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Leishmania RNA Virus Controls the
Severity ofMucocutaneous Leishmaniasis
Annette Ives,1 Catherine Ronet,1 Florence Prevel,1 Giulia Ruzzante,1 Silvia Fuertes-Marraco,1

Frederic Schutz,2 Haroun Zangger,1 Melanie Revaz-Breton,1* Lon-Fye Lye,3

Suzanne M. Hickerson,3 Stephen M. Beverley,3 Hans Acha-Orbea,1 Pascal Launois,4

Nicolas Fasel,1† Slavica Masina1

Mucocutaneous leishmaniasis is caused by infections with intracellular parasites of the Leishmania
Viannia subgenus, including Leishmania guyanensis. The pathology develops after parasite dissemination
to nasopharyngeal tissues, where destructive metastatic lesions form with chronic inflammation.
Currently, the mechanisms involved in lesion development are poorly understood. Here we show that
metastasizing parasites have a high Leishmania RNA virus–1 (LRV1) burden that is recognized by the
host Toll-like receptor 3 (TLR3) to induce proinflammatory cytokines and chemokines. Paradoxically,
these TLR3-mediated immune responses rendered mice more susceptible to infection, and the
animals developed an increased footpad swelling and parasitemia. Thus, LRV1 in the metastasizing
parasites subverted the host immune response to Leishmania and promoted parasite persistence.

Leishmania parasites are obligate intracel-
lular protozoan parasites transmitted to the
mammalian host by the bite of an infected

sand fly, where they predominantly infect macro-
phages. In Latin America, leishmaniasis caused
by the Leishmania Viannia (L.Viannia) subgenus
is endemic, causing cutaneous (CL) and muco-
cutaneous (MCL) leishmaniasis (1). ClinicalMCL
involves parasitic dissemination to the nasopha-
ryngeal areas of the face, leading to destructive
metastatic secondary lesions and hyperinflamma-
tory immune responses (2–4). About 5 to 10%
of individuals asymptomatic or with resolved CL
lesions may develop MCL (1, 5, 6).

MCL development is associated with persist-
ent immune responses showing proinflammatory
mediator expression with high tumor necrosis
factor a (TNF-a), CXCL10, and CCL4; a mixed
intralesional T helper 1 (TH1)/TH2 phenotype;

and elevated cytotoxic T cell activity (7–10). In
addition to parasite-derived virulence factors, host
genetics [such as polymorphisms for TNF-a and
interleukin-6 (IL-6)] and immune status appear
to influence MCL development (11, 12).

Hamsters infected with L.Viannia parasites
isolated from human MCL lesions reproduce the
metastatic phenotype with primary and second-
ary lesion development (13). Using this model,
we characterized clones derived from the me-
tastasizing L.guyanensis WHI/BR/78/M5313-
L.g.M5313(M+) strain as metastatic (L.g.M+) or
nonmetastatic (L.g.M−) after infection, depend-
ing on their ability to reproducibly develop second-
ary metastatic lesions (14). Previously, we showed
that L.g.M+ clones derived from L.g.M5313 were
more resistant to oxidative stress thanL.g.M− clones
and persisted in activated murine bone-marrow–
derived macrophages despite their elevated nitric
oxide levels (15).

On the basis of these observations, we hypothe-
sized that Lg.M+ and L.g.M− parasites differen-
tially modulate the host macrophage responses.
Using DNA microarrays, we identified differential
gene expression between uninfected macrophages
andL.g.M+(1672)orL.g.M− (1513) infectedmacro-
phages, and L.g.M− directly compared to L.g.M+
(294) infected macrophages. Statistical signifi-
cance was determined at ≥1.5-fold, P ≤ 0.05. We

focused on genes involved in the immune response
because of their relevance in MCL pathology.

In vitro, infected macrophages expressed signif-
icantly greater amounts of chemokines and cyto-
kines CCL5, CXCL10, TNF-a, and IL-6 after
infection with L.g.M+ parasites compared with
L.g.M− parasites or L. majorLV39 (Fig. 1, A and
B) (16). We observed similar increased cytokine
and chemokine expression after infection with
L.g. from humanMCL lesions (h-MCL-Lg1398)
as compared to cytokine and chemokine expres-
sion during L.g. infection from humanCL lesions
(h-CL-Lg1881) (Fig. 1C). Thus, the elevated cyto-
kine and chemokine levels after macrophage in-
fection are associated with metastasizing parasites.

