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Preface

The intention of this book is to create a modern review of polymer
mechanics theory. This includes explaining how experimental
characterization and material modeling are interconnected and
can be used to guide accurate finite element predictions of
all types of polymers (elastomers, thermoplastics, thermosets,
biomaterials, etc.). After finishing my Ph.D. research at MIT in
the area of modeling the large strain time-dependent response of
elastomers, I have spent the last 16 years as a technical consultant
helping companies better understand their polymer products and
become more competitive. As part of this effort, I realized early
on that there is a huge need for better training and computational
tools when it comes to understanding the commonly observed
non-linearities of polymer behaviors. To help fill this gap I created
the popular website https://PolymerFEM.com, which is a free
forum for advanced testing and modeling of polymers. I have also
given a large number of short courses for professional designers,
engineers, and material scientists in various topics related to
computational polymer mechanics. This book is the result of
combining all of these different areas into a text that is suitable
for students, researchers, and industrial engineers.

The topics that are covered in this book include experimen-
tal testing, simple material models (e.g. hyperelasticity, linear
viscoelasticity, plasticity), and advanced non-linear viscoplastic
models. For each topic, details of the theory are presented, and
many examples of when and how the models can be applied to
solve real problems are shown. As sometimes the theory can seem
abstract, I have included a large number of code examples (mainly
in the scripting language Python) illustrating in a concrete way
the essence of the equations. All of the code is provided on the
website for the book: http://PolymerMechanics.com.

The overall goal for this book is to provide essential informa-
tion about how different polymers behave and how their mechan-
ical response can be represented in a finite element simulation.

xiii



xiv Preface

This field of research is now sufficiently mature that virtually all
polymers can be accurately simulated, if you use an appropriate
material model. Finally, as I say at the end of all my classes, I
work in this field because I really enjoy it. I encourage you to
reach out to me if you have any questions or comments.

Jörgen Bergström, Ph.D.
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1.1 Introduction

Polymers are a broad class of materials that include traditional
engineering materials such as elastomers (rubbers), thermoplas-
tics, and most types of adhesives. In addition to these man-
made materials, many natural and biological substances are also
polymers, for example, DNA, protein, skin tissue, hair, and many
more. Although these materials clearly behave differently from
each other—based on our every-day experience—they have many
important features in common with respect to their mechanical
response. The goal of this text is to outline these character-
istic features, and specify different ways that the mechanical
response can be predicted using analytical or computational
tools.

Before embarking on a detailed discussion of these topics
it is useful to have a basic understanding of the history of
polymeric materials, and knowledge about the fundamentals of
polymer processing and polymer mechanics. This chapter lays
the foundation for the analysis that will follow and presents
definitions and terminology that are needed for the following
discussions.

Mechanics of Solid Polymers.
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2 Mechanics of Solid Polymers

1.2 What Is a Polymer?

To answer this question it is enlightening to first ask the
complimentary question: what is not a polymer? It turns out that
all solid materials can be classified into one of three basic types:
metals, ceramics, or polymers. In addition to these basic material
types, there are also two groups that can be considered subsets
or combinations of these types: composite materials and semi-
conductors.

Let us start by considering metals: a metal is a material in which
the atoms are held together by metallic bonds (Figure 1.1). It is the
delocalized electrons and the strong interaction forces between
the positive atom nuclei that give the characteristic response
of metals, such as good thermal and electrical conduction. The
metallic bonds allow for relative sliding of large groups of atoms,
enabling plastic deformation and ductility [1].

Similarly, a ceramic material can be defined as a material in
which the atoms are held together by ionic bonds created by
positive and negatively charged ions (Figure 1.2). Many ceramic

Valence electrons

Ion cores

Figure 1.1 The atoms in a metal are held together by metallic bonds.
The valence electrons are released from the atom nuclei and form
an electron cloud.
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Figure 1.2 In a ceramic material, the atoms are held together by ionic
bonds created by charged ions.

materials have excellent stiffness and compressive strength prop-
erties, particularly at high temperatures [2]. In ceramic materials,
the electrons are tightly held giving poor conduction of heat and
electricity.

The third major material type is polymers. As an informal
definition, a polymer is a material with many different length
scales (Figure 1.3).

On the most local scale, the atoms are arranged into monomer
units and bonded together using covalent bonds. The monomer
units are then connected into long chain-like structures. The
different macromolecules (sometimes called chain molecules) can
be arranged into a network structure by crosslinks or entangle-
ments, and they interact by weak van der Waals forces. The
atoms of the polymer backbone are held together by covalent
bonds that share electrons between atoms resulting in very strong
bonds with very little electron mobility (Figure 1.4). Polymers
are therefore typically poor conductors of heat and electricity.
The weak bonds between the molecules create very interesting
mechanical properties characterized by low stiffness and high
ductility. The details of these characteristic behaviors and how
they can be modeled are given in the following chapters of
this book.
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(a) (b) (c)

Figure 1.3 The microstructure of a polymer contains many different
length scales. On the most local level, the atoms are arranged into
monomer units (a). The monomers are linked into chain molecules (b),
which form a macromolecular network (c).

CarbonH

H

H

HH

Carbon

H

Figure 1.4 The atoms in a polymer molecule are held together by
covalent bonds.

1.3 Types of Polymers

Due to the wide variety of polymers and polymer behaviors
it is often useful to categorize polymers into different groups.
One approach is to distinguish between natural polymers and
synthetic polymers (Figure 1.5). Natural polymers, also called
biopolymers, include a vast selection of materials. For example,
all plants and animals are largely made from biopolymers. Plants
are typically made from cellulose (e.g., cotton and wood) or starch
(e.g., potatoes and carrots) both of which are polysaccharides.
Another common natural polymer is protein, which is formed
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 Natural polymers

Cellulose Polypropylene
Polyethylene
Polyvinyl
chloride
Polyester
Polystyrene

E.g.: E.g.:

Starch
Protein
DNA
Enzymes

Polymers

Synthetic polymers

Figure 1.5 Examples of natural and synthetic polymers.

from amino acids. Other examples of biopolymers are: DNA,
RNA, peptides, enzymes, skin, hair, silk, and chitin. Man-made
polymers, also called synthetic polymers, include most traditional
engineering polymers such as polypropylene (PP), polyethylene
(PE), and nitrile rubber.

Another useful approach to categorize polymers is to dis-
tinguish between thermoplastics and thermosets (Figure 1.6).
A thermoplastic is a polymer that is not permanently crosslinked
and that softens and can be reshaped when heated. Thermoplastics
can generally be exposed to repeated temperature cycles without
undergoing significant degradation, making them suitable for
recycling. A thermoset is a polymer that is crosslinked (cured)
through the addition of energy, typically in the form of heat or
irradiation. During the curing process the macromolecules are
crosslinked and permanently included in a molecular network
structure. Thermosets are generally stiffer and stronger than
thermoplastics, but cannot be reshaped or melted.

A third way to distinguish polymers is to separate amorphous
and semicrystalline polymers (Figure 1.7). The polymer
molecules in an amorphous polymer form an entangled network
that is characterized by randomness and lack of long-range
structure. In a semicrystalline polymer, parts of the molecular
structure are crystalline and other parts are amorphous. The
crystalline structure is typically considered to consist of layered
lamellar crystals (Figure 1.8). One a larger scale, the amorphous
and crystalline phases often aggregate to form supramolecular
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Polymers

Thermosets

Polypropylene

Polyethylene

Polyvinyl chloride

Polystyrene

Enzymes

E.g.: E.g.:

Urea formaldehyde

Melamine formaldehyde

Epoxy

Polyester

Phenolic resins

Thermoplastics

Figure 1.6 Examples of thermoplastics and thermosets.

Polymers

SemicrystallineAmorphous

PolyethylenePolystyrene
Polyethylene terephthalate
Polypropylene
Polyamide
Polytetrafluoroethylene

E.g.:E.g.:

Polymethyl methacrylate
Polycarbonate
Polyvinyl chloride
Natural rubber

Figure 1.7 Examples of amorphous and semicrystalline polymers.

Tie molecule

Lamellar

fibrils

Amorphous

region

(b)(a)

Figure 1.8 (a) Crystallizing polymers from layered structures called
lamellae; (b) spherulines are supramolecular structures containing
both lamellae and amorphous tie regions.
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spherulites. When the crystallization occurs in the absence of flow
or mechanical deformation, spherulites is the most common form
of the crystal structure. The kinetics of polymer crystallization
if very complex and still an active area of research. Amorphous
and semicrystalline polymers often exhibit different mechanical
behavior. Semicrystalline polymers have a true melting tem-
perature (Tm) at which the crystalline domains break up and
become disordered. Amorphous polymers do not have a melting
temperature but softens significantly above their glass transition
temperature (Tg). At temperatures above Tg, large segmental
motions are activated and the polymer starts to behave liquid-like.

During the last few years it has started to become more
important for the polymer industry to provide products that
are sustainable and bio-friendly [3]. This trend is driven by
a global drive and emphasis on sustainable technology. There
are currently many different polymer products available that are
based on renewable resources and that are easily recyclable and
renewable. Polylactic acid, PLA, is one example. This polymer is
synthesized from corn, and it biodegrades after use if composted.
In many applications, PLA is an alternative to PET and PVC,
and it is currently used, for example, in candy wrap, optical
films, and shrink labels. The main disadvantages of PLA include
slightly higher density and a higher price than some traditional
engineering polymers.

1.4 History of Polymers

Since all biological tissues are polymers (e.g., skin tissue,
cartilage, tendons, etc.), the history of polymers is as old as the
history of these materials. Estimates indicate that the age of these
materials are millions of years old [4]. Natural evolution for this
time period has led to very specialized biopolymers with truly
amazing mechanical properties that often even today are difficult
to match or replace by synthetic polymers (Table 1.1).

Natural polymers are not only occurring as biological tissue,
but also as cotton, starch, and cellulose. For example, it has been
know for about 500 years that Hevea brasiliensis produces a
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Table 1.1 Brief Summary of the History of Polymers [5–7]

Date Polymer Development

1500s British explorers find Mayan civilizations that use
natural rubber from rubber trees

1839 Charles Goodyear discovers vulcanization of natural
rubber by adding sulfur and heating to 130 ◦C
(270 ◦F)

1862 Alexander Parks invents the first man-made polymer,
named Parkesine

1907 Leo Bakelite invents bakelite, the first completely
synthetic plastic. This material is a stiff thermoset
polymer with good heat resistance, useful for
electrical insulation

1925 X-ray crystallography shows, for the first time, that
polymers are made of long macromolecules

1927 Large-scale production of PVC begins

1930 Polystyrene (PS) is invented

1933 Polyethylene (PE) is invented

1938 Polyamide and fluoropolymers are invented
at DuPont

1971 Kevlar is invented

1976 Polymers surpass steel as the most used engineering
material by volume

Late 1970s Conductive polymers are invented

Early 2000s Use of synthetic polymers in biomedical applications

substance with quite useful properties. This material, also known
as natural rubber, was known by the Mayan civilization to be a
useful material for making tools and games.

It was not until 1839, when Charles Goodyear discovered vul-
canization, that natural rubber became an important engineering
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material. Vulcanized natural rubber has very good elastic and
resilient properties, and it still remains one of the most useful
and important rubbers for industrial applications. For example,
car tires typically contain a large volume fraction of natural
rubber. The first man-made polymer was developed by Alexander
Parks in 1862. He developed an organic material, referred to as
Parkesine, which could be reshaped when heated and remained
stiff when cooled. The material, however, was not a big hit due to
its high cost. The first completely synthetic polymer was Bakelite,
developed by Leo Bakelite in 1907. This material provided
significant advantages over many other contemporary materials
due to its good electrical insulating properties and ability to be
molded into complicated shapes. It is interesting to note that the
macromolecular microstructure of polymers was not understood
until 1925. Before that time, different theories had been presented
related to what caused the interesting behavior of Bakelite, but
the microstructure was not known. After this discovery, and the
realization that it is the macromolecular structure that creates the
unique behavior of polymers, a large number of common tradi-
tional engineering polymers were developed during the following
10 years. For example, PVC, PS, PE, Nylon, and PTFE were
discovered during the late 1920s and during the 1930s. Since that
time the use of polymers has continued to grow, and the number of
different engineering polymers has continued to increase. Some
of the new materials have focused on improved performance.
For example, polyethyleneimine, PEI, and polyether ether ketone
(PEEK) are polymers with high thermal stability, strength, and
stiffness.

One interesting milestone was passed in 1976 when the pro-
duced volume of polymers for the first time exceeded the pro-
duced volume of steel. Since then, the polymer use and tech-
nology has continued to grow. For example, the first conductive
polymer was discovered in the late 1970s. Conductive polymers
are important because they can potentially be used to create
lightweight batteries, solar cells, etc. During the last few years
synthetic polymers have started to be used in biomedical ap-
plications. Artificial skin and bone, drug delivery devices, and
scaffolds for growing transplant implants are just a few examples.
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Also, recently a significant effort has been directed toward
improving the sustainability of polymer materials to make them
bio-friendly. For example, there are thermoplastic elastomers
that do not require aggressive chemistry during crosslinking.
Another recent development of high importance is the discovery
of conducting polymers. By combining the traditional strengths
of polymers: low cost and easy manufacturing; with conductive
properties it is possible to create organic light-emitting diodes
(LEDs), lasers, and many other unique products.

