis-GMA	Bisphenol glycidyl methacrylate		
BPDM	Biphenyl dimethacrylate		
DMA	Dimethacrylate		
DMAEMA	Dimethylaminoethyl methacrylate		
GPDM	Glycerophosphoric acid dimethacrylate		
HAMA	Hydroxyalkyl methacrylate		
HDMA	Hexanediol dimethacrylate		
HEMA	2-Hydroxyethyl methacrylate		
HPMA	Hydroxypropylmethacrylate		
MA	Methacrylate		
MAC-10	11-Methacryloxy-1 1-undecadicarboxylic acid		
10-MDP	10-Methacryloyloxy decyl dihydrogenphosphate		
4-MET	4-Methacryloxyethyl trimellitic acid		
4-META	4-Methacryloxyethyl trimellitate anhydride		
MMA	Methyl methacrylate		
MMEM	Mono-methacryloyloxyethylmaleat		
MMEP	Mono 2-Methacryloxy ethyl phthalate		
MPDM	Methacryl propane diol monophosphate		
NMENMF	N-Methacryloyloxyethyl-N-methyl formamide		
5-NMSA	N-Methacryloyl-5-aminosalicylic acid		
NPG	N-Phenylglycine		
NPG-GMA	N-Phenylglycine glycidyl methacrylate		
NTG-GMA	N-Tolylglycine glycidyl methacrylate		
PEG-DMA	Polyethylene glycol dimethacrylate		
PENTA	Dipentaerythritol penta acrylate monophosphate		
Phenyl-P	2-Methacryloxy ethyl phenyl hydrogen phosphate		
PMDM	Pyromellitic acid diethylmethacrylate		
PMGDM	Pyromellitic acid glycerol dimethacrylate		
PMO-MA	Polymethacryloligomaleic acid		
TBB	Tri-n-butyl borane		
TEG-DMA	Triethylene glycol dimethacrylate		
TEG-GMA	Triethylene glycol-glycidyl methacrylate		
UDMA	Urethane dimethacrylate		
*Adopted from Van Moorhook at al253 and Double 2 917			

^{*}Adapted from Van Meerbeek et al²⁸³ and Perdigão.²¹⁷

Esmalte

FIG. 2.2

Micrografia eletrônica do adesivo que penetrou nos espaços criados pela solução ácida na cabeça dos prismas. 500X

FIG 2 2

Micrografia eletrônica do adesivo que penetrou nos espaços criados pela solução ácida na cabeça dos prismas. 500X

FIG. 2.3

Micrografia eletrônica do adesivo que penetrou na periferia das cabeças de prismas do esmalte. 6.000 X

FIG 2 3

Micrografia eletrônica do adesivo que penetrou na periferia das cabeças de prismas do esmalte. $6.000~{\rm X}$

Dentina

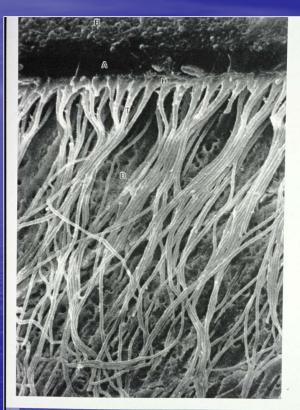
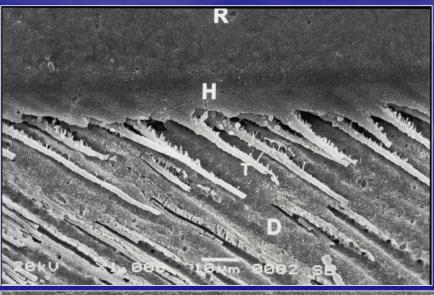
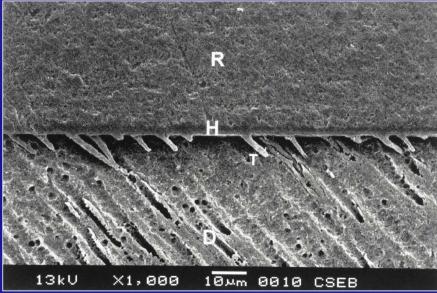




FIG. 2.11

Tags formados pelo adesivo Scotchbond Multiuso (3M). 1350x. (R) Adesivo, (A) Camada Híbrida, (T) Tag, (D) Dentina (Andia-Merlin²).

