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In vitro human small intestine models play a crucial part in preclinical drug development. Although

conventional 2D systems possess many advantages, such as facile accessibility and high-throughput

capability, they can also provide misleading results due to their relatively poor recapitulation of in vivo

physiology. Significant progress has recently been made in developing 3D human small intestine

models, suggesting that more-reliable preclinical results could be obtained by recreating the 3D

intestinal microenvironment in vitro. Although there are still many challenges, 3D human small

intestine models have the potential to facilitate drug screening and drug development.
Introduction
Oral delivery is considered as the most preferable and convenient

route among various drug administration methods. Before reach-

ing the systemic circulation, orally administrated drugs are

absorbed by the small intestine epithelium and undergo first-pass

metabolism. By utilizing porous membranes, such as track-etched

membranes (membranes with cylindrical pores produced by using

etching ion tracks) [1], for culturing confluent Caco-2 cell mono-

layers, a 2D in vitro cell-based human small intestine model was

developed over 20 years ago [2]. This model has been widely used

for studying oral drug absorption [3], intestinal transporters [4],

intestinal first-pass metabolism [5,6] and toxicity [7,8]. To make

the model amenable to high-throughput intestinal permeability

measurement, multiple approaches have been adopted that

include reduction of Caco-2 culture time [9], use of fast-growing

cell lines such as Madin–Darby canine kidney (MDCK) [10], inte-

gration of robotic liquid handling systems [11] and development

of automated liquid chromatography tandem mass spectrometry

(LC–MS/MS) systems [12]. In the FDA’s Biopharmaceutics Classi-

fication System (BCS) guidance (http://www.fda.gov/downloads/

Drugs/GuidanceComplianceRegulatoryInformation/Guidances/

ucm070246.pdf), Caco-2 and MDCK 2D models have been sug-

gested as alternatives to animal or human models for evaluating

drug intestinal permeability [13]. In silico drug permeability
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prediction models also rely on the 2D in vitro small intestine model

for development and validation [14]. Overall, the 2D in vitro small

intestine model has been widely recognized as a very useful screen-

ing tool that has not only greatly reduced animal use but also

facilitated the drug discovery and preclinical development pro-

cesses.

However, the pharmaceutical industry is still suffering high

attrition rates, with Phase I clinical drug candidates having less

than 10% chance of making it to the market [15]. Because it has

been estimated that the average time from synthesis of a com-

pound to Phase I clinical trial for self-originated drugs is 52

months [16], more-reliable preclinical results are needed to

increase the efficiency of the drug development process.

Although an important preclinical screening tool, the 2D in vitro

small intestine model has been known to give false-positive or

false-negative results owing to lack of physiological relevance

[17]. For example, the 2D Caco-2 model has been suggested as

an excellent model for predicting intestinal permeability of

rapidly absorbed drugs that rely on the passive transcellular

pathway for absorption. However, for slowly absorbed drugs

utilizing the paracellular pathway and actively transported drugs

utilizing carrier-mediated pathways, the model generally does

not predict intestinal permeability accurately [3]. Although many

approaches have been adapted to diminish the gap between the

conventional 2D small intestine model and human small intes-

tine, there is still a growing need for a better in vitro model with
05.003 www.drugdiscoverytoday.com 1587
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greater complexity that represents in vivo characteristics of native

intestine [3,14].

By utilizing microfabrication, microfluidics, biomaterials, tis-

sue engineering and stem cell techniques, various 3D human

small intestine models have been developed in the past five

years. Aiming to create a more realistic human small intestine

microenvironment in vitro, physiological 3D features have been

integrated in these models, enabling significant improvements

over the conventional 2D model. Although for practical screen-

ing use, many aspects of 3D models are still underdeveloped,

preliminary results from 3D models suggest that robust precli-

nical results could be obtained when in vivo features are

mimicked in a more authentic fashion by in vitro models. In

this review, we summarize recently developed 3D human small

intestine models. The advantages and limitations of 3D models

as well as their potential impact on ADME-Tox screening are

discussed.