Leishmania parasites enter the macrophage
endosomal compartment and form a phagolyso-
some (17). Pretreatment of macrophages with
chloroquine, which induces vacuolar alkanization
and impairs recognition of pathogen-derived
motifs by cells (18), or cytochalasin D, which in-
hibits parasite phagocytosis by inhibiting actin
polymerization (19), showed that L.g.M+ parasite-
dependent induction of proinflammatory mediator
required parasite entry into the cell and sequestra-
tion into a mature phagolysosome (fig. S1A).
Therefore, we investigated the role of the macro-
phage endosomal Toll-like receptors (TLRs) of the
myeloid differentiation factor 88 (MyD88) (TLR7
and TLR9) and/or of the TIR domain–containing
adapter-inducing interferon-b (TRIF)-dependent
pathways (TLR3). Using macrophage functionally
deficient for TLR3, 7, or 9, or for the adaptors
MyD88 andTRIF, we found that the TLR3-TRIF–
dependent pathway was essential for increased
proinflammatory mediator expression after macro-
phage infection with L.g.M+ (Fig. 2 and fig. S1B).
In addition, MyD88-dependent TLR7 activation
within the macrophage was required for maxi-
mal secretion of the proinflammatory mediators
after infection with M+ parasites (Fig. 2 and fig.
S1B). In our system, TLR9 was not involved in
L.g.M+-dependent macrophage responses, sug-
gesting that recognition of Leishmania-derived
DNA motifs by the host’s TLR9 does not differ
between the Leishmania strains (Fig. 2A).

In other murine models of infection, TLR3
ligation up-regulates proinflammatory mediators
(TNF-a, IL-6, andchemokines) and type I interferons,
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Fig. 1. Metastasizing L.g. parasites activate bone-
marrow macrophages to elevate proinflammatory
cytokine and chemokine levels. (A) Transcript and (B
and C) secreted protein levels induced after C57BL/6
or BALB/c macrophage infection (ratio 1:10) with
Leishmania parasites [two L.g.M− clones (Lg03 and Lg17);
two L.g.M+ clones (Lg13 and Lg21); L.g.M5313(M+); L.g.
derived from h-MCL (−L.g.1398) or hCL (L.g.1881) le-
sions; and L.major LV39] for 6 hours. Results were con-
firmed in several independent experiments (n > 3), and
data reflect mean T SD transcript or protein increase
relative to unstimulated controls. Significance was deter-
mined at *P ≤ 0.05, and **P ≤ 0.01 for L.g.M+ or h-MCL
versus L.g.M−, h-CL, and/or L. major LV39-stimulated
macrophages.
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Fig. 2. L.g.M+or h-MCL parasite-dependent induction
of IFN-b and proinflammatory mediators by macro-
phages uses TLR3 and TRIF. (A and C) Secreted protein
and (B) transcript levels of cytokines and chemokines
induced after infection of macrophages (ratio 1:10)
with Leishmania parasites [two L.g.M+ clones (Lg13
and Lg21), two L.g.M− clones (Lg03 and Lg17), and
L.g.M5313(M+)] for 6 and 2 hours, respectively. Re-
sults were confirmed in several independent exper-
iments (n= 3), and data reflect mean T SD transcript or
protein increase relative to unstimulated controls of
L.g.M+ or L.g.M−. Significance was determined be-
tween C57BL/6 and deficient macrophages (A and
C) or between L.g.M+ or h-MCL and L.g M− and h-CL
parasites (B) at *P ≤ 0.05 and **P ≤ 0.01. n.i, not
induced.
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resulting in organ damage (20–22). To confirm
the role of TLR3 in the recognition of L.g.M+
parasites, we analyzed IFN-b expression. Infection

with L.g.M+ induced significantlymore IFN-b tran-
scripts (31.14 T 23.46) than L.g.M− clones (5.83 T
4.27) after 6 hours by comparisonwith unstimulated

macrophage controls. This increase was observed as
early as 2 hours after infection (Fig. 2B). At the
protein level, after macrophage infection, L.g.M+

Fig. 4. TLR3−/−mice infected with L.g.M+ parasites
have decreased disease pathology when compared
to wild-type C57BL/6. Footpads (n ≥ 4) were in-
fected with 3 × 106 parasites. (A) Footpad swelling
wasmeasured weekly and (B) parasite burden (n= 3)
was determined at 4 weeks after infection by qRT-PCR
with Leishmania Kmp11 gene-specific primers. Rep-
resentative data of two experiments, expressed as
mean T SEM of all mice infected per group, with
statistical significance at *P ≤ 0.05 and **P ≤ 0.01.
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5.3-kb LRV1 dsRNA band visualized by gel electro-
phoresis. (B) LRV1 virus burden within Leishmania
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M5313-derived and h-MCL induced higher IFN-b
secretion than L.g.M− parasites or h-CL parasites
(Fig. 2C). Furthermore, this expression was TLR3-
TRIF dependent, with the MyD88 signaling path-
way augmenting secretion (Fig. 2C).

Endosomal TLRs recognize nucleic acid mo-
tifs, with TLR7 and TLR3 recognizing single-
stranded RNA (ssRNA) and double-stranded
RNA (dsRNA), respectively (23). Our experimen-
tal evidence suggested that nucleic acid–derived
motifs were involved in the host macrophage re-
sponse to infection with metastasizing L.g. para-
sites. We observed increased production of CCL5,
TNF-a, and IL-6 in macrophages exposed to
single-stranded ribonuclease (ssRNAse)– and de-
oxyribonuclease (DNAse)–treated nucleic acids
derived from L.g.M+ parasites, compared with
L.g.M− and L.major LV39 (fig. S2). Although not
statistically significant, these results suggested
that the nucleic acid motif is resistant to ssRNAse
and DNAse treatments and is likely to be dsRNA.