The bulk of the produced polymers today are traditional en-
gineering polymers (Table 1.2). The polymer with the highest
production volume is polypropylene (PP). The polymer with
the second highest production volume is HDPE. However, if
the different types of PE (i.e., HDPE, LLDPE, and LDPE) are
combined, then they constitute about half of the total production
volume. Today polymers are ubiquitous, and one of the most
important materials in our everyday life.

Table 1.2 Production Volume of Different Polymers in North
America During 2003 [5, 6]

Resin Production Volume (kg)

Polypropylene (PP) 8.0 × 109

High density PE (HDPE) 7.1 × 109

Polyvinyl chloride (PVC) 6.7 × 109

Linear low density PE (LLDPE) 5.0 × 109

Natural rubber (NR) 4.9 × 109

Styrene-butadiene rubber (SBR) 3.8 × 109

Thermosets 3.7 × 109

Low density PE (LDPE) 3.5 × 109

Thermoplastic polyester 3.4 × 109

Polystyrene (PS) 2.9 × 109

Acrylonitrile butadiene styrene (ABS) 0.5 × 109

Polyamide (Nylon) 0.5 × 109



1: Introduction and Overview 11

1.5 Polymer Manufacturing and Processing

Many different manufacturing procedures can be used to create
man-made polymer materials and products. The macromolecular
structure of the raw material is created by chemically joining
together monomers either by addition polymerization or conden-
sation polymerization.

In addition polymerization molecules with double or triple
chemical bonds are linked together into macromolecules. The un-
saturated monomers are linked up with other monomers to create
the molecular chains. This type of polymerization is typically
used to create polyethylene, propylene, and polyvinylchloride.
The reactions are carried out in the presence of a catalyst that
also can influence the structure and organization of the material.

Condensation polymerization is based on a different mech-
anism in which monomers bond together by condensation re-
actions. The chemical reactions are typically achieved through
alcohol, amine, or carboxylic acid functional groups. In each step
of this process a simple compound, often water, is formed. This
process is used when amino acids link up to form proteins. It is
also the way in which Kevlar is formed.

The required processing to create final products of the poly-
meric raw materials is an important field that has been extensively
studied [8–15]. Some of the more common processing operations
are: blow molding, extrusion, fiber spinning, filament winding,
film blowing, injection molding, pultrusion, reaction injection
molding, spin coating, and transfer molding. Further information
on these processing operations can be found in numerous text-
books geared toward the specific subject matter.

1.6 Polymer Mechanics

The previous few sections have presented different aspects of
polymer history, chemistry, and manufacturing. This section gives
an overview to the main topic of this book: polymer mechanics.
By definition, polymer mechanics involve the mechanical behav-
ior of solid polymers. This field of study can be divided into
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many different subtopics. The following are examples of common
questions that a polymer mechanist is often interested in:

• What are the different ways a particular polymer can
behave in a certain load environment?

• What is the best way to experimentally characterize
the mechanical response of a polymer?

• How well will a certain polymer product behave?
How can the performance be improved?

• Which polymer is most appropriate for a given appli-
cation?

In order to address these questions, it is important to understand
the connection between polymer material, processing conditions,
material microstructure, and load environment; and how all of
these factors influence the performance of the polymer product
(Figure 1.9).

One topic of polymer mechanics involves the tools and tech-
niques that are used for experimental characterization of poly-
meric materials. Another and complimentary topic is related to
theoretical predictions, either by traditional analysis or computer

Material
Load

environment

Processing

Performance

Microstructure

Figure 1.9 The performance of a polymer product is governed by the
material type, the processing conditions, the material microstructure,
and the applied load environment.
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simulations. Due to the complexity of the polymer microstruc-
ture, the use of computer simulations is becoming increasingly
important when studying the behavior of solid polymers. This
approach to study the material response is often called computer
experiments due to the possibility to replace time-consuming and
costly physical experiments with computer simulations.

The goal of polymer mechanics is to develop an understanding
of the mechanical behavior of polymers and to develop tools
for predicting the observed mechanical response of polymers in
different load environments. In this context, polymer mechanics
is not directly involved with the chemistry behind how polymers
are created, or the processing steps that are needed to create a
polymer component. The main reasons for this distinction are that
the chemistry and rheology involved in the manufacturing process
are significantly different topics than the study of the mechanics
of solid polymers. Polymer production, manufacturing, and pro-
cessing are discussed in depth in many textbooks [8–16].

Polymers, due to their molecular structure, exhibit many dif-
ferent types of phenomena when exposed to normal loading
environments. Some of the more common behaviors are listed in
Figure 1.10.

Deformation

Environmental conditions

Temperature

Creep

Stress relaxation

Texture development

Yielding

Plastic flow

Crazing

Fracture

Rupture

Wear

Fatigue

Force

Applied Loads Experimental behaviors

Viscoelastic flow

Environmental degradation

Figure 1.10 The response of polymers when subjected to external
loads can be of many different characteristic types.
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As illustrated in this figure, the response of polymers can take
many different forms when exposed to an external load environ-
ment. Some of the more common and important behaviors are:
creep, stress relaxation, anisotropy, texture development, yield-
ing, plastic flow, viscoelastic flow, environmental degradation,
crazing, fracture, rupture, wear, and fatigue. The goal of this book
is to address these issues. Specific emphasis will be placed on
why these phenomena occur, and how they can be predicted and
computationally modeled.

There are two types of modeling approaches that aim at
capturing these phenomena. The first approach, and the classical
approach, is to use a phenomenological experience-based model.
As an example consider an attempt to predict the tensile failure of
polycarbonate under monotonic uniaxial loading. By performing
a sufficient number of experimental tests it might be possible to
prove a significant correlation between the Mises stress and the
observed onset of failure. A polymer mechanist might then take
this as in indication that Mises stress is a good failure predictor
for polycarbonate, using the hypothesis that failure occurs when
the Mises stress in a specimen (obtained either by Finite Element
Modeling (FEM) or direct closed-form calculations) exceeds the
critical Mises stress, where the critical Mises stress is a material
parameter. The astute reader may realize that this may not be a
good model. For example, can this failure criterion be used if the
polymer component was deformed 100 times faster? What if the
temperature is different? What if the component is deformed in
simple shear to failure? Is the Mises stress criterion still valid un-
der these conditions? All of these questions are serious and need
to be carefully addressed before the proposed failure criterion can
be considered a general failure criterion. This highlights the main
limitation of phenomenological models:

A phenomenological model is strictly only applicable for the
exact loading conditions for which it was validated.

This limitation is often somewhat neglected in industrial set-
tings where the need to reach an answer in a short amount of time
and with a limited budged is often driving the analysis.
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The second modeling approach for capturing polymer mechan-
ics phenomena is to use a micromechanical model. Microme-
chanical models, by definition, are models that use information
and knowledge about the microstructure of the material as the
basis for the model. Imaging for a moment that we have a model
that relates the applied deformation to the average molecular
chain stretch on a molecular level. That model would then be
more reliable for predicting the response in general loading
modes and temperatures. Micromechanical models are almost
always preferred over phenomenological models, but due to the
complexity of the deformation characteristics of the molecular
microstructure it is often very difficult to develop models that
are purely micromechanical. The idea of the micromechanical
models is to bridge different length scales: if we understand the
mechanisms driving the deformation behavior on a micro (or
nano) scale, then how can we use that information to predict
the behavior on a macro or continuum scale? Due to the chal-
lenge of translating information from different length scales, a
number of models have been developed that combine elements
from the micromechanics of deformation and phenomenological
approaches. These models are often called micromechanism in-
spired models and are currently for some of the phenomena pre-
sented in Figure 1.10 the most accurate approach that is currently
available.

The remaining chapters of this book address these different
aspects of polymer mechanics, demonstrating when the different
phenomena occur and how they can be predicted.

1.7 Exercises

1. What are the three major classes of solid materials?
2. How do you define a polymer and what makes a polymer

unique?
3. Give a few examples of different polymers.
4. When was the first man-made polymer created?
5. What are the two major ways in which polymer materials

can be created?
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6. If a polymer product is exposed to an external load
environment, what are the different ways in which the
polymer might behave?

7. What are the differences between a phenomenological
and micromechanical model?
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2.1 Introduction

One of the key components of polymer mechanics is experi-
mental material characterization. Polymers, due to their macro-
molecular structure, exhibit not only a wide range of different
behaviors but also rapid changes in behavior for limited varia-
tions in load environment and temperature. At low temperatures
(relative to the glass transition temperature), polymers behave as
stiff solids that if deformed enough start to undergo viscoplastic
deformation. At temperatures in the vicinity of the glass transition
temperature, polymers typically exhibit a leathery or rubbery
response. At high temperatures, above both the glass transition
temperature and the melting temperature, the response is viscous
and liquid-like if the polymer is uncrosslinked, rubbery if the ma-
terial is weakly crosslinked, and stiff viscoelastic if the material
is highly crosslinked. It is important to understand and be able to
experimentally determine these characteristic behaviors, and this
is the topic of Section 2.2 of this chapter.

Experimental testing can be performed for different reasons.
One common reason is to obtain enough information to calibrate
one or more material models. Another reason is to obtain infor-
mation related to when and how a material fails; that is, to obtain
information for failure model calibration. Sometimes testing is
also performed for quality control purposes, or to characterize
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certain aspects of the material response or structure. The focus
of this chapter is on experimental testing for material model and
failure model calibration, and also on validating already calibrated
models. There is an almost unlimited amount of different testing
techniques that are available for this purpose, and this chapter is
simply focused on presenting some of the more commonly used
and some of the most useful methods.

An experimental test program for material model calibration
typically consists of multiple individual experiments, each of
which is performed in a specific loading mode, with a specific
applied stress/strain load history, in a given temperature environ-
ment. Figure 2.1 shows a schematic representation of an exper-
imental test program and how it connects to finite element (FE)

(Temperature, humidity, etc)

One experimental test series

.

(tension, compression, shear, etc.)

Number of  repeated tests

Load and boundary

conditions

Environmental conditions

Applied load history

(monotonic to failure, load unload
cycles, etc.)

Figure 2.1 An experimental testing program consists of multiple
individual experiments each of which needs the specification of the
loading mode, the applied load history, the environmental conditions,
and the number of repeated tests.
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investigations. Much of the materials covered in this chapter are
targeted to how to properly design an experimental test program
for the purpose of material model calibration and validation.

Another aspect of polymer characterization is related to the
morphology of the material, either for a surface or for the bulk
volume. Experimental techniques designed for this purpose are
discussed in Sections 2.4 and 2.5, respectively. The goal of these
experimental characterization techniques is to probe or investi-
gate different aspects of the microstructure of the material. For
example, the presence of microcracks, the degree of crystallinity,
and the type of crystal structure can all be examined using these
techniques.

The last section of this chapter (Section 2.6) discusses chemical
characterization techniques that are useful for polymers. The
results from these techniques are not useful for phenomenological
polymer mechanics modeling, but can be very useful and
informative in experimental studies of for example fatigue, and
material degradation. These chemical characterization techniques
are also immensely important in polymer failure analysis. When
faced with mechanical failure or fracture of a polymer product,
one of the first investigations that is often done is to make sure
the polymer that was used in the product was of the right type,
and that the molecular structure of the polymer was what it was
supposed to be. The chemical characterization techniques can
answer these questions. The information obtained through chem-
ical characterization can also be used to better understand the
mechanical behavior of polymers on a microlevel, and as will be
discussed in Chapter 8, is useful for developing micromechanical
models.

2.2 Mechanical Testing for Material
Model Calibration

The most common method to experimentally characterize the
mechanical response of a polymer involve mechanically loading a
polymer component or test specimen, and measuring the resulting
force and displacement response. There are many different ways
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this can be performed. This section summarizes some of the more
common experimental characterization techniques.

One of the most basic mechanical tests—perhaps even the
most important polymer mechanics test—is a test designed to
determine the stress-strain response of a given polymer. The
stress-strain response will dictate the deformation characteristics
of the polymer in its intended application, and is therefore a key
component for quantifying not only the deformation behavior
but also fatigue and fracture resistance. As discussed above, one
complication for polymers is that the stress response during an
imposed deformation history is strongly dependent on the mate-
rial, the applied rate of deformation, and the temperature. These
factors all play an important role when designing or choosing a
mechanical test for polymers. The influence of temperature, in
particular, has utmost influence on all aspects of the mechanical
response of polymers. One way this is often presented is in terms
of the dependence of the material stiffness (Young’s modulus) on
the temperature, see Figure 2.2.

