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Preface

In order to keep people moving in times of rising traffic and limited resources,
science is challenged to find intelligent solutions. Over the past few years, con-
tributions from engineers, physicists, mathematicians, and behavioral psycholo-
gists have lead to a better understanding of driver behavior and vehicular traffic
flow. This interdisciplinary field will surely produce further advances in the future.
The focus is on new applications ranging from novel driver-assistance systems, to
intelligent approaches to optimizing traffic flow, to the precise detection of traffic
jams and the short-term forecasting of traffic for dynamic navigation aids.

This textbook offers a comprehensive and didactic account of the different
aspects of vehicular traffic flow dynamics and how to describe and simulate them
with mathematical models. We hope to make this fascinating field accessible to a
broader readership; to date, it has only been documented in specialized scientific
papers and monographs.

Part T describes how to obtain and interpret traffic flow data, the basis of any
quantitative modeling. The second and main part is devoted to the different
approaches and models used to mathematically describe traffic flow. The starting
point of most models are the basic concepts of physics—many-particle systems,
hydrodynamics, and classical Newtonian mechanics—augmented by behavioral
aspects and traffic rules. At the website' accompanying this book, the reader can
interactively run a selection of traffic models and reproduce some of the simulation
results displayed in the figures. Part III gives an overview of major applications
including traffic-state estimation, fuel consumption, and emission modeling,
determining travel times (the basis of dynamic navigation), and how to optimize
traffic flow.

The book is written for students, lecturers, and professionals of engineering and
transportation sciences and for interested students in general. It also offers material
for project work in programming, numerical methods, simulation, and mathemat-
ical modeling at college and university level. The reference implementations in the

' see: www.traffic-flow-dynamics.org
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multi-model open-source vehicular traffic simulator MovSim® can be used as a
starting point for the reader’s own simulation experiments and model development.

This work originates from the lecture notes of courses in traffic flow dynamics
and modeling at the Dresden University of Technology, Germany; these have been
previously published, by the same publisher, in the German book “Verkehrsdy-
namik und Simulation”. The English edition has been updated and significantly
extended to include new topics, e.g., on model calibration. To underline its text-
book character, it contains many problems with elaborated solutions.

We thank all colleagues at our Department for Traffic Econometrics and
Modeling at the Dresden University of Technology, particularly Dirk Helbing, for
various scientific discussions and stimulations. We would also like to thank
Marietta Seifert, Christian Thiemann, and Stefan Ldmmer for suggestions and
corrections. Special thanks go to Martin Budden for reviewing the manuscript as a
native English speaker. He is also one of the main contributors to MovSim. Finally,
we would like to thank Martina Seifert, Christine and Hanskarl Treiber, Ingrid,
Bernd, and Dorte Kesting, Claudia Perlitius, and Ralph Germ who contributed to
the book with valuable suggestions.

Dresden, June 2012 Martin Treiber
Arne Kesting

2 see: WWW.movsim.org
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Chapter 1
Introduction

I was like a boy playing on the sea-shore, and diverting myself
now and then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undiscovered
before me.

Isaac Newton

Abstract In this textbook, we describe the dynamics of vehicular traffic flow in
terms of mathematical models. In the field of natural sciences, the mathematical
approach has been eminently successful.

In this textbook, we describe the dynamics of vehicular traffic flow in terms of
mathematical models. In the field of natural sciences, the mathematical approach
has been eminently successful. Galileo Galilei is reported to have said “Mathematics
is the language with which God has written the universe.” In more recent times,
human decisions and actions have been described in mathematical terms as well.
At first sight, this appears to be paradoxical. After all, humans and their individual
decisions certainly cannot be described by a formula.

There are several aspects why a mathematical description of traffic flow dynam-
ics nevertheless makes sense. Firstly, a huge amount of traffic flow data is available
ranging from the acceleration characteristics of single drivers and vehicles to macro-
scopic data obtained by stationary detectors, supplemented by a rapidly growing
amount of data obtained by GPS, wireless LAN, and mobile phones inside the vehi-
cles. The associated measurements—corresponding to experiments in the fields of
the natural sciences—serve as the basis of any mathematical modeling (cf. Fig. 1.1).
By comparing a model’s predictions with the data and changing the values of the
model parameters to obtain a maximum fit, a model can be calibrated which is a
prerequisite for any meaningful application.

Secondly, traffic dynamics describes the interplay of many vehicles and drivers.
Moreover, the interaction of the vehicles and drivers, technically termed driver-
vehicle units, leads to new collective effects that do not depend on the details of

M. Treiber and A. Kesting, Traffic Flow Dynamics, 1
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Fig. 1.1 Traffic flow models describe the dynamics of vehicles and drivers in terms of mathematical
equations. Predictions are obtained by running the model simulation. The values of the model’s
parameters are chosen so that the simulation produces a best fit with the data (model calibration).
Once calibrated, the model can be used for traffic flow prediction and other applications

individuals. Examples include the formation of stop-and-go waves but also more
complicated spatiotemporal patterns of congested traffic. In all theses cases, indi-
vidual details average out and are, therefore, not relevant. The classical analog in
the field of physical sciences is the thermodynamic description of liquids and gases.
For example, in order to describe sound waves or the pressure-temperature diagram
of air, it is not necessary to know the motion and interactions of individual oxygen,
nitrogen, or CO> molecules. In this sense, vehicles and drivers assume the role of
molecules in gases or liquids. There are even models that are explicitly based on this
analogy, see Chap.9.

Finally, driving dynamics is subject to certain limitations. For example, drivers are
typically restricted to interacting with their direct neighbors—again in analogy with
gases. Furthermore, accelerations and decelerations are limited physically: After all,
vehicles (but not drivers) are physical objects in the classical sense.

Delimitation of traffic flow dynamics. One can distinguish traffic flow dynamics
from other fields of traffic science by the time scales given in Table 1.1. Traffic flow
dynamics includes time scales ranging from about one second to a few hours. Human
reaction times and the time gap between two vehicles following each other are of the
order of 1s while braking and acceleration maneuvers typically take several seconds.
In city traffic, the period of one red-green cycle of traffic lights is of the order of
1 min while, on freeways, the period of traffic oscillations and stop-and-go waves
is between 5 and 20 min. Finally, the traffic demand serving as exogenous variable
(model input) for traffic flow models varies on time scales of one hour, as illustrated
by the term “rush hour”.

Longer time scales ranging from hours to years are the domain of transportation
planning. This includes the very long time scales of variations in traffic demand
caused by demographic change. Transportation planning and traffic flow dynamics
complement each other: The endogenous variables (model output) of the classical
four-step scheme of transportation planning' and its modern dynamical variants are

! The four steps are trip generation, trip distribution, mode choice, and route assignment.


http://dx.doi.org/10.1007/978-3-642-32460-4_9

1 Introduction 3

Table 1.1 Delimitation of traffic flow dynamics from vehicular dynamics and transportation
planning

Time scale  Field Models Aspect of traffic (examples)
<0.1s Vehicle dynamics ~ Sub-microscopic Control of engine and brakes
1s Reaction time, time gap
10s Traffic flow Car-following models Acceleration and deceleration
dynamics
1 min Macroscopic models Cycle period of traffic lights
10 min Stop-and-go waves
1h Peak hour
1 day Route assignment traffic =~ Daily demand pattern
demand
1 year Transportation Building/changing
planning infrastructure
Syears Statistics age pyramid Socioeconomic structure
50years Demographic change

the traffic demand (vehicles per hour) on each link of the considered network. For
traffic flow simulations, in turn, these variables are exogenous (externally given),
typically in form of boundary conditions.

Transport logistics operates on the same time scales as traffic flow dynamics but
takes a different point of view: Freight transport operations are optimized while traffic
flow itself takes the role of a (typically disturbing) external condition.

Dynamics on time scales smaller than one second is the realm of vehicular dynam-
ics. This field is mainly relevant for car manufacturers. Typical applications include
the control of vehicle components such as engine, brakes, and transmission, the
dynamics of skidding, and the operation of various assistance systems such as elec-
tronic stability programs (ESP), airbags, and adaptive cruise control (ACC).

In the last few years, we have seen a growing overlap between these fields. For
example, models for agent-based dynamic traffic assignment combine the route
assignment step of classical transportation planning with traffic flow models. The
new generation of connected navigation systems inside cars couple the dynamics of
traffic flow (jam formation) with that of traffic demand (traffic-dependent routing).
Or, when modeling the effects of driver-assistance systems on traffic flow, one needs
to simultaneously model aspects of vehicular and traffic dynamics, see Sect.21.5.

Applications. There are numerous applications for traffic flow dynamics and simu-
lation including the following:

e generation of surrounding traffic in driving simulators,

e model-based online traffic-state recognition and short-term prediction as input for
traffic information channels,

e determining the optimal routes in connected (traffic-dependent) navigation
systems,
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e planning and optimizing the logic of external traffic control such as variable mes-
sage signs or ramp metering,

e optimizing the logic behind the operation of traffic lights, e.g., enabling robust
“green traffic waves” by a progressive signal system,

e assessing traffic-related effects of advanced driver-assistance systems and telem-
atic applications in the field of Intelligent Transportation Systems (ITS),

e simulating in great detail the environmental effects of traffic operations such as
fuel consumption and CO; emission.

Outline. The book consists of three parts. The first part deals with traffic data.
After introducing the main data categories, we present methods for reconstructing
the spatiotemporal traffic state and for combining heterogeneous data sources (data
fusion). Finally, we present a data-based overview of the phenomenology of traffic
flow dynamics.

The second part can be considered the core of the book. Here, we describe the
mathematics and simulation of traffic flow models. After an overview of the different
classes of models, we treat in detail the main categories, macroscopic and microscopic
models of longitudinal (acceleration) dynamics. While microscopic models describe
traffic flow from the point of individual drivers and vehicles, macroscopic models
describe the collective state in terms of spatiotemporal fields for the local density,
speed, and flow. For the microscopic model classes, we subsequently present models
for lane changes and other discrete-choice situations such as entering a priority
road. Finally, we present and comprehensively analyze the different kinds of traffic
instabilities.

In the third part, we present selected applications of the methods and models of
traffic flow dynamics. We discuss the factors of traffic breakdown and principles of
the spatiotemporal evolution of congested traffic, methods of traffic-state recognition
and travel-time estimation, modal emission models, and ITS applications.

The most important definitions, equations, and formulas are in highlight boxes.
Numerous figures illustrate the concepts. The small in-text questions and problems
act as an initial test of the reader’s understanding. Each chapter ends with suggestions
for further reading and a series of problems that are solved in the Appendix at the
end of the book.

Last but not least, the open-source simulation software Movsim?> provides refer-
ence implementations for many models presented in the book. Detailed information
is provided on the book’s website.>

2 Multi-model open-source vehicular traffic simulator written in Java, see: www.movsim.org

3 see: www.traffic-flow-dynamics.org
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Chapter 2
Trajectory and Floating-Car Data

Measure what is measurable, and make measurable
what is not so.
Galileo Galilei

Abstract Different aspects of traffic dynamics are captured by different measure-
ment methods. In this chapter, we discuss trajectory data and floating-car data, both
providing space-time profiles of vehicles. While trajectory data captures all vehicles
within a selected measurement area, floating-car data only provides information on
single, specially equipped vehicles. Furthermore, trajectory data is measured exter-
nally while, as the name implies, floating-car data is captured inside the vehicle.

2.1 Data Collection Methods

Traffic can be directly observed by cameras on top of a tall building or mounted
on an airplane. Tracking software extracts trajectories x,(t), i.e. the positions of
each vehicle « over time, from the video footage (or a series of photographs). If all
vehicles within a given road section (and time span) are captured in this way, the
resulting dataset is called trajectory data.

Thus, trajectory data is the most comprehensive traffic data available. It is also
the only type that allows direct and unbiased measurement of the traffic density
(see Sect.3.3) and lane changes. However, camera-based methods involve complex
and error-prone procedures which require automated and robust algorithms for the
vehicle tracking, and thus are often the most expensive option for data collection. Fur-
thermore, a simple camera can cover a road section of at most a few hundred meters
since smaller vehicles are occluded behind larger ones if the viewing angle is too low.

A different method uses probe vehicles which “float” in the traffic flow. Such cars
collect geo-referenced coordinates via GPS receivers which are then “map-matched”
to a road on a map—the speed is a derived quantity determined from the spacing
(on a map) between two GPS points. This type of data is called floating-car data

M. Treiber and A. Kesting, Traffic Flow Dynamics, 7
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Location (m)

2000
1000
Time (s)
0
0 30 60 90 120

Fig. 2.1 Trajectories with moving stop-and-go waves on a British motorway segment [Adapted
from: Treiterer et al. (1970)]

(FCD). Some more recent navigation systems also record (anonymized) trajectories
and send them to the manufacturer. The probe vehicles can be equipped with other
sensors (e.g. radar) to record distance to the leading vehicle and its speed (however,
such equipment is expensive). FCD augmented in this way are also referred to as
extended floating-car data (XFCD). One problem of FCD is that many equipped
vehicles are taxis or trucks/vans of commercial transport companies which, due to
their lower speeds, are not representative for the traffic as a whole. Fortunately,
this bias vanishes just when the FCD information becomes relevant: In congested
situations, free-flow speed differences do not matter.

Both trajectory and floating-car data record the vehicle location x (¢) as a function
of time, yet they differ substantially:

e Trajectory data records the spatiotemporal location of all vehicles within a given
road segment and time interval while FCD only collects data on a few probe
vehicles.

e Contrary to trajectory data, FCD does not record which lane a vehicle is using
since present GPS accuracy is not sufficient for lane-fine map-matching.

e FCD may contain additional information such as the distance to the leading vehicle,
position of the gas/brake pedals, activation of turning signals, or the rotation angle
of the steering wheel (xFCD). In principle, every quantity available via the CAN-
bus'can be recorded as a time-series. This kind of data is naturally missing in
trajectory data due to the optical recording method.

! The CAN-bus is a micro-controller communication interface present in all modern vehicles.
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Fig. 2.2 Trajectories with moving stop-and-go waves on the California State Route 99 [From:
www.ece.osu.edu/~coifman/shock]

2.2 Time-Space Diagrams

Figures2.1 and 2.2 are examples of trajectory data of a single lane visualized in a
space-time diagram. By convention, we will always plot time on the x-axis vs. space
on the y-axis. The following information can be easily read off the diagrams:

e The local speed at (front-bumper) position x and time ¢ is given by the gradient of
the trajectory. A horizontal trajectory corresponds to a standing vehicle.

e The time headway, or simply headway, At, between the front bumpers of two
vehicles following each other (see Sect.3.1) is the horizontal distance between
two trajectories.’

e Traffic flow, defined as the number of vehicles passing a given location per time
unit, is the number of trajectories crossing a horizontal line denoting this time
interval. It is equal to the inverse of the time mean of the headways.

e The distance headway between two vehicles is the vertical distance of their trajec-
tories. It is composed of the distance gap between the front and the rear bumpers
plus the length of the leading vehicle.

e The traffic density, defined as the number of vehicles on a road segment at a given
time, is the number of trajectories crossing a vertical line in the diagram and thus
the inverse of the space mean of the distance headways (cf. Sect. 3.3).

e Lane changes to and from the observed lane are marked by beginning and ending
trajectories, respectively.

2 The time headway is composed of the (rear-bumper-to-front-bumper) time gap plus the occupancy
time interval of the leading vehicle.
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e The gradient of the boundary of a high-density area indicates the propagation
velocity of a traffic jam. The congestions in the Figs.2.1 and 2.2 are stop-and-go
waves which are moving upstream and thus have a negative propagation speed.

If not only the longitudinal positions x,(#) (along the road) but also the lateral
positions y, () (across the lanes) are recorded, one can generate a two-dimensional
trajectory diagram from which one can deduce lateral accelerations and the duration
of lane changes.

Is it possible to estimate the time needed to pass through a given road segment
using trajectory data? How would you calculate the travel time increase caused
by a traffic jam? What additional assumption is needed to estimate the total
time loss of all persons driving through the congestion?

Problems

2.1 Floating-Car Data

Assume that some vehicles with GPS systems (accurate to approximately 20 m)
send their (anonymized) locations to a traffic control center in fixed time intervals.
Can this data be used to reconstruct (1) trajectories of single vehicles, (2) location
and time of lane changes, (3) traffic density (vehicles per kilometer), (4) traffic flow
(vehicles per hour), (5) vehicle speed, and (6) length and position of traffic jams?
Justify your answers.

2.2 Analysis of Empirical Trajectory Data
Consider the trajectory data visualized in Fig.2.2:

1. Determine the traffic density (vehicles per kilometer), traffic flow (vehicles per
hour), and speed in different spatiotemporal sections, for example [10, 30s] x
[20, 80 m] (free traffic) and [50, 70s] x [20, 100 m] (congested traffic).

2. Find the propagation velocity of the stop-and-go wave. Is it traveling with or
against the direction of traffic flow?

3. Estimate the travel time increase incurred by the vehicle that is at x = Om at
time ¢t ~ 50 s due to the stop-and-go wave.

4. Estimate the average lane-changing rate (lane changes per kilometer and per
hour) in the spatiotemporal area covered by the dataset. (Assume six trajectory
beginnings or endings within [0, 80s] x [0, 140m].)
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2.3 Trajectory Data of “Obstructed” Traffic Flow
Consider the trajectory data of city traffic shown in the diagram below:

sl //1]]]/] i

LI i
A1 Jii
M=
ST

-20 0 20 40 60 80
t(s)

x (m)

1. What situation is shown? What does the horizontal bar beginning at x = ¢t =0
mean?

2. Determine the traffic demand, i.e. the inflow for r < 20 s.

3. Determine the density and speed in the free traffic regime upstream of the
“obstacle”.

4. Determine the density within the traffic jam.

5. Determine the outflow after the “obstacle” disappears. Also find the density and
speed in the outflow regime after the initial acceleration (the end of which is
marked by smaller blue dots).