Sistema Adesivo → Seleção do Material

Autocond. 1 passo c/carga/etanol

Autocond. 1 passo s/ carga / etanol

Autocond. 2 passos c/carga/água

Autocond. 1 passo s/ carga /água+ acetona

Autocond. 1 passo s/ carga / etanol

Light-cured, self etching, filled, two steps bonding agent

Light-cured, self etching, one step, fluoride release one-bottle bonding agent

Light-cured, self etching, single step, dual cure bonding agent

Sistemas adesivos da

atualidade

3M ESPE

Autocond. 2 passos c/carga/água

Autocond. 2 passos c/carga/álcool

3M ESPE Composição: - VMS Technology Vitrebond™ Copolímero · Permite a reidratação das fibras colágenas e a formação de uma camada híbrida mesmo com a dentina ressecada. **MDP** · Permite maior adesão ao esmalte; · Utilizado como primer metálico: Usado como silano Aumenta a adesão na técnica nas cerâmicas vítreas autocondicionante; (feldspáticas e dissilicato · Confere maior longevidade de lítio), cerâmicas ao adesivo (não necessita de infiltradas por vidro refrigeração).

Indicações:

- All classes of fillings (according to Black) with composite or compomer
- Cementation of veneers when combined with RelyX[™] Veneer Cement
- Root surface desensitization
- S al
- Sealing of cavities and preparations of tooth stumps prior to temporary cementation of indirect restorations
- F arnish for glass iono
- E of pit and fissure sealar
- fu metal, and all ceramic rest v/o
- ng of dual cure and chemical d ts, core build-up materials and sites (v ctivator)
- E g of core build-ups made of come e or conditions and conditions are conditions.
- R composite or compomer filling
- Cementation of indirect restorations (crowns, inlays) of composite or compomer, ceramic and metal when combined with RelyX Ultimate Cement

Perfil Técnico 3M ESPE

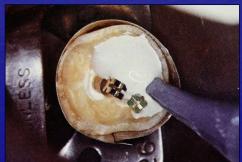
(aluminas) e Lava Zircônia.

3M ESPE

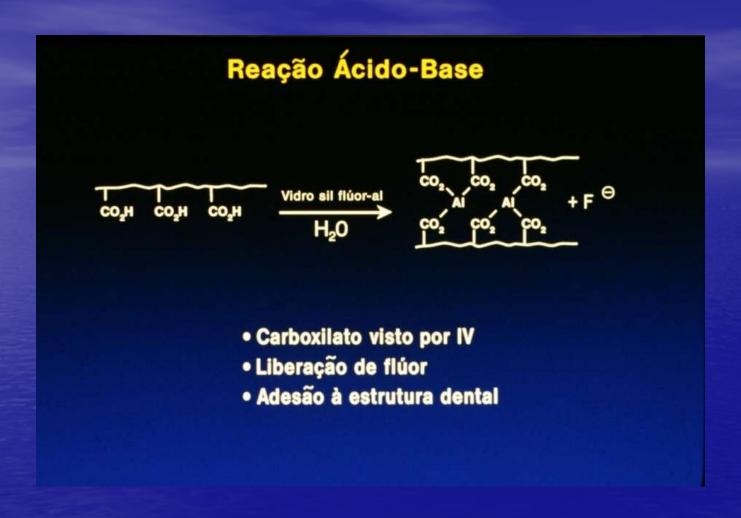
Adper™ Single Bond 2 Adhesive	Adper™ Easy One Self-Etch Adhesive	Single Bond Universal Adhesive
	MHP Phosphate Monomer	MDP Phosphate Monomer
Dimethacrylate resins	Dimethacrylate resins	Dimethacrylate resins
HEMA	HEMA	HEMA
Vitrebond™ Copolymer	Vitrebond™ Copolymer	Vitrebond™ Copolymer
Filler	Filler	Filler
Ethanol	Ethanol	Ethanol
Water	Water	Water
Initiators	Initiators	Initiators
		Silane

Figure 2: Chemistry composition comparisons

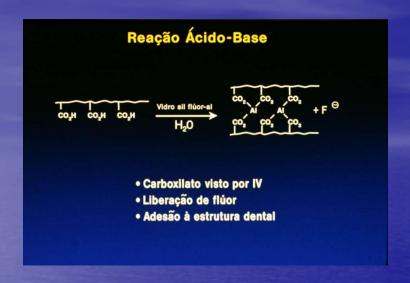
Source: 3M ESPE internal data



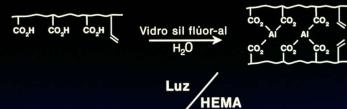
Material Restaurador...