Melting
temperature, Tm

Temperature

Viscous regionRubbery regionGlassy region

lo
g 

E

Semi crystalline

Amorphous

Glass transition
temperature, Tg

Figure 2.2 Dependence of the Young’s modulus on the temperature
for different classes of polymers.
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For example, the glass transition temperature for PET is about
70 ◦C (343 K) and the melting temperature is about 250 ◦C
(523 K), so at room temperature this polymer will already be at
85% of its glass transition temperature, and 56% of its melting
temperature. The thermal activation barrier to viscoelastic and
viscoplastic flow is therefore small in many normal applications,
resulting in a complicated macroscopic response when exposed to
external loads.

In a broad sense, the stress-strain response of polymers can be
divided into three different categories, each with its own distinct
features: (1) deformation of elastomers and thermoplastic elas-
tomers (TPE); (2) deformation of thermoplastics below the glass
transition temperature; and (3) deformation of highly crosslinked
thermosets. Characteristic experimental features of these dif-
ferent categories are illustrated in Figures 2.3, 2.4, and 2.5,
respectively.

2.2.1 Uniaxial Compression Testing

The most common method to experimentally determine the
stress-strain response of a material is to perform uniaxial ten-
sion or compression tests. In these tests, the test specimen is
loaded in a designated test machine using grips for tension tests,
and compression platens for compression tests. The specimen
deformation is typically measured using an extensometer or
strain gauge, either contacting the specimen or by using optical
techniques.

Both uniaxial tension and uniaxial compression tests have
strengths and limitations. For the uniaxial compression tests,
the interface friction between the test specimen and the loading
platens can cause a nonhomogeneous deformation state, often
indicated by barreling of the test specimen, see Figure 2.6.

This figure shows FE predictions of both the deformed shape
and the change in the measured engineering stress as a function of
the friction coefficient and the applied strain. The initial diameter
of the test specimen that was used in the virtual experiments
was 28.6 mm and the initial height was 12.5 mm. These values
follow the recommendations in ASTM D575 [1]. A Neo-Hookean
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Figure 2.3 Characteristic stress-strain response of elastomers loaded
above the glass transition temperature.

material model with a shear modulus of 2 MPa and a bulk
modulus of 200 MPa was used to represent the polymer. The
results clearly show that significant barreling can occur even when
the friction coefficient is as low as 0.1, and the error in the stress
is not trivial for finite strains.

The error in the stress predictions can be obtained by compar-
ing the results from the case with friction to the case without
friction. The relative error in the predictions from this test case
is plotted in Figure 2.7 showing that the error is almost linearly



26 Mechanics of Solid Polymers

Figure 2.4 Characteristic stress-strain response of thermoplastics
below the glass transition temperature.

depend on the friction coefficient and weakly dependent on the
applied strain.

The stress and strain inside the test specimen becomes in-
homogeneous when there is a nonzero friction coefficient. As
an example, Figure 2.8 shows a cut through a specimen with a
diameter of 28.6 mm and a height of 12.5 mm (Following ASTM
D575 [1]) that was compressed to an engineering strain of −0.3
with a friction coefficient of 0.1. In this case, the max Mises stress
is about 4.5 times higher than the lowest Mises stress, which is
quite substantial.
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Figure 2.5 Characteristic stress-strain behavior of thermosets.

One way to reduce the influence of the interface friction is to
make the specimen height/diameter ratio larger. Figure 2.9 shows
the results from virtual experiments of specimens with different
heights but the same diameter. In this case, the relative error in the
stress measurement goes down from 11.5% to 3.5%, at an applied
strain of −0.2, if the specimen height to diameter ratio increases
from 0.44 to 1.31. It is important, however, not to make the test
specimen too tall since that can cause a buckling instability during
the compression testing.

Interface friction in a compression experiment influences not
only the stiffness during monotonic loading but also the stress
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Figure 2.6 3D FE results showing the influence of interface friction
on the deformed specimen shape and the stress-strain response. The
polymer was modeled using a Neo-Hookean material model with a
shear modulus of 2.0 MPa and a bulk modulus of 20.0 MPa.

response during unloading. This effect especially changes the
response during the initial unloading part of an experiment. This
behavior is examined using FE-based virtual experiments summa-
rized in Figure 2.10. As shown in the figure, a simple hyperelastic
Neo-Hookean material dissipates energy during cyclic loading
when there is interface friction, and a nonlinear viscoelastic ma-
terial, here represented using the Bergstrom-Boyce (BB) model,
changes its behavior during the loading phase and during the
initial part of the unloading. The frictional effects specifically
increase the slope of the stress-strain curve right after unloading.
This behavior is easy to misinterpret as an indication of a Mullins
(or other) damage mechanism, but can simply be a consequence
of the interface friction.

To reduce the amount of barreling it is common to lubricate
the interface between the specimen and the loading platens,
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Figure 2.7 FE results showing the influence of interface friction on
the predicted error in the measurement results. The polymer was
modeled using a Neo-Hookean material model with a shear modulus
of 2.0 MPa and a bulk modulus of 20.0 MPa.

for example by a nonaggressive oil or liquid soap [2]. Another
alternative is to use PTFE sheets at the interfaces [2, 3].

If the purpose of the experimental testing is to obtain suitable
experimental data for material model calibration, then it is still
possible to use compression data as long as the friction coefficient
is known or can be estimated. In this case, the material model
calibration is best performed using FE simulations of the actual
experiments that were formed. This topic is discussed in more
detail in Chapter 9.

2.2.2 Uniaxial Tension Testing

In uniaxial tension testing, the loading grips will always in-
troduce stress concentrations in the part of the specimen that is
close to the gripped regions. To reduce the influence of these
stresses the test specimens are typically given a dog-bone shape.
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Figure 2.8 Predicted contours of Mises stress. The polymer was
modeled using a Neo-Hookean material model with a shear modulus
of 2.0 MPa and a bulk modulus of 20.0 MPa. Applied engineering
strain = −0.3, friction coefficient = 0.1.

This specimen design will create an almost uniform uniaxial
deformation and stress state in the central gauge region of the
specimen. Details of recommended test specimen geometries
are given in different standards [4–6]. Figure 2.11 shows the
distribution of Mises stress in an ASTM D638 Type IV specimen
pulled in tension to a true strain of approximately 15%. In this
case, the test specimen was represented using a Neo-Hookean
material model with a shear modulus of 2 MPa and a bulk
modulus of 200 MPa. The green region in the figure has a stress
that is varying less than 1%.

One complication that can occur with dog-bone shaped speci-
men during tensile loading is necking. This is a phenomenon that
is important to be aware of since it creates an inhomogeneous
deformation state in the specimen, and hence makes it difficult
to extract the actual stress-strain response unless the localized
deformation state is directly measured using, for example, digital
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Figure 2.9 FE results showing the influence of specimen height to
diameter ratio on the measurement results. The polymer was modeled
using a Neo-Hookean material model with a shear modulus of 2.0 MPa
and a bulk modulus of 20.0 MPa.

image correlation. The mathematical details of necking are given
in Figure 2.12. As is shown in this figure the traditional condition
for necking is the following:

dσ eng

dεeng
= 0. (2.1)

That is, if there is a peak in the engineering stress versus
engineering strain curve then the specimen may neck. In practice,



Figure 2.10 FE results showing the influence of interface friction on
the predicted stress-strain response during both loading and
unloading. The frictional forces influence both the tension and the
compression responses.
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Figure 2.11 Stress distribution inside an ASTM D638 Type IV
specimen pulled in tension to a true strain of about 15%. The material
was represented using a Neo-Hookean material model with a shear
modulus of 2.0 MPa and a bulk modulus of 200.0 MPa.
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eng eng

Figure 2.12 Necking of test specimens in uniaxial tension.

however, a small drop in the engineering stress may not lead to a
visible neck in tension specimen.

Figure 2.13 shows the progression of the necking from a virtual
experiment. In this case, a material model with strong stress
softening after yielding was selected using the Parallel Network
Model from the PolyUMod library (see Section 8.7). The ASTM
D638 Type IV specimen was then simulated with that material
model. As shown in the figure, the necking starts relatively early
and a stable neck is then propagated along the gauge section of
the specimen until it has reached a maximum length. At that time
the total force starts to increase again.

Note that only some polymer neck when loaded in tension.
For example, elastomers do not neck, LDPE and HDPE undergo
necking, but UHMWPE does not neck.

If the purpose of the experimental testing is to obtain suitable
experimental data for material model calibration, then it is still
possible to use tension data with necking as long as experimental
setup is simulated as part of the calibration procedure. This topic
is discussed in more detail in Chapter 9.

2.2.3 Plane Strain Tension

One relatively common loading mode for elastomers is plane
strain tension. In this test, a wide sheet of material is pulled in
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Figure 2.13 Necking of an ASTM D638 IV test specimen pulled in
uniaxial tension. The material was modeled using the specified Parallel
Network Model.
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Figure 2.14 Schematic figure showing a plane strain tension
specimen.

tension, see Figure 2.14. The general guideline is for the specimen
width to be at least 10 times wider than its height. By having a
wide specimen, the in-plane displacements will be mainly along
the loading direction (and through the specimen thickness). This
will ensure that the deformation state is close to plane strain.

In plane strain loading, since there is no contraction of the
specimen its width direction, the thickness strain will be similar
in magnitude to the applied axial strain (as long as the material
is almost incompressible). As an example, if the applied axial
(true) strain is 50% then the strain through the thickness will
be approximately −50%. Even if the specimen is gripped with
platens that apply a constant pressure, the specimen will thin
down at the interface line with the platen edge causing an effective
specimen length that increases with the applied strain. Due to this
effect it is important to measure the effective axial strain in the
center of the specimen. This can be achieved by using a laser
extensometer or a digital image correlation strain measurement
system.

The influence of the specimen width on how close the defor-
mation state is to the desired plane strain deformation state is
examined in Figures 2.15 and 2.16. These figures show the results
from an FE study that is using one-eighth symmetry, and a Neo-
Hookean material model with a shear modulus of 2 MPa and a
bulk modulus of 200 MPa. In the simulation, the specimen was
gripped using an analytical rigid surface that was pushed against
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Figure 2.15 Influence of specimen width on the stress-strain
response.
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Figure 2.16 Contours of vertical stress in a plane strain test specimen
that is 10 times wider than its initial height. The applied engineering
strain (at the crosshead) is 0.8.
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the specimen with a force per grip length of 10 N/mm. The friction
coefficient between the specimen and the simulated loading platen
was 1.0.

The thick red line in this figure shows the true plane strain
response, the blue line shows the response if the specimen is
2.5 times wider than its initial height, the green and the black
lines show the response for 5 and 10 times wider than the initial
height. The FE results show that having a specimen width of
only 2.5 times the initial height is not sufficient for introducing
a mainly plane stress-strain state, and that if the width is 5 or 10
times the initial gauge section length then the determined stress
will have an error that is less than 9% at an applied effective
strain of 50%.

One other experimental complication of the plane strain tension
test is that it is often necessary to grip the specimen relatively tight
in order to avoid specimen slippage at the grips. This can cause
a stress concentration close to the grips, and since the specimen
is not dog-bone shaped, may influence the stress and strain state
inside the specimen.

2.2.4 Simple Shear Testing

As will be discussed in Chapter 5, most finite strain material
models for polymers divide the mechanical response into distinct
shear and volumetric behaviors. Based on this decomposition of
the deformation it is sometimes desirable to directly measure
the shear response of a material. This can be achieved, for
example, by performing torsion experiments. But since torsional
test machines are still relatively uncommon, it is valuable to
be able to determine the shear response using a more common
uniaxial loading machine. A frequently used technique to measure
the shear response is to use a single-lap or double-lap shear setup,
as shown in Figure 2.17.

The results from single- and double-lap shear experiments can
be quite different. The single-lap shear test is not self-centering
and the top and bottom regions need to be tightly gripped in order
to avoid specimen rotation which will result in a deformation
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Figure 2.17 Schematic figures of single-lap and double-lap shear
specimens. The dark blue regions are the test specimens.

state that is not consistent with simple shear. The symmetry of
the double-lap shear test removes most issues related to specimen
rotations, and because of that it is usually easier to both grip and
run a double-lap shear test.

To get a deformation state that is mostly simple shear, and that
is defined by the deformation gradient

F =
⎡
⎣1 γ 0

0 1 0
0 0 1

⎤
⎦ , (2.2)

where γ is the applied displacement divided by the specimen
thickness, it is important that the thickness of the specimen is
small relative to the two other in-plane dimensions.

Figure 2.18 shows the results from an FE study aimed at
examining the error that can be expected in a simple lap or
double lap shear experiment. In this case, the specimen is as-
sumed to have a base area of 10 mm × 10 mm, and different
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Figure 2.18 FE results showing the influence of specimen
dimensions on the simple shear stress. Neo-Hookean material model
with a shear modulus of 2 MPa and a bulk modulus of 200 MPa.

specimen heights (thicknesses) were examined. The material was
represented using a Neo-Hookean hyperelastic model with a
shear modulus of 2 MPa and a bulk modulus of 200 MPa. The
specimen was assumed to not rotate during the loading, and the
specimen was assumed to be perfectly bonded to the loading
platens.

