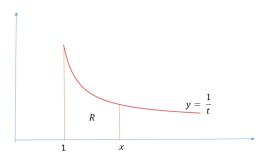
A função y = lnx (logaritmo neperiano)

Zara Abud



Neste pequeno texto, pretendemos apresentar formalmente a definição e as propriedades usuais da função logaritmo, mais específicamente, do logaritmo neperiano. O logaritmo é usualmente definido depois da exponencial. Aliás, ele é definido a partir da função exponencial: dados a>0 e b>0 e $c\in\mathbb{R}$, escrevemos

$$\log_{\mathbf{a}} \mathbf{b} = \mathbf{c} \qquad \leftrightarrow \qquad \mathbf{a}^{\mathbf{c}} = \mathbf{b}$$
 (*)

Mas como se define, por exemplo 2^{π} ?

O que a afirmação (*) mostra é que as definições de logaritmo e exponencial estão estreitamente relacionadas; a partir de uma, definimos a outra, e vice-versa. Dessa forma, uma vez definido formalmente o logaritmo, podemos definir a exponencial como sua função inversa.

Considere a função

$$L(x) = \int_{1}^{x} \frac{1}{t} dt$$

e vamos estudar as suas propriedades:

(1) O domínio da função L (D_L) é $]0, +\infty[$. Demonstração: Se $x \ge 1$ então a função $y = \frac{1}{t}$ é contínua, e portanto, é integrável. Logo, existe L(x). Se $0 < x \le 1$, a função $\frac{1}{t}$ também é contínua no intervalo [x, 1]. Logo, é integrável, e existe L(x). Se $x \leq 0$, a função integranda será ilimitada, e portanto, não será integrável, e não ficará definido L(x).

Concluimos que L está definido apenas para x > 0.

 \triangle

(2) L(x) > 0 para x > 1, e L(x) < 0 para 0 < x < 1.

Com efeito: a função $\frac{1}{t}$ é positiva em $]0, +\infty[$. Sendo assim:

$$\begin{cases} x > 1 \to \int_1^x \frac{1}{t} dt > 0 \\ x = 1 \to L(1) = 0 \\ 0 < x < 1 \to \int_x^1 \frac{1}{t} dt > 0 \to \int_1^x \frac{1}{t} dt < 0 \to L(x) < 0 \end{cases}$$

(3) $L'(x) = \frac{1}{x}$, para todo x > 0. Portanto, L é uma função estritamente crescente e, consequentemente, uma função injetora.

Esta propriedade é consequência direta de um dos teoremas fundamentais do Cálculo.

(4) $\forall x, y > 0(L(xy) = L(x) + L(y)).$

Demonstração: Considere y > 0 fixado e as seguintes funções:

$$F(x) = L(xy) e G(x) = L(x) + L(y).$$

Derivando F e G, temos:

F'(x) = L'(xy).y (pela regra da cadeia, lembrando que y está sendo considerado como constante) e G'(x) = L'(x) (pois L(y) é uma constante). Logo, resulta:

$$F'(x) = \frac{1}{xy} \cdot y = \frac{1}{x}$$
 e $G'(x) = \frac{1}{x}$

e
$$F'(x) = G'(x), \forall x > 0.$$

Sendo assim, existe uma constante $k \in \mathbb{R}$ tal que F(x) = G(x) + k, $\forall x > 0$. Em particular, para x = 1, temos que F(1) = G(1) + k, isto é, L(y) = L(1) + L(y) + k. Logo, k = 0, e obtemos F(x) = G(x), isto é, L(xy) = L(x) + L(y).

(5) $L(x^n) = nL(x)$, para todo x > 0 e $n \in \mathbb{N}$.

Demonstração: para n=0, temos que $L(x^0)=L(1)=0$ e 0.L(x)=0.

Para n = 2, $L(x^2) \stackrel{(4)}{=} L(x \cdot x) = L(x) + L(x) = 2L(x)$.

Para n > 2, a prova da propriedade sai por indução, e será deixada como exercício.

(6) Para todo y > 0, $L(\frac{1}{y}) = -L(y)$.

Demonstração: Temos:

$$0=L(1)=L(y.\frac{1}{y})\stackrel{(4)}{=}L(y)+L(\frac{1}{y})$$
, e portanto,
$$L(y)+L(\frac{1}{y})=0. \text{ Logo, } L(\frac{1}{y})=-L(y).$$

(7) Para todo x, y > 0, $L(\frac{x}{y}) = L(x) - L(y)$.

