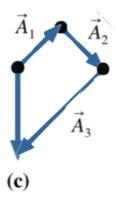
DEPARTAMENTO DE FÍSICA APLICADA INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO

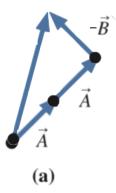
MECÂNICA (4310192) - 2020/2 INSTITUTO DE GEOCIÊNCIAS RESOLUÇÃO DA LISTA DE EXERCÍCIOS 1

22 de Setembro de 2020

Professor: Gustavo Paganini Canal Monitor: Fábio Camilo de Souza 1.

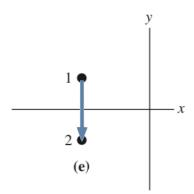


2.

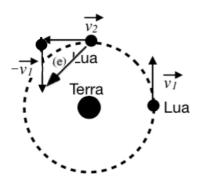


- 3. No intervalo 0 < t < 5, a partícula segue com aceleração constante $a = 5 \, \text{m/s}^2$ e, portanto, a velocidade cresce linearmente, de acordo com v(t) = 5t, assumindo v(0) = 0. No intervalo 5 < t < 10, a partícula segue com aceleração constante $a = -5 \, \text{m/s}^2$ e, portanto, a velocidade decresce linearmente com o tempo de acordo com v(t) = -5t + 25, sendo $v(5) = 25 \, \text{m/s}$. Dessa forma, o gráfico 1 representa a velocidade da partícula e a única opção verdadeira é a afirmação (e).
- 4. a) Verdadeiro, pois a velocidade é positiva.
- b) Verdadeiro, pois é onde a velocidade inverte o sentido, indo de positiva para negativa, ou vice-versa.
- c) e d) são falsas, pois $\vec{a}_1 = \vec{a}_4 = 0$

5) A velocidade média é o vetor que leva de 1 até 2. Portanto, a opção (e) é a opção correta



6)



- 7) No intervalo 0 < t < 5, a velocidade é constante, $v(t) = 4 \, \text{m/s}$, partindo de $x(0) = -10 \, \text{m}$. No intervalo 5 < t < 10, a velocidade também é constante, $v(t) = -2 \, \text{m/s}$, portanto a posição passa a diminir linearmente com o tempo. Dessa forma, a alternativa (b) é a alternativa correta.
- 8) As forças atuantes no corpo são a gravidade e a normal. A aceleração depende unicamente das forças atuantes no corpo, independente da velocidade inicial. Como a gravidade exerce uma força constante para baixo, a normal exerce uma força constante perpendicular a superfície, de valor também constante. As componentes perpendiculares à superfície se cancelam, e sobra uma componente paralela à superfície, que causará uma aceleração constante na bola de valor negativo. Portanto, a alternativa (d) é a alternativa correta.
- 9) As componentes x e y são constantes apenas durante o intervalo 2 < t < 3.

- 10) Como o tempo de subida e descida dependem unicamente da velocidade inicial na direção vertical, o míssil que subir a menor altura retornará ao nível no mar mais cedo, independente da velocidade horizontal de lançamento. Portanto, a alternativa (b) é a alternativa correta.
- 11) a) O velor velocidade é calculado integrando o vetor da aceleração:

$$\vec{\boldsymbol{v}}(t) = \int \vec{\boldsymbol{a}}(t) dt$$

$$\vec{\boldsymbol{v}}(t) = \int 4\hat{\boldsymbol{i}} dt$$

$$\vec{\boldsymbol{v}}(t) = 4t\hat{\boldsymbol{i}} + \vec{\boldsymbol{A}}$$

onde \vec{A} é uma constante.

