
IESA – Projetos, Equipamentos e Montagens S/A

RECICLAGEM DE MATERIAL DESCARTADO
DURANTE PROCESSO DE FABRICAÇÃO DE UM
EQUIPAMENTO DE GRANDE PORTE
ESTUDO DE CASO: EMPILHADEIRA DE
MINÉRIO

EMPILHADEIRA DE MINÉRIOS

- O equipamento do estudo de caso é uma "Empilhadeira de Minérios", fornecida á Companhia Siderúrgica Nacional CSN, na cidade de Congonhas do Campo MG.
- As empilhadeiras são máquinas de grande porte, destinadas a formação de pilhas de minérios em pátios de estocagem.
- O empilhamento no pátio é feito por movimento contínuo de translação da empilhadeira e posições variáveis de giro e elevação da lança. O empilhamento é iniciado com a lança na posição mais baixa.
- A empilhadeira translada pelo caminho de rolamento, iniciando a formação da pilha segundo um programa pré-determinado de giro da lança, formando cordões adjacentes até completar uma camada. Quando a sonda na ponta da lança é atuada pelo material empilhado, a lança é elevada automaticamente. A empilhadeira continua transladando e depositando o material na pilha até a sonda ser novamente atuada, elevando a lança. Esta operação se repete até a lança atingir a elevação máxima de operação, quando então a pilha estará completamente formada.

EMPILHADEIRA DE MINÉRIO

PROCESSO DE FABRICAÇÃO

- A fim de facilitar a fabricação, bem como a elaboração do detalhamento do projeto, o equipamento é subdividido em grupos, ou seja, cada parte da Empilhadeira e trabalhada isoladamente.
- Logicamente que na adoção dessa filosofia, são consideradas todas as interfaces, quer seja no próprio equipamento como com os componentes externos, que interagirão com a Empilhadeira durante sua operação.
- Ao todo são 21 grupos, sub-divididos em parte estrutural, mecanismo e parte elétrica.
- Nosso foco principal está centrado na parte estrutural, composta pela Translação, Estrutura do Portal, Estrutura Giratória/Mastro, Lança, Tirantes da Lança, Contra-Lança, Tripper e Estruturas Auxiliares.
- Todos esses grupos somados representam 80% do peso total da Empilhadeira, ou seja, 385.641 Kg. de um peso total aferido do equipamento de 479.666 Kg. (sem contra-peso).
- O ciclo de fabricação de um equipamento de grande porte como esse, pode ser qualificado de médio prazo (aproximadamente 18 meses).

MATÉRIA PRIMA

• Como há uma significativa demanda de matéria-prima na sua fabricação, adota-se a prática de providenciar previamente a aquisição desse material, de modo que não haja interrupção ou qualquer outro tipo de transtorno durante as etapas de fabricação.

MATÉRIA PRIMA

MATÉRIA PRIMA

Matéria-prima estocada no pátio de chapas, prontas para início de industrialização

- Levando—se em consideração que de um total de 520 toneladas de matéria-prima adquirida para ser utilizada na fabricação da parte estrutural da Empilhadeira e tendo como peso final dessas partes um montante de 385,6 toneladas, o que representa aproximadamente 74% do total previsto, contabilizando 26% de material descartado.
- Em função dos procedimentos adotados tanto nas engenharias como nos processos fabris, obteve-se um resultado final significativo, com ganho de recursos e tempo extremamente importante para a empresa, em face a média histórica de descarte de material que é de 30%.

PROCESSO DE MONTAGEM

• Numa primeira etapa os componentes da Empilhadeira quando de sua fabricação na empresa e numa segunda etapa, obedecendo sequência de montagem desses conjuntos no local onde a Empilhadeira entrará em operação, chamado de pátio de estocagem de minérios.

Conjunto de Translação da Empilhadeira

• Esses conjuntos consistem de truques motrizes e movidos, equalizadores intermediários e principais, rodas, eixos, etc, que compõem a base da Empilhadeira, tendo como função básica permitir o translado do equipamento pelo caminho de rolamento (trilhos).

Conjunto de Truques Motrizes e Movidos durante fabricação

Conjunto de Equalizadores Intermediários e Principais

Conjunto da Translação da Empilhadeira na linha de Montagem

Estrutura do Portal

• Essa estrutura com formato de uma "estrela de 3 pontas", extremamente robusta, montada sobre os equalizadores da translação, forma a base de sustentação de toda a Empilhadeira.

