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PREFACE 

 

During the first years working as professor in Foundation Engineering and Soil 

Mechanics at the Faculty of Science, Technology and Communication of the 

University of Luxembourg, I got fascinated by the beauty of the analytical solutions of 

the bearing capacity of foundations made a century ago. Since the article “About the 

hardness of a plastic body”, published by Ludwig Prandtl in 1920, a lot of extensions 

have been made, for example with inclination factors and shape factors. Also many 

laboratory experiments have been done and many numerical calculations have been 

made. The failure mechanism for shallow foundations has even been extrapolated to 

the failure mechanism around the tip of a pile. All this scientific work leads back to 

the first publication of the so-called Prandtl-wedge of 1920. 

 

This book “100 Year Prandtl’s Wedge” has been made for all those who are interested 

in these fundamentals of foundation engineering and their history. 

  

 

Luxembourg, June 2015      Stefan Van Baars 
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1 Introduction 
 

The discipline of Soil mechanics and Foundation Engineering is one of the younger 

basic civil engineering disciplines. This discipline has been developed in the 

beginning of the 20th century. The need for this discipline arose in many countries, 

often as a result of spectacular accidents such as landslides and failures of 

foundations. The first important contributions to soil mechanics are due to Coulomb, 

who published an important treatise on the failure of soils in 1776, and to Rankine, 

who published an article on the possible stress states in soils in 1857. Important 

pioneering contributions to the development of soil mechanics were made by the 

Austrian Karl Von Terzaghi, who described in 1925 in his book “Erdbaumechanik” 

how to deal with the influence of the pressures of the pore water on the behaviour of 

soils. His concept of effective stresses is an essential element of the theory of soil 

mechanics. 

 

 

The biggest problem for a shallow foundation, just as any other type of foundation, is 

a failure due to an overestimation of the bearing capacity. This means that the correct 

prediction of the bearing capacity of the shallow foundation is often the most 

important part of the design of a civil structure. That is why the publication of Prandtl 

in 1920, about the hardness of a plastic body, was a major step in solving the bearing 

capacity of a shallow foundation, although it is well possible that he never realised 

this, because his solution was not made for civil engineering purposes, but for 

mechanical purposes. 

 

 

 
Figure ‎1-1. Karl Von Terzaghi (Oct. 2, 1883 – Oct. 25, 1963). 
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Figure ‎1-2. Overloaded shallow foundation of a group of grain silos. 

 

Figure ‎1-3. Overloaded shallow foundation of a group of grain silos. 

 Transcona Grain Elevator, Manitoba, Canada, October 18, 1913 
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2 Ludwig Prandtl 
 

About the life of Ludwig Prandtl a lot of details can be found, from Wikipedia, from 

the homepage of the Deutschen Zentrum für Luft- und Raumfahrt (DLR), from the 

book “Prandtl and the Göttingen School”, written by Eberhard Bodenschatz and 

Michael Eckert, or especially from the book “Ludwig Prandtl, A Biographical Sketch, 

Remembrances and Documents” of which there is a German original by Johanna 

Vogel-Prandtl but also an English translation by V. Vasanta Ram, published by The 

International Centre for Theoretical Physics Trieste, Italy. The information below 

follows from these sources. 

 

 

Ludwig Prandtl was born in Freising, near Munich, Germany, in 1875. His mother 

suffered from a lengthy illness and, as a result, Ludwig spent more time with his 

father, a professor of engineering. He entered the Technische Hochschule Munich in 

1894. Prandtl passed the final examination in 1898 with the grade ''sehr gut'' ("very 

good"). 

 

After this, Professor Föppl offered him the job of a “Hilfsassistent”, which he gladly 

accepted. This post, which was meant for earning a doctor's degree, was assigned for 

one year only. Professor Föppl helped Prandtl to postpone his conscription for the 

military service by one year. The period when Prandtl worked with August Föppl in 

his mechanical engineering laboratory can be dated exactly: from October 1, 1898 to 

November 30, 1899. In this time Prandtl wrote his dissertation entitled: “Kipp-

Erscheinungen, ein Fall von instabilem elastischem Gleichgewicht” (Lateral torsional 

buckling: A case of unstable elastic equilibrium). With this dissertation, Prandtl could 

not get a doctor's degree at the Technische Hochschule München (this institution was 

   
Figure ‎2-1. Ludwig Prandtl (Feb. 4, 1875 – Aug. 15, 1953) 
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given the right to award doctor's degrees only in 1900), so that he submitted his work 

to the Philosophische Fakultät of the Munich University. The defence took place on 

January 29, 1900. 

 

In 1901 Prandtl became a professor of fluid mechanics at the technical school in 

Hannover, now the Technical University Hannover. It was here that he developed 

many of his most important theories. In 1904 he delivered his first famous paper, 

“Fluid Flow in Very Little Friction”, in which he described the boundary layer and its 

importance for drag and streamlining. This paper also described flow separation as a 

result of the boundary layer, clearly explaining the concept of stall for the first time. 

The effect of the paper was so great that Prandtl became director of the Institute for 

Technical Physics at the University of Göttingen later that year. 

 

 

Prandtl had a good contact with the family of professor Föppl. On Easter 1909, 

Prandtl asked Gertrud Föppl to marry him. An agreement had been reached in respect 

of religion that Prandtl would remain in the Catholic Church but Gertrud's protestant 

ancestry would prescribe the formalities for the marriage. On September 11, 1909, 

Ludwig Prandtl and Gertrud Föppl married in Munich according to protestant 

formalities. The marriage festivities were held at the Föppl’s house. 

 

Prandtl and his student Theodor Meyer developed the first theories of supersonic 

shock waves and flow in 1908. The Prandtl-Meyer expansion fans allowed for the 

construction of supersonic wind tunnels. He had little time to work on the problem 

further until the 1920s, when he worked with Adolf Busemann and created a method 

for designing a supersonic nozzle in 1929. Today, all supersonic wind tunnels and 

rocket nozzles are designed using the same method. A full development of 

supersonics would have to wait for the work of Theodore von Kármán, a student of 

Prandtl at Göttingen. 

 

   
Figure ‎2-2. Ludwig Prandtl with his fluid test channel, 1904. 
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In 1922 Prandtl, together with Richard von Mises, founded the GAMM (the 

International Association of Applied Mathematics and Mechanics) and was its 

chairman from 1922 until 1933. 

 

Prandtl worked at Göttingen until he died on August 15, 1953. His work in fluid 

dynamics is still used today in many areas of aerodynamics and chemical engineering. 

He is often referred to as the father of modern aerodynamics. 

 

The crater Prandtl on the far side of the Moon is named in his honour. 

 

The Ludwig-Prandtl-Ring is awarded by Deutsche Gesellschaft für Luft- und 

Raumfahrt (German Aerospace Association) in his honour for outstanding 

contribution in the field of aerospace engineering. 

 

 

 

 

   
Figure ‎2-3. Ludwig Prandtl at his water tunnel in the mid to late 1930s  

(Reproduction from the original photograph DLR: FS-258). 
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3 Hans Jacob Reissner 
 

About the life of Hans Jacob more information can be obtained from Wikipedia or 

from the library of the University of California, San Diego. The information below is 

a summary from these two sources. 

 

 

Hans Jacob was born on January 18, 1874, in Berlin, Germany. He earned a degree in 

civil engineering from Berlin's Technische Hochschule in 1897, and then spent a year 

in the United States working as a structural draftsman. Reissner returned to Germany 

to study physics with Max Planck at Berlin University. In 1900 he changed direction 

and attended the Technische Hochschule, where he studied under Heinrich Mueller-

Breslau and completed one of the first engineering doctorates in 1902. His dissertation 

was on vibrations of framed structures. Reissner joined the faculty at Berlin's 

Technische Hochschule, but he also worked on outside projects, including structural 

analysis for Graf (Count) Von Zeppelin. In 1904, he was awarded a fellowship to 

study the use of iron in construction in the United States of America.  

In 1906, Reissner returned to Germany and was appointed professor of mechanics at 

the Technische Hochschule in Aachen. Until this time, his research had dealt with 

topics at the intersections of mechanics and physics, but his attention now focused 

upon the new field of aviation.  

At June 6, 1906, he married Josefine Reichenberger. They got four children; Max 

Erich (Eric Reissner), Edgar Wilhelm, Dorothea Gertrud (Thea) and Eva Sabine. 

By 1908 Reissner was familiar enough with the basic areas of aircraft stability, control 

and propulsion to deliver a seminal paper published as "Wissenschafliche Fragen aus 

der Flugtechnik" (Scientifical Aerospace Questions), the first of many articles on 

   
Figure ‎3-1. Josefine und Hans Jacob Reissner. 
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these topics. Hugo Junkers, who also worked at the faculty in Aachen, and Reissner 

designed and constructed the first successful all-metal and tail-first airplane, the 

"Ente" (Duck). In this time he also worked for Ferdinand Graf Von Zeppelin. 

After seven years at the Rheinisch-Westfälische Technische Hochschule Aachen 

(Aachen University of Technology), Reissner was invited to return to Berlin's 

Technische Hochschule in 1913 as professor of mathematics in the civil engineering 

department. During World War I he was responsible for the structural analysis of the 

Staaken four-engine bomber and designed the first controllable-pitch propellers for 

this aircraft. He was awarded the Iron Cross for civilians for his work.  