The gap between human small intestine and
conventional in vitro human small intestine model
A brief overview of human small intestine physiology
Human small intestine, which includes the duodenum, jejunum

and ileum, is a convoluted tube that is, on average, 2.5 cm in

diameter and 3 m long (in a living person) [18]. To gain the

maximum efficiency of absorption and digestion, the human

small intestine possesses highly complex 3D microenvironments

(Fig. 1a). The small intestine mucosa and submucosa form cir-

cular folds (also called valvulae conniventes or Kerckring’s folds)

that protrude into the lumen transversely and increase the

retention time of chyme. These permanent ridges, which are

about 1 cm tall, begin to appear near the proximal portion of

the duodenum and disappear nearly completely in the distal

ileum [18,19]. The surface of these circular folds also possesses

finger-like protrusions called intestinal villi. Each villus is about

0.5–1.0 mm high, and there are 20–40 villi per mm2 [18,20]

(Fig. 1c). The presence of circular folds and villi greatly increases

the absorption surface area. Between villi, the small intestine

mucosa contains deep tubular pits called intestinal crypts. Resid-

ing inside the crypt, small intestine stem cells can differentiate

into four different intestinal epithelial cell types, which are the

enterocyte (absorptive cell), goblet, enteroendocrine  and Paneth

cells. Although Paneth cells reside within the stem cell niche

at the bottom of the crypt, the other three types of intestinal

epithelial cells migrate toward the tip of the villus, forming a

columnar epithelial monolayer that covers the intestinal

mucosa. The intestinal blood flow in close proximity to the

basolateral surface and the chyme movement formed by intest-

inal peristaltic waves at the apical surface provide a dynamic

environment for the epithelial monolayer. The crypt and villus

structures on the mucosa surface also generate chemical gradi-

ents that probably affect the epithelial cell physiology. The small

intestinal lumen also has a large population of commensal bac-

teria with a density increasing from 103 organisms per ml of

luminal contents in duodenum to 109 per ml of luminal contents

in the distal ileum [21]. Within this dynamic and complex

environment, the small intestine epithelium has the most vig-

orous renewal process in adult epithelial tissues, with the epithe-

lial monolayer regenerating every 4–5 days.
1588 www.drugdiscoverytoday.com
Conventional in vitro models lack small intestine 3D
structural features
In the conventional in vitro small intestine model, track-etched

membranes are typically used to support the monolayer culture

[1] (Fig. 1b). These porous membranes have pore sizes ranging from

0.4 to 8.0 mm and are commercially available as cell culture inserts

with six-well, 12-well and 24-well formats. Various extracellular

matrix proteins can be coated on the membrane surface, and the

epithelial cell monolayer is cultured on top of the membrane to

mimic the small intestine epithelial barrier. Compared with the

human small intestine, the conventional in vitro model suffers three

major drawbacks. First, because track-etched membranes have flat

surfaces, conventional in vitro models lack small intestine 3D struc-

tural features. It has been well recognized that, compared with

2D culture, cells behave in a more authentic manner within a 3D

culture microenvironment [22]. The small intestine 3D structures

not only increase the absorptive surface area but also create bio-

chemical and physical signal gradients that probably affect cell

function, cell proliferation and cell differentiation. For example,

increasing expression gradients of digestive enzymes such as alka-

line phosphatases, disaccharidases and dipeptidases have been

described along the crypt–villus axis in rat [23]. Similar expression

gradients of phase I and phase II drug-metabolizing enzymes includ-

ing cytochrome P450 (CYP) 1A1 (CYP1A1), CYP2B1, UDP-glucur-

onosyltransferase and glutathione-S-transferase have also been

suggested in rat [24,25]. Moreover, increasing expression patterns

along the crypt–villus axis have been observed for drug transporters

called organic anion-transporting polypeptide (OATP)1A2 and

P-glycoprotein [also known as multi-drug resistance protein

(MDR1)] in human as well as MRP2 in rat [26,27]. The paracellular

pore size of rat epithelial monolayer has been found to decrease from

the crypt to the top of villus [28]. Various distribution patterns of

epithelial basement membrane proteins have also been indicated

along the crypt–villus axis in human [29]. Epithelial monolayers

cultured in conventional in vitro models lacking 3D microenviron-

ment inherently cannot represent these physiological features,

which could lead to false predictions in drug ADME-Tox properties.

