MAC 414 Autômatos, Computabilidade e Complexidade aula 3 — 21/09/2020

Tomatinhos — 2° sem 2020 1/61

Autômatos

Definição

Um autômato determinístico consiste de 5 componentes,

$$\mathcal{A} = (K, \Sigma, \delta, s, F),$$

onde:

- K é um conjunto finito, de estados.
- Σ é um alfabeto
- δ: K × Σ → K é a função de transição (ou programa)
- $s \in K$ é o estado inicial
- F⊆K são os estados finais (ou de aceitação).

Característica fundamental

Memória finita

Característica fundamental

Memória finita

Pré-fixada no algoritmo, independente do tamanho dos dados.

Característica fundamental

Memória finita

Pré-fixada no algoritmo, independente do tamanho dos dados.

Nada de malloc ou uso da pilha. Sem recursão ou aninhamento de funções.

Intuição:

Intuição:

 \mathcal{A} a cada instante está em um dos estados (começando em s)

Intuição:

 \mathcal{A} a cada instante está em um dos estados (começando em s)

A cada letra que lê, muda de estado, conforme δ

Intuição:

 \mathcal{A} a cada instante está em um dos estados (começando em s)

A cada letra que lê, muda de estado, conforme δ

```
while ((c=getchar()) != EOF)
  estado = delta(estado, c);
```

Invira coiss

Intuição:

```
\mathcal{A} a cada instante está em um dos estados (começando em s)
```

A cada letra que lê, muda de estado, conforme δ

```
while ((c=getchar()) != EOF)
  estado = delta(estado, c);
```

F vai controlar a saída.

Intuição:

```
\mathcal{A} a cada instante está em um dos estados (começando em s)
```

A cada letra que lê, muda de estado, conforme δ

```
while ((c=getchar()) != EOF)
  estado = delta(estado, c);
```

F vai controlar a saída.

 (K, Σ, δ, s) é um semiautômato; existem outras especificações de saída.

Tomatinhos — 2° sem 2020

 δ tem uma extensão natural

$$\delta: K \times \Sigma^*$$

definida recursivamente, por:

$$\begin{cases} \delta(q,\lambda) = q \\ \delta(q,x\sigma) = \delta(\delta(q,x),\sigma) \quad q \in K, x \in \Sigma^*, \sigma \in \Sigma. \end{cases}$$

 δ tem uma extensão natural

$$\delta: K \times \Sigma^*$$

definida recursivamente, por:

$$\begin{cases} \delta(q,\lambda) = q \\ \delta(q,x\sigma) = \delta(\delta(q,x),\sigma) \quad q \in K, x \in \Sigma^*, \sigma \in \Sigma. \end{cases}$$

Proposição: Para $q \in K, x, y \in \Sigma^*$,

$$\delta(q, xy) = \delta(\delta(q, x), y)$$

Notação melhor

Notação melhor

Escrever simplesmente qx em vez de $\delta(q,x)$

Notação melhor

Escrever simplesmente qx em vez de $\delta(q,x)$

Assim, a proposição fica:

$$q(xy)=(qx)y.$$

A linguagem reconhecida (ou aceita) por um autômato \mathscr{A} é

$$L(\mathcal{A}) = \{x \in \Sigma^* \mid \delta(q, x) \in F\}$$
$$= \{x \in \Sigma^* \mid sx \in F\}$$

A linguagem reconhecida (ou aceita) por um autômato \mathscr{A} é

$$L(\mathcal{A}) = \{x \in \Sigma^* \mid \delta(q, x) \in F\}$$
$$= \{x \in \Sigma^* \mid sx \in F\}$$

Uma linguagem A é reconhecível se existe um $AD \mathcal{A}$ tal que $L(\mathcal{A}) = A$

A linguagem reconhecida (ou aceita) por um autômato \mathscr{A} é

$$L(\mathcal{A}) = \{x \in \Sigma^* \mid \delta(q, x) \in F\}$$
$$= \{x \in \Sigma^* \mid sx \in F\}$$

Uma linguagem A é reconhecível se existe um $AD \mathcal{A}$ tal que $L(\mathcal{A}) = A$

Este nome é temporário. É parte do Teorema de Kleene o fato *reconhecível = regular*.