In 1929 he started to cooperate with Moritz Straus, the owner of both Argus-Werke 

and Horch. When Reissner was forced to retire in 1935 under the Nazi-Regime due to 

his Jewish background, he became an advisor of Argus Motoren Gesellschaft. 

Wenn Straus was forced to give the company Argus-Werke away in 1938 due to his 

Jewish background and the Aryanisation, Reissner emigrated to the United States, 

where he first taught at the Illinois Institute of Technology (1938-1944) and then, until 

his retirement, at the Polytechnic Institute of Brooklyn (1944-1954). For his seventy-

fifth birthday in 1949 he was honoured with the presentation of a festschrift, the 

Reissner Anniversary Volume, at a dinner in New York. Reissner retired from 

professional life in 1954 and died in 1967. 

Reissner’s son became Professor Mechanical Engineering at the Massachusetts 

Institute of Technology.  
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 II Original Publications 
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4 Prandtl’s publication of 1920 
 

4.1 Introduction 

The publication of Prandtl in 1920 is called “Über die Härte plastischer Körper”, or in 

English “About the hardness of a plastic body”. It has been published in the journal 

“Nachrichten der Gesellschaft der Wissenschaften zu  Göttingen, Mathematisch.-

physikalischen Klasse” on page 74–85. 

 

The publication can also be found in the appendices of this book (see Chapter  23), 

with thanks to the Niedersächsische Staats- und Universitätsbibliothek Göttingen 

(SUB), Georg-August-Universität Göttingen, Germany. 

 

The title of the publication is already interesting, because “About the hardness of a 

plastic body”, does not suggest that a main problem in the shallow foundation 

engineering has been solved. In fact Prandtl was not a geotechnical engineer, not even 

a civil engineer.  

This explains why the publication of Prandtl did not refer to geotechnical solutions, 

which are well-known in the geotechnical world, like the analytical solution of the 

vertical stresses below a strip footing, made by Flamant in 1892. And also not to the 

solution of the vertical stresses below a circular footing by Boussinesq in 1885. From 

laboratory tests it is known that these analytical solutions are very accurate (Türedi 

and Örnek, 2016). 

The explanation of the title is given at the beginning of the publication: “One owes 

Heinrich Hertz a theory about the contact of a solid elastic body”. In fact Hertz solved 

in 1881 the elastic, but non-linear, force-displacement relation between two balls or a 

ball and a flat surface. This was a major step for mechanical engineers, for example 

for checking if a ball bearing will be overloaded and to what extent plasticity would 

occur. 

The publication of Prandtl was meant to find out at which load, full plasticity would 

be reached, and an object could be fully pushed into a solid body. 

It is clear from the article that the author is not a geotechnical engineer, but a 

mechanical engineer, because it is written partially with the idea that (see the first 

page, page 78): “the biggest shear stresses have a constant value C…..and the 

difference between the smallest and largest stress should be constant = 2C”.  

This is the case for steel since for steel the friction angle = 0, but for soils this is not 

correct because a part of the shear stress comes from the friction angle. 
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In the article, for the friction angle, the parameter   is used, instead of the parameter 

, also the parameter k is used, instead of sin   and the parameter C is used for the 

cohesion instead of the parameter c. 

There are also two other remarkable points, see Figure  4-1. 

 

First, the Coulomb failure envelope is drawn for geotechnical engineers as mirror 

image, because in mechanical engineering tension is positive, while in geotechnical 

engineering pressure is positive. 

Second, the cohesion is not drawn vertically as it should be, but perpendicularly to the 

Coulomb failure envelope. These two points explain why in the final solution 

(equation 13b, page 84) there is a –C/k, which is a mistake; it should be only a c.  

 

4.2 Prandtl-wedge 

Prandtl was the first to publish the failure mechanism of the solid body due to a strip 

load, consisting of three different types of area. This failure mechanism is nowadays 

known as “The Prandtl-wedge” 

 

Unfortunately the article is very direct; final solutions are often given without much 

explication. For example the most important part of the publication, the “discovery” 

of the Prandtl-wedge is discussed in only a few lines, in a style something like:  

“There must be an area below the strip load with the principle direction of the largest 

stress downwards and an area below the adjacent surface of the strip load, where the 

highest principle stress is horizontal and the lowest principle stress points downwards. 

These areas have shear surfaces with an angle of 45 / 2    in comparison to the 

highest principle stress”. 

And then the author simply concludes on page 76: “Closer examination shows that the 

solution is found by the zoning depicted in Figure 1”, which is followed by the 

famous “Prandtl-wedge” shown in Figure  4-2. 

 

 

Figure ‎4-1.‎Mohr’s‎circle‎with‎Coulomb‎failure‎envelope. 
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A bit further it says: 

“Between the first and the two last triangles there are sector shaped parts ACD and 

BCE”, because “the curves CD and CE” are a part of “a system of shear lines” which 

cross “the radii leaving from A and B”, with “a constant angle 2”, from which “it 

follows directly that the shear lines are logarithmic spirals”. 

The way the final solution (equation 13b, page 80) is found is not really given. It only 

says on this page: “…in this way, after simple calculations,…”.  

 

Therefore a complete explanation of this solution will be given in Chapter  8. 

 

4.3 Prandtl-wedge, also discovered by Prandtl? 

In the past it was very common that the head of a research group got most or even all 

the credits for the output of his group. As an example, all astronomical objects 

discovered by Pierre Méchain, are not named after him, but after Charles Messier, 

“simply” because Méchain was hired by Messier.  

The Prandtl Crater on the Moon is named after Prandtl, but was certainly not 

discovered by him. In a similar way it is not automatically clear if the Prandtl-wedge 

is really discovered by Prandtl himself, or by someone who was appointed by Prandtl. 

For an answer to this, some points have to be considered. 

 

First, it is, at least to say, remarkable that the article of the “Prandtl”-wedge of 1920, 

which deals about solid mechanics, was published, completely alone, by Prandtl, as a 

former professor in fluid mechanics, fully dedicated at that time to supersonic wind 

tunnels and rocket nozzles, while having scientific staff working for him, not only on 

fluid mechanics, but also on solid mechanics. 

 

Second, another remarkable point can be derived from the list of all publications of 

Prandtl, which can be found in the book: 

 

Ludwig Prandtl Gesammelte Abhandlungen 

Zur angewandten Mechanik, Hydro- und Aerodynamik 

Herausgegeben von Walter Tollmein – Hermann Schlichting - Henry Görtler 

Schriftleitung F.W. Riegels 

Erster Teil (S.1-574) 1961 Springer- Verlag Berlin Heidelberg GmbH 

 

 

Figure ‎4-2. The Prandtl-wedge. 
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Based on this list, Figure  4-3 has been made, showing the number of publications 

Prandtl has made during his career as a single author and the number of publications 

together with a co-author. 

It is remarkable that Prandtl, while he had scientists working for him and had also his 

managerial tasks to do as director of the Institute for Technical Physics at the 

University of Göttingen and chairman of the International Association of Applied 

Mathematics and Mechanics, still published so many articles per year and also most of 

them completely alone.  

 

 

Figure ‎4-3. Publications of Prandtl, with and without co-author. 

 

 

Third, the few articles which Prandtl did not publish alone, where almost all co-

authored by his closest research collaborators, like the famous Albert Betz and Max 

Munk. Betz made later a fast career; in 1926 he was appointed professor at Göttingen 

and in 1936 he even replaced Prandtl under the Luftwaffe command as director of the 

Aerodynamische Versuchsanstalt (AVA, aerodynamics laboratory). One could ask the 

question; why are there not more co-authorships of the scientific work of the other 

colleagues? 

 

Fourth, all scientists working for Prandtl at that time, were saved by Prandtl from the 

trenches of the First World War by being declared indispensable. The time of the First 

World War in Germany was a time, in which one was glad to escape the war and to do 

research “under guidance and responsibility of the director”. It was not a time to 

protest if his (or her?) name was missing on a publication. Even nowadays professors 

present at conferences the scientific work of their research assistants. 
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Therefore, the possibility cannot be completely excluded that the solution of the 

Prandtl-wedge is not really discovered by Prandtl himself, but by one of his research 

collaborators instead, working on solid mechanics, unlike Prandtl himself. In this 

case, the real discoverer of the famous “Prandtl”-wedge, will most likely stay 

unknown for ever. 
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5 Reissner’s publication of 1924 

 

5.1  Introduction 

The publication of Reissner in 1924 is called “Zum Erddruckproblem”, or in English 

“Concerning the earth–pressure problem”. It has been published in the “International 

proceedings of the first International Congress of Applied Mechanics, Delft, the 

Netherlands, pages 295-311. 

A part of this publication can also be found in the appendices of this book (see 

Chapter  24). 

 

The title is rather general because several topics are discussed in the publication. 

Remarkably enough, of the 17 pages of the publication, only one page, page 307, 

discusses the effect of the surcharge on the bearing capacity. 

 

5.2 Effect of the surcharge 

In fact the solution for the surcharge is far more simple then the solution for the 

cohesion published by Prandtl 4 years before Reissner. The simple reason why Prandtl 

never thought of solving the effect of the surcharge is that the effect of the surcharge 

is typically a civil engineering problem and Reissner was a civil engineer and Prandtl 

a mechanical engineer. 

Reissner gives at the bottom of page 307 in only one or two lines first a solution for an 

inclined (unsymmetrical) load, which is incorrect, as can be seen from the solutions 

given in Chapter  12. This is directly followed by a solution, in only one or two lines, 

for a vertical (symmetrical) load, supported by the figure below. 

