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This chap te r  will first  p resen t  p rob l ems  ar is ing f rom economic  theory,  the  
mode l l ing  of which  has  required,  in  an  essent ia l  way, measure  theory.  Hav ing  
expla ined  why measu re  theory  is needed,  we will  give, for  reference,  some bas ic  
measure  theore t ica l  concep ts  a n d  results,  a n d  this will be fo l lowed b y  a deve lop-  
men t  a n d  discuss ion of  some par t i cu la r ly  useful  a n d  less access ib le  results,  l 

1. The use of measure theory in economics  

1.1. Perfect competition: Large economies 

The idea  of "pe r f ec t "  or  "pu re"  compe t i t i on  is a very o ld  one  in  economics .  2 
A n y  economis t  will have  an  intui t ive  idea  as to wha t  is m e a n t  by  it, t hough  the 
def in i t ions  m a y  vary .  The  under ly ing  pr incip le  m a y  be  cap tu red  b y  saying tha t  a 
s i tua t ion  in which a g roup  of ind iv idua ls  toge ther  are  invo lved  in economic  
act ivi ty,  exchange  for  example ,  and  in  which no  ind iv idua l  can,  a n d  therefore  no  
ind iv idua l  will t ry to, affect  the ou tcome  is one of  perfect  compet i t ion .  The  first  
and  mos t  obvious  r equ i r emen t  for  such a s i tua t ion  is t ha t  there  should  be  
" m a n y "  individuals .  This  is d e a r l y  no t  enough;  we also need  that  none  of these 
ind iv idua ls  should  be  " impor t an t " .  The  concep tua l  d i f f icul ty  arises if we rea l ly  
insist  tha t  each i nd iv idua l  shall  have  no inf luence  whatsoever .  As  an  example ,  
th ink of  the  p roduc t ive  sector  of an  economy,  a n d  then wha t  we requi re  for  it  to 
be  "per fec t ly  compe t i t i ve"  wou ld  be,  for example ,  tha t  if a p r o d u c e r  s t opped  
p roduc t i on  comple te ly ,  the  pr ice  of  the c o m m o d i t y  he p r o d u c e s  should  no t  

IT he presentation is aimed at the "informed reader", that is, someone acquainted with the basic 
ideas of measure theory as presented in a course on probability theory. The better informed 
mathematician will see from the first and third sections where notions familiar to him are used in 
economics. The reader who is not sure where he stands should read quickly through Section 2. If it 
has a familiar ring, he should find the chapter profitable. If not, he would be well advised to first 
consult any standard text on measure theory, the classic reference being Halmos (1961). 

2Adam Smith is clearly aware in the Wealth of Nations (Book 1, ch. 7, for example) that the 
existence of large numbers of agents, that is of a situation approaching perfect competition, 
diminishes the power of an individual agent to influence prices in a market process. 
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change.  If  prices can vary, then for this to be strictly true for every producer ,  
there mus t  be an infinite number  of producers,  or, in other words, his "influence 
as a p roducer  must  be genuinely negligible". As the term "perfect  compet i t ion"  
suggests, this is an idealisation, not  a description of reality; but  the examinat ion 
of such an  ideal case, as in other  sciences, provides us with useful insights into 
the working of economics.  3 

The idea that individuals should have no weight but  that  collectively they 
have positive weight is a familiar one in mathematics,  and  it is the basis of 
measure theory. If we wished merely to describe a perfectly competi t ive econ- 
omy,  it would be enough to consider any  infinite set as the set of agents, or  
agents '  names, and to specify the "characterist ics" of each agent. Thus,  in an  
exchange economy,  agents are character ized by two things: preferences and an  
initial bundle  of goods. Wi thou t  entering into any  details, consider the set of 
possible preferences as °2 and  the set of  bundles of goods on which these 
preferences are defined as Re+, that is, there are ~ goods. Then  an exchange 
economy  E is given by  

E: A-->@× Re+ , 

where A is some arbitrary set of  agents. Now,  if we require that there are an  
infinite number  of agents in A and  that no  agent  has too much  of any  goods, e.g. 
that  we restrict at tention to some b o u n d e d  set of Re+ for initial endowments ,  
then we have a description of  a perfectly competit ive exchange economy.  
Provided that all we require is a definition, this would  indeed suffice. However ,  
if we wish to work with this model ,  we will need more  than this. Suppose that we 
are concerned with the problem of competi t ive or Walrasian equilibrium. We 
need now some way of expressing the idea that for some allocation of  goods f 
"supply  equals demand" .  4 In a finite economy,  we simply add  the demands  of 
all the individuals and  check that this is equal to the sum of all the initial 
resources. Thus we require that, referring to the initial bundle  of an  individual as 
e( a ), 5 that  

~, f ( a ) =  E e ( a ) ,  (1.1) 
a ~ A  aU_A 

and  that  f ( a ) E q ) ( p ,  a) where % the d e m a n d  of an  individual a at prices p,  is 
defined in the normal  way. Now,  in our  infinite economy,  we can no  longer add 

3A discussion of the notion of perfect competition and its relation to recent theoretical develop- 
ments is to be found in Mas-ColeU (1979). 

4An allocation of goods is here f: A--*R~. 
5e(.) is the projection of the mapping E onto Re+. 
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supply and demand. Instead we can substitute the idea that mean supply is equal 
to mean demand. In a finite economy, we could write 

-#A ' ~  f ( a ) =  ~ e(a), (1.2) 
a E A  aEA  

which is clearly identical to (1.1). However, in the infinite case, we can resort to 
the equivalent idea, one which will be familiar to all those who know a little 
probability theory, and write 

f f (a)dv= f e(a)dv. (1.3) 
A A 

In writing (1.3), although its intuitive meaning is clear, we have introduced a 
number of technical complications. We have integrated but for this to be well 
defined, we have to integrate "with respect to some measure",  that is, we must 
define a function v which attributes a certain weight to each set of individuals. 
Intuitively, we can think of this as a "counting measure", i.e., one which says 
what proportion of individuals are in each set. The only important  thing for us, 
for the moment,  is that for an infinite economy such a measure should give zero 
weight to individuals, and for convenience, that it should give weight one to the 
whole set. Such a function is an atomless probability measure. 6 The machinery of 
measure theory provides a convenient way of resolving many  economic prob- 
lems in the confext of such ideal economies. To  use the standard tools of this 
theory imposes some technical restrictions, which will be specified in the next 
two sections, but suffice it to say that to construct an idealised or perfectly 
competitive economy, wetake  the set of agents A to be represented by an atomless 
measure space (A, ~, v), the three components being the set A, the collection ~ of 
subsets on which the measure v is defined, 7 and the measure v itself. 

The notion of an ideal economy, in the context discussed, was introduced by 
Aumann (1964), but a continuum of agents had already been used in economics 
by Allen and Bowley (1935), and in game theory by Shapley (1953), and in a 
number  of other papers in the early 1900's. The idea of perfect competit ion in 
the sense that individuals believe that prices are given and beyond their control 
has a long history, accounts of which can be found in Schumpeter (1954) and 
Blaug (1968) for example, but it is only with the introduction of the "continuum 
theory" that such a behaviour is strictly justified. Indeed in the work of Torrens, 
Cournot, and Edgeworth is to be found a discussion as to whether it is rational 
for individuals to behave in this way. As Viner remarked, the fact that it is not 
has remained a "skeleton in the cupboard of free trade". The use of a measure 

6We will in Section 2 come back to the precise definition of "atomless",  and  the reader will 
hopefully pardon a slight looseness in the statements above. 

7Unfortufiately, this is not  P(A) ,  the set of all subsets of A, but  more of this later. 
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space  of  agents  thus enables  us to fo rmal i se  the no t ion  of perfect  compet i t ion ,  8 
b u t  the  next  ques t ion is obvious ly :  " D o e s  it enable  us to deve lop  s t ronger  
resul ts?"  A first resul t  showing how the a s sumpt ion  that  an  e c o n o m y  is large, in 
the  sense descr ibed,  leads  us to  d rop  a s sumpt ions  necessary  in the  f ini te  case, 
concerns  the existence of  equi l ibr ium.  9 In  a f inite economy,  we typ ica l ly  need  to 
make  an  a s sumpt ion  abou t  the  convexi ty  of the  preferences  of ind iv idua l s  to 
p rove  the  existence of equi l ibr ium.  If we m a k e  a s t rong a s sumpt ion  that  
p re fe rences  are s tr ict ly convex,  then  the bund le  d e m a n d e d  b y  an  ind iv idua l  a a t  
pr ices  p ,  deno t ed  cp(a,p), will be  unique,  that  is, cp will be  a funct ion .  If we 
weaken  the a s sumpt ion  to m a k i n g  preferences  convex,  then cp(a, p )  will be  a set 
bu t  a convex  one, a n d  we will have  

~ ( a ,  p )  is convex for  all p .  
a E A  

P r o v i d e d  that  to ta l  demand ,  o r  equiva len t ly  m e a n  demand ,  is a convex  set, we 
can  p rove  that  equi l ib r ium exists. 1° If  however  ind iv idua ls  have  nonconvex  
preferences ,  their  d e m a n d  m a y  no t  be  a convex  set for some prices a n d  the p roof  
of  exis tence no longer  goes through.  To  look  at  this ques t ion  in the c o n t i n u u m  
case, we mus t  first be  able  to def ine  the in tegra l  of ind iv idua ls '  d e m a n d s ,  which 
are  se t -va lued  funct ions  or  co r respondences .  The  integration of correspondences is 
d iscussed  in Sect ion 3 of this chapte r .  The  i m p o r t a n t  result  is that  even if we do  
no t  a s sume indiv idua l ' s  p references  to be  convex,  nevertheless  fAcP(a,p)dp is 
convex.  

Thus,  wha t  might  be thought  of  as i r regular  behav iou r  in ind iv idua ls  becomes  
"we l l -behaved"  in large economics .  This  fact  enables  one to prove  the exis tence 
of equi l ib r ia  in large economies  under  weaker  assumpt ions  than  in the  finite 
case. See A u m a n n  (1966) and  H i l d e n b r a n d  (1970). 

1.2. Different solutions for the market problem 

A fur ther  impor t an t  result  p r o v e d  by  A u m a n n  (1964) was the equiva lence  
be tween  two different  solut ion concepts  in a c o n t i n u u m  economy.  One  based  on  

SThe approach adopted here is not by any means the only possible one. We use o additive 
measures, and it may be possible to work with only finitely additive measures, but this slight 
conceptual weakening of assumptions leads to other complications in the definition of "atomless" 
for example. Another different approach is to consider agents as infinitesimally small but not null. 
To do this involves using non-standard analysis developed by Robinson (1965) and used in 
economics by Brown-Robinson (1974) and Khan (1973). The disadvantage of this approach is that 
the mathematical apparatus employed is familiar to a very limited audience. 

9The essential result in this connection is Liapunov's theorem which will be given later. 
l°The standard discussion of this problem is given in Debreu's Theory of Value (1959), and a 

complete survey of the work in this area is given in Chapter 15 of this Handbook. 
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the price mechanism gives us the set of allocations which are equilibria denoted 
W(E) and the other, the core, is the set of allocations upon which no coalition S 
of individuals can improve. "Improve upon" in this sense means that a coalition 
S of agents could reallocate its initial resources to make its members better off. 
Thus in a continuum economy E, for example, where the set of agents A is the 
closed unit interval of the real line, an allocation f w o u l d  be improved upon by S 
if the members can find g with 

g(a)>-af(a ) for all members of S, 11 

and (1.4) 

f g(a)dv-- f e(a)dv.  12 
S S 

Allocations which can be improved by no coalition 
economy E denoted C(E).  

Aumann's result is that for "continuum economies", 

form the core of the 

w($)=c($). 

This exact equality for an ideal economy confirmed in a more general setting an 
old asymptotic result of Edgeworth (1881) and a later result of Debreu and Scarf 
(1963) and gave rise in turn to a whole series of very general asymptotic results 
which are treated in detail in Chapter 18 of this Handbook on the core, and to 
which we will return shortly. 