Demonstração: Temos que

$$L(\frac{x}{y}) = L(x.\frac{1}{y}) \stackrel{(4)}{=} L(x) + L(\frac{1}{y}) \stackrel{(6)}{=} L(x) - L(y).$$

(8) Para todo $n \in \mathbb{N}$, $L(x^{-n}) = -nL(x)$.

Demonstração: Com efeito:

$$L(x^{-n}) = L(\frac{1}{x^n}) = -L(x^n) = -nL(x)$$

(9) Para todo $q \in \mathbb{N}$, e todo x > 0, $L(x^{\frac{1}{q}}) = \frac{1}{q}L(x)$.

Demonstração: Consideremos q > 0, $q = \frac{r}{s}$, com r, s > 0. Temos:

$$L(x) = L(x^{1}) = L((x^{\frac{1}{q}})^{q}) \stackrel{(5)}{=} qL(x^{\frac{1}{q}}).$$

Logo,
$$qL(x^{\frac{1}{q}}) = L(x)$$
, e portanto, $L(x^{\frac{1}{q}}) = \frac{1}{q}L(x)$

(10) Para todo $z \in \mathbb{Q}$, e todo x > 0, $L(x^z) = zL(x)$.

Demonstração: Faremos a prova apenas para z>0. O caso z<0 será deixado para o leitor.

Suponhamos $p, q \in \mathbb{N}$, com $q \neq 0$, tais que $z = \frac{p}{q}$. Então:

$$L(x^{z}) = L(x^{\frac{p}{q}}) = L((x^{\frac{1}{q}})^{p}) \stackrel{(5)}{=} pL(x^{\frac{1}{q}}) \stackrel{(9)}{=} p. \frac{1}{q}L(x) = \frac{p}{q}L(x) = zL(x).$$

(11) A imagem da função y=L(x) é ${\rm I\!R}.$

Demonstração : Considere $y \in \mathbb{R}$, y > 0. Então $\frac{y}{L(2)} > 0$, e existe $n \in \mathbb{N}$ tal que $n \le \frac{y}{L(2)} < n+1$, resultando $nL(2) \le y < (n+1)L(2)$.

Por sua vez, $nL(2) = L(2^n)$, e $(n+1)L(2) = L(2^{n+1})$, de maneira que o número y está compreendido entre dois elementos da imagem da função L. Como L é uma função contínua, vale o Teorema do Valor Intermediário, e portanto, existe \overline{x} tal que $L(\overline{x}) = y$, isto é, $y \in im(L)$. Analogamente provamos que se y < 0 então $y \in im(L)$. Finalmente, L(1) = 0, e portanto, $0 \in im(L)$. Dessa forma, $im(L) = \mathbb{R}$.

Pelo que vimos acima, temos $L:]0, +\infty[\longrightarrow \mathbb{R}$ uma função bijetora, derivável, com derivada sempre positiva. Logo, L é inversível, e a inversa L^{-1} de L também é uma função derivável.

Vamos designar $E = L^{-1}$ Então:

$$E: \mathbb{R} \longrightarrow]0, +\infty[, \qquad x \longrightarrow E(x)$$

de maneira que
$$\begin{cases} E(L(x)) = x & \forall x > 0 \\ L(E(x)) = x & \forall x \in \mathbb{R} \end{cases}$$
 Em particular $E(x) > 0$, $\forall x \in \mathbb{R}$.

Além disso, pela regra da cadeia, (L(E(x)))' = L'(E(x))E'(x) = (x)' = 1. Como $L'(u) = \frac{1}{u}$, $\forall u > 0$, vem que

$$\frac{1}{E(x)}.E'(x)=1,\,\text{e portanto},\,E'(x)=E(x),\,\forall x{\in }\,{\rm I\!R}.$$

Temos ainda que, como a função E é inversa de L, vale que

(1)
$$E(0) = 1$$
, pois $L(1) = 0$

(2)
$$L(E(1)) = 1$$
 $\rightarrow \int_{1}^{E(1)} \frac{1}{t} dt = 1$

Dessa forma, E(1) é o número maior do que 1 tal que a integral da hipérbole, de 1 até E(1), é igual a 1. Denotamos E(1) = e, e a função E(x) por e^x . Fica definida, a função exponencial, a partir da função logaritmo.