The results from the study show that the accuracy is increased
(and the loading mode more similar to simple shear) for spec-
imens with a small height to base width. As an example, if
the specimen width (and depth) is five times larger than the
specimen height, then the error in the predicted shear stress is
about 2.5%.
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2.2.5 Impact Testing

In the traditional experimental stress-strain tests, discussed in
Sections 2.2.1–2.2.4, the test specimens are typically loaded at
a quasi-static rate. In many real applications, however, polymer
components are often exposed to rapid impact loads: for example,
impact after free falling, or direct blows or collisions. The pur-
pose of performing mechanical impact tests is to simulate these
conditions more directly and to examine the mechanical behavior
of polymers under impact conditions.

Two commonly used impact testing methods for polymers are
the Izod and Charpy tests. Both the Izod and the Sharpy tests are
performed using a pendulum impact machine, see Figures 2.19
and 2.20.

Figure 2.19 Typical analog (noninstrumented) impact testing machine.
(Reproduced with permission from Qualitest, www.WorldofTest.com.)
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Figure 2.20 Test specimen geometry used in Sharpy and Izod impact
testing.

In the tests, the specimen is positioned in a vice, and the
pendulum hammer is released from a predefined height. The
residual kinetic energy in the hammer after the specimen has been
broken carries the hammer upward to a final location. The energy
required to break the specimen can be directly obtained from the
initial drop height and the final drop height. The impact tests are
routinely performed over a wide temperature interval to examine
ductile-brittle transitions. The tests are also often performed
with different specimen geometries, and with specimens with or
without notches.

There are two basic ways in which the impact tests can be
performed: noninstrumented or instrumented. A noninstrumented
impact test only measures the energy required to break the
specimen, whereas an instrumented impact test also measures
the force history during the impact, see Figure 2.21. In the
instrumented impact tests, the pendulum’s hammer is equipped
with a load cell, and the impact data are stored using a high-
speed data acquisition system enabling extraction of not only the
energy required to cause failure but also force and velocity as a
function of time. This measured force can be used to distinguish
between brittle and ductile fracture, and can be used to extract
information about the required energies for crack initiation and
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Figure 2.21 Schematic test results from an instrumented Izod or
Sharpy impact test.

crack propagation. Note that the most commonly used impact-test
standards do not call for instrumentation [7, 8].

Due to the complicated evolution in multiaxial stress and strain
during the impact event, the results from these impact tests are
typically not useful for determining true material properties or
for calibrating constitutive models. What the tests are useful for
is to provide relative ranking of impact strength between differ-
ent materials. As a further complication, the impact properties
can be very sensitive to test specimen thickness and molecular
orientation. The differences in specimen thickness as used in
the ASTM and the ISO standard methods may affect impact
properties strongly [7–10].

Both the Izod and the Sharpy impact tests can present experi-
mental challenges. One of the main weaknesses of the Izod impact
test is that it tends to measure notch sensitivity instead of inherent
impact toughness. To overcome this weakness is sometimes un-
notched Izod tests performed. Another weakness of the Izod test
is that the force used to clamp the sample can vary between
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tests, and the force creates an initial stress state in the specimen.
These complications often increase the statistical variations in the
impact test results. A final weakness of both Izod and Sharpy tests
is that incorrect or inconsistent notching of test specimens can
cause significant variability.

The in-plane tensile impact resistance of polymer films is tested
using a different experimental approach. These impact tests are
typically performed using the Gardner falling weight method for
rigid materials [11] or dart drop for films [12]. In these tests, a
weight is placed at the end of a nub or dart that is raised to a
specific height and dropped on the secured specimen. The drop
tests are typically incremental, requiring a relatively large number
of test specimens to determine the failure energy. The energy
absorbed during the impact is calculated based on the contact
area, weight, and drop height of the impact object. Due to the
strain-rate dependence of polymers, a 2 kg weight dropped from
1 m impart the same amount of energy as a 20 kg weight dropped
from 0.1 m, but the two cases can result in different behaviors
due to different impact velocities. These tests typically provide
pass/fail data: they give the average impact energy that breaks
the sample 50% of the time. If the falling dart is instrumented
then these tests can also be used for material model calibration by
using FE simulations of the experimental setup.

The high strain-rate response of many materials that are only
available in challenging specimen geometries can also be evalu-
ated using impact tests. As an example, instrumented ball impact
testing can very accurately determine the through thickness re-
sponse of thin films and pressure sensitive adhesives [13].

2.2.6 Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) is a useful technique
for experimental characterization of the small-strain viscoelastic
properties of polymers [14–17]. DMA measures the stiffness
and viscoelastic damping properties under dynamic vibrational
loading at different temperatures. The technique is applicable
to virtually all polymers, including elastomers, thermoplastics,
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thermosets, and films and fibers of these materials. DMA is an
interesting technique because of its ease of use and its ability
to extract large amounts of experimental data from a few ex-
perimental tests. It is also one of the most sensitive analysis
techniques for determining, for example, the glass transition
temperature Tg.

In DMA experiments, a specialized testing machine applies
a sinusoidal force or displacement to a test specimen and the
resulting response is measured. For viscoelastic materials the
measured response lags behind the input stress wave with respect
to its phase angle and this lag is known as the phase angle, δ. As is
discussed in more detail in Chapter 6, an effective modulus, called
the complex modulus, E∗ can be obtained by dividing the stress
amplitude with the strain amplitude. The complex modulus can be
further decomposed into a storage modulus E′, which is in-phase
with the applied loading, and a loss modulus E′′, which is out of
phase with the applied loading. The storage modulus is directly
related to the energy storage capabilities of the material, and the
loss modulus is related to the dissipated heat (hysteresis). Another
commonly used quantity is tan(δ), which is the ratio of the loss
modulus to the storage modulus, that is tan(δ) = E′′/E′. The
quantities E′, E′′, and tan(δ) are strong functions of temperature
and loading frequency. The goal of DMA experiments is to de-
termine how these viscoelastic quantities depend on temperature
and loading frequency.

The experimental procedure to perform DMA is described both
in ASTM [16] and ISO standards [17]. The DMA experiments
can be performed in many different loading modes, for example,
uniaxial tension, compression, shear, bending, or torsion. The
experimental setup is driving the deformation either at resonance
frequency or using forced vibration. Which loading mode and
approach that is used in the experiment is determined by the
particular DMA test machine that is used. For solid polymers the
most common experimental approach is to select a constant fre-
quency and amplitude of the vibration, and then measure the ma-
terial response as a function of temperature. Following standard
guidelines [16, 17], the temperature is swept either in a stepwise
manner with constant temperature increments that are held for a
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Figure 2.22 Exemplar DMA test results for polycarbonate which is an
amorphous thermoplastic polymer.

certain time before the dynamic measurements are made, or by
applying a constant heating rate, often about 2 ◦C/min.

Exemplar DMA result for amorphous and semi-crystalline
thermoplastics are shown in Figures 2.22 and 2.23. Figure 2.22
shows the storage modulus (E′), loss modulus (E′′), and tan(δ)

for polycarbonate, an amorphous thermoplastic. The figure shows
that both the storage modulus and the loss modulus are only
weakly dependent on temperature for temperatures T < Tg −
30 ◦C. In the temperature range from Tg − 30 ◦C to Tg + 30 ◦C,
the storage modulus goes from an initially high value down to
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Figure 2.23 Exemplar DMA test results for nylon which is a
semi-crystalline thermoplastic polymer.

virtually zero stiffness. In the same temperature interval, the loss
modulus exhibits a peak due to the enhanced mobility of the
amorphous microstructure from thermal energy. The temperature
at which the loss modulus reaches its peak value is often taken
as the glass transition temperature, Tg. Since tan(δ) value is
given by E′′/E′, the overall shape of tan(δ) is similar to the
shape of E′′.

Figure 2.23 shows the DMA data for polyamide (Nylon), a
semi-crystalline thermoplastic. The storage modulus is at low
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temperatures only weakly dependent on the temperature, but
undergoes a drastic reduction around Tg. Due to the crystalline
domains of the microstructure, the storage modulus stays finite at
temperatures that are above Tg but below the melting temperature
of the crystalline domains. For this reason, semi-crystalline poly-
mers can often be used as structural components even at as high
temperatures as Tg + 100 ◦C. The loss modulus and the tan(δ)

function follow a similar trend as for amorphous thermoplastics.
Due to the integrity of the crystalline domains, tan(δ) is typically
much smaller for semi-crystalline thermoplastics compared with
amorphous thermoplastics.

2.2.7 Hardness and Indentation Testing

The hardness of a polymer is an empirical quantity related to
the inherent indentation resistance. The two most common meth-
ods for measuring polymer hardness are the Rockwell hardness
test [18] and the Shore (durometer) hardness test [19].

These tests provide a fast and easy method to characterize the
hardness of a polymer. They are useful for ranking the hardness
of different polymers, but do not necessarily provide results that
correlate with other fundamental material properties.

Rockwell Hardness Testing

The Rockwell hardness test is typically chosen for stiff ther-
moplastics, such as polycarbonate and polystyrene. For these
materials the resistance to viscoelastic flow below the glass tran-
sition temperature is almost time-independent and the extracted
hardness values are therefore also almost time-independent.

Rockwell hardness tests are typically performed following
ASTM D785 [18]. In this test specification, a specimen with a
thickness of at least 6 mm is indented by a steel ball. A small
load is applied on the indenter, the indentation displacement is
recorded, and then a larger load is applied and removed. After a
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short time, with the preload still applied, the remaining indenta-
tion is determined and used to calculate the hardness value.

Different Rockwell hardness scales utilize different-size steel
balls (between 3 mm and 13 mm) and different loads (between
60 kg and 150 kg). The three most common scales used for
plastics are Rockwell E, Rockwell M, and Rockwell R. The
correlation between the Rockwell scales is weak; attempts at
conversion between the scales are therefore discouraged.

The results obtained from this test provide a useful measure
of relative resistance to indentation of various types of plastics.
However, the Rockwell hardness test does not serve well as a
predictor of other properties such as strength or resistance to
scratches, abrasion, or wear, and should not be used alone for
product design specifications.

Shore (Durometer) Testing

The Shore (Durometer) test is the preferred hardness testing
method for elastomers and is also commonly used for compliant
plastics such as polyolefins, fluoropolymers, and vinyl polymers.
Shore hardness testing is typically performed following ASTM
[19] standards. The two most common test procedures are the
Shore A and the Shore D scales. The Shore A scale is used for
“softer” rubbers while the Shore D scale is used for “harder” ones.
Other Shore scales, such as Shore O and Shore H hardness, are
used less often.

The Shore hardness is measured with an apparatus known as a
Durometer (see Figure 2.24) and the determined hardness values
are therefore referred to as Durometer hardness. The hardness
value is determined by the indentation distance into the sample.
The type of indenter and applied load is determined by the
durometer hardness scale. Due to the viscoelastic behavior of
rubbers and plastics, the indentation reading may change over
time—so the indentation time is sometimes reported along with
the hardness number.

The results obtained from these tests provide a useful measure
of relative resistance to indentation of various grades of polymers.
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Figure 2.24 Photograph of an exemplar analog durometer.
(Reproduced with permission from Veryst Engineering,
www.veryst.com.)

As for the Rockwell hardness, the Shore Durometer hardness
value does not provide direct information of other properties
such as strength or resistance to scratches, abrasion, or wear, and
should not be used alone for product design specifications.

The correlation between the different Shore Durometer hard-
ness scales is weak, and attempts at converting between the scales
are discouraged. Similarly, conversion between Shore hardness
and Rockwell hardness is discouraged. Despite these limitations
it can be useful to show a rough indication of how the different
hardness scale are correlated. Figure 2.25 shows a schematic of
the different hardness scales.
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Figure 2.25 Hardness scales used for different classes of polymers.
Durometer A and D are primarily used for elastomers and soft
thermoplastics. The Rockwell hardness test is often used for stiff
thermoplastics.

Barcol Hardness Testing

Barcol hardness is a third hardness test that is used to determine
the hardness of both reinforced and nonreinforced thermoset poly-
mers using a barcol impressor. The test procedure is described in
ASTM D2583 [20]. The test procedure is portable and therefore
suitable for both field testing and quality control testing. The
indenter is a truncated steel cone that is loaded onto the test
specimen.

As for the other hardness tests, the barcol hardness test does
not provide direct information of other mechanical properties, and
should only be used as a relative ranking of hardness.
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Nanoindentation

Instrumented microindentation and nanoindentation can be
quite useful for evaluating the nonlinear viscoplastic response of
many different polymers. It is particularly suitable for cases where
it would be difficult to extract large enough or otherwise suitable
test specimens for the more traditional testing techniques.

Typically a nanoindentation test system is operated by applying
a known force on the indenter rod, which is then loading the
test specimens through a specified indenter tip. The applied
displacement is determined from an accurate capacitance gauge,
see Figure 2.26.

