# GMG0332 Petrologia Metamórfica

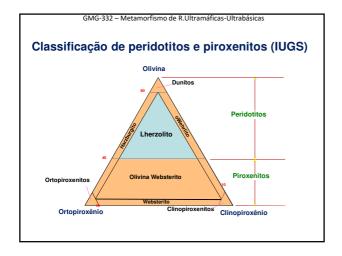
Metamorfismo de Rochas Ultramáficas – Ultrabásicas GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas

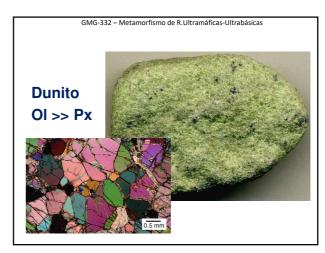
### **Principais tópicos**

- Protólitos e suas características;
- Serpentinização;
- Metassomatismo: Ath-Tlc, "black-wall";
- Metamorfismo progressivo de serpentinitos: sistemas MSH, CMSH;
- Metamorfismo de lherzolitos e komatiítos: sistemas CMASH, NCMASH;
- Metamorfismo com fase fluida mista: H<sub>2</sub>O + CO<sub>2</sub>

GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas

### Conceitos fundamentais, protólitos

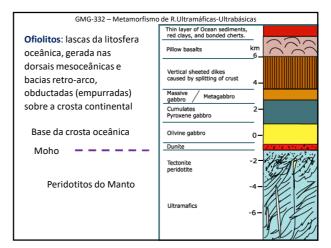

- Rocha ultrabásica: SiO<sub>2</sub> (% em peso) < 45
- Rocha **ultramáfica** = ultramelanocrática (IC ≥ 90) Principais protólitos - sempre orto-derivados:
- a) peridotitos do manto: Iherzolitos, harzburgitos;
- b) **peridotitos cumuláticos**: dunitos, harzburgitos, websteritos, wehrlitos, orto- e clinopiroxenitos;
- c) **komatiítos**: lavas, vulcanoclásticas, corpos intrusivos rasos (diques, sills).


(considerando apenas rochas não-alcalinas!)

GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

#### Composição mineralógica dos protólitos

- OI: Olivina (Fo >> Fa geralmente, Fo<sub>93-85</sub>)
- Opx: Enstatita
- Cpx: Augita, Pigeonita
- + Cromita, Magnetita
- + Plagioclásio (An > 50), Anfibólio (Mg-Hbl), Biotita (flogopita)














# Características gerais dos protólitos

- paragêneses ígneas de altas temperaturas (700 a > 1.000 °C), anidras;
- corpos de dimensões variáveis, tabulares a lenticulares (poucos metros a centenas de metros);
- maciços, baixa porosidade, grande contraste reológico e químico com as rochas encaixantes (gnaisses, xistos, migmatitos);

GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

# Fatores que condicionam o metamorfismo de rochas ultramáficas-ultrabásicas

- T, P<sub>lit</sub>, P<sub>dir</sub>
- Acesso (ou não) de **fluídos** (H<sub>2</sub>O, CO<sub>2</sub>)
- **Deformação** (pervasiva x localizada)
- Composição do fluído (X<sub>CO2</sub>, X<sub>H2O</sub>, a<sub>SiO2</sub>, etc)
- Volume do fluído (relação fluído: rocha)
- Alterações de baixa T (serpentinização, talcificação, uralitização)

# Acesso de fluido e relação fluido-rocha - definem o sistema químico:

- Fechado: nenhuma troca de componentes com o exterior;
- Parcialmente fechado: troca apenas da fase fluida (H<sub>2</sub>O +/- CO<sub>2</sub>);
- Sistema aberto: mobilidade variada de vários componentes = metassomatismo (SiO<sub>2</sub>, CaO, MgO, Na<sub>2</sub>O, K<sub>2</sub>O, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, etc);

GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas

Em corpos ultramáficos lenticulares de zonas de cisalhamento: frequentemente, zoneamento mineral e textural concêntrico

 núcleo granoblástico ou nemato-granoblástico (Fo, En, Di, Spl, Amp, Chl) ou fibro-radiado (Ath, Tr, Chl, Tlc), seguido de faixas lepido-nematoblásticas (Chl, Tr, Tlc) e borda lepidoblástica (Tlc, Chl, Srp).

GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

### Texturas de rochas metaultramáficas

- Relíquias ígneas (spinifex, cumulática, granular);
- Granoblástica (recristalização estática a altas T);
- Lepido-nematoblástica, nematoblástica (e.g. cloritatremolita xistos);
- Lepidoblástica, entrelaçada (talco, clorita);
- **Fibro-radiada** (e.g. antofilita-tremolita-talco xisto fibro-radiado não confundir com *spinifex*!);
- Decussada (e.g. tremolititos);
- **Serpentiníticas** (*mesh*, fitada, etc) terminologia específica!

GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

# **Transformações em sistema aberto**: bastante comuns em rochas ultramáficas

Grande contraste químico com as encaixantes: "capas" de rochas monominerálicas

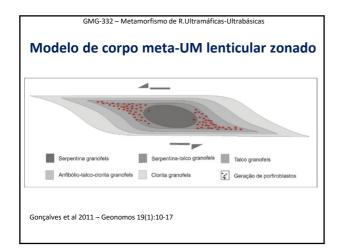
- Serpentinização (parcialmente aberto ou aberto);
- Talcificação;
- Cloritização ou biotitização ("blackwall") complemento da talcificação ou serpentinização;
- Rochas com antofilita + talco (+ carbonatos);

Modelo de corpo ultramáfico lenticular talcificado

Strike direction

Blackwallrocks

Gurb


Carb

Carb

Carb

Lup to
-200 metros

Karlsen, T. A. e Olesen, O. 1996. Airborne geophysical prospecting for ultramafite associated talc, Altermark, northern
Norway. In: Journal of Applied Geophysics, 35: 215-236.









Primeiras etapas da transformação metamórfica de rochas ultramáficas

Via de regra, hidratação (com ou sem carbonatação adicional) em baixo a médio grau – formação de serpentinas, talco, brucita, magnesita / dolomita, tremolita, etc.

Exemplos: rochas ultramáficas do manto litosférico e de complexos cumuláticos da crosta oceânica, em ofiolitos e peridotitos alpinos, ou komatiítos em greenstone belts (fácies sub-xisto verde a xisto verde).



### Serpentinização

Pode ocorrer em sistema parcialmente fechado, com acesso apenas de fluidos aquosos, ou em sistema aberto (remoção de Na<sub>2</sub>O, CaO, Al<sub>2</sub>O<sub>3</sub>)

Atinge preferencialmente os minerais com relação Mg:Si mais elevada: olivina e ortopiroxênio.

**Serpentinitos**: rochas metaultramáficas mais abundantes na crosta – geralmente, ponto de partida para o metamorfismo progressivo.



GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas

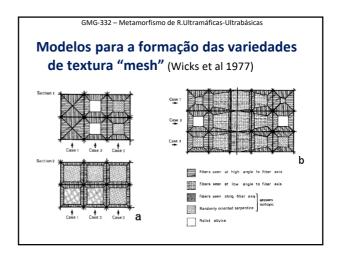
### Serpentinização de olivina

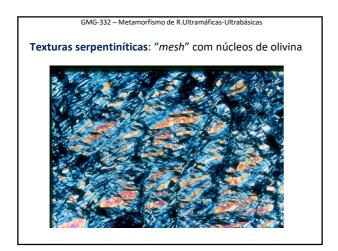
Ao longo das bordas e fraturas ("cordas"), envolvendo núcleos não serpentinizados:

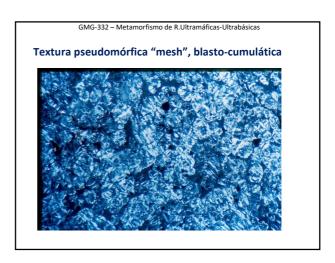
OI (Fo>>Fa) +  $H_2O$  = Serp + Mt (+ Br)

Cromita: substituída nas bordas por ferricromita

Texturas serpentiníticas: grande variedade


GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas


Texturas serpentiníticas: pseudomórficas x não-pseudomórficas (Wicks & Whittaker 1977)


**Pseudomórficas**: "mesh" (olivina), em ampulheta, bastita (opx), spinifex, blasto-cumulática;

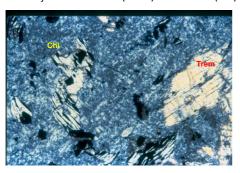
Não-pseudomórficas: recristalização das pseudomórficas ou serpentinização acompanhada de deformação e recristalização: fitada ("ribbon"), interpenetrada ("interlocked"), etc.


