Estrutura do Portal em fabricação (caldeiraria)

Estrutura do Portal posicionada para usinagem

Estrutura do Portal na pré-montagem de fábrica

Estrutura do Portal sendo expedida para o canteiro de obras

Estrutura do Portal sendo expedida para o canteiro de obras


Estrutura Giratória

- Essa estrutura apoiada sobre um rolamento com diâmetro de 3.200 mm, montado entre a Estrutura do Portal e a Estrutura Giratória, permite que a Empilhadeira tenha um giro total de 270°, sendo 135° para cada lado.
- Nessa estrutura são montados dois redutores que executam esse giro através de um pinhão e uma cremalheira de pinos.

Estrutura Giratória durante a fabricação

Estrutura Giratória na pré-montagem de fábrica juntamente com a Estrutura do Portal

Estrutura Giratória sendo expedida para o canteiro de obras

Conjunto do Mastro

- Esse conjunto é composto por duas "vigas caixão" interligadas em dois pontos e conectadas à Estrutura Giratória.
- Montado na vertical tem a função de sustentar de um lado a Contra-Lança e de outro os Tirantes da Lança.
- Em seu topo é montado um conjunto de roldanas que acionado por um guincho, permite que a lança bascule para baixo e para cima, com uma inclinação de 9° em cada sentido.

Mastro em fabricação e conjunto dos Mastros na pré-montagem de fábrica

Conjunto da Lança

- Estrutura treliçada, fabricada em duas partes, com comprimento total de 45,0m.
- Montada entre o conjunto dos Mastros, possui articulações que estão acopladas à Estrutura Giratória, permitindo que tenha o movimento de basculamento de 9° para cima e para baixo.
- Sobre sua estrutura está montado o Transportador de Correia da Empilhadeira, responsável pelo transporte do minério que será empilhado no pátio de estocagem.

Estrutura da Lança fabricada

Lança com parte do Transportador de Correia sobre a estrutura

Contra-Lança

- Estrutura robusta formada por vigas e com treliça mento superior e inferior, é montada na parte intermediária traseira do Mastro, oposta ao lado de descarga de minério e da Lança.
- Em sua estrutura está montado o guincho que executa o basculamento da Lança e o conjunto do contra-peso, elemento esse que tem como finalidade garantir a estabilidade da Empilhadeira.

Contra-Lança em² processo final de fabricação

Contra-Lança posicionada na área de montagem de fábrica

Contra-Lança posicionada na área de montagem de fábrica

Sequência dos componentes estruturais da Empilhadeira na montagem no canteiro de obras

Estrutura Giratória sendo montada sobre Estrutura do Portal e o Conjunto da Translação, compondo a base de sustentação da Empilhadeira

Conjunto do Mastro posicionado junto a Estrutura Giratória, formando um único conjunto

Vista lateral da Empilhadeira com a Lança montada e apoiada sobre cavaletes

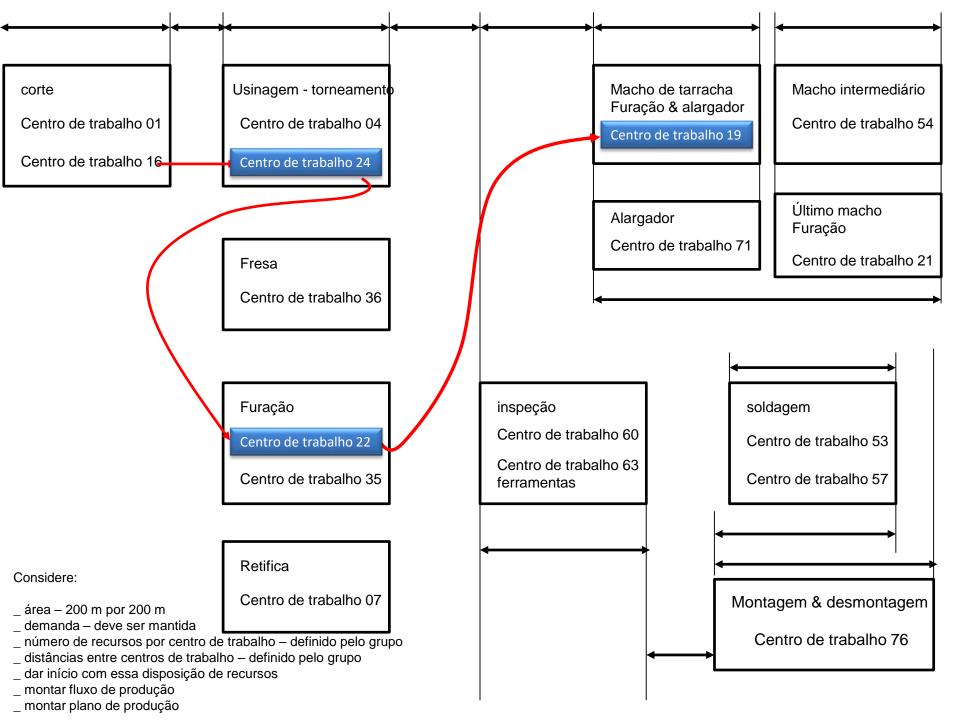
Montagem da estrutura de sustentação do *Tripper*. conjunto esse que é acoplado à Empilhadeira e por onde passa o transportador de correia do pátio, responsável por trazer o minério que alimenta o transportador de correia da Empilhadeira

