Método dos Mínimos Quadrados (MMQ) Produto Interno

Nelson Kuhl

IME/USP

15 de setembro de 2020

Introdução

O conceito matemático mais importante para o problema de mínimos quadrados linear é o de um *espaço vetorial munido de um produto interno*. Ele permite abstrair as propriedades essenciais do \mathbb{R}^n com o seu produto escalar que nos levaram à solução de um sistema linear sobredeterminado no sentido de mínimos quadrados. Em um espaço vetorial com um produto interno, podemos definir comprimento de vetores, distância entre vetores e, o mais importante, **a noção de ortogonalidade**. Restringiremo-nos apenas ao caso de espaços vetoriais reais. O caso em que os escalares são complexos é importante mas está além dos nossos objetivos.

Seja V um espaço vetorial real. Um produto interno em V é uma aplicação

$$\langle , \rangle : V \times V \to \mathbb{R}$$

Seja V um espaço vetorial real. Um produto interno em V é uma aplicação

$$\langle , \rangle : V \times V \to \mathbb{R}$$

(P1)
$$\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$$
, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u, v \in V$;

Seja V um espaço vetorial real. Um produto interno em V é uma aplicação

$$\langle , \rangle : V \times V \to \mathbb{R}$$

- (P1) $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u, v \in V$;
- (P2) $\langle u, v \rangle = \langle v, u \rangle$, $\forall u, v \in V$;

Seja V um espaço vetorial real. Um produto interno em V é uma aplicação

$$\langle , \rangle : V \times V \to \mathbb{R}$$

- (P1) $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u, v \in V$;
- (P2) $\langle u, v \rangle = \langle v, u \rangle$, $\forall u, v \in V$;
- (P3) $\langle u, u \rangle > 0$, $\forall u \in V$, $u \neq 0$.

Seja V um espaço vetorial real. Um produto interno em V é uma aplicação

$$\langle , \rangle : V \times V \to \mathbb{R}$$

satisfazendo:

- (P1) $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u, v \in V$;
- (P2) $\langle u, v \rangle = \langle v, u \rangle$, $\forall u, v \in V$;
- (P3) $\langle u, u \rangle > 0$, $\forall u \in V$, $u \neq 0$.

Observação: Note que (P1) implica $\langle u, u \rangle = 0$ quando u = 0.

• Usando-se a linearidade em relação à segunda componente (P1) e a simetria (P2), concluimos que $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u, v \in V$. Portanto o produto interno é bilinear:

- Usando-se a linearidade em relação à segunda componente (P1) e a simetria (P2), concluimos que $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u, v \in V$. Portanto o produto interno é bilinear;
- a propriedade (P3) afirma que o produto interno é positivo definido;

- Usando-se a linearidade em relação à segunda componente (P1) e a simetria (P2), concluimos que $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u, v \in V$. Portanto o produto interno é bilinear;
- a propriedade (P3) afirma que o produto interno é positivo definido;
- de forma sucinta, podemos definir um produto interno em um espaço vetorial real V como uma forma bilinear, simétrica e definida positiva em V;

- Usando-se a linearidade em relação à segunda componente (P1) e a simetria (P2), concluimos que $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u, v \in V$. Portanto o produto interno é bilinear;
- a propriedade (P3) afirma que o produto interno é positivo definido;
- de forma sucinta, podemos definir um produto interno em um espaço vetorial real V como uma forma bilinear, simétrica e definida positiva em V;
- o comprimento de um vetor u em um espaço V munido de um produto interno é definido por $||u|| = \sqrt{\langle u, u \rangle}$, e a **distância** ||u v|| entre dois vetores u e v de V é o comprimento de u v;

- Usando-se a linearidade em relação à segunda componente (P1) e a simetria (P2), concluimos que $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$, para quaisquer $\alpha, \beta \in \mathbb{R}$ e $u, v \in V$. Portanto o produto interno é bilinear;
- a propriedade (P3) afirma que o produto interno é positivo definido;
- de forma sucinta, podemos definir um produto interno em um espaço vetorial real V como uma forma bilinear, simétrica e definida positiva em V;
- o **comprimento** de um vetor u em um espaço V munido de um produto interno é definido por $||u|| = \sqrt{\langle u, u \rangle}$, e a **distância** ||u v|| entre dois vetores u e v de V é o comprimento de u v;
- de (P1) e (P3) segue que somente o vetor nulo tem comprimento zero e protanto se a distância entre dois vetores for zero, eles são idênticos.