In discussing perfect competition, we have given an idea as to why atomless 
measure spaces provide a useful formalisation of the idea of a large economy in 
which each agent is insignificant. If this were indeed the only value of such 
tools, then it would be difficult to persuade economic theorists of the virtue of 
acquiring them. In fact, measure theory provides extremely useful insights at a 
conceptual level. 

1.3. Distributions of characteristics 

In a large economy, listing the characteristics of all the individual agents would 
be both a tedious and an elaborate task. Indeed, economists often make the 
simplifying step of describing an economy by the distribution of its agents' 
characteristics. The idea of the income distribution and describing it by some 

I lX>'ay denotes that agent  a strictly prefers x to y. 
12The informed reader will note  that  (1.4) is not, for technical reasons, defined for all coalitions S; 

details will be forthcoming in Section 2. 
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such function as the Pareto distribution is well established in economics. The use 
of such functions relies implicitly on the idea that a large economy may be 
represented as a continuum, and  the measure space of agents approach leads 
naturally to the development of the distribution as a fundamental  concept. 

If we consider a mapping f rom a probabili ty space into the space of character- 
istics, then it is clear that a natural probabili ty measure is induced on the latter. 
If we take a subset B of the characteristics space then consider the set C in the 
original space whose image lies in that subset, that is C = E - 1 ( B ) .  Now, let the 
measure of B be the measure of C; this gives us a measure on the characteristics 
space itself. Thus, instead of asking which agent has which characteristic in an 
economy, we might ask what proportion of agents have certain characteristics? 
Instead of thinking of an economy as a detailed listing of all the characteristics 
of the agents in that economy, we can think of it as a distribution of characteris- 
tics. Indeed as we have said, economists are in the habit of viewing economies as 
characterized by their income distribution, for example. We might, indeed, 
reasonably say that two economies for which the distributions of agents char- 
acteristics are the same are effectively the same economy. For  this to be 
acceptable, we would have to show that the equilibria of these economies are the 
same. A full treatment of this sort of problem may be found in Hildenbrand 
(1975). 

A little more formally, consider (A, d~, v) a probability space, M the space of 
characteristics, and f a mapping of A into M. The distribution v of f denoted by 
/t o f - 1 is defined by 

v (B)  = ~ { a ~ A I f ( a ) E B  } for every subset B of M. 

The reader will already be familiar with this idea from probabili ty theory and 
will recognise f as a random element and, in particular if M were the real line, 
would recognise f as a random variable. 

Now, since for many purposes we take some arbitrary basic measure space as 
a starting point, it is frequently the distribution that conveys the real informa- 
tion with which we are concerned. For example, in studying "large economies", 
the choice of the unit interval [0, 1] where it is used as the space of agents is 
purely for convenience and has no particular significance itself. In fact, given a 
suitable distribution on the space of characteristics of agents, we could always 
construct an associated economy with the unit interval as the space of agents. 

1.4. Limit theorems 

The idea of using distributions as the description of the essential features of an 
economy proved extremely useful in translating results from ideal or continuum 
economies to large but finite economies. For  results on ideal economies to be of 
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any interest, they must also hold, at least approximately, for large enough finite 
economies. 

Thus, rather than make a Statement that such and such a result is true for a 
continuum economy say Eoo, we would like to construct an increasing sequence 
of economies E n converging in some sense to Eoo and then make the assertion 
that our result is approximately true for large enough n. The problem is that if 
we think of our economies as being listings of all the characteristics of the 
agents, the dimension of this description changes as more agents are added and 
as the economies of the sequence increase in size. How then can we construct an 
increasing sequence of economies and in what sense can that sequence be said to 
converge to the limit, atomless, economy? 

An important key to solving this problem is that we can construct a sequence 
of parallel "equivalent" economies each with a cont inuum of agents and 
establish our results via this "equivalent" sequence. However, we will need to 
establish the meaning of the "equivalence" between the original sequence of 
finite economies and the sequence of artificially constructed economies. To 
handle these problems, we will need a number  of mathematical  tools, in 
particular, we will need to study the convergence of measures or more exactly 
weak convergence of measures. We will need subsequently to develop the idea of 
convergence in distribution so that we can give precision to the requirement that 
for a given sequence of economies "the distribution of agents'  characteristics" 
should be "close", for n large, to that of the limit economy. 

1.5. Many but different agents 

As must by now be evident, much of the value of measure theoretical tools is to 
handle situations in which there are "many"  agents. We have discussed the 
weakening of assumptions possible in "ideal" economies to achieve standard 
results. Thus the assumption of large numbers may  be seen to be a substitute for 
restrictive hypotheses at the individual level. Sometimes however we need more 
than simply "many"  agents. We will need that the agents are, in some sense, 
different, thus not only numbers  but variety will be  important.  If we think of the 
distribution of agents characteristics, then we could require for example that the 
support of that measure should not be "too small", the support of a measure 
being the smallest set that has full measure. Thus we would require that peoples'  
characteristics in an economy are not too similar. 

For what sort of economic problem is this of interest? A well-known difficulty 
in economics is that associated with the assumption of strict convexity of 
preferences. Although every elementary text in micro-economics has diagrams of 
preferences  which inevitably satisfy this hypothesis, only the most  hardened 
economic theorist feels completely at ease with it. Plausible counter-examples 
are so easy to find that one would be happy to dispense with it. However, the 
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formal difficulties that arise when it is removed are far from trivial to overcome. 
In particular, as we have already remarked, since at given prices p the bundle of 
goods demanded by agent a, that  is q0(a, p) ,  is not necessarily unique, one can 
no longer work with demand functions. However,  intuitively it is clear that if 
there is a large number  of agents and the number  of these who have more than 
one element in their demand set, is "negligible", then we have essentially what 
we require. For this idea to make  perfect sense, we must have an infinite number  
of agents. Now, if we have an infinite number  of agents, what we need is that 
"mean  demand"  should be unique. For  this we will have to integrate over our 
agents, ~3 and hence what we must show is that the "bad"  set of agents have 
measure  zero. For this we obviously must  require that the preferences are 
sufficiently "dispersed". Results in this direction using assumptions of differen- 
tiability have been obtained by  Sondermann (1975), Dierker, Dierker and 
Trockel (1978) and Araujo and  Mas Colell (1978). Hildenbrand (1979) has 
shown with a suitable assumption about  dispersion of preferences that the 
almost sure uniqueness of maximisers and hence the continuity of mean demand 
functions can be obtained without any differentiability assumptions. Again the 
usefulness of measure-theoretic tools in making precise an intuitive idea should 
be emphasised. For the use of continuous demand functions to be strictly 
justified in a context of non-strictly convex preferences, an infinite number  of 
agents is essential, and to use the natural notion of the mean demand function, 
the measure theoretical approach is necessary. 

Before leaving this topic, an important  observation should be made. How are 
the above results obtained? They depend on showing that a certain phenomenon 
is "exceptional" or "unusual".  The significance of this is that for a long time, 
unless we made extremely restrictive assumptions in economics, we were unable 
to rule out intractable situations even though it seemed unlikely that they might 
occur. One approach to this is topological. Thus rather than make strong 
assumptions to rule out certain phenomena  one can show that the set of 
economies that exhibits these phenomena  is "negligible", that is, that the set of 
well-behaved economies is open and dense in the set of all the economies under 
consideration) 4 

Thus, one can in a certain sense ignore such phenomena.  One might also like 
to say that, in a probabilistic sense, certain things are unlikely, or more precisely, 
that the set of objects, economies, for ~xample, exhibiting certain phenomena 
has measure zero, or that such a phenomena  is "almost  sure" not to occur. 15 In  

13Agents are, in fact, identified by preferences, and A is an open subset of R n. Thus preferences or 
utility functions can be classified by n parameters. 

14The pitfalls of too facile a use of this approach are alluded to in Crrandmont, Kirman and 
Neuefeind (1974), and the same strictures of course apply to the measure-theoretic approach. 

15A fundamental paper which shows that economies with an infinite number of equilibria are 
unlikely in both the topological and probabilistic sense is that of Debreu (1970). 
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the papers mentioned above on the uniqueness of maximising elements, it is 
precisely this notion that allows the passage from individual demand correspon- 
dences to mean demand functions. 

1.6. Price forecasting, tight measures, and compactness 

In many situations we are led to introduce restrictions of the opposite sort of 
those mentioned earlier. When, for example, we want to establish existence of an 
equilibrium, we will need certain "compactness" properties. In particular, if we 
define measures on a space which is not itself "compact",  we will need to restrict 
ourselves to families of measures which are, in a technical sense, concentrated 
essentially on a compact set. This technical requirement arises naturally in work 
on temporary equilibria. 16 

Consider traders who base their forecasts of future prices on today's prices. 
Thus any price vector today generates a measure on the space of tomorrow's 
prices. In a model of this sort, to ensure the existence of an equilibrium, one is 
led to assume that tomorrow's prices do not depend "too strongly" on today's 
prices. In other words, if some prices today become very high, then individuals 
attach a low probability to their being exceeded tomorrow. This rules out, for 
example, the simple-minded forecast that tomorrow's prices will, with probabil- 
ity one, be equal to today's prices. 

The underlying stabilising assumption is clear; what we want is that if prices 
become very high today, for example, traders will attach a high probability to 
their diminishing tomorrow, and it is this that prevents prices exploding. The 
formal requirement is t ha t  the family of measures or forecasts should be tight. 
This requirement also plays an important role in work on large economies. 17 

1.7. Social choice with many agents 

Arrow (1963) proved a theorem which is widely regarded as the most important 
in the field of social choice. Is What he showed was that there is no rule for 
aggregating individual preferences, which respects certain apparently reasonable 
conditions. It was later shown by Fishburn (1970) that Arrow's theorem is not 
true if there is an infinite number of individuals in the society in question. This 
has been interpreted as meaning that in large societies Arrow's result loses its 
significance and its importance is thus diminished. However with many agents, 
we may obtain a measure theoretic equivalent of Arrow's theorem; see Kirman 
and Sondermann (1972). 

16See Chapter 19 by Grandmont. 
17See Chapter 18 by Hildenbrand. 
lSSee Chapter 22 by Sen. 
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To sketch the problem briefly, consider A the set of individuals, X a set of 
alternatives, and P the set of preorders (preferences) on X. What  we are looking 
for is a rule that will associate with a given distribution of preferences among the 
individuals (we will call this a "situation"), preferences for the society. 

Let f :  A---~P be a situation, then °Yis the set of all possible situations. Then a 
social preference rule is o: o~__~p. What  Arrow shows is that given certain 
reasonable restrictions on o the only rule that exists is the following "dictatorial" 
one: 

Choose one individual a and, no matter  what the preferences of the other 
individuals, if a prefers x to y, then x is socially preferred to y. Written with the 
obvious notation 

x f ( a ) y  implies x o ( f ) y .  

Since Arrow rules out such a dictatorial function, no social welfare function o is 
possible. The mathematical  structure of this problem is now well-known. The 
Arrovian axioms impose a very specific structure on the sets of individuals who 
are "socially decisive". That  is the set B is decisive if, when all the members  of B 
prefer x to y, then x is socially preferred to y. In the case where the set A of all 
individuals is finite, these socially decisive sets consist of all the sets that contain 
a given individual a and, in particular, the set {a} consisting of just  a himself. 
Now, suppose that the set A is infinite, for example, the interval [0, 1], then we 
could, f rom Arrow's axioms, define a measure which could give weight 1 to the 
decisive sets and 0 to the others. If Arrow's  theorem translated directly to this 
case, the measure/~ would necessarily have the form 

/ ~ ( C ) = I  if and only if a E C .  

Thus a would be the dictator. In particular, note that such a measure is not 
atomless and that, for this reason, unlike the other measures with which we shall 
work, it is defined on every subset of A. 

