Problems

In each of Problems 1 through 4, sketch the graph of the given function on the interval $t \ge 0$.

1. $g(t) = u_1(t) + 2u_3(t) - 6u_4(t)$

In each of Problems 5 through 8:

a. Sketch the graph of the given function. b. Express f(t) in terms of the unit step function $u_c(t)$. 5. $f(t) = \begin{cases} 0, & 0 \le t < 3, \\ -2, & 3 \le t < 5, \\ 2, & 5 \le t < 7, \\ 1, & t \ge 7. \end{cases}$ 6. $f(t) = \begin{cases} 1, & 0 \le t < 1, \\ -1, & 1 \le t < 2, \\ 1, & 2 \le t < 3, \\ -1, & 3 \le t < 4, \\ 0, & t \ge 4. \end{cases}$ 7. $f(t) = \begin{cases} 1, & 0 \le t < 2, \\ e^{-(t-2)}, & t \ge 2. \end{cases}$ 8. $f(t) = \begin{cases} t, & 0 \le t < 2, \\ 2, & 2 \le t < 5, \\ 7-t, & 5 \le t < 7, \\ 0, & t \ge 7. \end{cases}$

In each of Problems 9 through 12, find the Laplace transform of the given function.

9.
$$f(t) = \begin{cases} 0, & t < 2\\ (t-2)^2, & t \ge 2 \end{cases}$$

10.
$$f(t) = \begin{cases} 0, & t < \pi\\ t-\pi, & \pi \le t < 2\pi\\ 0, & t \ge 2\pi \end{cases}$$

11.
$$f(t) = u_1(t) + 2u_3(t) - 6u_4(t)$$

12. $f(t) = (t-3)u_2(t) - (t-2)u_3(t)$

In each of Problems 13 through 16, find the inverse Laplace transform of the given function.

13.
$$F(s) = \frac{3!}{(s-2)^4}$$

14. $F(s) = \frac{e^{-2s}}{s^2 + s - 2}$
15. $F(s) = \frac{2(s-1)e^{-2s}}{s^2 + s - 2}$

10.
$$F(s) = \frac{e^{-s} + e^{-2s} - e^{-3s} - e^{-4s}}{e^{-s} + e^{-2s} - e^{-3s} - e^{-4s}}$$

17. Suppose that $F(s) = \mathcal{L}{f(t)}$ exists for $s > a \ge 0$. **a.** Show that if *c* is a positive constant, then

$$\mathcal{L}{f(ct)} = \frac{1}{c}F\left(\frac{s}{c}\right), \quad s > ca.$$

b. Show that if *k* is a positive constant, then

$$\mathcal{L}^{-1}\{F(ks)\} = \frac{1}{k}f\left(\frac{t}{k}\right)$$

c. Show that if *a* and *b* are constants with a > 0, then

$$\mathcal{L}^{-1}\{F(as+b)\} = \frac{1}{a}e^{-bt/a}f\left(\frac{t}{a}\right)$$

- **2.** $g(t) = f(t \pi)u_{\pi}(t)$, where $f(t) = t^2$
- 3. $g(t) = f(t-3)u_3(t)$, where $f(t) = \sin t$
- 4. $g(t) = (t-1)u_1(t) 2(t-2)u_2(t) + (t-3)u_3(t)$

In each of Problems 18 through 20, use the results of Problem 17 find the inverse Laplace transform of the given function.

18.
$$F(s) = \frac{2^{n+1}n!}{s^{n+1}}$$

19. $F(s) = \frac{2s+1}{4s^2+4s+5}$

20.
$$F(s) = \frac{1}{9s^2 - 12s + 3}$$

In each of Problems 21 through 23, find the Laplace transform of given function. In Problem 23, assume that term-by-term integrat of the infinite series is permissible.

21.
$$f(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & t \ge 1 \end{cases}$$

22.
$$f(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & 1 \le t < 2 \\ 1, & 2 \le t < 3 \\ 0, & t \ge 3 \end{cases}$$

23.
$$f(t) = 1 + \sum_{k=1}^{\infty} (-1)^k u_k(t)$$
. See Figure 6.3.8.

FIGURE 6.3.8 The function f(t) in Problem 23; a square wave.

24. Let *f* satisfy f(t + T) = f(t) for all $t \ge 0$ and for so fixed positive number *T*; *f* is said to be **periodic with period** *T* $0 \le t < \infty$. Show that

$$\mathcal{L}\lbrace f(t)\rbrace = \frac{\int_0^T e^{-st} f(t)dt}{1 - e^{-sT}}.$$

In each of Problems 25 through 28, use the result of Problem 24 find the Laplace transform of the given function.

25.
$$f(t) = \begin{cases} 1, & 0 \le t < 1, & f(t+2) = f(t), \\ 0, & 1 \le t < 2; \end{cases}$$

26.
$$f(t) = \begin{cases} 1, & 0 \le t < 1, \\ -1, & 1 \le t < 2; \end{cases}$$
 $f(t+2) = f(t)$

See Figure 6.3.9.

FIGURE 6.3.9 The function f(t) in Problem 26; a square wave.

27. f(t) = t, $0 \le t < 1$; f(t+1) = f(t). See Figure 6.3.10.

28. $f(t) = \sin t$, $0 \le t < \pi$; $f(t + \pi) = f(t)$. See Figure 6.3.11.

FIGURE 6.3.11 The function f(t) in Problem 28; a rectified sine wave.

29. a. If $f(t) = 1 - u_1(t)$, find $\mathcal{L}{f(t)}$. Sketch the graph of y = f(t). Compare with Problem 21.

b. Let $g(t) = \int_0^t f(\xi) d\xi$, where the function *f* is defined in part a Shotch the energy of $y = g(\xi)$ and find $f(g(\xi))$. Use using

part a. Sketch the graph of y = g(t) and find $\mathcal{L}\{g(t)\}$. Use your expression for $\mathcal{L}\{g(t)\}$ to find an explicit formula for g(t). *Hint:* See Problem 28 in Section 6.2.

c. Let $h(t) = g(t) - u_1(t)g(t-1)$, where g is defined in part b. Sketch the graph of y = h(t) and find $\mathcal{L}{h(t)}$. Use your expression for $\mathcal{L}{h(t)}$ to find an explicit formula for h(t).

30. Consider the function p defined by

$$p(t) = \begin{cases} t, & 0 \le t < 1, \\ 2-t, & 1 \le t < 2; \end{cases} \quad p(t+2) = p(t)$$

a. Sketch the graph of y = p(t).

b. Find L{p(t)} by noting that p is the periodic extension of the function h in Problem 29c; then use the result of Problem 24.
c. Find L{p(t)} by noting that

$$p(t) = \int_0^t f(t)dt,$$

where f is the function in Problem 26; then use Theorem 6.2.1.