6. Determine the propagation speed of the transitions “free traffic — jam” and “jam
— free traffic”.

7. What travel time delay is imposed on a vehicle entering the scene at r = 20 s and
x = —80m?

8. Find the acceleration and deceleration values (assuming they are constant). The
start of the deceleration phase and the end of the acceleration phase of each vehicle
are marked by dots.

Further Reading

e May, A.D.: Traffic Flow Fundamentals. Prentice Hall, Eaglewood Cliffs, N.Y.
(1990)

e Treiterer, J., et al.: Investigation of traffic dynamics by aerial photogrammetric
techniques. Interim report EES 278-3, Ohio State University, Columbus, Ohio
(1970)

e Thiemann, C., Treiber, M., Kesting, A.: Estimating acceleration and lane-changing
dynamics from next generation simulation trajectory data. Transportation Research
Record: Journal of the Transportation Research Board 2088 (2008) 90-101
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e Schifer, R.P.,, Lorkowski, S., Witte, N., Palmer, J., Rehborn, H., Kerner B.S.:
A study of TomTom’s probe vehicle data with three-phase traffic theory. Traffic
Engineering and Control 52 (2011) 225-230



Chapter 3
Cross-Sectional Data

Nature loves to hide.
Heraklit

Abstract Cross-sectional data is captured by stationary induction loops, radar, or
infrared sensors. The collected information is provided either directly as single-
vehicle data or aggregated into macroscopic quantities. In this chapter we define
the measurable and derived quantities characterizing both data formats, with special
attention on the difference between temporal and spatial averages. Traffic density, a
spatially defined quantity, cannot be directly measured using cross-sectional detec-
tors, but several estimation methods are presented and discussed. Speed estimation
methods are introduced to overcome the inability of single-loop detectors to directly
measure vehicle speed.

3.1 Microscopic Measurement: Single-Vehicle Data

Cross-sectional data, measured at a fixed cross-section on the road, can be captured by
laying pneumatic tubes across the road, by radar, or optically with infra-red sensors
or light barriers. Most commonly, however, induction loops are installed beneath the
road surface. They detect whether a metallic object (such as a car) is above them
(Fig.3.1). A single-loop detector can directly measure (only) the following quantities:

e The time 7, = tg at which the front of vehicle « passes the detector (voltage drop
in Fig.3.1).

e The time t; at which the rear end of the vehicle passes the detector (voltage rise
in Fig.3.1).

It is impossible for single-loop detectors to measure vehicle speed, but we can obtain
an estimate in the case of relatively uniform speed values by assuming an average
vehicle length /. However, this estimate is prone to large errors, as we will see in
Sect.3.4.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 13
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Voltage U e

Time

Fig. 3.1 The induction loop is part of an LC circuit (complemented by an external capacitor and
an AC voltage source) tuned to be in resonance if the loop is “unoccupied”, yielding a high voltage
Uetr. The metallic parts of a vehicle will increase the inductance of the loop upon driving over it.
This puts the circuit out of tune and decreases the voltage Uk

Fig. 3.2 Single-vehicle data as measured by an induction loop (or any other cross-sectional detec-
tor). The shaded area indicate the “detector occupancy” at different times

Double-loop detectors are composed of two (or more) induction loops separated
by a fixed distance, e.g. 1 m. The time difference between passing the first and the
second loop yields a direct measurement of the vehicle speed v .

From these directly measured quantities we can derive secondary microscopic
quantities (cf. Fig.3.2):

e Length of each vehicle «,

ly = va(tl —19), (3.1)

e vehicle type (motorcycle, car, truck, etc.) by classifying the vehicle length,
e time headway (sometimes also called simply headway) between the front bumpers
of successive vehicles (the smaller index o — 1 denotes the leading vehicle),

Aty =10 -1, (3.2)
e time gap between the rear and front bumpers

Va—1
To=10—1t! | = A1, — 2

o o

, 33
o (3.3)
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e distance headway
doy = vg—1A1y, (3.4)

e and distance gap between the rear and front bumpers (sometimes denoted simply

as gap)
So = dy — lg_1. (3.5)

All spatial quantities (vehicle length, distances) are only exact if the speed is constant
during the measurement, which is a reasonable assumption.

3.2 Aggregated Data

Most detectors aggregate the microscopic single-vehicle data by averaging over fixed
time intervals At and transmit only the macroscopic data (aggregated data) to the
traffic control center. This saves both bandwidth in the transmission and disk space
when archiving the data, but of course all the microscopic information is lost. Time
intervals vary between 20s and 5 min, the most common being At = 60s. Averages
over a fixed number of vehicles (e.g. AN =50veh) are rarely used, even though
they are statistically more meaningful. One or more of the following quantities are
sent to the traffic control center:

Traffic flow. The traffic flow is defined as the number of vehicles AN passing the
cross-section at location x within a time interval At:

AN

Q()C,t)ZA—t. (36)

It is usually given in units of vehicles per hour (veh/h) or vehicles per minute.
In terms of the microscopic quantities, the traffic flow Q can be considered as the
inverse of the time mean of the headways, Q = 1/(At,).!

Sometimes, the inverse of the headway is called microscopic flow,

1

= — i
A (3.7)

qu

and the scatter plot of g, versus v, the microscopic flow-density diagram®

We emphasize that the traffic flow Q can be considered as the harmonic mean of

the microscopic flow

1 1
=—— (3.8)

C= G = Waw

! The notation (-) is used for the arithmetic average in the context of measurements and for the
expected value in the context of statistical considerations (Sect. 3.3).

2 Notice that the term microscopic fundamental diagram generally denotes the gap as a function of
the speed for steady-state traffic flow as given by microscopic models.
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Generally, the harmonic mean of a series of values x, is defined as the inverse of the
arithmetic mean of the inverse, Xy = 1/(1/x4).

Occupancy. The dimensionless occupancy is the fraction of the aggregation interval
during which the cross-section is occupied by a vehicle:

ap+AN—1

O(x,z)zAit >ty —1D). (3.9)

a=u

Arithmetic mean speed. The arithmetic mean speed is the average speed of the AN
vehicles passing the cross-section during the aggregation interval:

1 ap+AN—1
Vix,t) = (vg) = — z Va. (3.10)
AN &~

We use V for the macroscopic speed to distinguish it from the (microscopic) speed
v of single vehicles. To emphasize that the speed is measured at a fixed location for
a time interval, V is sometimes called time mean speed.
Harmonic mean speed. The harmonic mean speed is defined as

V)= — = 4N 3.11)

1 @0FAN-T 1
() Za

When neglecting accelerations, Vi corresponds approximatively to the (spatial) aver-
age of the speed at a fixed time instant (cf. Sect.3.3.2). Therefore, Vy is some-
times called (not completely correctly) space mean speed. One can show that always
Vi < V where the equal sign only holds if all speeds are identical. The harmonic
mean speed and the following two quantities are rarely available although they would
be useful for a less biased traffic density estimate (see Sects. 3.3 and 4.4).

Arithmetic time mean of microscopic flow. The arithmetic time mean of micro-
scopic flow is defined by

1 1 ag+AN—1 1

As will be shown in Sect. 4.4, this quantity is very useful in estimating the density
when no microscopic data are available.

Speed variance. The speed variance

Var(v) = 02(x, 1) = ((vg — (va))?) = (V2) — (vg)? (3.13)
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is a measure of the spread of the speed values within the aggregation interval.
The spread is given by the standard deviation oy, the square root of the variance.
The dimensionless coefficient of variation o,/ V quantifies the relative spread of the
speed values (cf. Fig. 9.7).

Considering the mean speed in a highly heterogeneous traffic flow, what is the
advantage of averaging over a fixed number of vehicles instead of over fixed
time intervals?

3.3 Estimating Spatial Quantities from Cross-Sectional Data

While the macroscopic quantities flow Q, occupancy O, and (in the case of double-
loop detectors) the arithmetic mean speed V are measured directly, other important
quantities can only be estimated by making some assumptions. The traffic density
is defined as a spatial average at a fixed time (the number of vehicles on a given
road segment) but cross-sectional detectors can only measure temporal averages at
a fixed location (the cross-section). Contrary to flow and density, the macroscopic
speed can be defined both as a temporal and a spatial average. However, these two
definitions are not equivalent.

3.3.1 Traffic Density

The traffic density p(x, t) can be estimated using the hydrodynamic relation

O(x,t)  flow

, 1) = = .
Pl 1) Vix,t) speed

(3.14)

However, this equation implicitly assumes that the speed V is a spatial average
(because the density is defined as a spatial quantity). Using the femporal averages
obtained from cross-sectional detectors induces systematic errors: Faster vehicles are
“seen” more frequently by detectors than slower vehicles, yielding a bias towards
larger speed values. Figure 3.3 shows a two-lane road where vehicles on the left lane
drive twice as fast as vehicles on the right lane. The flow is equal on both lanes, thus
the detector “sees” the same number of vehicles during the aggregation interval and
reports the temporal mean speed (v,) =108 km/h. However, the space mean speed is

2 1
3 72km/h + 3 144 km/h = 96 km/h.
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Fig. 3.3 Vehicles on the left Induction Double-Loop Detector
lane drive twice as fast but

with the same time headway 144 km/h

Thus, the density as obtained by the hydrodynamic relation (3.14) underestimates
the real density by a factor of 8/9.

We can obtain a better estimate for the density from its definition “vehicles per
distance”, which can be expressed in terms of microscopic quantities as the inverse
of the space mean of the distance headways,

I AN
(da) — Yo da

o(x, 1) = (3.15)

Similarly, the flow (“vehicles per time”) can be written as the inverse of the time
mean of the headways. For a given fixed time interval

ag+AN—1
At= > Aty = AN(Aty)
a=0w
the flow is given by
0— AN 1 (3.16)
At (At)] ‘

In the following section we discuss two different ways for expressing the density
in terms of the measurable quantities A¢, and vy .

3.3.1.1 Derivation from the Expected Value of Traffic Density

Inserting Eq. (3.4) into the definition of the expected density (3.15) yields

= (dy) = (Va—14ty)

R (vq Aly)
= (Vo) (Aty) + Cov(vy, Aly)

4
Q + Cov(vy, Aty),
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and solving for p gives us

p=2 ! : (3.17)
V 1+ £Cov(vy, Ate)

Here Cov(:, -) denotes the covariance, defined for two random variables x and y as

Cov(x, y) = ((x = (x))(y = (¥)) = (xy) = (x)}(¥). (3.18)

The covariance is positive if both variables are positively correlated, i.e. larger values
of x tend to be accompanied by proportionally larger values of y. The significance
of such a linear relationship is quantified by the correlation coefficient

Fey = ———L (3.19)

For uncorrelated x and y (that is, the variables have no linear relationship) the
coefficientis 0. Its value is bounded between — 1 (x and y are perfectly anti-correlated,
x o —y)and +1 (x and y are perfectly correlated, x o y). The correlation coefficient
allows us rewrite Eq. (3.17) as Wardrop’s equation®:

Q ! (3.20)
p=—=\|\——7TF-F" .
\% 1+UVV%V\/&,A[Q

Thus, the real density equals the (widely used) estimate “flow divided by arithmetic
mean speed” multiplied by a correction factor that captures the correlation between
speed and headway, r, s, as well as the (relative) variance of vehicle speed and
flow, oy /V and 0/ Q. In free traffic r, ; is near zero since every driver is able to
choose his or her speed independently. In congested traffic, however, the headway Aty
usually increases with decreasing speed and tends to infinity as the speed approaches
zero. Therefore r, a, is negative in this case and the correction factor is greater than 1.
Thus, the relation Q/V systematically underestimates the real density in congested
traffic (cf. Fig.4.10).

3.3.1.2 Derivation from the Expected Value of Traffic Flow

A different approach to derive the density from measurable quantities combines the
expected value of the flow (3.16) with Eq. (3.4):

3 Not to be confused with the Wardrop equilibrium, a concept in transportation planning where
routes are chosen according to the user equilibrium, i.e., no user is better off when choosing a
different route.
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i—<m>—<d0‘> (3.21)
) N o Va—1 .
(5] = o (5 + o (4 )
~ () = (dy) (— )+ Cov | dy, — (3.22)
Vo Vo Vo
1 1
=L oo (da, —) . (3.23)
oV Vo

Again solving for p we obtain

_9 !
= (1 — 0 Cov (da, 1/va)) 629

where Vpg is the harmonic mean speed (3.11) that gives stronger weight to small speed
values. Since the distance headway d,, usually increases with v, (and decreases with
1/vy), Cov(dy, 1/vy) is negative and the correction factor smaller than 1. Thus,
Q/ Vy generally overestimates the real density.

3.3.1.3 Discussion of the Two Approximations

In practice, the covariances in Egs.(3.20) and (3.24) are usually assumed to be
zero and
m_ 2
Vv

or p? = Q9 (3.25)

o Vi

is used to calculate the density (both relations can be applied to multi-lane traffic as
well). The following statements help in assessing the errors of the two estimates:

1. If all vehicle speeds v, are the same, then V = Vjj and thus p = p(I) = 0@,

2. If all headways Aty are the same, then Cov(v,, Aty) = 0 and thus p = ,0(1) =
Q/V holds exactly (cf. Fig. 3.3). Otherwise, p(!) most likely underestimates the
real density as Cov(vy, Aty) is usually negative.

3. If all distance headways d, are the same, then Cov (da, i) = 0 and thus p =
p® = Q/Vy holds exactly (again, cf. Fig.3.3). Otherwise, p® most likely

overestimates the real density since Cov (da, VL) is usually negative as well.
o

Why is it not possible to measure the density of stopped traffic using stationary
detectors of any kind?
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3.3.2 Space Mean Speed

The space mean speed (instantaneous mean) (V (7)) is the arithmetic mean of the
speed of all vehicles within a given road segment at time ¢ (in Fig.3.4 this is a
segment of length L around the detector),

1 n(t)
(VD) = 5 2 val): (3.26)
a=1

In general (that is, with multiple lanes and arbitrary speeds and accelerations), aggre-
gated detector data is unsuitable for determining the space mean speed because the
number and identities of vehicles used in the average in Eq.(3.26) changes within
the aggregation interval Az. Also, it is possible that n(¢) = 0.

We get a more suitable definition by averaging the instantaneous mean over the
aggregation interval Az. Furthermore, we choose the reference length L small enough
so that no vehicles are on the reference road segment at time 7 or r + At and the
vehicle speed does not change significantly during the time needed for passing the
segment, 7, & L/v,. Averaging Eq.(3.26) over time gives us*

J;t"rAl n(l‘/)(V(l‘/)) dt/ B za j;;or‘rfa Vo (t/) dt/
j;t-i-At n(t’) dr’ - Za Ty

N D o TaVa . nL
z Ta Z L/v
o o
n

== 1
o=t v

Here n denotes the total number of vehicles that have passed the detector within the
interval Az (not to be confused with n(z), the number of vehicles on the referenced
road segment). The speed values v, are those obtained from the detector (i.e., mea-
sured at the same location but different times, as opposed to measured simultaneously
at different locations).

Thus, the time-averaged (over an aggregation interval) and space-averaged (over
aroad segment) speed is given by the harmonic mean,

(V) =

(V) = V. (3.27)

Although not exact, the harmonic mean Vg of temporal speed data obtained at a
fixed location (stationary detectors) is often equated with the instantaneous mean,
also called space mean speed in the literature:

4 Note that the denominator equals the total travel time (vehicle-minutes) of all vehicles in the
referenced spatiotemporal interval.
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Fig. 3.4 Derivation of the Induction Double-Loop Detector
space mean speed (3.27)
—
L

The harmonic time mean speed is approximately equal to the (arithmetic) space
mean speed.

3.4 Determining Speed from Single-Loop Detectors

Single-loop detectors only measure the entry and exit times tg and t; of each
vehicle «. If the vehicle length I, was known, we could obtain the speed from
Vo = lo/(t) — tg). However, single-loop detectors cannot measure vehicle length.
Yet we can assume an average vehicle length (/,) and use the definition of the
occupancy (3.9) to derive an estimate of the average speed:

1 10
O:A—t;(ta—ta)

1 Iy

Atava

n 1 1
= E [(la) <E> + COV (la, E)i|
1 1
=0 [(la) <—> + Cov (la, —)} .
Vo Vo

Solving for Vg = 1/(1/v,) we get

Vy = Q) (3.28)

o[1-4§covita. 1/v0)]

For large densities the covariance Cov(ly, 1/vy) is nearly zero because all vehi-
cles drive with approximately the same speed. Thus, the estimate for Vg simplifies
to Q(ly)/O. In free traffic, however, longer vehicles (trucks) usually drive more
slowly than shorter vehicles (cars), thus Cov(ly, 1/vy) > 0. In this case Q(ly)/O
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systematically underestimates the harmonic mean of the speed values. However,
since the harmonic mean is always less than the arithmetic mean for any data with
finite variance, Q(ly)/O may be a good estimate for the arithmetic mean. If all vehi-
cle lengths are equal, the simple relation between occupancy and harmonic mean
speed is exact (for arbitrary speed values). For all these cases the traffic density can
be easily estimated as well, yielding

o
with p = —. (3.29)

Vi = )

bll(@

To apply these equations only the average vehicle length (/,) must be known.