However, we know that Arrow's  result does not hold in this case, but we also 
know that to discuss single individuals in such a case does not make much sense. 
What  we can show is a different sort of result. If  A is [0, 1] then, given Arrow's 
axioms, any social rule a has the following property: 

Given any e, there is a socially decisive set C with Iz( C )  < e, 

where/~ is the natural Lesbegue measure, i.e., the "length" of the set C. Thus, 
though no single individual determines society's preferences, arbitrarily small 
coalitions do so. Thus, the measure theoretic approach enables us to show that 
Arrow's  result remains essentially true even in the infinite case. 
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1.8. How to cut a cake fairly 

An old problem which has intrigued mathematicians is that of how to divide up 
some object "fairly" in some sense, among n individuals. The object to be 
interesting, of course, must be differently appreciated by different individuals. 
One could think of a block of ice cream with different flavours. Thus one could 
think of each individual i assigning a "measure"/~i  to the parts of the ice cream, 
each attributing 1 to the whole for example. Thus, what we would like is to find 
a way of dividing the ice cream U, i.e. a partition of U, {U l . . . . .  U,}, such that 

ixi(Ui) >= 1 /n  for i= 1 . . . . .  n. 

This would be fair in the sense that each individual receives in his own eyes at 
least 1 /n  of the value of the ice cream. In the case of two individuals, all those 
who have children will know that the method of "divide and choose" solves the 
problem. However, much better results in the n person case have been proved by 
Steinhaus, Banach and Knaster, and references are given and very general 
theorems proved in an elegant paper  by Dubins and Spanier (1961). A very 
striking result shows that one can partition the ice cream or cake in question in 
such a way that each individual n believes that all the pieces of the cake are 
worth 1/n .  That  is, one can find a partition {U 1 . . . . .  Un} such that 

/ ~ i ( U j ) = l / n  for i = 1  . . . . .  n and j = l  . . . . .  n. 

This rules out an individual getting 1 /n  of the cake but being jealous of another 
individual. This is in fact equivalent to the old problem of the agricultural land 
of an Egyptian village which is flooded by the Nile to different heights each 
year. How should the land be divided so that each of the n landowners always 
has 1/n  of the land remaining above water? 

In addition, Dubins and Spanier show that there are "opt imal"  partitions in 
different senses. For  example, there are partitions {U l . . . . .  Un} which maximise 

i=1  

thus which are optimal in a utilitarian sense. Connections with other mathemati-  
cal results are shown in their paper and the central role played by Liapunov's 
theorem mentioned above is clear. 

Here again, the measure-theoretical approach has solved a number  of interest- 
ing problems arising in an economic context. Having given a number  of 
examples to motivate the use of measure theory in economics, we now turn to 
the mathematical  tools themselves. 
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2. Some basic measure theory 

The area covered by measure theory may be thought of as that concerned with 
attributing numbers to the parts of an object or set in such a way that these 
numbers correspond intuitively to the "size" or "measure" of those parts. 
Physically one might think of the weight of some object and its component 
parts, or if one takes an interval of the real line, one might be interested in the 
"length" of some subset of that interval. Again, from the point of view of 
intuition, it is important that if the numbers assigned are to be meaningful, they 
should have certain properties of additivity. Thus, if one takes two disjoint parts 
of an object, one would naturally require that the weights of these two parts 
taken together should equal the sum of their separate weights. Indeed, we would 
require that this be true not just  for any two sets, but for arbitrary collections of 
subsets. The passage from the simple idea of adding the weights of a finite 
collection of subsets to find the weight of their union to the problem of adding 
the weights of an arbitrary collection of subsets is not even in general possible, 
and we will have to restrict ourselves to a less ambitious task. The specification 
of the functions that designate the measure of each subset of some set, the 
collection of subsets on which they are defined, and the properties of those 
functions will be the concern of the second part of this chapter. 

2.1. Classes of subsets and algebras 

Before developing the theory of set functions and measures in particular, we 
must first study the classes of subsets on which they are defined. If we consider 
any set E then we will denote ~ ( E )  the set of all subsets of E. 

Definition 1 

An algebra or Boolean algebra of sets 6~ is a non-empty class of subsets of E such 
that if 

AEd~ and BE6~, 

then 

A U B ~  and A\BE(~,  

and 

E E l .  

It follows obviously that if ~ is an algebra, then 

A ~ C  implies A c ~ .  
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Examples 

It  is clear that for any set E,  P ( E )  is a Boolean algebra. 
The set of all intervals on the real line does not form an algebra since it is 

closed neither under the operation of difference nor  that of union. However, the 
reader will be able to show that the set of all finite unions of intervals is an 
algebra. 

We will need to consider classes of sets where there are members  which 
cannot only be formed by the finite union of other members  but also by 
countable unions. That  is, if we consider some set E then we will need to be able 
to talk of the "weight", "size", or "measure"  of some set which can be made up 
of a countable number  of "pieces" of E. Thus we have: 

Definition 2 

A o algebra is an algebra with the property that if 

OO 

A i E ~  then ~.J A i E ~ ,  i=1 ,2  . . . .  
i=1 

It is clear that the countable intersection of sets in a o algebra belongs to that 
o algebra. 

2.2. Generated algebras and o algebras 

If we could always work with the set of all subsets of some set E,  that is with 
~P(E), and could define a measure on such subsets, things would be very simple. 
However, this is not possible and we have to restrict ourselves to subclasses of 
~P(E). It  is for this reason that we have introduced notions of algebras and o 
algebras. In particular, it will often be useful to start with some simple class of 
subsets and to construct from it a larger class. To this end, we give the 
following: 

Theorem 1 

If C is any class of sets then there exists a unique algebra (resp. o algebra) such 
that R D C, and if R' is also an algebra (resp. o algebra) such that R'D ~, then 

R c R ' .  

The class R is referred to as the algebra (resp. o algebra) generated by the 
class d~. 

A particularly important  class of sets is given by the smallest o algebra 
containing the open sets of some topological space. Formally, we have: 
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Definition 3 

For a topological space X the class of Borel sets is the o algebra ~ generated by 
the open sets of X. The reader will have no difficulty in showing that the Borel 
sets are also generated by the closed sets of X. 

It will be useful later to work with the o algebra generated by a class of sets. 
Although it is unfortunately impossible to give a constructive procedure for 
obtaining this o algebra, this will not, at the level of presentation here, present 
any difficulty. 

With these simple set structures in mind, we now pass on to consider set 
functions, and in particular those set functions which are called measures. 

2. 3. Set functions 

We will confine our attention to set functions which will be defined on a 
non-empty class ~ of subsets of some set E. Thus/~ associates with a set A E d~ a 
real number  or _+ oo. The empty  set ~ is always a member  of ~. If we denote by 
R* the compactification of the real line by the addition of the two points + oo 
and - o o ,  then the operations represented by + and x are extended in the 
conventional way, for example, 

Ox-+~=O. 

The purpose of this chapter is not to consider arbitrary functions of abstract 
interest, but to tie ourselves to those which will be of use in economic theory. A 
first condition that the functions must  satisfy if they are to correspond to the 
intuitive idea of assigning "weights" or "lengths" is that the "weight" of two 
disjoint sets taken together should be equal to the sum of their individual 
weights. 

Definition 4 

A set function/~: ~---~R* is said to be (finitely) additive if 

(i) /z(~) = 0, 

(ii) for every finite collection E 1, E 2 . . . . .  E n of disjoint sets of ~ such that 
U," E ~  iffil i ' 

then 

]£ = [~( E i ) .  ( 2 , 1 )  

"= i = l  
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In  fact, condit ion (i) is superfluous provided that  for some set E in ~ ,  /~(E) is 
finite. It  is natural  to define an additive set funct ion  on an algebra since we have 

n 

E i ~ if. implies U Ei E ~ ,  i = 1 . . . . .  n.  
i ~ l  

The reader will note that  if ~ is an algebra, we canno t  have sets E and  F E  ~ with 
E A F = f g  and i f ( E ) =  + o e  and f f ( F ) = - o e .  Thus,  a l though it is not  always 
sufficient to confine our  at tention to finite valued set functions,  they will not  
take on both the values + oe and  - oe. 

We will now give several examples of set functions which are additive which 
will aid in unders tanding the nature of measure. 

Example 1 

Consider X any set with infinitely m a n y  points and  the set of all subsets of  X. 
Define/~ by 

# ( E )  = # E  if E is finite, 
for EEe) (X) .  

= + ~ if E is infinite, 

Thus if X represents the individuals in a large economy,  this measure  simply 
"counts"  the agents in any  coalition. We will encounter  a more  useful "count ing  
measure"  later in the chapter.  

Example 2 

Consider X any set and  define ~ ( X )  as before. 

For  2 a point  of X, let 

/~(A) = 1 if 2 E A ,  
for A ~ 62 (X ) .  

= 0  if 2q~A, 

Example 3 

Let X =  R and let ~ be the set of all finite intervals of R. A n y  E Ed~ is then 
defined by  its end points  a, b, and let 

ix( E ) = b - a .  

Thus we simply take the value of an interval to be its length. 
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Example 4 

Let X be the half open  interval (0, 1] and  let d~ be the class of half open  intervals 
(a,  b] with 0 < a < b < 1, and let 

I ~ ( a , b ) = b - a  if a=/=O, 

and 

/t(O, b ) -  + ~ .  

All these examples are of additive set functions, but  we will come back to see 
whether  they satisfy the addit ional  criteria that we will impose. 

Hav ing  defined finite additivity, we will now give a stronger r e q u i r e m e n t - - t h a t  
of o add i t i v i ty - - tha t  is we will ask that  our  set funct ion should be additive not  
only on  a finite union  of sets but on  countable  unions as well. W h y  is this 
necessary? The following example f r o m  probabil i ty theory gives a clear answer. 

Definition 5 

Consider  a set X and  d~ an algebra of  subsets of X. Define a finitely additive 
function,  

wi th /~(X)  = 1. Such a funct ion is called aprobability distribution. If  one thinks of 
an experiment with a n u m b e r  of possible outcomes then /~(S) expresses the 
intuitive idea of the probabil i ty that the ou tcome of the experiment will be in the 
set S. 

N o w  consider a map  f :  X---~R. Such a m ap  is called a simple random variable. 19 
Thus, it associates a real n u m b e r  to each possible outcome of  an experiment. 

Nex t  consider an  infinite sequence of independent  trials of the experiment.  
Tha t  is, f rom the popula t ion  X is d rawn each time, according to the probabil i ty 
distr ibution /~, an element x ~ X .  A n  outcome then may  be represented as 
(x  l, x 2 . . . .  ). Let X~ be the space of all such outcomes.  

If  we wish to be able to make  such statements as "the ' sample  m e a n '  of n 
observat ions converges to some number  a as n---~oe", we will need to construct  
sets which can only be obta ined  in a countable  and  not  a finite number  of 
operations.  Tha  t is, to const ruct  the set of all sequences in Xo~ whose sample 
mean  converges to a is not  possible in a finite number  of operations.  

19In fact this map must satisfy a regularity condition, that of measurability, which we will shortly 
define but for the purpose of the example we will ignore this requirement. 
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o algebra 

Once again, we assume we are interested in collections of subsets of some set X 
which have X itself as a member .  We  can thus define: 

Definition 6 

A collection d~ of subsets of a set X is called a t r  algebra, if 

(i) ~Ed~ ,  
(ii) A ~ d~ then AC ~ ~,  
(iii) A,,  A 2 . . . .  ~ ~ then t..J ~= 1A n E d~. 

N o w  we may  extend out  definition of  an additive set funct ion to the following: 

Definition 7 

A set funct ion/~:  ~ R *  is o additive, if 

(i) 
(ii) for any sequence E, ,  E :  . . . .  of sets of ¢t, where 

c~ 

E= ~_J Ei~, 
i= l  

then 

. (El) .  
i = l  

Obviously any o addit ive set funct ion is also additive but  the converse does not  
hold. Consider  Example  4 given earlier. Let in that  example 

(1,1 = - , n = 1 , 2 , . . .  E = ( 0 , 1 ]  and  E ,  n + l ' n  

N o w  the sequence (En)  has each of its elements in A, and E itself is in @, but  
clearly 

/~(E) = + m and  ~ /~(En) = _1 1 = 1 .  
n = l  n=l n n + l  
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Hav ing  discussed var ious  types  of set func t ions  we can  now restr ic t  the class 
of such funct ions  to those which  have pa r t i cu l a r  interest  for  us; tha t  is, those  to 
which  we will refer as measures .  

