Agrupamento de Dados e Aplicações

Algoritmos Particionais Parte I

Prof. Eduardo R. Hruschka

Créditos

- Este material consiste de adaptações e extensões dos originais:
 - Elaborados por Eduardo Hruschka e Ricardo Campello
 - de (Tan et al., 2006)
 - de E. Keogh (SBBD 2003)
 - de G. Piatetsky-Shapiro (KDNuggets)

Aula de Hoje

- Definições
- Algoritmos Particionais sem Sobreposição
 - k-Means
 - Algoritmo Básico
 - Inicialização e Implementações Eficientes
 - Fundamentação Teórica (perspectiva de otimização)
 - K-Means Paralelo e Distribuído
 - Variantes do k-Means
 - K-Medianas, k-Medóides, ...
 - Estimativa do Número de Grupos (conceitos preliminares)

Definição de Partição de Dados (Revisão)

- Consideremos um conjunto de N objetos a serem agrupados: $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$
- **Partição** (rígida): coleção de k grupos não sobrepostos $\mathbf{P} = \{\mathbf{C}_1, \mathbf{C}_2, ..., \mathbf{C}_k\}$ tal que:

$$\mathbf{C}_1 \cup \mathbf{C}_2 \cup ... \cup \mathbf{C}_k = \mathbf{X}$$

$$\mathbf{C}_i \neq \emptyset$$

$$\mathbf{C}_i \cap \mathbf{C}_j = \emptyset \text{ para } i \neq j$$

ightharpoonup Exemplo: $\mathbf{P} = \{ (\mathbf{x}_1), (\mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_6), (\mathbf{x}_2, \mathbf{x}_5) \}$

Matriz de Partição

■ Matriz de Partição possui k linhas (no. de grupos) e N colunas (no. de objetos) na qual cada elemento μ_{ij} indica o grau de pertinência do j-ésimo objeto (\mathbf{x}_i) ao i-ésimo grupo (\mathbf{C}_i)

$$\mathbf{U}(\mathbf{X}) = \begin{bmatrix} \mu_{11} & \mu_{12} & \cdots & \mu_{1N} \\ \mu_{21} & \mu_{22} & \cdots & \mu_{2N} \\ \vdots & & \ddots & \vdots \\ \mu_{k1} & \mu_{k2} & \cdots & \mu_{kN} \end{bmatrix}$$

■ Se essa matriz for **binária**, ou seja, $\mu_{ij} \in \{0,1\}$, e ainda, se a restrição $\sum_i (\mu_{ij}) = 1 \ \forall j$ for respeitada, então denomina-se de *matriz de partição rígida*, *exclusiva* ou *sem sobreposição*

Matriz de Partição

Exemplo:

$$\mathbf{P} = \{ (\mathbf{x}_1), (\mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_6), (\mathbf{x}_2, \mathbf{x}_5) \}$$

$$\mathbf{U}(\mathbf{X}) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Métodos Particionais (Sem Sobreposição)

Métodos particionais sem sobreposição referem-se a algoritmos de agrupamento que buscam por uma matriz de partição rígida de um conjunto de objetos X.

Encontrar uma Matriz de Partição U(X): Equivale a particionar o conjunto $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$ de N objetos em uma coleção $\mathbf{C} = \{\mathbf{C}_1, \mathbf{C}_2, ..., \mathbf{C}_k\}$ de k grupos disjuntos \mathbf{C}_i tal que $\mathbf{C}_1 \cup \mathbf{C}_2 \cup ... \cup \mathbf{C}_k = \mathbf{X}, \mathbf{C}_i \neq \emptyset$, e $\mathbf{C}_i \cap \mathbf{C}_j = \emptyset$ para $i \neq j$

Particionamento como Problema Combinatório

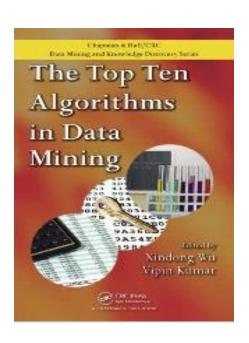
■ **Problema**: Assumindo que *k* seja conhecido, o número de possíveis formas de agrupar *N* objetos em *k clusters* é dado por (Liu, 1968):

$$NM(N,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{N}$$

- Por exemplo, NM(100, 5) \approx 56.6x10⁶⁷.
 - Em um computador com capacidade de avaliar 10^9 partições/s, precisaríamos $\approx 1.8 \times 10^{50}$ séculos para processar todas as avaliações
- Como k em geral é desconhecido, problema é ainda maior
 - NP-Hard: Avaliação computacional exaustiva é impraticável
- Solução: formulações alternativas...

Algoritmo k-Means

- ☐ Começaremos nosso estudo com um algoritmo clássico
 - ☐ listado entre os Top 10 Most Influential Algorithms in DM



- Wu, X. and Kumar, V. (Editors), The Top Ten Algorithms in Data Mining, CRC Press, 2009
- X. Wu et al., "Top 10 Algorithms in Data Mining", *Knowledge and Info. Systems*, vol. 14, pp. 1-37, 2008

Algoritmo k-Means

☐ Referência mais aceita como original:

J. B. MacQueen, *Some methods of classification and analysis of multivariate observations*, In Proceedings 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, California, USA, 1967, 281–297

□ Porém...

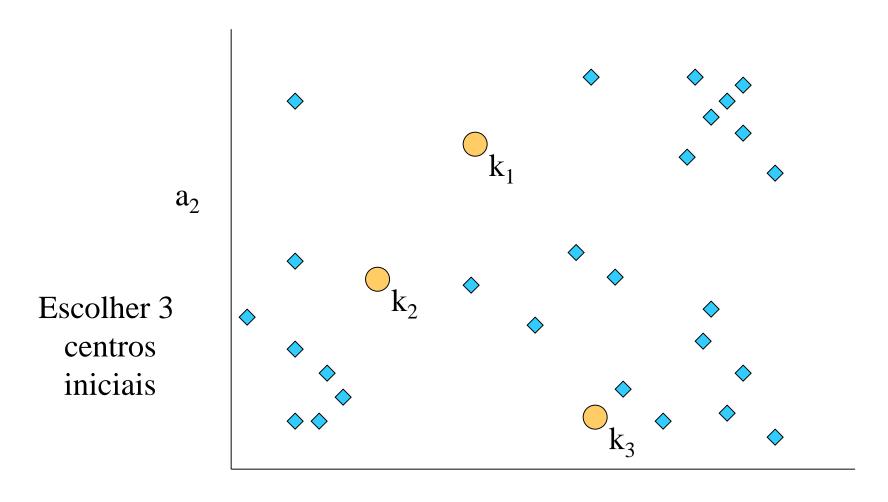
"K-means has a rich and diverse history as it was independently discovered in different scientific fields by Steinhaus (1956), Lloyd (proposed in 1957, published in 1982), Ball & Hall (1965) and MacQueen (1967)" [Jain, Data Clustering: 50 Years Beyond K-Means, Patt. Rec. Lett., 2010]

□ ... e tem sido assunto por mais de meio século !