Sendo

$$\vec{v}_0 = 20\hat{i}$$

$$\vec{v}(0) = 0\hat{i} + \vec{A} = \vec{v}_0$$

$$\vec{A} = \vec{v}_0$$

Portanto: $\vec{v}(t) = (4t + 20)\hat{i} - 15\hat{j}$

b)

$$\vec{\boldsymbol{v}}(5) = (4 \times 5 + 20)\,\hat{\boldsymbol{i}} - 15\,\hat{\boldsymbol{j}}$$

Portanto: $\vec{\boldsymbol{v}}(5) = 40\,\hat{\boldsymbol{i}} - 15\,\hat{\boldsymbol{j}} \, e \, |\vec{\boldsymbol{v}}(5)| = \sqrt{40^2 + (-15)^2} = 42,7 \, \text{m/s}.$

c)

$$\vec{r}(t) = \int \vec{v}(t) dt$$

$$\vec{r}(t) = \int \left[(4t + 20)\hat{i} - 15\hat{j} \right] dt$$

$$\vec{r}(t) = \left(4\frac{t^2}{2} + 20t\right)\hat{i} - 15t\hat{j} + \vec{B}$$

onde \vec{B} é uma constante, como a partícula sai da origem, $\vec{r}(0) = 0$, temos $\vec{B} = 0$. Portanto: $\vec{r}(t) = (2t^2 + 20t)\hat{i} - 15t\hat{j}$. A velocidade média entre t = 0 e t = 5 s:

$$\vec{v}_m = \frac{\vec{r}(5) - \vec{r}(0)}{5 - 0} = \frac{(2 \times 5^2 + 20 \times 5)\hat{i} - 15 \times 5\hat{j}}{5} = 30\hat{i} - 15\hat{j}$$

12) Primeiramente, vamos encontrar as funções que descrevem os vetores aceleração, velocidade e posição. O vetor aceleração é dado pela aceleração gravitacional:

$$\vec{a} = -g\,\hat{j} = -9.8\,\hat{j}$$

A velocidade inicial é dada pela magnitude, 20 m/s. decompondo em relação ao ângulo de 30° com a horizontal:

$$\vec{v}_0 = 20\cos(30^\circ)\hat{i} + 20\sin(30^\circ)\hat{j} = 17, 3\hat{i} + 10\hat{j}$$

Então,

$$\vec{v}(t) = \int \vec{a}(t)dt$$

$$\vec{v}(t) = \int -9.8\hat{j}dt$$

$$\vec{v}(t) = -9.8t\hat{j} + \vec{A}$$

$$\vec{v}(0) = \vec{A} = 17.3\hat{i} + 10\hat{j} = \vec{v}_0$$

Portanto: $\vec{v}(t) = +17,3\hat{i} + (10 - 9,8t)\hat{j}$ m/s.

A posição inicial é dada pela altura do prédio $\vec{r}_0 = 45\hat{j}$ m, o vetor posição é encontrado, seguindo:

$$\vec{r}(t) = \int \vec{v}(t)dt$$

$$\vec{r}(t) = +17.3t\hat{i} + (10t - 4.9t^2)\hat{j} + \vec{B}$$

$$\vec{r}(0) = \vec{B} = \vec{r}_0 = 45\hat{j}$$

Portanto: $\vec{r}(t) = +17,3t\hat{i} + (45+10t-4,9t^2)\hat{j}$ m.

a) A pedra atige o solo quando a componente \hat{j} do vetor posição for igual a 0, e permanece em vôo, desde t=0 até atingir o solo: 45+10t-4, $9t^2=0$. Essa equação apresenta dois valores possíveis para t, t=-2, 2 e t=+4, 2. Pela construção do problema, a pedra naturalmente atinge o solo em tempos positivos. Portanto, t=4, 2 s.