 

The middle part of the Prandtl-wedge in Reissner’s figure does not really look like a 

logarithmic spiral, but this was more a drawing problem than a scientific problem. 

Having a logarithmic spiral is crucial, because this is the only shape where the effects 

of the frictional part of the shear forces, acting along this middle part, are zero. This 

will be discussed in Chapter  7.  

 
Figure ‎5-1. Prandtl wedge according to Reissner. 
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 III Bearing capacity factors 
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6 Prandtl-wedge 
 

The publication of Prandtl in 1920 gives an analytical solution for the bearing 

capacity of a soil under a limit pressure, p, causing kinematic failure of the weightless 

infinite half-space underneath. The strength of the half-space is given by the angle of 

internal friction,   , and the cohesion, c. The solution was extended by Reissner in 

1924 with a surrounding surcharge, q. The article of Prandtl subdivided the sliding 

soil part into three zones (see Figure  6-1): 

1. Zone 1:  A triangular zone below the strip load. Since there is no friction on the 

ground surface, the directions of the principal stresses are horizontal and 

vertical; the largest principal stress is in the vertical direction. 

2. Zone 2:  A wedge with the shape of a logarithmic spiral, where the principal 

stresses rotate through 90  from Zone 1 to Zone 3. The pitch of the sliding 

surface equals the angle of internal friction;    , creating a smooth 

transition between Zone 1 and Zone 3 and also creating a zero frictional 

moment on this wedge, which will be discussed later. 

3. Zone 3:  A triangular zone adjacent to the strip load. Since there is no friction 

on the surface of the ground, the directions of principal stress are horizontal 

and vertical; the largest principal stress is in the horizontal direction. 

 

 

According to the Mohr-Coulomb failure criterion (see Appendix Chapter  21) the 

angles in the triangular zones are defined as: 

1 1

1 4 2
       and   

1 1

3 4 2
       so that    

1

1 3 2
   

, (6.1) 

or: 

1

1 2
45      and   

1

3 2
45      so that    1 3 90    . (6.2) 

This means that zone 2 has an angle of 90 degrees. 

 

    

Figure ‎6-1. The Prandtl-wedge. 
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The fact that the angle between active and passive failure is an angle of 
1 3 90     

can also be shown with a clay sample with a small aluminium plate as retaining wall, 

(see Figure  6-2) which was gravity loaded in a centrifugal clothes dryer (top loaded 

clothes washing machine). 

 

The length of the legs of both triangles (Zone 1 and Zone 3 in Figure  6-1) can be 

determined from the width of the load strip ( B ) and the size and shape of the 

logarithmic spiral: 

 1 tan

1( ) er r
  




   (6.3) 

Giving: 

1
tan

3 2

1

e
r

r

 

 . (6.4) 

 

The shape of the failure mechanism has been validated by many researchers, first with 

centrifuge tests (see Figure  6-3) and numerous laboratory tests (see Figure  6-4), and 

later also with many numerical (Finite Element) calculations. 

 

 

Figure ‎6-2. Active (left) and passive (right) failure plane in a clay sample. 
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It was Prandtl who published in 1920 the bearing capacity due to the cohesion and 

Reissner who published in 1924 the bearing capacity due to the surcharge. These 

solutions were extended by Keverling Buisman (1940) for the soil weight,  .  Von 

Terzaghi (1943) was the first to write this extension as:  

1

2c qp cN qN BN    (6.5) 

 

The three bearing capacity factors will be discussed in the following chapters. Since 

the surcharge bearing capacity factor qN  from Reissner is easier to solve and explain 

than the cohesion bearing capacity factor 
cN  from Prandtl, the surcharge factor will 

be discussed first. 

 

 

    

Figure ‎6-3. Failure planes in sand for centric loading (left: Selig and McKee, 1961) 

and eccentric loading (right: Jumikis, 1956). 

    

Figure ‎6-4. Failure planes in sand (Muhs and Weiß,1972). 
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7 Surcharge bearing capacity factor Nq 
 

7.1 Analytical solution 

In order to solve the surcharge bearing capacity factor Nq, simply the stresses can be 

followed along the 3 zones, for a case in which there is no cohesion and no soil weight 

(c = 0,  = 0). 

 

 

Zone 3 

For Zone 3 the vertical stress is given by the surcharge ( minv q   ), and the 

horizontal stress is given by the Mohr-Coulomb criterion as follows (see Chapter  21):  

max minh pK       with   
2

3

1 sin
tan

1 sin
pK







 


  (7.1) 

The normal stress, 3 , is found by using the principle of force equilibrium in the 

direction of :  

2 2 23
3 3 3cos sin 2sinpK

q


      . (7.2) 

The shear stress, 3 , is simply found by using the Coulomb criterion (without 

cohesion): 

3 3 tan
q q

 
  . (7.3) 

 

Zone 2 

The shape of the outside shear line of Zone 2 is a logarithmic spiral with a pitch of 

exactly . The important point of this is that along this outside, the additional moment 

3

    

Figure ‎7-1. The Prandtl-wedge (copy of Figure ‎6-1). 
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M  created by the normal 
2,i  and shear forces 

2,i  is for this pitch, for every angle 

i , exactly zero during Mohr-Coulomb failure:  

 1 2

2, 2, 2, 2, 2,2
cos sin 0     because   tani i i i i iM r d                 . (7.4) 

This means that a moment equilibrium of Zone 2 depends only on the loads coming 

from Zone 1 and Zone 3, so:  
1 12 2

1 1 3 32 2
0     M r r         , (7.5) 

or: 

2
12

tan
tan31 1 2

2

3 3 1

e e
r

r

 
  

 

 
    

 
    and    1 1 tan

q q

 
  . (7.6) 

 

Zone 1 

The horizontal stress 
h  in Zone 1 can be found in the same way as the vertical stress 

v  (or q ) in Zone 3:  

2

1 3

1

2sin

h

 
 . (7.7) 

The vertical load or stress p is simply the horizontal stress times the passive earth 

pressure coefficient, so:  

p

h

p
K


 . (7.8) 

 

Zone 1+2+3 

By adding the effects of the three zones, which means by multiplying the previous 

steps, the surcharge bearing capacity coefficient qN  can be found: 

31

1 3

tan 2

32

3

tan

,

,

1
e 2sin ,

2sin

e .

q

h

h

p

p

p
N

q

p

q

K

K

 

 

 

  






   

   

 

 (7.9) 

 

7.2  Numerical solution 

The analytical solution published by Reissner can of course be checked nowadays 

with finite element calculations. In this study all solutions will be checked with the 

software Plaxis 2D for a (bi-linear) Mohr-Coulomb (c,  ) soil model without 

hardening, softening, or volume change during failure ( 0  ). There have been 
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several researchers working on this numerical comparison, but their publications often 

show one or more of the following mistakes: 

 Using inaccurate numerical tools, for example the limit-equilibrium analysis 

method, instead of the finite element method. 

 Using softening (in Plaxis there is a standard “tension cut off”-procedure which 

must be switched off). 

 Using volume change during failure, for example by selecting an associated 

flow rule (  ). 

 

Plaxis produces incremental displacement plots during failure, which indicate the 

failure mechanism. For low friction angles the failure mechanism is almost the same 

as the Prandtl-wedge failure mechanism, which is the basis of the analytical solution. 

For high friction angles though, the failure mechanism looks completely different, see 

Figure  7-2. 

 

 

    

Figure ‎7-2. Failure mechanism; left: low friction angle; right: high friction angle. 

    

Figure ‎7-3. Normalised force versus displacement for different friction angles. 
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This change in failure mechanism has consequences; the force versus displacement 

plot is rather smooth for low friction angles, but becomes very rough for higher 

friction angles, see Figure  7-3. This is a sign that constantly new failure plans are 

found in the calculation, depending on internal redistribution of stresses. 

For a series of different friction angles, the maximum normalised force, or the 

surcharge bearing capacity has been plotted, see Figure  7-4. For the Finite Element 

Modelling (FEM) two different options have been used; both stress controlled and 

displacement controlled. The two options give as expected (almost) the same results. 

Remarkable is that the analytical solution of Reissner gives values which are too high, 

especially for higher friction angles. This must be explained by the existence of an 

easier failure mechanism, which was mentioned before. 

 

The semi-analytical line in the figure describes much better the surcharge bearing 

capacity factors, and can be written as: 
2 tancos eq pN K     . (7.10) 

Loukidis et al (2008) already noticed that non-dilatant (non-associated) soil is 15% - 

30% weaker than associated soil (  ), and has a rougher failure pattern.   

The difference between the analytical solution (eq.  7.9) and the numerical results (eq. 

7.10) was explained by Knudsen and Mortensen (2016): The higher the friction angle, 

the wider the Prandtl wedge and the more the stresses reduce in this wedge during 

failure. So, the analytical formulas are only kinematically admissible for associated 

flow (  ).  

The problem of associated soil is of course, that such a high dilatancy angle is by far 

unrealistic for natural soils. This means as well that calculating the bearing capacity 

factor based on the analytical solutions is for higher friction angles also unrealistic. 

 

     

Figure ‎7-4. Surcharge bearing capacity factors: Reissner versus FEM. 
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8 Cohesion bearing capacity factor Nc 
 

8.1 Analytical solution 

In order to solve the cohesion bearing capacity factor Nc, simply the stresses have to 

be followed along the 3 zones, for a case in which there is no surcharge and no soil 

weight (q = 0,  = 0). In the solution below, the load will be inclined, so that this 

solution can also be used later for solving the inclination factor. 