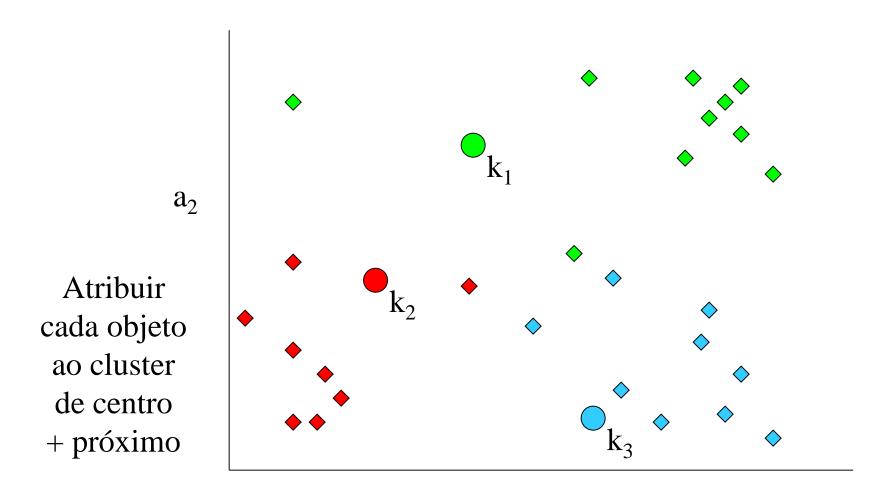
Douglas Steinley, *K-Means Clustering: A Half-Century Synthesis*, British Journal of Mathematical and Statistical Psychology, Vol. 59, 2006

- Escolher aleatoriamente k protótipos (centros) para os clusters
- Atribuir cada objeto para o cluster de centro mais próximo (segundo alguma distância, e.g. Euclidiana)
- 3) Mover cada centro para a média (centróide) dos objetos do cluster correspondente
- 4) Repetir os passos 2 e 3 até que algum critério de convergência seja obtido:
 - número máximo de iterações
 - limiar mínimo de mudanças nos centróides

k-Means - passo 1:



k-Means - passo 2:



 a_1

k-Means - passo 3:

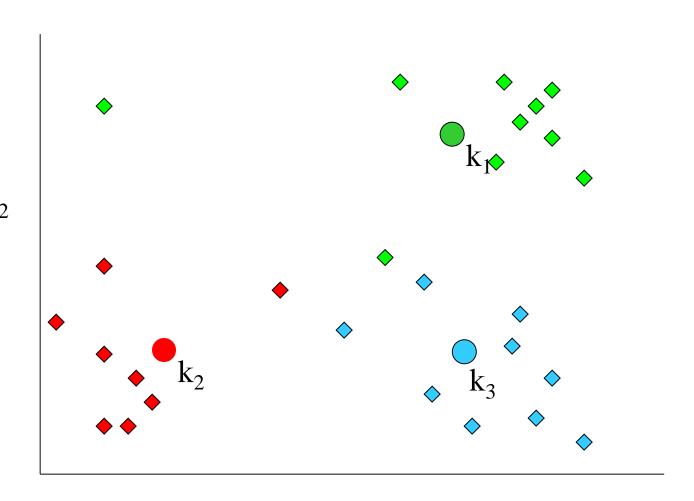
 a_2 \mathbf{k}_2

Mover cada centro para o vetor médio do cluster (centróide)

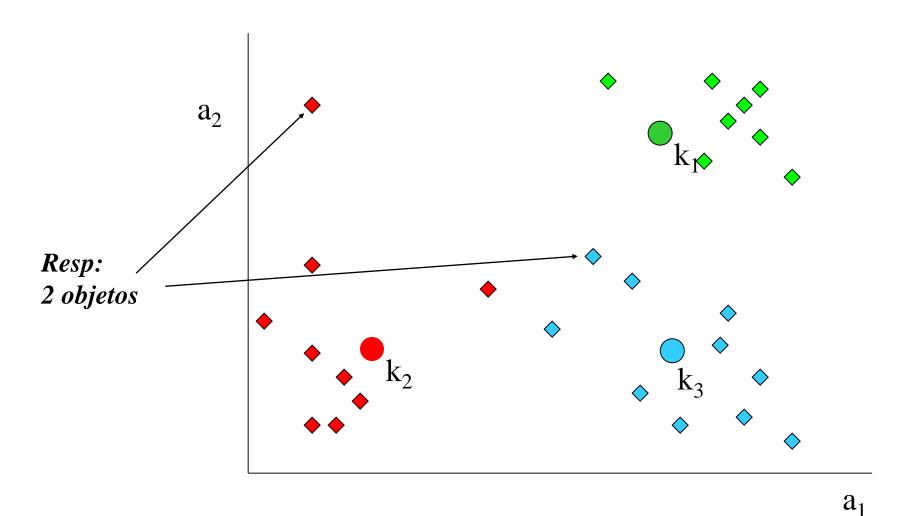
 a_1

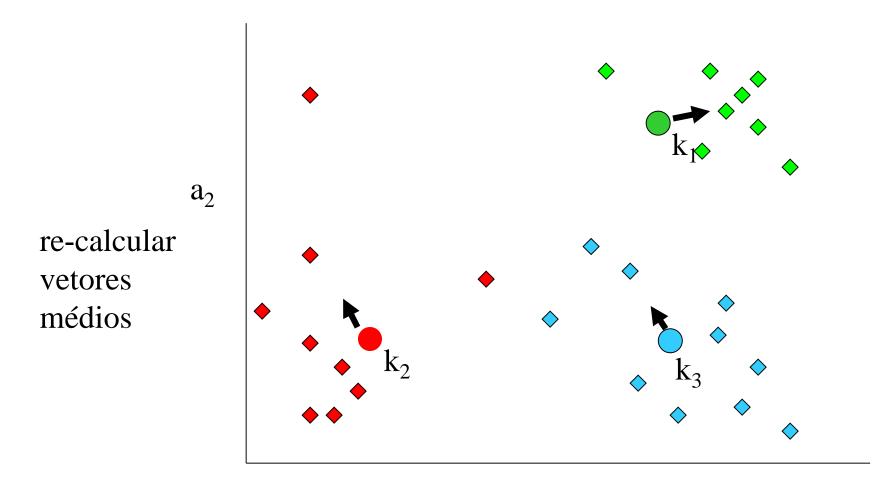
Re-atribuir objetos aos clusters de centróides mais próximos

