Problems

In each of Problems 1 through 6:

- **a.** Show that the given differential equation has a regular singular point at x = 0.
- **b.** Determine the indicial equation, the recurrence relation, and the roots of the indicial equation.
- **c.** Find the series solution (x > 0) corresponding to the larger root.

d. If the roots are unequal and do not differ by an integer, find the series solution corresponding to the smaller root also.

7. The Legendre equation of order α is

$$(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0.$$

The solution of this equation near the ordinary point x = 0 was discussed in Problems 17 and 18 of Section 5.3. In Example 4 of Section 5.4, it was shown that $x = \pm 1$ are regular singular points.

a. Determine the indicial equation and its roots for the point x = 1.

b. Find a series solution in powers of x - 1 for x - 1 > 0. *Hint:* Write 1 + x = 2 + (x - 1) and x = 1 + (x - 1). Alternatively, make the change of variable x - 1 = t and determine a series solution in powers of t.

8. The Chebyshev equation is

$$(1 - x^2)y'' - xy' + \alpha^2 y = 0,$$

where α is a constant; see Problem 8 of Section 5.3.

- **a.** Show that x = 1 and x = -1 are regular singular points, and find the exponents at each of these singularities.
- **b.** Find two solutions about x = 1.
- **9.** The Laguerre¹³ differential equation is

 $xy'' + (1 - x)y' + \lambda y = 0.$

a. Show that x = 0 is a regular singular point.

b. Determine the indicial equation, its roots, and the recurrence relation.

c. Find one solution (for x > 0). Show that if $\lambda = m$, a positive integer, this solution reduces to a polynomial. When properly normalized, this polynomial is known as the **Laguerre polynomial**, $L_m(x)$.

10. The Bessel equation of order zero is

$$x^2y'' + xy' + x^2y = 0.$$

.....

 $1. \quad 2xy'' + y' + xy = 0$

2.
$$x^2y'' + xy' + \left(x^2 - \frac{1}{9}\right)y = 0$$

- **3.** xy'' + y = 0
- 4. xy'' + y' y = 0
- 5. $x^2y'' + xy' + (x 2)y = 0$
- 6. xy'' + (1-x)y' y = 0
 - **a.** Show that x = 0 is a regular singular point.
 - **b.** Show that the roots of the indicial equation are $r_1 = r_2 = 0$.
 - **c.** Show that one solution for x > 0 is

$$J_0(x) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}.$$

The function J_0 is known as the **Bessel function of the first kind** of order zero.

d. Show that the series for $J_0(x)$ converges for all x.

11. Referring to Problem 10, use the method of reduction of order to show that the second solution of the Bessel equation of order zero contains a logarithmic term.

Hint: If $y_2(x) = J_0(x)v(x)$, then

y

$$y_2(x) = J_0(x) \int \frac{dx}{x \left(J_0(x)\right)^2}.$$

Find the first term in the series expansion of $\frac{1}{r(I_0(x))^2}$

12. The Bessel equation of order one is

$$x^{2}y'' + xy' + (x^{2} - 1)y = 0.$$

- **a.** Show that x = 0 is a regular singular point.
- **b.** Show that the roots of the indicial equation are $r_1 = 1$ and $r_2 = -1$.
- **c.** Show that one solution for x > 0 is

$$J_1(x) = \frac{x}{2} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(n+1)! \, n! \, 2^{2n}}$$

The function J_1 is known as the **Bessel function of the first kind** of order one.

d. Show that the series for $J_1(x)$ converges for all x.

e. Show that it is impossible to determine a second solution of the form

$$x^{-1}\sum_{n=0}^{\infty}b_nx^n, \quad x>0.$$

¹³Edmond Nicolas Laguerre (1834–1886), a French geometer and analyst, studied the polynomials named for him about 1879. He is also known for an algorithm for calculating roots of polynomial equations.