Reator de Pesquisa IEA-R1

O sistema de resfriamento primário do IEA-R1 consiste em uma piscina, tubulação, tanque de decaimento, bombas, trocadores de calor, distribuidor, válvulas e estruturas, conforme esquematicamente mostrado na Figura 1.

O núcleo do reator é resfriado por fluxo descendente. A remoção de calor do reator é baseada em sistemas de resfriamento primário e secundário. A água da piscina do sistema primário é bombeada no sentido descendente através dos elementos combustível para remoção do calor da fissão do núcleo. Em seguida, a água flui através do tanque de decaimento para diminuir a atividade do N16 antes de entrar no trocador de calor, que transfere o calor para o sistema de resfriamento secundário. O sistema secundário circula a água aquecida para a torre de resfriamento que dissipa o calor para a atmosfera. A água do circuito primário retorna à piscina do reator através dos difusores na região inferior da piscina.

A Figura 2 apresenta uma vista em Corte da Piscina do Reator IEA-R1.

Um sistema pneumático acionado manualmente levanta um dispositivo, denominado HEADER (ou válvula de circulação natural), Figura 3 para acoplar o bocal de saída à placa da matriz do núcleo. Em seguida, a bomba é ligada e a vazão de operação primária é ajustada. O sistema pneumático é desligado e o dispositivo é mantido acoplado pela força hidrodinâmica resultante da diferença de pressão. Estabelecida a vazão de operação é iniciada a partida do reator com a retirada controlada das barras de controle até a potência de operação desejada. Se a vazão primária diminuir abaixo do valor do ponto de ajuste (90%), o reator é desligado e o dispositivo de acoplamento cai por ação da gravidade, e então o calor residual é removido por circulação natural na piscina do reator

Figura 1 Diagrama Simplificado dos Sistemas de Resfriamento Primário e Secundário do Reator IEA-R1

Figura 2 Vista em Corte da Piscina do Reator IEA-R1

Figura 3 HEADER (Válvula de convecção natural)

O núcleo ativo do reator apresenta uma configuração de 5x5, sendo 20 Elementos Combustíveis Padrão (EC), 4 Elementos Combustíveis de Controle (Ect) e uma posição central de Irradiação (EIBe). Ao redor do núcleo ativo encontram-se os refletores de Berílio e Grafite e os dispositivos de irradiação de amostras resfriados a água (EIRA). A Figura 4 apresenta uma vista de topo do núcleo do reator IEA-R1.

Figura 4 Vista de topo do núcleo do reator IEA-R1.

Os Elementos Combustíveis padrão, de controle, refletores e irradiadores são posicionados através de seus bocais nos furos principais da placa matriz, Figura 5. Além dos furos principais, a placa matriz possui furos secundários que permitem a circulação de água nos canais formados entre ECs, entre os refletores e irradiadores. A Figura 6 mostra um detalhe de um canal entre dois elementos combustíveis.

Figura 5 Placa Matriz do núcleo do reator IEA-R1.

Figura 6 Detalhe do Canal entre dois Elementos Combustíveis.

A Figura 7 apresenta um detalhe das placas combustíveis (revestimento e cerne) e a montagem das mesmas na placa suporte lateral para a montagem do EC.

Figura 7 Detalhe da Placa combustível e Montagem do Elemento.

A Figura 8 apresenta as vistas em corte, topo e lateral, com as principais dimensões, de um Elemento Combustível Padrão e a Figura 9 uma vista em perspectiva.

Figura 8 Elemento Combustível Padrão.

Figura 9 Perspectiva do Elemento Combustível Padrão.

A Figura 10 apresenta as vistas em corte, topo e lateral, com as principais dimensões, de um Elemento Combustível de Controle.

Figura 10 Elemento Combustível de Controle.

Tabela 1 Principais característica do dos Elementos Combustíveis e condições de operação do reator IEA-R1.