Serpentinização em sistema aberto (perda de Ca e Al): substituição de tremolita (Trem) e de clorita (Chl)



GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas

#### Composição química dos protólitos - exemplos

|                                | Peridotito mantélico | Komatiíto (MG)   |
|--------------------------------|----------------------|------------------|
| SiO <sub>2</sub>               | 44,50                | 49,02            |
| TiO <sub>2</sub>               | 0,15                 | 0,46             |
| Al <sub>2</sub> O <sub>3</sub> | 2,60                 | 5,00             |
| Fe <sub>2</sub> O <sub>3</sub> | 1,50                 | n.d.             |
| FeO                            | 7,30                 | 10,96 (Fe total) |
| MnO                            | 0,14                 | 0,15             |
| MgO                            | 41,7                 | 26,25            |
| CaO                            | 2,30                 | 7,77             |
| Na <sub>2</sub> O              | 0,25                 | 0,35             |
| K,O                            | 0,02                 | 0,03             |

GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas

# Sistemas e subsistemas para rochas ultramáficas-ultrabásicas

- MSH fundamental para dunitos e harzburgitos (peridotitos alpinos, serpentinitos);
- CMSH para lherzolitos simples;
- CMASH sistema simplificado para lherzolitos e komatiítos;
- NCMASH sistema mais completo

GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

### Componentes geralmente não considerados

- Al<sub>2</sub>O<sub>3</sub>: restrito a clorita (T <) ou espinélio (T >)
- MnO: baixos teores, Mn ⇔ Mg;
- K<sub>2</sub>O: teores insignificantes (exceto em rochas ultramáficas alcalinas);
- TiO<sub>2</sub>: restrito a ilmenita em baixo-médio grau (anfibólios e espinélios a altas T);
- Cr<sub>2</sub>O<sub>3</sub>: restrito a cromita / magnetita baixa mobilidade

GMG 332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

MSH (MgO-SiO<sub>2</sub>-H<sub>2</sub>O) - dunitos e harzburgitos metamorfismo progressivo de serpentinitos (Evans & Trommsdorf 1970, Evans 1977)

- Serpentinas: antigorita (Atg), lizardita (Liz),

crisotila (Ctl)  $\underline{\sim}$  Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>

- Brucita (Br) - Mg(OH)<sub>2</sub>

- Talco (Tlc) -  $Mg_3Si_4O_{10}(OH)_2$ 

- Forsterita (Fo) – Mg<sub>2</sub>SiO<sub>4</sub>

- Antofilita (Ath) -  $Mg_7Si_8O_{22}(OH)_2$ - Enstatita (En) -  $Mg_2Si_2O_6$  (3MgO:2SiO<sub>2</sub>:2H<sub>2</sub>O)

(1MgO:1H<sub>2</sub>O)

(3MgO:4SiO<sub>2</sub>:1H<sub>2</sub>O) (2MgO:1SiO<sub>2</sub>)

(7MgO:8SiO<sub>2</sub>:1H<sub>2</sub>O)

(1MgO:1SiO<sub>2</sub>)

GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

**Sistema MSH**: 3 componentes - Diagrama quimiográfico triangular **MgO-SiO<sub>2</sub>-H<sub>2</sub>O** 

**Representação linear MgO-SiO<sub>2</sub> –** projeção a partir do vértice H (H<sub>2</sub>O)

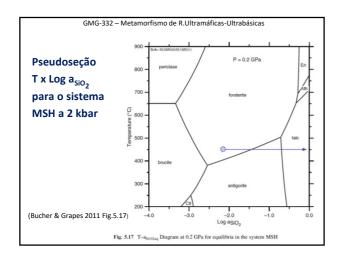
Composições dos protolitos – dunitos e harzburgitos: entre Fo e En (anidros – base do triângulo). Hidratação simples: composições deslocam-se em direção ao vértice H (campo dos serpentinitos com Br ou Tlc) Diagrama MSH:

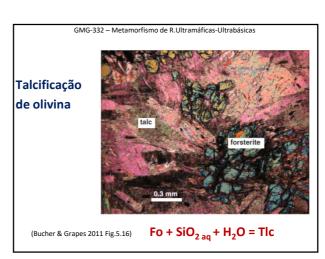
linha Fo-En
(verde escuro)
= peridotitos
anidros
(harzburgitos);

campo verde
= peridotitos
hidratados
(Srp, Brc, Tlc)

MgO

Fo
En
SiO<sub>2</sub>


GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas


#### Sistema MSH

Metassomatismo com aumento de SiO<sub>2</sub>:

composições "fogem" do triângulo Fo-En-H<sub>2</sub>O, em direção a Tlc e Ath = rochas com antofilita-talco e talco (alta a<sub>SiO2</sub>)

**Brucita**: complemento das serpentinas na substituição de Fo (dunito). Difícil de identificar (DRX). Não ocorre sob alta  $a_{\rm SiO2}$ .



