APPROXIMATE SOLUTION TO THE AUTOCATALYTIC HYDROLYSIS OF CELLULOSE

$$C + H \xrightarrow{k} P + H$$
$$\frac{dC}{dt} = -kHC$$
$$P \xrightarrow{k_a} A + \alpha H$$
$$\frac{dP}{dt} = kHC - k_a P$$
$$(0) = C_0, P(0) = 0, \text{ and } H(0) = H_0$$
$$\frac{dH}{dt} = \alpha k_a P$$
$$C + P + H/\alpha = C_0 + H_0/\alpha$$

Gehlen, M.H. Approximate solution of the autocatalytic hydrolysis of cellulose, Cellulose 2009, 16, 1069 – 1073.

Gehlen, M.H. *Kinetics of autocatalytic acid hydrolysis of cellulose with crystalline and amorphous fractions*, Cellulose, **2010**, 17, 245 – 252.

$$C(t) = C_0 \exp\left[-k \int_0^t H(\tau) d\tau\right] \qquad \qquad H(t) = H_0 + \alpha k_a \int_0^t P(\tau) d\tau$$

First-order approximation

1)
$$H(t) = H_0$$

 $P_1(t) = kexp[-k_at] \otimes H_0C_1(t)$
 $P_1(t) = \frac{C_0kH_0}{(kH_0 - k_a)} (exp[-k_at] - exp[-kH_0t])$

Second-order approximation: $kH_0 > k_a$

$$H_{1}(t) = H_{0} + \frac{\alpha C_{0}}{(kH_{0} - k_{a})} (kH_{0}(1 - \exp[-k_{a}t]) - k_{a}(1 - \exp[-kH_{0}t])) \qquad C_{1}(t) = C_{0} \exp[-kH_{0}t]$$

$$\ln \frac{C_2(t)}{C_1(t)} = \frac{-\alpha k C_0}{(kH_0 - k_a)} \left((kH_0 - k_a) t + \frac{kH_0}{k_a} (exp[-k_at] - 1) - \frac{k_a}{kH_0} (exp[-kH_0t] - 1) \right)$$

Approximate solution found has twice the term $\exp[\exp[-\tau]]$, which is a classical Gompertz function used in ageing theory (Hallén 2007), as well as in modeling tumor growth (Laird 1964). Moreover, the Gompertz function has been used to describe the biodegradation of cellulose (Hu et al. 2004).

Short time and long time behaviors

$$\ln \frac{C_2(t)}{C_1(t)} \cong \frac{-\alpha k_a k^2 H_0 C_0}{6} t^3$$

$$\ln \frac{\mathbf{C}_2(t)}{C_1(t)} = \alpha \mathbf{C}_0 \left(\left(\frac{k}{k_a} + \frac{1}{H_0} \right) - kt \right)$$

NUMBER OF SCISSIONS PER CELLULOSE CHAIN S(t)

$$k_a >> kH_0$$

$$S(t) = \frac{C_0(1-y)}{(1+y\alpha C_0/H_0)} \qquad y = ex$$

$$y = \exp[-k(H_0 + \alpha C_0)t]$$

Classical sigmoid shape of logistic function is recovery by S(t)

NUMBER OF SCISSIONS PER CELLULOSE CHAIN S(t)

 $S(t)/C_0 = 1 - C(t)/C_0$

$$\ln\frac{C_{2}(t)}{C_{1}(t)} = \frac{-\alpha kC_{0}}{(kH_{0} - k_{a})} \left(\left(kH_{0} - k_{a}\right)t + \frac{kH_{0}}{k_{a}} \left(exp[-k_{a}t] - 1\right) - \frac{k_{a}}{kH_{0}} \left(exp[-k_{0}t] - 1\right) \right)$$

 $\mathbf{C}_{1}(t) = \mathbf{C}_{0} \exp\left[-k\mathbf{H}_{0}t\right]$

Figure 1. Time evolution of the normalized number of scissions per cellulose chain. Continuous line is the numerical result while (- - -) is the C₂(t) approximation and (- - -) is the cubic expansion given by eq. 13. Constant parameters are H₀ = 1.0; C₀ = 50; k = 0.1 and $\alpha = 1$. The rate constant k_a is changed from 0.05 (A); 0.12 (B) and 0.2 (C).