$$\mathcal{A} = (\{\bullet\}, \Sigma, \delta, \bullet, \emptyset)$$

$$\mathcal{A} = (\{\bullet\}, \Sigma, \delta, \bullet, \emptyset)$$

$$L(\mathscr{A}) = \emptyset$$

$$\mathcal{A} = (\{\bullet\}, \Sigma, \delta, \bullet, \emptyset)$$

$$L(\mathscr{A}) = \emptyset$$

$$\mathcal{A} = (\{\bullet\}, \Sigma, \delta, \bullet, \{\bullet\})$$

$$\mathscr{A} = (\{\bullet\}, \Sigma, \delta, \bullet, \emptyset)$$

$$L(\mathscr{A}) = \emptyset$$

$$\mathscr{A} = (\{\bullet\}, \Sigma, \delta, \bullet, \{\bullet\})$$

$$L(\mathscr{A}) = \Sigma^*$$

Outro exemplo

$$K = \{1, 2\}$$

 $\Sigma = \{a, b, c\}$
 $\delta: 1a = 1, 2a = 2, 1b = 2, 2b = 1,$
 $1c = 1, 2c = 1$
 $s = 1$
 $F = \{2\}$

Outro exemplo

$$K = \{1, 2\}$$

 $\Sigma = \{a, b, c\}$
 δ : $1a = 1, 2a = 2, 1b = 2, 2b = 1,$
 $1c = 1, 2c = 1$
 $s = 1$
 $F = \{2\}$
aabaccaba

 $G_{\mathscr{A}}$ é um grafo dirigido, com rótulos nas arestas.

 $G_{\mathscr{A}}$ é um grafo dirigido, com rótulos nas arestas.

$$V(G_{\mathcal{A}}) = K$$

 $G_{\mathscr{A}}$ é um grafo dirigido, com rótulos nas arestas.

$$V(G_{\mathscr{A}}) = K$$

Arestas: para cada $q \in K, \sigma \in \Sigma$, existe uma aresta α de q a $\delta(q, \sigma)$, cujo rótulo $\rho(\alpha)$ é σ .

 $G_{\mathscr{A}}$ é um grafo dirigido, com rótulos nas arestas.

$$V(G_{\mathscr{A}}) = K$$

Arestas: para cada $q \in K, \sigma \in \Sigma$, existe uma aresta α de q a $\delta(q, \sigma)$, cujo rótulo $\rho(\alpha)$ é σ .

Desenho:

 $G_{\mathscr{A}}$ é um grafo dirigido, com rótulos nas arestas.

$$V(G_{\mathscr{A}}) = K$$

Arestas: para cada $q \in K, \sigma \in \Sigma$, existe uma aresta α de q a $\delta(q, \sigma)$, cujo rótulo $\rho(\alpha)$ é σ .

Desenho:

- Cada estado é um círculo, com nome dentro
- Uma flecha aponta s
- Estados de F são círculos duplos
- Se várias arestas têm mesmo início e fim, desenha só um arco, com vários rótulos.

Exemplo

```
K = \{1, 2\}

\Sigma = \{a, b\}

\delta: 1a = 1, 2a = 2, 1b = 2, 2b = 1,

1c = 1, 2c = 1

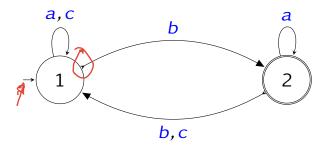
s = 1

F = \{2\}
```

Exemplo

$$K = \{1, 2\}$$

 $\Sigma = \{a, b\}$
 $\delta: 1a = 1, 2a = 2, 1b = 2, 2b = 1,$
 $1c = 1, 2c = 1$
 $s = 1$
 $F = \{2\}$



$$K = \{1, 2\}$$

 $\Sigma = \{a, b\}$
 δ : $1a = 1, 2a = 2, \quad 1b = 2, 2b = 1,$
 $1c = 1, 2c = 1$
 $s = 1$
 $F = \{2\}$
aabaccaba
b
b, c

Se P é um passeio em $G_{\mathcal{A}}$, seu rótulo é $\rho(P)$, o produto dos rótulos de suas arestas.

Se P é um passeio em $G_{\mathcal{A}}$, seu rótulo é $\rho(P)$, o produto dos rótulos de suas arestas.

Prop: Se
$$P = P_1 P_2$$
 são passeios em em $G_{\mathcal{A}}$, $\rho(P) = \rho(P_1)\rho(P_2)$.

Se P é um passeio em $G_{\mathcal{A}}$, seu rótulo é $\rho(P)$, o produto dos rótulos de suas arestas.