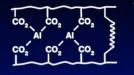

Cimento lonômero de Vidro

- Tipo de União
 - Micromecânica e/ou adesão
- Compômeros e lonofotos
- Custo



Vidro de alumínio silicato + solução aquosa de ácido poliacrílico

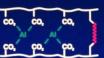


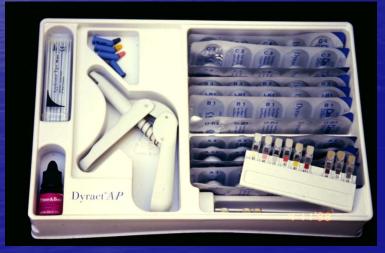


Reação da Polimerização por Luz

- Fácil utilização
- Resistente ao dessecamento
- Maior adesão
- Maior resistência à fratura

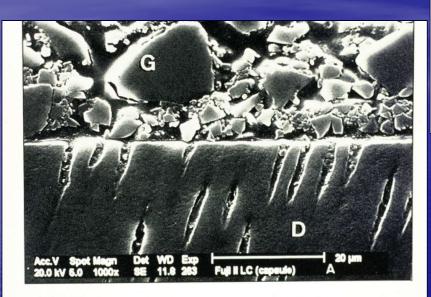
Química da Tripla Ativação





- Um passo, polimerização em grande quantidade
- · Rápido, fácil
- Alta resistência
- Alta dureza

Compômero


Resina composta modificada por poliácidos

Composição

- dimetacrilato de uretano (UDMA)
- éster ácido hidroxietilmetacrilato tetracarboxílico (resina de TCB)
- metacrilato polialquenóico
- vidro de flúor-silicato de alumínio
- vidro de flúor-silicato de estrôncio
- fluoreto de estrôncio
- fotoiniciadores
- hidroxi butil tolueno
- pigmentos de óxido de ferro

Indicações

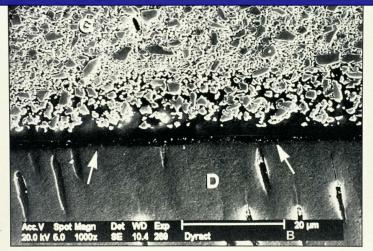

- todas as classes de cavidades em dentes anteriores e posteriores
- Classes I e II: istmo inferior a 2/3 da distância intercuspídea

Fig 6-48a Fuji II LC. The dentinal tubules appear to be occluded by smear debris. (D) Dentin; (G) resimmodified glass-ionomer cement.

Fig 6-48b Dytract. A hybridlike structure (arrows) is formed and covered by an adhesive resin layer. (D) Dentin; (G) resin-modified glass-ionomer cement.

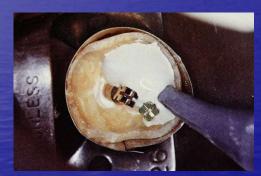


Fig 6b Calcium hydroxide-methyl cellulose liner was placed covering the pulp space exposure. A custom contoured matrix band segment was placed and securely wedged into position.