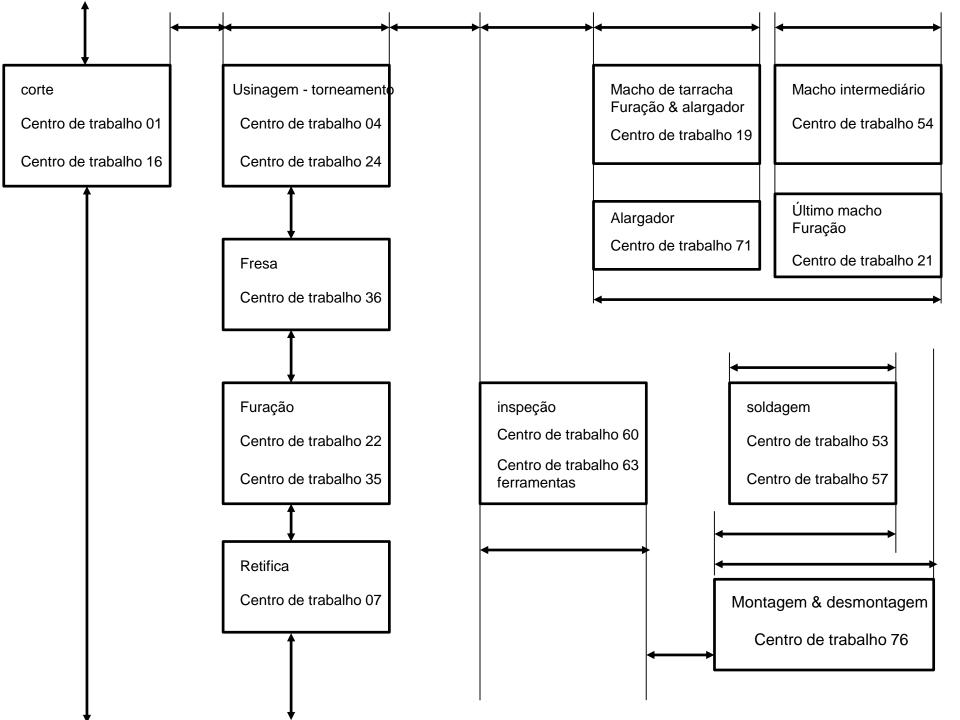
Estrutura treliçada longitudinal sendo posicionada sobre estrutura sustentação do *Tripper*