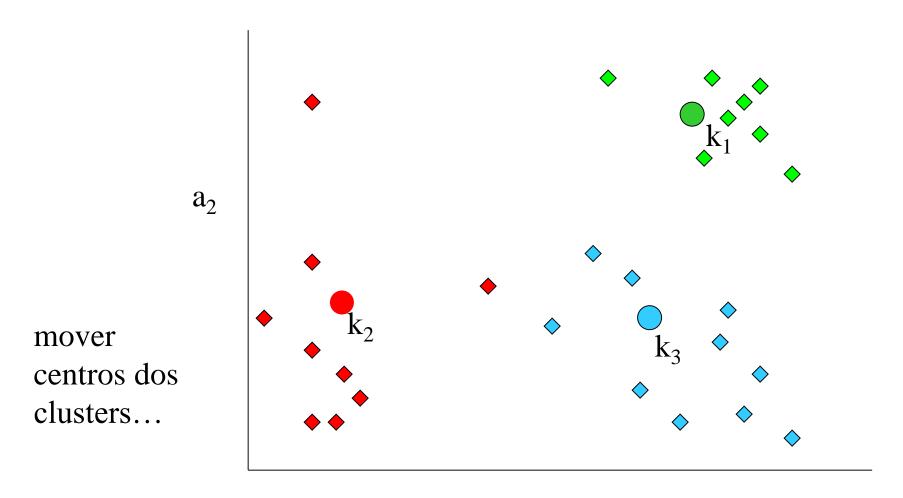
Quais objetos mudarão de cluster?



 a_1



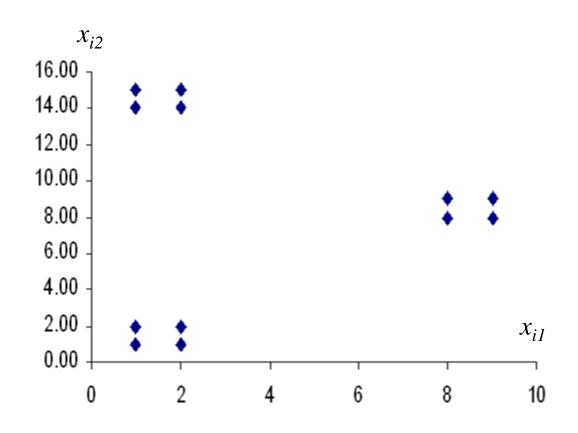




 a_1

Exercício

Objeto x _i	x_{i1}	x_{i2}
1	1	2
2	2	1
3	1	1
4	2	2
5	8	9
6	9	8
7	9	9
8	8	8
9	1	15
10	2	15
11	1	14
12	2	14



Executar k-means com k=3
nos dados acima a partir dos
protótipos [6 6], [4 6] e [5 10]
e outros a sua escolha

K-Means sob Perspectiva de Otimização

- Algoritmo minimiza a seguinte função objetivo:
 - SSE = Sum of Squared Errors (variâncias intra-cluster)

$$J = \sum_{c=1}^{k} \sum_{\mathbf{x}_{i} \in \mathbf{C}_{c}} d(\mathbf{x}_{j}, \overline{\mathbf{x}}_{c})^{2}$$

onde d = Euclidiana e $\overline{\mathbf{x}}_c$ é o centróide do c-ésimo grupo:

$$\overline{\mathbf{x}}_c = \frac{1}{|\mathbf{C}_c|} \sum_{\mathbf{x}_j \in \mathbf{C}_c} \mathbf{x}_j$$

K-Means sob a Perspectiva de Otimização:

- Consideremos:
 - conjunto de objetos $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$
 - conjunto de k centróides quaisquer $\{\overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2, ..., \overline{\mathbf{x}}_k\}$
- Podemos reescrever o critério SSE de forma equivalente como:

$$J = \sum_{j=1}^{N} \sum_{c=1}^{k} \mu_{cj} \|\mathbf{x}_{j} - \overline{\mathbf{x}}_{c}\|^{2}; \ \sum_{c=1}^{k} \mu_{cj} = 1 \ \forall j \ ; \ \mu_{cj} \in \{0,1\}$$

- Desejamos minimizar J com respeito a $\{\overline{\mathbf{x}}_c\}$ e $\{\mu_{cj}\}$
- Pode-se fazer isso via um procedimento iterativo (2 passos):
 - a) Fixar $\{\bar{\mathbf{x}}_c\}$ e minimizar J com respeito a $\{\mu_{ci}\}$ (E)
 - b) Minimizar *J* com respeito a $\{\overline{\mathbf{x}}_c\}$, fixando-se $\{\mu_{ci}\}$ (**M**)

K-Means sob a Perspectiva de Otimização:

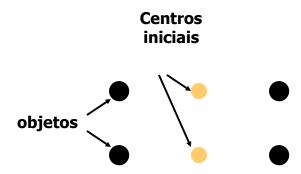
$$J = \sum_{j=1}^{N} \sum_{c=1}^{k} \mu_{cj} \|\mathbf{x}_{j} - \overline{\mathbf{x}}_{c}\|^{2}; \ \sum_{c=1}^{k} \mu_{cj} = 1 \ \forall j \ ; \ \mu_{cj} \in \{0,1\}$$

- a) Fixar $\{\overline{\mathbf{x}}_c\}$ e minimizar J com respeito a $\{\mu_{ci}\}$ (**Passo E**)
 - Termos envolvendo diferentes j são independentes
 - Logo, pode-se otimizá-los separadamente
 - μ_{ci} =1 para c que fornece o menor valor do erro quadrático
 - * Atribuir $\mu_{ci} = 1$ para o grupo mais próximo.
- b) Minimizar J com respeito a $\{\overline{\mathbf{x}}_c\}$, fixando-se $\{\mu_{cj}\}$ (**Passo M**)
 - Derivar J com respeito a cada $\overline{\mathbf{x}}_c$ e igualar a zero:

$$\nabla_{\overline{\mathbf{x}}_c} J = \sum_{j=1}^N \mu_{cj} \nabla_{\overline{\mathbf{x}}_c} \left[\left(\mathbf{x}_j - \overline{\mathbf{x}}_c \right)^T \left(\mathbf{x}_j - \overline{\mathbf{x}}_c \right) \right] = 2 \sum_{j=1}^N \mu_{cj} \left(\overline{\mathbf{x}}_c - \mathbf{x}_j \right) = \mathbf{0} \quad \Rightarrow \quad \overline{\mathbf{x}}_c = \frac{\sum_{j=1}^N \mu_{cj} \mathbf{x}_j}{\sum_{j=1}^N \mu_{cj}}$$

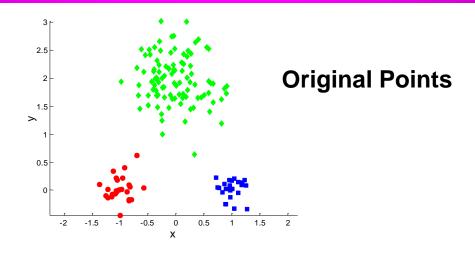
Discussão

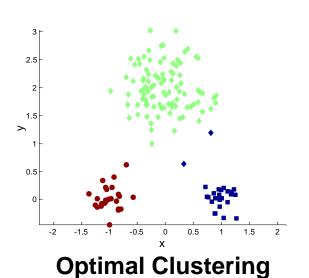
- Resultado pode variar significativamente dependendo da escolha das sementes (protótipos) iniciais
- k-means pode "ficar preso" em ótimos locais
 - Exemplo:

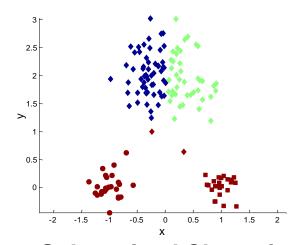


Como evitar ?