Reactor Parameter	Data	Notes
Steady State Power Level (MW)	2 to 5	depends irradiation necessity
Fuel		
Fuel Enrichment	< 19.75%	
Number of Fuel Element in the Core	24	
a) Standard Fuel Element	20	
b) Control Fuel Element	4	
Fuel Types:		
U ₃ O ₈ -Al	Density 2.3 g/ cm ³	Mass U235 per fuel element 196.9 g
U ₃ Si ₂ -Al	Density 3.0 g/ cm ³	Mass U235 per fuel element 275.5 g
Maximum Inlet Temperature (°C)	40 °C	
ΔT_{CORE} at 5 MW	5.8 °C	between inlet and outlet
Number of Fuel Plates in:		
a) Standard Fuel Element	18	
b) Control Fuel Element	12	
Fuel Thickness (mm)	0.76	
Clad Thickness (mm)	0.38	
Total Width of the plates (mm)	67.1	
Fuel Meat Dimensions (mm)	0.76 x 62.6 x 600	
Thickness of water channel (mm)	2.89	
Water pool volume (m ³)	272	

Coolant Flow Rate (m ³ /h)	Total: 772 , one FE: 22.8	
	Core Flow: 22.8 x 24 =547.2	
	Bypass: 224.8	
Pressure Drop – Normal Condition	7.835 kPa	Measured
Pressure drop of primary system	400 kPa	Approximately
Uncertainties:		
deviation in fuel loading per plate	12%	
Fluctuation in uranium density	2%	
Error in meat thickness	10%	
Power measurement	5%	
Power density variation	10%	
Flow rate measurement	3,0%	

A Figura 11 apresenta os fatores de potência radiais de um núcleo com 20 Elementos Combustíveis Padrão, 4 Elementos Combustíveis de Controle (azul) e um Irradiador Central.

O que significam esses fatores de potência radiais?

Vamos analisar alguns deles para esclarecer:

O primeiro EC superior do lado esquerdo apresenta um fator de potência radial de 1,321, isso significa que este EC tem uma potência 32,1 % maior que a potência média do núcleo.

Outro exemplo, o Elemento da linha 2 coluna 2 (em azul) apresentam um fator de pico radial de 0,515, ou seja ele está operando com 51,5% da potência média do núcleo. Este fator tão baixo se justifica porque trata-se de um Elemento Combustível de Controle que possui apenas 12 placas combustíveis (não 18 como o EC padrão) e dentro dele entram duas barras para controle de potência.

Finalmente temos a posição central onde o fator de potência radial é zero pois, trata-se de um irradiador de Berílio onde não há geração de calor (potência zero)

1,321	1,563	0,981	1,628	1,030
0,857	0,515	1,129	0,402	0,826
1,050	1,877	0,000	1,914	0,979
0,860	0,411	1,151	0,519	0,822
0,906	1,028	0,878	1,044	0,867

Figura 11 Distribuição Radial de potência real

PROPOSTA DE ANÁLISE TERMOHIDRÁULICA DE UM NÚCLEO HIPOTÉTICO

Com o objetivo de rever e aplicar os conceitos de transferência de calor (condução e convecção) na análise térmica de um EC tipo placa vamos iniciar considerando um núcleo hipotético sem barras de controle e sem posição de irradiação central.

Para simplificar essa primeira análise vamos considerar ainda que no núcleo constituído de 25 EC todos com operam a mesma potência e considere ainda que a distribuição de potência axial (ao longo da placa) é uniforme.

A Figura 12 apresenta uma Distribuição Radial de potência Hipotética para um reator operando à uma de potência 5 MW.

Serão consideradas as dimensões dos EC e vazões de operação apresentadas na Tabela 1.

Deverão ser calculadas as distribuições de temperatura axiais do fluido refrigerante, revestimento e cerne do EC.

1,000	1,000	1,000	1,000	1,000
1,000	1,000	1,000	1,000	1,000
1,000	1,000	1,000	1,000	1,000
1,000	1,000	1,000	1,000	1,000
1,000	1,000	1,000	1,000	1,000

Figura 12 Distribuição Radial de potência Hipotética

Encaminhamento da análise:

O núcleo é constituído de 25 EC e todos com a mesma potência.

Para uma potência de operação de 5 MW temos:

Potência por elemento combustível: 5.000.000W/25 EC =200.000W/EC

Cada EC possui 18 placas combustíveis, portanto 11.111,11 W/placa

Área de troca de calor de cada placa combustível (Tabela1)

Fuel Meat Dimensions (mm)	0.76 x 62.6 x 600

At=62*600*2=74.400mm² = 744 cm2 =74,4 x10⁻³m²

Qual o Fluxo de calor?

q"= 14,93W/cm² =149.342,88 W/m²

Velocidade: (Tabela 1)

Coolant Flow Rate (m ³ /h)	Total: 772 , one FE: 22.8	
	Core Flow: 22.8 x 24 =547.2	
	Bypass: 224.8	
Thickness of water channel (mm)	2.89	

Total Width of the plates (mm)	67.1	
--------------------------------	------	--

V= Vazão/área

Área=67,1*2,89

Transferência de Calor:

Figura 13 Perfil de temperatura radial no EC.