Exemplo 1 Em $V = \mathbb{R}^n$, o produto escalar

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

é um produto interno.

Exemplo 2 Uma generalização do produto escalar é obtida da seguinte forma: considere n números reais positivos dados $\{\omega_i\}_{i=1}^n$. Então,

$$\langle x, y \rangle = \sum_{i=1}^{n} \omega_i x_i y_i$$

é um produto interno no \mathbb{R}^n . Com este produto interno, a distância entre dois vetores x e y do \mathbb{R}^n fica

$$||x-y|| = \sqrt{\sum_{i=1}^n \omega_i (x_i - y_i)^2}.$$

Exemplo 3 Seja V = C([a, b]) o espaço vetorial das funções reais contínuas definidas no intervalo [a, b]. Então

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$

é um produto interno em V e a distância entre duas funções é igual a

$$||f-g|| = \sqrt{\int_a^b [f(x) - g(x)]^2 dx}.$$

Exemplo 4 Generalizando o exemplo anterior, considere uma função dada $\omega:(a,b)\to\mathbb{R}$ contínua, positiva e tal que $\int_a^b\omega(x)\,dx$ exista. Então

$$\langle f, g \rangle = \int_{a}^{b} \omega(x) f(x) g(x) dx$$
 (1)

define um produto interno em C([a,b]) e a distância entre duas funções f e g, segundo este produto interno, é igual a

$$||f - g|| = \sqrt{\int_a^b \omega(x)[f(x) - g(x)]^2 dx}.$$
 (2)

Exemplo 5 Seja \mathcal{P} o espaço vetorial formado pelos polinômios com coeficientes reais definidos em \mathbb{R} . Dados os números reais a e b, com a < b, a expressão (1) define um produto interno em \mathcal{P} , com a distância entre dois polinômios dada por (2).

Exemplo 5 Seja \mathcal{P} o espaço vetorial formado pelos polinômios com coeficientes reais definidos em \mathbb{R} . Dados os números reais a e b, com a < b, a expressão (1) define um produto interno em \mathcal{P} , com a distância entre dois polinômios dada por (2).

O exemplo a seguir é muito importante, pois enfraquece a noção de produto interno e permite a formalização do caso de domínios discretos para o MMQ.

Exemplo 6 Seja V um espaço vetoral formado por funções reais possuindo um domínio comum. Sejam $\{x_i\}_{i=1}^n$ pontos distintos pertencentes ao domínio das funções e $\{\omega_i\}_{i=1}^n$ números positivos dados. Para f e g pertencentes a V, defina a forma

$$\langle f, g \rangle = \sum_{i=1}^{n} \omega_i f(x_i) g(x_i). \tag{3}$$

Esta forma satisfaz (P1) e (P2) mas o máximo que podemos garantir é que ela é **semidefinida positiva**, $\langle f,f\rangle \geq 0$, pois podemos ter $f(x_i)=0$, $1\leq i\leq n$, sem que f seja identicamente nula. Mesmo assim definimos a distância entre f e g por

$$||f - g|| = \sqrt{\langle f - g, f - g \rangle} = \sqrt{\sum_{i=1}^{n} \omega_i [f(x_i) - g(x_i)]^2}.$$
 (4)

Mesmo não sendo uma terminologia padrão, daremos a seguinte definição devido à sua importância para o MMQ.

Definição. Dado um espaço vetorial real V, um produto interno degenerado em V é uma aplicação $\langle \ , \ \rangle : V \times V \to \mathbb{R}$ satisfazendo (P1), (P2) e

(P3')
$$\langle u, u \rangle \geq 0, \quad \forall u \in V.$$

Ou seja, uma forma bilinear, simétrica e semidefinida positiva.

Mesmo não sendo uma terminologia padrão, daremos a seguinte definição devido à sua importância para o MMQ.