Cons ide r  a set X and  a o a lgebra  C of its subsets.  W e  will refer  to the couple  
(X,  C)  as a measurable space. 

Definition 8 2o 

If  (X,  C)  is a measu rab l e  space  then any  func t ion  : C- ->R+ (where  R + - - ( x l  
x ~ R* a n d  x/> 0) which  is o add i t ive  is ca l led  a measure. 

Definition 9 

F o r  (X,  C)  a measu rab le  space,  if/~ is a measu re  on  C a n d / z ( X ) =  1, then /~  is 
ca l led  a probability space. 

I t  will, in general ,  be enough  for us to restr ict  our  a t ten t ion  to p robab i l i t y  
measures  bu t  it is useful  to have  the m o r e  genera l  def ini t ion.  

The  r eade r  should  now r e tu rn  to the  examples  given a n d  check which are  
measures .  

Before  p roceed ing  we need  a fur ther  def ini t ion.  

Definition 10 

A set funct ion /~: C--->R* is ca l led  o finite if for  each E E C  there  exists a 

sequence  of sets E i ( i =  1,2 . . . .  ) with E i E C  such tha t  E C  U i°°__lEi a n d / ~ ( E i )  < oo 
for  all i. 

W e  will now show that  s ta r t ing  with  a measure  on  an  a lgebra  C we can  ex tend  
it un ique ly  to a measure  on the  o a lgebra  genera ted  by  C. 

If  we start  with a measure  /~ def ined  on  an  a lgebra  C of  subsets  of a set X 
cons ider  the func t ion  def ined  b y  

CO 

/~*(E) = i n f  ~,, /~(F/),  
i = 1  

oo where  the in f imum is taken  over  all sequences  of sets (F,.) such tha t  E C  U i ~ l F i i  o 

W e  can  now state the  fol lowing:  

Theorem 2 

Let  d~ be  an a lgebra  of subsets  of a set X and /~  : ~ R  + a measure  on  ~ .  Then  

2°It is worth noting that, although we start here with the natural domain of definition, a o algebra, 
there is no  need to do so and we could have started with some other class of subsets. In addition, we 
have required that a measure be positive, a restriction not generally imposed. 
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there is an extension of/~ to a measure r where r :  S ( ~ ) ~ R  + and  S ( ~ )  is the o 
algebra generated by  ~.  The extension is unique and o finite on S ( ~ )  if /~ is 
o finite, r is the restriction of/~* to S ( ~ )  where/~* is defined as above by 

/~*(E) =inf ~ bt(F/). 
i ~ l  

We have then arrived at the point  where given some arbi trary set X and  a 
measure defined on a simple structure (an algebra) of its subsets we can extend 
this measure uniquely to the a algebra generated by that  algebra. 

We can now give the following: 

Definition 11 

A measure space (X,  ~, Iz) is a triple where X is a set, (~ is a o algebra of subsets 
of X, and/~ a measure defined on ~.  

An example: Lebesgue measure 

In Eucl idean space the not ion of measure corresponds intuitively to the ideas of 
length, area, or volume depending upon  the dimension in question. H o w  is the 
measure of a set defined in this case? In R we consider the class 62 of half open  
intervals (a,  b]; these generate the class ~ of all elementary figures, i.e., sets of 
the form 

n 

E =  U (ai ,b i l  w i t h  b i < a i + l , i = l , 2  . . . . .  n - 1 .  
i = l  

In  other words, the e lementary figures consist of  all sets which are expressible as 
a finite union  of disjoint sets of P. 

In  R e the half open  intervals are given by 

{ ( x , , x  2 . . . . .  xe)} ,  ai<xi<<.bi, i = 1 , 2  . . . . .  e; 

these generate analogously  the elementary figures ~e .  

Define now the natural  set funct ion to express length, i.e., 

# ( a , b ] = b - a ,  

or area or  volume, 

/~{(x 1 . . . . .  Xe) : a i < x  < b i, 

g 

i =  1,2 . . . . .  e} = ~-[ (b i - a i ) .  
i ~ l  
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Such a/~ is a measure, and it can be uniquely extended by our previous results to 
the cr algebra generated by the elementary figures, i.e., the Borel sets ~e, and is 
referred to as Lebesgue measure. 

In fact, the class of Lebesgue measurable sets Ee is larger than @e, but this is 
not of great importance for the present discussion. 

.The interpretation of measures in probabilistic terms is clear and the measure 
of a subset is the probability that  the outcome of some "experiment" will fall in 
that subset. In economics, we often need to formalise the idea that people 
forecast future prices. Such a forecast by an individual of n prices would be 
given by a measure on the unit simplex R n. A discussion of such forecasts and 
requirements imposed on them is to be found in Chapter 19 on temporary 
general equilibrium theory. 

A wholly different approach to the use of measure theory in economics, as has 
been mentioned, is the idea of representing a purely competitive economy by a 
continuum of agents or more generally by a measure space. Having discussed 
the nature of measure space and  the nature of measures at length, we can now 
look at the economic interpretation given to them. 

A measure space of economic agents (A, 6g,/~) can be viewed as follows: A is 
the set of individual names or labels. For  example, in a finite economy A could 
be a set of integers, while in a continuum economy we could, as Aumann  (1964) 
did, use the closed unit interval [0, 1] as the underlying set of labels. 

is the o algebra of subsets of A which can be thought of as corresponding to 
the possible coalitions of A. As we have observed, we cannot in general define 
the measure on all the subsets of A, but the reader can consider for practical 
purposes all subsets as possible coalitions. In other words those coalitions which 
are eliminated by confining our attention to a o algebra, rather than all subsets, 
are of no special interest. In probabil i ty theory, for example, we may well be 
interested in the probability that  a number  drawn from some set falls into a 
certain interval or collection of intervals, but we are probably less interested in 
the probability of its being rational or irrational. Even this is manageable,  but 
there are sets to which we cannot  assign probabilities. However, such sets are 
not constructed as collections of intervals, and it is in these that our interest 
generally lies./z the measure on A simply conveys the idea of the proportion of 
agents belonging to any subset. Thus we will have for a finite economy a 
measure space given by the following: 

Definition 12 

A measure space (A,  ~, t~) is simple if A is finite, ~ is the set of all subsets of A 
and /~ (E)  = -#El  # A .  
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We should also note in our discussion of the continuum economy as a 
representation of a perfectly competitive situation we suggested that each 
individual had no weight. If we use Lebesgue measure on the unit interval this is 
clearly the case but in general we need to make an assumption that the measure 
space satisfies the following: 

Definition 13 

A measure space (A,(~,lz)  is atomless if for every EErg  with /~ (E)>0  there 
exists F E ~  and F c E  such t h a t / ~ ( E ) > / ~ ( F ) > 0 .  

This rules out some individual having positive "weight" or "influence". 
Indeed the idea of a measure space with atoms had already been used to 
designate situations which are not perfectly competitive that is to convey the 
idea of monopoly. See e.g. Shitovitz (1974). 

An alternative use of the notion of an an atom would be as mentioned earlier 
when we wish to define the notion of what Arrow described as a "dictator" in 
social choice with an arbitrarily large number of members. 

That is if a* an agent is "decisive" for A in that his preferences determine 
those of the society as a whole then we define the Dirac measure as follows: 

/ z ( E ) = l  if a * E E ,  VEEa)(A)"  

= 0 otherwise, 

Clearly /~ defines a measure and a* may be thought of as a dictator in the 
Arrovian sense, if we make the rule that if for some coalition E, x>-ay, Va ~ E ,  
then x is socially preferred to y if ~ ( E ) =  1. 

Incidentally, one can see from the above example that in general it is the 
requirement that the measure be atomless which prevents us from defining it on 
all subsets of A. In the example it is clear that /z is a measure defined on all 
subsets of A. 

The notion of a measure on a set allows us, as we mentioned i n  the 
introduction, to make statements about which subsets are of no importance, that 
is, which are "negligible". 

If (A, ~,/z) is a measure space then a set B c A  is said to be negligible (for/~) if 
there exists a set E E ~ such that /~(E) = 0, and B C E. 

If a certain property holds for all points of A except for a set B where ~ ( B ) =  0 
then we say that that property holds "'almost everywhere". In economics such a 
description is useful as a way of characterising particular phenomena as excep- 
tional or rare. 

If/L is a probability measure then the term "almost surely'" replaces almost 
everywhere. 
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Situations in economics which occur only for configurations of parameters 
which together have measure zero in the space of all such configurations may be 
thought of as "unlikely" or "rare". This is a useful idea which enables us to 
avoid making strong or unnatural  assumptions to rule out cases which are 
"exceptional" and which enables us to give a precise interpretation of the word 
"exceptional". 

Liapunov " s theorem 

We now give a result of considerable importance in applying measure theory to 
economics and one which has played a central role in the formalisation of, and 
the equivalence between, solution concepts for large economies. 

Theorem 3 (Liapunov) 21 

L e t / h  . . . . .  ]1 m be atomless measures on (A, ~),  then the set 

{ ( # , ( E ) , / z 2 ( E  ) . . . . .  /~m(E)) ~ R  '~, E ~ }  

is a closed and convex subset of  R m. 

This theorem is particularly useful since when considering a cont inuum econ- 
omy we can always find a "scaled down" version of that economy and the 
reader will find a discussion in Chapter 18 by Hildenbrand. We also note in 
passing that this theorem is fundamental  in the article by Dubins and ~panier 
(1961) to which we referred earlier. 

Measurable mappings 

In economics we will frequently be concerned with mappings from one measura- 
ble space to another. Indeed, when defining an exchange economy, for example, 
we will be concerned with identifying with each agent his endowments and 
preferences. We will need a certain regularity property of such a mapping, in 
particular that the pre-image of every set in the a algebra of the range shall be a 
set in the o algebra of the domain. This is inconvenient but necessary for 
technical reasons. 

Definition 14 

For  two measurable spaces ( A I , ~ I )  and (A2,(~2)  a mapping f :Al-- -~A 2 is 
measurable if f - l (E)  = ( a ~ A l [ f ( a )  ~ E )  E ~ 1 for each E E d~ 2. 

21A proof is given in Lindenstrauss (1969). 
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Note that the measurability of a function depends upon the o algebras, and 
thus for the same underlying sets A 1 and A 2 changing the a algebra associated 
with each can change whether a function is measurable or not. When A 1 and A 2 
are metric spaces we will generally take (21 and (22 to be the respective Borel o 
algebras. 

It  would seem at first sight that it might be difficult to determine whether a 
given function is, in fact, measurable, but in fact it is sufficient to check for any 
class of subsets of A 2 which generates (22. More formally, we have: 

Remark 

If for a class C of subsets of A 2 which generates (22, and a mapping f f rom a 
measurable space (Al,(21) into a measurable space (A2,(22) , f - I ( c ) E ( 2 1 ,  for 
every C ~ C; then f is measurable. 

It is also important  to note that composing two measurable mappings pre- 
serves measurability. Thus we have: 

Proposition 1 

Let f and g be two measurable mappings f rom (A 1, (21) to (A 2, (22) and from 
(A2, (22) to (A3, (23), respectively, then the composition g o f  is a measurable 
mapping. 

In addition, the following result is frequently useful: 

Proposition 2 

Let g be a measurable mapping from a measurable space (A~, (21) into a 
measurable space (A 2, (22) and f a function from A into R" ,  then f is measurable 
with respect to the o algebra g-~((2z) if and only if there exists a measurable 
function h of (A2, (21) into R m such that f = h  og. 

