Laboratório 2 - Diodo semicondutor e aplicações (parte 2) - Reguladores de tensão - Atividades Prévias

Prof. Luis Henrique F. C. de Mello

1 Revisão teórica

1.1 Corrente contínua (DC) e corrente alternada (AC)

- 1. Porque a energia elétrica residencial é fornecida em corrente alternada? Qual a principal vantagem disso?
- 2. Porque a maioria dos circuitos eletrônicos necessita de alimentação contínua?

2 Simulações SPICE

2.1 Circuito retificador de onda completa (bifásico / com tap central)

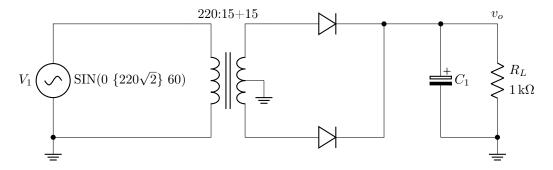


Figura 1: Circuito retificador de onda completa (bifásico / com tap central)

1. Simule o circuito da Figura 1. Faça a análise TRAN juntamente com um sweep paramétrico do valor de $C_1=10\,\mu\text{F}-47\,\mu\text{F}-100\,\mu\text{F}$. Plote a tensão de saída v_o e meça o nível DC médio sobre a carga R_L .

2.2 Circuito retificador de onda completa (monofásico / em ponte)

- 1. Simule o circuito da Figura 2. Faça a análise TRAN e plote a tensão de saída v_o e meça o nível DC médio sobre a carga R_L .
 - (a) Adicione um capacitor C_1 de $10\,\mu\mathrm{F}$ em paralelo com a carga e novamente plote a tensão de saída v_o e meça o nível DC médio sobre a carga R_L .
 - (b) Repita o item 1a para $C_1 = 47 \,\mu\text{F}$.
 - (c) Repita o item 1a para $C_1 = 100 \,\mu\text{F}$.
 - (d) Plote o espectro de frequências da tensão sobre a carga para o caso $C_1=10\,\mu\mathrm{F}$ através do algoritmo FFT².

 $^{^1}$ use o comando .step param list no LTSpice e veja os exemplos "parameter-sweep-op.sp" ou "parameter-sweep-dc.sp" para scripts ngspice/macspice equivalentes

²veja exemplo "fft.sp"

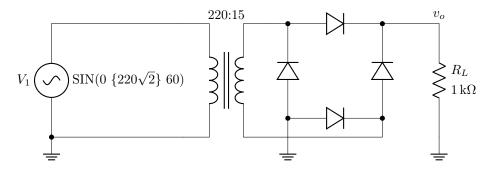


Figura 2: Circuito retificador de onda completa (monofásico / em ponte)

2.3 Regulador Zener

- 1. Faça a análise DC e trace a curva característica (ou de condução) i_D vs. v_D da família de diodos Zener $1\mathrm{N}47\mathrm{xx}^3$ de $3.3\,\mathrm{V}-5.1\,\mathrm{V}-9.1\,\mathrm{V}$.
- 2. Plote a derivada da curva de condução do diodo de $5.1\,\mathrm{V}^4$. A partir da ruptura reversa, qual a variação de corrente necessária para que a queda de tensão sobre o diodo seja $1\,\mathrm{V}$ além da tensão de ruptura? Para uma resistência em série com o diodo de $1\,\mathrm{k}\Omega$, qual seria a tensão necessária a mais para propiciar tal aumento?

 $^{^3\}mathrm{pesquise}$ modelos (biblioteca LTSpice, Diodes Inc., etc.)

 $^{^4}$ use a função deriv(x) no ngspice ou D(x) no LTSpice.