Problems

3.1 Data Aggregation at a Cross-Section
Consider the following 30s excerpt from single-vehicle data of a cross-sectional
detector:

Time Speed Lane Vehicle length
(ins) (inm/s) (1=right, 2=left) (inm)
2 26 1 5

7 24 1 12

7 32 2 4

10 32 2 5

12 29 1 4

18 28 1 4

20 34 2 5

21 22 1 15

25 26 1 3

29 38 2 5

1. Aggregate the data and calculate the macroscopic traffic flow and speed (arith-
metic mean), separately for both lanes.

2. Calculate the traffic density in each lane assuming that speed and time headway
of two succeeding vehicles are uncorrelated (which is realistic for free traffic).

3. Determine the flow, speed, and density of both lanes combined.

4. What percentage of the vehicles on the right lane (and in total) are trucks?

3.2 Determining Macroscopic Quantities from Single-Vehicle data

On a two-lane highway all vehicles drive with distance headway 60 m. The vehicles
on the left lane all drive at speed 144 km/h, on the right lane at 72km/h. A station-
ary detector captures single-vehicle data (cf. Fig.3.3) and aggregates them using
At = 60s.
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. What are the time headways A#, on both lanes? What are the time gaps, assuming

all vehicles are 5m long?

Find the traffic flow, occupancy, and average speed (both arithmetic and harmonic)
separately for both lanes (i.e., each lane is captured by its own detector) and also
for both lanes combined (i.e., one detector captures vehicles on both lanes). For
which type of averaging does the following statement hold: The average speed of
all vehicles in both lanes is equal to the arithmetic mean of the average speed of
each lane?

. Calculate the speed variance. Show that the speed variance of all vehicles (on

both lanes) is
o =pi(of1+ Vi = V) + (= p) (od+ (V2= V1),

where p; = Anj/(Anj + Any) is the fraction of vehicles that are detected on
the right lane (within the time interval Ar). The speed variances of the single
lanes are denoted by 0‘2,1 (right lane) and 0‘2,2 (left lane), and V| and V, are the
corresponding arithmetic means. Finally, V = p; V| 4 (1 — p1) V> is the average
over both lanes. How does the equation simplify for p; = 1/2?

Further Reading

Leutzbach, W.: Introduction to the Theory of Traffic Flow. Springer, Berlin (1988)
Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of
Modern Physics 73 (2001) 1067-1141

Cassidy, M.J.: Traffic Flow and Capacity. International Series in Operations
Research & Management Science. In: Handbook of Transportation Science.
Springer New York (2003) 155-191



Chapter 4
Representation of Cross-Sectional Data

The marvelous thing about traffic flow is the fact that you can
Jjam it anywhere at any time with so little effort.
Siegfried Wache

Abstract In this chapter we discuss different visualizations of microscopic and
macroscopic cross-sectional data and the possible conclusions that one can draw
from them. Time series of aggregated quantities such as speed, flow, and density
show temporal developments, while speed-density and flow-density diagrams allow
us to make statements about the average driving behavior on the observed road
segment. Particularly the flow-density diagram contains so much information about
the traffic dynamics that its idealized form is also called fundamental diagram of
traffic flow. If single-vehicle data is available, we can also obtain distributions of
microscopic quantities (vehicle speeds, time gaps, etc.).

4.1 Time Series of Macroscopic Quantities

One way of representation are time series of some aggregated quantity, which has
been measured at a cross-section. Flow, speed, and density time series of a few
hours’ data tell us about traffic breakdowns, types of traffic congestion (oscillatory
or essentially stationary), and the capacity drop after a breakdown (Fig.4.1).

From the specific daily patterns of traffic demand (Fig.4.2), the reader can easily
recognize whether it was recorded on a Monday, Tuesday/Wednesday/Thursday,
Friday or on a weekend.! However, these daily traffic-demand plots are used primarily
in transportation planning and are beyond the scope of this book.

I'School and national holidays as well as holidays and associated “long weekends” are special cases
with their own characteristic patterns.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 25
DOI: 10.1007/978-3-642-32460-4_4, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 4.1 Time series during the morning peak-hour from one-minute data. From top to bottom:
arithmetic mean speed V, flow Q, and estimated density p = Q/V (see Sect.3.3.1)
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Fig. 4.2 Typical daily time series of the traffic flow (demand) on a weekday (Wednesday)

Itis very easy to draw incorrect conclusions when interpreting traffic jam dynamics
using single time series, as the following exercise illustrates:

Why is it wrong to conclude from the time series in Fig.4.1 that the traf-
fic breakdown occurred at around 7a.m.? Can we at least conclude (from
the figure) that vehicles near the cross-section at 7a.m. decelerate, or that
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A X
X Downstream jlln] front Downstream

jam front

Accident (temporary)

Intersection (permanent)

» t

Fig.4.3 Sketches of speed time series at a cross-section and possible spatiotemporal traffic patterns
causing them

vehicles near the cross-section at 8.30a.m. accelerate? If not, what are alter-
native explanations for the observed patterns?

Solution. According to Fig.4.3 the speed drop shortly before 7a.m. is an upstream
jam front that is moving upstream. Alternatively, it could be a downstream jam front
moving downstream (with the driving direction) that is caused by a moving bottle-
neck, e.g., by an oversize load. However, this case is rather unlikely, so we assume
that it is an upstream jam front and vehicles are braking to avoid a rear-end collision.

The rise in speed at 8.30a.m. can be explained by two different scenarios: (i)
It is a downstream-moving upstream front, i.e. the traffic jam shrinks. This would
imply that, after 8.30a.m., vehicles are braking shortly after passing the detector,
while the time series indicates an acceleration. (ii) Alternatively, it could be an
upstream-moving downstream front, caused for example by a disappearing temporary
bottleneck (road block, traffic light, etc.) as the waiting vehicles subsequently start to
move again. In this case, the vehicles accelerate as indicated by the time series. For
both scenarios, we can estimate the jam front velocity directly from the fundamental
diagram (see Sect.4.4 and Part II).

4.2 Speed-Density Relation

If we plot the aggregated vehicle speed over traffic density we obtain a speed-density
diagram (cf. Fig.4.4). We see that the average speed is lower in denser traffic. Fur-
thermore, the diagram reflects the average behavior of a (typical) driver-vehicle
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Fig. 4.4 Speed-density relation obtained from one-minute data collected on the Autobahn A9 near
Munich, Germany, using the average over both lanes (fop left), individual averages of both lanes (top
right), and individual lane averages conditioned on night (bottom left) and day hours (bottom right)

unit in different densities and external influences such as speed limits, weather
conditions, etc.

In very low-density traffic, the drivers are usually not influenced by other vehicles
and we obtain the average free speed Vy for p — 0 (cf. Fig.4.5). This speed is the
minimum of (i) the actual desired speed of the drivers, (ii) the physically possible
attainable speed (especially relevant for trucks on uphill slopes), and possibly (iii) an
administrated speed limit (plus the drivers’ average speeding). However, V) is often
directly referred to as the desired speed.

To approximatively obtain the distribution of desired speeds from empirical data,
we can use the speed distributions in single-vehicle data of low-density traffic (cf.
Sect. 3.1 and Fig.4.6). In this case, there are few interactions between the drivers and
most of the drivers can be expected to drive at their desired speed. The distributions
of speeds on the left and middle lane are symmetric and approximately Gaussian,
while speeds on the right lane are distributed bimodally, showing the superposition
of the different speed distributions of trucks and passenger cars. Figure.4.7 shows
average speed differences between lanes. In denser traffic, the speed difference tends
towards zero, leading to a speed synchronization of the lanes.

Speed-density diagrams might show heterogeneous traffic and different external
conditions, which has to be considered when interpreting them. Examples include a
varying percentage of trucks at different times of the day, different weather conditions
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Fig. 4.5 Speed-density dia-
grams, averaged over all lanes,
for segments of the Dutch A9
(Haarlem to Amsterdam) and
the German A8 (Munich to
Salzburg, Austria)

Fig. 4.6 Probability distrib-
utions of the vehicle speed,
P(v), in low-density traffic
on the German Autobahn A3
(three lanes in each direction)
[From: Knospe et al., Physical
Review E 65, S. 56133 (2002)]
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(lighting, precipitation), and time-dependent speed limits issued by traffic control
systems. This also applies to the flow-density diagrams which will be discussed in

Sect.4.4.

(1) In the upper left (V, p)-diagram of Fig.4.4, the average speed decreases
again for very small densities. Does this imply that drivers are “afraid of the
free road”? Explain this observation statistically.
(2) The upper right panel of Fig. 4.4 shows two point clusters, around 100 km/h
and 125 km/h, in the left lane (red open circles). Give a possible explanation for
this bimodality. Consider the diagrams in the bottom panels (a traffic control
system issuing traffic-dependent speed limits by variable message signs is
installed on this road segment).
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4.3 Distribution of Time Gaps

Using single-vehicle data, we can also obtain the distributions of time gaps (cf.
Eq.3.3), as shown in Fig.4.8 for two different speed ranges corresponding to free
and congested traffic. The time-gap distributions exhibit the following properties:

1. Time gaps are broadly scattered—it is not unusual to see standard deviations
larger than the arithmetic mean (7'), i.e., a coefficient of variation greater
than 1.

2. The distributions are strongly asymmetric. Both in free and congested traffic we
observe time gaps longer than 10s.

3. Infree traffic (with speeds larger than some critical speed V) the most probable
time gap T (the statistical mode) is significantly smaller than in congested traffic.
In both speed regimes, Tis significantly smaller than the recommended safe time
gap in the USA (“leave one car length for every ten miles per hour of speed”), or
in Europe (“safety distance (in meters) equals speed (in km/h) divided by two”,
corresponding to 1.8s).

4. The arithmetic mean is also significantly smaller in dense free traffic than in
congested traffic.

The mean flow is equal to the inverse of the arithmetic mean of the time headways.
Thus, we can also determine the flow decrease after a traffic breakdown from the
distributions in Fig. 4.8. Traffic jams usually do not dissolve quickly once they have
emerged, due to this capacity drop.

Most of the observed time-gap distributions are not identical to the distribution of
the drivers’ desired time gaps, but provide an upper bound only. The real time gap is
larger in free traffic because most vehicles are not actually following another vehicle.
With a flow of, e.g., 360 veh/h per lane (corresponding to a mean headway of 105s), the
mode of the time-gap distribution is still below 1 s. There are also dynamic influences,
since the followed vehicle might be “getting away” if the following vehicle cannot
accelerate any further (or its driver does not want to). These effects explain, at least
partially, the strong asymmetry of the distributions.
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Fig. 4.8 Distribution of the 0.1
time gaps in two speed regimes
(free and congested traffic),
measured on the Dutch A9
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4.4 Flow-Density Diagram

The flow-density diagram, i.e., plotting traffic flow against density, allows us to make
anumber of statements on the macroscopic (i.e., average) behavior of a driver-vehicle
unit. In its idealized form, i.e., steady state equilibrium of identical driver-vehicle
units, it is also called fundamental diagram. The following quantities can be derived
from the fundamental diagram:

1. The desired speed equals the asymptotic gradient Q’(0) of the fit Q(p) for p = 0.
This quantity can be more accurately determined using speed-density diagrams
(cf. Sect.4.2).

2. The actual mean speed for a defined density is given by the slope Q(p)/p of the
secant through (0, 0) and (p, Q(p)).

3. The maximum value of Q(p) is the road capacity per lane.

4. The inverse of the smallest nonzero density 0,4, for which Q(p,4) = 0 equals
the average vehicle length plus the average gap between stopped vehicles.

5. The mean time gap T can be determined from the (negative) slope of Q(p) at
large densities (see Chap. 8).

6. The slopes of flow-density diagrams also allow to read off the propagation
velocities of jam fronts and variations of macroscopic quantities (this is also
discussed in Chap. 8).

Bias with respect to the fundamental diagram. It is important to carefully distin-
guish between measured flow-density data and the fundamental diagram.

The fundamental diagram describes the theoretical relation between density
and flow in stationary homogeneous traffic, i.e., the steady state equilibrium of
identical driver-vehicle units. The flow-density diagram represents aggregated
empirical data that generally describes non-stationary heterogeneous traffic,
i.e., different driver-vehicle units far from equilibrium.
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There are multiple reasons for flow-density data not to coincide with the funda-
mental diagram:

e The measurements process induces systematic errors (Sect.3.3).

e The traffic flow is not at equilibrium.

e The traffic flow has spatial inhomogeneities or contains non-identical driver-
vehicle units.

The statements on traffic jam dynamics and driving behavior derived in the above
enumeration are exact for the fundamental diagram, only. Since each of the afore-
mentioned factors can cause significant differences between the density obtained
from Eq.(3.14) and the theoretical expectation in the fundamental diagram (it is
not unusual to see discrepancies by a factor of two), deriving statements from flow-
density data is quite error-prone. In the following examples of empirical flow-density
relations shown in the Figs.4.9,4.11 and 4.12 (upper left panel), the maximum traffic
density obtained by extrapolation is unrealistically small, while the front propaga-
tion velocities derived from the trend of flow-density point clouds of congested
regions are too large in magnitude (and the point clouds do not always show a clear
trend).

To estimate the effects of the errors mentioned above, we can use traffic sim-
ulations that also simulate the measurement process using virtual cross-sectional
detectors. Fig.4.10 shows that the flow-density diagram depends strongly on the
method of averaging for obtaining the macroscopic speed and the flow (cf. Sect. 3.2),
at least at large densities. Particularly, all methods yield estimated densities that
strongly deviate from the actual density, which is, of course, available in the simula-
tion. Remarkably, plotting the flow Q against the density estimate

&

=1 (4.1)

P
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Fig. 4.10 a Microscopic simulation of a traffic breakdown and stop-and-go waves caused by an
on-ramp. Shown is the local speed. b—e flow-density data where the measurement process was
simulated using data of “virtual” detectors and different aggregation methods. b Flow Q = 1/(Aty)
versus density Q/ V (the standard procedure), ¢ flow Q versus density Q/ Vg, d flow O* = (1/Aty)
versus density Q*/ Vg, e flow Q versus density Q*/ V. For comparison, plot f displays the point
cloud obtaining by using the actual local values of flow and density, and the fundamental diagram
is plotted as solid line in b—f

(Fig.4.10e) consistently yields the least biased result in the simulations although
the unbiased flow is given by the harmonic mean Q (Eq.3.6) of the microscopic
flow, and not by the arithmetic average Q* (Eq.3.12). In any case, the difference
between the true flow-density points (f) and the data shown in (b)—(e) is caused by
the measurement process. The difference between the flow-density data (f) and the
fundamental diagram, however, is due solely to non-equilibrium effects. This can
be concluded since identical driver-vehicle units were simulated (for details, see
Fig. 11.4 in Part II where this simulation is discussed in detail).
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We finally notice that quantities that are derived purely from measurements of
the flow, such as the capacity and the hysteresis effects to be discussed in the next
paragraph, are less subjected to errors.

Capacity drop and hysteresis. Sometimes, a sudden drop of the maximum possi-
ble traffic flow (capacity drop) is observed with a traffic breakdown (cf. Fig.4.11
and4.12). In this case the traffic shows hysteresis effects, i.e., the dynamics does not
only depend on the traffic demand but also on the history of the system. When the
traffic breaks down, the system state switches from the “free branch” onto the “con-
gested branch”, lowering the maximum possible flow. This implies that once a traffic
jam has emerged, the traffic demand has to fall to a much lower value to dissolve the
jam. The flow-density diagram describing this phenomenon is also said to have an
inverse-A form (due to its resemblance of a mirrored Greek letter lambda, 1).

Wide scattering. The strong variation of time gaps (cf. Sect.4.3) partially explains
the strong scattering of the flow-density data in congested traffic: While in free traffic
the variations of density and time gaps both cause variations of the flow-density data
along the one-dimensional curve Q = p V), variations of density in congested traffic
lead to changes in the flow-density data which are orthogonal to those caused by
variation in the time gaps. Both effects combined lead to a chaotic behavior of the
flow-density data in congested traffic (cf. Figs.4.11 and 4.12).

Finally, variations in the time gaps are not only caused by heterogeneous traffic
(i.e., different desired time gaps of the individual drivers), but also by non-equilibrium
traffic dynamics (i.e., the actual time gap is not equal to the desired time gap) and
the systematic aggregation errors discussed above (Fig.4.10).
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Fig. 4.12 Flow-density, speed-density, and speed-flow diagrams of the 1-minute data captured on
the Autobahn A5 near Frankfurt, Germany using harmonic mean speed. The lines show the fit of a
traffic-stream model (see Sect.6.2.2)

4.5 Speed-Flow Diagram

Plotting vehicle speed against traffic flow is also possible, of course. However, this
diagram is not as fundamental for modeling as the flow-density diagram and not as
demonstrative as the speed-density diagram. It does have the advantage of showing
only directly observed quantities, Nevertheless, it is also affected by the systematic
errors in the speed aggregation. By the hydrodynamic relation Q = pV, all three
diagram types are equivalent (cf. Fig.4.12).

Problems

4.1 Analytical fundamental diagram

Derive and sketch both the speed-density diagram and the fundamental diagram,
subject to the following idealized assumptions: (i) All vehicles are of length/ = 5Sm.
(ii) In free traffic (speed does not depend on other vehicles), all vehicles drive at
their desired speed Vy = 120 km/h. (iii) In congested traffic (speed is the same as
the speed of the leading vehicle), drivers keep a gap of s(v) = so +vT to the leading
vehicle, with the minimum gap so = 2 m and the time gap 7 = 1.65s.

4.2 Flow-density diagram of empirical data

Considering the speed-density diagram (Fig.4.5) and flow-density diagram (Fig. 4.9)
of the German A8-East and the Dutch A9, determine the desired speed Vj, time gap
T, maximum density pmax, and the capacity drop on both highways from the fitted


http://dx.doi.org/10.1007/978-3-642-32460-4_6

36 4 Representation of Cross-Sectional Data

curves. Which statements can you make about the driving behavior of German and
Dutch drivers (at least on these specific highways at the time of measurement)?