 

The load inclination angle  is causing a rotation of Zone 1 and a reduction of the fan 

(Zone 2) with an angle . The load inclination angle  and the fan reduction angle  
are zero for non-inclined, or vertical, loads. 

 

Zone 3 

For Zone 3 the shear force follows from the Mohr-Coulomb failure criterion:  

3 3 tanc     . (8.1) 

Vertical force equilibrium yields:  

1 3 1 30     sin cosvF         , (8.2) 

or with the first equation implemented in the second: 

1
3

1

tan

1 tan tan
c




 
 

 
. (8.3) 

 

Zone 2 

The previous chapter already showed that for Zone 2, which has a shape of a 

logarithmic spiral, the additional moment M , created by the normal force 2,i  and 

the corresponding frictional shear forces 2,i , is zero during Mohr-Coulomb failure. 

So along the outside only the cohesion needs to be taken into account for the moment 

equilibrium: 

 

Figure ‎8-1. Inclined Prandtl wedge. 
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3

1

1 12 2 2

1 1 3 32 2
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0     
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i iM r r r c d





  


  


 

           , (8.4) 

or: 
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

  

 

  

 
     

 

     



    (8.5) 

 

Zone 1 

The shear force along the triangle shaped Zone 1 will be according Mohr-Coulomb:  

1 1 tanc     . (8.6) 

In fact, independently from the rotation angle , force equilibrium in the direction of 

  will result in the following equation of the main principle stress p:  

 

1 1 1 1 1

1 1 1

0      sin cos sin ,

   cot 1 cot tan .

F p

p c

     

   

      

      


 (8.7) 

For finding the size of the load p  , or its vertical and horizontal components, the fan 

reduction angle   has to be solved first. 

 

Zone 1+2+3 

By implementing the equations of the three zones, the following equation is found: 

       2 tan 2 tan1
1 1

1

tan
cot e cot e 1 1 cot tan

1 tan tan

p

c

     
   

 

 
   

          
    

.   (8.8) 

This equation can be used later for finding the corresponding inclination factor, but 

first the solution of a vertical load  0vp p      will be derived: 

 

 

   tan tan1
1 1

1

0
,

tan
cot e cot e 1 1 cot tan .

1 tan tan

c

p
N
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   




   

 




   
          

    

   (8.9) 

From Appendix Chapter  22 it follows after a long derivation that this equation is 

exactly the same as:  

  tan1 cot with: ec q q pN N N K      . (8.10) 

This is the same solution as in the publication of Prandtl, but in the publication of 

Prandtl most of this derivation is missing; the reader can only find in the publication 

the words “after simple calculations”. 
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8.2 Numerical solution 

The analytical solution published by Prandtl has been checked with finite element 

calculations performed with Plaxis 2D. The incremental displacement plots during 

failure indicate the failure mechanism. For low friction angles the failure mechanism 

looks very much like the Prandtl-wedge failure mechanism, which is the basis of the 

analytical solution. For high friction angles though, the failure mechanism looks 

completely different, see Figure  8-2. 

 

This change in failure mechanism has consequences; the force versus displacement 

plot is rather smooth for low friction angles, but becomes very rough for higher 

friction angles, see Figure  8-3.This is a sign that constantly new failure planes are 

found in the calculation, depending on the internal redistribution of the stresses. 

 

For a series of different friction angles, the maximum value of the normalised force, 

or the surcharge bearing capacity has been plotted, see Figure  8-4. For the Finite 

Element Modelling (FEM) both stress controlled and displacement controlled 

calculations have been used. These two gave, as expected, (almost) the same results. 

Remarkable is that the analytical solution of Prandtl is a bit too high, especially for 

higher friction angles. This can be explained by the loosening of the soil in Zone 2, 

due to the logarithmic spiral, leading to an easier failure mechanism, just as happened 

for the surcharge bearing capacity factor Nq. 

 

The semi-analytical line in the figure describes much better the cohesion bearing 

capacity factor, and can be written as: 

  2 tan1 cot with: cos ec q q pN N N K        . (8.11) 

 

 

    

Figure ‎8-2. Failure mechanism; left: low friction angle; right: high friction angle. 
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Figure ‎8-3. Normalised force versus displacement for different friction angles. 

    

Figure ‎8-4. Cohesion bearing capacity factors: Prandtl versus FEM. 
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9 Soil-weight bearing capacity factor N 
 

9.1 Scaled modelling 

The effects of the cohesion are taken into account by the cohesion bearing capacity 

factor Nc and the effects of a surcharge are taken into account by the surcharge 

bearing capacity factor Nq. So, the soil-weight bearing capacity factor N  regards the 

additional effect of the gravity on a frictional, but cohesionless material without a 

surcharge. The fact that the failure mechanism for the soil-weight bearing capacity is 

different from the bearing capacity for the cohesion, and also for the surcharge, is 

already known for some time. Caquot and Kerisel published in their book “Traité de 

Méchanique des sols” from 1966 the circular or elliptical failure mechanism of 

Figure  9-1.  

 

This circular failure mechanism can also be observed in the photo of Figure  9-2 which 

can be found in the book “Soil Mechanics” of Lambe and Whitman of 1969. 

A constant, or rectangular shaped, load p is impossible because just next to the load 

there is no strength for a cohesionless material without a surcharge. So, unlike the 

effect of the cohesion and the effect of the surcharge, the effect of the soil-weight does 

not result in a constant maximum load p. There will be a maximum load in the middle 

and a zero load at the edges, where the shear and normal stresses go to zero too. This 

explains why, in the figure of Caquot and Kerisel, not a rectangular load, but a 

triangle shaped load is drawn. But in fact, finite element modelling shows that the 

stress under a footing on non-cohesive soil has a hyperbolic shape (see Figure  9-3). 

 

    

Figure ‎9-1. Failure mechanism for the soil weight bearing capacity factor N. 
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The effect of the condition of zero bearing capacity at the edges, but not in the middle, 

explains the shape of a shoe print in the sand (see Figure  9-4), since for a shoe on the 

sand there is also no bearing capacity due to a surcharge or cohesion, but only due to 

the soil-weight. 

 

 

 

 

Figure ‎9-2. Laboratory test with cylinders: circular failure zones under a footing. 

 

  

Figure ‎9-3. Finite Element Modelling: Stress under a footing has a hyperbolic shape. 
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The representation of this spatially variable load as a constant bearing capacity factor 

means that only an average component can be calculated for the soil-weight bearing 

capacity factor. Although the use of the soil-weight bearing capacity factor, in the 

same way as the other two bearing capacity factors, suggests also a constant 

maximum load or bearing capacity at the surface, it should be clear that this is 

definitely not the case. 

 

9.2 Numerical solution 

Keverling Buisman (1940), Von Terzaghi (1943), Caquot and Kérisel (1953, 1966), 

Meyerhof (1951; 1953; 1963; 1965), Brinch Hansen (1970), Vesic (1973, 1975) and 

Chen (1975) subsequently proposed different equations for the soil-weight bearing 

capacity factor N
. Therefore the following equations for the soil-weight bearing 

capacity factor can be found in the literature: 

   

 

 

 

tan

tan

tan

tan

1 tan 1.4    (Meyerhof, 1963),

1.5 1 tan    (Brinch Hansen, 1970),

2 1 tan    (Vesic, 1973),

2 1 tan    (Chen, 1975).

p

p

p

p

N K e

N K e

N K e

N K e

 



 



 



 











  

  

  

  

 (9.1) 

The equation from Brinch Hansen is, as he writes, “based on calculations first from 

Lundgren and Mortensen (1953) and later from Odgaard and N. H. Christensen”. The 

equation of Vesic is almost identical to the solution of Caquot and Kérisel (1953) 

because it is, as he writes, based on “the numerical results of an analysis made by 

them under the assumption that (the dilatancy angle 45 / 2   ).…approximated‎

with an error on the safe side”. 

    

Figure ‎9-4. Shoe print in sand: bearing capacity in the middle, but not at the edges. 
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The equation of Chen and also others like Michalowski (1997) are based on the limit 

analyses, in which the soil is modelled as a perfectly plastic material obeying an 

associated flow rule.  

 

Although Chen’s equation is used, without reference, by Eurocode 7, caution is still 

needed, because Yu et al. (1998) concluded: “although the limit-equilibrium analysis 

is‎used‎widely….,‎its‎use‎may‎lead‎sometimes‎to‎significant‎errors‎as‎both‎kinematic‎

and static admissibility are violated in the method”. 

 

Another important point is given by Hjiaj et al (2005), who wrote: “As discussed by 

Chen (1975), the analysis of cohesion less (frictional) soil with self-weight is 

complicated by the fact that the shear strength increases with depth from a value of 

zero at the ground surface. This means that the Prandtl failure mechanism is no 

longer capable of yielding exact results,‎ …,‎ this‎ leads‎ to‎ the‎ conclusion‎ that‎ the‎

bearing capacity obtained using this mechanism can, at best, only be an upper bound 

on the correct value.” 

 

Because of these problems of the current solutions for the soil-weight bearing capacity 

factor, these solutions have been checked with displacement controlled calculations 

with the finite element model (FEM) Plaxis for a dilatancy angle 0  .  