Contra-Lança sendo posicionada por meio de guindaste para montagem no Mastro

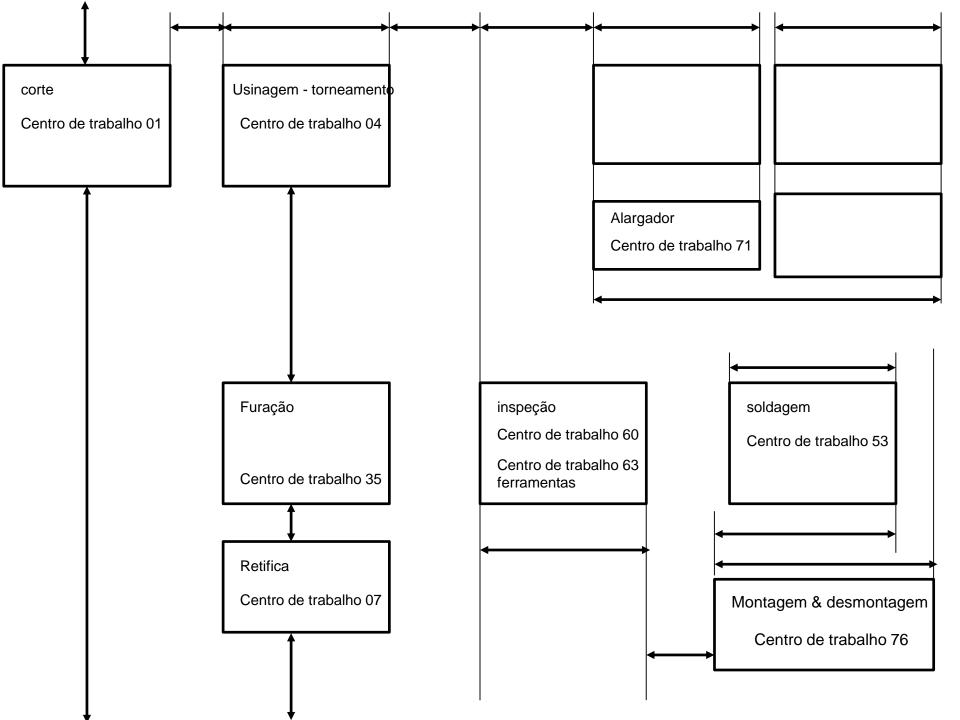
Contra-Lança acoplada ao conjunto do Mastro

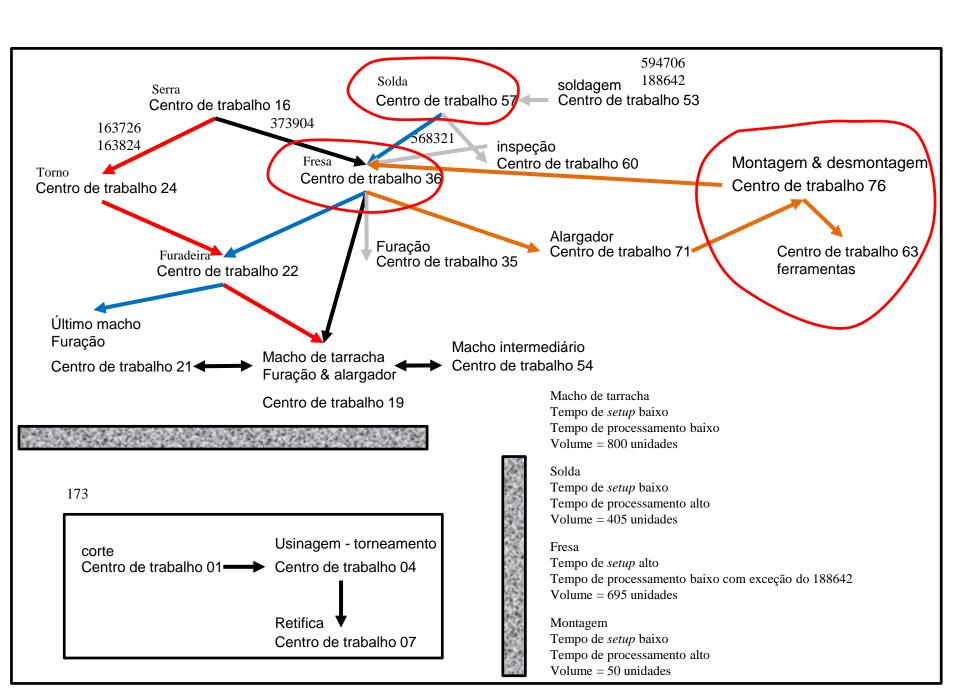
Parte dianteira da Empilhadeira, composta pela Lança, Mastro e Tirantes de sustentação