Hence, it is crucial to integrate small intestine 3D features into the

in vitro model. Heterogeneous expression of drug-metabolizing

enzymes and drug transporters has also been implied on a macro-

scopic scale, along the length of small intestine in human. Total CYP

content and CYP3A4 activity were found to increase slightly along

the length of the duodenum before decreasing significantly toward

the ileum [30]. The expression of drug transporters P-glycoprotein,

breast cancer resistance protein (BCRP) and carnitine/organic cation

transporter 2 (OCTN2) increased significantly from duodenum

to ileum, whereas opposite expression gradients were found for

monocarboxylate transporter 1 (MCT1) [31]. Current in vitro

intestinal models are not able to capture this macroscopic variability

in enzyme and transporter expression.

Conventional in vitro models lack relevant small intestine
epithelial cell types
In conventional intestinal cell culture models, human carcinoma

cell line Caco-2 and HT-29 MTX have been the main intestinal

cells cultured to represent small intestine enterocytes and goblet

cells, respectively [32]. Caco-2 cells have been induced to differ-

entiate into M cells by culturing with murine Peyer’s patch
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FIGURE 1

(a) Illustration of human small intestine epithelium on crypt–villus axis. (b) A schematic of conventional 2D small intestine model. Caco-2 and HT-29 MTX are

cultured on the track-etched membrane. (c) A scanning electron microscope image of human small intestine villi. Reproduced, with permission, from [20].
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lymphocytes or human Raji B cells [8,33]. Only mouse carcinoma

cell lines have been developed to simulate enteroendocrine cells [34],

and there is currently no Paneth cell line available for in vitro

studies. Even for the most frequently used cell line Caco-2, which

presents many comparable characteristics to small intestine enter-

ocytes, significant differences have been found between the two.

For instance, although Caco-2 cell monolayers and human small

intestine epithelium have similar paracellular pore sizes, the por-

osity of Caco-2 monolayer is eight-times smaller than that of

human small intestine epithelium, which is considered as one

of the reasons for poor drug paracellular permeability correlation

between conventional in vitro models and human small intestine

[35]. Also, studies have suggested that significant differences in

gene expression profiles between Caco-2 cells and human duode-

num result in variation of drug transporters and drug-metaboliz-

ing enzymes between in vitro and in vivo systems, which affect drug

metabolism and carrier-mediated drug transport [36]. Therefore,

more-relevant cells are needed to improve the in vitro model.

Conventional in vitro models lack a dynamic culture
environment
Although there has been pioneering work carried out incorporat-

ing perfusion in intestinal cell culture, most conventional in vitro

models still lack a dynamic culture environment [37]. In standard

in vitro intestinal cell culture, an epithelial monolayer is cultured

under static conditions, and cell medium is changed every two

days [38]. Under such conditions, Caco-2 monolayers take 21 days

to become fully differentiated. The co-culture of commensal
bacteria and epithelial monolayer can only be sustained for several

hours [39]. Thus, a dynamic perfusion system on apical and

basolateral sides is desirable to provide fresh nutrients, remove

metabolic waste and incapacitate bacterial overgrowth in systems

incorporating microbes, on a continuous basis.

3D small intestine models with artificial topography
With the development of microfabrication and other biomaterial

fabrication techniques, biomimetic topography has been inte-

grated into in vitro intestinal models to represent human small

intestine 3D features. For example, human small intestine crypt-

like topography has been fabricated using photolithography and

transferred to poly(dimethylsiloxane) (PDMS) and collagen mem-

brane substrates [40,41] (Fig. 2a,b). Compared with 2D flat sub-

strates, Caco-2 cultured on PDMS substrates with crypt-like

topography exhibited higher mitochondrial activity and lower

alkaline phosphatase activity, similar to the cell phenotype in

human intestinal crypts [40]. Transepithelial electrical resistance

(TEER) values were found to be slightly lower for Caco-2 mono-

layers cultured on topographically modified collagen membranes

relative to flat collagen controls, suggesting that crypt-like topo-

graphy might affect tight junctions of the Caco-2 monolayer [41].

Human small intestine villus structures have also been fabricated

by combining different microfabrication techniques. Initially, 3D

printing (3DP) was employed to construct porous poly(lactic-co-

glycolic acid) (PLGA) villous scaffolds [42]. However, owing to the

resolution limitation of this technique, porous PLGA villous

structures had considerably larger basal areas than human small
www.drugdiscoverytoday.com 1589
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FIGURE 2

(a) Collagen membrane with crypt-like topography. Reproduced, with permission, from [41]. (b) Caco-2 cells cultured on poly(dimethylsiloxane) (PDMS)

membrane with crypt-like topography, the yellow arrow indicates a crypt well covered by cells. Cells were stained for actin (green) and nucleic acid (blue).

