
APPROXIMATE SOLUTION TO THE AUTOCATALYTIC HYDROLYSIS OF CELLULOSE
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C + P + H/ = C0 + H0/



First-order approximation
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Second-order approximation: 
kH0 > ka
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Short time and long time behaviors
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Approximate solution found has twice the term exp[exp[−]], which is a classical Gompertz function 

used in ageing theory (Hallén 2007), as well as in modeling tumor growth (Laird 1964). Moreover, the 

Gompertz function has been used to describe the biodegradation of cellulose (Hu et al. 2004).
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NUMBER OF SCISSIONS PER CELLULOSE CHAIN S(t)

ka >> kH0
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Classical sigmoid shape of logistic function is recovery by S(t)



S(t)/C0 = 1 − C(t)/C0
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Figure 1. Time evolution of the normalized number of scissions per

cellulose chain. Continuous line is the numerical result while (− − −)

is the C2(t) approximation and (− -- −) is the cubic expansion given by

eq. 13. Constant parameters are H0 = 1.0; C0 = 50; k = 0.1 and  = 1.

The rate constant ka is changed from 0.05 (A); 0.12 (B) and 0.2 (C).

Surprising result: Cubic expansion is very good!!!
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Figure 2. Lifetime as a function of the ratio ka/kH0. Numerical result (Δ) and value of 

lifetime t1/2 calculated using the derived equation (■).
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Experimental Protocol
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Figure 3. Scheme of determination of the rate constant parameters from analysis of the initial slope and value 

of lifetime from the time evolution of S(t)/C0. Numerical result (Δ) and continuous line is the cubic expansion 

given by Eq. 13. Simulated parameters used are H0 = 1.0; C0 = 50; k = 0.1;  = 1; and ka = 0.05; t1/2 = 4.08.
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