Prop: Se
$$P = P_1 P_2$$
 são passeios em em $G_{\mathcal{A}}$, $\rho(P) = \rho(P_1)\rho(P_2)$.

Prop: Para cada $p \in K$ e $x \in \Sigma^*$, existe um único passeio P em $G_{\mathscr{A}}$ com rótulo x, e ele termina em $\delta(p,x)$.

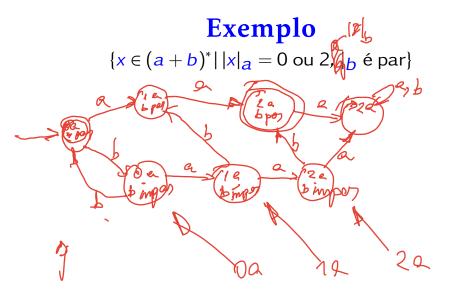
Se P é um passeio em $G_{\mathcal{A}}$, seu rótulo é $\rho(P)$, o produto dos rótulos de suas arestas.

Prop: Se
$$P = P_1 P_2$$
 são passeios em em $G_{\mathcal{A}}$, $\rho(P) = \rho(P_1)\rho(P_2)$.

Prop: Para cada $p \in K$ e $x \in \Sigma^*$, existe um único passeio P em $G_{\mathscr{A}}$ com rótulo x, e ele termina em $\delta(p,x)$.

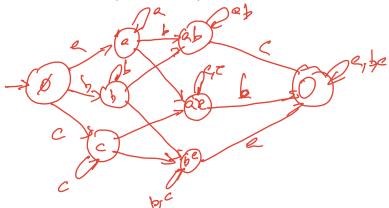
Prop: $L(\mathscr{A})$ é o conjunto de todos os rótulos de passeios em $G_{\mathscr{A}}$ de s a F.

Tomatinhos — 2° sem 2020



 $\{x \in (a+b)^* \mid x \text{ tem fatores } aab \text{ e } aba\}$

 $\{x \in (a+b+c)^* \mid x \text{ cont\'em todas as letras}\}$



Complemento

Complemento

Prop: O complemento (em relação a Σ^*) de uma linguagem reconhecível é reconhecível.

Complemento

Prop: O complemento (em relação a Σ^*) de uma linguagem reconhecível é reconhecível.

Dem: Seja $L \subseteq \Sigma^*$ uma linguagem reconhecível e $\mathscr{A} = (K, \Sigma, \delta, s, F)$ um AD reconhecendo L. Então $\widehat{\mathscr{A}} = (K, \Sigma, \delta, s, K \setminus F)$ reconhece \overline{L} . Com efeito, $(K, \Sigma, \delta, s, K \setminus F)$ reconhece $(K, \Sigma, \delta, s, K \setminus F)$

Complemento

Prop: O complemento (em relação a Σ^*) de uma linguagem reconhecível é reconhecível.

Dem: Seja $L \subseteq \Sigma^*$ uma linguagem reconhecível e $\mathscr{A} = (K, \Sigma, \delta, s, F)$ um AD reconhecendo L. Então $\mathscr{\hat{A}} = (K, \Sigma, \delta, s, K \setminus F)$ reconhece \bar{L} . Com efeito,

Sejam
$$L_1 = L(\mathscr{A}_1), L_2 = L(\mathscr{A}_2)$$
, onde $\mathscr{A}_1 = (K_1, \Sigma, \delta_1, s_1, F_1), \mathscr{A}_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$. Vamos mostrar que $L_1 \cup L_2$ e $L_1 \cap L_2$ são reconhecíveis.

Sejam $L_1 = L(\mathscr{A}_1), L_2 = L(\mathscr{A}_2)$, onde $\mathscr{A}_1 = (K_1, \Sigma, \delta_1, s_1, F_1), \mathscr{A}_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$. Vamos mostrar que $L_1 \cup L_2$ e $l_1 \cap L_2$ são reconhecíveis. Idéia: processamento paralelo.

Sejam $L_1 = L(\mathscr{A}_1), L_2 = L(\mathscr{A}_2)$, onde $\mathscr{A}_1 = (K_1, \Sigma, \delta_1, s_1, F_1), \mathscr{A}_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$. Vamos mostrar que $L_1 \cup L_2$ e $l_1 \cap L_2$ são reconhecíveis.

Idéia: processamento paralelo.