 

The incremental displacement plots (see Figure  9-5), of these finite element 

calculations for the soil-weight bearing capacity factor, indicate that the displaced area 

(area with the lightest colour) forms a circular-wedge failure mechanism, which looks 

like the circular-wedge failure mechanism of Figure  9-2, and not like the much larger 

Prandtl-wedge failure mechanism (Van Baars, 2016). 

 

 

 

 

 

Figure ‎9-5. Numerical modelling: circular failure zones under a footing. 
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Figure  9-6 shows the results of the soil-weigh bearing capacity factor. For this figure 

calculations have been made for both a rough plate (no horizontal displacement of the 

soil below the plate) and a smooth plate (free displacement). The results of the 

displacement controlled calculations for a rough plate are, for internal friction angles 

up to 35, very similar to the equation of Vesic (1973):  

 tan2 1 tanpN K e 

     (for rough plates). (9.2) 

  

The results of the soil-weight bearing capacity factor for a smooth plate are, for 

internal friction angles above to 20, lower than all currently used equations. Van 

Baars (2015) proposed therefore to use a lower and safer equation, such as for 

example (see the empirical straight line in the figure based on FEM): 

 tan4tan 1N e 

     (for smooth plates). (9.3) 

Since infinite roughness can never be promised in reality, and since the plate should 

be strong enough to hold the tension force in the plate, and since the equations of 

Prandtl, Von Terzaghi, and Meyerhof are based on pure vertical loading without 

shear, it is better to use in design the last equation for smooth plates. 

 

 

 

 

 

     

Figure ‎9-6. The soil-weight bearing capacity factor N
. 
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10 Table of bearing capacity factors 
 

The outcome of the previous chapters can be summarised in the following table. 

 
  

cN  qN  N
    

cN    
qN  N

 

0 5.142 1.000 0.000  20 12.778 5.651 3.112 

1 5.360 1.094 0.004  21 13.449 6.163 3.593 

2 5.590 1.195 0.016  22 14.166 6.724 4.134 

3 5.831 1.306 0.038  23 14.933 7.339 4.745 

4 6.085 1.426 0.069  24 15.755 8.015 5.432 

5 6.353 1.556 0.111  25 16.637 8.758 6.206 

6 6.634 1.697 0.164  26 17.584 9.576 7.079 

7 6.931 1.851 0.231  27 18.603 10.479 8.064 

8 7.244 2.018 0.312  28 19.702 11.476 9.176 

9 7.574 2.200 0.408  29 20.888 12.578 10.433 

10 7.922 2.397 0.522  30 22.172 13.801 11.856 

11 8.291 2.612 0.654  31 23.563 15.158 13.469 

12 8.680 2.845 0.808  32 25.075 16.668 15.300 

13 9.092 3.099 0.984  33 26.720 18.352 17.383 

14 9.528 3.376 1.185  34 28.516 20.234 19.758 

15 9.991 3.677 1.415  35 30.480 22.342 22.471 

16 10.482 4.006 1.677  36 32.633 24.709 25.578 

17 11.004 4.364 1.973  37 35.001 27.375 29.145 

18 11.558 4.756 2.307  38 37.612 30.386 33.253 

19 12.149 5.183 2.685  39 40.499 33.796 37.997 

20 12.778 5.651 3.112  40 43.703 37.671 43.495 

 

These factors are for non-dilatant soils and are all based on the Finite Element 

calculations mentioned in the previous chapters (Eqs. 7.10, 8.11 and 9.3) and are 

lower, especially for higher friction angles, and therefore safer and more accurate than 

the factors normally used, for example in Eurocode 7.  

 

 

 

  

Table ‎10-1: Bearing capacity coefficients. 
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 IV Correction factors 
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11 Extensions: correction factors 
 

In 1953 Meyerhof was the first to propose equations for inclined loads. He was also 

the first in 1963 to write the formula for the (vertical) bearing capacity 
vp  with both 

inclination factors and shape factors as correction coefficients, in order to take into 

account the shape of the loaded area and the inclination of the load: 

1
2

.v c c c q q qp i s cN i s qN i s BN      (11.1) 

In this equation the coefficients ic , iq and i are correction factors for a possible 

inclination of the load (inclination factors), and sc , sq and s are correction factors for 

the shape of the loaded area (shape factors).  

Jørgen Brinch Hansen (1970) adopted later this equation. Over the years this equation 

has become the standard equation for the bearing capacity of shallow foundations.  

There are also some other correction factors which are used nowadays, such as the 

correction factors for a footing near a sloping soil surface, or a sloping (inclined) 

foundation footing. 

Although this equation is widely used nowadays, the applied superposition in this 

equation is scientifically speaking not correct, because the failure mechanism 

belonging to the soil-weight ( N ) is, as explained in Chapter  9, not the same as the 

failure mechanism belonging to both the cohesion (
cN ) and the surcharge ( qN ). 

By using the inclination factors and the shape factors, or even both at the same time, 

the risk for additional errors is even larger. 
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12 Inclination factors 
 

12.1 Meyerhof and Brinch Hansen 

In the case of an inclined load, i.e. loading by a vertical force and a horizontal load at 

the same time, the additional horizontal load can considerably reduce the vertical 

bearing capacity. At the same time the horizontal component of the load is limited due 

to the Coulomb shear failure at the foundation surface: 

tan .h vp c p    (12.1) 

Meyerhof published in 1953 his results of laboratory experiments on inclined loading 

on “purely cohesion materials” and “cohesionless materials”, (See Figure  12-2) for 

cases in which the horizontal component of the load is smaller than its maximum 

possible value (due to Coulomb shear failure). The correction factors for a certain load 

inclination angle   were in 1963 expressed by him as: 

22

1 , 1 ,    for:  .
90

q ci i i
 

 


   
        

    
 (12.2) 

In the Unites States of America, but also in many other countries, these factors are 

mostly used (see also Das, 1999). 

 

In 1970 Brinch Hansen proposed other inclination factors: 

 
2 31 , , .

tan

h
c q c c

v

p
i i i i i

c p



   


 (12.3) 

    
 

Figure ‎12-1. Model tests with inclined loaded footings (Meyerhof, 1953). 



 44 

This solution is often used in Scandinavia and in the Netherlands. It is however a 

disallowed mixture of the Coulomb shear failure criterion, which should only be 

applied at the interface at the surface, and the Mohr-Coulomb (Prandtl-wedge) bearing 

capacity failure of the half-space below the interface. A clear indication of the 

incorrectness of this solution is the fact that the surcharge inclination factor, iq, 

depends here on the cohesion, c , while the factor Nq for any inclination, and therefore 

also iq , should not depend on the cohesion, c. The same even applies for the cohesion 

inclination factor, ic . This indicates that this solution is incorrect and should not be 

used. 

In the coming chapters, the failure mechanism presented in Figure  12-2 for inclined 

loads will be studied; analytical solutions will be derived and compared to the 

equation of Meyerhof, based on his laboratory test, and these will also be compared to 

the results of finite element calculations. 

 

 

12.2 Surcharge fan reduction angle q 

The surcharge fan reduction angle  q of Zone 2 can be calculated for non-cohesive 

soils from Figure  12-3, which depicts the stresses of the inclined Prandtl-wedge and is 

also used by Bolton (1979) in his book “Guide to Soil Mechanics”. The following 

three equations follow from this figure. The load angle yields: 

tan .h

v

p

p
     (12.4) 

The radius of the Mohr circle of Zone 1 gives: 

 1

2

sin 1 1
1

1 sin sin

aK

p

S
p S



 

 




     


   with:   
1 sin

.
1 sin

aK








 (12.5) 

The relation between the vertical stress and the maximum stress results in: 

 

Figure ‎12-2. Prandtl-wedge for inclined load. 
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 
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 (12.6) 

 

These three equations can be implemented in a fourth equation: 
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h
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 (12.7) 

from which the surcharge fan reduction angle  q can be calculated (iteratively). 

With this equation, the following surcharge fan reduction angles can be found: 
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Figure ‎12-3. Mohr-Coulomb circles and fan reduction angle. 
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12.3 Cohesion fan reduction angle c 

The cohesion fan reduction angle  c will be approximated by writing the cohesion as: 

v

c c

p
c

i N
 . (12.8) 

The radius of the Mohr circle of Zone 1 gives: 

 1 2

2

a aK c K

p

  
    with:   

1 sin
.

1 sin
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







 (12.9) 

This gives:  
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2
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v
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p

pp
K K

i N p






  

  

 

 (12.10) 

Solving the cohesion fan reduction angle  c would mean, that first the cohesion 

inclination factor 
ci  must be solved before solving the fan reduction angle  c, and at 

the same time the fan reduction angle  c must be solved before solving the cohesion 

inclination factor 
ci , which is due to the complexity of both equations, not really 

possible. For a relative small load inclination angle  , the fan reduction angle  c can 

be solved though, because in this case:  

sin ; 1; cos 1; 90v
c c

p
i

p
         . (12.11) 

This yields for the cohesion fan reduction angle: 

min( ;90 )
2

1
c

a a

c

K K
N


  

 
 (12.12) 

Having both a surcharge and a cohesion will result in a single fan reduction angle, 

which will be somewhere in between the two fan reduction angles. This means the 

cohesion and the surcharge influence each other’s inclination factors. So, writing the 

surcharge part and the cohesive part completely separated, as suggested by the 

Meyerhof bearing capacity equation, is, scientifically speaking, not allowed. 