Definição. Dado um espaço vetorial real V, um *produto interno degenerado* em V é uma aplicação $\langle \ , \ \rangle : V \times V \to \mathbb{R}$ satisfazendo (P1), (P2) e

(P3')
$$\langle u, u \rangle \geq 0, \quad \forall u \in V.$$

Ou seja, uma forma bilinear, simétrica e semidefinida positiva.

 O comprimento de um vetor e a distância entre vetores são definidos como no caso de um produto interno;

Mesmo não sendo uma terminologia padrão, daremos a seguinte definição devido à sua importância para o MMQ.

Definição. Dado um espaço vetorial real V, um *produto interno degenerado* em V é uma aplicação $\langle \ , \ \rangle : V \times V \to \mathbb{R}$ satisfazendo (P1), (P2) e

(P3')
$$\langle u, u \rangle \geq 0, \quad \forall u \in V.$$

Ou seja, uma forma bilinear, simétrica e semidefinida positiva.

- O comprimento de um vetor e a distância entre vetores são definidos como no caso de um produto interno;
- a distância $||u-v|| = \sqrt{\langle u-v, u-v \rangle}$ entre dois vetores será chamada também de **erro quadrático** entre eles;

Mesmo não sendo uma terminologia padrão, daremos a seguinte definição devido à sua importância para o MMQ.

Definição. Dado um espaço vetorial real V, um *produto interno degenerado* em V é uma aplicação $\langle \ , \ \rangle : V \times V \to \mathbb{R}$ satisfazendo (P1), (P2) e

(P3')
$$\langle u, u \rangle \geq 0, \quad \forall u \in V.$$

Ou seja, uma forma bilinear, simétrica e semidefinida positiva.

- O comprimento de um vetor e a distância entre vetores são definidos como no caso de um produto interno;
- a distância $||u-v|| = \sqrt{\langle u-v, u-v \rangle}$ entre dois vetores será chamada também de **erro quadrático** entre eles;
- o vetor nulo tem comprimento zero, mas podemos ter vetores não nulos com comprimento zero e vetores distintos cuja distância entre eles é zero.

Seja V um espaço vetorial real com um produto interno degenerado $\langle \ , \ \rangle$.

Seja V um espaço vetorial real com um produto interno degenerado $\langle \ , \ \rangle$.

• Dizemos que dois vetores $u, v \in V$ são ortogonais, $u \perp v$, se $\langle u, v \rangle = 0$;

Seja V um espaço vetorial real com um produto interno degenerado $\langle \ , \ \rangle$.

- Dizemos que dois vetores $u, v \in V$ são ortogonais, $u \perp v$, se $\langle u, v \rangle = 0$;
- dizemos que $u \in V$ é ortogonal a um subespaço vetorial $G \subset V$, $u \perp G$, se $u \perp g$ para todo $g \in G$;

Seja V um espaço vetorial real com um produto interno degenerado $\langle \ , \ \rangle$.

- Dizemos que dois vetores $u, v \in V$ são ortogonais, $u \perp v$, se $\langle u, v \rangle = 0$;
- dizemos que $u \in V$ é ortogonal a um subespaço vetorial $G \subset V$, $u \perp G$, se $u \perp g$ para todo $g \in G$;
- dados $u \in V$ e $G \subset V$ subespaço vetorial, dizemos que $\bar{g} \in G$ é uma projeção ortogonal de u em G se $u \bar{g} \perp G$.

Projeções ortogonais e distância mínima

Lema 1

Sejam V um espaço vetorial real munido de um produto interno degenerado $\langle \ , \ \rangle$, $f \in V$ e $G \subset V$ um subespaço vetorial. Se $\bar{g} \in G$ é uma projeção ortogonal de f em G, então

$$||f - \bar{g}|| \le ||f - g||, \quad \forall g \in G.$$

Ou seja, \bar{g} minimiza o erro quadrático entre f e os elementos de G.