Reproduced, with permission, from [40]. (c) Confocal microscope image of a collagen villous scaffold after 3D rendering. Reproduced, with permission, from [43].

(d) Collagen villous scaffold covered by Caco-2 monolayer after 3D rendering. Cells were stained for actin (green) and nucleic acid (blue). Reproduced, with
permission, from [44]. (e) Tight junction protein zonula occludens-1 (ZO-1) staining of Caco-2 cells cultured in polyethersulfone (PES) hollow fiber at day 10 [46].

(f) ZO-1 staining of Caco-2 cells cultured on conventional track-etched membrane at day 21. Reproduced, with permission, from [46].
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intestine villi and hence could not represent dimensions and

density of villi relevantly. Recently, by combining laser ablation

and sacrificial molding techniques, a collagen villous scaffold was

fabricated with 0.5 mm villous height and 25 villi per mm2 den-

sity, with striking similarity to the human jejunal villi [43]

(Fig. 2c,d). By using a custom-made cell culture insert kit, the

collagen villous scaffold was integrated with a six-well cell culture

plate to study drug absorption [44]. Caco-2 monolayers cultured

on collagen villous scaffolds exhibited differentiation gradients

along the villous axis, such that cells near the top of the villus were

more columnar and polarized than cells near the bottom of the

villus, correlating well with the in vivo observation that enterocytes

become more differentiated when migrating from the crypt to
1590 www.drugdiscoverytoday.com
the tip of the villus [44,45]. TEER values of Caco-2 monolayers

cultured on collagen villous scaffolds were also found to be

significantly lower than 2D controls, and similar to in vivo intest-

inal values. The apparent permeability coefficient (Papp) of the

slowly absorbed drug atenolol measured on the collagen villous

scaffold was 13-times higher than that measured using conven-

tional 2D models, and much closer to the average permeability

value from perfused human small intestines, suggesting that the

3D villous model could improve the poor permeability correlation

of paracellularly transported drugs between in vitro models and

native human small intestine [3,44]. Although the collagen scaf-

fold did not exhibit variable transport characteristics for different

small molecule drugs, the scaffold itself became a significant
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transport barrier for the rapidly absorbed drug antipyrine, which is

absorbed through a transcellular pathway. Hence this 3D model

could not be used to test a wide range of drugs with broad

permeability coefficients.

Alternatively, a polyethersulfone (PES) hollow fiber bioreactor

was used to mimic the small intestine lumen 3D microenviron-

ment [46]. Under static culture conditions, Caco-2 cells grown on

the inner surface of PES hollow fibers formed cell monolayers with

tight junctions and expressed brush border enzymes at high levels

after 10 days, which was not observed on flat PES membrane

control and conventional 2D models (Fig. 2e,f). Caco-2 mono-

layers on PES hollow fibers also possessed higher activity of alka-

line phosphatase, g-glutamyltransferase and P-glycoprotein than

conventional 2D models. Although the diameter of PES hollow

fibers used in this study (900 mm) was not relevant to the diameter

of human small intestine (2.5 cm), and thus the inner surface of

PES hollow fibers lacked significance to in vivo 3D structures, it is

possible that the enclosed space created within the fiber, and thus

concentration of signaling factors, facilitated cell differentiation.

A similar close proximity of apical cell surfaces exists for cells on

crypt and villus structures. To validate the monolayer function-

ality, Papp values of 16 oral drugs were measured on PES hollow

fibers after 10 days of culture. Similar correlations between Papp

and fraction of dose absorbed in human (Fa) were found from PES

hollow fibers and conventional 2D models [46].

Another type of 3D model consists of multiple layers of relevant

cell types, including a flat monolayer of Caco-2 on a gel containing

dendritic cells or macrophages [47,48]. Generally, to form these

models, a thicker layer of collagen protein matrix than used on

conventional 2D models was coated on a cell culture insert.

Although the flat collagen matrix does not capture structural fea-

tures of the small intestine 3D microenvironment, the integration

of immune components in the collagen matrix makes this model a

useful in vitro tool for studying inflammatory bowel disease [47].