One example of the results that can be obtained from a nanoin-
dentation test is shown in Figure 2.27. In this case, a hydrogel
material was tested using a nanoindenter run in load-control
mode. The specimen was loaded using multiple load-unload
segments with inserted creep segments. The results from this test
illustrate that the hydrogel undergoes significant creep under the
tested conditions. A suitable material model can be calibrated to
this data set by inverse calibration using FE simulations of the
specific loading geometry and history.

Figure 2.26 Schematic of a nanoindentation setup.
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Figure 2.27 Exemplar nanoindentation testing of a hydrogel material.
The material exhibits a nonlinear viscoelastic response.



2: Experimental Characterization Techniques 53

2.2.8 Split-Hopkinson Pressure Bar Testing

Measuring the high strain-rate response of polymers can be
very important for many industrial applications where a com-
ponent is rapidly loaded, for example in drop tests or impact
situations. The mechanical response of different adhesives, elas-
tomers, and thermoplastics can be strongly dependent on the
loading rate. For this reason, it is important to be able to quantify
the material response also at very high strain rates. The most
common way to achieve this is to use a Split-Hopkinson Pressure
Bar (SHPB) test system, which is also called a Kolsky bar.
The SHPB approach can be applied in different loading modes,
including tension, compression, torsion, etc. This section focuses
on an SHPB system operating in a compressive mode, additional
information for other loading modes is given in the book by Chen
and Song [21].

A traditional compressive SHPB system consists of a striker
bar, an incident bar, a test specimen, and a transmission bar
(see Figure 2.28). The striker bar, the incident bar, and the
transmission bar are typically made from aluminum or steel, but
sometimes a polymer (e.g., poly(methyl methacrylate) or polycar-
bonate) is also used. At the start of an SHPB test, all components
are stationary and the specimen is positioned between the incident
bar and the transmission bar. Then the striker bar is launched
horizontally from a gas gun. The striker bar hits the incident
bar and as a result creates an elastic compressive stress wave
that travels down the incident bar. Since the incident bar and the
transmission bars are designed to be long and slender the stress
waves will be essentially one-dimensional. The time history of
the stress wave in the incident bar is measured using a strain gauge
located a known distance from the specimen. Once the stress wave
in the incident bar reaches the specimen interface, part of the wave
propagates into the specimen and part of the wave is reflected as
a tensile stress wave back in the incident bar. The strength of the
reflective wave is then measured again using the same incident
bar strain gauge.

The part of the stress wave that goes through the test specimen
will create a compressive deformation field inside the specimen.
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Figure 2.28 Schematic picture of a compressive SHPB system.

That stress wave will then propagate through the transmission
bar. The strength of the transmitted stress wave is measured by
a second strain gauge located at a known location along the
transmission bar.

A schematic picture of an SHPB system is shown in Fig-
ure 2.28, and a photograph of an exemplar system is shown in
Figure 2.29.

The elastic wave speed in the bars is given by: Cb = √
Eb/ρb,

where Eb is the Young’s modulus of the bar and ρb is the density
of the bar. As an example, if aluminum bars are used, then the
Young’s modulus is given by: Eb = 72.4 MPa, the density is
ρb = 2700 kg/m3, giving a wave speed of Cb = 5178 m/s. So
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Figure 2.29 Photograph of an SHPB system. (Reproduced with
permission from Veryst Engineering, www.veryst.com.)

Vi

e i

e r

e t

Vt

Figure 2.30 Definition of incident, transmitted, and reflected strains at
the specimen interfaces in an SHPB test.

if the incident bar is Ls = 2 m long, then it will take t = Ls/Cb =
0.4 ms for the wave to reach the specimen.

The stress and strain in the test specimen can be calculated from
the signals from the incident bar strain gauge and the transmitted
bar strain gauge, see Figure 2.30.
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The effective engineering strain rate in the specimen is
given by:

ε̇s = vi − vt

Ls
= Cb

Ls
(εi − εr − εt) , (2.3)

where vi is the speed of the incident side of the specimen, vt is
the speed of the transmission bar side of the specimen, and Ls is
the specimen length. The engineering stress on the incident side
of the specimen is:

σi = Ab

As
Eb (εi + εr) , (2.4)

where Ab is the cross-sectional area of the bar and As is the cross-
sectional area of the specimen. The engineering stress on the
transmitted side of the specimen is:

σt = Ab

As
Ebεt. (2.5)

If the specimen is in stress equilibrium then σi = σt, which gives
εi + εr = εt. Since the three strains [εi, εr, εt] are measured, the
experimental strain values can be used to assess if the specimen
was in stress equilibrium during the experiment.

Based on these signals, the engineering stress history in the
specimen can be calculated from:

σs(t) = Ab

As
Ebεt(t). (2.6)

The engineering strain rate in the specimen is given by Equa-
tion (2.3) together with the stress equilibrium condition:

ε̇s = −2Cb

Ls
εr(t). (2.7)

The applied engineering strain history in the specimen can be
obtained by integrating the strain rate in Equation (2.7):

εs(t) = −2Cb

Ls

∫ t

0
εr(t) dt. (2.8)

The details of how an SHPB experiment works can be demon-
strated using an FE-based virtual experiment. In this virtual
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experiment, the striker bar has a length of 0.3 m and a diameter
of 18 mm, the incident bar has a length of 2.3 m and a diameter
of 18 mm, and the transmission bar has a length of 2.3 m and a
diameter of 18 mm. All of these bars are made of aluminum. The
specimen has a length of 6.4 mm and a diameter of 6.4 mm. The
initial striker bar velocity is 12 m/s.

In the virtual experiment, the specimen is represented using
the Three Network (TN) model (see Section 8.6) with material
parameters suitable for UHMWPE. An FE model of this system
was created and the stress and strain values at different locations
in the model was extracted. The FE results from the virtual strain
gauge locations were then inserted into the equations derived
above in order to calculate the stress and strain response, just like
what is done for real experimental data.

The value of using an FE-based virtual experiment is that it
can be used to probe the response of the test system components
at any time, and the extracted stress-strain results can also be di-
rectly compared to the known behavior of the simulated material
(Figure 2.31).

Figure 2.32 shows the measured strain from the FE simulation
at the incident bar gauge location. The strain at the incident bar
strain gauge is initially zero, and stays zero until the stress wave
has traveled from the striker bar impact location to the gauge
location. At that time there is a large negative stress at the gauge
location until the whole stress wave pulse has propagated to
the right. The stress wave then reaches the end of the incident
bar where some of the stress wave is propagated into the test
specimen, and some of the stress wave is reflected as a tension
wave back along the incident bar. This reflected tension wave then
reaches the incident bar again.

Figure 2.31 Schematic figure of the FE model used in the virtual
experiment.
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Figure 2.32 Axial strain at the strain gauge location in the incident bar.
The strain history is predicted from the FE virtual experiment.

In this example, at a time of 1.2 ms the stress wave in
the incident bar has propagated back and forth in the bar and
has reached the incident bar strain gauge a second time. As
discussed above, this second stress wave is not used in the data
analysis.

The FE predicted strain at the transmission bar strain gauge as
a function of time is plotted in Figure 2.33. The transmission bar
strain remains zero until slightly more than 0.6 s, at which time
a compressive stress wave propagates through the strain gauge
location. The time when this occurs is very similar to the time
at which the reflected stress wave reaches the incident bar strain
gauge (as shown in Figure 2.32).

The wave speed in the polymer specimen is lower than the
wave speed in the aluminum bars, but since the specimen length
is so small, the time it takes for the stress wave to propagate
through the specimen is significantly smaller than the time it takes
for the stress wave to propagate from the strain gauge to the end
of the bar.

The engineering strain rate in the test specimen (in an average
sense) can be calculated from Equation (2.7). This equation shows
that the engineering strain rate is directly given by the reflected
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Figure 2.33 Axial strain at the strain gauge location in the
transmission bar. The strain history is predicted from the FE virtual
experiment.

strain at the incident bar strain gauge, the wave speed in the
incident bar, and the test specimen length.

In this case, the engineering strain rate goes very quickly from
0 to about −2000 per second, and then stays at about −1800 per
second for the duration of the first stress wave. Note that the strain
rate is not constant during the compression of the specimen. This
is not a problem since the experimental data from the experiment
can be used for material model calibration even if the strain rate is
not constant, as long as the time-history of the strain rate is known
(Figure 2.34).

As shown in Equation (2.8), the strain history can be obtained
from integrating the strain rate history from the previous figure.
This integration can be done quickly using a numerical approach
and the results are plotted in Figure 2.35.

The stress in the test specimen can be calculated from Equa-
tion (2.6). As shown in this equation, the specimens stress can be
obtained from the transmission bar strain gauge data, as shown
in Figure 2.36. This figure also shows the strain history of one
element in the middle of the test specimen. The stress in this
interior element was extracted from the FE postprocessing, and
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Figure 2.34 Strain rate in the test specimen as a function of time. The
strain rate is calculated from the FE virtual experiment data.

Figure 2.35 Strain history in the test specimen as a function of time.
The strain is calculated from the FE virtual experiment data.
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Figure 2.36 Predicted stress in the test specimen in the FE virtual
experiment.

since it was not calculated in an approximate way from the strain
gauge signals but directly from the selected constitutive model, it
represents the true response of the material.

It is interesting to note that the stress-strain response of the
interior element undergoes loading, followed by unloading, fol-
lowed by further loading. This is caused by the displacement
field history in the incident bar due to the propagating stress
waves. The calculated stress from the strains at the two gauge
locations capture the first compression phase and a small amount
of the initial unloading. This is typical of SHPB data that is
obtained from an experiment on a polymer. The figure also
shows that the SHPB technique does not accurately measure the
initial stress-strain response at small deformations. The stress-
strain response at larger deformations can often be obtained
accurately.

The SHPB experiment suffers from the same issue with in-
terface friction as in uniaxial compression. Figure 2.37 shows
the stress-strain response when there is no friction and when
there is a friction coefficient of 0.4. The only difference between
the two curves shown in the figure is the friction coefficient in the
interface between the test specimen and the bars.
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Figure 2.37 Dependence of the predicted stress on the friction
coefficient in an FE virtual experiment of an SHPB test.

As expected, the influence of friction is also important for the
SHPB test, and the magnitude of how much the stress changes
with friction coefficient is similar to what is observed in slow rate
uniaxial compression experiments.

One of the limitations of the SHPB test is that is cannot be used
to measure the high strain rate response of very soft polymers. If a
material is very soft then the wave speed in the material becomes
quite low (the wave speed is given by

√
E/ρ) and the specimen

will be deformed in an inhomogeneous way during the loading.
Also, and equally important, the stress wave that is transmitted
from the specimen to the transmission bar strain gauge becomes
very low making the calculation of the stress difficult.

One example of this phenomenon is shown in Figure 2.38. The
graph in part (a) shows the SHPB prediction, the stress at a center
node, and the exact stress-strain response from a TN material
model with an initial Young’s modulus of 500 MPa.

Figure 2.38(b) shows the same results as in Figure 2.38(a),
but for a material with an initial Young’s modulus of 100 MPa.
This material model was created from the 500 MPa material
model by scaling all material parameters with units of stress by
a factor of one-fifth. These figures show that the SHPB prediction
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(a)

(b)

Figure 2.38 Predicted stress in the test specimen in the FE virtual
experiment: (a) stress-strain response for a material with an initial
Young’s modulus of 500 MPa and (b) same results for a material with
an initial Young’s modulus of 100 MPa.

of the 500 MPa material is accurate and reliable, but that the
prediction of the 100 MPa material is not useful. In this case, the
100 MPa material is too soft for accurate characterization using
an SHPB test.
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2.2.9 Bulk Modulus Testing

It is not necessary to accurately know the bulk modulus (or
the Poisson’s ratio) of a polymeric material in order to perform
accurate FE simulations of most industrial applications. The
reason for this is that the bulk modulus has only very limited
influence on the mechanical response under most loading modes.

As an example, Figure 2.39 shows the predicted stress-strain
response in uniaxial tension for the TN model (see Chapter 8,
Section 8.6) with different values for the bulk modulus. In this
case, the true stress is reduced by less than 0.5% when the bulk
modulus is reduced from 2000 MPa to 500 MPa, corresponding
to a change in the small strain Poisson’s ratio from 0.47 to 0.40.

In some specific applications, the bulk modulus can influ-
ence the component response. One example is an o-ring that
is constrained in a groove. Figure 2.40 shows the results from
an example in which an o-ring is pressurized in a confined
geometry with a small groove. The pressure below the o-ring was
15 MPa. The o-ring material was represented using the BB model

Figure 2.39 Influence of the bulk modulus and initial Poisson’s ratio
on the predicted stress-strain response in uniaxial tension. The
predictions were obtained from the TN model.
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Max Mises stress: 13.90 MPa
Most tensile strain: 0.947

Most compressive strain: −0.949
Bulk modulus: 2000 MPa

Max Mises stress: 14.07 MPa
Most tensile strain: 0.946

Most compressive strain: −0.956

LE, min. principal

−0.011
−0.089
−0.168
−0.247
−0.326
−0.404
−0.483
−0.562
−0.641
−0.719
−0.798
−0.877
−0.956

(avg: 75%)

LE, min. principal

−0.003
−0.082
−0.161
−0.240
−0.318
−0.397
−0.476
−0.555
−0.633
−0.712
−0.791
−0.870
−0.949

(avg: 75%)

Bulk modulus: 400 MPa

Figure 2.40 Influence of the bulk modulus (and Poisson’s ratio) on
the predicted response of an o-ring in a confined geometry with a small
groove. The predictions were obtained from the BB model.