- b) Basta aplicar o tempo que atinge o solo na função que descreve a velocidade: $\vec{v}(4,2) = +17,3\hat{i} 31.4\hat{j}$ m/s e $|\vec{v}(4,2)| = \sqrt{17,3^2 + (-31,4)^2} = 35,8$ m/s. O ângulo é dado pelo arco, cuja tangente é a razão entre as componentes \hat{j} e \hat{i} , ou seja, arctan $(-31,4/17,3) = -61^\circ$. c) Basta aplicar o tempo que atinge o solo na função que descreve a posição: $\vec{r}(4.2) = 73,0\hat{i} + 0\hat{j} = 73\hat{i}$ m.
- 13) Construir as equações do sistema em coordenadas cartesianas é a maneira mais fácil de trabalhar este exercício. É dado que $\dot{r}=4$ m/s, $\dot{\theta}=2$ rad/s. Partindo da origem do sistema, r(0)=0, $\theta(0)=0$, podemos então encontrar as funções da posição radial e angular:

$$r(t) = 4t$$

$$\theta(t) = 2t$$

Em coordenadas cartesianas:

$$x(t) = r(t)\cos(\theta(t))$$

$$y(t) = r(t)\sin(\theta(t))$$

Substituindo as funções acima:

$$x(t) = 4t\cos(2t)$$

$$y(t) = 4t\sin(2t)$$

Derivando para encontrar as componentes da velocidade (atenção à regra da cadeia, e à regra do produto):

$$\dot{x}(t) = +4\cos(2t) - 8t\sin(2t)$$

$$\dot{y}(t) = +4\sin(2t) + 8t\cos(2t)$$

Derivando novamente para encontrar as componentes da aceleração:

$$\ddot{x}(t) = -16\sin(2t) - 16t\cos(2t)$$

$$\ddot{y}(t) = +16\cos(2t) - 16t\sin(2t)$$

A partícula está a 3 metros da orígem $r(t) = 4t = 3 \Rightarrow t = 3/4$.

Substitua esse tempo nas expressões adequadas acima para encontrar as resposta.

a)
$$\dot{x}(3/4) = -5.7$$
 e $\dot{y}(3/4) = +4.1$; e $v(3/4) = \sqrt{(-5.7)^2 + (+4.1)^2} = 7.2$ m/s.

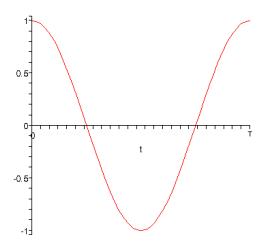
b)
$$\ddot{x}(3/4) = -16.8$$
 e $\ddot{y}(3/4) = -16.8$; e $a = \sqrt{(-16.8)^2 + (-16.8)^2} = 20$ m/s ²

14) a) Temos a função para aceleração:

$$a(t) = \begin{cases} (a_m/2)[1 - \cos(2\pi t/T)] & 0 \le t \le T \\ -(a_m/2)[1 - \cos(2\pi t/T)] & T \le t \le 2T \end{cases}$$

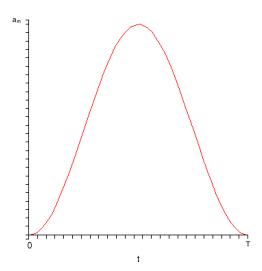
Analisando as duas partes da expressão da aceleração, é fácil ver que durante o intervalo $0 \le t \le 2T$, dado a periodicidade da função cosseno, o gráfico do período $0 \le t \le T$ é igual ao do período $T \le t \le 2T$, apenas com sinal invertido. A função $\cos(2\pi t/T)$, em t=0 temos $\cos(0)=+1$, a função diminue, cruza o 0 em t=T/4, tem o mínimo em t=T/2, $\cos(\pi)=-1$, cruza o 0 novamente em t=3T/4 voltando o valor máximo em t=T, com $\cos(2\pi)=+1$, se comportando como:

$$\cos(2\pi t/T)$$

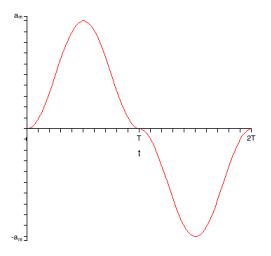


É fácil portanto ver o gráfico para $0 \le t \le T$ é, (se inverte os valores do gráfico anterior e se soma 1):

$$(a_m/2)[1-\cos(2\pi t/T)]$$



Prolongando para o período $T \le t \le 2T$, obtemos então:



Também é possível plotar determinando os valores:

$$a(t) = \begin{cases} (a_m/2)[1 - \cos(2\pi t/T)] & 0 \le t \le T \\ -(a_m/2)[1 - \cos(2\pi t/T)] & T \le t \le 2T \end{cases}$$

$$a(0) = (a_m/2)[1 - \cos(0)] = 0$$

$$a(T/2) = (a_m/2)[1 - \cos(\pi)] = a_m$$

$$a(T) = (a_m/2)[1 - \cos(2\pi)] = 0$$

$$a(3T/2) = (a_m/2)[1 - \cos(3\pi)] = -a_m$$

$$a(T/2) = (a_m/2)[1 - \cos(4\pi)] = 0$$

Os máximos e mínimos são encontrados igualando a primeira derivada a 0, $\frac{da(t)}{dt} = 0$:

$$\frac{da(t)}{dt} = \begin{cases} (a_m \pi/T)[\sin(2\pi t/T)] & 0 \le t \le T \\ -(a_m \pi/T)[\sin(2\pi t/T)] & T \le t \le 2T \end{cases}$$

Onde $\frac{da(t)}{dt}=0 \Rightarrow t=nT/2$, com n=0,1,2,3,4. É preciso tratar o ponto onde n=2 com atenção por ser um ponto de conexão de cada região de domínio da função. Os pontos de máximo possuem segunda derivada menor que 0, $\frac{d^2a(t)}{dt^2}<0 \Rightarrow MAX$, e os pontos de mínimo possuem segunda derivada é maior que 0 $\frac{d^2a(t)}{dt^2}>0 \Rightarrow MIN$.

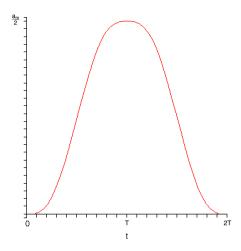
$$\frac{d^2 a(t)}{dt^2} = \begin{cases} (a_m 2\pi^2 / T^2) [\cos(2\pi t / T)] & 0 \le t \le T \\ -(a_m 2\pi^2 / T^2) [\cos(2\pi t / T)] & T \le t \le 2T \end{cases}$$

É preciso aplicar este resultado nos pontos com t=nT/2, para identificar os máximos e mínimos, como no gráfico traçado (com atenção ao ponto de conexão onde n=2. Também são encontrados os pontos de inflexão, onde $\frac{d^2a(t)}{dt^2}=0 \Rightarrow t=(2n+1)T/4$, com n=0,1,2,3. A velocidade, é encontrado integrando a aceleração, conectando no ponto de t=T corretamente:

$$v(t) = \int a(t)dt$$

$$v(t) = \begin{cases} (a_m/2)[t - (T/2\pi)\sin(2\pi t/T)] & 0 \le t \le T \\ -(a_m/2)[t - 2 - (T/2\pi)\sin(2\pi t/T)] & T \le t \le 2T \end{cases}$$

Analogamente ao gráfico de a(t), o gráfico de v(t) é encontrado:



- b) A velocidade escalar máximo é encontrada na condição onde dv(t)/dt = a(t) = 0, com valor máximo para v(t), no intervalo, $0 \le t \le 2T$, vendo $v_{max} = v(T) = a_m/2$.
- c) A posição em função do tempo é dada por:

$$y(t) = \int v(t)dt$$

$$y(t) = \begin{cases} (a_m/2) \left[\frac{t^2}{2} + \frac{T^2}{4\pi^2} \cos(2\pi t/T) - \frac{T^2}{4\pi^2} \right] & 0 \le t \le T \\ -(a_m/2) \left[\frac{t^2}{2} - 2t + \frac{T^2}{4\pi^2} \cos(2\pi t/T) + 1 - \frac{T^2}{4\pi^2} \right] & T \le t \le 2T \end{cases}$$

15) A velocidade inicial é dada por $\vec{v}(0) = v_0 \cos \theta \hat{i} + v_0 \sin \theta \hat{j}$ A aceleração é constante valendo $\vec{a}(t) = -g\hat{j}$.

