Lista 8: Função degrau (extraídos do livro de Boyce e DiPrima)

Problems

In each of Problems 1 through 4, sketch the graph of the given function on the interval $t \geq 0$.

1. $g(t)=u_{1}(t)+2 u_{3}(t)-6 u_{4}(t)$

In each of Problems 5 through 8:
a. Sketch the graph of the given function.
b. Express $f(t)$ in terms of the unit step function $u_{c}(t)$.
5. $f(t)=\left\{\begin{aligned} 0, & 0 \leq t<3, \\ -2, & 3 \leq t<5, \\ 2, & 5 \leq t<7, \\ 1, & t \geq 7 .\end{aligned}\right.$
6. $f(t)=\left\{\begin{aligned} 1, & 0 \leq t<1, \\ -1, & 1 \leq t<2, \\ 1, & 2 \leq t<3, \\ -1, & 3 \leq t<4, \\ 0, & t \geq 4 .\end{aligned}\right.$
7. $f(t)= \begin{cases}1, & 0 \leq t<2, \\ e^{-(t-2)}, & t \geq 2 .\end{cases}$
8. $f(t)= \begin{cases}t, & 0 \leq t<2, \\ 2, & 2 \leq t<5, \\ 7-t, & 5 \leq t<7, \\ 0, & t \geq 7 .\end{cases}$

In each of Problems 9 through 12, find the Laplace transform of the given function.
9. $f(t)= \begin{cases}0, & t<2 \\ (t-2)^{2}, & t \geq 2\end{cases}$
10. $f(t)= \begin{cases}0, & t<\pi \\ t-\pi, & \pi \leq t<2 \pi \\ 0, & t \geq 2 \pi\end{cases}$
11. $f(t)=u_{1}(t)+2 u_{3}(t)-6 u_{4}(t)$
12. $f(t)=(t-3) u_{2}(t)-(t-2) u_{3}(t)$

In each of Problems 13 through 16, find the inverse Laplace transform of the given function.
13. $F(s)=\frac{3!}{(s-2)^{4}}$
14. $F(s)=\frac{e^{-2 s}}{s^{2}+s-2}$
15. $F(s)=\frac{2(s-1) e^{-2 s}}{s^{2}-2 s+2}$
16. $F(s)=\frac{e^{-s}+e^{-2 s}-e^{-3 s}-e^{-4 s}}{s}$
17. Suppose that $F(s)=\mathcal{L}\{f(t)\}$ exists for $s>a \geq 0$.
a. Show that if c is a positive constant, then

$$
\mathcal{L}\{f(c t)\}=\frac{1}{c} F\left(\frac{s}{c}\right), \quad s>c a .
$$

b. Show that if k is a positive constant, then

$$
\mathcal{L}^{-1}\{F(k s)\}=\frac{1}{k} f\left(\frac{t}{k}\right) .
$$

c. Show that if a and b are constants with $a>0$, then

$$
\mathcal{L}^{-1}\{F(a s+b)\}=\frac{1}{a} e^{-b t / a} f\left(\frac{t}{a}\right) .
$$

2. $g(t)=f(t-\pi) u_{\pi}(t)$, where $f(t)=t^{2}$
3. $g(t)=f(t-3) u_{3}(t)$, where $f(t)=\sin t$
4. $g(t)=(t-1) u_{1}(t)-2(t-2) u_{2}(t)+(t-3) u_{3}(t)$

In each of Problems 18 through 20, use the results of Problem 17 find the inverse Laplace transform of the given function.
18. $F(s)=\frac{2^{n+1} n \text { ! }}{s^{n+1}}$
19. $F(s)=\frac{2 s+1}{4 s^{2}+4 s+5}$
20. $\quad F(s)=\frac{1}{9 s^{2}-12 s+3}$

In each of Problems 21 through 23, find the Laplace transform of given function. In Problem 23, assume that term-by-term integrat of the infinite series is permissible.
21. $f(t)= \begin{cases}1, & 0 \leq t<1 \\ 0, & t \geq 1\end{cases}$
22. $f(t)= \begin{cases}1, & 0 \leq t<1 \\ 0, & 1 \leq t<2 \\ 1, & 2 \leq t<3 \\ 0, & t \geq 3\end{cases}$
23. $f(t)=1+\sum_{k=1}^{\infty}(-1)^{k} u_{k}(t)$. See Figure 6.3.8.

FIGURE 6.3.8 The function $f(t)$ in Problem 23; a square wave.
24. Let f satisfy $f(t+T)=f(t)$ for all $t \geq 0$ and for so fixed positive number $T ; f$ is said to be periodic with period T $0 \leq t<\infty$. Show that

$$
\mathcal{L}\{f(t)\}=\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1-e^{-s T}}
$$

In each of Problems 25 through 28, use the result of Problem 24 find the Laplace transform of the given function.
25. $f(t)=\left\{\begin{array}{ll}1, & 0 \leq t<1, \\ 0, & 1 \leq t<2 ;\end{array} \quad f(t+2)=f(t)\right.$.

Compare with Problem 23.
26. $f(t)=\left\{\begin{array}{rl}1, & 0 \leq t<1, \\ -1, & 1 \leq t<2 ;\end{array} \quad f(t+2)=f(t)\right.$.

See Figure 6.3.9.

FIGURE 6.3.9 The function $f(t)$ in Problem 26; a square wave.
27. $f(t)=t, \quad 0 \leq t<1 ; \quad f(t+1)=f(t)$. See Figure 6.3.10.

figure 6.3.10 The function $f(t)$ in Problem 27; a sawtooth wave.
28. $f(t)=\sin t, \quad 0 \leq t<\pi ; \quad f(t+\pi)=f(t)$. See Figure 6.3.11.

FIGURE 6.3.11 The function $f(t)$ in Problem 28; a rectified sine wave.
29. a. If $f(t)=1-u_{1}(t)$, find $\mathcal{L}\{f(t)\}$. Sketch the graph of $y=f(t)$. Compare with Problem 21.
b. Let $g(t)=\int_{0}^{t} f(\xi) d \xi$, where the function f is defined in part a. Sketch the graph of $y=g(t)$ and find $\mathcal{L}\{g(t)\}$. Use your expression for $\mathcal{L}\{g(t)\}$ to find an explicit formula for $g(t)$. Hint: See Problem 28 in Section 6.2.
c. Let $h(t)=g(t)-u_{1}(t) g(t-1)$, where g is defined in part b. Sketch the graph of $y=h(t)$ and find $\mathcal{L}\{h(t)\}$. Use your expression for $\mathcal{L}\{h(t)\}$ to find an explicit formula for $h(t)$.
30. Consider the function p defined by

$$
p(t)=\left\{\begin{array}{ll}
t, & 0 \leq t<1, \\
2-t, & 1 \leq t<2 ;
\end{array} \quad p(t+2)=p(t)\right.
$$

a. Sketch the graph of $y=p(t)$.
b. Find $\mathcal{L}\{p(t)\}$ by noting that p is the periodic extension of the function h in Problem 29c; then use the result of Problem 24.
c. Find $\mathcal{L}\{p(t)\}$ by noting that

$$
p(t)=\int_{0}^{t} f(t) d t
$$

where f is the function in Problem 26; then use Theorem 6.2.1.