Two different K-means Clusterings

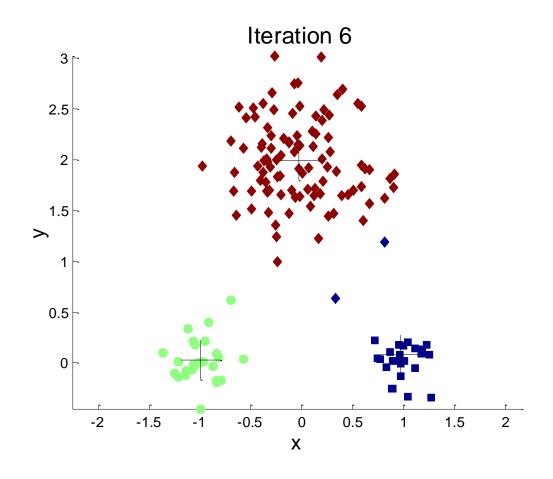




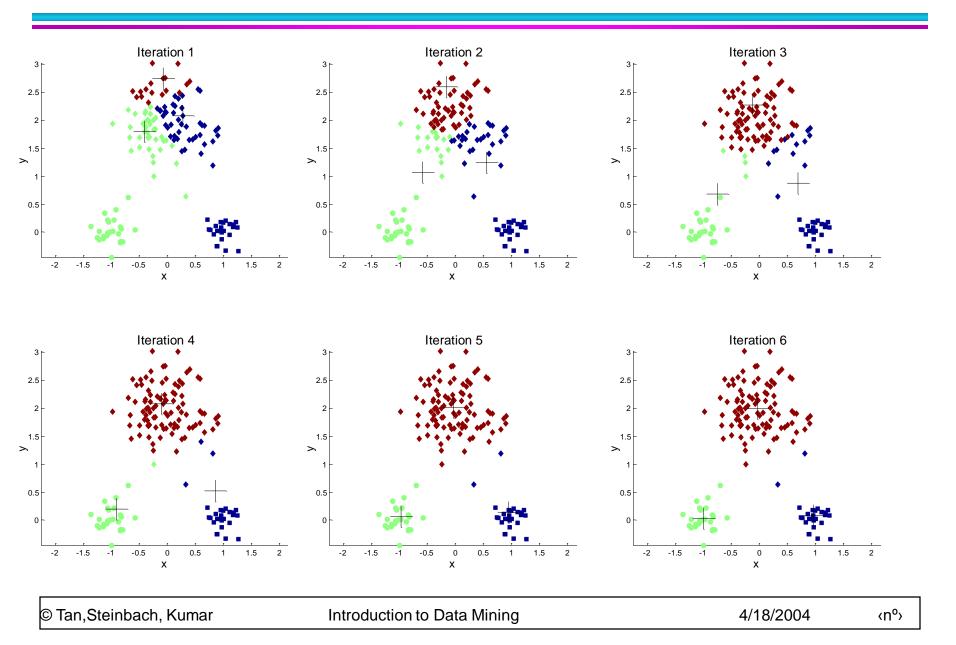


Sub-optimal Clustering

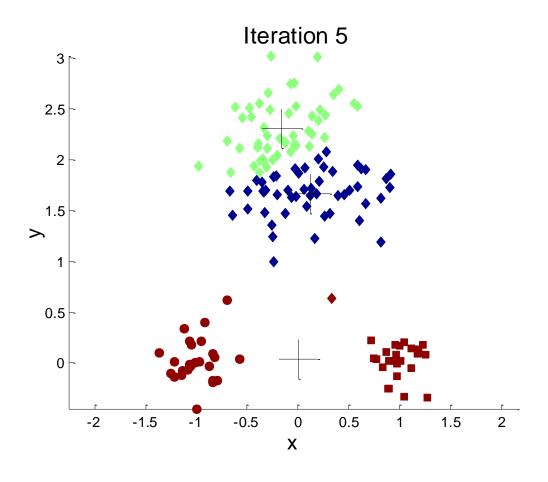
Importance of Choosing Initial Centroids



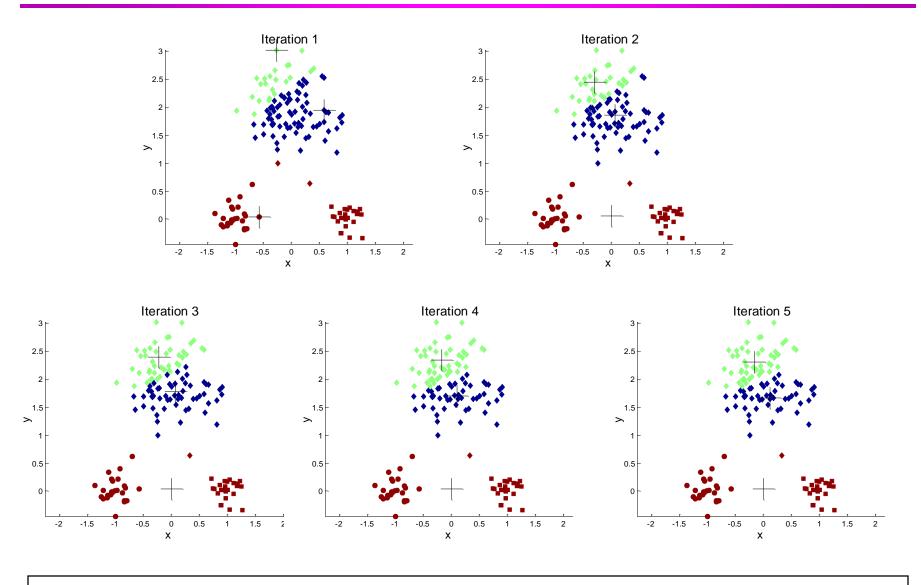
Importance of Choosing Initial Centroids



Importance of Choosing Initial Centroids ...



Importance of Choosing Initial Centroids ...