Real-valued measurable functions 

In particular if we consider a mapping f from a measurable space (A, (2) to the 
extended real line R*, then any of the following conditions are necessary and 
sufficient for f to be measurable: 

(i) ( x [ f ( x ) < c ) E ~  for all cER,  
(ii) ( x l f ( x ) > c ) ~  fo ra l l  c ~ R ,  
(iii) {x l f ( x )<c}E(2  for all c~R ,  
(iv) (x[ f (x)>~c}E~ for all cER.  
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Other useful properties of real-valued or extended real-valued measurable 
functions are given by the following: 

Proposition 3 

If (A, 6g) is a measurable space and f and g two measurable functions into R. 
(resp. into R*), then the functions 

(i) f +  g. (resp. f +  g if the function if defined), 
(ii) sup(f ,  g), 
(iii) inf(f ,  g), 
(iv) f ig,  
(v) af ,  V a E R ,  

are measurable. 

Examples and further properties 

Consider now a generalisation of the special mapping mentioned earlier often 
referred to as the "indicator variable" that is %c : A E R such that 

%¢=1 if a E C ,  for every C E ~ ,  
= 0  if aq3C, 

then the mapping is measurable. 
If we wish to confine our attention to a restricted class of a o algebra then it is 

useful to know that, if (A, 6g) is a measurable space and ~ '  a sub o algebra of 
then the identity map, 

i d . ( A , ~ ) - - ) ( A , ~ ' )  where i d . ( a ) = a ,  

is measurable. 

When we consider functions from a metric space M into R* it is important to 
observe that: 

Proposition 4 

Every lower or upper semi-continuous function from a metric space M into R* 
(and thus in particular every continuous function) is measurable. 

Finally we give a result which will be used in the next section: 

Proposition 5 

Let the sequence (fn)(A, ~)  into R be such that: 

(i) f is measurable (i = 1,2 . . . .  ). 



Ch. 5: Measure Theory 183 

Then (a) the functions supn f~ and inf.  fn are measurable, and (b) the func- 
tions limsup, f .  and liminfn f .  are measurable. 

Furthermore if the following condition is also satisfied: 

(ii) lim fn(a) exists for every a CA. 

Then the function g defined by g(a)= lim fn(a) is measurable. 

Note that we cannot extend these results to include non-countable operations. 
To see this consider the following: 

Example 5 

Let A be a subset of [0, 1] which is not Lebesgue measurable. Let 

L ( x )  =1 if x = a ,  

fn(x)=O if xv~a. 

For each a EA the function f is clearly measurable, but 

XA(X) = sup f,~ 

is obviously not Lebesgue measurable. 
This creates particular problems, for example, when considering stochastic 

processes with a continuous time parameter. 

Integration 

The idea of the integral of a function plays a very important role whether we are 
considering the probabilistic aspect of measure theory of whether we are 
considering the application of measure theory directly to "idealised", "perfectly 
competitive" or "limit" economies. In the former case the reader will be aware 
that the integral gives the "mean" or "expectation" of a given function f with 
respect to a particular probability distribution. In this case the function is a 
"random variable with distribution/~" and the integral gives the familiar idea of 
the expected value of the random variable. 

Recall that in economies with a measure space of agents we are faced with a 
simple definitional problem. How, with an infinite number of agents each 
possessing a positive bundle of goods, can we talk of an equilibrium in which the 
demand for these goods equals the supply of them? Since the sum is of no 
interest, the appropriate notion is that average, or "per capita", demand equals 
supply. Here again the integral will be the appropriate concept. The integral 
I ( f )  will be a real number associated with a particular function f and we will 



184 A. P. Kirman 

require that  for suitable functions f the opera tor  I ( f )  should satisfy certain 
properties. Let ~-be a class of funct ions f :  A---~R* and let I :  ~---~R define a real 
number  for each f E f f ,  then the following properties would seem intuitively, to 
be required of /,  particularly if one thinks of the interpretation of  "the area 
under  a curve" as the integral of  a funct ion f rom R into R. 

(i) If  for  all f@ ~ w e  have f (a )  >~ 0 for all a E A, then we have I ( f )  i> 0; that  is, I 
preserves non-negativity.  

(ii) F o r f  and g E ~ - a n d  a and  t iER,  it holds that  af+flgEm-dand l ( a f + f l g ) =  
a l ( f ) + f l l ( g ) ;  in other words  I is linear on ~. 

(iii) I is cont inuous on ~,  in that, if ( f , )  is an increasing sequence of functions 
in oy and 

f~ (a )~ f (a )  for all aEA,  

then f E  ~ and lim,__, oo I ( f ,  ) = I ( f  ).22 

Our  procedure  for obtaining an  integral which satisfies these three condit ions 
is, first, to restrict our  at tent ion to a part icular  class of functions for which the 
integral has an obvious intuitive definition, and  then to extend this class of 
funct ions to as large a class as possible. 

To do this we need first the idea of a "simple funct ion"  f rom a set A to R 
which is one which takes on a finite number  of values, one for each set of a 
partition of A, and is constant  on  each set of  the partition. The  idea is illustrated 
in Figure 2.1 for a funct ion f r o m  [0, 1] into R. 

Definition 15 

A finite collection of sets E l . . . .  , E n such that  

and 

E i N E j = ~  , i = 1  . . . . .  n ,  j = l  . . . . .  n ,  

n 

U El=A, 
i~l 

is said to form a finite partition of A. In  particular, if EiE~  ( i =  1 . . . . .  n) then 

22The Riemann integral with which the reader will be familiar from the integral calculus does not 
satisfy this property but does satisfy the following weakened version of it: 

(iii*) Let (f~) be a monotone decreasing sequence of functions with limn__>~ofn(a)=0 for all aEA, 
then l imn~l(fn) = 0. 
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these sets form an ~partition of A. With this we can proceed  to the following: 

Definition 16 

A function f :  A ~ R  is called ~ simple if it can  be expressed as f ( x ) =  
n X Y~i=aeiXei(), where E~, E 2 . . . . .  E ,  form an ~ part i t ion of  A and  eiER ( i =  

1,2 . . . . .  n). 

Remark 

If  f and g are two simple functions f rom A to R then the funct ions 

f+g, f - g ,  fg, 

are also simple functions.  
Note  also that an  ~ simple funct ion is ~ measurable,  z3 N o w  we can start to 

extend our  at tention to measurable  functions by considering the fol lowing:  

Theorem 4 

If  a funct ion f :  A---~R+ is measurable then it is the limit of  a m o n o t o n e  
increasing sequence of  non-negat ive simple functions.  

N o w  to move towards  the desired results, we must  show that  any  measurable  
funct ion is the limit of  a sequence of simple functions.  

23We will frequently speak of measurable functions rather than C measurable functions when only 
one o algebra is under consideration. 
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First for a function f :  A---~R* define 

f + ( x ) = m a x [ O , f ( x ) ] ,  f _ ( x )  = - min i0 ,  f ( x )  ], 

Clearly, 

f ( x )  =f+  (x)  - f _ ( x ) .  

Now from a previous remark, if f is measurable so are f+ and f _ ,  and since both 
are non-negative each is the limit of a sequence of non-negative simple func- 
tions. Applying the remark again we then have the following important  theorem 
which provides the basis for the definition of the integral: 

Theorem 5 

Any measurable function f :  A---~R* is the limit of a sequence of simple func- 
tions. 

This link between simple and measurable functions enables us to proceed to 
the definition of the integral for simple functions and to extend it to measurable 
functions. 

Thinking of measure on a set A as the distribution of mass in physical terms 
or as a probability distribution over a set of outcomes, it is clear that the natural 
notion of the integral for the particularly convenient case of a non-negative 
simple function is given by: 

Definition 1 7 

Given a measure space (A, ~,/~) and a non-negative simple function, 

n 

f (X)=ECiXE,(X ) w i t h  Ci>/O , i = 1  . . . . .  n, 
i = 1  

(with respect to/~), the integral ffdl~ is defined by 

n 

f fd~= E ci~( Ei)" 
i = 1  

Referring back to Figure 2.1, it is clear that the integral of such a function 
consists~of the sum of the area of the rectangles under each step of the function. 
This sum is always defined since the individual terms are non-negative, 24 and it 
is independent of which of the possible representations of f is chosen. 

z4If we are treating general measures it is possible that # ( E i ) ~  oo and ci=0; in this case we take 
I~( Ei)ci~O. 
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Remark 

It is easily shown that the integral is linear on the class of non-negative simple 
functions S+, that is, if f ,  g E S+ and a, fl >/O, then 

f (~f+ Bg) d ,  = ~ ffdt~ + Bfgd,. 

Furthermore the integral is order preserving on the same class, i.e., if f ,  gES+ 
and f >  g, then 

ff dl~ > fgdt~. 

Now we can proceed to the second s tep- - tha t  of extending the definition of the 
integral to the class of non-negative measurable functions M+.  

For f in M+ there exists by Theorem 6 a monotone increasing sequence (fn) 
of simple functions with f.-->f. Now for each f .  in the sequence f f .  d/x is defined, 
and by our previous observations the sequence ( f f .  d/~) is monotone increasing 
and has a limit. 2s Hence we define f o r f ~ M + ,  

f fd;,= lira f f.d~. 

Clearly the monotone sequence (fn) which converges to a given f is not unique, 
but the integral, as defined, is independent of the choice of sequence. Note that 
it follows directly from our earlier observation for functions in the class S+ that 
the integral operator is linear on the class M+,  i.e., for f ,  gEM+ and a , /3>0,  

f ( z+flg)d =a f fd +fl f gd . 
Definition 18 

A non-negative measurable function f is said to be integrable if 

f f d l  x is finite. 

Thus far we have been concerned with measurable functions in M+.  We now 
extend our definition of the integral to the class of integrable measurable 
functions. 

25The limit may, of course, be + oo. 
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First, observe again that if f :  A-+R* is measurable, then so are f+ and f_ .  In 
particular if the two non-negative measurable functions f+ and f_ are integrable 
that we say that f is integrable. More precisely, we have the following: 

Definition 19 

If f"  A---~R* is such that f÷ and f_ are integrable, then f is called integrable and 
the integral of f with respect to/x is given by 

f f+ dtz- f f_ dlx. 

Often we will be concerned with the integral of a function f over only a subset 
E ~ ,  and in this case we define 

f i d e =  f f ' xEd~,  

provided that f .  Xe is defined. Then there are two conditions each of which will 
ensure the integrability of a function over a given set. Either: 

(i) f ' x e  is non-negative and measurable, or 
(ii) f .  XE is measurable and integrable. 

f is then integrable over A if f'XA is integrable. We denote the set of all 
integrable functions from (A, ~,/~) into R* by E(A, ~,/~). 

Confirmation of the properties we demanded of the integral at the outset is 
given by the following: 

Theorem 6 

If (A, ~,/~) is a measure space, E, F are two disjoint sets in ~, and f ,  g are two 
functions belonging to ~(A, ft,, I~), then 

(i) 
(ii) 
(iii) 
(iv) 
(v) 
(vi) 
(vii) 
(viii) 
(ix) 
(x) 
(xi) 

f ,  g are integrable over E and F; 
f+g, lfl, lgl belong to ~(A, (2,/~); 
feuFfdl~= fEfdlx+ fFfdlx; 
f ,  g are finite # a.e., 
f ( f +g)dt~ = ffd~ + fgd~; 
Iffdlzl< flfldl~; 
for cER, c.f  is/~ integrable and cffdtz= fcfdl~; 
f>~ O~ffdt~ >1 0: f>~ g~ffdl~ >1 fgdtz; 
if f >  0 and ffdt~=O, then f = 0 / ~  a.e.; 
f=gl~ a .e .~ f fd /~=  fgdl~; 
If h: A---~R* is A measurable and Ihl < f  then h~fi(A, ~, t~). 



Ch. 5: Measure Theory 189 

From these results follows: 

Corollary to Theorem 6 

If a function f :  A---~R* is bounded, (2 measurable and if f ( x ) = 0  when x ~ E  for 
some EE(2 with/~(E) < oe then f is/~ integrable. 