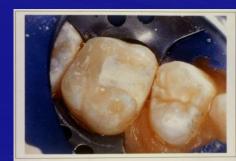
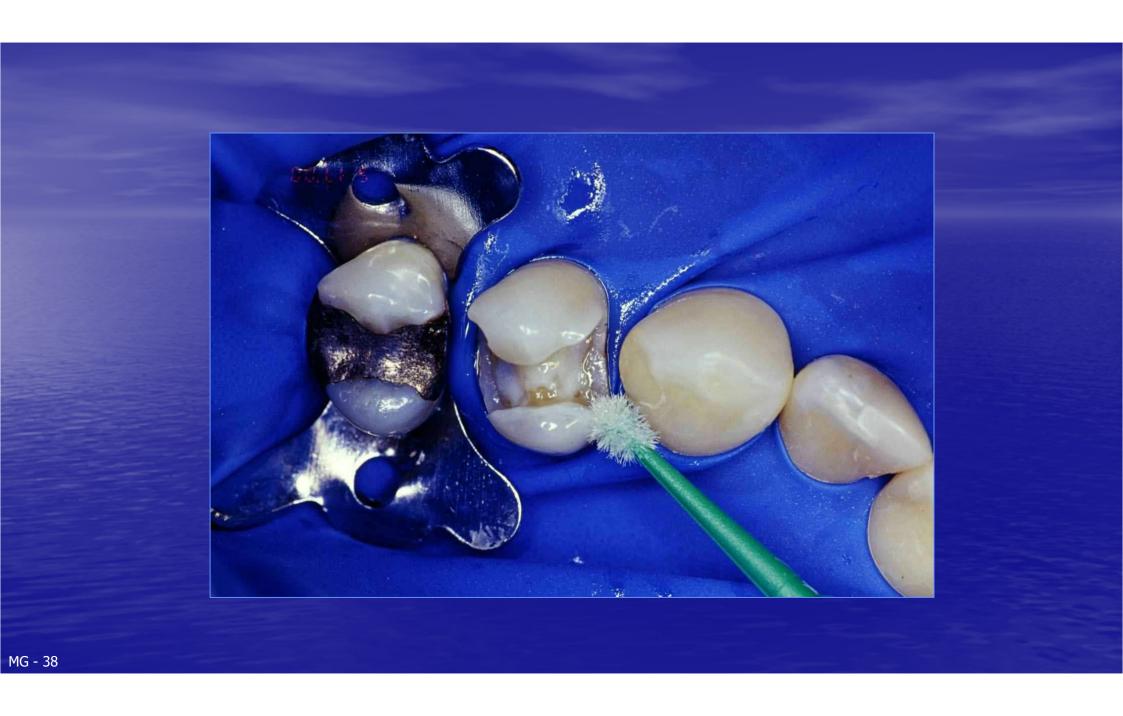



Fig 6d The restoration immediately after finishing and polishing

Ionômero de vidro p/ restauração **GC GOLD**

Revestimento de Proteção Nanoparticulado, Auto-Adesivo e Fotopolimerizável, GC G-Coat

A35 IIIII JUM IIII

Ionômero de vidro p/ cimentação ordotôntica **ORTO GC FUJI ORTHO LC**

Verniz nanoparticulado fotopolimerizável para selamento de superfícies

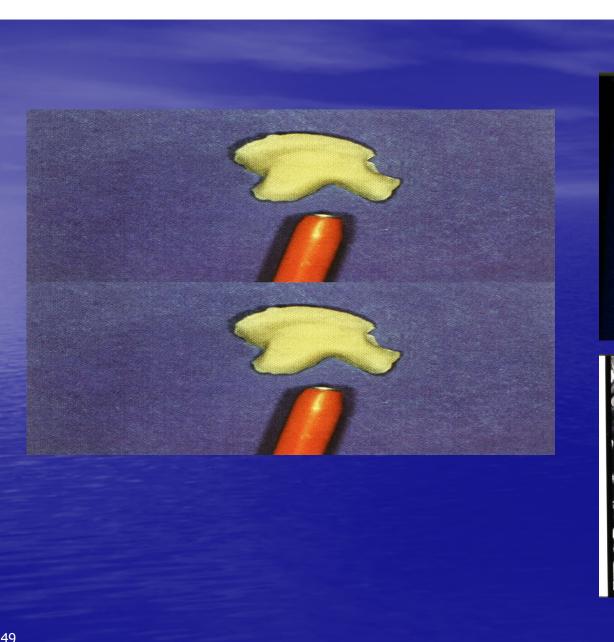
Material de restauração à base de compômero colorido fotopolimerizável, com **efeito brilhante**