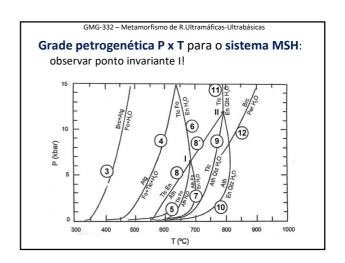




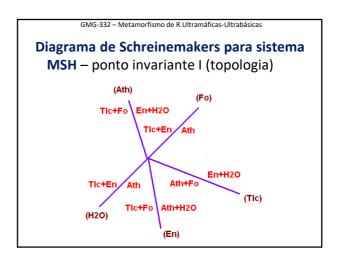
GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

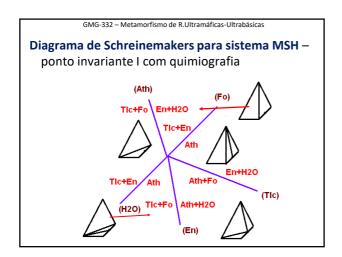
Sistema MSH: 3 componentes. Se  ${\rm H_2O}$  em excesso: 2 componentes (MS)

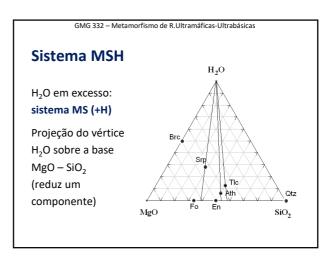
Variáveis T e P (representação bi-dimensional das curvas de equilíbrio):

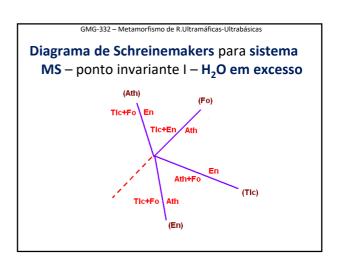

F = C - P + 2 (Regra de fases de Gibbs)

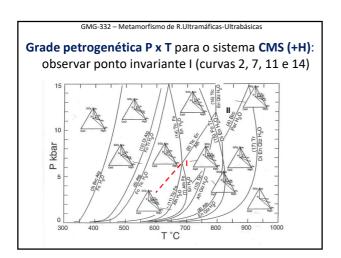
3 fases: F = 2 (campo divariante)

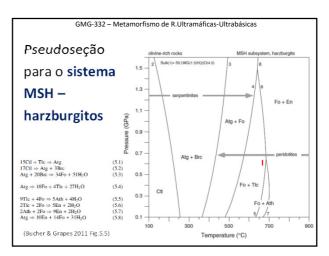

4 fases: F = 1 (curva univariante)


5 fases: F = 0 (ponto invariante)


GMG 332 - Metamorfismo de R.Ultramáficas-Ultrabásicas Reações no sistema MSH (1)15 CtI + Tlc ⇔ Atg (não indicada no diagrama) (2)17  $CtI \Leftrightarrow Atg + Brc$  (não indicada no diagrama) (3)Atg + 20 Brc  $\Leftrightarrow$  34 Fo + 51 H<sub>2</sub>O (4)Atg  $\Leftrightarrow$  18 Fo + 4 Tlc + 27 H<sub>2</sub>O (5) 9 Tlc + 4 Fo  $\Leftrightarrow$  5 Ath + 4 H<sub>2</sub>O 2 Tlc + 2 Fo  $\Leftrightarrow$  5 En +  $H_2O$ (6) (7)2 Ath + 2 Fo  $\Leftrightarrow$  9 En + H<sub>2</sub>O (8),(8')Tlc + 4 En ⇔ Ath Tlc ⇔ Ath + Qtz + H<sub>2</sub>O (9) Ath  $\Leftrightarrow$  Qtz + 7 En +  $H_2O$ (10)(11)Tlc  $\Leftrightarrow$  3 En + Qtz +  $H_2^{-}$ O (12) $Brc \Leftrightarrow Per + H_2O$ 





GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas Sistema MSH: ponto invariante I 5 Fases no ponto invariante: Fo, En, Tlc, Ath, H<sub>2</sub>O 5 reações: (Fo)  $\mathsf{Tlc} + \mathsf{4En} \Leftrightarrow \mathsf{Ath}$ (En) 9 Tlc + 4 Fo  $\Leftrightarrow$  5 Ath + 4 H<sub>2</sub>O 2 Ath + 2 Fo  $\Leftrightarrow$  9 En + H<sub>2</sub>O (TIc) (Ath) 2 Tlc + 2 Fo  $\Leftrightarrow$  5 En + H<sub>2</sub>O  $(H_2O)$ Tlc + 4 En ⇔ Ath ATENÇÃO! Sistema degenerado – colinearidade composicional entre En, Ath e Tlc – reações (Fo) e (H<sub>2</sub>O) se sobrepõem às respectivas pontas metaestáveis, em continuidade (180º)














GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

#### Sistema CMSH (CaO-MgO-SiO<sub>2</sub>-H<sub>2</sub>O)

Lherzolitos "simples" (Evans 1977, Evans & Trommsdorf 1974)

Os minerais do **sub-sistema MSH**, e mais:

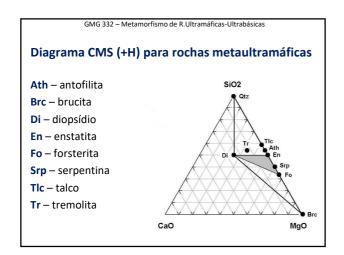
- Tremolita (Tr)  $Ca_2Mg_5Si_8O_{22}(OH)_2$
- **Diopsídio** (Di)  $CaMgSi_2O_6$

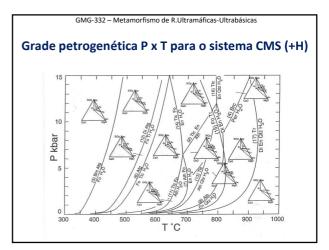
4 componentes: representação bi-dimensional = triângulo CaO-MgO-SiO<sub>2</sub> (projeção a partir do vêrtice H<sub>2</sub>O do tetraedro CMSH)

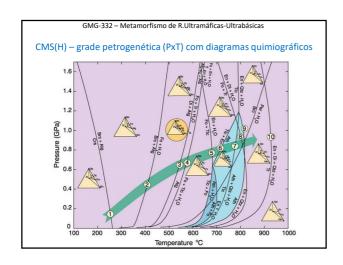
GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

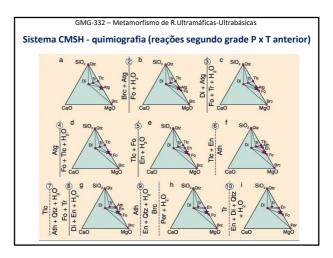
**Sistema CMSH**: 4 componentes. Representação bidimensional: H<sub>2</sub>O em excesso (C = 3)

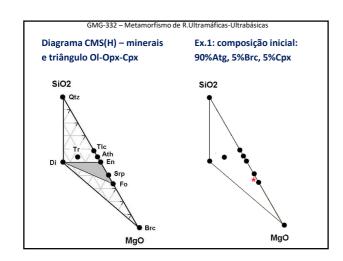
3 fases: F = 2 (campo divariante)

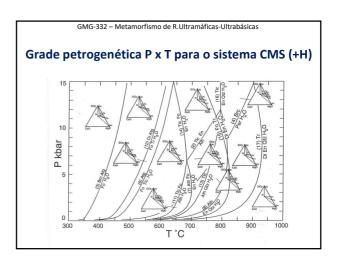

4 fases: F = 1 (curva univariante)

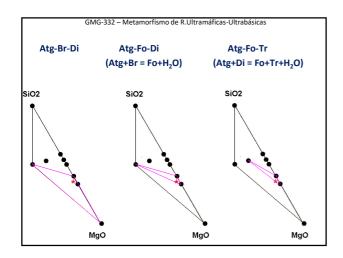

5 fases: F = 0 (ponto invariante)

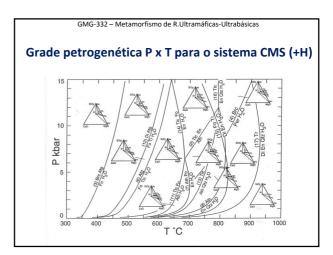

"Novidade" em relação a **MSH**: **Di** e **Tr** (reações 10 e 11) – as demais curvas permanecem.