Surprising result: Cubic expansion is very good!!!

$$C(t) = C_0 \exp\left[-kH_0 t - \frac{\alpha k_a k^2 H_0 C_0}{6} t^3\right]$$

Life-time
$$(t_{1/2}): C_2(t) = C_0/2$$

Figure 2. Lifetime as a function of the ratio k_a/kH_0 . Numerical result (Δ) and value of lifetime $t_{1/2}$ calculated using the derived equation (\blacksquare).

Experimental Protocol

Figure 3. Scheme of determination of the rate constant parameters from analysis of the initial slope and value of lifetime from the time evolution of $S(t)/C_0$. Numerical result (Δ) and continuous line is the cubic expansion given by Eq. 13. Simulated parameters used are $H_0 = 1.0$; $C_0 = 50$; k = 0.1; $\alpha = 1$; and $k_a = 0.05$; $t_{1/2} = 4.08$.

1	Ęc	PROGRAM cell v2.for
2	C	This program calculates the relative concentration
3	c	of celulose from a autocatalytic model and performs comparison
4	c	with second order approximation, and its cubic function.
5	c	It also calculates de lifetime from cubic approximation function
6	c	Author: Marcelo H. Gehlen
7	C	Last version: february 2009
8	Lo	Driver for routine RKDUMB
9		real ss,tt,rql,pl,p2,p0
10		common /PATH/X(500),Y1(3,500)
11		common /PARAM/ah0,alfa,c0,rk,ak
12		parameter (NVAR=3, NSTEP=400)
13		dimension VSTART (NVAR)
14		dimension sn(2000)
15		external DERIVS
16		character fname*64
17		fname='cel .dat'
18		<pre>write(*,*)'enter 3 digits file identifier'</pre>
19		read(*,*)id
20		write(fname(4:6),5)id
21	5	format(i3.3)
22		<pre>open(unit=1, file=fname, form='formatted',</pre>
23		<pre>\$ access='sequential')</pre>
24	6	format(f10.4, f10.4)
25	7	format(f10.4,f10.4,f10.4)
26	8	<pre>format(f10.4, f10.4, f10.4, f10.4)</pre>
27		<pre>write(*,*)'initial H0 mM'</pre>
28		read(*,*)ah0
29		<pre>write(*,*)'alfa'</pre>
30		<pre>read(*,*)alfa</pre>
31		<pre>write(*,*)'cellulose CO'</pre>
32		read(*,*)c0
33		<pre>write(*,*)'Degraded rate constant'</pre>
34		read(*,*)rk
35		<pre>write(*,*)'acid catalysis rate constant'</pre>
36		read(*,*)ak
37		<pre>write(*,*)'initial degrated p0'</pre>
38		read(*,*)p0
39		write $(1, 6)$ and, co
40		write(1,6)alfa,p0
41		write(1,6)rk,ak

42	С	Evaluation of the lifetime					
43		x1=0.0					
44		rl=ah0*rk					
45	drk=ak-r1 x2=100.0*r1						
46							
47		aql=alfa*ak*rk*c0					
48	ag=2.0/ag1						
49	r=2.07944/(aql*rl)						
50	t12=0.69315/r1 aq3=aq**3.0 r2=r**2.0 D=real(aq3+r2)						
51							
52							
53							
54	rql=SQRT(D)						
55	rq2=real(rql)						
56	sl=r+rq2						
57		ss=s1**(1.0/3.0)					
58		rd=r-rq2					
59		rdl=abs(rd)					
60		tt=-(rdl)**(1.0/3.0)					
61	tl2cell=ss+tt						
62		print*, ss, tt, tl2cell					
63		pause					
64		write(1,7)x1,t12,t12cell					

