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! As before, we can show that the series in equation (21) converges for all x . Since y1 and y2 behave like
x and x1/2, respectively, near x = 0, they are linearly independent and so they form a fundamental
set of solutions. Hence the general solution of equation (8) is

y = c1y1( x) + c2y2( x) , x > 0.

The preceding example illustrates that if x = 0 is a regular singular point, then sometimes
there are two solutions of the form (7) in the neighborhood of this point. Similarly, if there is
a regular singular point at x = x0, then there may be two solutions of the form

y = ( x − x0) r
∞∑

n=0
an( x − x0) n (22)

that are valid near x = x0. However, just as an Euler equation may not have two solutions of
the form y = xr , so a more general equation with a regular singular point may not have two
solutions of the form (7) or (22). In particular, we show in the next section that if the roots
r1 and r2 of the indicial equation are equal or differ by an integer, then the second solution
normally has a more complicated structure. In all cases, though, it is possible to find at least
one solution of the form (7) or (22); if r1 and r2 differ by an integer, this solution corresponds
to the larger value of r . If there is only one such solution, then the second solution involves a
logarithmic term, just as for the Euler equation when the roots of the characteristic equation are
equal. The method of reduction of order or some other procedure can be invoked to determine
the second solution in such cases. This is discussed in Sections 5.6 and 5.7.
If the roots of the indicial equation are complex, then they cannot be equal or differ by an

integer, so there are always two solutions of the form (7) or (22). Of course, these solutions
are complex-valued functions of x . However, as for the Euler equation, it is possible to obtain
real-valued solutions by taking the real and imaginary parts of the complex solutions.
Finally, we mention a practical point. If P , Q, and R are polynomials, it is often much

better to work directly with equation (1) than with equation (3). This avoids the necessity
of expressing xQ( x)/P( x) and x2R( x)/P( x) as power series. For example, it is more
convenient to consider the equation

x(1+ x) y′′ + 2y′ + xy = 0

than to write it in the form

x2y′′ + 2x
1+ x

y′ + x2

1+ x
y = 0,

which would entail expanding 2x
1+ x

and x2

1+ x
in power series.

Problems
In each of Problems 1 through 6:

a. Show that the given differential equation has a regular
singular point at x = 0.
b. Determine the indicial equation, the recurrence relation, and
the roots of the indicial equation.
c. Find the series solution ( x > 0) corresponding to the larger
root.
d. If the roots are unequal and do not differ by an integer, find
the series solution corresponding to the smaller root also.

1. 2xy′′ + y′ + xy = 0

2. x2y′′ + xy′ +
(
x2 − 19

)
y = 0

3. xy′′ + y = 0
4. xy′′ + y′ − y = 0
5. x2y′′ + xy′ + ( x − 2) y = 0
6. xy′′ + (1− x) y′ − y = 0
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7. The Legendre equation of order α is
(1− x2) y′′ − 2xy′ + α (α + 1) y = 0.

The solution of this equation near the ordinary point x = 0 was
discussed in Problems 17 and 18 of Section 5.3. In Example 4 of
Section 5.4, it was shown that x = ±1 are regular singular points.

a. Determine the indicial equation and its roots for the point
x = 1.
b. Find a series solution in powers of x − 1 for x − 1 > 0.
Hint: Write 1 + x = 2 + ( x − 1) and x = 1 + ( x − 1) .
Alternatively, make the change of variable x − 1 = t and
determine a series solution in powers of t .

8. The Chebyshev equation is

(1− x2) y′′ − xy′ + α 2y = 0,

where α is a constant; see Problem 8 of Section 5.3.
a. Show that x = 1 and x = −1 are regular singular points, and
find the exponents at each of these singularities.
b. Find two solutions about x = 1.

9. The Laguerre13 differential equation is

xy′′ + (1− x) y′ + λy = 0.

a. Show that x = 0 is a regular singular point.
b. Determine the indicial equation, its roots, and the recurrence
relation.
c. Find one solution (for x > 0). Show that if λ = m, a
positive integer, this solution reduces to a polynomial. When
properly normalized, this polynomial is known as the Laguerre
polynomial, Lm( x) .

10. The Bessel equation of order zero is

x2y′′ + xy′ + x2y = 0.

..............................................................................................................................
13Edmond Nicolas Laguerre (1834--1886), a French geometer and analyst,
studied the polynomials named for him about 1879. He is also known for an
algorithm for calculating roots of polynomial equations.

a. Show that x = 0 is a regular singular point.
b. Show that the roots of the indicial equation are r1 = r2 = 0.
c. Show that one solution for x > 0 is

J0( x) = 1+
∞∑

n=1

(−1) nx2n
22n(n!) 2 .

The function J0 is known as the Bessel function of the first kind
of order zero.
d. Show that the series for J0( x) converges for all x .

11. Referring to Problem 10, use the method of reduction of order
to show that the second solution of the Bessel equation of order zero
contains a logarithmic term.
Hint: If y2( x) = J0( x)v( x) , then

y2( x) = J0( x)
∫

dx

x
(
J0( x)

)2 .

Find the first term in the series expansion of 1
x
(
J0( x)

)2 .

12. The Bessel equation of order one is
x2y′′ + xy′ + ( x2 − 1) y = 0.

a. Show that x = 0 is a regular singular point.
b. Show that the roots of the indicial equation are r1 = 1 and
r2 = −1.
c. Show that one solution for x > 0 is

J1( x) = x
2

∞∑

n=0

(−1) nx2n
(n + 1) ! n! 22n .

The function J1 is known as the Bessel function of the first kind
of order one.
d. Show that the series for J1( x) converges for all x .
e. Show that it is impossible to determine a second solution of
the form

x−1
∞∑

n=0
bnxn , x > 0.

5.6 Series Solutions Near a Regular
Singular Point, Part II
Now let us consider the general problem of determining a solution of the equation

L[y] = x2y′′ + x( xp( x) ) y′ +
(
x2q( x)

)
y = 0, (1)

where

xp( x) =
∞∑

n=0
pnxn , x2q( x) =

∞∑

n=0
qnxn , (2)

and both series converge in an interval |x | < ρ for some ρ > 0. The point x = 0 is a regular
singular point, and the corresponding Euler equation is

x2y′′ + p0xy′ + q0y = 0. (3)