Análise da Seleção dos Protótipos Iniciais

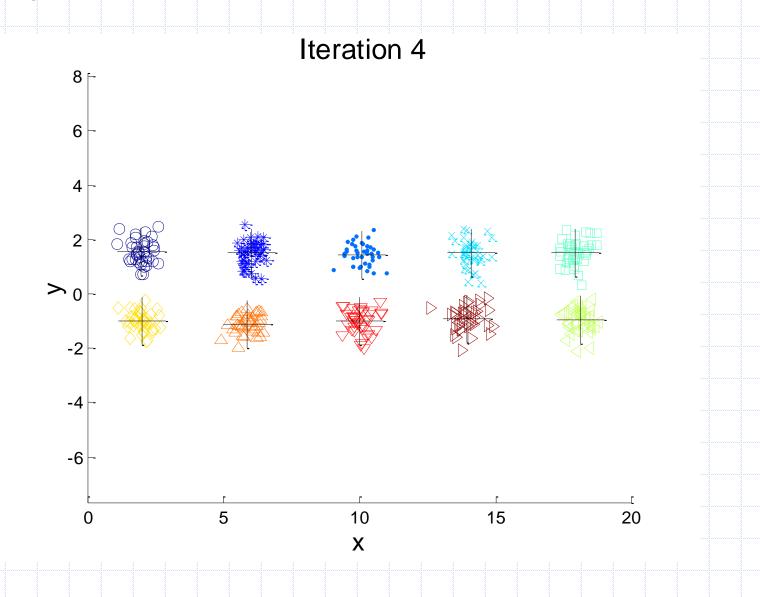
- Premissa: Uma boa seleção de k protótipos iniciais em uma base de dados com k grupos naturais é tal que cada protótipo é um objeto de um grupo diferente
- □ No entanto, a chance de se selecionar um protótipo de cada grupo é pequena, especialmente para k grande.
- Assumamos grupos balanceados, com uma mesma quantidade g = N / k de objetos cada:
 - Podemos calcular a probabilidade de selecionar 1 protótipo de cada grupo diferente como:

 $P = \frac{\text{no. de maneiras de selecionar 1 objeto de cada grupo (com N / k objetos)}}{\text{no. de maneiras de selecionar k dentre N objetos}}$

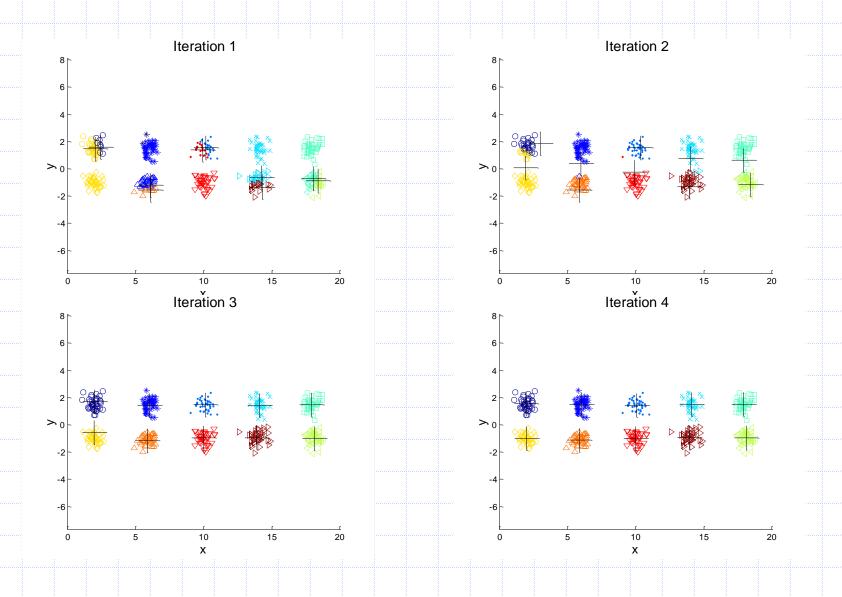
Análise da Seleção dos Protótipos Iniciais

- Nº de formas de selecionar k protótipos (denominador)
 - □ cada um dos N = $k \cdot g$ objetos pode ser selecionado em cada um dos k sorteios, com reposição, logo tem-se $(k \cdot g)^k$ formas
- Nº de formas de escolher 1 protótipo por grupo (numerador)
 - □ No 1º sorteio, qualquer um dos N = k·g objetos pode ser selecionado. No 2º sorteio, qualquer objeto exceto aqueles g do mesmo grupo do 1º sorteio podem ser selecionados, ou seja, k·g g = (k 1)·g podem ser selecionados, e assim por diante. Logo, tem-se k·g × (k 1)·g × ... × g = k!g^k
- \square Portanto, tem-se P = k!g^k/k^kg^k \rightarrow P = k! /k^k
- \Box Exemplo: se k = 10, P = 0.00036

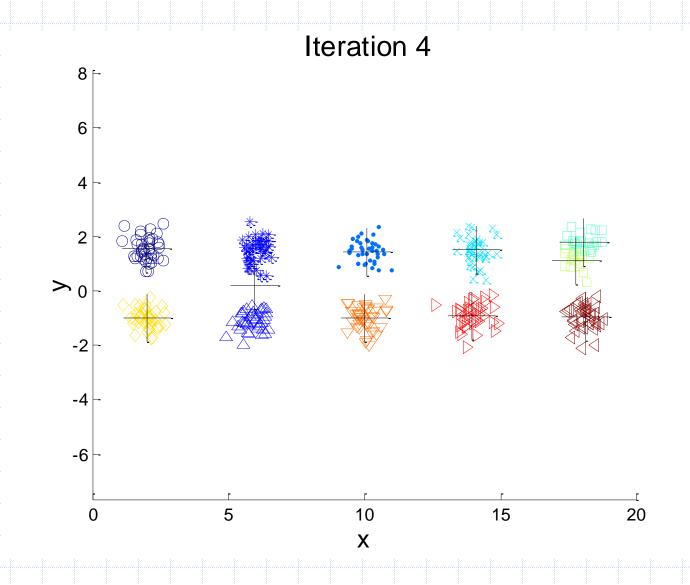
Exemplo: Iniciando com 2 centróides iniciais em um grupo de cada par...



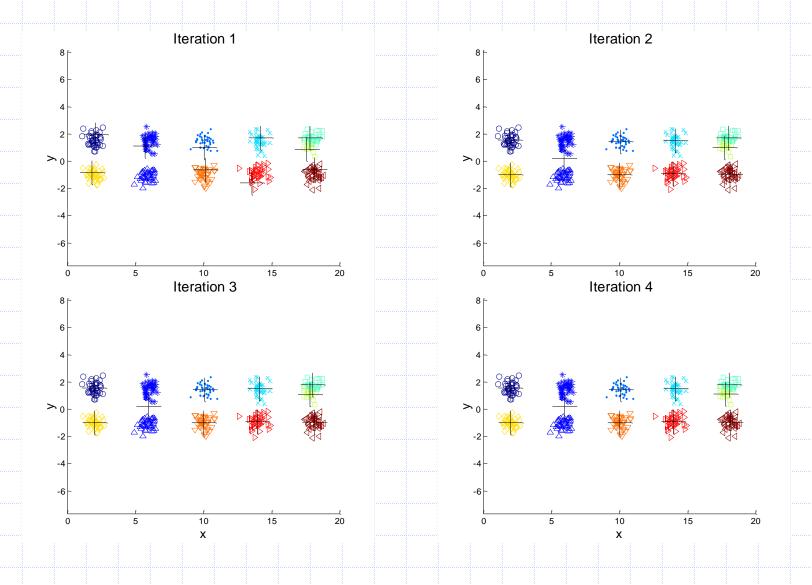
Ilustrando todas as iterações:



Agora vejamos outra inicialização:



Ilustrando todas as iterações:



Alternativas para Inicialização

- ☐ Múltiplas Execuções (inicializações aleatórias):
 - □ Funciona bem em muitos problemas.
 - Em bases de dados complexas, pode demandar um no. enorme de execuções, em particular para k grande.
- ☐ Agrupamento Hierárquico:
 - □ agrupa-se uma amostra dos dados
 - □ tomam-se os centros da partição com *k* grupos

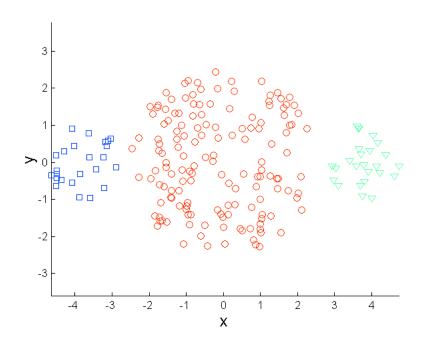
Alternativas para Inicialização

- ☐ Seleção "Informada":
 - □ toma-se o 1º protótipo como um objeto aleatório
 - ou como o centro dos dados (grand mean)
 - sucessivamente escolhe-se o próximo protótipo
 - como o objeto mais distante dos protótipos correntes
 - Nota: para reduzir o esforço computacional e minimizar a probabilidade de seleção de outliers
 - processa-se apenas uma amostra dos dados
- ☐ Busca Guiada:
 - □ X-means, k-means evolutivo, ...

Discussão

- k-means é mais susceptível a problemas quando clusters são de diferentes
 - Tamanhos
 - Densidades
 - Formas não-globulares

Differing Sizes

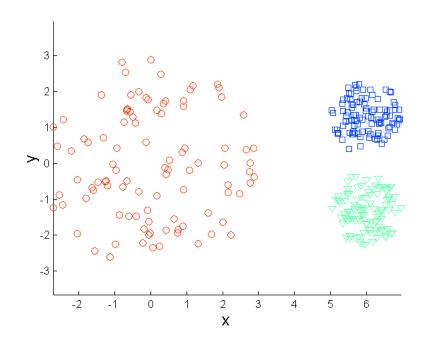


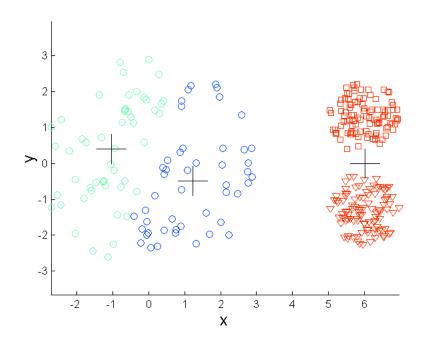
3 - 2 - 1 0 1 2 3 4 X

Original Points

K-means (3 Clusters)

Differing Density

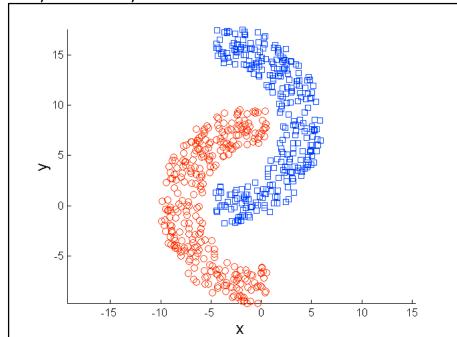


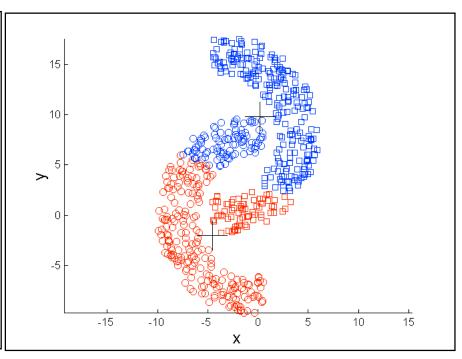


Original Points

K-means (3 Clusters)

Formas Não-Globulares





- Nota: na prática, esse problema em geral não é crítico, i.e., há pouco interesse na maioria das aplicações de mundo real
 - Grandes BDs (muitos objetos & atributos) e necessidade de interpretação dos resultados (e.g. segmentação de mercado...)

Implementações Eficientes

- Desempenho computacional pode ser melhorado...
 - Estruturas de Dados, e.g.
 - kd-trees
 - Algoritmos, e.g.
 - Atualização recursiva dos centróides
 - Cálculo dos centróides só depende dos valores anteriores, dos nos. de objetos dos grupos e dos objetos que mudaram de grupo
 - Não demanda recalcular tudo novamente
 - **Exercício:** a partir da equação do cálculo do centróide, escrever a equação de atualização recursiva descrita acima.
 - Uso da desigualdade triangular
 - Paralelização (vide discussão a seguir)

K-Means Paralelo / Distribuído

Dados distribuídos em múltiplos data sites ou processadores

• Algoritmo:

- Mesmos protótipos iniciais são distribuídos a cada sítio de dados
- Cada sítio executa (em paralelo) uma iteração de k-means
- Protótipos locais e nos. de objetos dos grupos são comunicados
- Protótipos globais são calculados e retransmitidos aos sítios
- Repete-se o processo

Dhillon and Modha, A Data Clustering Algorithm on Distributed Memory Multiprocessors, LNAI 1759, 2000.

Exercício

Objeto x _i x _{i1} x _{i2} Processador 1 1 2 A 2 2 1 B 3 1 1 A 4 2 2 B 5 8 9 A 6 9 8 B 7 9 9 B				
2 2 1 B 3 1 1 A 4 2 2 B 5 8 9 A 6 9 8 B 7 9 9 B	Objeto x _i	x_{i2} Processac	x_{i2}	ssador
3 1 1 A 4 2 2 B 5 8 9 A 6 9 8 B 7 9 9 B	1	2 A	2	4
4 2 2 B 5 8 9 A 6 9 8 B 7 9 9 B	2	1 B	1	3
5 8 9 A 6 9 8 B 7 9 9 B	3	1 A	1	4
6 9 8 B 7 9 9 B	4	2 B	2	3
7 9 9 B	5	9 A	9	4
	6	8 B	8	В
	7	9 B	9	В
8 8 8 A	8	8 A	8	4
9 1 15 B	9	15 B	15	3
10 2 15 A	10	15 A	15	4
11 1 14 B	11	14 B	14	3
12 2 14 A	12	14 A	14	4

Executar k-means paralelo nos dados ao lado, com k=3, a partir dos protótipos iniciais [6 6], [4 6] e [5 10]

Resumo do k-means

Vantagens

- Simples e intuitivo
- Complexidade computacional linear em todas as variáveis críticas
- Eficaz em muitos cenários de aplicação e produz resultados de interpretação simples
- Considerado um dos 10 mais influentes algoritmos em Data Mining (Wu & Kumar, 2009).

