Lista de exercícios 2 (do livro de Boyce e Di Prima)

Problems

In each of Problems 1 through 11:
a. Seek power series solutions of the given differential equation about the given point x_{0}; find the recurrence relation that the coefficients must satisfy.
b. Find the first four nonzero terms in each of two solutions y_{1} and y_{2} (unless the series terminates sooner).
c. By evaluating the Wronskian $W\left[y_{1}, y_{2}\right]\left(x_{0}\right)$, show that y_{1} and y_{2} form a fundamental set of solutions.
d. If possible, find the general term in each solution.

1. $y^{\prime \prime}-y=0, \quad x_{0}=0$
2. $y^{\prime \prime}+3 y^{\prime}=0, \quad x_{0}=0$
3. $y^{\prime \prime}-x y^{\prime}-y=0, \quad x_{0}=0$
4. $y^{\prime \prime}-x y^{\prime}-y=0, \quad x_{0}=1$
5. $y^{\prime \prime}+k^{2} x^{2} y=0, \quad x_{0}=0, \quad k$ a constant
6. $(1-x) y^{\prime \prime}+y=0, \quad x_{0}=0$
7. $y^{\prime \prime}+x y^{\prime}+2 y=0, \quad x_{0}=0$
8. $x y^{\prime \prime}+y^{\prime}+x y=0, \quad x_{0}=1$
9. $\left(3-x^{2}\right) y^{\prime \prime}-3 x y^{\prime}-y=0, \quad x_{0}=0$
10. $2 y^{\prime \prime}+x y^{\prime}+3 y=0, \quad x_{0}=0$
11. $2 y^{\prime \prime}+(x+1) y^{\prime}+3 y=0, \quad x_{0}=2$

In each of Problems 12 through 14:
a. Find the first five nonzero terms in the solution of the given initial-value problem.
(G) b. Plot the four-term and the five-term approximations to the solution on the same axes.
c. From the plot in part b, estimate the interval in which the four-term approximation is reasonably accurate.
12. $y^{\prime \prime}-x y^{\prime}-y=0, \quad y(0)=2, \quad y^{\prime}(0)=1 ; \quad$ see Problem 3
13. $y^{\prime \prime}+x y^{\prime}+2 y=0, \quad y(0)=4, \quad y^{\prime}(0)=-1 ; \quad$ see Problem 7
14. $(1-x) y^{\prime \prime}+x y^{\prime}-y=0, \quad y(0)=-3, \quad y^{\prime}(0)=2$
15. a. By making the change of variable $x-1=t$ and assuming that y has a Taylor series in powers of t, find two series solutions of

$$
y^{\prime \prime}+(x-1)^{2} y^{\prime}+\left(x^{2}-1\right) y=0
$$

in powers of $x-1$.
b. Show that you obtain the same result by assuming that y has a Taylor series in powers of $x-1$ and also expressing the coefficient $x^{2}-1$ in powers of $x-1$.
16. Prove equation (10).
17. Show directly, using the ratio test, that the two series solutions of Airy's equation about $x=0$ converge for all x; see equation (20) of the text.
18. The Hermite Equation. The equation

$$
y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \quad-\infty<x<\infty,
$$

where λ is a constant, is known as the Hermite ${ }^{5}$ equation. It is an important equation in mathematical physics.
a. Find the first four nonzero terms in each of two solutions about $x=0$ and show that they form a fundamental set of solutions.
b. Observe that if λ is a nonnegative even integer, then one or the other of the series solutions terminates and becomes a polynomial. Find the polynomial solutions for $\lambda=0,2,4,6$, 8 , and 10 . Note that each polynomial is determined only up to a multiplicative constant.
c. The Hermite polynomial $H_{n}(x)$ is defined as the polynomial solution of the Hermite equation with $\lambda=2 n$ for which the coefficient of x^{n} is 2^{n}. Find $H_{0}(x), H_{1}(x), \ldots, H_{5}(x)$.
19. Consider the initial-value problem $y^{\prime}=\sqrt{1-y^{2}}, y(0)=0$.
a. Show that $y=\sin x$ is the solution of this initial-value problem.
b. Look for a solution of the initial-value problem in the form of a power series about $x=0$. Find the coefficients up to the term in x^{3} in this series.
In each of Problems 20 through 23, plot several partial sums in a series solution of the given initial-value problem about $x=0$, thereby obtaining graphs analogous to those in Figures 5.2.1 through 5.2.4 (except that we do not know an explicit formula for the actual solution).
G 20. $y^{\prime \prime}+x y^{\prime}+2 y=0, y(0)=0, y^{\prime}(0)=1$; see Problem 7
G 21. $\left(4-x^{2}\right) y^{\prime \prime}+2 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1$
G 22. $y^{\prime \prime}+x^{2} y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 ; \quad$ see Problem 5
G 23. $(1-x) y^{\prime \prime}+x y^{\prime}-2 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1$
${ }^{5}$ Charles Hermite (182... algebraist. An inspiring teacher, he was professor at the Ecole Polytechnique and the Sorbonne. He introduced the Hermite functions in 1864 and showed in 1873 that e is a transcendental number (that is, e is not a root of any polynomial equation with rational coefficients). His name is also associated with Hermitian matrices (see Section 7.3), some of whose properties he discovered.