Further Reading
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e Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Single-vehicle
data of highway traffic: Microscopic description of traffic phases. Physical Review
E 65, 056133 (2002)



Chapter 5
Spatiotemporal Reconstruction
of the Traffic State

Amazement is the beginning of knowledge.
Plato

Abstract A detailed representation of the traffic state in space and time allows us
to analyze various aspects of traffic dynamics. However, since traffic data are only
available for a small subset of locations and times, the full traffic state can only be
reconstructed by spatiotemporal interpolation, which can be formulated in terms of
a convolution integral. Since naive “isotropic” interpolation is inadequate for traffic
data, we introduce a more refined interpolation method. This adaptive smoothing
method yields a detailed and plausible reconstruction of the traffic state. Finally, we
discuss the combination and weighting of multiple, heterogeneous data sources for
estimating the traffic state (data fusion).

5.1 Spatiotemporal Interpolation

The purpose of the two-dimensional spatiotemporal interpolation algorithm described
below is to estimate the speed field, i.e., the continuous function of local speed aver-
age V(x,t) given only discrete speed measurements v; at discrete locations x; and
times #; (Figs.5.1 and 5.2). In most cases, data are available in the form of aggregated
minute by minute data of speed and flow recorded by stationary detectors. Further-
more, floating cars transmitting “data telegrams” of their positions and time-mean
speeds become increasingly relevant. The output is the traffic-state estimator in the
form of a continuous speed field (and possibly other fields) as a function of space and
time. Traffic-state reconstruction methods using interpolation techniques are useful
for offline analysis of historical highway traffic flow data. Real-time estimation is
described in Chap. 18

M. Treiber and A. Kesting, Traffic Flow Dynamics, 37
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Fig. 5.1 Color-coded visualization of the speed measured by stationary detectors (fop) and the
speed field reconstructed by the adaptive smoothing method (Sect. 5.2). The data are from a section
of the Autobahn AS near Frankfurt/Main, Germany (south-bound, recorded May 28, 2001). The
“active” bottlenecks causing congestions are the on-ramps of two highway junctions, and an accident
at location 478 km restricting the local capacity at this location between 10:00and 11:30am
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Fig. 5.2 Spatiotemporal interpolation as a way of reconstructing the traffic state at location x and
time ¢ using the isotropic weighting kernel (5.2)
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The basis of spatiotemporal interpolation and smoothing is a discrete convolution
with a kernel ¢ that includes all data points i:

Vx,t) = 1)Z¢o(x—xi,t—ti)v,-. (5.1)

N(x,t

In principle, we can use any function as the weighting kernel ¢ (x, ¢). To avoid

artifacts, the kernel should have following properties:

e It should be localized, i.e., ¢o(x, t) tends to zero for sufficiently large values of
|x] and |£].

e The maximum of ¢q(x, ¢) should be at x = 0 and r = 0.

e ¢o(x,t) should be a continuous function of x and z.

e ¢o(x, t) should be monotonically decreasing with |x| and |¢].

For our purposes, the symmetric exponential has proved itself useful:

[ (Ix—xil Il—lil)]
¢o(x —xi, 1 —1;) =exp|— + . (5.2)

o T

Here, o and t are the smoothing widths in the spatial and temporal coordinates,
respectively. The denominator N of Eq. 5.1 denotes the normalization of the weight-
ing function, given by the sum of all discrete weights:

NG 6) =D golx —xi.t —1;). (5.3)

The exponential function operates as a low-pass filter, smoothing temporal variations
on a scale smaller than t and spatial fluctuations on a scale smaller than o. For the
interpolation of detector data with aggregation intervals of 1 min, good values for t
are between 30 and 60's. The spatial smoothing with o should be of the order of half
of the average distance between detectors.

If the distance between two detectors is larger than half of the spatial distance
between two stop-and-go waves, the isotropic kernel (5.2) produces artifacts such as
the “egg-carton pattern” in Fig.5.3. These introduce ambiguities into the interpreta-
tion of stop-and-go waves (Fig.5.4).

Why does the isotropic reconstruction of stop-and-go traffic produce artifacts
such as wrong propagation velocities, or even wrong propagation directions of
congestion waves, if the detectors are further apart than half of the wavelength?
Clarify the situation by drawing idealized, regular stop-and-go waves with
wavelength A and multiple cross-sectional detectors (all separated by a distance
Ax) in a space-time diagram (cf. Fig.5.4).

1 One could also use a bivariate Gaussian.
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Fig.5.3 Contour plots of spatiotemporally interpolated speed measurements of stationary detectors
on a section of the Autobahn A9 north of Munich, Germany. The stop-and-go waves are distorted
by the isotropic smoothing, while a traffic-adaptive smoothing yields a detailed reconstruction
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Fig. 5.4 Ambiguity in the interpretation of stop-and-go waves using data from cross-sectional
detectors: Aside from the “true” stop-and-go waves (solid patches), a different interpretation is
possible (dotted outlines). Since stop-and-go waves always propagate upstream, we can rule out the
second interpretation

5.2 Adaptive Smoothing Method

The wavelengths of stop-and-go waves are usually of the order of 2km while most
stationary detectors or floating cars in the real world are separated by more than
1 km. Therefore isotropic smoothing using the kernel (5.2) is not suitable for typical
situations. In the following, we introduce a traffic-adaptive smoothing method for
the reconstruction of the spatiotemporal traffic dynamics, which is able to provide a
more detailed and plausible reconstruction than the isotropic method (Fig.5.3).

Like the isotropic smoothing procedure, the adaptive smoothing method is based
on a two-dimensional interpolation in space and time. In contrast to the former, it
takes into account the two typical velocities of information propagation in free and
congested traffic.

First, the spatiotemporally averaged speeds (and other macroscopic quantities) are
calculated using two different weighting kernels (“filters”, Sect.5.2.1) accounting for
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the different propagation velocities of macroscopic density and speed changes in free
and congested traffic.

Then, the two filters are used to determine the traffic state at the spatiotemporal
location (x, #) by calculating the “degree of congestion”, w, which can take values
between 0 and 1. The final speed field V (x, ¢) is a superposition of the two filters,
weighted by w (Sect.5.2.2). To validate the smoothing method we will reconstruct
the traffic state from a reduced dataset (in which data from some detectors has
been omitted) and compare it to the reconstruction obtained from the full dataset
(Sect.5.2.4). Finally, we investigate the robustness of the method (Sect.5.2.5).

5.2.1 Characteristic Propagation Velocities

The adaptive smoothing method takes into account that all perturbations to the traf-
fic flow, i.e., “patterns” in the spatiotemporal speed diagram, are either stationary or
moving with one of two distinct (remarkably universal) velocities: (i) In free traffic it
has been observed that perturbations usually propagate with the traffic flow (down-
stream) at a characteristic velocity slightly below the local speed of the vehicles.
This is due to the weak interactions between the vehicles. (ii) In congested traffic,
perturbations propagate against the traffic flow (upstream) due to the reaction of the
drivers to their respective leading vehicles. Empirical data shows that the propagation
velocity of approximately ccong = —15km/h is universal in congested traffic situa-
tions, see Fig.2.1. This includes the propagation of downstream fronts of individual
stop-and-go waves (cf. Chap. 18), or the dissolution of a queue behind a traffic light
once it turns green (cf. the figure in Problem2.3). The only exception to this rule is
the propagation velocity of upstream fronts of congestions which is above ccong.

To account for these fundamental properties of the traffics dynamics, fwo smoothed
speed fields with different propagation velocities in free and congested traffic, cfree
and ccong, are considered (cf. Fig. 5.5)2:

X — X

1
Viree(x, 1) = Nowe ) Z¢0 (x —Xj,t—1t — ) Vi, 5.4

Cfree

1 — X
Vcong(x’t):mZ¢O(x_xivt_ti_x x)v,-. (5.5)

Ccong

The normalization constants Niee and ./\fCong are determined analogously to (5.3).
According to the reasoning above, the propagation velocity in free traffic is set slightly
less than the average free-flow vehicle speed, e.g., cfree = 70km/h on highways.
The propagation velocity in congested situations, ccong = —15km/h, represents

2 We use ¢ to denote propagation velocities, and V and v for the macroscopic and microscopic
vehicle speeds, respectively.
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Fig.5.5 Speed filters of the adaptive smoothing method for the reconstruction of free and congested
traffic states at location xo and time #y. The colored parallelograms indicate the spatiotemporal
region for which the weighting function ¢y is significantly different from zero. The shear of the
parallelograms is determined by the propagation velocities of perturbations in free and congested
traffic, respectively. The symbols along the dotted lines, which mark the positions of cross-sectional
detectors, show the (aggregated) data which are most influential in the interpolation

the movement of traffic waves moving against the traffic flow (indicated by the
negative sign). The space-dependent shifts of the time coordinate by (x — x;)/Cfree
and (x — x;)/ccong given by Egs. 5.4 and 5.5, respectively, represent the transitions
from a coordinate system comoving with the propagation velocities to a stationary
system. In effect, the transformations “shear” the smoothing kernel ¢o(x — x;, t —1;)
with the gradients 1/cfree and 1/ccong. In the limit ¢free = ccong — 00 the adaptive
interpolation is equivalent to the isotropic interpolation (5.2).

5.2.2 Nonlinear Adaptive Speed Filter

The result of the adaptive smoothing method—the average speed V (x, t)—is a super-
position of the two speed fields Vfee and Veong:

Vx, 1) =wx,1) Vcong(xs 1) +[1 —wx, )] Viee(x, 1). (5.6)
The weight w(x, ) depends on both Vfee and Veone. Obviously, we want w ~ 1 for

low speeds and w ~ 0 for high speeds. The continuous transition between the two
extremes is characterized by an s-shaped (sigmoid) nonlinear function:

wix, 1) = % [1 + tanh (VCA;VV*)] . (5.7)
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Table 5.1 Parameters of the adaptive smoothing method (ASM) and typical values for highway
traffic

Parameter Value (highway traffic)
Spatial smoothing width o Ax /2 (of the order of 1km)
Temporal smoothing width 7 At /2 (of the order of 305s)
Propagation velocity of perturbations in free traffic cfree 70km/h

Propagation velocity of perturbations in congested traffic ccong —15km/h

Threshold between free and congested traffic V. 50km/h

Width of the transition between free and congested traffic AV 10km/h

The predictor V*(x,#) = min [ Viice, Veong| is defined such that congested traffic
states are represented more accurately than free traffic. The parameter AV determines
the transition width around V., which is the threshold between free and congested
traffic. Good parameters values are, for example, V., = 55km/h and AV = 10km/h.

5.2.3 Parameters

Table 5.1 summarizes the six parameters of the adaptive smoothing method (ASM)
and suggests suitable values for highway traffic. Strictly speaking, the parameters
must be estimated by appropriate calibration techniques as described in Chap. 16
below. However, the ASM is very robust in the sense that the resulting speed field
is insensitive to the precise values as long as the order of magnitude is correct
(cf. Sect.5.2.5). In particular, the values of Table5.1 are expected to yield good
results for any highway traffic situation.

In the following, we show—using the ASM as an example—how one can test the
validity and robustness of methods for traffic-state reconstruction.

5.2.4 Testing the Predictive Power: Validation

Traffic-state recognition methods can be validated by applying them to a subset of
given detector data and comparing the results with the full dataset. Ideally, the full
data set serving as reference is so dense that it can be regarded as representing the
ground truth (Fig.5.6).

The validation procedure consists in applying the ASM with standard parameters
of Table 5.1 to input data chosen from just a small selection of the available detectors.
The interpolated speed field V (x, ¢) is then compared to speed data at detectors
which are half way between those whose data has been used in the reconstruction.
For example, at a spacing of 1 km corresponding to Fig.5.7a, the prediction quality
of the method is based on the differences between the predicted and measured data
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Fig. 5.6 Stationary detector data of traffic waves on the English motorway M42. The inter-detector
spacing of the stationary detectors is 100m (40m in the vicinity of x = 12km). The data are
visualized as a spatiotemporal scatter plot. Each data point corresponds to the local speed aggregated
over all lanes and over 1 min. No further data processing has been applied

at x = 2.5km, x = 3.5km and so forth. Figures 5.7b—d display the reconstructed
traffic states with increasingly reduced sets of loop detectors. In summary, the most
important features are identified even when the detector spacing is increased to
4km. Generally, the method can be considered as valid for inter-detector distances
at or below 2-3 km. At this distance, the ASM produces similar results as the naive
isotropic interpolation would do for inter-detector distances of 1km (Fig.5.3).

5.2.5 Testing the Robustness: Sensitivity Analysis

By varying the parameters listed in Table 5.1 we can check the “robustness” of the
traffic state reconstruction, i.e., the sensitivity of the result to changes in the parameter
values. Figure 5.8 shows the reconstructed speed field of traffic waves on the German
A9 when changing the transition parameters V., and AV (top, right), or the propaga-
tion velocities cfree and ceong (bottom row). The resulting average speed, especially
the distinction between free and congested traffic, does not change strongly in either
case. The most important factor is the propagation velocity in congested traffic: Val-
ues less than —20km/h or greater than —12km/h produce artificial, discrete steps.
For V., — 400, the ASM reverts to the isotropic smoothing method (Fig. 5.3 right).
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Fig. 5.7 Reconstruction of the reference situation of Fig.5.6 by the adaptive smoothing method
applied on reduced data sets with detector spacings between 1 and 4 km. The locations of detectors
whose data has been used in the reconstruction are indicated by horizontal lines

5.3 Data Fusion

The term data fusion refers to the process of combining data from multiple, hetero-
geneous data sources such as cross-sectional data, floating-car data, “floating-phone
data”, police reports, etc. In general, each of these categories of data describes dif-
ferent aspects of the traffic situation and might even contradict each other. The goal
of data fusion is to maximize the utility of the available information (cf. Figs.5.9
and5.10).

Real-time applications of the traffic state estimation, e.g., information on current
traffic congestions, are a particular challenge, since data points in the future are, of
course, not available.



46 5 Spatiotemporal Reconstruction of the Traffic State
Reference V [km/h] V=40 km/h, Delta V=20 km/h [km/h]
512
100
510
—_ —_ 80
£ 508 £
= =
5 5% 5 60
8 504 g
[¢] o
S S 40
502
500 20
498
8:00 9:00 10:00 8:00 9:00 10:00
Time Time
c-free=200 km/h, c-cong=-10 km/h v/ [kmyh] c-free=200 km/h, ¢-cong=-20 km/h v/ [km/h)
512
100 100
510
— 80 80
£ 508 €
= =
5 5% 60 s 60
5 504 g
S 0 3 40
502
500 20 20
498 0 0
8:00 9:00 10:00 8:00 9:00 10:00
Time Time

Fig. 5.8 Influence of parameter variations when applying the adaptive
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What are possible causes for inconsistencies between heterogeneous data
sources? Where are visible inconsistencies in Fig.5.9?



5.3 Data Fusion 47

Trajectory Data
x A (Bridge)

— Ié.
=]
200 m

X3
Call1: Call3 o
® 2
)
(0]
3\ T
% P3
|3
No D 3
o Data TDP
A ©

Stationary Detector D1

@D D D Y Y Y Y W YYY
) ©© 09 9©OEO Y ¢ o9
4

X4

>t

Fig.5.10 Another example of diverse data sources used in the spatiotemporal reconstruction of the
traffic state. The horizontal dotted lines represent two stationary detectors at locations xj and x2,
which send data every minute (green circles: free traffic, yellow: dense traffic, red: traffic jam). Three
floating cars cross the road segment in question and also send data, though not in fixed intervals but
event-based. A camera on a bridge at location x3 reports trajectory data over a small road segment
(black curves). An accident was reported via cell phone (call 1) but the caller was only able to give
the approximate location (vertical orange line). Caller 2 was standing on a bridge and observed free
traffic over some period of time. Caller3 reported standing in a traffic jam at time 2:55 p.m. and
location 435.5km. Finally, a helicopter (flying against the driving direction) observed free traffic

5.3.1 Model-Based Validation of a Data Fusion Procedure

The adaptive smoothing method introduced in Sect. 5.2 can be used as an algorithm
for data fusion if all data sources provide spatiotemporally resolved point measure-
ments of the local speed, i.e., data sets {x;, #;, v;}. This includes stationary detector
data (SDD) and floating-car data (FCD). To test and validate this application of the
adaptive smoothing method, one needs congested traffic situations where (i) SDD,
(i) FCD, (iii) a sufficient approximation to the ground truth are available. To date,
such test cases are rarely available. We therefore demonstrate how to validate data-
fusion procedures based on models and simulations. For this purpose, we simulate
traffic waves with a model of human drivers that can reproduce the waves realistically
(Fig.5.12a, see Chap. 12 for a model description). As input for the adaptive smooth-
ing method, we generate virtual SDD and FCD from the simulation (Fig. 5.11) and
apply the method with the standard parameters.