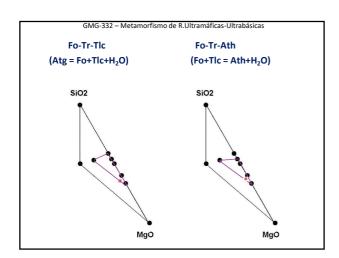

(10) Atg + 8 Di  $\Leftrightarrow$  18 Fo + 4 Tr + 27 H<sub>2</sub>O

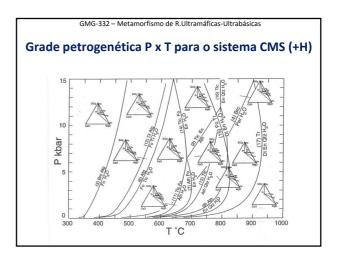

(11) Tr + Fo  $\Leftrightarrow$  5 En + 2 Di +  $H_2O$ 

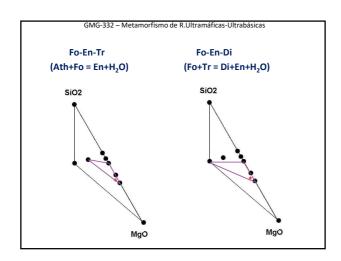


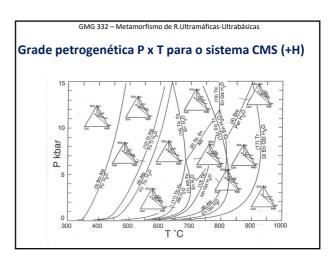



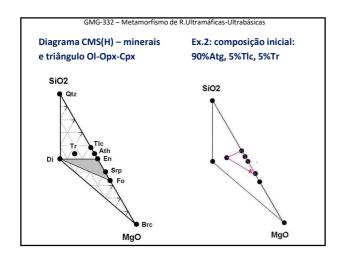



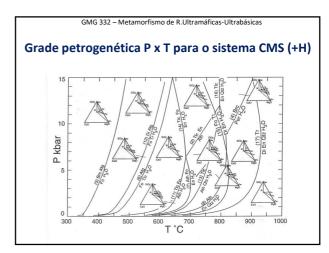



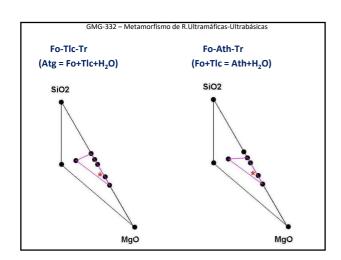



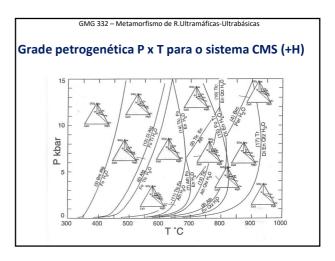



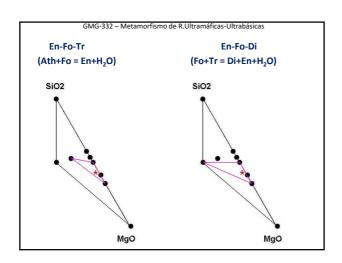



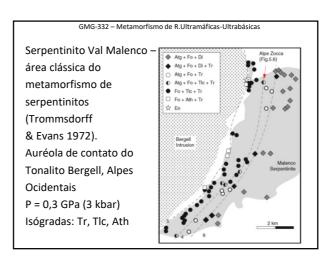



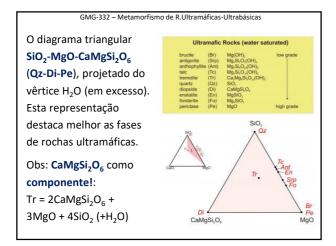



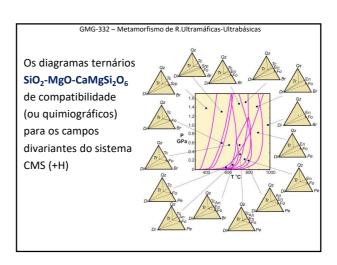



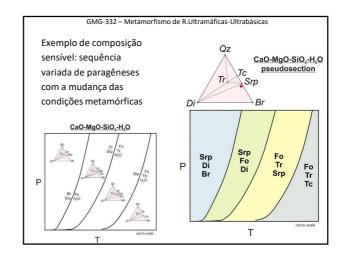












GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas Exemplo de composição CaO-MgO-SiO,-H,O pouco sensível: pequena variação das paragêneses Srp com a mudança das condições metamórficas. Pseudoseção: diagrama de fases para uma determinada composição específica (ponto vermelho) – Tc Tr só interessam as reações da grade petrogenética que esta composição "verá" no decorrer do metamorfismo.



Campo de estabilidade máxima das serpentinas: de ~ 500 a 600°C; variedade de mais alta T: antigorita;

Antofilita, Ath + Tlc: campos bem delimitados – definem bem condições de fácies anfibolito;

Diopsídio: com Atg nos serpentinitos a baixas T e Fo e En a altas T. Grau médio: substituída por tremolita (esta com campo extenso de estabilidade).

Alta T: paragêneses reproduzem as dos protólitos anidros (En+Fo+Di – composições ricas em Mg).

