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MOLECULAR DYNAMICS



Statistical Physics

* Molecular simulations generate information at
microscopic level.

*  How to conect this microscopic information (atomic
positions and velocities) into macroscopic observable
(temperature, pressure, heat capacity ...) ?!



Procedure

» Goal: explore the macroscopic properties of a
system through microscopic simulations

- Path: through Statistical mechanics

rigorous mathematical approach that relates
macroscopic properties with the distribution and
motion of atoms and molecules of the N-body
system.

Explore both thermodynamic and or kinetic phenomena



Thermodynamics, Kinetic and Dynamics

Thermodynamics describes the driving force for chemical processes

S

State 1 State 2 State 3

Kinetics describes the mechanism for the chemical process

Local
minimum
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Microscopic state and ensemble

» Microscopic state: defined by the atomic
positions (r) and momenta (p).

Phase space: r and p coordinates in a
multidimensional space.




Please, could you be more clear ?!

SURE !

Let me take the most simple case possible:

The 1-D HARMONIC OSCILATOR



Harmonic oscilator - phase space
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Harmonic oscilator - phase space
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Now, for us :

we have more than
1023 particles,

we would have a
phase space of

6x1043 dimensions !!!



Ensembles

- Ensemble: is a collection of all possible
systems which have different microscopic
states BUT have AN IDENTICAL
macroscopic or thermodynamic state.

¢ Each microscopic state has some probability.

¢ Distribution function describes everything.



Ensembles

Name All states of’ Probability distribution | Schematic

Microcanonical | given EVN 7=t © @
Q2 OO O

Canonical all energies Ey=Llp P&

(TVN) (E;)=5e ti tﬂi

Isothermal-isobaric | all energies and | E.V 1 o~ BCE+PT) ¥ j
(TPN) volumes (E:,1) = -

Grand-canonical | all energies and 2(E,N;)=Le - BB +uby) |6 ﬁgej
(TVp) molecule numbers =




SO WHAT ?!

Phase space, Ensemble, Microcanonical, Canonical,
bla bla bla ...

Where is the relation with bridges, buildings, cars, real life ?

Experiment Molecular Simulation

Macroscopic Microscopic



PAY ATTENTION

Next:

The most important slides of this course !



Average in an ensemble

PROBABILITY (define the conditions of the systems)

\
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OBSERVABLE: physical property that we are
interested in ...




Time average

= lim ﬁ}D(t )dt'.

[ — mt

OBSERVABLE: physical property that we are
interested in ...



The most important slide of this course

Ensemble average = Time average

A= lim [ A

Lsim —© tsim to



Remember !!!

Ensemble average = Time average



Molecular simulations

Molecular simulation provides the way to:
1) Calculate time averages of an observable

2) Visit the most important points in the phase space.

Py Knowing the phase space
ES and time averages, one
knows the macroscopic
properties.
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Figure 5.1: Motion of a point in a two-dimensional phase space. The diagram only maps
the temporal eveolution of two coordinates, rq, (i) and pz, (f), out of the 6§ V coordinates,
rz, (1), reg (&), --oy Fop (E), Pay (), P2 (1), ...y Pz (t). The arrows indicate the continuous
increase of time.



Equilibrium properties

Nstep Etotal Upot  Virial Temp

kJ/mol kJ/mol kJ/mol K
20 -4.8215 -6.0300 2.0563 96.90
40 -4.8216 -5.9691 1.1320 92.01
60 -4.8216 -5.9057 -.0485 86.93
80 -4.8216 -5.9630 8602 91.52
100 -4.8218 -5.9696 .9501 92.04

Temperature: 92.3979 £+ 3.2927 [K]

Potential: -5.9739 + 0409 [kJ /mol]

Total Energy: -4.8215 £ 0017 [kJ/mol]
Translational Energy: 1.1523 £ 0411 [kJ/mol]
Virial: 1.0893 £ 6904 [kJ/mol]

Pressure: 143.1503 £ 71.6967 [bar]



Stochastic x Deterministic

Stochastic - . Deterministic
Metropolis Force-biased Brownian Langevin Molecular

Monte Carlo Monte Carlo Dynamics Dynamics Dynamics



Molecular Dynamics

3) Dynamics
How to solve the classical equations of motion for all particles in
different conditions (Temperature, Pressure and any other
themodynamical parameters) ?.

Solution:
Given by Sir Isaac Newton over 300 years ago !!

d’t
dt’

We have to solve the Newton’s motion equation in time
for each of the ith particle in the system.

m

=-VV(, Ty )



Molecular Dynamics

Newton’s equations

of motion o—
O
d°T,
e d =V V(...