 

This solution has been compared with the results of FEM calculations. For this a very 

wide mesh is used with 15-node triangular elements, see Figure  12-4. According to 

these calculations the principle directions in Zone 1 are indeed rotated with this fan 

reduction angle cThis angle influences the total shape of the Prandtl-wedge. 


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12.4 The surcharge inclination factor iq 

In 2014 Van Baars published, based on a rotated Prandtl-wedge failure mechanism, 

the analytical solution for the surcharge inclination factor, iq. For this mechanism, the 

solution for the surcharge inclination factor can be analytically found by examining 

the effect of the inclined load for the three zones independently and multiplying the 

individual effects.  

 

 

Figure ‎12-4. Rotation of the principle direction in Zone 1. 

 

Figure ‎12-5. Incremental displacements and rotated Prandtl-wedge. 
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Zone 3 

For Zone 3 all equations and even all stresses remain the same. 

 

Zone 2 

For Zone 2, the rotation angle ( 1

1 3 2
    ) reduces due to the surcharge fan 

reduction angle q , so the following equation (see Chapter  7 and Figure  12-2) is 

changed: 

 
2

12 tan 2 tan231 1

2

3 3

e e
q

q

R

r

r

      

 

 
   

 
    

 
 

. (12.13) 

 

Zone 1 

For Zone 1, all equations stay the same. 

 

The inclination factors are influenced by the effects of the three zones, but also by the 

fact that they are based on the vertical component of the inclined bearing capacity, so: 

cosvp p    ( 12.6) 

 

Analytical solution 

Combination of all these effects, results in the following analytical solution of the 

surcharge inclination factor, which is defined as the (vertical component) of the 

inclined bearing capacity divided by the non-inclined bearing capacity:  
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 (12.14) 

This solution is however limited due to Coulomb shear failure of the load at the 

surface. By also taking this into account, the inclination factor becomes:  

 

 

2 tan
cos e ,

0     .

q

qi
 

  

 


  

 
 (12.15) 
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Numerical results 

This analytical solution has been compared with the results of FEM calculations. The 

cohesion is zero and the saturated weight of the soil is taken equal to the weight of the 

water, in order to have zero effective stresses due to the soil-weight. In this way all 

effects due to the cohesion bearing capacity Nc and the soil-weight bearing capacity N 

are excluded. 

The analytical relationship is presented in Figure  12-6, for a load inclination angle of 

 = 20, together with the relationship of the laboratory experiments of Meyerhof 

(Eq.  12.2) and with the results of the FEM calculations. 

 

 

The analytical solution is close to the FEM results and even describes them better as 

the empirical equation of Meyerhof, as can be seen from Figure  12-6. 

 

 

12.5 Cohesion inclination factor ic 

 

Analytical solution 

In 2014 Van Baars showed that in a similar way as for the analytical solution for the 

surcharge inclination factor, iq, an analytical solution for the cohesion inclination 

factor, ic can be found, but only at the following two boundary conditions: 

2 2
0 : cos

2

0 : .

c
c

c q

i

i i

 
 





 
  




 (12.16) 

 

Figure ‎12-6. Surcharge inclination factor: Analytical, Laboratory and FEM. 
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Based on these analytical boundary solutions, one can make a short equation for the 

variable 
ci  which goes gradually from the zero boundary into the infinite boundary, 

which is:  

2 tan tan2
cos e e

2
c c

ci
   




  
    

 
 (12.17) 

This solution is only exact at the boundaries and is an approximation in between. 

There is also a way however, leading to the exact solution.  

 

Since the inclination factor is defined as the (vertical component) of the inclined 

bearing capacity divided by the non-inclined bearing capacity:  
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the exact cohesion inclination factor is (see chapter  8): 
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 (12.19) 

or with simplification of the denominator: 

    

      

 

2 tan 2 tan1
1 1

1

tan

tan
cot e cot e 1 1 cot tan

1 tan tan
cos

e 1 cot

c c

c

p

i
K

     

 


   

 




    
         

     
 

 (12.20) 

This exact solution is, just as the surcharge inclination factor, limited due to Coulomb 

shear failure at the surface:  
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 (12.21) 

So, by taking both inclined Prandtl failure and Coulomb shear failure into account, the 

cohesion inclination factor simply becomes the lowest factor of both failure 

mechanisms, which yields for the short equation ( 12.17):  
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 (12.22) 

Figure  12-7 shows the comparison of this short equation (for a load inclination angle 

20   ) with the exact equation ( 12.20). The solutions are (almost) the same. 
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Numerical results 

Both analytical relationships are presented in Figure  12-7, together with the equation 

of Meyerhof (Eq.  12.2) based on his laboratory experiments and together with the 

results of the finite element calculations, for a load angle of 20. 

 

 

Also in this case the analytical solution prescribes rather well to the FEM results and, 

as can be seen from this figure, even more accurate than the Meyerhof equation for 

the inclination factors (Eq.  12.2). 

Another interesting point is that there is a zone for the internal friction  

(8 20    , for  = 20) in which the cohesion inclination factor depends on a 

Prandtl failure mechanism, while the surcharge inclination factor depends on a 

Coulomb shear failure mechanism. Since there are different failure mechanisms 

occurring at the same time, the superposition of Meyerhof’s bearing capacity equation 

(Eq.  11.1) is, scientifically speaking, not allowed for this zone. 

 

The accurateness of the analytical solution (Equations  12.12 and  12.22) can also be 

seen from a vertical load versus horizontal load plot with a variable load angle , and 

a constant friction angle  0   , see Figure  12-8. This plot also shows how 

inaccurate the Meyerhof equation is for angles larger than 20 degrees. 

 

  

Figure ‎12-7. Cohesion inclination factor: Analytical, Laboratory and FEM. 
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12.6 Soil-weight inclination factor i 

The soil-weight inclination factor can only be obtained from numerical or laboratory 

tests, like Meyerhof did. Nevertheless, from the equation of Meyerhof for the soil-

weight bearing capacity, it becomes clear that Meyerhof thought about a gradual 

reduction to zero and not about a sudden drop to zero (Coulomb shear failure) such as 

for the surcharge inclination factor. The empirical solution of Meyerhof (based on 

laboratory tests) has been plotted in Figure  12-10, together with the results from the 

finite element calculations. These calculations proof that the correction factors for the 

inclination of the load must be changed into: 

 

Figure ‎12-8. Cohesion inclination factor versus load angle. 
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5

1 ,    for:  ,
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 

 (12.23) 

in order to fit the results of the numerical calculations. 

 

 

 

 

 

Figure ‎12-9. Soil-weight failure mechanism for inclined load. 

 

Figure ‎12-10. Soil-weight inclination factor: Laboratory and FEM. 
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13 Shape factors 
 

13.1 Introduction 

If the shape of the foundation area is not an infinitely long strip, but a rectangular 

area, of width B and length L (where it is assumed, that the width is the shortest 

dimension, i,e, L B ), correction factors for the shape are used. Meyerhof (1963) was 

the first to publish shape factors:  

1 0.1 sin , 1 0.2q p c p

B B
s s K s K

L L
         with:   

1 sin

1 sin
pK









 (13.1) 

A few years later De Beer (1970) published his shape factors, based on laboratory 

experiments. Brinch Hansen (1970) based his shape factors on the experimental 

results from De Beer. So the most commonly used shape factors are (for B L ): 

1 0.2 , 1 sin , 1 0.3 .c q

B B B
s s s

L L L
       (13.2) 

There is still no international agreement on the precise values of these correction 

factors. 

It may be noted that for 0B L  , the formulas all give a factor 1, in agreement with 

the basic results for an infinite strip. It should also be remembered that 1B L  , by 

definition. 

 

Knudsen and Mortensen (2016) compared for frictionless soils ( 0  ), the bearing 

capacity for axi-symmetric (2D Plaxis), circular, and square foundations (both 3D 

Plaxis). They found very similar results (deviation less than 3%). This means the 

shape factors can also be studied with axi-symmetric calculations. 

 

There is a risk in assuming an identical Prandtl-wedge shaped failure mechanism for 

circular or even elliptical shaped loaded areas, such as for example Figure  13-2. Van 

Baars (2014 and 2015) showed that, for circular shallow foundations, the resulting 

shape factors are far too high, according to Finite Element calculations, and also 

according to the laboratory tests of De Beer. The reason for this is that the area of part 

3 of the Prandtl wedge, the part next to the load, becomes too big, creating too much 

support, so before this Prandtl-wedge failure mechanism can occur, already another 

  

Figure ‎13-1. Rectangular area. 
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mechanism occurs. For deep foundations though, this failure mechanism might still be 

interesting, see Chapter  18. 

 

Figure  13-3 shows the incremental displacements during failure, for a circular loaded 

area ( 4 mD  ) on two different cohesive soils, without a surcharge, indicating the 

failure mechanism. The failure mechanism starts like the circular-wedge failure 

mechanism, in the middle of the loaded area, has 3 zones, like the Prandtl–wedge, and 

is found for all three bearing capacity cases (cohesion, surcharge and soil-weight). 

 

Due to the axial symmetry, the circular wedge is pushed out during failure, causing a 

declining tangential stress (i.e. circumferential stress or hoop stress). 

For the strip load (plane strain solution) the minimum stress, in part 3 of the wedge, is 

the vertical stress, which is zero without a surcharge, and the maximum stress is the 

horizontal stress (perpendicular to the load).  