Desvantagens

- k = ?
- Sensível à inicialização dos protótipos (mínimos locais de J)
- Limita-se a encontrar clusters volumétricos / globulares
- Cada item deve pertencer a um único cluster (partição rígida, ou seja, sem sobreposição)
- Limitado a atributos numéricos
- Sensível a outliers

Generalização:

- Banerjee et al. (*Clustering with Bregman Divergences*, JMLR, 2005) apresentam uma visão unificada para a classe de algoritmos de agrupamento baseados em centróides (*ao estilo* k-means);
- Estudo teórico minucioso baseado em Divergentes de Bregman:

$$d\phi(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}) - \phi(\mathbf{y}) - \langle \mathbf{x} - \mathbf{y}, \nabla \phi(\mathbf{y}) \rangle$$

- Distância Euclidiana ao quadrado, Mahalanobis, KL, perda quadrática, perda logística, etc.;
 - Exemplo: $\phi(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$ é estritamente convexa e diferenciável em \Re^n ...
- Algoritmos derivados mantém simplicidade, garantias teóricas e escalabilidade do k-médias;
- Aplicável a diferentes tipos de atributos --- diferentes funções convexas escolhidas para diferentes subconjuntos de atributos.

Algumas Variantes do k-means

- K-medianas: Substituir as médias pelas medianas
 - Média de 1, 3, 5, 7, 9 é
 - Média de 1, 3, 5, 7, 1009 é
 - Mediana de 1, 3, 5, 7, 1009 é
 - Vantagem: menos sensível a outliers*
 - Desvantagem: implementação mais complexa
 - cálculo da mediana em cada atributo...
- Pode-se mostrar que minimiza a soma das distâncias de Manhattan dos objetos aos centros (medianas) dos grupos

Algumas Variantes do k-means

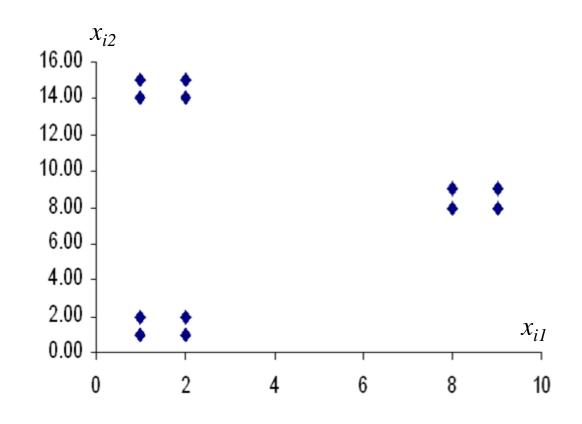
- K-medóides: Substituir cada centróide por um objeto representativo do cluster, denominado medóide
 - Medóide = objeto mais próximo aos demais objetos do cluster
 - mais próximo em média (empates resolvidos aleatoriamente)

Vantagens:

- menos sensível a outliers
- permite cálculo relacional (apenas matriz de distâncias)
 - logo, pode ser aplicado a bases com atributos categóricos
- convergência assegurada com qualquer medida de (dis)similaridade
- Desvantagem: Complexidade quadrática com nº. de objetos (N)

Exercício

Objeto x _i	x_{i1}	x_{i2}
1	1	2
2	2	1
3	1	1
4	2	2
5	8	9
6	9	8
7	9	9
8	8	8
9	1	15
10	2	15
11	1	14
12	2	14



 Executar k-medóides com k=3 nos dados acima, com medóides iniciais dados pelos objetos 5, 6 e 8

Algumas Variantes do k-means

- K-means para Fluxos de Dados (Data Streams):
 - Em geral, usa conceito de vizinhos mais próximos (K-NN)
 - Objetos dinamicamente incorporados ao cluster mais próximo
 - Atualização do centróide do cluster pode ser incremental
 - centróide atualizado a cada novo objeto incorporado
 - mas isso introduz dependência de ordem dos dados...
 - Heurísticas podem ser usadas para criar e/ou remover clusters
 - Ver Silva, Faria, Barros, Hruschka, de Carvalho, Gama, Data Stream Clustering: A Survey, ACM Computing Surveys.

Algumas Variantes do k-means

Métodos de Múltiplas Execuções de k-means:

- Executam k-means repetidas vezes a partir de diferentes valores de k e de posições iniciais dos protótipos
 - Ordenado: n_p inicializações de protótipos para cada k ∈ [k_{min}, k_{max}]
 - Aleatório: n_T inicializações de protótipos com k sorteado em [k_{min}, k_{max}]
- Tomam a melhor partição resultante de acordo com algum critério de qualidade (critério de validade de agrupamento)
- Vantagens: Estimam k e são menos sensíveis a mínimos locais
- Desvantagem: Custo computacional pode ser elevado

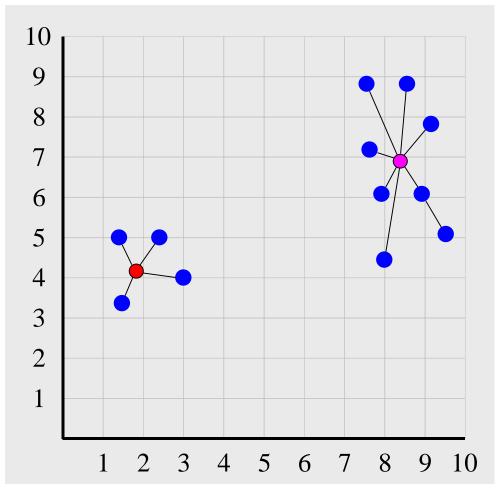
- J poderia ser utilizada para escolher a melhor partição dentre um conjunto de candidatas ?
 - Resposta é sim se todas têm o mesmo no. k de clusters (fixo)
 - Mas e se k for desconhecido e, portanto, variável ?
- Para responder, considere, por exemplo, que as partições são geradas a partir de múltiplas execuções do algoritmo:
 - com protótipos iniciais aleatórios
 - com no. variável de grupos $k \in [k_{min}, k_{max}]$

- Para responder a questão anterior, vamos considerar o método de múltiplas execuções ordenadas de k-means, com uso da função objetivo J

Erro Quadrático:

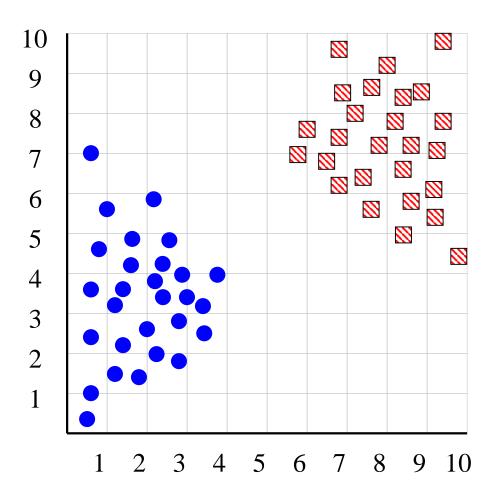
$$J = \sum_{i=1}^{k} \sum_{\mathbf{x}_{j} \in \mathbf{C}_{i}} d(\mathbf{x}_{j}, \overline{\mathbf{x}}_{i})^{2}$$