- ✓ Técnicas de Mínima Intervenção
- ✓ ART

Cerâmica

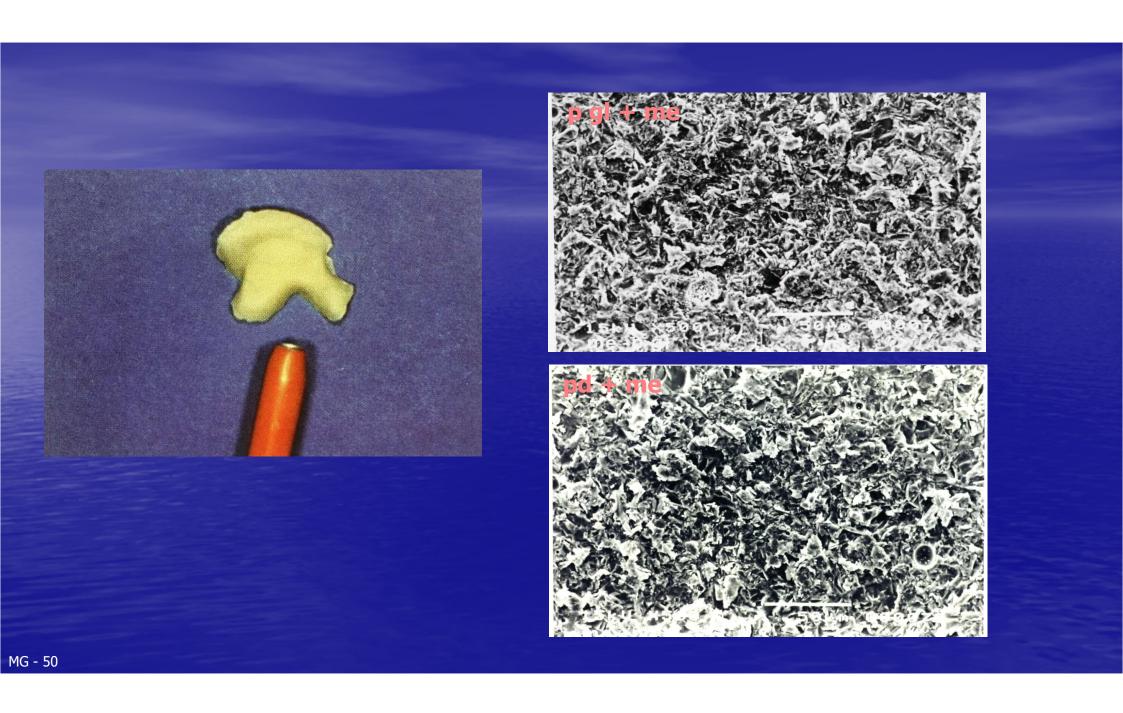
- Tipo de União micromecânica e adesão
- Técnicas restauradoras diretas (reparos) e indiretas (fixação)
- Sistemas de fixação (produtos comerciais)
- Custo*

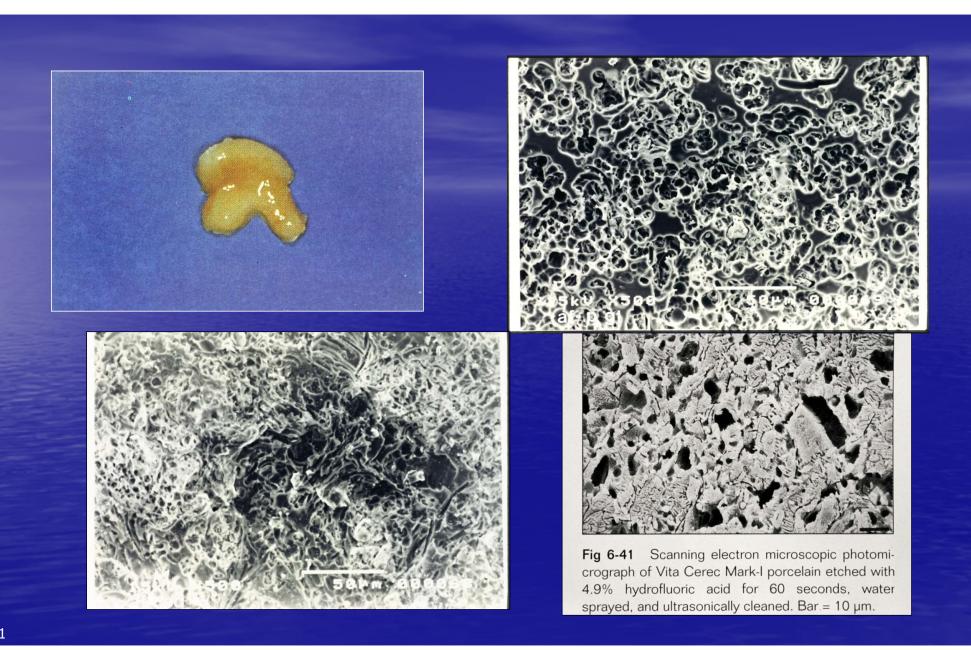
Cerâmica – Tratamento Superficial


- Microjateamento
- Cerâmicas feldspáticas (Biodent, Ceramco II, Noritak): condicionamento com ácido fluorídrico 10% durante 1 a 2 minutos
- Cerâmicas reforçadas por cristais de leucita (Optec HSP, Duceram LFC, IPS Empress): condicionamento com ácido fluorídrico 10% durante 1 minuto
- Cerâmicas feldspáticas reforçadas por cristais de dissilicato de lítio (IPS Empress II): condicionamento com ácido fluorídrico 10% durante 20 segundos
- Cerâmicas reforçadas com alumina e zircônia (In-Ceram, Procera, Lava, Cerec, Zenostar): jateamento com partículas silanizadas
- Aplicação do agente silano**