For the circular load (axial symmetry) however, the minimum stress, in part 3 of the 

wedge, is not the vertical stress, but the tangential stress, which is zero, or even less in 

case of a cohesion, which causes even tension. Therefore, the maximum stress, which 

is still the horizontal stress (perpendicular to the load), will also be far less. Due to this 

cleaving failure mechanism, the bearing capacity of a circular load will be far less 

than of a strip load, resulting in shape factors below “1”. In reality, for cohesive 

materials, there will be radial cracks formed, which eliminate the tensile tangential 

stresses and therefore increase the bearing capacity. 

 

  

Figure ‎13-2. Prandtl-wedge approach for circular loaded areas. 

  

Figure ‎13-3. Failure mechanism for circular loaded areas. 
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13.2 Cohesion shape factor sc 

The shape factor for circular (round) loads can be calculated with axial symmetric 

calculations in Plaxis. Plaxis gives for displacement controlled calculations the 

resulting load 
yF  for 1 rad, or half a circular load. The circular cohesion shape factor 

is therefore calculated by:  

 ; 1

4

2
with:
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c round

c

F
s

D N c 
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c q
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



 

  
 (13.3) 

The shape factor for a circular footing ( cs  for B L ) on cohesive soil has been 

plotted in Figure  13-4, for Meyerhof, De Beer and the outcome of the axial-symmetric 

FEM calculations. The FEM results show that the currently used factors from 

especially Meyerhof, but also De Beer, are too high, so unsafe. 

 

Several publications, for example Zhu and Michalowski (2005), and Tapper et al. 

(2015), show that the shape factors are related to 
B

L
, and not to 

B

L
. This will be 

adopted here. The shape factor used for the straight line in the figure is:  

 1 0.7 0.5tan .c

B
s

L
     (13.4) 

 

 
Figure ‎13-4. The circular cohesion shape factor. 
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13.3 Surcharge shape factor sq 

The shape factor for a circular footing (
qs  for B L ) surrounded by a surcharge, has 

been plotted in Figure  13-5, for Meyerhof, De Beer and also the outcome of the axial-

symmetric FEM calculations. 

 

The results show that the currently used factors from especially Meyerhof, but also De 

Beer, are too high, so unsafe. The shape factor used for the straight line is: 

2
1 0.7 tan .

3
q

B
s

L


 
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 
 (13.5) 

 

13.4 Soil-weight shape factor s 

The shape factor for a smooth circular footing ( s  for B L ), on soil with an 

effective weight, has been plotted in Figure  13-6, for Meyerhof, De Beer and also the 

outcome of the axial-symmetric FEM calculations. 

The results show that the currently used factors from especially Meyerhof, but also De 

Beer, are again too high, so unsafe. The shape factor used for the straight line is:  

1 0.6 exp( .
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L





 
     

 
 (13.6) 

  

 

 
Figure ‎13-5. The circular surcharge shape factor. 
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13.5 Superposition of the shape factors 

Figure  13-7 shows the results of a single combined calculation in which 
1

2
c q D   . 

Since the failure mechanisms of the three parts (cohesion, surcharge and soil-weight) 

are identical, superposition is allowed. The prediction based on the shape factors 

presented in this chapter is good, while the classical equations overestimate the 

results. 

 

 

Figure ‎13-7. The combined circular bearing capacity factors. 

 

Figure ‎13-6. The circular soil-weight shape factor. 
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14 Non-eccentric loading 
 

Until now, nobody proposed correction factors for non-eccentric loading. The 

common practice is to reduce the contact area of the foundation such that its centroid 

coincides with that of the load, which means that, the area of the foundation outside 

the effective area, is completely neglected. 

The question is, if this reduction of the foundation area is an accurate method to 

describe the reduction of the bearing capacity due to vertical non-eccentric loading. 

Several people have performed finite element calculations of vertical and also inclined 

non-eccentric loaded strip footings. There can still be some discussion about these 

results, because Hjiaj et al (2004) based their results on the limit analysis, so the 

words “dilatancy angle” were not mentioned in their article. Knudsen and Mortensen 

(2016) and independently Khitas et al (2016) only found results for frictionless soil (

0  ). They found for frictionless soils that the error of the simplified method, with 

the reduction of the foundation area, is limited to 5% percent, in case the eccentricity 

is limited to: e/B < 0.30.  

 

The failure mechanism, see Figure  14-2, is very different between non-eccentric and 

eccentric loading, so one can expect a different force-displacement relation. The 

force-displacement curve however, see Figure  14-3, remains remarkably very similar 

indeed, having also forces at failure, which are only slightly influences by the 

additional unloaded part of the plate. 

 

Figure ‎14-1. Effective or reduced foundation due to non-eccentric loading. 
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Figure ‎14-2. Failure mechanism for non-eccentric loading. 

 

Figure ‎14-3. Normalised force versus displacement. 



 61 

15 Inclined footing factors 
 

In the German norms an even more rare case can be found, the reduction factor for the 

case of an inclination of the footing itself (in German: Sohlneigungsbeiwert). This 

relates to page 307 of the publication of Reissner. 

 

    

Figure ‎15-1. Inclined footings. 

 

According to the German norms the reduction factors are:  

 0.045 tan 0 .c q e  

        (15.1) 

It is unclear where these reduction factors come from, and moreover, it is very 

suspicious that these factors are supposed to be all the same. Therefore, if one is ever 

asked to design an inclined footing, which is unlikely, it is probably better not to use 

these reduction factors, but to apply the solution of the inclined loads as given in 

Chapter ‎12. 
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16 Slope factors 
 

It is rare to make a foundation at the edge of a slope, but even for such a case the 

German norms proposes the following correction factors (in German: 

Geländeneigungsbeiwert): 

   

 

 

1.9

6

1
0 , or undrained:  1 0.4 tan 0

1

1 tan ,

1 0.5tan ,

q

c c

q

q

N e

N





    

 

 

 
    



 

 

 (16.1) 

with:  

0.0349 tan .      (16.2) 

The angles in these equations are all in degrees and to avoid slope failure: .  .  

 

 

In the solution for the cohesion factor there is a mysterious jump around 0   and the 

cohesion correction factor 
c  is even assumed to depend on the surcharge bearing 

capacity factor 
qN . Since there is also no background information in the norms about 

this solution, it is recommended not to use these factors. 

It could be safer to perform a Bishop slip circle calculation in order to check the safety 

factor of a foundation near a slope. 

 

 

 

 

 

 

 

Figure ‎16-1. Footing near a long slope. 
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17 Perforation factor 
 

Tapper et al. (2015) published in their article about the “Undrained vertical bearing 

capacity of perforated shallow foundations” something new: the perforation shape 

factor. They wrote: 

 

“Perforated shallow foundations are commonly used as mudmats to support subsea 

infrastructure such as pipeline end manifolds and terminations. The perforations may 

be included in the foundation design to allow water to escape during installation, or to 

reduce uplift resistance on decommissioning. Perforated geometries, often involving a 

single perforation, can also be efficient for larger gravity-based foundations. 

However, perforations decrease the available foundation bearing area, which reduces 

the capacity of the foundation during operation.” 

 

The authors studied with centrifuge tests and numerical simulations the effect of the 

perforation on the bearing capacity of a shallow foundation on cohesive material. 

 

    

Figure ‎17-1. Perforated offshore foundation examples. 
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Figure ‎17-2. Transition of failure mechanisms. 

 

 

In the plots of their numerical simulations, one can recognise the Prandtl-wedges 

(Figure  17-2). 

 

 

 

    

Figure ‎17-3. Square perforated footing capacity (d/B=0.2). 
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 V Pile tip bearing capacity 
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18 Pile tip bearing capacity using Meyerhof 
 

For the determination of the bearing capacity of the tip of a foundation pile very often 

the general bearing capacity formula of Meyerhof is used. In this analysis the basic 

parameters are the shear strength of the sand layer (characterised by its cohesion c and 

its friction angle  ), and the weight of the soft layers, which are taken into account as 

a surcharge q.  

The maximum tip bearing capacity is determined analogously to the bearing capacity 

of a shallow foundation, which is based on the Prandtl-wedge. This entails simply 

using the 2-dimensional solution of a shallow foundation, multiplied with shape 

factors for a 3-dimensional collapse, and simply disregarding the shear strength (but 

not the weight) of the soil above the foundation plane, see Figure  18-1. 

The first who applied the Prandtl-wedge for pile foundations were Keverling Buisman 

(1935, 1940) and Meyerhof (1951), but they forgot about the shape factors, because 

they were first published by Meyerhof in 1963.  

 

Figure  18-2 shows a figure published by Vesic (1967) and republished by Fang 

(1990). It shows the bearing capacity factor for shallow round footings ;q round qS N  

according to several researchers. The solution of the author (Van Baars, 2014), based 

on this 3-dimensional Prandtl-wedge failure mechanism (see Figure  13-2), is added to 

this figure. This solution can be approximated by: 

2 tan

; eq round qS N     (18.1) 

This solution is somewhat in the middle of the other results. The interesting point is 

that this solution is close to the Berezantsev solution, because Fang (1990) writes: “Of 

the values shown in the figure, that of Berezantsev et al (1961) is considered to be the 

most reliable (Norland, 1963; Vesic, 1965; Tomlinson, 1977; Canadian Foundation 

Engineering Manual (CFEM), 1978)”. 