Vista lateral panorâmica da Empilhadeira, com Lança e Contra-Lança apoiadas

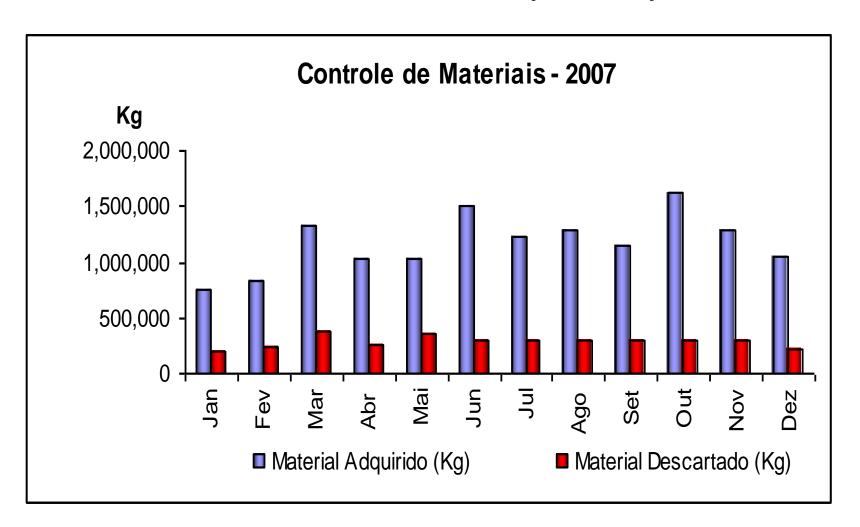
Montagem da Empilhadeira sendo finalizada, sem cavaletes de apoio e com os contra-pesos montados na Contra-Lança





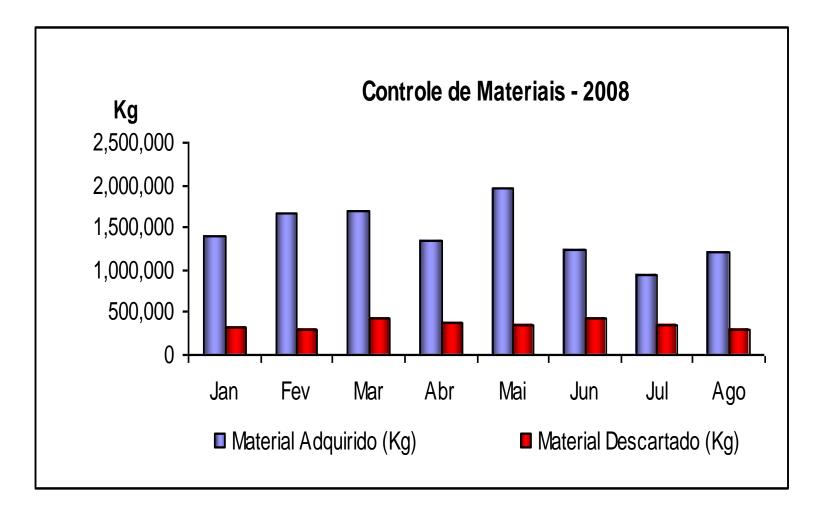
ALTERADO

LAYOUT



MATERIAL ADQUIRIDO E MATERIAL DESCARTADO (2007)

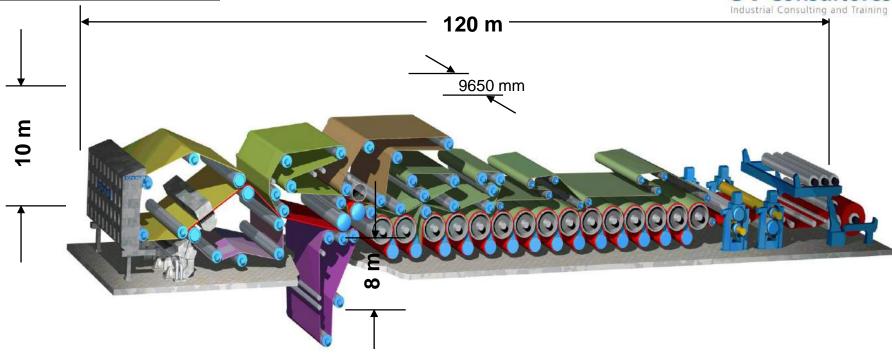
Mês	Material Adquirido (Kg)	Material Descartado (Kg)	%
Jan	748,850	193,140	25.8%
Fev	823,152	240,220	29.2%
Mar	1,336,524	381,580	28.6%
Abr	1,023,626	249,580	24.4%
Mai	1,020,070	349,320	34.2%
Jun	1,507,161	288,380	19.1%
Jul	1,222,630	291,530	23.8%
Ago	1,286,843	302,750	23.5%
Set	1,144,699	305,840	26.7%
Out	1,618,213	302,320	18.7%
Nov	1,296,685	301,160	23.2%
Dez	1,043,899	219,110	21.0%
Total	14,072,352	3,424,930	24.3%


MATERIAL ADQUIRIDO E MATERIAL DESCARTADO (2007)