Pereira, J.C. e cols. (2014) Conceição e cols. (2018)

Material Restaurador	RelyX™ Ultimate + SBU	RelyX™ U200
Cerâmicas vítreas/ácido sensíveis (Feldspática, Feldspática reforçada com leucita, Dissilicato de lítio, Silicato de lítio reforçado com zircônia, cerâmica infiltrada por polímero) (Ex: Vita Mark II, Vita Suprinity e Enamic/ Vita; e.max CAD e e.max Press/ Ivoclar; Celtra Duo e Celtra Press/Dentsply; Rosetta/Hass)	1º - condicionamento com ácido fluorídrico 5-10% 2º - Single Bond Universal	1º - condicionamento com ácido fluorídrico 5-10% 2º - Silano
Cerâmicas cristalinas/ácido resistentes (Zircônia, Aluminizada densamente sinterizada, A base de alumina infiltrada por vidro) (Ex: Lava™ Zirconia, Lava™ Plus, Lava™ Esthetic/ 3M; e.max Zir CAD/ Ivoclar; Cercon/Dentsply; Prettau, Prettau Anterior Zirkonzahn; Vita In-Ceram YZ, Vita YZ HT/Vita)	1º - Single Bond Universal	"Sem tratamento prévio"
Resina nano-cerâmica, Resina indireta (Ex: Lava™ Ultimate e Paradigm MZ 100™/3M ESPE	1º- Jateamento com óxido de alumínio (< 50 µm) - opcional 2º- Single Bond Universal	1º - Jateamento com óxido de alumínio (< 50 μm) - opcional
Metal	1º - Jateamento com óxido de alumínio (< 50 μm) - opcional 2º - Single Bond Universal	1º - Jateamento com óxido de alumínio (< 50 μm) - opcional


Conceição (2018)


https://www.3m.com.br/3M/pt_BR/odontologia/newsletter/artigos/?storyid=7c837e66-726c-4dff-b28c-2c8af316cc12

Cimentos Odontológicos: Classificação

Baixa resistência de união Aspecto branco opaco Baixas propriedades mecânicas Alta resistência de união Estética e translucidez Alta resistência mecânica

Convencional

Adesivo

Fosfato de zinco

Policarboxilato

Ionômero de Vidro

lonômero de Vidro modificado por resina

3M ESPE RelyX[™] Luting 3M ESPE RelyX[™] Luting 2

Cimento Resinoso

Cimento Resinoso Autoadesivo

> 3M ESPE RelyX[™] ARC 3M ESPE RelyX[™] Veneer

3M ESPE RelyX[™] Unicem RelyX U100, U200

3M ESPE

3M ESPE Ketac™ Cem

© 3M 2008. All Rights Reserved.

3M ESPE

3M ESPE

Indicações Rely X U200 Cimentação definitiva de:

- *Inlays*, *onlays*, coroas e próteses fixas em cerâmica, metal, metalocerâmica e resina composta indireta;
- Núcleos metálicos e pinos (fibra de vidro, fibra de carbono e zircônia);
- Próteses fixas adesivas do tipo Maryland de 2 ou 3 elementos;
- Próteses fixas adesivas do tipo inlay/onlay de até 3 elementos; e,
- Coroas ou próteses fixas em cerâmica, metal e resina composta indireta sobre abutment.

Vantagens

- Resistência ao manchamento;
- Baixa solubilidade;
- ✓ Maior fluidez comparado ao RelyX U100; e,
- Dispensa pré-tratamento do dente (condicionamento ácido, aplicação de primer e adesivo).

Cim. resin. auto e fotopolim.

autopolim./opção fotop.