(see Section 8.2) with material parameters corresponding to a soft
rubber. The FE simulation was first run with a bulk modulus of
400 MPa (corresponding to a Poisson’s ratio of 0.495), and then
with a bulk modulus of 2000 MPa (corresponding to a Poisson’s
ratio of 0.499).
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The results from the FE simulations are shown in Figure 2.40.
This figure shows that the o-ring gets severely deformed due to
the applied pressure and starts to extrude into the small gap.
Note the difference in the predicted max stress and max strain
values between the two cases with different bulk moduli is only
about 1%.

A second example with a constrained o-ring without a groove
is shown in Figure 2.41. This example is exactly the same as the
previous example except that there is no gap for the o-ring to
extrude into, and the applied pressure was 40 MPa. In this case,
the predicted max stress and max strain values between the two
cases with different bulk moduli is about 7%.

The bulk modulus of a polymer can be measured using different
experimental techniques. One approach is to use a Digital Image
Correlation (DIC) strain measurement system that can directly
measure both the axial and the transverse strains during a uniaxial
tension or compression test. These data can then be used to
calculate the Poisson’s ratio, and from that the bulk modulus can
be calculated using Table 5.1. (see Chapter 5).

Another approach is to use pressure-volume-temperature
(PVT) testing [22]. In this technique, the specific volume of a
material is measured as a function of the applied pressure and
temperature. From that experimental data the bulk modulus can
be calculated.

A third method is to use a confined compression test. In this
technique, a cylindrical specimen is inserted into a thick-walled
cylinder, and then compressed with a cylindrical rod with the
same diameter as the diameter of the whole in the thick-walled
cylinder. Figure 2.42 shows a schematic of the experimental
setup.

In this type of experiment, the force-displacement response of
the cylindrical push rod, and the strain on the outside surface
of the thick-walled cylinder are measured. From these signals
the pressure-volume response of the polymer can be determined,
from which the bulk modulus is calculated from the slope of
the calculated pressure-volume response. One benefit of this
approach is that it can be performed at a wide temperature and
pressure range.
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Max Mises stress: 3.33 MPa
Most tensile strain: 0.378

Most compressive strain: −0.388
Bulk modulus: 2000 MPa

Max Mises stress: 3.48 MPa
Most tensile strain: 0.367

Most compressive strain: −0.416

LE, min principal

−0.027
−0.059
−0.092
−0.124
−0.156
−0.189
−0.221
−0.254
−0.286
−0.318
−0.351
−0.383
−0.416

(avg: 75%)

LE, min. Principal

−0.006
−0.038
−0.070
−0.102
−0.133
−0.165
−0.197
−0.229
−0.261
−0.292
−0.324
−0.356
−0.388

(avg: 75%)

Bulk modulus: 400 MPa

Figure 2.41 Influence of the bulk modulus (and Poisson’s ratio) on
the predicted response of an o-ring in a confined geometry without a
small groove. The predictions were obtained from the BB model.

In small strain volumetric loading, the bulk modulus can be
obtained from Hooke’s law (see Chapter 5, Section 5.2.1):

κ = − P

εv
= − �P

�εv
, (2.9)
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Figure 2.42 Schematic figure of a bulk compression fixture.

where P = −(σr+σθ +σz)/3 is the pressure, and εv = εr+εθ +εz
is the volumetric strain.

In this case, εr = εθ = 0, giving εv = εz, and κ = −P/εz. The
axial strain εz is given by the applied deformation that is directly
measured in the experiment. The experiment also measures the
axial stress σz = F/A, but to calculate the bulk modulus it is
necessary to know the pressure, not only the axial stress.

From Hooke’s law with εr = εθ = 0 it directly follows that
σr = σθ . The radial stress in the specimen can be obtained from
the known closed-form solution of a pressurized thick-walled
cylinder [23]:

σr = σ
gauge
θ · b2 − a2

2a2
, (2.10)

where σ
gauge
θ is the circumferential stress from the strain gauge on

the outside of the cylindrical holder, b is the outside radius of the
cylindrical holder, and a is the radius of the test specimen.
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From these equations the pressure can be calculated from:

P = −1

3

[
F

A0
+ b2 − a2

a2
ε

gauge
θ Eholder

]
, (2.11)

where ε
gauge
θ is the circumferential strain from the strain gauge

and Eholder is the Young’s modulus of the holder.
One example showing experimental bulk compression data is

shown in Figure 2.43. In this case, a cylindrical PTFE specimen
was compressed in the confined compression holder. The results
from the test show that the initial response consists of a region of
low modulus, corresponding to the initial specimen compression
until there is full contact with the walls of the fixture. At larger
strain, the slope of the pressure-volumetric strain curve gives the
real bulk modulus of the material. For this PTFE material the bulk
modulus was 2210 MPa.

Like all experimental tests, there are complications also with
the bulk compression test. One common way to examine the
accuracy of an experimental technique is to perform an FE study
of the experimental setup. One example of this approach is shown
in Figures 2.44 and 2.45.

Figure 2.43 Experimental volumetric data for a PTFE material. The
slope of the pressure-volumetric strain data is the bulk modulus.
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Figure 2.44 FEA predicted distribution of pressure in a volumetrically
compressed test specimen. Axisymmetric model of the test.

Figure 2.45 FEA predicted pressure-volume response.
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In this example, a cylindrical specimen with a diameter of
6 mm and a height of 25 mm was volumetrically compressed
in a cylindrical holder with an interior diameter that was just
slightly larger than the diameter of the specimen. The specimen
was represented using the TN model (see Section 8.6) with a
bulk modulus of 2000 MPa. The friction coefficient between the
specimen and the cylindrical holder was taken to be 0.05.

Figure 2.44 shows that the pressure distribution becomes inho-
mogeneous due to the large initial specimen height. Clearly, the
lower the friction the more accurate the experiments become.

From the FE simulation the axial force, the applied displace-
ment of the top surface of the specimen, and the strain on the
outside surface of specimen holder can be extracted. From this
data the pressure and volumetric strain can be calculated from
Equation (2.11), see the results plotted in Figure 2.45. The figure
shows that the slope of the extracted pressure-volumetric strain
data is about 2071 MPa, which is 3.5% higher than the real bulk
modulus. It is also interesting to see that there is hysteresis in the
pressure-volumetric strain response during cyclic loading. This
hysteresis can also be seen in real experimental data.

Further FE analysis shows that the accuracy of this experimen-
tal setup can be further improved by using specimens that are less
tall, and therefore reduce the influence of frictional forces.

2.2.10 Other Common Mechanical Testing Modes

Other loading modes that are commonly used to determine
the stress-strain response of polymers are shown in Figure 2.46.
These loading modes include torsion, combined tension-torsion,
biaxial tension, 3-pt and 4-pt bending, and confined compression.
It is not necessary to use all of these different experimental tests
in order to characterize the behavior of a polymeric material.

Depending on what material model is used, it is sometimes
recommended to perform tests in uniaxial loading and at least
one of the other loading modes. For polymer foams, due to their
compressibility, it is important to also run confined compression
or triaxial compression in order to separate the shear response
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Figure 2.46 Different loading modes that are commonly used for
determining the stress-strain response of polymers.

from the volumetric response of the material. The number of
different tests and types of loading modes that are required for
material model calibration is dependent on the required accuracy
of the model predictions and the material model that is cho-
sen. Interestingly, the more advanced material models that are
micromechanically motivated (see Chapter 8) typically require
fewer loading modes for characterization compared to the purely
phenomenological models that often need many different loading
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modes for accurate and reliable calibration. The advanced mi-
cromechanically motivated models, on the other hand, often need
experimental data also for different loading rates and tempera-
tures for calibration.

2.2.11 Testing for Failure Model Calibration

Experimental testing is also critical for calibrating failure mod-
els for all types of polymers. This includes fracture mechanics
testing, fatigue testing, and damage mechanics testing. In general,
the failure testing can be divided into testing of continuum-level
failure properties and fracture-mechanics testing. The continuum-
level testing is based on the exact testing techniques that have
been discussed in the previous sections of this chapter. These
tests are either applied in monotonic or cyclic loading to failure
depending on the desired type of failure model.

The fracture mechanics testing is performed differently for
elastomers and thermoplastics. For elastomers, a number of test
geometries have been developed that are particularly useful for
determining the critical tearing energy of an elastomer or rubber.
Figure 2.47 shows a few common test geometries for this purpose.
The Trouser Tear specimen and the Type C Tear specimen are spe-
cific specimen geometries for determining the tear strength of rub-
bers [24], and the compact tension specimen has been developed
for measuring the fracture toughness of plastic materials [25].

2.3 Mechanical Testing for Material
Model Validation

The previous section introduced a large number of experimen-
tal tests that can be used to quantify the mechanical response of
a polymer, but the results from those tests can also be used as
the source for the selection and calibration of different materials
model. Practical aspects of material model calibration is discussed
in more detail in Chapter 9.
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Figure 2.47 Different loading modes that are commonly used for
determining the failure response of polymers.
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Many times, specifically in industrial settings, the material
model calibration is the final step in the material modeling
work after which the calibrated material models are inserted
into FE input files. This approach is tempting since the end
goal is typically the FE analysis of a product or design, or to
guide a design optimization. The accuracy of the FE solver is
usually excellent as long as the FE mesh is sufficiently fine,
but the accuracy of product-level FE results are not guaranteed
unless suitable and accurate material models have been used.
For that reason, it is in general recommended to validate the
calibrated material models by comparing FE predictions, that are
based on the selected and calibrated material model, to a set
of experimental data that was not used for the material model
calibration. This new set of experimental data are the validation
test results. It is typically recommended that the validation tests be
performed in a similar loading mode as the intended application,
or in a general multiaxial loading mode.

Sometimes the results from an experiment can be used for both
material model calibration and material model validation, even
if the deformation state in the test specimen is inhomogeneous. If
the deformation state is inhomogeneous, then inverse calibrations
can be used to calibrate the selected material model. Inverse ma-
terial model calibration is a technique in which an FE simulation
is setup of the actual test and the results from that test is then used
iteratively as part of the model calibration.

The typical steps that are performed as part of material model
validation are shown in Figure 2.48.

2.3.1 Material Model Verification and Validation

Computer simulation models are often used as an important
step in product design, problem solving, and used as a tool to
provide insight into processes. For this reason it is important to
make sure that the simulation models are verified and validated,
in order to make sure the simulation results are as accurate as
expected.

Material model verification is a process that is used to ensure
that the model has been implemented properly with respect to
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Figure 2.48 Material model validation consists for multiple steps:
calibration, multiaxial testing, and validation simulations.

the constitutive equations. This typically include code review, and
examining the model predictions from different solution schemes
and implementations. Most often this step has been performed by
the FE solver provider, or the material model provider. If you are
implementing your own material models then you should perform
this step very carefully.

Material model validation is a process that is used to ensure
that the model sufficiently accurately captures the response of
a real material. Often validation is limited to a certain range of
temperatures and strain-rates.
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“Are you using the right material model?”
Material Model Validation:

“Has the material model been implemented right?”
Material Model Verification:

The following sections provide some common experimental
tests that can be used for material model validation.

2.3.2 Small Punch Testing

Small punch testing is an experimental technique that can be
used to examine the biaxial bending response of thermoplastic and
elastomeric materials. The details of the experimental approach
is shown in Figure 2.49 and is also described in the ASTM
standard F2183 [26]. In this test, a thin cylindrical specimen with
a diameter of 6.4 mm and a thickness of 0.5 mm is placed into a
steel fixture and then loaded using a hemispherical punch head
that drives the specimen to deform in a loading mode similar
to biaxial drawing, see Figure 2.50. During the test the force-
displacement response of the punch head is measured.

The main benefit of this test is that can be performed on
small specimens that can be extracted from, for example, re-
trieved medical devices [27–29]. Since the experimental test is
easy to perform and since it introduces a multiaxial stress and
strain state in the material, it is also a useful material model
validation test. Validation testing is discussed in more detail in
Section 2.3.

The small punch test is easy to analyze using FE simulations.
Figure 2.50 shows an exemplar axisymmetric FE mesh of a small
punch specimen.

The main challenge with the small punch test is the strong
influence of friction. Figure 2.51 shows the results from a case
study in which three friction coefficients were examined (0, 0.1,
and 0.2). The figure shows that at large deformations the force-
displacement response can be rather strongly dependent on the
friction coefficient.

The table below shows how the friction coefficient influence
the max stress, max strain, and the minimum specimen thickness.



(a)

(b)

Figure 2.49 Schematic figure of a small punch fixture. (Reproduced
with permission from Veryst Engineering, www.veryst.com.)