MATERIAL ADQUIRIDO E MATERIAL DESCARTADO (2008)

Mês	Material Adquirido (Kg)	Material Descartado (Kg)	%
Jan	1,410,606	331,150	23.5%
Fev	1,677,240	307,920	18.4%
Mar	1,697,054	421,530	24.8%
Abr	1,335,432	365,600	27.4%
Mai	1,969,368	346,370	17.6%
Jun	1,224,842	440,310	35.9%
Jul	942,807	353,120	37.5%
Ago	1,221,554	300,550	24.6%
Total	11,478,903	2,866,550	25.0%

MATERIAL ADQUIRIDO E MATERIAL DESCARTADO (2008)


Projeto Preactor
 VOITH PAPER

Quem é a Voith Paper

- Líder na fabricação de Máquinas de Papel.
- Empresa com 130 anos de operação.
- Grupo Voith 24.000 colaboradores.
- Faturamento de 3 Bilhões de EUR.
- Paper Mundo 8.000 colaboradores.
- 40 anos de existência no Brasil
- Planta Brasil 1.600 colaboradores.

Máquina de Papel

Paper grade: newsprint
Operating speed: 1700 m/min =

102 km/h

Production per day: 986 tn

Produced paper length: 2400 km paper/day

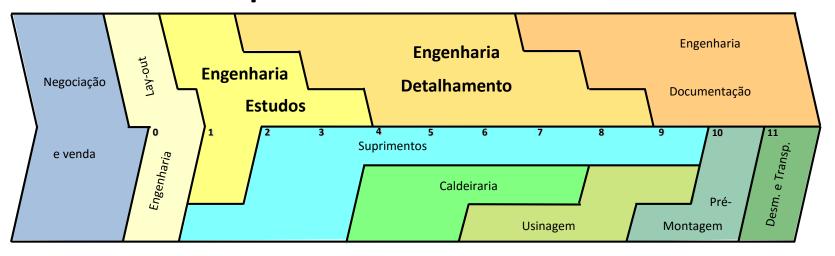
Weight of a paper machine

with plant components: ca 5000 tn

Processing time

from order to start-up: 18 months

Design: ca 60,000 hours
Manufacture: ca 55,000 hours
Number of parts: ca 50,000 items

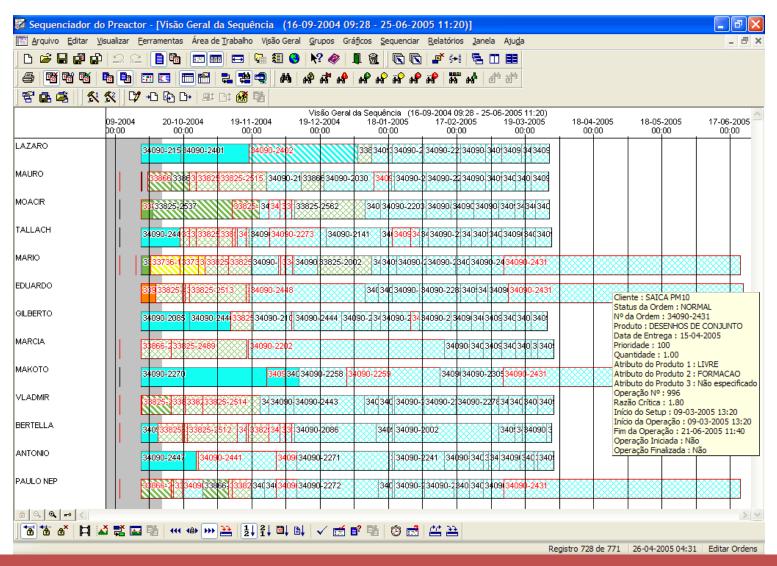

on work order sheets;

ca 200,000 parts

Order value: ca 100 million €

Macro Processo Temporal

- 136 Engenheiros para Estudo e Detalhamento.
- De 700 a 3.000 desenvolvimentos simultâneos.
- 24.000 horas/ mês de Engenharia



Preactor: - Solução Para:

- Sincronismo entre Engenharia e Produção.
- Mais de 800 subconjuntos em atraso.
- Incerteza nas datas de entrega dos Desenhos.
- Dificuldade no acompanhamento dos Projetos.
- Dificuldade no aproveitamento dos Recursos.
- Dificuldade na Priorização de Atividades.

Programação Preactor