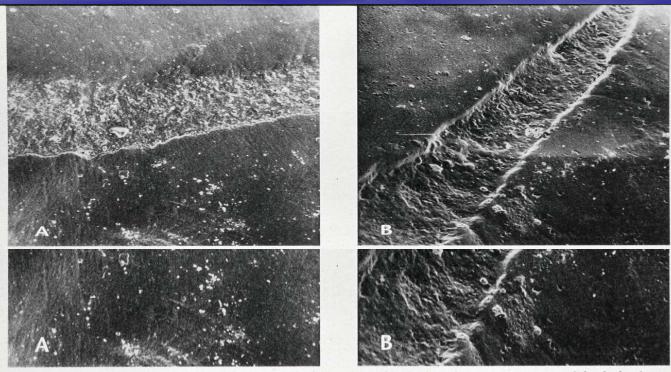


IVOCLAR VIVADENT

ATENÇÃO!!!

Cerâmicas: Protocolo clínico de cimentação adesiva sobre diferentes substratos

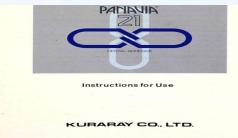
Prof. Sanzio Marques & cols.



Atenção !!

Figures 6A and 6B—SEM micrograph of replica from in vivo computer-aided design-computer-aided manufacturing (CAD-CAM) ceramic inlay occlusal margin showing resin luting cement (A) at baseline and (B) after 2 years in the mouth. Submargination or crevice formation has occurred, which tends to be self-limiting after 2 to 3 years. There is no sign of debonding. (Courtesy of Drs. J.W. Brown and L. Tam, Faculty of Dentistry, University of Toronto.)

Atualização 2020



Amálgama

- Tipo de união micromecânica e adesão
- Técnica do amálgama aderido
- Sistemas adesivos com afinidade metálica
- Vantagens X desvantagens

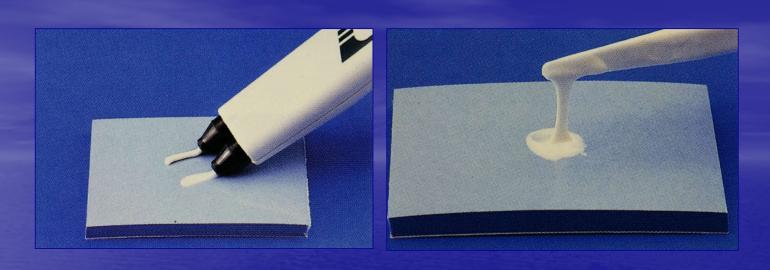


Table 5 Shear bond strength between human enamel and amalgam (MPa)

Products	Fresh amalgam		
	24hrs	TC3000	
PANAVIA 21	17	18	
PRODUCT A (Japan/USA)	21	20	
PRODUCT B (USA)	14	8	

24 hrs : Stored in water at 37 °C for 24 hours

TC 3000: Thermal cycled between 4 °C and 60 °C for one minute each

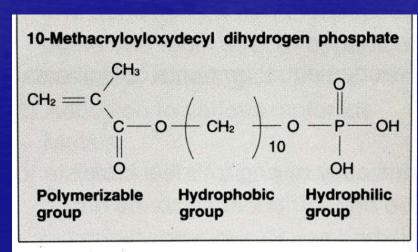


Fig. 1 Chemical structure of MDP

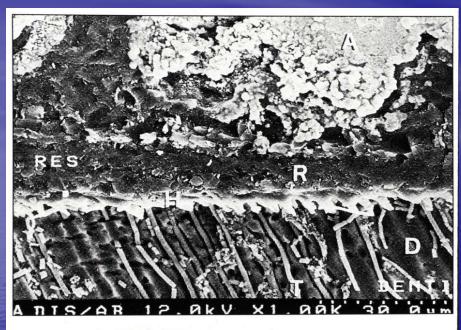
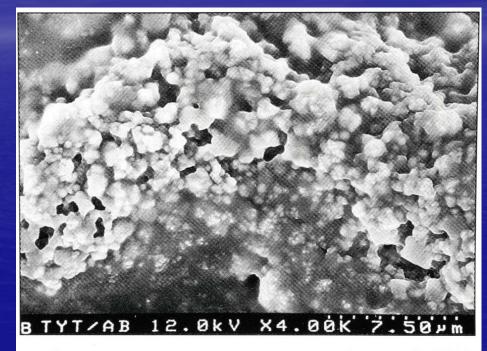



Fig 6-40a Scanning electron microscopic photomicrograph illustrating the interface of amalgam (A) and dentin (D). Note the formation of a hybrid layer (H) with resin tags when All-Bond 2 and Dispersalloy are used.