CMSH — campos de estabilidade dos minerais

1.5

diopside

B

CD

T(°C)

1000

GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas

# CMASH (CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O)

Lherzolitos e komatiítos (simplificado)

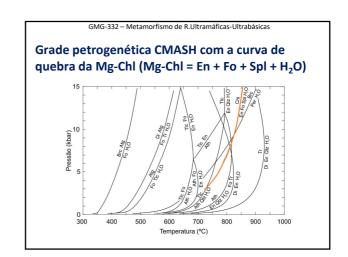
Os minerais de MSH e CMS (+H), e mais:

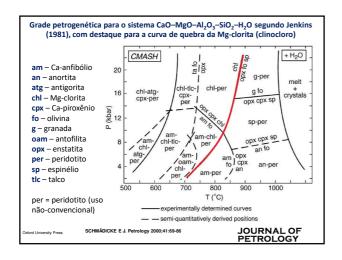
Chl - Clorita - (Mg,Fe,Mn,Al)<sub>6</sub>[(Si,Al)<sub>4</sub>O<sub>10</sub>](OH)<sub>4</sub>

Spl - Espinélio - MgAl<sub>2</sub>O<sub>4</sub>

Reações adicionais em CMASH:

(12) Chl  $\Leftrightarrow$  Fo + En + Spl + H<sub>2</sub>O


Normalmente, considera-se todo o Al contido nas fases aluminosas clorita (clinocloro) ou espinélio (a altas T), e não em solução sólida nas demais fases (anfibólios!)


GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas

Na fácies anfibolito superior, transicional para fácies granulito, Mg-clorita é consumida pela reação:

## $Mg-Chl \Leftrightarrow Fo + En + Spl + H_2O$

Como resultado, formam-se rochas com espinélio – olivina – enstatita. O conteúdo em Al da Mg-clorita é o máximo possível no momento do consumo, e também quando reconstituída imediatamente após o pico metamórfico (retrometamorfismo).







### NCMASH (Na<sub>2</sub>O-CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O)

Lherzolitos e komatiítos – mais próximo da realidade.

Os minerais de MSH, CMSH, CMASH e mais:

Mg-Hbl = Mg-Hornblenda (pargasítica):

NaCa<sub>2</sub>Mg<sub>4</sub>Al[Al<sub>2</sub>Si<sub>6</sub>]O<sub>22</sub>(OH)<sub>2</sub>

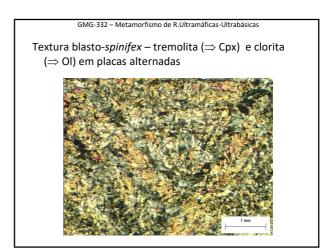
Reações contínuas, envolvendo séries de soluções sólidas (anfibólios, clorita, espinélios).

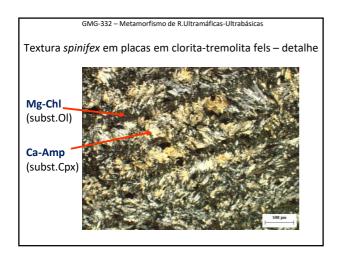
A paragênese característica de baixo-médio grau é clorita-tremolita

GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas

Substituições catiônicas em anfibólios cálcicos com aumento do grau metamórfico: maiores teores em Al e Na

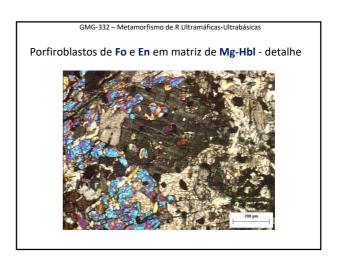
(ATENÇÃO: Ca permanece igual!)

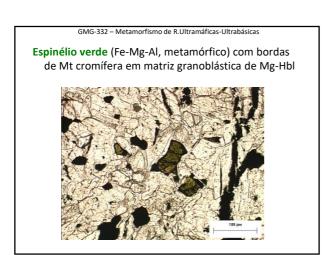

Tr - Tremolita: Ca<sub>2</sub>Mg<sub>5</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub>


Substituição tschermakítica:  $Mg^{VI}Si^{IV} = AI^{VI}AI^{IV}$ Substituição edenítica:  $\Box^ASi^{IV} = Na^AAI^{IV}$ 

Somando ambas =

Mg-Hornblenda - NaCa<sub>2</sub>Mg<sub>4</sub>Al[Al<sub>2</sub>Si<sub>6</sub>]O<sub>22</sub>(OH)<sub>2</sub>








Spl – Fo – En – Mg-Hbl fels nodoso - as nódoas são "glomeroporfiroblastos" de Fo e En