 

 
Figure ‎18-1. Slide plains under a pile, based on the Prandtl-wedge. 
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The problem of such an approach is that there is in fact no real failure mechanism 

possible all the way to the surface as it occurs with the Prandtl-wedge failure 

mechanism for shallow foundations. So, the whole failure mechanism in the ground 

higher than the pile tip is neglected. This can make this method conservative. On the 

other hand this method neglects the failure mechanism occurring for the shallow 

foundations, which is failure due to a tangential stress (hoop stress) going to zero. 

If one uses the Meyerhof equation, with the shape factor and surcharge bearing 

capacity factor for shallow foundations, to calculate the bearing capacity of a pile, and 

not equation  18.1, then for certain a far too low bearing capacity will be found. 

 

The reason why these methods are still used very often, is that the only better 

alternative; the use of Cone Penetration Test (CPT) based methods, is not always 

possible. Not in all cases CPT’s can be made, for example when the soil is too strong, 

or when there are too many large stones in the soil. 

 

 

 
Figure ‎18-2. Comparison of the surcharge shape factor for round loads 

;q round qS N  (By Vesic, 1967 and Fang, 1990). 
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19 Pile tip bearing capacity using CPT-based 

methods 
 

In engineering practice a simpler, more practical and more reliable method has been 

developed, on the basis of a Cone Penetration Test (CPT), considering this as a model 

test (Boonstra, 1940). 

The common assumption made here is that the failure mechanism around the pile tip 

is a sort of Prandtl-wedge type failure. In this case, at a certain depth, the term of the 

soil-weight in the Meyerhof equation can be neglected and the other two terms; the 

cohesion term and the surcharge term, are independent of the width of the pile tip. 

This would mean that the bearing capacity stress measured with the CPT test must be 

the same as the bearing capacity stress of the much bigger pile. 

The essence of this assumption is unfortunately not correct; the real failure 

mechanism around the pile tip is not a Prandtl-wedge type of failure. According to 

field tests on real piles the bearing capacity (the average stress below the pile tip) 

depends on the size of the pile tip and is a little bit smaller for bigger piles. Therefore 

the bearing capacity measured with the cone of the CPT (qc-value) must be reduced 

before using it as bearing capacity for a real pile tip. 

 

 

 

 
Figure ‎19-1. Logaritmic spiral shape failure mechanism around a pile tip. 
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Another point is that the thin CPT cone is far more sensitive for the discontinuities of 

the subsoil as real piles. Therefore every CPT-based method needs a rule for 

“smoothening” the discontinuities over a certain distance. The distance over which 

this “smoothening” rule must be applied is, in case of the Koppejan’s method (Van 

Mierlo & Koppejan, 1952), based on Zone 2 of the solution of the Prandtl-wedge, by 

assuming a logarithmic spiral shaped failure mechanism around the pile tip, see 

Figure  19-1. Because of this logarithmic spiral, the failure zone is, in the Koppejan’s 

method, assumed to reach from 0,7 Deq to 4 Deq below the pile tip, until 8 Deq above 

the pile tip. 

A slip failure along this logarithmic spiral is however impossible; although the soil 

below the level of the pile tip can rotate away from the pile, similarly as Zone 2 of the 

Prandtl-wedge, the soil above the level of the pile tip cannot rotate towards the pile 

and will not finally disappear in the pile. 

 

Also laboratory model tests, see Figure  19-2, and numerical simulations show a global 

failure zone and not a failure with a slip surface. Moreover, this zone is mostly below, 

and not above, the level of the pile tip; from 7 Deq below the pile tip, until 4 Deq above 

the pile tip for a fully elasto-plastic soil, see Figure  19-3. 

  

 

 

 
Figure ‎19-2. Global failure below pile tip in crushable sand. 

(Picture from Kyushu University, Geotechnical Engineering Research Group) 
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This shows that it is not correct to assume a Prandtl-wedge type of failure mechanism 

near the tip of a foundation pile, or to derive the smoothing zone from the shape of a 

logarithmic spiral. 

 

  

 
Figure ‎19-3. Numerical calculation of the failure zone around a pile tip. 
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20 Pile tip bearing capacity versus horizontal stress 
 

According to Reissner, for a shallow foundation, the bearing capacity depends on the 

vertical stresses. The assumption by Meyerhof, and others, that this also applies to pile 

foundations, is probably incorrect. In Cone Penetration Tests, the shaft friction and the 

cone resistance qc always show a similar pattern; in sand there is always a rather 

constant ratio or friction number of f = 1%, see Figure  20-1. From this two 

conclusions can be drawn. 

 

 

First, the cone resistance cannot depend on the vertical stress, while the cone 

resistance can decrease with depth (here between -6 and -8 m), while the vertical 

stress always increases with depth. 

Second, since the shaft friction   depends on the horizontal effective stress, more or 

less like:  

tan ,h     (20.1) 

 
Figure ‎20-1. Cone penetration test in normally consolidated sand, showing shaft 

friction, cone resistance and friction number (on the right). 
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the bearing capacity p does not depend on the vertical stress, but on the horizontal 

stress (after the pile installation): 

tan
.

1%
c hp q


     (20.2) 

This suggests that the pile tip failure mechanism is related to a sort of cavity 

expansion failure mechanism, probably controlled by the lowest (horizontal) stress, 

and not like shallow foundations, to a Prandtl-wedge failure mechanism. 
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21 Mohr-Coulomb and Rankine 
 

The possible stresses in a soil are limited by the Mohr-Coulomb failure criterion. 

Following Rankine (1857) this condition will be used in this chapter to determine 

limiting values for the horizontal stresses, and for the lateral stress coefficient K. 

The stress states in a soil can be limited, with a good approximation by the Mohr-

Coulomb failure criterion. This criterion is that the shear stresses on any plane are 

limited by the condition 

tan ,f c       (21.1) 

where c is the cohesion, and   is the angle of internal friction. The criterion can be 

illustrated using Mohr’s circle, see Figure  21-1. 

 

If it is assumed that zz  and xx  are principal stresses, and that zz  is known (by the 

weight of the load and the soil), it follows that the value of the horizontal stress xx  

cannot be smaller than indicated by the small circle, and not larger than defined by the 

large circle. The ratio between the minor and the major principal stress can be 

determined by noting, see Figure  21-2, that the radius of Mohr’s circle is 1
1 32

( )  , 

and that the location of the centre is at a distance 1
1 32

( )   from the origin. It 

follows that for a circle touching the envelope, 

1
1 32

1
1 32

( )
sin ,

( ) cotc

 


  




  
 

so that 

3 1

1 sin cos
2 .

1 sin 1 sin
c

 
 

 


 

 
 (21.2) 

 

Figure ‎21-1. Mohr-Coulomb I. 
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The two coefficients in this equation can be related by noting that 

2 (1 sin )(1 sin )1 sincos 1 sin
.

1 sin 1 sin 1 sin 1 sin

  

   

  
  

   
 

This means that equation (21.2) can be written as 

3 1 2a aK c K      with:   
1 sin

.
1 sin

aK








 (21.3) 

Apart from the constant term 2 ac K  there appears to be a given ratio of the minor 

and the major principal stress. 

Formula (21.3) can be written in inverse form as 

1 3 2p pK c K      with:   
1 sin

.
1 sin

pK








 (21.4) 

The coefficients Ka and Kp, which give the smallest and the largest ratio of the two 

principal stresses (apart from a constant term), are denoted as the coefficients of active 

earth pressure Ka and passive earth pressure Kp, respectively. 

The angle between the shear surface and the smallest principle stress is according to 

Figure  21-2: 

1 1

3 4 2
    . (21.5) 

And the angle between the shear surface and the largest principle stress is: 

1 1

1 4 2
    . (21.6) 

 

 

Figure ‎21-2. Mohr-Coulomb II. 
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22 Nc simplification 
 

In order to simplify the 
cN  equation, the following parameters must be defined first 

(see Chapter  21): 

 1 1

4 2
     

 
2

1 sin 1
cot

1 sin tan
p pK K




 


   


 

 tan

q pN K e    

Also three equations (A, B and C) have to be derived from the following basic 

equation, which can be found in any good Analysis book: 

 
2

2tan
tan 2

1 tan








 

This basic equation can be rewritten to equation A: 

 1

22

2

2

2

1 2 tan
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This equation A will be used later, but first it will be changed into equation B:  
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This equation B will be substituted in equation A to find equation C:  
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1
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1 1
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p

p
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p p
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 
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 


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


 
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    (C) 

This equation C will be needed later on. 
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The simplification starts from the equation of 
cN  (Chapter  8): 
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In this way the equation for 
cN  can be rewritten to: 

 1 cotc qN N       with:     
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 (22.1) 
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23 Prandtl’s publication of 1920 
 

Prandtl, L. (1920) “Über die Härte plastischer Körper.” Nachrichten der Gesellschaft 

der Wissenschaften zu  Göttingen, Mathematisch.-physikalischen Klasse, 74–85. 

 

With thanks to the owner of this document, the Niedersächsische Staats- und 

Universitätsbibliothek Göttingen (SUB), Georg-August-Universität 

Göttingen, Germany. 
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24 Reissner’s publication of 1924 
 

Reissner, H. (1924) “Zum Erddruckproblem.” Proc., 1st Int. Congress for Applied 

Mechanics, C. B. Biezeno and J. M. Burgers, eds., Delft, The Netherlands, 295–311. 
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