As we will see in what follows, an exchange economy will be defined by a 
measurable mapping from the underlying measure space of agents to the space 
of agents' characteristics. In other words, defining an economy consists of 
specifying for each agent his preferences and his initial endowments. Now for 
many of the results in Chapter 18 of this Handbook, it will be important to show 
that properties of very large economies - -  that is economies with a measure 
space of agents - -  are, in some sense, also true for large finite economies. To do 
this we will need to consider sequences of economies and sequences of alloca- 
tions, i.e., sequences of mappings from the space of agents to Re+. The following 
three results will prove to be particularly useful, and we will later investigate in 
more detail different notions of convergence of measurable functions. 

Proposition 6 

If the sequence (f~) in E(A, (2,/x) is increasing (decreasing), lira f , (a )  is finite for 
every a E A ,  and if lira, f ,  is finite, then 

limf,,~E(A,(2,/~) and limfL=flimL. 
n 

Lemma 1 (Fatou) 

I f  ( f ,  ) is a sequence in E ( A , (2, tz ) and if f n < g where g ~ E ( A, (2, tL ) then 

f linm sup f .  > lim sup ff.. 

Furthermore, if h <f ,  where h EE(A, (2, if), then 

f lim inf f ,  < lim inf fro 

Theorem 7 (Lebesgue) 

If ( f , )  is a sequence in E(A, (2,/~), and if l im,  f , ( a )  exists for every a E A  and 
ILl <g  ( n =  1,2 .... ), where g E E ( A ,  (2,/~), then 

limf. ~ ~(A, ~,  ~) and f lim f .  = lim fro. 



190 A. P. Kirman 

2.4. Product spaces and product measures 

Before proceeding to our discussion of convergence of measurable functions we 
will need to discuss the idea of product spaces and product measures. To see 
why we need these notions consider again the example of the exchange economy 
mentioned earlier. It  will be defined by a mapping from the measure space of 
agents to the space of agents characteristics. The latter, however, is the product 
of two spaces, the space of preferences ~ and the space of initial endowments 
Re+. Now the natural procedure is to use the structure of each space to define 
the product  space and product  measure since, in particular, this allows us to use 
the natural idea of "projection", for example, when we wish to concentrate on 
the distribution of initial endowments. Recall that the Cartesian product  A x B 
of two spaces A and B is the set of all ordered pairs (a, b) where a EA and bEB. 

Definition 20 

A set in A × B of the form E x F with E c A  and F c B  is called a rectangle. 

Definition 21 

Let ~ and ~ be classes of subsets in A and B, respectively, then ~ x  ~ denotes 
the class of all rectangles E X F  with E E ~  and F E ~ ,  i.e., the product of the 
classes ~ and ~. 

Definition 22 

Let d~ and ~ be algebras (resp. o algebras) in A and B, respectively, then the 
product algebra (resp. tr algebra) is the algebra (resp. a algebra) generated by 
~ x  ~ ,  and is denoted d~®~. 

It  is important to note that if d~ and ~b are a algebras, ~ x ~  will not be a a 
algebra. 

As we mentioned above we will sometimes be interested in restricting our 
attention to one of the components  of the product  space and for this we need 
two definitions: 

Definition 23 

For any set E c A  x B  and any point aEA, the set 

E ~ = { b l ( a , b ) ~ E )  

is called the section of E at a. Similarly for any b E B the subset g b= (a [(a, b ) E  
E )  is called the section of E at b. 
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Definition 24 

For any set E c A × B  the sets (x[there exists y with ( x , y ) ~ E )  and (y[there 
exists x with (x, y ) E  E} are called the projections of E into the respective spaces 
A and B, and are denoted projAE and pro jsE.  

It is again important  to note that EEd~®@ does not mean that p ro jAEE~.  
Now with these definitions we may  proceed to consider product  measures. 

Consider two measure spaces (A 1, ~l , /xl)  and (A 2, d~ 2,/~2) where/~l and/~2 are 
both 0 finite. Define for any rectangle set E l X E2, 

/~(E, XE2) =/~,(E,)/x2(E2). 

It is easy to show that/~ is finitely additive on ~ x(~2; indeed ~ is a measure on 
the semi algebra ~l x(~z which can be extended uniquely to the generated 
algebra, and thence of course, by previous results, to the generated o algebra 
which is ~l ®@2. The resulting )t* is called the product measure on (~l ®~2- This 
may be summarised in the following: 

Theorem 8 

Given two measure spaces (A 1, ~1,/~1), (A2, (~2,/-t2) such that/~l  and #2 are 0 
finite, there is an unique measure ?, defined on the product a algebra ~ ® ~ 2  on 
A 1 x A 2 such that 

~(EI×E2)=t~I(E1)Iz2(E2) for E,~(~ l and E 2 E ~  2. 

Definition 25 

If # is a measure on the product  space A X B, then the marginal distribution of/~ 
on A is given by 

I~(C)=tz(CXB ) for C a  subset of A. 

Although this result extends immediately to any finite Cartesian product of o 
finite measure spaces, more care has to be taken in defining product  measures 
for countable products of measure since one has to make sure that the infinite 
products of real numbers  involved converge. The problem may be avoided by 
sticking to probabili ty measure spaces where the natural generalisation holds. 

If we have two measure spaces (A 1, d~ l,/~1) and (h2, (~2,/~2), we can in fact 
show quite simply the link between the integral of a function f f rom A~ NAE--~R* 
with respect to the product  measure and a two-step procedure including integrat- 
ing with respect t o / ~  and /z  2. The idea is clear: we fix x E A  1 then integrate f 
with respect to/~2- The resulting function from A~ to R* is then integrated with 
respect to/z 1, and the result turns out, with certain restrictions, to be equivalent 
to having integrated with respect to the product  measure X directly. 
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We first state a result which shows how to obtain the product  measure X by 
integrating the measure of the section for each fixed x over all x with respect 
to/~l. 

Theorem 9 

For  two o finite measure spaces (Al,(~l,/.tl), (A2,(~2,/.t2) define the product 
measure X on the a algebra d~l®d~ 2. Then for each E~(~l@(~2, /.t2(Ex) is (~l 
measurable and i~l(Ey) is (~2 measurable,  and 

X( E ) =  f /~ l (  Ee ) d#~2 = f.2(Ex) d#~, • 

Incidentally, it now follows f rom our previous discussion that we have: 

Corollary to Theorem 9 

For EEd~I®d~ 2, X ( E ) = 0  if and only i f /~2(Ex)=0  for almost all x, and if and 
only i f / z l ( E y ) = 0  for almost all y. 

We now state the following important:  

Theorem 10 

Under the conditions of Theorem 11 denote by d~ the a algebra ~1®~2 . Then if 
h is any d~ measurable function from A 1 ×A2---)R +, then 

We now move on to develop the idea of a derivative of a set function, but to do 
so we will need two definitions: 

Definition 26 

Given a measure space (A, ~, #z), the function v: ~ - -+~*  is absolutely continuous 
with respect to/z, if for any E E l ,  #~(E)= 0 implies v ( E ) = 0 .  

In particular, if f :  A->R* is ~ integrable, then 

v(g)=ffd~ for EEd~ 

is a finite valued absolutely continuous set function. 

In order to define our derivative, we will take a general o additive set function 
and decompose it into an absolutely continuous part  and a remainder which is 
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concentra ted on a set which is/~ null. To make this last remark  more  precise, we 
give the following: 

Definition 27 

For  a measure space (A, d~,/t), a set funct ion v : 6~--~R* is singular with respect to 
~t, if there exists a set EoEd~ w i t h / z ( E 0 ) = 0  and 

v(E)=v(EAEo)  for a l l E .  

We can now give the important :  

Theorem 11 

For  a o finite measure  space (A, d~,/z) and  a o additive, o finite set funct ion 
v:  ~g--~R* there is a unique decomposi t ion 

V~Vl+V2~ 

where v~ and v 2 are o additive and e finite, such that v~ is singular with respect 
to/z  and v 2 < ]£. 

In  addition, there is a finite valued measurable  f :  A---~R such that 

v2(E ) = f / d / z  for all EEd~;  

f is unique in that if there is a funct ion g such that  

v2(E ) =  fegd/~ for all E~6~, 

then f=g  except on a set of zero measure. 
This last observat ion is important ,  for it means  that when we define the 

derivative of a set funct ion  this is not  defined uniquely at any  given point  but  as 
a funct ion must  coincide with any other  funct ion representing the same deriva- 
tive except on a set of measure zero. With this in mind  we give the following: 

Definition 28 

For  a o finite measure space (A, d~,/Q, if v ( E ) =  fEfdtz for all EEd~, f is called 
the Radon-Nikodyn derivative of v with respect to/~ and is denoted  dv/d#. 

2. 5. Convergence of measurable functions 

As we have said before it will be impor tant  for later economic  applications such 
as those found in Chapter  18 of this Handbook ,  to study the convergence of 
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measurable functions. Several different types of convergence can be defined, 
and we will always be considering a sequence ( f , )  of measurable functions from 
a measure space (A, d~,/~) to R*. 

Definition 29 

If ( f , )  is a sequence of measurable functions from (A, d~,/x) to R*, ( f , )  is said to 
converge point-wise to a measurable function f on E if for every x ~ E  
t im~_.~fn(x)=f(x  ). If /~(E)=/L(A) then we say ( f , )  converges to f almost 
everywhere (a.e.). 

Furthermore if (fn) and f are finite-valued, then we add the following: 

Definition 30 

If a sequence (fn) a n d f  are finite-valued functions from E to R then ( f , )  is said 
to converge uniformly to f if for each e > 0 there exists an integer N such that 

x ~ E  and n>~N implies IL(x)-f(x)l<~. 
The idea of convergence uniformly a.e. is self-evident. 

A slightly weaker notion of convergence is given by the following: 

Definition 31 

Let f,  : E--->R* (n = 1,2 . . . .  ) and f :  E--->R* be functions which are a.e. finite on E. 
Then f ,  converges almost uniformly to f on E if for each e > 0 there is a set F~ C E, 
F~ E d~, /x(F~) < e, such that f,--->f uniformly on ( E -  F~). 

If/~ is the Lebesgue measure on E =  [0, 1] it is clear that the sequence f , (  x )= x" 
converges almost uniformly but  not uniformly a.e. From the definition it should 
be evident that convergence uniformly a.e. implies almost uniform convergence. 

However,  a less obvious implication is given by the following: 

Theorem 12 (Egoroff) 

Let E E ~  with /~(E)<  o¢, and let ( f , )  be a sequence of measurable functions 
from E to R* which are finite a.e. and converge a.e. to a function f :  E--->R* 
which is finite a.e.. Then f,--+f almost uniformly in E. 

We consider next a rather different idea of proximity in which we look at the 
measure of the set on which two functions differ by some given number.  

Definition 32 

Let f,:A--->R* and f :  A--->R* be ~ measurable functions. Then jr, converges in 
measure (/~) t o f i f  for each e > 0 ,  

l im/~(x :  I f . ( x ) - f ( x ) l  >>. e) --0. 
n----> OO 
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It should be clear that the functions in question must be finite a.e. for the 
definition to be meaningful. 

Our final notion of convergence makes use of the fact that the set Er~ of /~ 
integrable functions is a linear space in which the idea of mean is defined. We 
have then: 

Definition 33 

Let (fn) be a sequence of functions in ~m" Then (fn) converges to f in mean if 

f lL-fld~ --, o. 
n---~ o o  

The different notions of convergence are, of course, related and, as they are 
used very generally, in particular in studying large economies, we give the 
following basic results: 

Theorem 13 

If a sequence ( f , )  of measurable functions converges almost everywhere to f ,  
then (fn) converges in measure to f .  

For a more limited class of functions we have the following: 

Theorem 14 

Let ( f , )  be a sequence of positive integrable functions. The sequence ( f , )  
converges in the mean to the integrable function f if and only if ( f , )  converges 
to f in measure, and 

l imfL=ff.  

One further result will complete the basic results we need on the convergence 
of measurable functions. 