The prediction quality of the method is assessed by comparing the reconstructed
speed fields shown in Fig. 5.12b—d with the reference of Fig. 5.12a. It becomes evident
that both data sources contribute to the reconstruction.
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Fig. 5.11 Scatter plot of virtual floating-car and stationary detector speed data generated by sim-
ulating a bottleneck situation with a model for human drivers (described in Chap. 12)
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Fig. 5.12 Spatiotemporal speed profiles: a ground truth; busing stationary detector data (SDD)
only; cusing floating-car data (FCD) only; d combining stationary detector and floating-car data.
The input data for the Adaptive Smoothing Method resulting in diagrams b—d is shown in Fig. 5.11

5.3.2 Weighting the Data Sources

When using multiple data sources, their relative weighting plays an important role.
However, in the Egs. (5.4 and5.5), the weights
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X — X

wi(x,t) = ¢o (x—x,-,t—ti— - ) (5.8)
(with ¢ = cfree O Ccong) depend only on the (spatiotemporal) distance between the
location in question (x, #) and the data points (x;, #;). Consequently, all data points
are considered equally important. However, if the data originate from several detector
categories m (such as induction-loop detectors, infrared detectors, floating cars) with
different magnitude of the associated errors, it is sensible to include an additional
weight r,, that represents the reliability of the data source to give the more reliable
sources a stronger influence on the result. Combining this with the weighting (5.8)
according to the spatiotemporal distance between data and interpolation points, all
spatiotemporal weights w; (x, t) in the above formulas have to be replaced by the
total weights

tot X=X
w; " (x, 1) = wi(x, Drmi) = do (x —Xi, L=t — . ) T (i)- (5.9

Here, m (i) denotes that the data source i is of type m with reliability weight r,.

In order to determine the reliability weights r,,,, let us assume that (i) the different
data sources m bear no systematic errors, (ii) the variance 6,, of the random errors
is known, and (iii) the errors of the different sources are uncorrelated.

Now, we assume that, for a given point (x, t), speed estimates v,, from all data
types are available such that ¢o(x — x;, t — t; — (x — x;)/c) = 1. Then, according
to a basic addition rule for a linear combination of independent random variables,
the error variance of the weighted arithmetic mean V (x, 1) = >", ruvy, is given by
0 =, r20m where >, r, = 1 must be satisfied. Our objective is to minimize
this variance by varying the weights r,,, or the weight vector r. This immediately
leads to following constrained optimization problem: Minimize

0(r) =D rmbm. (5.10)

subject to

Srm=1. (5.11)

Constrained optimization problems can be solved using Lagrange multipliers. The
procedure is as follows:

1. Formulate each constraint n as a constraint function equating to zero, B, (r) = 0.
Here, the only constraint " r,, = 1 results in the function By (r) = >, rm — L.

2. Define the Lagrange function by adding to the objective function to be minimized
the constraint functions multiplied by Lagrange multipliers X,,:
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L(r,A) = 0(r) — ZAan(r), (5.12)

where the vector A represents the Lagrange multipliers which are unknown at this
stage. In our optimization problem, the Lagrange function is given by L(r, 11) =
zm r,%em - )‘«l(zm rm —1).
3. Find anecessary condition for the minimum of the Lagrange function with respect
tor: 5 N
Lod)

o (5.13)

This results in M equations if the weight vector r consists of M components. In
our application, we obtain

oL =2ry,6 A = 0 = = ad
— =2r — A= = —.
ar mYm 1 m 26,,

4. Determine the unknown Lagrange multipliers by applying the constraints. If there
are N constraints, (5.13) and the constraints constitute M + N equations for the

M + N unknown components of the vectors r and A. In our optimization problem,
we obtain A1 =2/, n;/l) resulting in the final weighting

1
O
>

m
m/

(5.14)

'm

The weights should be proportional to the inverse of the variance of the errors in
the data source.

Problems

5.1 Reconstruction of the traffic situation around an accident

Different data sources provide information about a road segment of length 10km
(0 < x < 10km) indicating a road block caused by an accident: (i) At 4.00 p.m.,
a floating car enters the area and crosses it at 120km/h. (ii) At 4.19 p.m., another
floating car, driving at the same speed, has to stop at the end of a traffic jam at
x = 5km. (iii) Two stationary detectors at x = 4and 8 km measure the traffic flow
(but not the speed). The detector at x = 4 km reports a flow of zero between 4.25 and
4.58p.m.. The detector at x = 8km reports zero flow between 4.14and 4.51 p.m.
(iv) At 4.40p.m., a driver reports (via cell phone) that he has been stuck in a traffic
jam at x = Skm for a few minutes already. (v) At 4.30 p.m., another caller, driving
on the opposite lane, reports an empty road at x = 7km.
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1. Visualize the available information in a space-time diagram. Mark all information
as one of (i) “free traffic”, (ii) “traffic jam”, (iii) “empty road”, (iv) “do not know;
either empty road or stopped traffic”.

2. Determine the location and time of the accident, assuming an immediate and total
road block causing a traffic jam that propagates upstream with constant velocity.
Also, determine the propagation velocity.

3. Determine the time at which the road block clears. (Keep in mind that downstream
jam fronts move with a universal propagation velocity of —15km/h.)

5.2 Dealing with inconsistent information

When a floating car passes the location xp of a stationary detector at time ¢p, the
data for (xp, tp) from the two different sources is usually inconsistent. Assume that
the floating-car speed data V> has a standard deviation of errors o> that is twice as
large as those of the stationary detectors (speed Vi, variance 012 = %022), and that
the errors are independent and not systematic. How do the errors in the fused data

improve (or worsen) when using (i) equal or (ii) optimal weights (5.14)?

Further Reading

e Treiber, M., Helbing, D.: Reconstructing the spatio-temporal traffic dynamics from
stationary detector data. Cooper @tive Tr@nsport@tion Dyn@mics 1 (2002) 3.1—
3.24 (Internet Journal, www.TrafficForum.org/journal)

e Treiber, M., Kesting, A., Wilson, R.E.: Reconstructing the traffic state by fusion
of heterogeneous data Computer-Aided Civil and Infrastructure Engineering 26
(2011), 408419

e van Lint, J., Hoogendoorn, S.P.: A robust and efficient method for fusing heteroge-
neous data from traffic sensors on freeways. Computer-Aided Civil and Infrastruc-
ture Engineering 24 (2009) 1-17
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Traffic Flow Modeling



Chapter 6
General Aspects

Politics is for the present, but an equation is for eternity.
Albert Einstein

Abstract In this chapter we present the general approach to traffic flow model-
ing and distinguish it from the methods of transportation planning. Furthermore,
we introduce model classifications with respect to the aggregation level and with
respect to mathematical and conceptional criteria. We also discuss how to model
non-motorized traffic.

6.1 History and Scope of Traffic Flow Theory

Traffic flow theory and modeling started in the 1930s, pioneered by the US-American
Bruce D. Greenshields (Fig.6.1). However, since the 1990s, the field has gained
considerable attraction as overall traffic demand has increased and more data as well
as easy access to computing power has become available.

Both traffic flow modeling and transportation planning belong to the broader
field of traffic modeling. However, there are important differences between traffic
flow modeling and transportation planning:

e Temporal aspect: The timescale in traffic flow dynamics is of the order of minutes
to a few hours, while transportation planning covers periods from hours to several
days or even years.

e Objective aspect: Traffic flow dynamics assumes an externally given traffic demand
and fixed infrastructure. Transportation planning models the dynamics of the traffic
demand and effects of infrastructure changes.

e Subjective aspect: Traffic flow dynamics analyzes human (or automated) operatio-
nal driving behavior (accelerating, braking, lane-changing, turning) while higher-
level actions, e.g., activity choice (number and type of trips), destination choice,
mode choice, and route choice belong to the realm of transportation planning.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 55
DOI: 10.1007/978-3-642-32460-4_6, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 6.1 Traffic theory in the 1930s: Historical speed-density diagram and the experiment carried
out by Bruce D. Greenshields. [From: Greenshields, B.D., A study of traffic capacity. In: Proceedings
of the Highway Research Board, Vol. 14. Highway Research Board, Washington, D.C. (1935)]

Note that “dynamics”, i.e., explicit time evolution is not a distinguishing fea-
ture by itself: Transportation planning also includes the method of dynamic traffic
assignment (i.e., route choices that depend on traffic state and time). Furthermore,
supply (infrastructure) and demand are “dynamic” over timescales (years) routinely
considered in transportation planning.

The differences between the two fields are reflected in their approaches to tackle a
given problem. For example, the probability of traffic jams can be reduced by traffic
regulations such as speed limits, on-ramp metering, bans on passing for trucks, or
variable-message signs for alternate-route advises. The same effect can be achieved,
however, by building, modifying or removing infrastructure elements, creating incen-
tives to use different means of transportation, dispersing rush hours, or reducing
overall traffic demand (e.g., by political action). While the former solutions are sim-
ulated using traffic flow models, the latter refer to the field of transportation planning.
Of course, for a detailed assessment of a measure pertaining to transportation plan-
ning (e.g., redesigning a major intersection or building a new bridge), traffic flow
simulations come into play.

6.2 Model Classification

Traffic flow models can be categorized with respect to a number of aspects: Aggre-
gation level (the way reality is represented), mathematical structure, and conceptual
aspects. This section introduces important classes of models.

6.2.1 Aggregation Level

There are several ways to abstract real-world traffic events and model them, i.e.,
describe them mathematically (Fig. 6.2):



6.2 Model Classification 57

Macroscopic dp 0
— + - (pVelp)) =0
Model I p- ot T PVe(P)

Microscopic mp ’ =B mp dva = Qo (Sas Vs Ag)
Model @™ wome = ¢
n=1
Cellul n=0 | ID
Azt(l)ln?;ton (CA) [m=B (=) n(t+1) = F({r(t)})

Pedestrian Model | (Vxa(D, vya(D) Az
e @ '\.\ =2 = o (T Toas {5}, Walls ... )
e

Fig. 6.2 Comparison of various model categories (with respect to the way they represent reality)
including typical model equations

Macroscopic models describe traffic flow analogously to liquids or gases in motion.
Hence they are sometimes called hydrodynamic models. The dynamical variables are
locally aggregated quantities such as the traffic density p(x, ), flow Q(x, t), mean
speed V (x, t), or the speed variance 0‘2, (x, t). Because the aggregation is local, these
quantities generally vary across space and time, i.e., they correspond to dynamic
fields. Thus, macroscopic models are able to describe collective phenomena such
as the evolution of congested regions or the propagation velocity of traffic waves.
Furthermore, macroscopic model are useful,

e if effects that are difficult to describe macroscopically need not to be considered
(e.g., lane changes, several driver-vehicle types),

e if one is interested in macroscopic quantities, only,

e if the computation time of the simulation is critical, e.g., in real-time applications
(due to increasing computing power, this aspect is becoming less important), or

o if the available input data come from heterogeneous sources and/or are inconsis-
tent, so data fusion is necessary.

Multiple real-time speed and the capability to incorporate heterogeneous data
sources are particularly important for traffic state estimations and predictions. In this
process, the future traffic state is predicted over a time horizon 7 and the predictions
are updated over smaller time intervals A¢. The predictions are processed such that
they can be distributed via traffic message channel, variable-message signs, or serve
as input for connected navigation devices.!

Microscopic models including car-following models and most cellular automata
describe individual “driver-vehicle particles” o, which collectively form the traffic

! Traffic flow modeling and transportation planning are intertwined in these applications: Traffic
flow models provide the basis for the route choice.
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flow. These models describe the reaction of every driver (accelerating, braking, lane-
changing) depending on the surrounding traffic. In a broader context, microscopic
traffic flow models are examples of driven multi-particle models. The dynamical vari-
ables are vehicle positions x, (¢), speeds v, (f), and accelerations v, (). Microscopic
models are particularly suited for the following applications:

e Modeling how single vehicles affect traffic: This is becoming more and more
important as advanced driver-assistance systems (ADAS) such as adaptive cruise
control (ACC) or infrastructure-to-vehicle (I2V) and vehicle-to-vehicle commu-
nication (V2V) as well as other applications of Intelligent Transportation Systems
(ITS) see widespread use.

e Situations in which the heterogeneity of the traffic plays an important role, e.g.,
simulating the effects of speed limits or bans on passing for trucks: As we will see
in Chap. 21, this applies to any traffic control action since the general objective of
all measures for traffic optimization is the homogenization of the traffic.

e Describing human driving behavior, including estimation errors, reaction times,
inattentiveness, and anticipation: Microscopic models allow us to assess how dif-
ferent driving styles affect traffic capacity and stability.

e Visualization of interactions between various traffic participants (cars, trucks,
buses, cyclists, pedestrians, etc.).

e Generating the surrounding traffic for scientific driving simulators used for physio-
psychological studies of human drivers, or even for game simulators.

Mesoscopic models combine microscopic and macroscopic approaches to a hybrid
model: In local-field models, parameters of a microscopic model may depend on
macroscopic quantities such as traffic density or local speed and speed variance.
Conversely, in so-called master equations, the dynamics of a macroscopic quan-
tity (the number of vehicles in a traffic jam) is described in terms of microscopic
stochastic rate equations for in- and out-“flowing” vehicles. Gas-kinetic traffic models
use idealized “collisions” to describe the dynamics of a quantity called phase-space
density p(x, t, v) which includes traffic density and the local probability distribution
of vehicle speed. In the class of parallel-hybrid models, critical parts of a traffic net-
work (e.g., intersections and traffic lights) are described microscopically, and the rest
macroscopically (see below). Apart from these categories, there is a large spectrum
of further mesoscopic models which are beyond the scope of this book.

Aggregation and disaggregation. Macroscopic quantities (density, flow, local speed
and speed variance) can be obtained from microscopic quantities (vehicle positions
and speeds) by local aggregation (cf. Fig.6.3). This is possible if we can define
spatiotemporal regions which are microscopically large, such that they contain a
significant number of vehicles for averaging (notice that some macroscopic quan-
tities such as traffic density or speed variance are only defined for many vehicles).
Simultaneously, these regions must be macroscopically small, that is, smaller than
the typical lengths and time scales of the traffic patterns of interest (jams, stop-and-go
waves, changes in the traffic flow). The standard method for aggregation is kernel-
based moving averaging, a technique for weighted averaging where vehicles near
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the spatiotemporal point in question are weighted more than more distant vehicles
and the weighting is defined by a localized kernel function.> A special method of
aggregation is the simulation of the empirical measurement process by virtual detec-
tors with subsequent aggregation over time intervals to obtain “virtual one-minute
data”. The “measurements” of these detectors can be analyzed using the methods
introduced in the Chaps. 3 and 4.

The reverse operation, i.e., obtaining single-vehicle information from macro-
scopic quantities by disaggregation, is more difficult. Since the information content
of the microscopic configuration is higher than that of the macroscopic fields, this is
only possible by using ad-hoc assumptions which generally cannot be well justified.

One application of aggregation and disaggregation are parallel-hybrid models
in which, for example, critical road sections are modeled by a microscopic model
while the rest is being described by a macroscopic model. For this we need a fit
pair of a micro- and a macro-model, which both have the same model parameters.
The aggregated results of the microscopic model should correspond to the results of
the macro-model. Furthermore, we need a micro-macro link for the transition from the
microscopic model to the macroscopic model at a given location (aggregation), and
a macro-micro link for the corresponding disaggregation. One exemplary derivation
of a macroscopic model from a car-following model is shown in Sect.9.4.1.

6.2.2 Mathematical Structure

We can also categorize traffic flow models by their mathematical structure.

Partial differential equations (PDE). In models of this class both location x and
time ¢ are continuous and serve as the independent variables of continuous fields such
as the local speed V (x, t) or density p(x, 7). The model equations contain these fields
and their derivatives with respect to either of the two variables. This is the distinctive
feature of PDEs. This mathematical form is suited to express macroscopic models or
gas-kinetic based mesoscopic models. PDE traffic flow models generally allow for
analytical steady-state solutions (fundamental diagram), and analytical expressions
for propagation velocities of traffic waves and stability properties. Furthermore, in

2 In this sense, the adaptive smoothing method described in Sect. 5.2 can be considered as a kernel-
based aggregation method for data points rather than vehicles.
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spite of their inherent mathematical complexity, most PDE traffic flow models allow
for a fast numerical solution.

Coupled ordinary differential equations. In this mathematical class, the continuous
state variables (e.g., location x, (¢) or speed vy (¢) of vehicle «) depend on only one
variable, the time 7. The model equations contain the state variables and their time
derivatives (the distinctive feature of ordinary differential equations) and are coupled
with the equations of the leading vehicle. This is the most natural form to describe
time-continuous microscopic models (car-following models).

Coupled iterated maps. If the model uses discrete time steps Az instead of continu-
ous time while the state variables (e.g., speed) remain continuous, the mathematical
form is that of a coupled iterated map. The set of state variables at time ¢ are given
as a function (the “map”) of these variables at time t — A¢ (and possibly earlier time
steps).

Iterated maps are used for both microscopic and macroscopic models. In micro-
scopic models, the continuous state variables are the position, lane and speed of all
vehicles. In macroscopic iterated maps, space is discretized into cells and the contin-
uous state variables are traffic density and local speed. The maps are “coupled” since
the new state of the vehicles of microscopic models or the cells of macroscopic mod-
els depend not only on the old state but on the old state of the neighboring vehicles
or cells, respectively.

Formally, iterated maps are identical to differential equations that are numerically
solved by an explicit method. Conceptionally however, there is a difference: In iter-
ated maps, the duration At of one time step is a model parameter and the accuracy
of the numerical solution is only restricted by numerical rounding errors. In contrast,
the time step used when numerically integrating differential equations is not part of
the model, but an auxiliary variable of the numerical method. The mathematically
exact solution is obtained in the limit At — 0O (provided that the integration method
is consistent), while the numerical solution for finite Az > 0 becomes necessarily
inaccurate.

Cellular automata. In models of this class, all variables are discrete. Space is divided
into fixed cells and time is updated in fixed intervals. The state of each cell is either 0
(“no vehicle”) or 1 (“vehicle” or “part of vehicle”). The occupation of the cells is
determined at every time step and depends on the occupation at the previous time
step. In the traffic context, cellular automata (singular: cellular automaton, CA) are
mainly used for microscopic models. However, macroscopic traffic flow models in
the form of a CA are conceivable as well.