Projeções ortogonais e distância mínima

Demonstração

Para $g \in G$ temos

$$\langle f - g, f - g \rangle = \langle f - \bar{g} + \bar{g} - g, f - \bar{g} + \bar{g} - g \rangle$$

= $\langle f - \bar{g}, f - \bar{g} \rangle + 2 \langle f - \bar{g}, \bar{g} - g \rangle + \langle \bar{g} - g, \bar{g} - g \rangle$

onde na última igualdade usamos a bilinearidade e a simetria. Como $f-\bar{g}\perp G$ e $\bar{g}-g\in G$, temos $\langle f-\bar{g},\bar{g}-g\rangle=0$, e como $\langle \bar{g}-g,\bar{g}-g\rangle\geq 0$, concluimos que

$$||f-g||^2 \ge ||f-\bar{g}||^2, \quad \forall g \in G,$$

o que nos dá o resultado.

• Note que usamos as propriedades (P1), (P2) e (P3'), abstraídas do produto escalar;

- Note que usamos as propriedades (P1), (P2) e (P3'), abstraídas do produto escalar;
- assumimos a existência da projeção ortogonal, sem demonstrá-la;

- Note que usamos as propriedades (P1), (P2) e (P3'), abstraídas do produto escalar;
- assumimos a existência da projeção ortogonal, sem demonstrá-la;
- iremos demonstrar a existência da projeção ortogonal no caso em que G tem dimensão finita e a restrição de (,) a G é um produto interno em G, ou seja, satisfaz (P1), (P2) e (P3) em G.

Existência da projeção ortogonal

Teorema 1

Demonstração

Suponha que a dimensão de G é m+1 (para ficar de acordo com várias aplicações). Seja $\{g_j\}_{j=0}^m$ uma base de G. Queremos então mostrar que existe um único $\bar{g} \in G$ tal que

$$f - \bar{g} \perp g_i, 0 \leq i \leq m,$$

ou, expandindo-se \bar{g} na base, $\bar{g}=\sum_{j=0}^m a_jg_j$, queremos mostrar que existem únicos coeficientes $\{a_j\}_{j=0}^m$ tais que

Existência da projeção ortogonal

$$\langle f - \sum_{j=0}^m a_j g_j, g_i \rangle = 0, \quad 0 \le i \le m.$$

Usando a simetria e a bilinearidade, podemos expandir as expressões acima e obter o sitema linear

$$\sum_{j=0}^{m} \langle g_i, g_j \rangle a_j = \langle g_i, f \rangle, \quad 0 \le i \le m,$$
 (5)

para os coeficientes $\{a_j\}_{j=0}^m$, conhecido como (o já famoso) **sistema normal**. Sendo $\{g_j\}_{j=0}^m$ uma família linearmente independente e $\langle \ , \ \rangle$ um produto interno em G, a matriz de (5) é inversível e portanto sistema normal tem solução única.

Método dos Mínimos Quadrados Linear

Usando o Lema 1 e parte da demonstração do Teorema 1, podemos demonstrar o seguinte resultado, que é uma formulação abstrata do Método dos Mínimos Quadrados.

Teorema 2

Sejam V um espaço vetorial real munido de um produto interno degenerado $\langle \ , \ \rangle$, $f \in V$ e $G \subset V$ um subespaço vetorial de dimensão finita m+1. Seja $\{g_j\}_{j=0}^m$ uma base de G. Se o sitema normal (5) tiver solução $\{a_j\}_{j=0}^m$, então

$$\bar{g} = \sum_{j=0}^{m} a_j g_j$$

minimiza o erro quadrático entre f e os vetores de G, ou seja, $\|f - \bar{g}\| \le \|f - g\|$, $\forall g \in G$. Se a matriz do sistema normal (5) for inversível, então existe um único $\bar{g} \in G$ que minimiza o erro quadrático entre f e os vetores de G.

Método dos Mínimos Quadrados Linear

Frequentemente em aplicações, queremos aproximar uma função f(x) por uma combinação linear

$$g(x) = \sum_{j=0}^{m} a_j g_j(x)$$

de funções $\{g_j(x)\}_{j=0}^m$ especificadas, segundo um critério de erro. Quando este erro pode ser associado à distância definida por um produto interno, temos um problema de mínimos quadrados linear, onde V é um espaço vetorial contendo $\{f,g_0,\ldots,g_m\}$ e G é o subespaço vetorial gerado por $\{g_j\}_{j=0}^m$. Veremos adiante uma série de exemplos e aplicações. O formalismo é sempre o mesmo, mudando-se os produtos internos e espaços vetoriais.