Theorem 15 (Scheff6) 

If ( f . )  is a sequence of positive integrable functions with 

f inf fn = lim < oo, 

then (f~) converges in the mean to limn inf fn. 

We will need these ideas of convergence for many purposes and, in particular, 
when discussing the notion of a sequence of economies which converges to a 
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limit economy. In order to give a simple and concise description of such a 
notion we take a sequence of finite economies for which we wish to show that 
certain properties true for "cont inuum economies" are approximately true for 
"large enough" economies. To avoid the problem that the space of agents and 
hence the associated mapping changes dimension as the number  of agents 
increases we construct a series of parallel "equivalent" economies each with a 
cont inuum of agents and show that our results hold via the equivalent sequence. 
However,  before discussing this problem in more detail we have to establish the 
meaning of this equivalence and  for this we will need to discuss the idea of the 
convergence of measures and of a distribution. 

2.6. On metric spaces: Weak  convergence 

We will focus our attention here on "weak convergence" which has been 
extensively used by Hildenbrand (1974) in particular. 26 This convergence may 
be characterised in several different ways two of which are fairly intuitive. If we 
consider any "well behaved" function f f rom a metric space T into the real line 
and a sequence (/~n) of measures 27 on T then a requirement that (/%) converge 
to/~ would be that the integral of f with respect to /~ should converge to the 
integral of f with respect to/t .  Alternatively, and perhaps more naturally, for any 
"convenient" subset B of T we should have lira n /~ (B)  =/~(B). The basic idea is 
clearly that we require in a certain sense that the "weights" attached by/~n to the 
various subsets should be very little different f rom those given by /x  for n large 
enough. In particular, we might require for a sequence of economics that the 
"distribution of agents characteristics" should be "close" for n large to that of 
the limit economy. These ideas will be developed in detail in Chapter  18 of this 
Handbook.  To make our previous remarks precise and to add two other 
equivalent definitions of weak convergence of measures we give the following: 

Proposition 7 

If T is a metric space and (/%) a sequence of probability measures on T then the 
following are equivalent: 

(i) (/t~) converges weakly to ~; 
(ii) f fdt~n--~ffdl~ for every bounded and uniformly continuous function f :  

T - ~ R  ; 

26The reader is referred to BiUingsley (1968) for a complete treatment of the problems mentioned 
here. 

27We will be dealing exclusively with probability measures in this section; hence measure should 
be read as probability measure. 
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(iii) l imnben(B)=be(B)  for every subset B c T  for which the be measure of the 
boundary of B is zero; 

(iv) lim n supben(C ) < be(C) for every closed subset C in T; 
(v) l im . in fbe . (D)>  be(D) for every open subset D in T. 

The following example cited by Hildenbrand (1974) may  aid the reader 's  
intuition. 

Example  6 

Let T = R " .  Define for a measure be on R m the distribution function, 

F~ : R '~---) R , 

by 

F.(x)=be(z Rmlz <x}. 

The sequence (be,) of measures on R m converges weakly to the measure be on R m 
if and only if the sequence (F~.) of distribution functions converges to F, at 
every point x where F~ is continuous. 

Now suppose that we are concerned with a measure on a product  space A x B, 
for example, when we consider the space of agents'  characteristics 62 X Re+. Then 
we will be concerned with marginal distributions. 

The following result shows the relationship between the convergence of 
marginal distributions and the convergence of measures on a product  space: 

Theorem 16 

If the sequence (ben) of probability measures on the separable measure space 
A X B converges weakly to the measure be, then the sequences of marginal 
distributions (be~) and (be~) converge weakly to the marginal distributions beA 
and ben, respectively. 

Let (/zn) and (vn) be sequences of measures on the separable metric spaces A 
and B, respectively. Then the sequence (be, x v , )  of product measures on A x B 
converges weakly to the product measure beXv on A × B  if and only if (be,) 
converges weakly to be and (%) converges weakly to v. 

If in particular A is a separable metric space and we denote by 9]L(A) the set 
of all probability measures on A, then we have the following: 

Proposition 8 

There exists a metric p on ¢.)]L(A) such that the space (¢.)]L(A), p) is separable 
and a sequence (ben) converges to be in (¢2]L(A), p) if and only if it converges 
weakly to be. 
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Such a distance between measures enables us to endow 9L(A)  with a 
structure similar to that of A. An explicit example of such a metric is given by 
the Prohorov-metric defined as follows: 28 

p(/z, v) = inf  (e>Olv(E) <<. t~(B~(E))+e and 

Iz( E) < v( B~( E))+e, for any E ~ b ( A ) } .  

One more notion that is important  for many  applications to economics is that of 
the support  of a probability measure. Frequently we will be concerned with 
knowing that a measure concentrates all of its weight on a compact  set, that is, 
that only isolated exceptions lie outside this set. For  example, as we indicated in 
the introduction, we might require of somebody forecasting prices that with 
probabili ty one he expects prices to fall within some compact  set, or, more 
generally, we might require the following: 

I f / t  is a probability measure on a separable metric space A then there is a closed 
subset B of A such tha t /z (B)  = 1 and if F c A  is closed and /~ (F )  = 1 then B c F .  
Now consider: 

Definition 34 

The support of a probability measure/~ denoted supp(/0,  on a separable metric 
space A, is the smallest closed subset of A with measure one. 

Then a very useful result which takes us in the right direction is the following: 

Proposition 9 

The set of probability measures with finite support is dense in (gL(A) ,  p). 

Now recalling an earlier discussion of price forecasting, we need to be sure 
that if the underlying space of outcomes is not compact  that forecasts are 
"essentially" concentrated on some compact  subset. 

What  is needed to formalise this requirement is the following: 

Definition 35 

A family of probability measures M on the metric space A is called tight if for 
every e > 0  there exists a compact  set K c A  such that / L ( K ) > I - - e  for every 
/zEM. 

In the light of this definition the reader should consider the example men- 
tioned previously for the case of one good in which the family/~n is such that the 
forecast of tomorrow's price attaches probabil i ty one t o p  t+l =n .  

28Here Be(E ) denotes, as usual, the e-neighbourhood of E, i.e., Be(E)= (x~Aldist(x, E) ~e}. 
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Alternatively consider the family of measures (/zn) where /~ is the uniform 
probability distribution on [0, n]. The problems such examples pose will be 
evident in the chapter on temporary general equilibrium theory (Chapter 19). 

Two results of particular interest are given by: 

Theorem 17 

If the family of probabil i ty measures M on a metric space A is tight, then every 
sequence (/~n) of probabili ty measures contains a weakly converging subse- 
quence. 

Specialising to families with only one member  we have: 

Theorem 18 

Every probability measure on a complete separable measure space is tight. 

Further results may  be found in Hildenbrand (1974); and for a more complete 
mathematical  development,  see Billingsley (1968). 

2. 7. Distributions 

We return now to a concept which shows, in particular, as we observed earlier 
the true value of using measure spaces as a description of an economy. This is 
the idea of a distribution, and, as we suggested, it is frequently useful to work 
with the distribution of characteristics, for example, as the basic description of 
an economy. 

We give now the formal  version of the definition given in the introduction: 

Definition 36 

Let (A, d~,/~) be a probabil i ty space, M a metric space, and f a measurable 
mapping of A into m. The distribution v of f denoted by/~ o f - 1 is defined by 

v ( B ) = l ~ { a ~ A l f ( a ) ~ B  ) forevery  B ~ ( M ) .  

As already observed, the choice of the measure space is arbitrary, and it is 
frequently the distribution that conveys the real information with which we are 
concerned. In particular, in studying "large economies" the frequent choice of 
the unit interval [0, 1] as the space of agents is purely for convenience and has no 
particular significance in itself. Indeed, we know that every measure on a metric 
space M is the distribution of some measurable mapping on some measure 
space. More particularly, if M is complete and separable then for every probabil-  
ity measure on M there exists a measurable m a p p i n g f  of the closed unit interval 
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[0, 1] into M such that /~=)tof--1,  where X denotes the Lebesgue measure on 
[0, 1]. Thus we could, given a suitable distribution on the space of characteristics 
of agents, always construct an associated economy with the unit interval as the 
space of agents. 

We now come to a result which proved crucial in establishing general limit 
theorems concerning the equivalence of different solutions to the problem of 
allocating resources in a market.  This result indicates clearly how we may  
overcome the problem that if in a sequence of economies the number  of agents 
changes then so does the space of agents and the notion of convergence to a 
limit is unclear. 

Theorem 19 (Skorokhod) 

Let T be a separable metric space and ( /~ )  a weakly converging sequence of 
measures on T with limit /~. Then there exists a measure space (A, 6~, v) and 
measurable mappings f and fn ( n =  1,2 . . . .  ) of A into T such that /~--v o f  - l ,  
~L n = V  o f  n 1 and l i m n f  . = f  a.e. in A. 

Furthermore if T is complete then the measure space (A, ~,  v) can be chosen 
to be the unit interval with Lebesgue measure. 

In Chapter  18 by Hildenbrand the reader will encounter an extensive discus- 
sion of sequences of finite economies which converge to limit economies. What  
is important  is that the preference endowment  distributions of the finite econo- 
mies are always defined on the same space. Thus, although each economy has a 
different space of agents we can by Skorokhod's  theorem construct an analo- 
gous space of agents which is the same for each of the economies in the 
sequence. In other words, the distribution of agents characteristics will give us 
the information required and we can replace the original agent space by a more 
convenient artifact without changing any of the economic features of the model. 
This discussion anticipates our next section. 

2.8. Convergence in distribution 

Given a sequence of measurable mappings (fn), each f rom a measure space 
(An, d~n,/~n) into a metric space T, we will want to define a sense in which these 
mappings converge. This leads us to: 

Definition 37 

A sequence (fn) of measurable mappings with values in a metric space T 
converges in distribution to a measurable mapping f with values in T if the 
sequence (rn) of distributions of (fn) converges weakly to the distribution v o f f .  
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Consider the special case in which T =  R and all the functions fn and f are 
defined on the same measure space. In this case convergence in measure, and 
hence convergence almost  everywhere, implies convergence in distribution. The 
converse is true only if f is a constant function. 

We now give three results on convergence in distribution which will be of 
particular use when studying limit theorems for increasing sequences of econom- 
ics. 29 

Proposition 10 

Let (f~) and f be a sequence of functions and a function all f rom a measure 
space (A, ~,  #) into a separable metric space (T, d )  (where d i s  the metric). Then 
the function w[~d(fn(w), f (w))  from A ~ R  is measurable and if the sequence 
(d( f . ( . ) ,  f(-))),  n -- 1,2 . . . . .  converges in measure to zero then the sequence (f~) 
converges in distribution to f .  

Before proceeding to the next result we will need to extend the notion of 
integrability to a sequence of functions: 

Definition 38 

Let ( f , )  be a sequence of measurable functions and (An, ~ , / x , )  a sequence of 
measure spaces withfn:A~--~R. Then (fn) is said to be uniformly integrable if (i) 

lim(s f ILId•.)--o; 
q-~oo up [fnl>q 

or, equivalently, (ii) 

sup f JLldt~n< ~; 

or (iii) 

lim f °l f. I 

We note that: 

for every sequence (E~) 

for which /~.(En)--~O. 

Proposition 11 

If the sequence (fn) is uniformly integrable then the sequence of distributions of 
fn is tight. 

29These results, together with much of this section, are taken directiy from Hildenbrand (1974). 
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Now we state a result of fundamental importance in studying sequences of 
economies: 

Theorem 20 (Generalisation of Lebesgue's Theorem) 

Let the sequence (fn) of measurable functions converge in distribution to the 
measurable function f.  If the sequence (f~) is uniformly integrable then f is 
integrable, and furthermore, 

f f fd,. 

If f and all fn are positive and integrable, then the above equation implies that 
the sequence (fn) is uniformly integrable. 