Discrete state variables, continuous time. Most (sub-)models for lane changes use
this mathematical form, even in time-continuous microscopic models: The lane index
is an integer, i.e., the lane change is (unrealistically) modeled as an instantaneous
process. Mesoscopic models using master equations belong to this category as well.

Static models. This class of models, also known as traffic stream models, describe
pairwise relations between the macroscopic state variables (density, flow, speed or
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occupation). The speed-density relation V (p) and the fundamental diagram Q(p)
discussed in Part I are examples of these models. The classical route-choice step of
transportation planning (or the route calculation of simple navigation devices with-
out live-data feed) uses the speed-flow relation, transformed into a travel time versus
flow relation, for each link. This so-called capacity restraint function is an increas-
ing function of the traffic demand. Notice that steady-state solutions of dynamic
microscopic or macroscopic models can be considered as traffic-stream models as
well.

6.2.3 Other Criteria

Depending on the application, traffic flow models can be categorized with respect to
several other criteria.

Conceptional foundation. We can distinguish between heuristic models and first-
principles models.> Heuristic models use a simple mathematical ansatz (e.g., multi-
variate-linear or polynomial in the exogenous variables) with the coefficients playing
the role of model parameters. They are fitted to the data by, e.g., regression techniques
and generally have no intuitive meaning. In contrast, first-principles models are
derived from certain postulates. For car-following models, this may be a driving
behavior that is determined by desired values for speed, acceleration, deceleration,
time gap, and minimum gap (bumper-to-bumper distance). Ideally, each of these
postulates is reflected by a model parameter the value of which thereby has an
intuitive meaning. Of course, first-principle models are calibrated against empirical
data, as well. In “good” first-principles models the calibrated parameter values will
assume reasonable values. For example, desired time gaps should be between 1 and
2, or accelerations within 0.8-2.5 m/sZ.

Randomness. Random elements can be used to describe aspects of the traffic flow
which are unknown, immeasurable, impossible to model, or “genuinely” random.*
While models without any randomness are called deterministic models, those with
random elements (also known as noise terms or stochastic terms) are called stochas-
tic models. In a computer simulation, the stochastic terms are implemented using
(pseudo-)random number generators. Randomness can occur at different points in
the model:

e Acceleration noise phenomenologically models the unpredictability and irrational-
ity of human driving behavior (“man is not a machine”). Most cellular automata
need noise terms to produce meaningful results.

e Exogeneous noise added to the input data (gaps and speeds in microscopic models)
is a way to model perception and estimation errors of humans (or ACC sensors)

3 Since traffic flow models include describing the human behavior, the first principles are not as
universal and invariant as the first principles in, e.g., physics.

4 Some people say that introducing stochastic elements is tantamount to confessing ignorance.
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on a more fundamental level: In contrast to acceleration noise, the acceleration
function itself is deterministic while the exogenous variables (input) fluctuate
randomly over time.

e Parameter noise, i.e., changing the values of model parameters according to a
stochastic process is a means to describe unpredictable changes in the mood of
drivers leading to changes of the driving behavior.

e Heterogeneities in the composition of the vehicles and drivers are described by
assigning each driver-vehicle unit a different set of parameter values drawn from
given probability distributions (see below). This adds stochastic elements to the
initial and boundary conditions (inflow, outflow), and leads, e.g., to stochastically
changing road capacities.

Identical versus heterogeneous drivers and vehicles. Traffic models may use iden-
tical driver-vehicle units or describe heterogeneous traffic. In the latter case, the
vehicle pool consists of several vehicle types (motorcycles, cars, trucks, etc.) and the
model might incorporate inter-driver variability by using several parameter sets for
each type (cautious vs. agile drivers, loaded vs. empty trucks, etc.).

Constant versus variable driving behavior. The (usually constant) model para-
meters determine the driving behavior of a driver-vehicle type. If some of these
parameters become time-dependent, we can describe changes in driving behavior.
This intra-driver variability may be stochastic (see above), or deterministic as a
function of the past traffic condition describing, e.g., resignation effects after being
stuck in congested traffic for a while. Simulating variable driving behavior is crucial
in assessing how adaptations of human drivers or ACC systems to different traffic
situations may improve or deteriorate the performance and stability of traffic flow
(cf. Sect.21.5).

Single-lane versus multi-lane models. If the traffic flow model describes several
lanes and changes between them, it consists of two components: Longitudinal dynam-
ics (acceleration model) and lateral dynamics (lane-changing model). Some models
intrinsically incorporate lateral dynamics while pure longitudinal models can be
extended by a suitable lane-changing model (see Chap. 14).

Which model categories are suited for each of the following applications?

Traffic state estimation for traffic reporting or routing applications

Modeling human drivers with different driving behaviors

Development of an adaptive cruise control systems (ACC)

Modeling the impact of ACCs and other driver-assistance systems on traffic

Models of large-scale traffic networks (e.g., a state-wide highway network)

Models of complex city traffic networks

7 Modeling the effects of traffic regulations such as speed limits or lane-
changing restrictions

8. Modeling roadworks or other bottlenecks

N =
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6.3 Non-Motorized Traffic

Besides motorized traffic flow, the dynamics of non-motorized traffic is accessible
to the model framework developed above. Non-motorized traffic includes pedes-
trian, bicycle, and mixed traffic (particularly in developing countries, cf. Fig.6.4).
Generally, the microscopic approach is most suitable. However, large events with uni-
directional traffic flow (e.g., the pedestrian streams at the yearly pilgrimage event of
Mecca) have also been modeled and simulated macroscopically. Similar to models of
vehicular traffic, microscopic pedestrian models can be categorized into models with
continuous variables, so-called social-force models, and cellular automata. Contrary
to vehicles, pedestrians can generally move freely in two spatial dimensions, i.e.,
there are two spatial coordinates x and y. In addition to the desired (walking) speed,
every pedestrian also has a desired direction. Consequently, the desired velocity is a
vectorial quantity.

Pedestrian models are used, for example, in the design of airports, public open
spaces, shopping malls, and for planning large-scale events, e.g., carnivals or other
processions, demonstrations, soccer matches, rock concerts, and other big events.
Furthermore, they are used to simulate evacuations from buildings, sports stadiums,
airplanes, and ships. A well-known example of pedestrian traffic flow modeling is
the simulation of pilgrims at the annual Hajj to Mecca, Saudi Arabia. At this event,
mass panic with catastrophic consequences caused by jams occurred frequently in
the past. With the help of pedestrian traffic simulations, the infrastructure of the site
has been modified and a routing of the pilgrim streams has been introduced which
significantly alleviated pedestrian crowding and jamming.

Models for other types of non-motorized traffic such as bicyclists, runners, or
inline skaters are nearly nonexistent in the literature, even though there are many
possible applications. For example, there is a huge demand for the modeling of
mixed traffic consisting of pedestrians, motorcycles, three-wheelers, horse and man-
powered carriages, cars, and trucks in developing and emerging countries (cf.
Fig.6.4). Flow models of runners and skaters have the potential to anticipate and
optimize the operations of large-scale events such as marathons, skating events, or
cross-country ski races. For example, at the annual Vasaloppet cross-country ski
race in Sweden, significant traffic jams occur during the first kilometers due to its
popularity (about 15,000skiers). As a consequence, the athletes in the last starting
groups are delayed by an hour or even more while the clock is ticking (Fig.6.5).
Here, traffic flow models can assist in the redesign and planning process by simu-
lating several scenarios, including a staggered rather than a mass start, changing the
organization of the starting field (size and location of the starting groups), changing
the infrastructure by detecting and eliminating active bottlenecks or modifying the
routing. Finally, simulations may suggest imposing an upper bound for the number
of participants.
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Fig. 6.4 Mixed traffic in Hyderabad (India) (Courtesy of www.cepolina.com)

Fig. 6.5 Traffic jam of cross-country skiers at the Vasaloppet (Sweden) near the start


www.cepolina.com

6.3 Non-Motorized Traffic 65

Problems

6.1 Speed limit on the German Autobahn?

Some people and organizations regularly ask for the introduction of a general speed
limit (of, say, 130km/h) on the German Autobahn. The reasoning usually includes
the following points:

1. A speed limit reduces the number of accidents (safety effect).

2. Assuming a given traffic demand, the speed limit of 130km/h increases the
dynamic highway capacity and reduces traffic jams (traffic effect).

3. By restricting vehicles to 130km/h, fuel consumption, CO; emissions, and noise
pollution are reduced (environmental effects).

4. The economic internal and external costs (cost of time and fuel, costs of accidents,
costs due to noise-related health problems, etc.) are reduced (macro-economic

effect).

For which of these effects can we find a quantitative description using traffic flow
models? If the answer is positive, which model category would be suitable?
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Chapter 7
Continuity Equation

Experience without theory is blind, but theory without
experience is mere intellectual play.
Immanuel Kant

Abstract The foundations of every macroscopic traffic model are the hydrody-
namic relation “flow equals density times speed’ and the continuity equation, which
describes the temporal evolution of the density as a function of flow differences or
gradients. The macroscopic vehicle speed is defined such that it satisfies the hydrody-
namic relation, and the continuity equation is directly derived from the conservation
of vehicle flows. Thus, both equations are parameter-free and hold for arbitrary
macroscopic models. In this chapter, we derive the continuity equation for various
road geometries and illustrate it both from the point of view of a stationary observer
(Eulerian representation) and a vehicle driver (Lagrangian representation).

7.1 Traffic Density and Hydrodynamic Flow-Density
Relation

The continuity equation describes the conservation of vehicles in terms of the traffic
density and the hydrodynamic flow-density relation. Therefore, we will begin with
defining these quantities for multi-lane highways.

Traffic density is defined as the number of vehicles per unit length (cf. Sect. 3.3.1).
When describing traffic flow on highways with / > 1 lanes, we distinguish:

e The single-lane densities p;(x,t) onlanei =1, ..., n.
e The total density pwr(x, t) over all lanes.

M. Treiber and A. Kesting, Traffic Flow Dynamics, 67
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v t=t,
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Fig. 7.1 Illustration of the hydrodynamic relation Q = pV. The colored area contains An = pAx
vehicles. Within the time interval A+ = Ax/V, this area completely passes a fixed location xg.
Thus, at this location we have a vehicle flow of Q = An/At = pAx/At = pV

e Andthe lane-averaged density p(x, t), also called effective density whichis defined
by p(x, 1) = prot(x, 1)/1.

These definitions are related to each other by

1
po(x, 1) = D pi(x, 1) = Ip(x, ). (7.1)

i=1

Notice that the effective density is defined as the simple arithmetic mean of all
single-lane densities. While the density definitions p and pi are equivalent and
interchangeable, one of them may be more useful than the other, depending on the
problem at hand. The continuity equation is most conveniently written for the total
density py since vehicles are only conserved on the highway as a whole and not on
each lane. However, the speed-density and dynamic speed equations representing the
drivers’ behavior in first and second-order models, respectively, depend only weakly
on the number of lanes.! Therefore, the complete macroscopic equations are better
formulated in terms of lane-averaged (effective) density and speed fields.

All densities in macroscopic models are to be understood as real spatial densities
according to the definitions above. Thus, the “hydrodynamic” flow-density relations

Qi(x,1) = pi(x,0)Vi(x,1), (71.2)

as illustrated in Fig.7.1, hold exactly for each individual lane.? In this equation,
Q;(x,t) is the flow of lane i at location x and time #, and V;(x, t) the respective
local speed.

! For example, the capacity per lane of a three-lane highway is a few percent larger than that of a
two-lane highway since the obstructing effects of slower vehicles (trucks) decrease with the number
of lanes.

2 If we neglect diffusion, cf. Sect. 8.6.
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Thelocal speed V; (x, t) onlane i, sometimes also denoted as space mean speed,
is defined as the arithmetic mean speed of all the vehicles in the interval [x —
Ax/2, x+ Ax /2] (or [x, x+ Ax]) at a given time ¢. The interval must be micro-
scopically large (containing several vehicles) and macroscopically small (see
page 56 for details). The same definition applies to other “space mean” quan-
tities such as the lane-averaged speed V (x, 7) and the speed variance oy (x, 1).

If we define the lane-averaged or effective speed V (x, t) using an arithmetic mean
that is weighted by the lane densities,

I
pi(x, 1)
Vix,t) = wiVi(x,t), wj=——, (7.3)
; o " pox, 1)
and the average flow using the simple arithmetic mean,’
1 < 0
tot
0,0 =7 0i(x,1) ==, (7.4)

i=1

then the same hydrodynamic relation also holds for the averages and sums over all
lanes:

’ O(x,t) = p(x,t)V(x,t) Hydrodynamic Flow Relation (7.5)

and
Otot(x, 1) = prot(x, )V (x, 1). (7.6)

7.2 Continuity Equations for Several Road Profiles

The continuity equation does not depend on the particular macroscopic model being
used, but on the geometry of the road infrastructure. We discuss the following cases
in order of increasing complexity: (i) homogeneous road section, (ii) highway with
on- or off-ramps, (iii) road section in which the number of lanes changes.

3 Flow and density are extensive quantities, i.e., they depend on the system size (here, the number
of lanes) and it is meaningful to use sums of these quantities (e.g., the sum of densities on all
lanes). The speed, however, is an intensive quantity and it is not meaningful to use sums of such
quantities. In general, appropriate averages of extensive and intensive quantities are simple and
weighted means, respectively.



70 7 Continuity Equation

7.2.1 Homogeneous Road Section

Let us consider a road section of length Ax without any on- or off-ramps or other
geometric inhomogeneities such as changes in the number of lanes (Fig.7.2 top).*
The definitions of the local densities and speeds imply that the length Ax must
be microscopically large, such that it contains sufficiently many vehicles to obtain
macroscopic quantities, and macroscopically small, such that densities and flow
gradients are approximately constant within the road section.” Then, the number of
vehicles in the road section at time ¢ is given by

x+Ax
n(t) = / Prot(x’, D)dx" & pog (x, 1) Ax . (7.7)

X

Since we assumed a homogeneous road section, changes to the number of vehicles
can only be caused by inflow Qj, or outflow Qg at the section boundaries (cf.
Fig.7.2 top). These boundary flows are given by Qo (x, ) and Qo (x + Ax, 1),
respectively, resulting in the flow balance

dn

5 = Qin(t) — Qout(t) = OQot(x, 1) — Orot(x + Ax, 1).

Combining this relation with the time-derivative of Eq.(7.7), g—'t‘ ~ %(,ototAx) =
Ax 3’3’%, we obtain

9Pt (x, 1) _ Ld_n __ Otot(x + Ax, 1) — Qor(x, 1) ~ _3Qtot(X, 1)
ot Ax dt Ax 0x ’

and finally, using the hydrodynamic flow-speed relation Qo = pior V (omitting the
function arguments):

a d Vv a a(pV
o ApolV) g0 BV)

0. (7.8)
ot ax ot 0x

Since, for a homogeneous road section, the number I of lanes is constant, the conti-
nuity equation for the effective density p = pio/I has the same form.

If the macroscopic model has the form of a coupled iterated map, the road section
is divided into several cells k of length Ax; and the discrete version of the continuity
Eq. (7.8) applies:

4 Local changes in driving behavior caused, e.g., by gradients, speed limits, curves, or narrow lanes
(without a reduction of the number of lanes), are permitted and do not influence the continuity
equation as such. They come into play when closing the equations by speed-flow relations, see
Chap. 8.

3 For highways, both assumptions typically hold for sections of length Ax & 100 m.
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Fig. 7.2 Sketch of the road geometries which yield the continuity Egs.(7.8), (7.12) and (7.15),
respectively: (i) homogeneous road section, (ii) on- or off-ramps, (iii) changes to the number of
lanes

_ 1 up down
prlt + 40 = () + 5 (7~ 0f™) ar (7.9)

Here, the inflows sz and outflows ngwn depend on the respective neighboring
cells and are calculated using the supply-demand method introduced in Sect.8.5.7.

7.2.2 Sections with On- and Off-Ramps

On- and off-ramps imply additional in- and outflows Qmp(¢), which have to be added
to those at the section boundaries (cf. Fig.7.2 center). The balance now reads

dn
5 = Qin() — Qout(t) + Qrmp(t)'

The ramp flow Qypp is positive for on-ramps, and negative for off-ramps. If the ramp
has more than one lane, Qnp is the sum of the flow on all lanes of the ramp. Assuming
that the in- and outflows are evenly distributed along the length Ax = Ly, of the
ramp, we can define a constant flow density dQimp/dx = Qrmp/Lmp. This term is
only active within the merging (diverging) sections of the on-ramp (off-ramp). Thus
the continuity equation reads

dProt 4 3(protV) i Ormp
at ax Limp

= Tomp(x, 1) . (7.10)
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Here,

QOrmp (1)
Vrmp (X, 1) = 0[ Lemp

if x is within merging or diverging zones, (7.11)
otherwise '

denotes the effective source density. By dividing Eq.(7.10) by the number of
lanes, we obtain the continuity equation in the presence of ramps for the effective
(lane-averaged) density:

o (V)
ot ax

= Vemp (X, 1) . (7.12)

With coupled iterated maps, it is easiest to model the ramp as one cell k whose
length is equal to the length of the acceleration/deceleration lane of the ramp. The
discrete continuity equation then becomes

1
pr(t + A1) = pe (1) + — | Q)7 — Q"™ + Qemmp )y, (7.13)
AXp 1

Drivers often change onto the continuous lanes immediately at the beginning
of an on-ramp, especially in free traffic. How can this behavior be captured by
changing the source term vy, (x, #) of the continuity equation?

On-ramps with very short acceleration lanes force vehicles to change onto
the highway at relatively low speeds. Discuss why it is possible to use the
continuity equation to describe the perturbations caused by the low speeds?