Integrando a aceleração, encontramos a velocidade em função do tempo, é:

$$\vec{\boldsymbol{v}}(t) = v_0 \cos \theta \,\hat{\boldsymbol{i}} + [v_0 \sin \theta - g \, t] \,\hat{\boldsymbol{j}}$$

Integrando a velocidade, encontramos a posição em função do tempo, é:

$$\vec{\boldsymbol{r}}(t) = v_0 \cos \theta \, t \, \hat{\boldsymbol{i}} + [v_0 \sin \theta \, t - g \, t^2 / 2] \, \hat{\boldsymbol{j}}$$

tomando a orígem como ponto de lançamento.

A rampa acompanha o conjunto de posições onde $\vec{r}_{rampa} = D\cos\phi\hat{i} - D\sin\phi\hat{j}$, onde D é o módulo da distância de qualquer ponto da rampa até a orígem.

O ângulo de lançamento, θ , cujo o alcance seja máximo, é o valor de θ correspondente para que tenhamos o valor máximo de D, com $\vec{r} = \vec{r}_{rampa}$.

O ponto de impacto e o tempo correspondente para o impacto é dado por $\vec{r}(t) = \vec{r}_{rampa}$

$$v_0 \cos \theta t \hat{\boldsymbol{i}} + [v_0 t \sin \theta - g t^2 / 2] \hat{\boldsymbol{j}} = D \cos \phi \hat{\boldsymbol{i}} - D \sin \phi \hat{\boldsymbol{j}}$$

Da componente \hat{i} , podemos escrever o tempo para o impacto como:

$$v_0 \cos \theta t = D \cos \phi \Rightarrow t = \frac{D \cos \phi}{v_0 \cos \theta}$$

Da parte \hat{j} , introduzindo o tempo para impacto obtido:

$$\begin{split} v_0 \sin\theta \, t - g \, t^2 / 2 &= -D \sin\phi \\ v_0 \frac{D \cos\phi}{v_0 \cos\theta} \sin\theta - g \frac{D^2 \cos^2\phi}{2v_0^2 \cos^2\theta} &= -D \sin\phi \\ \frac{\cos\phi \sin\theta}{\cos\theta} - g \frac{D \cos^2\phi}{2v_0^2 \cos^2\theta} &= -\sin\phi \\ D &= \frac{2v_0^2 \cos^2\theta}{g \cos^2\phi} \left[\sin\phi + \frac{\cos\phi \sin\theta}{\cos\theta} \right] \\ D &= \frac{2v_0^2}{g \cos^2\phi} \left[\sin\phi \cos^2\theta + \cos\phi \sin\theta \cos\theta \right] \end{split}$$

O máximo de D com relação a θ ocorre quando $\frac{dD}{d\theta} = 0$.

$$\frac{dD}{d\theta} = \frac{2v_0^2}{g\cos^2\theta} \left[-2\sin\phi\sin\theta\cos\theta + \cos\phi(\cos^2\theta - \sin^2\theta) \right] = 0$$

$$-2\sin\phi\sin\theta\cos\theta + \cos\phi(\cos^2\theta - \sin^2\theta) = 0$$

$$\frac{\sin\phi}{\cos\phi} = \frac{\cos^2\theta - \sin^2\theta}{2\sin\theta\cos\theta}$$

$$\frac{\sin\phi}{\cos\phi} = \frac{\cos^2\theta}{\sin^2\theta}$$

$$\tan^2\theta = \frac{1}{\tan\phi}$$

$$\theta = \frac{1}{2}\arctan\left(\frac{1}{\tan\phi}\right) = \frac{1}{2}\left(\frac{\pi}{2} - \phi\right) = \frac{\pi}{4} - \frac{\phi}{2}$$