Função Objetivo

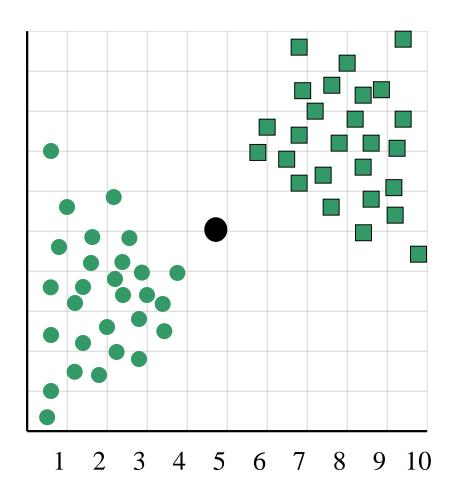


Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

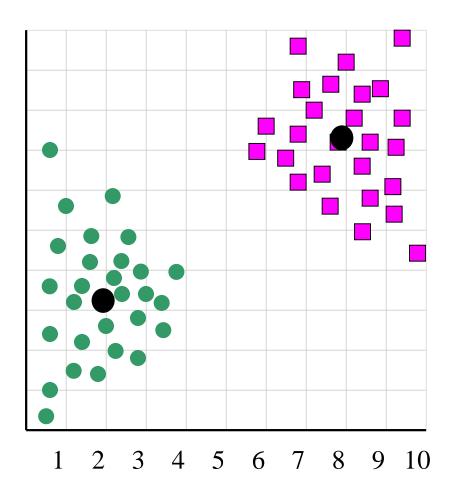
- Considere o seguinte exemplo:



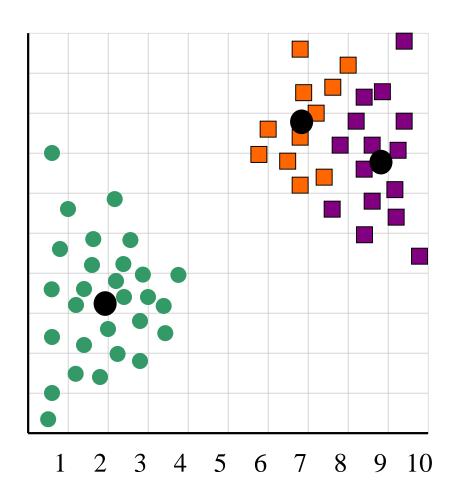
Para k = 1, o valor da função objetivo é 873,0



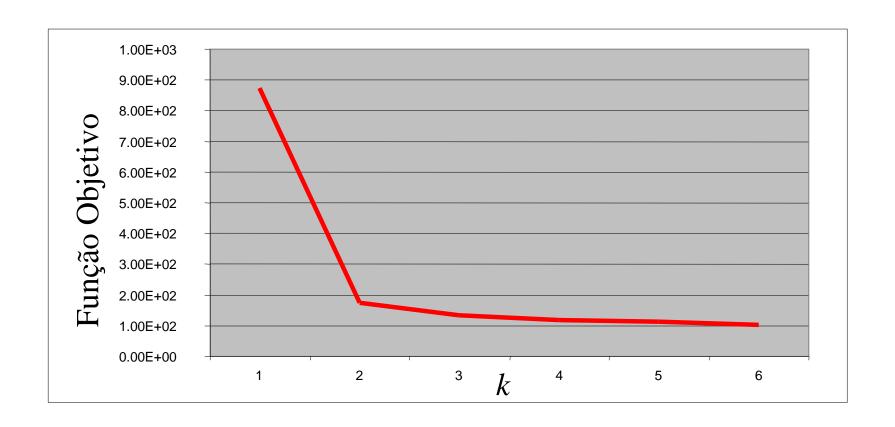
Para k = 2, o valor da função objetivo é 173,1



Para k = 3, o valor da função objetivo é 133,6

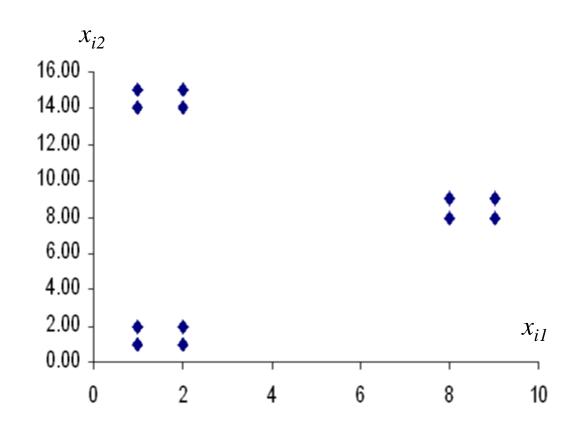


Podemos então repetir este procedimento e plotar os valores da função objetivo J para k = 1,...,6, ... e tentar identificar um "joelho" :



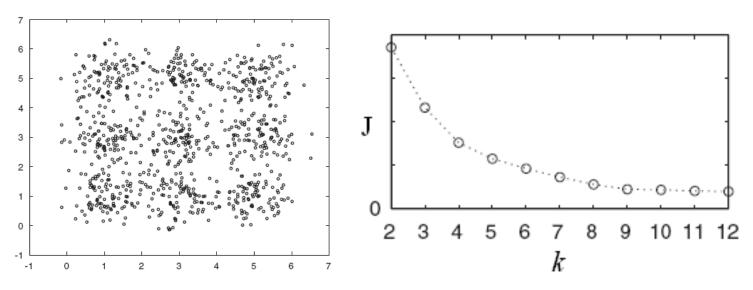
Exercício

Objeto x _i	x_{i1}	x_{i2}
1	1	2
2	2	1
3	1	1
4	2	2
5	8	9
6	9	8
7	9	9
8	8	8
9	1	15
10	2	15
11	1	14
12	2	14



 Executar k-means com k=2 até k=5 nos dados acima e representar graficamente a f. objetivo J em função de k

 Infelizmente os resultados não são sempre tão claros quanto no exemplo anterior... Vide exemplo abaixo...



- Além disso, como utilizar essa metodologia em variantes baseadas em busca guiada, que otimizam k ?
 - X-means, k-means evolutivo, ...
- Exploraremos mais em validação de agrupamentos

Referências

- Jain, A. K. and Dubes, R. C., Algorithms for Clustering Data,
 Prentice Hall, 1988
- Kaufman, L., Rousseeuw, P. J., Finding Groups in Data An Introduction to Cluster Analysis, Wiley, 2005.
- Tan, P.-N., Steinbach, M., and Kumar, V., Introduction to Data Mining, Addison-Wesley, 2006
- Wu, X. and Kumar, V., The Top Ten Algorithms in Data Mining, Chapman & Hall/CRC, 2009
- D. Steinley, K-Means Clustering: A Half-Century Synthesis,
 British J. of Mathematical and Stat. Psychology, V. 59, 2006