The last result of this section is of interest since it shows how we may deal 
with the situation typically found in establishing results for growing sequences of 
economies. At each step we deal with a finite economy, and it is only in the limit 
that we are concerned with an infinite economy. To see how we may think of 
the infinite economy as representing the limit of the sequence of finite econo- 
mies, we consider the following idea: At each step we draw from some fixed 
hypothetical distribution a finite sample and as these samples increase in size we 
would want the sample distributions to approximate more and more closely that 
of the underlying infinite population. With this in mind we state the following: 

Theorem 21 (Glivenko-Cantelli)  

Let (A, C,/~) be a measure space and ( x , )  an independent sequence of identi- 
cally distributed measurable mappings x~ of A into a separable metric space T. 
For  every a ~ A ,  let p~(a,.) be the distribution of the sample {x l (a) , . . . ,  x , ( a ) )  of 
size n ( n =  1,2 . . . .  ), i.e., 

v,(a, B ) =  1 ( i ]x i (a)  EB ,  i= 1 . . . . .  n ) .  
tl 

Then for almost all a EA the sequence (v,(a,.)), n =  1,2 . . . . .  of sample distribu- 
tions converges weakly to the distribution of x~. 

3. Some results 

We will now look at some examples in which many of the preceding concepts 
are used. 
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3.1. A large economy 

Example 7 30 

Consider 62, the set of irreflexive and continuous binary relations on R~+ with the 
property that for every price vector p>>0 the set q~(~, e, p )  of maximal elements 
for ~ in the consumer 's  budget set (x~Re[p.x<<.p.e}  is non-empty.  If 62 is 
endowed with Hausdorff ' s  topology of closed convergence it is a separable 
metric space. 

First we look at the case of a finite number  of economic agents and define, as 
mentioned earlier, an exchange economy as a mapping  from the space of agents 
to the space of characteristics, i.e., preferences and endowments, 

E: A----~p× Re+ . 

Now the dis t r ibut ion/~ of agents'  characteristics is given by 

" # E - I ( B )  forevery  Bof62×Re+. 
, A  

Again we emphasise that in the case of a large economy this second description 
may well be considered as more appropriate since we are not really concerned 
with specifying the characteristics of each individual, but are more interested in 
knowing what proport ion of individuals fall within any given subset of char- 
acteristics. 

Now for the infinite case we define the space of agents as a measure space 
(A, ~, v) with v ( A ) =  1, i.e., v is a probability measure and an economy is a 
measurable mapping E: ( A, ~, v)---~62×Re+ such that f e d v <  oe. 

As will be described in detail in Chapter 1 8 by Hildenbrand, we may show the 
equivalence of two different solution concepts for the problem of allocating 
goods in an infinite economy. For this result to be interesting we must  show it to 
be essentially true for large economies. To do this we must be able to describe a 
sequence of economies converging to a limit (infinite) economy, where, in 
particular, that limit economy is atomless. To this end we introduce the follow- 
ing: 

Definition 39 

The sequence (E,),  E,:A,---~62×R e , is called purely competitive if and only if 

(i) the number  :~A, ~ oe; 
/'~ ----~ O O  

3°For a full discussion of this example, see Hildenbrand (1975) from which it is taken, and 
Hildenbrand (1974). 
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(ii) the sequence (/~,) of preference endowment distributions converges weakly 
to a limit/~; 

(iii) f edt~--~ f edlz>>O. 

Note that the important idea here is that the distributions converge and that 
the limit economy is characterised by its distribution. This is again because the 
underlying measure space is arbitrary and, since it can be shown that two 
economies with the same preference endowment distribution are essentially the 
same, we can forego the micro distribution of an economy. 

With Definition 39 a number of important limit theorems can be proved and 
details are given in Chapter 18. 

3.2. Fair division: Some results 

We return now to a problem mentioned in the introduction which has interested 
mathematicians for some period of time and which, with the increasing interest 
of economists in equitable distributions, shows clearly how measure-theoretic 
tools may be useful. Recall that the simplest expression of the problem, as we 
saw it, is that of dividing some object U amongst a finite number n of 
individuals such that each individual i receives in his own estimation (expressed 
by a measure/~/on U) at least 1/n of the total "value" of U. More generally we 
might want to assign parts of the object to individuals such that the ith 
individual receives aj and the others receive a j, in his opinion, of the total where 

n ~i= 1% = 1. The answer to this problem is to be found in Dubins and Spanier 
(1961). Their first result is: 

Theorem 22 

Let (U, stir) be a measurable space /z~ . . . . .  /z, atomless probability measures on 
(U, ¢/1~). Then given k and a 1 . . . . .  ag > 0  with ~/k=la i = 1, there exists a partition 
A 1 . . . . .  A k of U such that/~g(Aj) = a j  for all i=  1 . . . . .  n and j =  1 . . . . .  k. 

The reader will observe that this result answers the question posed for k =  n 
and in particular setting a i = 1 /n  for all i shows that a partition can be found 

• that not only gives the ith individual his fair share but one which everybody 
believes gives the others their fair share too. 

Provided that at least two individuals have different measures then there exist 
partitions which give strictly more than a i to the ith individual, i.e., such that 

~i(Ai)>ai, i=1  . . . . .  n. 
This result involves an extension of Liapunov's theorem (Theorem 3), and 

Dubins and Spanier give a proof of that Theorem in proving the proposition 
from which Theorem 24 is derived. 



Ch. 5: Measure Theory 205 

The authors go on to prove the existence of partitions which are optimal in 
some sense. For example, one might wish to adopt the utilitarian criterion and 
find a partition A 1 . . . . .  A n to maximise 

n 

E 
i=l  

and indeed the maximum is shown to exist. 
Perhaps of more interest is the anticipation of Rawl's criterion of maximising 

the welfare of the least well-off individual. 
Of all partitions consider those which maximise the amount received by the 

person who gets least. From these select those which give the most to the person 
who gets next to the least and so forth. More precisely if P is 'a partition then 
arrange the members tLi(Ai) in non-decreasing order to construct the sequence 

al( P ), a2(P)  . . . . .  a,( P ). 

Now construct the lexicographic ordering on partitions P. Thus P is maximal in 
that ordering if for any other partition P '  either ai(P)=ai(P'  ) for all i or i f j  is 
the smallest i such that aj(P)@aj(P'); then %(P)>aj(P') .  Such a maximal 
element we will call an optimal partition. Dubins and Spanier prove that such 
partitions exist and furthermore that if each /L i is absolutely continuous with 
respect to every other then every optimal partition is equitable in the sense that 

Izi(Ai)=l~j(Aj) for all i andj .  

3.3. Integration of correspondences 31 

It is often the case that we are concerned with set-valued mappings, or corre- 
spondences, in economics. For example the demand of a given individual may  
be a set of bundles rather than a particular bundle for some given prices. Again 
we may wish to associate with an individual a production technology which 
would be a set of possible combinations of inputs and outputs. If we wish to talk 
about perfect competition in such circumstances and to use a continuum 
economy to do so, then we will need to be able to integrate such correspon- 
dences. If, for example, we want to be able to talk about mean demand for the 

31This brief discussion is intended to give an indication of the sort of problem encountered in an  
area that demands greater sophistication than the other topics mentioned.  A full t reatment and  
references may  be found in Hi ldenbrand (1974, pp. 53-79). A standard treatment of this problem is 
one where the integral is considered as the expectation of a set-valued random variable. 
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whole continuum economy we will be forced to integrate the demand correspon- 
dences of individuals. 

Consider first a function f from a measure space (A, d~,/z) into R m, that is, 
f =  ( f  l . . . . .  f m) where each f i : A - - - ) R  ( i  = 1 . . . . .  m). The function f is said to be 
integrable if each coordinate function f i  is integrable and the integral ffdt~ is 
defined by 

..... f ,  od.) 

Now consider ¢ a set-valued mapping or correspondence of A into R m. Denote 
by E, the set of all/~ integrable functions that have the property 

f (a )~e~(a )  a.e. inA.  

The functions in the set R, are called integrable selections of ¢. 

Definition 4032 

The set ( f f d l ~ R m l f ~ }  is called the integral of the correspondence ¢ and is 
denoted by fcd/~ or by f¢ .  

Although the meaning of this definition is clear we have yet to show that there 
is a large class of correspondences for which the integral is non-empty, that is 
for which there exists an integrable selection. If a correspondence admits an 
integrable selection we say that the correspondence itself is integrable. 

To ensure that the integral is non-empty we need first to establish that there 
exists a measurable selection. First, then, we give the following: 

Definition 4133 

A correspondence ¢ from a measure space (A, ~, /z)  into a complete separable 
metric space S is measurable if the graph of that correspondence belongs to 
~®°3(S) .  

Now the basic result is the following: 

Theorem 23 (Measurable Selection) 

Let q~ be  a measurable correspondence of a measure space (A, ~,/~) into a 
complete separable metric space S. Then there exists a measurable function f of 
A into S such t h a t f ( a ) E ¢ ( a )  a.e. in A. 

32This is the definition given by Aumann (1965). 
33N0te that for many purposes in economics S=R e. 
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We need now, of course, to make sure that the correspondence is bounded in 
order to ensure that it is integrable: 

Definition 42 

A correspondence ~ of (A, ~,/z)  into R e is integrably bounded if there exists an 
integrable function h of A into R e+ such that for every a E A  and for every 
xEe~(a)  we have 

Ix I = (I x, I . . . . .  [xe[ ) < h ( a ) .  

Now we can give the following: 

Theorem 24 

A measurable, integrably bounded correspondence from (A, ~,/x) into R e is 
integrable. 

Now we turn to a particularly interesting aspect of large economies, that is, 
the "convexifying effect" of large numbers. Thus, at an individual or micro level 
we are obliged to make assumptions of convexity of individual preferences to 
guarantee that the demand correspondence is convex valued. This property then 
carries over to the aggregate excess demand correspondence, and one can make 
use of Kakutani's fixed point theorem to prove the existence of equilibrium. This 
problem is fully dealt with in the chapter on the existence of competitive 
equilibrium, Chapter 15 by Debreu. 

However, if we have an atomless measure space of agents we may dispense 
with the requirement of convexity of preferences, since even though individual 
demand correspondences will not be convex valued, mean demand will neces- 
sarily be so. This follows directly from: 

Theorem 25 

Let p be a correspondence from an atomless measure space (A, ~,/~) into R "  
then the set 

is a convex set in R m. 

The proof of this theorem depends on Liapunov's theorem, emphasising the 
importance of the latter. One can also proceed to develop approximation results 
for large finite economies. 
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The frequent use of correspondences  in economic  theory has led to the 
development  of a substantial literature on the integration of correspondences  
and the interested reader will find the appropria te  references in Hi ldenbrand  
(1974). 

In  passing, it is interesting to note  that  measure theory and  a measure- 
theoretical approach  to the description of  large economies has in a sense 
diminished some of the problems posed by the use of correspondences.  

In  particular, we discussed earlier a s tandard  problem, namely  that for 
individuals with convex preferences the appropria te  demand  concept  is a corre- 
spondence.  Yet it can be shown that if we have a measure space of  consumers  
and  the support  of that  measure  is sufficiently rich, then the aggregate or mean  
d e m a n d  may,  in fact, be considered as a funct ion if we add some more  structure 
to the space of preferences. Tha t  is, for  any given prices, only a negligible subset 
of consumers  will have a set rather than  a single bundle as their demand ;  hence 
the d e m a n d  will be a function. Thus, in a sense, the impor tance  of  correspon- 
dences as such is somewhat  diminished in large economies. 

4. Conclusion 

In  this chapter  we have presented a number  of results which should be useful for 
the reader  interested in economic  theory in two ways: they should provide an  
underpinning for m a n y  of the probabilist ic approaches  to problems in economic  
theory, and they should also provide a basis for an unders tanding of  that par t  of 
the literature which adopts the measure-theoret ic  approach  as a description of 
an economy.  

N o  at tempt has been made  to give a comprehensive survey of  the general 
literature in which measure theory is applied to problems in economic  theory 
since this literature is already extensive and  is involving an increasing number  of 
different areas. However,  with the selection of results presented here the reader 
should f ind much of this literature readily accessible. 
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