3D small intestine models with decellularized animal
tissue
Animal intestinal tissues have been widely used for drug ADME-

Tox studies incorporating the Ussing Chamber technique and the

precision-cut slice model [49]. Three dimensional small intestine

features have recently also been created in vitro by utilizing decel-

lularized animal small intestine segments. For example, Caco-2

cells and human microvascular endothelial cells (hMECs) were

cultured on the apical and basolateral sides of a decellularized

porcine jejunal scaffold, respectively [50]. A custom-built bioreac-

tor system was used to provide dynamic culture conditions, such

that culture medium was perfused past both sides of the porcine

jejunal scaffold continuously. Under such culture conditions,

Caco-2 cells assembled 3D villus-like structures with multiple cell

layers whereas hMECs formed a monolayer mimicking the

endothelial barrier. Caco-2 cells cultured under these dynamic

3D culture conditions displayed significantly higher P-glycopro-

tein expression and dipeptidase activity than the conventional 2D

model. However, P-glycoprotein efflux activity of Rhodamine 123

was found to be low under the dynamic 3D culture condition,

which was speculated to be the consequence of forming multiple

cell layers. The Papp values of low permeability substances fluor-

escein and desmopressin were measured to be significantly higher
under the dynamic 3D culture condition when compared with the

conventional 2D model, which also suggested that the 3D model

could improve drug paracellular permeability correlation [3,50].

Additionally, a decellularized rat intestinal scaffold with villus–

crypt structures and vasculature has been obtained by using

detergent–enzymatic treatment, and its potential for recreating

functional intestine tissue was demonstrated [51]. Because there is

a strong motivation to reduce animal use in drug development, the

requirement of using animal tissue makes these methods less

practical for preclinical drug studies than other in vitro models.

Native tissue has also been explored as a direct template for

creating biomaterials with intestinal structure. Precise structurally

biomimetic silica replicas of intestine that preserved crypt–villus

structures were fabricated using a porcine intestinal segment with

epithelium removed [52]. This replica could be used as a reusable

mold for fabricating 3D biocompatible membranes.

3D small intestine models in microfluidic systems
Microfluidic techniques have been used in developing miniatur-

ized in vitro models with high-throughput capability that also

exhibit the potential for creating integrated in vitro systems (i.e.

body-on-a-chip) predicting drug ADME-Tox properties on a

whole-body scale [53–55]. A conventional 2D intestinal (Caco-

2) model was integrated with a microscale cell culture analog

(mCCA) system including multiple organ models to investigate

drug toxicity [56]. Recently, microporous SU-8 membranes were

fabricated with 3D villus-like features, with the goal of incorpor-

ating a more relevant 3D intestinal microenvironment into the

mCCA system [57] (Fig. 3a). Long-term perfusion culture of Caco-2

cells on track-etched membranes was demonstrated in a micro-

fluidic device with integrated micropumps and on-chip optical

fiber sensors [58]. Immune components were also included in a

microfluidic small intestine model [59]. A gut-on-a-chip device

was derived from a previous microfluidic lung model with the

capability to achieve perfusion flow and cyclic mechanical strain

to mimic intestinal shear stress and peristaltic motions, respec-

tively [60] (Fig. 3b). Caco-2 cells cultured under such dynamic

conditions not only formed monolayers with tight junctions after

3 days of culture but were also reported to develop villous-like

structures with multiple cell layers over longer times (Fig. 3c).

Paracellular permeability of fluorescent dextran and aminopep-

tidase activity were found to be significantly higher under the

dynamic culture conditions relative to conventional 2D models.

Long-term co-culture of Lactobacillus rhamnosus GG (LGG) with

Caco-2 cells was demonstrated under these dynamic conditions,

with the observation that LGG actually increased Caco-2 TEER

values over time. Interestingly, Caco-2 cells cultured in this gut-

on-a-chip stained positively for goblet, enteroendocrine and

Paneth cell markers, which suggested that the dynamic culture

condition could affect cell differentiation dramatically [61]. This

finding challenged the traditional understanding that Caco-2

cells only differentiate into enterocyte cell types under normal

culture conditions. Mucus production and CYP3A4 enzyme activ-

ity, which are usually missing in Caco-2 monolayers, were also

detected under the dynamic culture condition without any drug

inductions. However, the level of CYP3A4 activity was about three

orders of magnitude lower than that reported for human small

intestine [30]. Overall, results obtained with the gut-on-a-chip
www.drugdiscoverytoday.com 1591
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FIGURE 3