Implementação: sejam $\mathcal{S}_i = (K_i, \Sigma, \delta_i), i = 1, 2.$

Construa

$$\mathcal{S} = (K_1 \times K_2, \Sigma, \delta, (s_1, s_2)), (q_1, q_2)\sigma = (q_1\sigma, q_2\sigma).$$

Sejam $L_1 = L(\mathscr{A}_1), L_2 = L(\mathscr{A}_2)$, onde $\mathscr{A}_1 = (K_1, \Sigma, \delta_1, s_1, F_1), \mathscr{A}_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$. Vamos mostrar que $L_1 \cup L_2$ e $l_1 \cap L_2$ são reconhecíveis.

Idéia: processamento paralelo.

Implementação: sejam $\mathcal{S}_i = (K_i, \Sigma, \delta_i)$, i = 1, 2.

Construa

$$\mathcal{S} = (K_1 \times K_2, \Sigma, \delta, (s_1, s_2)), (q_1, q_2)\sigma = (q_1\sigma, q_2\sigma).$$

Por indução, $(q_1, q_2)x = (q_1x, q_2x)$ para toda palavra x.

Sejam $L_1 = L(\mathscr{A}_1), L_2 = L(\mathscr{A}_2)$, onde $\mathscr{A}_1 = (K_1, \Sigma, \delta_1, s_1, F_1), \mathscr{A}_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$. Vamos mostrar que $L_1 \cup L_2$ e $l_1 \cap L_2$ são reconhecíveis.

Idéia: processamento paralelo.

Implementação: sejam $\mathcal{S}_i = (K_i, \Sigma, \delta_i)$, i = 1, 2.

Construa

$$\mathcal{S} = (K_1 \times K_2, \Sigma, \delta, (s_1, s_2)), (q_1, q_2)\sigma = (q_1\sigma, q_2\sigma).$$

Por indução, $(q_1, q_2)x = (q_1x, q_2x)$ para toda palavra x. Considere (\mathcal{S}, F) . Como definir F

Sejam $L_1 = L(\mathscr{A}_1), L_2 = L(\mathscr{A}_2)$, onde $\mathscr{A}_1 = (K_1, \Sigma, \delta_1, s_1, F_1), \mathscr{A}_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$. Vamos mostrar que $L_1 \cup L_2$ e $l_1 \cap L_2$ são reconhecíveis.

Idéia: processamento paralelo.

Implementação: sejam $\mathcal{S}_i = (K_i, \Sigma, \delta_i)$, i = 1, 2.

Construa

$$\mathcal{S} = (K_1 \times K_2, \Sigma, \delta, (s_1, s_2)), (q_1, q_2)\sigma = (q_1\sigma, q_2\sigma).$$

Por indução, $(q_1, q_2)x = (q_1x, q_2x)$ para toda palavra x. Considere (\mathcal{S}, F) . Como definir F para \cap : $\mathcal{F}_{\mathbf{x}} \times \mathcal{F}_{\mathbf{y}}$

Sejam $L_1 = L(\mathscr{A}_1), L_2 = L(\mathscr{A}_2)$, onde $\mathscr{A}_1 = (K_1, \Sigma, \delta_1, s_1, F_1), \mathscr{A}_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$. Vamos mostrar que $L_1 \cup L_2$ e $l_1 \cap L_2$ são reconhecíveis.

Idéia: processamento paralelo.

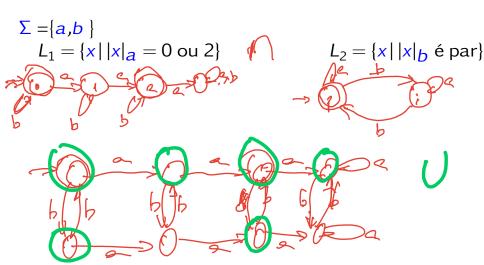
Implementação: sejam $\mathcal{S}_i = (K_i, \Sigma, \delta_i)$, i = 1, 2.

Construa

$$\mathcal{S} = (K_1 \times K_2, \Sigma, \delta, (s_1, s_2)), (q_1, q_2)\sigma = (q_1\sigma, q_2\sigma).$$

Por indução, $(q_1, q_2)x = (q_1x, q_2x)$ para toda palavra x. Considere (\mathcal{S}, F) . Como definir F

Tomatinhos — 2° sem 2020



Tomatinhos — 2° sem 2020

Produto

(String x) Lool & (string x) bod f(stringa) davolve 1 158 XE Li Lz Li = { XE \(\) | \(\

Tomatinhos — 2° sem 2020

Service Não - de la minismo