7.2.3 Changes in the Number of Lanes

When a lane ends, drivers usually merge into the other lane(s) very early, typically
200-1,000 m before the end (or blocking) of the lane on highways and somewhat
later in cities.® In contrast, when a new lane opens, there are many “early adopters”

6 This is even the case in case of congested traffic and in countries (e.g., Germany) where, for such
situations, traffic regulations require “zipper merging” just before the lane ends. Zipper merging
makes full use of the road capacity and minimizes the occurrence of secondary traffic jams caused
by gridlock effects (the waiting queue obstructs vehicles driving in other directions).
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changing immediately to this lane such that, after a few hundred meters, it is used
the same way as the other lanes.

If one were to formulate individual continuity equations for each lane (multi-lane
macroscopic models), the equations would be coupled by source terms along the
lines of those in Eq.(7.10). In particular, a lane closure would have the same effect
on its neighboring lane as an on-ramp, and an opening lane would represent a traffic
sink to the through lanes similar to an off-ramp.

However, we are only interested in macroscopic models which describe the
dynamics of the effective (lane-averaged) density p (x, ¢) and effective speed V (x, ).
The lane changes before a lane closure or after the beginning of an additional lane
are modeled by using a non-integer, location-dependent number I (x) of lanes (cf.
Fig.7.2 bottom). The averages of all extensive (additive) variables, i.e., flow and
density, are related to this continuous number of lanes:

~ Quot(x, 1) _ Pot(x, 1)
Qx,1) = o) p(x, 1) = TN

(7.14)
The average speed V (x, 1), however, is still given by Eq. (7.3) and the hydrodynamic
relation (7.5), Q = pV still holds everywhere.

For example, a value of / = 2.2 indicates that the third lane is seldom used
anymore (or yet), as the flow on this lane is only 0.2 times the average flow on the
other lanes. This shows the consistency of the average speed as defined in Eq. (7.3),
since (in this example) the local speed on the third lane is weighted by a factor of
0.2. Moreover, with / (x) tending to 2.0, the weighting of the third lane continuously
drops to zero, as expected. This also means that the length of the transition zone
associated with a non-integer number of lanes should be the same as the length of
the typical “merging zone” from or to the non-through lane(s).

The weighted mean speed (7.3) is consistent with continuous changes in the
number of lanes, if the upper limit of the sum over all lanes is the smallest
integer larger than /. Convince yourself that even though the upper limit of the
sum is discontinuous (e.g., 3 for / = 2.01 vs. 2 for I = 2), the lane-averaged
effective speed (7.3) is continuous.

The continuity equation for the total density py is the same as Eq.(7.8), or
Eq.(7.10) if ramps are present. However, since the traffic state (free, dense, and
congested) and thus the modeled driving dynamics depends on flows and densities
per lane, we have to express the continuity equation for a changing number of lanes
in terms of effective densities, speeds and flows, p = pio/I (x) and Qo/1 (x),
respectively. We insert pyor = I(x)p and Qo = I(x)Q into Eq.(7.10) and obtain
the following continuity equation:



74 7 Continuity Equation

dp)  0UQ)

o1 o [V
8,0 dl 00
8_+Q_+18 —Ivrmp
dp 00 Q dr
— 4+ = v
ar  ox  Idx P
And with Q = pV:
0 a(pV V.dl
a—/; (éo ) ,0] e + vimp(x)  Continuity Equation. (7.15)
X

The continuity equation (7.15) describes the most general case including ramps,

lane closings, and lane openings. In addition to the ramp term vymp (x), there is another
source density vy (x) = — Q d—I which describes the net flow from ending lanes and to
newly opening lanes. Of course all terms on the right-hand side of the equation are
only nonzero within the merging zones of on- and off-ramps, or within the transition
zones where vehicles leave lanes that are about to end or enter new lanes.

In the case of coupled iterated maps, the merging zone is modeled similarly to
ramps by a cell k of length Ax; with Iy lanes at the upstream end of the cell and

Iqown lanes at the downstream end (cf. Problem 7.6):

Qk,rmp + Iup — ldown up)

PRt + A1) = pi(1) + —— (Q — Qv 4
Idown Idown

7.2.4 Discussion

Let us first stress the fundamental nature of the continuity equation for macroscopic
traffic flow models:

Since the continuity equation is derived solely from the conservation of vehi-
cles, it is a part of all macroscopic models. Its form only depends on the mod-
eled road infrastructure and on the mathematical form of the model (partial
differential equation, iterated map, or cellular automaton).

Continuity equation without sources. Without on- or off-ramps we have dpo /0t =
—0Qyot/9x: The number of vehicles can only change due to in- or outflows at the
boundaries of the considered road section. If more vehicles flow out than are flowing
in, i.e., d Qor/dx > 0, the rate of change in density is negative. If the inflow is larger
than the outflow for a sufficiently long time, e.g., due to an accident at the downstream
end, then the positive rate of change in the density will eventually lead to a traffic
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jam. In the absence of ramps and with constant number of lanes, the same continuity
equation holds for the lane-averaged effective quantities, dp/dt = —9Q/0x.

Reduction in the number of lanes. If we define density and flow as the average over
the continuous lanes, the lane changes from the closed lane(s) to the continuous
lane(s) cause a net inflow. This is reflected by the source term — % gx—l and causes an
increase in density. However, if we use the total density and flow, there will be no
“source terms” in the continuity equation.

On-and off-ramps. In addition to the flow gradients, the in- and outflow at ramps also
cause a rate of change in density on the highway at the merging or diverging zones.
The source terms are proportional to the ramp flows. The effective flow density
(source density) vymp(x) is larger for shorter ramps (since more vehicles have to
merge per unit length) and smaller for a larger number of lanes on the highway
(since the ramp flow is distributed to more lanes).

7.3 Continuity Equation from the Driver’s Perspective

The continuity equation is usually formulated from the perspective of a stationary
observer in terms of a partial derivative of the density with respect to time while
keeping the location fixed. This is also called the Eulerian representation. From the
perspective of a driver “drifting” with the traffic, the perceived change in density has
an additional convective contribution caused by the vehicle motion in the presence
of spatial density variations (cf. Fig.7.3):

ap ap
Ap~= | —+V_— )AL
P ( or Bx)
In the limit At — 0 and Ax = VAt — 0 (assuming that the density function
p(x, t) is continuously differentiable), the rate of change in the density perceived by
a driver is given by the total time derivative

do dp a0
— = — 4+ V(x,t)—. 7.17
ar = ar TV @05 (7.17)

In many publications, the total time derivative is also referred to as material deriva-
tive, convective derivative, or substantial deriva}tive. Itis composed of the local rate of
change ?—’;, and the convective rate of change V g—§ due to spatial changes (see Fig. 7.3).
With %(p V)= p% + Vg—i we can rewrite the continuity equation for homo-
geneous road sections as
dp  9p ap av

_ A 7.18
a o Vax T Pox (7.18)
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Fig. 7.3 From the perspective of a driver, the change Ap = ?T’,) At in density over time is composed
of the local change Ap; ~ ‘Z—f(x 1) At at the initial location x; = x(#1) and the convective change
Apr = p(x2, ) — p(xy, 1) = g—’;Ax ~ Vg—ﬁAt due to spatial density variations when moving to
a new location xp

Equation (7.18) states that the density increases if the speed gradient %—Z is negative.
In the microscopic view, this means that the headway decreases when the leading
vehicle is driving at a lower speed (which will be made explicit when formulating the
Lagrangian view, see Sect. 7.4 below). Furthermore, the density can never be negative,
as p(x,t) = 0 implies dp/dr = 0 (surely, negative vehicles would be inconsistent).

The two different perspectives are also illustrated in Fig.7.4: The density profile
(different shades) and the speed profiles (the gradients of the five trajectories) describe
a stationary downstream jam front, i.e., the density and speed at any given location x
are constant, so the local derivatives dp(x, t)/dt and dV (x, t) /dt are zero. This can
also be seen by the stylized time series that would be measured by stationary loop
detectors at the positions x| and xp (Fig. 7.4 right). Each driver, however, perceives
a decrease in density since he or she is leaving the traffic jam: C(li—f = Vg—i <0
(cf. Fig. 7.4 bottom). With the (Eulerian) continuity equation for stationary traffic on
a homogeneous road being %(p V) = 0, the driver will of course observe %V =

_Yop _ _1dp _ i
pdx —  pdl . . o
The relation between local (partial) and substantial (total) derivatives as seen from

stationary and comoving observers, respectively, is not only valid for the density but
for arbitrary continuously differentiable fields F'(x, 1),

dF(c,0) _ 9FG,D) V(x’t)aF(x,t)'

7.1
dt ot 0x (7.19)

Particularly, this relation holds for the speed V (x, ¢) itself, so the total speed derivative
(rate of change) as seen from the driver’s perspective is given by

dv a9V av. a9V vd
Vo oV Ve (7.20)
dr ot ax at p dr
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Fig. 7.4 The rate of change in

the density, dg% = % =

X, t
?T/; + V%’, as perceived by P9
vehicle B (middle trajectory)
while driving through the
downstream front of a traffic
jam, i.e., leaving the jam.
Since the jam front shown
here is stationary, the local
(partial) derivative w is
equal to zero

A P(Xps D)

In the situation of Fig.7.4, the partial time derivatives are zero, so %—‘t/ =-Y ‘31—';’ is

P
positive which, obviously, is a further signature of leaving the jam.

In Chap. 9, we will use relation (7.19) to formulate the speed equation of second-
order macroscopic models.

7.4 Lagrangian Description

In full consequence, the driver’s view leads to the Lagrangian formulation of the
continuity equation. In this view, the independent variable x is expressed in terms
of the vehicle index n. Assuming no sources and sinks, the transformation can be
expressed by’

X

t
x — n(x,t) = —/p(x’, 0)dx’ + / O(x, thar'. (7.21)
0

0

In this equation, we assume 7(0, 0) = 0 and a vehicle numbering consistent with
that in Chap. 3, i.e., the first vehicle (with the largest x value) has the lowest index.

Furthermore, the dependent variable traffic density is given in terms of the distance
headway & = s 4 lyen, from front bumper to front bumper (cf. Chap. 3),

1

OGO (7.22)

p(x, 1) =

7 To distinguish the formulation from microscopic equations, we do not use the microscopic vehicle
index o.

8 In order to avoid confusion with differential operators, we denote the distance headway in this
section by & instead of the symbol d used in Chap. 3.
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As aresult, the fields relevant for the Lagrangian description are the distance headway
field h(n, t) and the Lagrangian speed field v(n, t) defined by

Vix, 1) =vn(x, 1), 1). (7.23)

With these definitions, the chain rule of differentiation allows us to transform the
continuity equation (7.18) into the Lagrangian form. The total time derivative of this
equation transforms as follows:

do 0 9 9 9 1
Ly _(Ziv i) ——
dr ot ax  \or  9x) | h(n(x,1),1)

1 8h8n+8h+ ah on
T 2 \Gnar ot an dx

. 1 Vah L oh Vah
A U T TR ™
1 0h
= ———. 7.24
h? ot (7.24)
Here, we made use of the relations

E)n_Q_ v 8n_ (7.25)
T '
derived from Eq.(7.21). With dx = —1/p dn (again obtained from Eq.(7.21)), we
obtain for the second term of Eq. (7.18) the transformation

Vv 5 0V 1 ov

Pox =P o T hZom
and hence the continuity equation for homogeneous road sections in Lagrangian
form,

oh 0

1% (7.26)

at  on
Considering also ramps and a variable number /(x) of lanes, we obtain from
Eq. (7.15) the general continuity equation in Lagrangian formulation:

oh v v
S =i [smp (6,00, 1) — ﬁl’(x)] (7.27)

where I = I (x(n,t)) and I'(x) = g—fc must be expressed in terms of n and ¢. To this
end, we express x as a function of n using the relation g—ﬁ = —h(n, t). Assuming
that the vehicle numbers are defined such that vehicle n = 0 crosses x = 0 at time
t = 0 and that this reference vehicle is connected with the independent coordinate
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n = 0 for all times,” we obtain

t

x(n,t) = /V(O, tdt' — /n h(n', t)dn'. (7.28)
0

0

Generally, the advantage of the Lagrangian description lies in the existence of
simpler and less nonlinear numerical integration schemes for the homogeneous part
(left-hand side) enabling a faster model calibration. However, this comes with the dis-
advantage of more complicated source terms (right-hand side): Since the fixed space
coordinate x is replaced by the moving vehicle number coordinate 7, all infrastruc-
ture inhomogeneities are no longer stationary but move backwards in the direction
of increasing n according to Eq. (7.28). For illustration, the relation for steady-state
homogeneous flow (v(n, t) = const. and h(n, t) = const.)reads x(n, t) = —hn+tv.

Problems

7.1 Flow-density-speed relations

Prove that the hydrodynamics relations (7.5) and (7.6) hold. Furthermore, show
that they do not hold for per-lane speed averages, regardless of whether they are
unweighted or weighted by the flows of the lanes.

7.2 Conservation of vehicles
Using the continuity equation, show that the total number of vehicles on a closed ring
road with varying number of lanes / (x) (but no on- or off-ramps) never changes.

7.3 Continuity equation I

Consider a two-lane highway with an on-ramp of length L = 300 m, beginning at
x = 0. The inflow is 600 vehicles per hour. Write down the continuity equation for
the total traffic density for 0 < x < L as well as for x > L. (i) Assume that the
inflow of the on-ramp is evenly distributed across the full length L. (ii) How can we
model the common behavior of drivers merging early onto the highway if there is
free traffic and merging late (near the end of the ramp) in congested conditions?

7.4 Continuity equation IT

Use the continuity equation to determine the traffic flow Q(x) in a stationary state,
i.e., dp/dt = 0 and constant average per-lane demand Q(x, t) = Qo at the upstream
boundary at x = 0. Distinguish the two following cases: (i) The road section has
no on- or off-ramps but a variable number of lanes, / (x). (ii) The road section has

9 In general, this is not true for the other vehicles. For example, a vehicle entering the highway
upstream of the reference vehicle between the vehiclesn = nj andn; —1 > 0 will get the coordinate
ny, so the coordinates of all vehicles further upstream (n > n;) need to be incremented by one to
avoid ambiguities. Likewise, any vehicle entering the highway downstream of the reference vehicle
will decrement the coordinate n of all vehicles further downstream by one.
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a constant number of lanes 7, and an off-ramp between x = 300 and 500 m with
constant outflow Qg as well as an on-ramp between x = 700 and 1,000m with
constant inflow Qj,. All ramps have constant differential entering (exiting) rates
over the length of the merging (diverging) lanes.

7.5 Continuity equation III

Consider a three-lane highway with constant traffic demand Qo = 3600 veh/h. One
of the lanes is blocked due to roadworks and the merging zone is between x = 0 and
x =L =500m.

1. Find the average per-lane density p and the average flow Q with respect to the
two continuous lanes. Assume a uniform, density-independent vehicle speed of
108 km/h.

2. Compare the effects of the lane closure in the previous part to the effects of an
on-ramp of length L = 500m on a two-lane highway. Find a ramp flow Qmp
and a ramp term vymp (x) (which may be variable within the 0 < x < 500 m) such
that the continuity equation is identical to the one found in part 1 of this problem.

7.6 Continuity equation for coupled maps
Show that the steady-state condition pi (f + At) = pi(¢) for the coupled map (7.16)
leads to the flow balance

d d up yup
Qk‘rmp — QkOWﬂIkOWl’l _ Qk Ik .

Show that this implies that the coupled map (7.16) is consistently defined even if
ramps and changes of the number of lanes occur simultaneously in a road cell.

7.7 Parabolic fundamental diagram
Consider the speed-density relation V (p) = Vo(1 — p/pmax) Where Vj is the desired
speed and ppmax the maximum density.

1. Write down the equation for the fundamental diagram Q(p).
2. Determine the maximum possible flow and the density at which it is obtained, as
a function of Vy and pmax.



Chapter 8
The Lighthill-Whitham-Richards Model

There is nothing more powerful than an idea whose time has
come.
Victor Hugo

Abstract The continuity equation, which holds for all macroscopic models, describes
the rate of change of the density in terms of gradients (or differences) of the flow.

The model is closed by specifying flow or local speed. In this chapter we discuss the

simpler approach in which the flow is given as a static function of the density, i.e.,

by a fundamental diagram. The models of this class of first-order models which are

also called Lighthill-Whitham—Richards models differ only in the functional form of
the fundamental diagram and in their mathematical representation.

8.1 Model Equations

The continuity equation is a partial differential or difference equation for the macro-
scopic quantities p (density) and V (speed) or Q (flow). Due to the hydrodynamic
relation “flow equals density times speed” these two options are equivalent. While
the parameterless continuity equation is always valid, we need an additional equation
for the flow or speed to complete the model.

Since the continuity equation is completely determined by the geometry of the
road infrastructure, the macroscopic models differ in their modeling of speed
or flow, only.

In 1955 and 1956, Lighthill and Whitham, and independently also Richards, pro-
posed the following static relation to complement the continuity equation:

Qx,1) = Qe(p(x, 1)) or V(x,1)=Ve(p(x,1)). (8.1)

M. Treiber and A. Kesting, Traffic Flow Dynamics, 81
DOI: 10.1007/978-3-642-32460-4_8, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 8.1 Schematic example \%
of a static speed-density rela- v

tion for Lighthill-Whitham— 0
Richards (LWR) models (see

also the empirical data in

Figs.4.4 and 4.12)

e

This relation assumes that traffic flow Q(x,t) = p(x,?) V(x,t) or speed V(x, 1)
is always in local equilibrium with respect to the actual density: Traffic flow and
local speed instantaneously follow the density, not only for steady-state traffic but in
all situations. The precise form of the speed-density relation V,(p) (cf. Fig.8.1) or
the fundamental diagram Q.(p) = pV.(p) is usually determined by fitting against
empirical speed-density or flow-density data (see Fig.4.12).!