Molecular Dynamics

The properties can be obtained by sampling the system at a
given ensemble (NPT, NVT, NVE, gran-canonical, ...)

At = dePNVT A(T) (= -

o BH(T)
pNVT(F): where< H=K+V

Z NVT

Ergodic o 1 ptertin
Hypothesis <A> NVT ts!r:r_rlor t, A(T)d’C
SIm



Molecular Dynamics

b)

What is molecular dynamics ?

Computer simulation technique that allows one to predict the time
evolution of a system of interaction particles (atoms, molecules,
granules, etc.)

Steps:

Set the system of interest:

Initial conditions
(initial positions and velocities of all particles)

Interatomic potential
(to describe the forces between the particles)



Schematie diagram of a basic MD code

Define initial positions and velocities ©(t,)and v,(t,)

!

Calculate forces at current time t:

F, =-V.U(.5, 5,1 )
Solve equations of motion for all particles in
the system over a short timestep At.

;*;'_ (fn) — ‘:r (‘rn+l ) 1;1' ('IF.'I)_} 1;1' ("rn+l )

[

=1, + At

|

Calculate desired physical quantities, write .
data to trajectory file

mn+1

}

Write to the disc final atomic configuration & finish




Piece of the code

Program MolDyn

I This a very simple Molecular Dynamics code
call init

10 call force
call integrator
time = time + dt
call sample
If (time.lt.maxtime) goto 10

stop
end



Building your own code

O Subroutines

Init: to initialize the system to be simulated
Force: to calculate the forces
Integrator: to solve numerically the equation of motion

O O O O

Sample: to analyse and accumulate the trajectory

O Variables

o time_= instant of time of the simulation
dt = time step to solve the equations of motion
maxtime = maximum time wanted




Limitations of the MD technique (I)

1) Classical description of interatomic interaction

« Electrons are not present explicitly

(Potential energy surface)

 PES is approximated by an analytic function that
gives the potential energy U as a function of
coordinates.

« Forces comes from the gradient of a PES.



Limitations of the MD technique (II)

2) In classical MD the Schrodinger equation for nuclei is
replaced with the Newton equation.

How good is this approximation ?

Quantum effects are significant when the de Broglie
wavelength A is larger than the inter-particle distance.

( 27[712 \1/2
\MkBT)

;i’dB —




2. Classical deseription of atomic motion (continued)

For the thermal motion we can use the thermal de Broghe wavelength:

fkm = h = For T=300 K we have Ay =1 Atorallatom
\/2 ﬂf””rf;;!r Ay, = 0.19 A for a Siatom
Ay = 0.16 A for an Ar atom
Ay = 0.07 A for a Au atom

Typical interatomic spacing in solid-state materials 1s d ~ 1-3 A, Therefore:

» The wave nature of electron dommates over the particle behavior, electrons can not be
considered within classical approximation.

» All atoms. except for the lightest ones such as H. He, Ne, can be considered as “pomt”
particles at suthiciently high temperature (d => A) and classical mechanics can be used to
describe therr motion,



Interatomic interactions

prwmuoa-wa-a-wwwoﬂ»w Ot O o O 00 O 0 0 0
=0 0 0 D 0 0 D 20 ) Do ot D - ) 0D
s *

-0 4 Rled
Q=0 -
] -2
[ o=
el ; -l
[=od O o=

Iaina’] +-0 A-a

O o O o o Orie O Qi e (e Qi Oreiie D (e i (e i i @ e 0
=0 ) 0 ) Al kel 0 ) ) ] 40 ) SO e e el el =l e ) e
O O+ O o O 8% D o O o OF 09 O 0 Ok ok O 03 O o5
0 4 o 0

Cr o

e =0

QD=

-+

O 0

-0

on-

o D wp 0 O D A0 ey D ety D 0 0 0 D D 0 e e oD
Fig. 2.2 Le Sage's picture of atiraction between particles of matter [249],




What does atomistic modeling involve?

O Atomic scale modelling of materials (interaction between atoms)

O ENERGY can be calculated by:

= quantum mechanical calculation of energy as a function of
structure.

m effective potentials (analytical functions of the energy as a
function of geometry which can be “parameterized” using
experimental or quantum mechanics data

Lennard-Jones, Morse, etc. (physicists), embedded-atom method, etc.
(materials scientists), force fields (chemists),reactive potentials,...