Equações de Balanço

Para a região central da placa (Combustível)

Figura 13 região central do EC.

$$q^{\prime\prime\prime} = -k_f \nabla^2 T$$
$$\frac{d^2 T}{dx^2} = -\frac{q^{\prime\prime\prime}}{k_f}$$

Considerando

$$q''' = cte$$
$$k_f = cte$$
$$\rightarrow \frac{dT}{dx} = -\frac{xq'''}{k_f} + C$$

$$\frac{dT}{dx} = 0 \to C = 0$$

Para x=0 t= tm e

Integrando mais uma vez (entre x = 0 e x=s)

$$\underbrace{T(x) - Ts}_{2k_f} = \frac{x^2 \cdot q'''}{2k_f}$$

Para o Revestimento

Para o Revestimento: não tem calor sendo gerado, apenas condução

$$\frac{dT}{dx} = \frac{-q^{\prime\prime}}{k_{cl}} = \frac{-cq^{\prime\prime\prime}}{k_{cl}}$$

$$q^{\prime\prime} = -k\frac{dT}{dx}$$

integrando mais uma vez de x = s até x = s + c

$$\Delta T \quad_{cl} = \frac{s.\,c.\,q^{\prime\prime\prime}}{k_{cl}}$$

$$\Delta T_{Total} = \Delta T_F + \Delta T_{cl} = s. q''' \left(\frac{s}{2k_f} + \frac{c}{k_{cl}}\right)$$

Interface Revetimento/Fluido

$$Q = h.A.\Delta T$$
 ou q "=h(t_c -t_f)

$h=(Nu^{*}K_{fluido}/Dh) = 0,023(K_{fluido}/D_{h})^{*}Re^{0,8*}Pr^{0,4}$

O número de Reynolds – Re = $\rho . v . Dh/\mu$

O número de Prandtl - Pr = cp . µ/Kfluido

O NÚMERO DE Nusselt é Nu = 0,023*Re^{0,8}*Pr^{0,4}

As quantidades envolvidas são a viscosidade do fluido (μ), a condutividade térmica do fluido (Kfluido), a massa específica do fluido (ρ), o calor específico (cp), a velocidade de escoamento do fluido (v) e o diâmetro efetivo do canal no qual o fluido escoa. O diâmetro hidráulico, Dh (perímetro molhado), é definido como sendo: Dh = 4 x(Área de escoamento) / (perímetro em contato com o fluido)

O número de Reynolds, que constitui uma medida da razão entre a inércia e as forças viscosas em um fluido em circulação, caracteriza o escoamento. Em particular, a transição entre escoamento laminar e turbulento ocorre para valores de Re da ordem de 2000 ~4000. O número de Prandtl depende apenas das propriedades do fluido, sendo dado pela razão entre a viscosidade cinemática e a difusividade térmica. Esse número determina a maneira pela qual a temperatura e velocidade do fluido variam próximo da parede em que o mesmo escoa e no qual está sendo aquecido e/ou resfriado.

Dados:

Considerar a temperatura de entrada do fluido no núcleo 30ºC.

 $K_A = 0,61 W/m.K$ $\rho_A = 1000 kg/m^3$

 $\mu_A=1,003x10^{-3}$ Pa.s ou [Kg/(m.s)] (viscosidade dinâmica) $\vee_A=\mu/\rho$

Cp_A=4,18 kJ/kg.K

 $K_C=35W/m.K$

K_R=180W/m.K

MODELO TÉRMICO

PRINCIPAIS HIPÓTESES :

Condução de calor transversal(placas)

Convecção (revestimento/fluido)

Transporte entálpico ao longo do canal

Despreza-se :

Condução de calor axial nas placas e fluido

Devido a simetria do problema pode-se considerar um canal de resfriamento e duas meia placas conforme a Figura 13

Figura 14 Modelo térmico de um canal