L.Viannia parasites, including L.g.M5313(M+)
and L. guyanensis and L. braziliensisMCL human
isolates, harbor the dsRNA Leishmania RNA virus
1 (LRV1) (24–26). These viruses have a capsid coat
protecting a 5.3-kb dsRNA genome (27). Metasta-
sizing promastigotes had greater levels of LRV1
(L.g.M+ or h-MCL-LRVhigh) than nonmetasta-
sizing promastigotes (L.g.M− or h-CL-LRVlow)
as shown by the presence of a ~5.3-kb, DNAse-
insensitive, RNAse III–sensitive band in agarose
gels, andLRV1quantificationbyquantitative reverse
transcriptase–polymerase chain reaction (qRT-PCR)
(Fig. 3, A to C, and fig. S3A). We thus verified that
macrophages treated with purified LRV1 dsRNA
(fig. S3) induced a phenotype similar to that of
macrophage infected with metastasizing para-
sites, and as shown by an increased expression of
CXCL10, CCL5, TNF-a, IL-6, and IFN-b tran-
scripts, this increase was TLR3 dependent (Fig.
3D). Because the L.g.M5313M+ andM− parasites
were not isogenic, we performed new experiments
with parasites derived from the WHO reference
strain L.g.M4147 that metastatizes in the hamster
(28) and carries the LRV1-4 virus (29). Macro-
phage infection with L.g.M4147-LRVhigh parasites
produced significantly greater amounts of cytokines
and chemokines than infection with its respective
isogenic virus-free derivative L.g.M4147LRVneg,
in a TLR3-dependent manner (Fig. 3E and fig.
S4) (30, 31). Similar parasite burdens were ob-
served for all parasites infected into the wild-type
and the TLR-, TRIF-, andMyD88-deficient mac-
rophages (table S1).

A role for TLR3 and LRV1 in leishmaniasis
development was analyzed in vivo, with TLR3−/−,
TLR7−/−, and WT mice that were infected in the
footpad. A significant decrease in footpad swell-
ing, and diminished parasite burden, were observed
in TLR3−/− mice infected with L.g.M+LRVhigh

(M5313) or L.g.M4147−LRVhigh parasites com-
pared with wild-type mice (Fig. 4 and fig. S5). No
consistent, significant decrease in disease patholo-
gy was observed between TLR3−/− and wild-type
mice infected with L.g.M−LRVlow (Lg17) or

L.g.M4147−LRVneg or between TLR7−/− andwild-
type infected mice with the different parasite iso-
lates (Fig. 4 and Fig. S5). Further experimentation
is required to elucidate the role of TLR7-dependent
immune responses with respect to infection with
LRV1-containing Leishmania parasites.

Our work showed that recognition of LRV1
within metastasizing L.g. parasites by the host pro-
moted inflammation and subverted the immune
response to infection to promote parasite persistence
(2, 3, 32). Because recognition of LRV1within the
metastasizing L.g. parasites arises early after infec-
tion, we hypothesize that LRV1 dsRNA is released
from dead parasites, unable to survive within the
host macrophage. These results could open the
door to better diagnosis of risk for MCL disease
and facilitate the development of new and more
efficient treatment regimes.
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Posttranslational Modification
of Pili upon Cell Contact Triggers
N. meningitidis Dissemination
Julia Chamot-Rooke,1,2 Guillain Mikaty,3,4 Christian Malosse,1,2 Magali Soyer,4,5

Audrey Dumont,4,5 Joseph Gault,1,2 Anne-Flore Imhaus,4,5 Patricia Martin,3,4

Mikael Trellet,6 Guilhem Clary,4,7,8 Philippe Chafey,4,7,8 Luc Camoin,4,7,8 Michael Nilges,6

Xavier Nassif,3,4,9 Guillaume Duménil4,5*

The Gram-negative bacterium Neisseria meningitidis asymptomatically colonizes the throat of
10 to 30% of the human population, but throat colonization can also act as the port of entry to the
blood (septicemia) and then the brain (meningitis). Colonization is mediated by filamentous organelles
referred to as type IV pili, which allow the formation of bacterial aggregates associated with host cells.
We found that proliferation of N. meningitidis in contact with host cells increased the transcription of a
bacterial gene encoding a transferase that adds phosphoglycerol onto type IV pili. This unusual
posttranslational modification specifically released type IV pili-dependent contacts between bacteria. In
turn, this regulated detachment process allowed propagation of the bacterium to new colonization sites
and also migration across the epithelium, a prerequisite for dissemination and invasive disease.

The Gram-negative bacterium Neisseria
meningitidis is a leading cause of septicemia
and meningitis in humans (1). Initially,

individual bacteria adhere to the nasopharynx
epithelium via their type IV pili, a filamentous
organelle common to numerous pathogenic bac-
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