First principles calculations

Numerically solving Schrodinger’s equation:

Density Functional Theory (DFT)

Pseudopotentials

Quantum-Espresso, SIESTA, VASP and Gaussian

CompOS|t|On StrUCtureS Kohn - Nobel If’rize 99
= Properties

e T

O : Hy = E_y Thermodynamics
& o Lattice Parameters
i O ’ ° — —> Elastic constants
O o © Electronic Structure

Kinetics



Tailoring interatomic potentials

Strategy = Assumption: DFT accuracy is OK
= Effective potential fitted to DFT

* Improve functional form for effective potential

Goal = Construct effective potential with “DFT accuracy”

= More accurate and less computationally expensive
EDIP (Environment Dependent Interatomic Potential) (Justo et al. - PRB 97)
Tangney-Scandolo Potential (MgO and SiO,) (Tangney & Scandolo JCP 03)
Potentials Guest-Frameworks (Miranda & Scandolo)

Potentials for nanostructure systems (Miranda & Ceder)



Luke, use the mass times
acceleration! or the Hellmann
- Feynman theorem

© Original Artist
=3 Reproduction rights obtainable from
Wi CartoonStockoom




Lennard-Jones:
A simple two-parameter form

¢ ¢ is unit of energy scale
(f4=T2) c is unit of length
A F=0, Equilibrium When expressing Temperature,
Pressure and Density in
- | + Attractive cut-off renormalized units all LJ
- Repulsive / systems are identical
&
Temperature. —
kB
&
Pressure: —
O
1

Density. —;
o



Part 2 - Forces

subroutine force
do 101 = 1,N-1
do 20 j = i+1,N
xij = x(i) - x(j)
12 = xij**2 + yij**2 + zij**2
if (r2.gt.cutoff) goto 20
urep = sigma**12/r2**6
uatt = sigma™**6/r2%*3
uij = 4. *epsilon*®(urep - uatt)
wij = -24 *epsilon*(2.*urep - uatt) |
upot = upot + uij
virial = virial + uij
£(i) = (i) - xij*wij/r2
£(G5) = £(3) + xij*wij/r2
20 continue
10 continue
return
end




Lennard-Jones potential

The L-J potential is approximate. The form of the
repulsion term has no theoretical justification;

The repulsion force should depend
EXPONENTIALLY on the distance,

But the repulsion term of the L-]J formula is more
convenient due to the ease and efficiency of
computing ri2 as the square of r®.

The attractive long-range potential, however, is
derived from DISPERSION interactions (London).



Potentials for complex molecules

Potential Energy
Empirical Force Field (e.g., CHARMM, OPLS, Amber, (MMFF))

.-VW\-. Bond Dihedral

.%Angle

@—@® vww ©Q—@ Ccoulombic

Improper
dihedral




Potentials for complex molecules
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Potentials tfor “stmple” molecules
but complex systems

SPC.SPC/E,TIP3P

q(H) q(H)

4-site

TIP4P,BE

qtlp) q(H) .
o ° S-site

-
LY
&
b1
[
L]
.
"
"
P
r
"
ks
&

[ [ ]
gtlp) qiH)
ST2




Lennard-Jones potential

The L-J potential is approximate. The form of the
repulsion term has no theoretical justification;

the repulsion force should depend EXPONENTIALLY on
the distance,

but the repulsion term of the L-J formula is more

convenient due to the ease and efficiency of computing
r12 as the square of r®.

The attractive long-range potential, however,
IS derived from DISPERSION interactions (London).



Potentials for complex molecules

Empirical Potential Energy Function
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Tailoring interatomic potentials

Strategy = Assumption: DFT accuracy is OK
= Effective potential fitted to DFT

= Improve functional form for effective potential

Goal = Construct effective potential with “DFT accuracy”

= More accurate and less computationally expensive
EDIP (Environment Dependent Interatomic Potential) (Justo et al. - PRB 97)
Tangney-Scandolo Potential (MgO and SiO,) (Tangney & Scandolo JCP 03)
Potentials Guest-Frameworks (Miranda & Scandolo)

Potentials for nanostructure systems (Miranda & Ceder)



Schematie diagram of a basic MD code

Define initial positions and velocities ©(t,)and v,(t,)

!

Calculate fogeeg gt gurrent time t_:
. +*
].j j—— I [ |-. j._r"'-_----. ["h )

Solve equations of motion for all particles in
the system over a short timestep At.
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=1, + At

|

Calculate desired physical quantities, write .
data to trajectory file

mn+1

}

Write to the disc final atomic configuration & finish