(a) Caco-2 cells grown on microporous SU-8 membranes [57]. Cells were stained for actin (green) and nucleic acid (blue). Reproduced, with permission, from [57].
(b) A schematic of the gut-on-a-chip device. Reproduced, with permission, from [60]. (c) Vertical cross section of villous-like structures [60]. Cells were stained for

actin (green), nucleic acid (blue) and Muc2 (magenta). Reproduced, with permission, from [60]. (d–g) Single Lgr5+ stem-cell-derived organoids were stained for

villin [(d): green, enterocytes), Muc2 (e): red, goblet cells], lysozyme (f): green, Paneth cells], chromogranin A [(g): green, enteroendocrine cells] and nucleic acid

(blue). Reproduced, with permission, from [63]. (h–j) Twenty-eight-day induced pluripotent stem cells (iPSC)-derived organoids were stained for villin [(h): green],
Muc2 [(h): red], lysozyme (i): green], chromogranin A [(j): green] and nucleic acid (blue). Adapted, with permission, from [65].

R
eview

s
�G

E
N
E
T
O

S
C
R
E
E
N

device suggested that introducing perfusion flow and cyclic

mechanical strain could improve the physiological relevance of

the in vitro small intestine model.

Alternative cell sources
Caco-2 cell culture models have been criticized for poor prediction

of drug ADME-Tox properties, in part because of Caco-2 colon

adenocarcinoma origin [3,35,36]. The absence of small intestinal

stem cells and other epithelial cell types limits the relevance of

physiology and functionality of cell monolayers in in vitro models

to human small intestine. Recently, small intestine stem cells have

been identified by using the Lgr5 gene marker [62]. Long-term

culture based on Lgr5+ stem cells demonstrated that single stem

cells have the ability to differentiate into four small intestinal
1592 www.drugdiscoverytoday.com
epithelial cell types and form organoids with crypt–villus 3D

structures in vitro [63] (Fig. 3d–g). Long-term culture of neonatal

small intestine tissue that formed organoids with four epithelial

cell types has also been established in a collagen gel with an air–

liquid interface [64]. Alternatively, directed differentiation of

human embryonic stem cells and induced pluripotent stem cells

(iPSC) into intestine-like organoids containing four intestinal

cell types and crypt–villus 3D architectures has been achieved

in vitro [65] (Fig. 3h–j). Moreover, colonic stem cell organoids

have been cultured on the conventional cell culture insert form-

ing an epithelial monolayer [66]. Although ADME-Tox proper-

ties of these intestinal organoids have not been extensively

examined, it is likely that recent advances in intestinal stem

cell and organoid culture can be employed to develop a more
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authentic in vitro small intestine epithelium for drug screening

studies in the future.

Concluding remarks
Three dimensional human small intestine models have demon-

strated the potential to accelerate cell differentiation processes,

improve paracellular permeability correlation and maintain

epithelium and commensal bacteria co-culture. However, the

distribution of drug transporters and metabolizing enzymes in

3D human small intestine models has not been fully investigated.

Heterogeneous expressions of drug-metabolizing enzymes and

drug transporters along the length of small intestine, which is

crucial for ADME-Tox studies, have also been overlooked. For

drug transporters like P-glycoprotein, which exhibits more than

fivefold expression difference between human duodenum and

ileum, it is difficult to evaluate if the transporter expression level

in a particular 3D model is relevant without specifying which

segment of the human small intestine the model is mimicking

[31]. Future 3D models focusing on the whole small intestine

instead of intestinal segments are desirable in this regard. For
practical ADME-Tox studies, drugs with different properties

should be tested in 3D models to validate these systems. The

consequence of presenting multiple cell layers needs to be con-

sidered, because normal enterocytes only form monolayers in

vivo. To succeed in industrial settings, the high-throughput cap-

ability, the cost and feasibility are also crucial factors for using 3D

models. As further improvements and enhanced capabilities

develop, 3D human small intestine models are highly likely to

have a significant impact on drug preclinical development and

absorption assessment.
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