Fig 6-40b Scanning electron microscopic photomicrograph revealing the mixture of amalgam particles with resin when All-Bond 2 and Tytin are used.

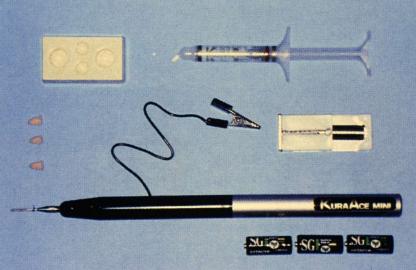
Ligas Metálicas

- Tipo de união micromecânica e adesão
- Ligas nobres: tratamento superficial interno com estanho (eletrodeposição ou "tin-plate")
- Ligas não-nobres: tratamento superficial com jato de óxido de alumínio ("microetching")

Sistemas adesivos com afinidade metálica

Fig. 4-45 SEM de metal não-nobre (Rexillium, Jeneric Pentron) após ataque eletrolítico com ácido nítrico durante 5 minutos. Notem-se as microporosidades criadas no metal, propícias para retenção micromecânica efetiva.

Fig. 4-46 SEM de metal não-nobre (Rexillium, Jeneric Pentron) após jateamento com óxido de alumínio (*sandblasting*).




Ligas nobres – *tin plate*

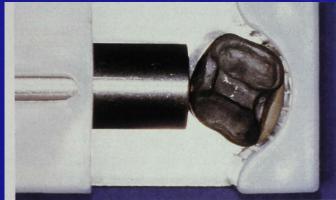


Fig. 27 - Aspecto da superfície interna da R.M.F. de ouro após jateamento.

Fig. 29 - Superfície interna da R.M.F. de ouro após a eletrodeposição de estanho.

Fig. 32 - Após a remoção dos excessos as margens são protegidas com oxyguard para permitir a completa polimerização do cimento resinoso.

PANAVIA 21 paste bonds strongly to pretreated metal surfaces without the use of ED PRIMER because PANAVIA 21 paste contains MDP.
PANAVIA 21 paste also bonds strongly to fresh amalgam.

Table 4 Shear bond strength to metals

(MPa)

Products	Ni-	Ni-Cr Sandblasted		Gold alloy Sandblasted+Tin-plated	
	Sandl				
	24hrs	TC3000	24hrs	TC3000	
PANAVIA 21	47 .	45	36	39	
PRODUCT A (Japan/USA)	37	46	36	39	
PRODUCT B (USA)	37	43	28	27	

24 hrs : Stored in water at 37 °C for 24 hours

TC 3000: Thermal cycled between 4 °C and 60 °C for one minute each

Quadro II - Cimentos Resinosos Adesivos				
MARCA COMERCIAL	FABRICANTE	MONÔMETRO ADESIVO		
C&B Metabond	Parkell	4-META		
Panavia	Kuraray	10-MDP		
Panavia 21	Kuraray	10-MDP		
Superbond C&B	Sun Medical	4-META		

Quadro VI - Primer de Metal para Cimentos Resinosos				
MARCA COMERCIAL	PRIMER P/ METAL	MONÔM. ADESIVO	FABRICANTE	
ABC Dual	Metal Primer	Ác. Fosfônico	Vivadent	
A.B.C.	primer B+C	PMGDM*	Chamaleon	
ALL Bond 2	Primer B	BPDM**	Bisco	
Dentastic	Primer B+C	PMGDM	Pulpodent	
Multibond Alfa	Primer B+C	PMGDM	DFL	
Optibond	Prime	GPDM + PAMM***	Kerr	
ProBond	Primer	PENTA****	Dentsply	
Restobond 4	Part2 + Part2b	PMGDM	Lee Pharm.	

^{*} Glicerol Piromelítico Dimetacrilato

^{**} Bisfenil Dimetacrilato

^{***} Glicerol Fosfato Dimetacrilato + Mono 2 (Metacriloxietil) Ftalato

^{****} Dipentaeritritol Penta Acrilato

ODONTOLOGIA ADESIVA

Conhecimentos Básicos de Aplicabilidade Clínica

Versatilidade de Procedimentos

Adesão