in cubic approximation

		96	Ę	SUBROUTINE RKDUMB (VST
		97		PARAMETER (NMAX=3, NST
		98		COMMON / PATH/ XX (NSTP
		99		DIMENSION VSTART (NVAR
		100		DO 11 I=1, NVAR
65	VSTART(1)=c0	101		V(I)=VSTART(I)
66	VSTART(2)=p0	102	under .	YI(I, 1) = V(I)
67	VSTART (3) =ah0	103	11	CONTINUE
68	CALL RKDUMB (VSTART, NVAR, X1, X2, NSTEP, DERIVS)	104		XX(1)=X1
69	do 110 j=1.nstep.2	105		X=X1
70	sn(i)=1.0-v1(1.i)/c0	106		H=(X2-X1)/NSTEP
71	t=x(j)	107		DO 13 K=1,NSIEP
72	r_{1}	108		CALL DERIVS (X, V, DV)
72	pi-exp(-11-c)-1.0	109		CALL REA (V, DV, NVAR,
/3	p2=exp(-ak*t)-1.0	110		IF (X+H, EQ. X) PAUSE
74	fal=alfa*rk*c0*(drk*t+ak*p1/r1-r1*p2/ak)/drk	112		XY (K+1) =V
75	cl=c0*exp(-rl*t)	113		DO 12 T=1 NVAP
76	c2=cl*exp(-fal)	114		$V_1(T K+1) = V(T)$
77	sn2=1.0-c2/c0	115	12	CONTINUE
78	c Evaluation of the cubic approximation function	116	13	CONTINUE
79	arg3=aq1*r1*t**3.0	117		RETURN
80	arg=arg3/6.0	118		END
81	c3=cl*exp(-arg)	119		SUBROUTINE RK4 (Y, DYDX
82	sn3=1.0-c3/c0	120	T	PARAMETER (NMAX=10)
83	write(1,8)x(i),sn(i),sn2,sn3	121		DIMENSION Y (N), DYDX (N
84	110 continue	122		HH=H*O.5
85	close (mit=1)	123		H6=H/6.
00	ciose (unit-1)	124		XH=X+HH
00	stop	125		DO 11 I=1,N
87	ena	126	0.000	YT(I) = Y(I) + HH * DYDX(
88	SUBROUTINE DERIVS (X, Y, DYDX)	127	11	CONTINUE
89	common/PARAM/ah0, alfa, c0, rk, ak	128		CALL DERIVS (XH, YT, DYT
90	dimension y(3), dydx(3)	129		DO 12 I=1,N
91	dydx(1) = -rk*y(3)*y(1)	130	10	YT(1) = Y(1) + HH * DYT(1)
92	dydx(2) = rk*y(3)*y(1) - ak*y(2)	131	12	CONTINUE
93	dydx(3) = alfa * ak * y(2)	132		DO 13 I=1 N
94	return	134		$\nabla T(T) = V(T) + H \times DVM(T)$
95	end	135		DYM(T) = DYT(T) + DYM(T)
170 B	AVIES A	136	13	CONTINUE
		137		CALL DERIVS (X+H, YT, DY
		138		DO 14 I=1,N

END

Ę	9	SUBROUTINE RKDUMB (VSTART, NVAR, X1, X2, NSTEP, DERIVS)
		PARAMETER (NMAX=3, NSTPMX=500)
		COMMON / PATH/ XX (NSTPMX), Y1 (NMAX, NSTPMX)
		DIMENSION VSTART (NVAR), V (NMAX), DV (NMAX)
		DO 11 I=1, NVAR
		V(I)=VSTART(I)
		Y1(I, 1) = V(I)
	11	CONTINUE
		XX(1)=X1
		X=X1
		H=(X2-X1)/NSTEP
		DO 13 K=1,NSTEP
		CALL DERIVS (X, V, DV)
		CALL RK4 (V, DV, NVAR, X, H, V)
		IF (X+H.EQ.X) PAUSE 'Stepsize not significant in RKDUMB.'
		X=X+H
		XX(K+1) = X
		DO 12 I=1, NVAR
		Y1(I, K+1) = V(I)
	12	CONTINUE
	13	CONTINUE
		RETURN
L	-	END
Ę	E	SUBROUTINE RK4 (Y, DYDX, N, X, H, YOUT)
		PARAMETER (NMAX=10)
		DIMENSION Y(N), DYDX(N), YOUT(N), YT(NMAX), DYT(NMAX), DYM(NMAX)
		HH=H*0.5
		H6=H/6.
		XH=X+HH
		DO 11 I=1,N
		YT(I) = Y(I) + HH * DYDX(I)
	11	CONTINUE
		CALL DERIVS (XH, YT, DYT)
		DO 12 I=1,N
		YT(I) = Y(I) + HH*DYT(I)
	12	CONTINUE
		CALL DERIVS (XH, YT, DYM)
		DO 13 I=1,N
		YT(I) = Y(I) + H * DYM(I)
		DYM(I) = DYT(I) + DYM(I)
	13	CONTINUE
		CALL DERIVS (X+H, YT, DYT)
		DO 14 I=1,N
	Carrier and	YOUT(I) = Y(I) + H6*(DYDX(I) + DYT(I) + 2.*DYM(I))
	14	CONTINUE
L	-	RETURN