Inserting the assumption (8.1) of local equilibrium into the continuity equation

(7.8) for homogeneous road sections and applying the chain rule % = %'p(p)g—ﬁ
yield the simplest form of a Lighthill-Whitham—Richards model:
0 d d
% 4P _ | WR Model. (8.2)
ot dp ox
This equation can also be written as
00 dv,\ op
— Vv, — =0. 8.3
at+(6+pd,0)8x (8.3)

On- and off-ramps as well as changes in the number of lanes are described by the
corresponding additional terms in the generic continuity equation (7.15) assuming
local speed equilibrium V (x, t) = V,(p(x, t)) wherever applicable. Since Eq.(8.2)
does not specify the functional form of the fundamental diagram Q.(p), and many
(more or less realistic) specific functions have been proposed, LWR refers to a whole
class of models. Thus the common usage of the plural, LWR models. All models
in this class only have one dynamic equation, the continuity equation. Therefore,
they are also referred to as first-order models. In contrast, the second-order models
discussed in Chap. 9 assume that the local speed is an independent dynamic quantity
which, consequently, is modeled by an additional dynamic equation.

! Speed-density and flow-density plots are one of the most important visualizations of aggregated
traffic data and have already been discussed in Sects. 4.2 and 4.4. Strictly speaking, the fundamental
diagram describes the one-dimensional manifold of steady states parameterized as a function of the
density. However, in several publications, the (scattered) flow-density data itself is often incorrectly
referred to as the fundamental diagram as well.
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8.2 Propagation of Density Variations

The partial differential equations (8.2) and (8.3) are nonlinear wave equations,
describing the propagation of kinematic waves. In the following, we derive the prop-
agation velocity ¢ of such waves, or smooth density variations in general, by using
the traveling-wave ansatz

p(x,1) = po(x —ct). (8.4)

The function py(x) = p(x, 0) defines the initial density distribution, which, accord-
ing to Eq. (8.4), uniformly moves with velocity ¢. Let pj(x) be the derivative of pg
with respect to its (only) argument. By invoking the chain rule, we obtain

s ~ ¥ _ .
— = —cpy(x —ct) and — = py(x — ct).
ox
Substituting these partial derivatives into the LWR model equation (8.2) yields the

condition Q
¢ ,06 (x—=¢)=0

—Eph(x — &) +

which should hold for all x and ¢. This is only possible if the propagation velocity ¢
depends on the density according to

oo dQ.  d(pVe(p))
c(p) = o - 4 (8.5)
df

or, again with the notation f’(x) = 3,

&(p) = QL(p) = Ve(p) + pV.(p). (8.6)

Equation (8.5) states that the propagation velocity ¢(p) of density variations in a fixed
reference frame is proportional to the gradient of the steady-state flow-density rela-
tion (fundamental diagram). The density variations may propagate either in driving
direction (free traffic; left part of the fundamental diagram, cf. Fig. 8.2) or against
the driving direction (congested traffic; right part of the fundamental diagram).

To find the relationship between the propagation velocity and the vehicle speed v,
we define a relative propagation velocity from the point of view of a driver (comoving
coordinates, Lagrangian view) and insert Eqs. (8.5) and (8.6):

Crel(0) = E(p) = V = &(p) — Ve(p) = pV,(p).

Since V,(p) is non-positive for all correctly specified models (cf. Figs. 8.1 and 4.12)
we have ¢e] < 0. Thus, from the perspective of a driver, density variations always
propagate backwards (upstream), or are, at most, stationary if traffic is completely free
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Fig. 8.2 Propagation velocity v
¢ = Q,(p) of density and c
speed variations in the LWR 5
model in comparison with é
the local vehicle speed V,(p).
In the fundamental diagram » Density
(top), ¢ is given by the slope Propagation
of the tangent while V is given velocity ¢
by the slope of the secant > N Vehicle
through the origin 8 . speed Ve
2 ~ L
N === » Density

and no interactions between drivers are present. This is reflected in most microscopic
models by the fact that the (modeled) drivers only observe and react to the leading
vehicle and not to the following vehicle (see Chap. 10).

8.3 Shock Waves

8.3.1 Formation

Continuous LWR models of the form (8.2) describe density variations of constant
amplitudes but with varying local propagation velocities: the lower the local density,
the higher the propagation velocity. For illustration purposes, we can think of the
density profile (the plot of density vs. location for a given time instant) as a stack of
thin horizontal layers which move independently with a velocity given by evaluating
Eq.(8.5) for the corresponding density (proportional to the “vertical location” of
this layer). Thus, the “top” layers move more slowly (possibly even backwards)
compared to the “bottom” layers (cf. Fig. 8.3 top, see also Fig. 8.4). For a “stop-and-
go wave”, this means that the upstream front becomes steeper and the downstream
front disperses (Fig. 8.3 middle). Thus, from the driver’s perspective, the transition
free — congested traffic becomes more and more abrupt while the vehicles at the
transition congested — free traffic accelerate more and more slowly over time.>
Eventually, the gradient dp/dx will tend to infinity at the upstream front. At
this point, Eq.(8.5) figuratively predicting “breaking waves”, breaks down (Fig. 8.3
bottom). After all, there can only be one unique density value at any given time
and location, so “breaking” waves are physically absurd. Instead, we will observe
a discontinuous transition indicated by the vertical line in Fig. 8.3 (bottom panel)
which is the defining feature of a shock wave or shock front. This is confirmed by
simulation: Fig. 8.4 shows how the gradient of the upstream front gradually increases

2 In the mathematical literature, this widening of the downstream transition zone is called a
dispersion fan.
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Fig. 8.3 Emergence of shock
waves due to the density-
dependent local propagation E

velocities in the LWR model %

o

Density

i Density
!
)
¥ ‘ ¥

Density

"\

until a discontinuity emerges at about + = 10 min and x = 4 km. Since shocks are
associated with infinite accelerations or decelerations, they do not reflect real-world
traffic, so LWR models are unrealistic in this respect.

In general, the evolution of the transition regions depend on mathematical prop-
erties of the flow-density relation (fundamental diagram) Q.(p):

e If the fundamental diagram is concave (the second derivative Q7 (p) < 0),
the transition lower — higher density steepens and develops to (or remains a)
discontinuous shock while the transition higher — lower density disperses
over time.

o Ifthe fundamental diagram is locally convex in the considered density range,
a transition higher — lower density eventually becomes a shock while the
transition lower — higher density disperses.

e Ifthe fundamental diagram has no curvature in the density range in question,
all transitions (whether continuous or shocks) propagate at constant velocity
0., (p) while the shape of the transition remains unchanged.

This means, the qualitative dynamics shown in Fig. 8.4 is valid for concave fun-
damental diagrams, only.

Explain why density transitions evolve as described in the box above with the
help of Fig.8.3.
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Fig. 8.4 Numerical solution to the LWR model with a continuous speed-density relation and
trapezoid-like initial density distribution (left upper boundary of the plot). The situation corre-
sponds to a localized region of congested traffic (red) surrounded by free traffic (blue) with initially
continuous transitions. The transition free — congested traffic evolves into a shock wave while the
transition congested — free traffic disperses. Outside of the actual shock forming at time t &~ 10 min
and location x ~ 4 km, the contours of equal density are straight lines. This corresponds to a uniform
motion of each layer of constant density

8.3.2 Derivation of the Propagation Velocity

While the details of the transitions free — congested and congested — free in the
LWR models are unrealistic,> the propagation of the wave positions as a whole, and
also the motion of the transition zones to and from extended congested traffic, is
described realistically.

In order to derive the propagation velocities, we consider a discontinuous tran-
sition from state 1 (free traffic) to state 2 (congested traffic) as depicted in Fig.8.5.
Without loss of generality, we consider a single-lane road.* Within a sufficiently
small road section 0 < x < L fixed in the stationary coordinate system around the
instantaneous location of the shock front x»(¢), we can assume constant flow and
density at both sides of the front, i.e,

3 Personal experience from the authors tells us that there is considerable dispersion in the downstream
front of the “mega-jam” that is formed by the participants of marathon, inline-skating or cross-
country skiing events after the starter’s gun. However, in vehicular traffic, this dispersion is very
limited.

4 In order to obtain the same result for I > 1 we would substitute n with n/I in the following
equations. Furthermore, we would replace all densities and speeds by their respective effective
values as defined in Sect. 7.1
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Fig. 8.5 A shock front at x=0
location x12(¢) with constant
flow and density within small
road sections on either side

X=

X, (0)

01 = Qe(p1) forx < x12(1)
02 = Qc(p2) forx > x12(t) ~

p1 forx < x12(1)
2 forx > xpp(¢) °

px.1) = [ 0x. 1) = [

The location x12(¢) of the front itself, however, is time-dependent. To find the

velocity ¢ = dg—;z, we will express the rate of change in the number of vehicles, ‘31—’;,

in two different ways. From the conservation of vehicles, we get the balance equation

dn_ 8.7
E_QI_QZ' (8.7)

With the definition of the density, we can also write the number of vehicles as
n = pixi2 + p2(L — x12). (3.8)

Taking the time derivative yields

WL s+ pa(L = x12)
— = —(p1x —x
dr dr P1X12 T P2 12
dxi
= (p1 PZ)T
= (p1 — p2)ci2.
Comparing both expressions for ‘é—’t’ gives us

0> — 04 _ 0.(p1) — Qe(p2)
P2 — p1 P2 — P

Clp = Propagation of Shock Waves. (8.9)

Notice that we did not make use of flow-density relations in deriving the first equal

sign in Eq. (8.9). Therefore, the motion of sharp transitions is given by c12 = %Z:/?I‘

in any first-order or second-order macroscopic model.

8.3.3 Vehicle Speed Versus Propagation Velocities

The LWR model allows us to extract all relevant velocities directly from the funda-
mental diagram (Fig. 8.6):
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Fig. 8.6 Visualization of how

to obtain vehicle speeds and Qi C4
propagation velocities from
the fundamental diagram: Qq - L Qe(p)
Shown are the propagation :
velocity ¢(p) = dd—%“ of &,
density variations and vehicle 3 €12

speed V, = Q./p for the
two states (D and 2), and the Vit
propagation velocity ¢y, of a Vs,
shock front separating these : ‘
states 3 : - P

1. The propagation velocity of density variations ¢(p) = Q. (p) is given by
the slope of the fundamental diagram.

2. The propagation velocity of shock fronts c1; is given by the slope of the
secant connecting points of the fundamental diagram corresponding to traf-
fic on either side of the front.

3. The vehicle speed V., = Q.(p)/p is given by the slope of the secant
connecting the origin with the corresponding point on the fundamental
diagram.

Using Eq. (8.5), we can use these relations to distinguish free and congested traffic
by the sign of the propagation velocity ¢ of small density and speed variations:

e Free traffic is characterized by the left-hand side of the fundamental diagram,
i.e., by densities below the critical value pc at static capacity C (state of
stationary flow). The propagation velocity is positive.

e Congested traffic is characterized by densities at the right-hand side of the
fundamental diagram, p > pc, i.e., the propagation velocity is negative.

In a more complex situation such as that shown in Fig. 8.7, the various speeds and
velocities can be read off as the slopes of tangents, secants or lines through the origin
at (or along) the traffic states marked by the symbols (D—() in Fig. 8.8. Particularly,
we can distinguish following situations:

e The temporary bottleneck A restricts the flow to its capacity C4 = Q%". Since
QOin > Cyg, the traffic breaks down. Free traffic @) emerges downstream of the
bottleneck, while a traffic jam @ forms upstream. The congestion grows due to
its propagating upstream front (the secant between (3) and (6) has slope c3¢ < 0)
and stationary downstream front (slope cgy = 0). However, the vehicle speed
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Fig. 8.7 Spatiotemporal traffic dynamics of an LWR model with fundamental diagram as shown
in Fig.8.8. The influx Qj, corresponds to state 3 in the fundamental diagram, but decreases after
some time and then corresponds to state (2). Furthermore, there are three temporary bottlenecks:
Bottleneck A (e.g., a traffic accident) has capacity C4 = Q%", bottleneck B corresponds to a
temporary full road closure (e.g., to tow away vehicles involved in the accident), and bottleneck C
is a less severe obstruction with capacity Cc = QF*. The slopes of the three trajectories (black)
indicate the local vehicle speed. The transitions from high to low density “soften” over time while
the others remain discontinuous, i.e., shocks

Fig. 8.8 Schematic funda- Q
mental diagram. The circles
correspond to the traffic states
illustrated in Fig. 8.7

tot L ()
Q 3

Ve = Qs/ ps inside the congested area is positive. The transition between 2) and
® (in the top-left corner of Fig.8.7) has a propagation velocity c»3 that is only
slightly less than the local vehicle speeds V> and V3.

e The full road closure (bottleneck B) reduces the flow to zero on either side of the
bottleneck. However, the road is empty on the downstream side (state (I)) while a
traffic jam with maximum density forms on the upstream side (state (7)). A number
of fronts emerge with velocities cg7 < ¢37 < ¢36 < 0 and ¢7; = 0.



90 8 The Lighthill-Whitham—Richards Model

e Re-opening the road creates a maximum-flow state (@ as the vehicles start moving
again. The transition between (@) and the maximum-density state (7) propagates
with velocity c74 =~ cg7 < 0. Note that only the transitions congested — free
traffic disperse (to an unrealistic degree) while the others remain discontinuous
shocks. This is a consequence of the concave fundamental diagram used here (i.e.,
the second derivative of Q.(p) is non-positive for all densities).

e Finally, the weakest temporary bottleneck C causes a flow QF' = Q' both
upstream and downstream, thus ¢s3 = 0. Depending on the inflow, the slow-
moving traffic state 3) may grow (ca5 < 0), shrink (c25 > 0), or be bounded by a
stationary upstream front (c35 = 0). When this bottleneck is removed, the situation
is similar to the clearing of the full road closure: A transition from slow-moving
traffic ®) to the maximum-flow state (@) propagates backwards (cs4 < 0) until it
reaches the upstream front of (), marking the full resolution of the congestion.

8.4 Numerical Solution

With the exception of the section-based model (see Sect. 8.5) applied to very simple
situations, the LWR models, i.e., the continuity equation (7.8) or (7.10) with a steady-
state speed-density relation V,(p), needs to be solved (“integrated”’) numerically.
This is generally done by finite-difference methods: Space is divided into cells of
generally constant length Ax (although this is not required), and time in the index k
increasing in the downstream direction.> All the dynamics at scales below Ax and At
isignored. So, the density inside each cell k at time ¢ can be characterized by a single
value pi(¢) (and by the speed Vi (¢) = V.(pr(¢))). Furthermore, the flow QO x+1(t)
between neighboring cells is constant during each time interval A¢. The equations
for the LWR models have the form of a so-called conservation law for which many
specialized explicit solution methods are available.® In the simplest case, they take
on the form (7.9).

The most common integration method for LWR models is the Godunov scheme.
This method is based on an exact solution of the continuity equation for one time
step assuming stepwise initial conditions given by the actual densities {px} of the
cells. Such exact solutions exist if we make sure that neither information (car-
ried by the vehicles or by the propagation velocities) propagates over more than

5 This is in contrast to the vehicle index where the first (must downstream) vehicle has the lowest
index.

% n explicit integration schemes, the new state, i.e., all densities pi (f + At), are given in terms of
the old state {px (¢)}. Implicit methods are characterized by relations between the old and new states
that cannot be easily solved for the new state. In traffic-flow models, only explicit methods play a
role.
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one cell during one time step. Since the vehicle speed is given by the gradient of

the secant connecting the origin with a point on the fundamental diagram, the max-
imum vehicle speed is smaller than, or at most equal to, the maximum propagation
speed | Q) (p)|. Thus, one arrives at the first Courant-Friedrichs-Lévy condition (CFL
condition) for LWR models,

At max  (|QL(p)]) < Ax. (8.10)
P€l0, pmax]

The CFL condition restricts the time step to a value which is proportional to the cell
size, i.e., the numerical complexity increases with the inverse of the square of the
cell size (see Sect.9.5 below for details).” Although the Godunov method is based
on exact analytical solutions, it entails discretization errors since, after each time
step, the density structure inside each cell resulting from the analytical solution is
“flattened” to obtain the stepwise initial conditions for the analytical solution of the
next time step. These discretization errors lead to the phenomenon of numerical
diffusion which increases with the cell size (see Sect.9.5 for details).

8.5 LWR Models with Triangular Fundamental Diagram

The simplest of the Lighthill-Whitham—Richards models uses a “triangular” funda-
mental diagram (cf. Fig.8.9):

Vop if p < pc = m (free traffic),
7 (L= ple)  if pc < p < Pmax =

Ju—

Q.(p) = {

A

[ (congested traffic).

8.11)

As with the other LWR models, this model can be formulated in continuous and
discrete variables:

e The continuous version (8.2) is called section-based model.

e The discrete version is formulated as an iterated coupled map with time and space
discretized into time steps and cells, respectively, and supplemented by a special
“supply-demand” update rule. This model is known as cell-transmission model
(CTM), see Sect.8.5.7.

Among the class of LWR models, the section-based model is the most efficient
in simulations. In particular, there is no need to numerically solve the hyperbolic
partial differential equation (8.2) with Eq. (8.11) defining this model. Due to the spe-
cific properties of the triangular fundamental diagram (only two distinct propagation

7 The numerical complexity % indicates the number of multiplications or other operations on a
computer which are necessary to obtain a certain approximate solution. Typically, the absolute value
is irrelevant and the numerical complexity is given in terms of a scaling relation, here € o« Ax 2,
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Fig. 8.9 Triangular 