Punch

Fixture

Figure 2.50 Schematic FE mesh of a small punch specimen being
loaded by a hemispherical punch head.
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Figure 2.51 Results from an FE study of the influence of friction on
the small punch results.

These results clearly show that at large punch displacements all
stress and strain fields in the specimen are strongly dependent
on the friction coefficient. Hence, in order to effectively use this
multiaxial test it is important to have a good understanding of
the friction coefficient between the test specimen and the steel
material in the fixture.

Friction
Coefficient

Max Mises
Stress (MPa)

Max Principal
Strain

Min Thickness
(mm)

0 76.5 1.41 0.47

0.1 56.7 1.22 0.45

0.2 45.3 1.09 0.43
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2.3.3 V-Notch Shear Testing

V-notch shear is another common experimental method for
examining the multiaxial stress and strain response of a polymer.
The V-notch shear is an attractive method since it mainly probes
the shear behavior, and it does not suffer from uncertainties due to
friction. This experimental method is also called Iosipescu Shear
and described in ASTM D5379 [30]. A photograph of the shear
fixture is shown in Figure 2.52.

The stress field in the V-notch specimen can be examined using
an FE study. Figure 2.53 shows one example where a specimen
modeled using the TN model with material parameters suitable
for UHMWPE.

Figure 2.52 Photograph of a V-notch shear fixture. (Reproduced with
permission from Veryst Engineering, www.veryst.com.)

2.4 Surface Characterization Techniques

There are numerous experimental techniques that can be used
for characterizing surface topology, structure, and chemistry of
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Figure 2.53 Predicted distribution of shear strain in the V-notch
shear test.

polymers. The most important and commonly used techniques are
reviewed in the following sections.

2.4.1 Optical Microscopy

Optical microscopes are designed to create magnified visual
or photographic images of small objects. To accomplish this,
the microscope is designed to perform three tasks: create a
magnified image of the sample, distinguish different details of
the image, and make the final image visible to the human eye
or camera. This class of characterization instruments includes
everything from a simple magnifying glass to advanced multi-lens
microscopes.

There are two basic ways in which optical microscopes can be
operated depending on how the light is projected on the sample.
The first approach, which is widely used to study biological poly-
mers, is to prepare very thin specimens and have the light transmit
through the sample. The second approach is used for thicker-
section samples and nontransparent materials. Here, the light pass
through the objective and then reflects from the surface of the
sample and into the microscope objective. These two techniques
are referred to as transmitted and reflected light microscopy.

The resolution limit of optical microscopes is controlled by
diffraction, which in turn is controlled by the numerical aperture
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(AN) of the optical system and the wavelength of the light
used (λ). Assuming that optical aberrations are negligible, the
resolution (d) is given by:

d = λ

AN
. (2.12)

By assuming λ = 550 nm (corresponding to green light), and
AN = 1.5 (corresponding to oil as a medium), the maximum
resolution becomes about 0.3 μm. One of the main drawbacks
of optical microscopy is this relatively large resolution limit.

Another limitation of optical microscopy is the poor contrast
produced when light is passed through very thin specimens or
reflected from surfaces with a high degree of reflectivity. Different
optical techniques have been developed to improve the contrast of
optical microscopy. Some of the more important and commonly
used techniques are: polarized light, phase contrast imaging,
differential interference contrast, fluorescence illumination, dark-
field illumination, Rheinberg illumination, Hoffman modulation
contrast, and the use of various gelatin optical filters. Some
of these techniques are briefly discussed in the following. A
more detailed discussion of these and other optical microscopy
techniques are given in [31, 32].

• Polarized Light Microscopy
This technique uses optical anisotropy to reveal the
structure of the sample. The microscope is equipped
with a polarizer and an analyzer. The enhanced con-
trast results from interaction of the plane-polarized
light with a birefringent specimen (doubly refracting)
to create two perpendicular optical waves. Due to the
interaction with the specimen, the velocities of the
two waves are different, causing the two waves to
be out of phase. The light components are combined
with interference as they pass through the analyzer.
This technique can enhance the contract and quality
of the final image.
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• Darkfield Microscopy
By using specialized oblique illumination, the con-
trast can be improved of specimens that are normally
not well captured using brightfield illumination. In
the optical equipment, the direct light is stopped by
an opaque block in the condenser, but light from
oblique angles at all azimuths passing through the
specimen are reflected, refracted, and diffracted into
the microscope objective, creating a high contrast
image with a dark background.

• Differential Interference Contrast
Differential interference contrast microscopy is a
beam-shearing interference system in which the
reference beam is sheared by a very small amount.
The technique creates a shadow-cast image that
increases contrast from the gradient of optical paths
for both high and low spatial frequencies present in
the specimen.

• Confocal Microscopy
Confocal microscopy is a new interesting technique
that has the ability to control the depth of field, and
collect serial optical sections from thick specimens.
The approach is to use spatial filtering to remove
out-of-focus light. The technique can be used to
create very high-quality images and has become an
important tool for optical microscopy.

• Near-Field Scanning Optical Microscopy
Near-field scanning optical microscopy (NSOM) can
be used to create ultra-high optical resolution. To
get the high resolution a sub-micron optical probe,
positioned very close to the sample, transmits light
through a small aperture. The region within a single
wavelength from the specimen surface is defined as
the near-field. Within this region, evanescent light is
not diffraction limited and nanometer resolution can
be obtained.
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• Fluorescence Microscopy
Fluorescence microscopy is primarily used with epis-
copic illumination and is rapidly becoming a standard
tool in the fields of genetics, and cell biology.

• Stereo Microscopy
Stereo microscopes have a different design than
traditional microscopes. It uses two eyepieces (or
sometimes two complete microscopes) to provide
slightly different viewing angles to the left and
right eyes. This produces a three-dimensional (3D)
visualization of the sample being examined. The
stereo microscope is often used to study the surfaces
of solid polymers or investigate fracture surfaces.

2.4.2 Scanning Electron Microscopy

Scanning electron microscopy (SEM) is one of the most impor-
tant surface characterization techniques that is used today. One of
the major advantages of SEM is the great depth of field. In ad-
dition, SEM equipment are often coupled with energy dispersive
spectroscopy (EDS) X-ray diffraction, see Section 2.6.2, thereby
enabling both high magnification characterization of surfaces and
elemental composition analysis.

The scanning electron microscope uses electrons rather than
light to form an image. This enables a larger depth of field,
which allows a larger amount of the sample to be in focus at
one time. The SEM also produces images of high resolution.
Preparation of the samples is relatively easy since most SEMs
only require the sample to be conductive. For polymers this can
be achieved, for example, by gold coating the sample. The com-
bination of higher magnification, larger depth of focus, greater
resolution, and ease of sample observation makes the SEM one
of the most heavily used instruments in experimental materials
characterization.

In a typical SEM setup, electrons are emitted from a cathode
filament toward an anode. The electron beam, which is typically
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given an energy ranging from a few keV up to 50 keV, is focused
by condenser lenses into a beam with a very fine spot size (about
5 nm). The electron beam then passes through the objective lens,
and scanning coils which deflect the beam in a desired pattern on
the sample surface. When the primary electrons reach the surface
they are inelastically scattered by atoms in the sample. These
scattering events cause the primary beam to spread and create
emission of electrons and X-rays, which are then detected and
used to produce an image of the surface.

In the most common imaging mode, low energy secondary
electrons are detected by a scintillator-photomultiplier component
and the resulting signal is used to create an image of the sample.
Because the secondary electrons come from within 1 nm of the
surface, the brightness of the signal depends on the surface area
that is exposed to the primary beam. This surface area is relatively
small for a flat surface, but increases for steep surfaces. Thus steep
surface and edges (cliffs) tend to be brighter than flat surfaces
resulting in images with good 3D contrast. Using this technique,
resolutions of the order of 5 nm are possible.

Another mode to operate an SEM is to detect backscattered
electrons which are essentially elastically scattered primary elec-
trons. Backscattered electrons may be used to detect both topolog-
ical and compositional detail, although due to their much higher
energy (approximately the same as the primary beam) these elec-
trons may be scattered from fairly deep within the sample. This
results in less topological contrast than for the case of secondary
electrons. However, the probability of backscattering is a weak
function of atomic number, thus some contrast between areas
with different chemical compositions can be observed especially
when the average atomic number of the different regions is quite
different.

The spatial resolution of the SEM is controlled by the size of
the spot of the electron beam, and the size of the material which
interacts with the electron beam. Since these are larger than
the interaction distance it is not possible to image atomic scale
images.
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A new surface characterization technique is environmental
SEM (ESEM). This approach works with controlled environmen-
tal conditions and requires no conductive coating on the specimen.
This enables studies of specimens in their natural state. The
environment in an ESEM can be selected from among water
vapor, air, N2, Ar, O2, etc. Dynamic characterization of wetting,
drying, absorption, melting, corrosion, and crystallization can be
performed using ESEM.

ESEMs are able to work with certain pressures and without sur-
face charging because the secondary electron detector is designed
on the principle of gas ionization. As primary electrons are emit-
ted from the gun system, the secondary electrons on the specimen
surface are accelerated toward the detector, which is biased by a
moderate electric field. The collisions between the electrons and
gas molecules liberate more free electrons, and thereby provide
more signals. Positive ions created in the gas effectively neutralize
the excess electron charge built up on the specimen.

One exemplar SEM image is shown in Figure 2.54. This figure
shows the topology and structure of Tin oxide particles on a
polyetherimide (PEI) substrate. The bar in the legend of the figure
is 10 μm long.

Figure 2.54 Exemplar SEM image showing Tin oxide particles on a
PEI substrate.
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2.4.3 Atomic Force Microscopy

The atomic force microscope (AFM) is a powerful high mag-
nification microscope that was developed by Binnig, Quate, and
Gerber in 1986 [33]. The AFM uses a cantilever with a sharp
tip to study surface features. During operation the cantilever tip
is brought into close proximity of the sample surface. The force
from the sample on the cantilever beam causes a deflection of
the cantilever beam tip, and this deflection is measured using
laser techniques. Unlike traditional microscopes, AFM does not
use lenses, hence the size of the probe tip rather than diffraction
typically control the experimental resolution.

The AFM typically operate in one of two modes: (1) contacting
mode with the tip contacting the specimen and (2) noncontacting
or tapping mode. In contacting mode, the specimen is mounted on
a piezoelectric crystal and the cantilever deflection is monitored in
ordered to keep the distance between the probe tip and the sample
constant. The tip is then scanned across the specimen surface and
the vertical displacement necessary to maintain a constant force
on the tip is recorded. The resulting height map represents the
topography of the specimen surface (Figure 2.55).

In noncontacting or tapping mode, the cantilever is externally
oscillated close to its resonance frequency. The vibration char-
acteristics of the cantilever beam is influenced by the tip-sample
interaction forces; these changes in oscillation provide informa-
tion about the specimen geometry. One of the main advantages
of the dynamic mode is that it generates lower lateral forces on
the sample, and it is therefore widely used to image biological
samples.

The noncontacting dynamic mode can be run using frequency
modulation, or more commonly amplitude modulation. In
amplitude modulation, changes in the oscillation amplitude
yield topographic information about the sample. Additionally,
changes in the phase of oscillation under tapping mode can be
used to discriminate between different types of materials on the
surface.

The AFM has several advantages over electron microscopy.
One is that is provides a true 3D surface profile. Additionally,
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samples viewed by an AFM do not require any special treatment
that can destroy the sample and prevent its reuse. While an
electron microscope needs a vacuum environment for proper
operation, the AFM can be used also in an ambient or even liquid
environment.

The main disadvantage of the AFM compared with the SEM
is the image size. The SEM can show image representations of a
few mm2 area and a depth of field of a few mm? The AFM, on the
other hand, can only show a maximum area of about 0.01 mm2

with a max depth of field of a few μm.
Another common use of AFM is to measure the indentation

resistance and stiffness of a specimen by measuring the force re-
quired to depress the probe tip a small distance into the specimen.
In addition to this indentation-type test, AFM are commonly used
also in the following applications:

• Examine dispersion and particle size of additives in
polymer matrix.

• Study phases of blends and alloys.
• Image and quantify surface texture or roughness

(topography).

Specimen

Cantilever Beam

Photo-diode

Laser

Computer

Figure 2.55 Schematic view of an AFM.
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2.5 Volume Characterization Techniques

There are numerous experimental techniques that can be used
to study the bulk properties of polymers. These volume charac-
terization techniques are typically very different from the surface
characterization techniques that were discussed in the previous
section. The most common volume characterization techniques
are discussed in the following sections.

2.5.1 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) is a commonly used
technique for analyzing thermal transitions in polymers and other
materials. It provides information about the temperatures at which
transitions occur as well as quantitative measurements of the heat
transitions associated with the events.

All materials that undergo a change in physical state (e.g.,
recrystallization or melting), or undergo a chemical reaction, will
release absorbed energy as part of the transition. A differential
scanning calorimeter is designed to measure the enthalpy changes
that occur during these transitions. In the experimental setup,
both the test specimen and a reference sample are heated at a
predefined temperature rate and the differential heat flow required
to maintain the sample at the same temperature as the inert
reference specimen is measured.