Metamorfismo de rochas ultramáficas sob condições de fluidos mistos — H<sub>2</sub>O + CO<sub>2</sub>

Sistema MS-CH

Fase adicional: Mgs - Magnesita — MgCO<sub>3</sub>

No sistema CMS-CH (não será discutido): fases adicionais

Cal - Calcita — CaCO<sub>3</sub>

Do - Dolomita — CaMg(CO<sub>3</sub>)<sub>2</sub>

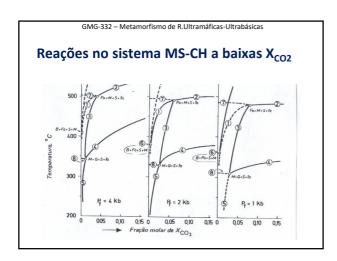
### Exemplos de reações no sistema MS-CH:

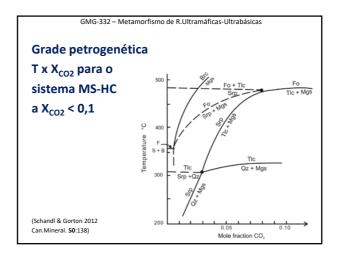
- 1)  $1Srp + 2Qtz \Leftrightarrow Tlc + H_2O$
- 2) 1En + 2Mgs  $\Leftrightarrow$  2Fo + 2CO<sub>2</sub>
- 3) 1 Tlc + 5Mgs  $\Leftrightarrow$  4Fo + 1H<sub>2</sub>O + 5CO<sub>2</sub>
- 4) Mgs +  $H_2O \Leftrightarrow Br + CO_2$
- 5)  $2Srp + CO_2 \Leftrightarrow 1Tlc + 3Mgs + H_2O$
- 6) Tlc + En  $\Leftrightarrow$  Ath

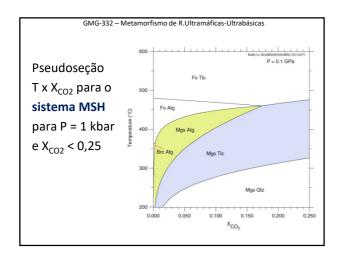
GMG-332 – Metamorfismo de R.Ultramáficas-Ultrabásicas

Principais consequências da adição de CO<sub>2</sub> ao sistema:

 Campo de estabilidade das serpentinas reduzido (apenas a baixa X<sub>CO2</sub>)


### $2Srp + CO_2 \Leftrightarrow 1Tlc + 3Mgs + H_2O$


- Mgs se torna fase comum em fácies xisto-verde, sob condições de X<sub>CO2</sub> não demasiadamente altas ou baixas:
- A altas X<sub>CO2</sub>, formam-se os sagvanditos rochas com En e Mgs


Diagrama T x X<sub>CO2</sub>
ilustrando os padrões
das curvas de
equilíbrio das reações
com fase fluida
mista.

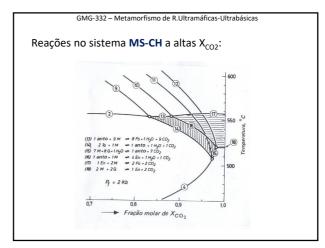

A reação (6) – tipo
sólido-sólido – será
uma reta horizontal
(a T fixa) neste
diagrama

Diagrama T x X<sub>CO2</sub>
para reações em
rochas ultramáficas









### **Bibliografia**

- Bucher, K.; Grapes, R. 2011 Petrogenesis of Metamorphic Rocks (8th Ed).
   Springer . Cap.5 p.191-224
- Bucher, K.; Frey, M. 2002 Petrogenesis of Metamorphic Rocks (7th Ed).
   Springer Verlag. Cap.5
- Evans, B.W. 1977 Metamorphism of alpine peridotite and serpentinite.
   Ann.Rev.Earth Planet.Sci. 5: 397-447
- Evans, B.W.; Trommsdorff, V. 1970 Regional metamorphism of ultramafic rocks in the Central Alps: parageneses in the system CaO MgO SiO<sub>2</sub> H<sub>2</sub>O. Schweiz.Mineral.Petrogr.Mitt. **50**: 481-492
- Schmädicke, E. 2000 Phase relations in peridotitic and pyroxenitic rocks in the model systems CMASH and NCMASH. Journal of Petrology 41: 69-86
- Wicks,F.J.; Whittaker, E.J.W. 1977 Serpentine textures and serpentinization. Can.Mineral. 15: 459-488

GMG-332 - Metamorfismo de R.Ultramáficas-Ultrabásicas