Results from a typical DSC run are shown in Figure 2.56.
In this experiment, a small sample (about 10 mm3) was heated
at a rate of 20 ◦C/min. The figure shows the input heat flow
that was required to maintain the prescribed temperature history.
The graph provides direct information about the glass transition
temperature (Tg), the exotherm associated with crystallization,
and the endotherm associated with melting.

DSC can also be used to study the influence of mechanical
deformation and residual stresses on the required heat flow for
the thermal transitions [34]. By coupling mechanical testing and
thermal pretreatments it is possible to explore the micromecha-
nisms controlling the activation energy for local rearrangements.



90 Mechanics of Solid Polymers

 
 

 

  

50
14

15

16

17

18

19

20

21

22

23

24

100 150 200

Temperature (�C)

(PEEK)

H
ea

t f
lo

w
 (

m
W

)
E

xo
th

er
m

E
nd

ot
he

rm

G
la

ss
Tr

an
si

tio
n

Polyether ether ketone

Crystallization
(gives away heat)

Melting
(absorbs heat)

250 300 350 400

Figure 2.56 Exemplar DSC scan of PEEK showing the glass transition
temperature, the crystallization peek, and the endotherm during
melting.

This method can provide valuable information about the pro-
cesses that must be accounted for in the development of accurate
constitutive models for the material behavior.

2.5.2 Transmission Electron Microscopy

Transmission electron microscopy (TEM) is a powerful tech-
nique that can produce higher magnification than what can be
achieved by SEM. One of the main limitation of TEM is that the
test specimen must be a foil so thin that an electron beam can pass
through it. In addition, the specimen must be able to withstand
the high vacuum inside the TEM instrument. Because of these
requirements, most materials studied with TEM are of inorganic,
nonbiological materials.

The TEM is widely used in materials science and metallurgy,
and for the study of crystalline materials such as metals and
semiconductors, but is also very useful for studies of filler mor-
phology in polymers. One example of this is shown in Figure 2.57
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Figure 2.57 TEM of CR with 7 vol% CB [35].

illustrating a chloroprene rubber (CR) filled with 7 vol% N600
carbon black (CB). The black regions in the figure are the carbon
black particles. The micrograph shows that the particles have a
spherical shape with a diameter of 20 nm, and that the carbon
black particles have a tendency to cluster together into larger
aggregates.

The contrast in a TEM image is different from the contrast in
a light microscope image. A crystalline material interacts with
the electron beam mostly by diffraction rather than absorption.
If the planes of atoms in a crystal are aligned at certain angles
to the electron beam, the beam is transmitted strongly; while at
other angles, the beam is diffracted, sending electrons in another
direction. In the TEM, the specimen holder allows the user to
rotate the specimen to any angle in order to establish the desired
diffraction conditions.

In the most powerful diffraction contrast TEM instruments, it
is possible to produce a diffraction pattern image which is directly
analogous to the planes of atoms in the crystal. Although the way
contrast arises in these atomic-resolution images is complex, and
such images are often interpreted using computer modeling of the
electron beam and magnetic lenses, these images have added a
new layer of understanding to the study of crystalline polymer
materials.
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2.5.3 X-Ray Diffraction

X-ray diffraction is an important tool for studying both amor-
phous and semi-crystalline polymers [36, 37]. It can be used
to analyze many features of the microstructure of the material,
including lattice parameters, presence of imperfections, crystallo-
graphic orientations (texture), and degree of crystallinity.

In a typical X-ray diffraction experiment, the polymer sample
is exposed to X-ray radiation which is a form of electromagnetic
radiation with a short wave length (λ ≈ 0.1 nm). The X-ray
radiation is often produced by bombarding a metal target with fast
electrons in a vacuum tube. When created this way, the radiation
often consists of two components: a continuous spectrum of white
radiation, and a superimposed line spectrum having a frequency
that depends on the metal being bombarded. When the X-ray
beam transverses through the specimen it loses its intensity
exponentially: I = I0 exp(−μx), where I0 is the initial intensity
and μ is a linear absorption constant. Hence, the depth of X-ray
penetration depends on the material and the energy of the X-ray
source.

The incident beam of X-rays is partly absorbed, partly scat-
tered, and the rest is transmitted unmodified through the speci-
men. The scattering occurs due to interaction between the incident
X-ray beam with the electrons in the material, and the diffracted
X-rays interact with each other to cause diffraction patterns that
depend on the angle of the incident beam in relation to the
specimen orientation. In this context, the words scattering and
diffraction are used interchangeably.

X-ray diffraction can also be used to study amorphous poly-
mers. The diffraction pattern from amorphous polymers is lacking
sharp peaks that are characteristic of crystals, and instead consists
of broad features. Quantitative diffraction analysis of amorphous
polymers can provide important information about the local
atomic structure, including bond lengths, morphology, and radial
distribution information.

X-ray diffraction techniques are often categorized as wide-
angle X-ray scattering (WAXS) and small-angle X-ray scattering



2: Experimental Characterization Techniques 93

(SAXS). WAXS is typically used to study structures with a length
scale of about 1 nm, and SAXS is used to study larger features
with a length scale of 1 nm to about 400 nm.

Wide-Angle X-Ray Diffraction

The principle of wide-angle X-ray diffraction can be exem-
plified by considering a beam of X-rays with a wavelength λ

impinging at an angle θ on a diffracting material with a set of
crystal planes of spacing d, see Figure 2.58.

A diffracted X-ray beam at the angle θ will only exist if the
rays from each successive lattice plane reinforce each other. For
this to occur, the extra distance a ray has to travel must be equal
to an integral number of wavelengths, nλ. This is expressed in the
well-known Bragg law:

nλ = 2d sin θ , (2.13)

where n is an integer, λ is the wavelength of the X-ray beam, d is
the lattice spacing, and θ is the angle between the lattice planes
and the incident beam.

To ensure that Bragg’s law is satisfied and that reflections from
various crystal planes can occur, it is necessary to provide a range
of either θ or λ. The two most common methods to achieve this
are the Laue method and the powder method.

Diffracting material

Diffracted X-raysIncident X-rays

Lattice planes d

q q

Figure 2.58 Wide-angle X-ray diffraction from crystal planes.
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• In the Laue method, a stationary crystal is exposed
to a beam of white radiation. Since a range of wave
lengths is provided, each set of lattice planes will
chose the appropriate λ to give Bragg reflection. The
resulting refraction pattern can be used to obtain
information about the crystalline structure.

• In the powder method, monochromatic radiation is
used to bombard a finely powdered (or fine-grained)
wire of the material. In this case, the Bragg angle θ is
variable and crystals with the appropriate orientation
will give Bragg refraction.

One example of an X-ray diffraction intensity plot is shown
in Figure 2.59. The figure shows the scattering intensity as
a function scattering angle for a polyethylene. The measured
intensity consists of a Bragg diffraction peak from the crystalline
phase superimposed on the diffuse scattering from the amorphous
phase. By separating the contributions from the amorphous and
crystalline phases it is possible to determine the degree of crys-
tallinity of the material [38].

Figure 2.59 Detected X-ray intensity as a function of scattering angle
for polyethylene.
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Small-Angle X-Ray Diffraction

Small angle X-ray diffraction is a useful technique for studying
structural features with a size between 1 nm and about 400 nm. In
a common experimental setup, the X-ray radiation is created using
a Cu Kα emission line with a wavelength of λ = 0.154 nm giving
θ = 4.4 ◦C and θ = 0.04 ◦C, for d = 1 nm and d = 100 nm,
respectively.

The experimental setup is similar to what is used for WAXS,
but since the scattering beam is so close to the unmodified trans-
mitted beam it is often required to use a specialized experimental
setup that collimates that incident beam very precisely.

The X-ray diffraction patterns can be determined by measuring
the intensity of the scattered X-rays as a function of scattering
direction. By studying the diffraction pattern it is possible to, for
example, examine individual crystal defects by determining any
differences in refracted intensity near the defect.

2.5.4 Birefringence

Birefringence spectroscopy is an optical technique that can be
used to determine molecular orientation in a polymer sample
by measuring the retardation of polarized light passing through
the sample [39]. The experimental technique is based on the
difference in refractive indexes, ni, in different directions of the
specimen:

ni = Speed of light in vacuum

Speed of light in direction i in the sample
. (2.14)

The refractive index for a polymer in a given direction is
depending on the polarizability of the molecular bonds and
the directional distribution of the macromolecules. For most
polymers the refractive index parallel to the main chain en-
counters primarily C−C bonds, which have low polarizability
and hence a refractive index close to 1. In a direction perpen-
dicular to the molecular backbone, many polymers have side-
groups that retard the light more creating a higher refractive
index.
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Birefringence �n is the difference in the refractive indexes
of two perpendicular directions in a material: �n = n1 − n2.
A polymer sample will have a nonzero birefringence if two
conditions are satisfied:

1. On the molecular scale there must be a finite dif-
ference in refractive indexes in different directions.
Virtually all polymers satisfy this condition due to
the inherent anisotropic nature of the repeat unit.

2. On the macroscale there must be an anisotropic
orientation of the macromolecules. Hence, if the
molecular chains are randomly oriented then the
different refractive indexes will cancel each other out
and the birefringence will be zero.

The total birefringence of a polymer specimen is controlled
by sum of the polarizability of all molecular chains. This
connection between birefringence and molecular orientation is
what makes this experimental technique interesting. A common
experimental study is to measure the amount of birefrin-
gence as a function of applied stress and strain. Since the
molecular chains are stretching and rotating during an applied
macroscopic deformation, birefringence measurements during
deformation can provide interesting insight into these molecular
events.

As will be discussed in Chapter 5, a number of different molec-
ular chain models have been developed. These models are used,
for example, when developing hyperelastic models of rubbers as
they describe the orientation of the individual segments of the
molecular chains as a function of applied strain. These theoretical
expressions can be used together with statistical methods to derive
the birefringence as a function of applied load or deformation.
Hence, birefringence can also be a useful tool for the devel-
opment and validation of micromechanism inspired constitutive
models.

Birefringence is also often used to study: molecular defects
in polymeric solids, thermal strains and residual stresses, and
morphological and structural changes. Birefringence can be used
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Figure 2.60 Experimental setup used for measuring birefringence.

to study everything from a single polymer chain subject to a flow
field, amorphous polymers, semicrystalline polymers, and block
copolymers.

Birefringence in the solid state is often called strain birefrin-
gence, and birefringence in a liquid state is often called flow
birefringence. Birefringence experiments are typically performed
by uniaxially deforming a thin sample and measuring the differ-
ence in refractive indexes between the deformation direction and
a lateral direction, see Figure 2.60.

The birefringence of many polymer systems at small to moder-
ate deformations is found to follow the stress-optical rule SOR:
�n = Cσ , where �n is the birefringence, σ is the tensile stress,
and C is the stress-optical constant, see Figure 2.61.

As is shown in this figure, glassy polymers do not follow
the stress-optical rule (SOR) even at small strains, whereas
elastomers typically follow the SOR at small strains but start to
deviate at the onset of strain-induced crystallization.

2.5.5 Swell Testing

If a crosslinked polymer is immersed in a good solvent it
will swell. The crosslinks in the material will keep the macro-
molecular structure intact and the material will not dissolve. The
equilibrium amount of swelling is controlled by the elastic forces
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Figure 2.61 Illustration of stress-birefringence relationship for a
stretching process of different types of polymers.

from molecular stretching that resist the swelling, and the forces
derived from the free energy of mixing. The equilibrium amount
of swelling can be used to determine the gel content, crosslink
density, molecular weight between crosslinks, and the number of
repeat units between crosslinks. These terms can be defined as
follows:

• g, gel content—the mass percentage of polymer in-
soluble in a specific solvent after extraction.

• vd, crosslink density—the average number of
crosslinks per unit volume.

• Mc, molecular weight between crosslinks—average
molecular weight between crosslinks.

• qs, swell ratio—ratio of equilibrium volume in a
swollen state to the initial volume.

There are two common techniques that can be used to
study the swell ratio of crosslinked polymers: gravimetric
measurements [40] and continuous height measurement during
swelling [41].
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In the gravimetric approach, specimens of the crosslinked plas-
tic are weighted and then immersed in the solvent at a specified
temperature for a specified time. After the solvent exposure the
specimens are removed, dried, and reweighed. The amount of
material extracted and the swell ratio is calculated from these
weight measurements. The percent extracted is a measure of the
amount of polymer that is soluble and not attached to the main gel
phase.

In the height measurement approach, the change in specimen
height is measured as a function of exposure time to the solvent
at a given temperature. From the results from this experiment the
swell ratio can be directly obtained from:

qs = Final volume

Initial volume
. (2.15)

If the Flory interaction parameter ξ for the polymer-solvent
system is known, then Flory’s network theory [42] can be used
to determine the crosslink density and the molecular weight
between crosslinks can be determined from the steady-state swell
ratio [41].

Swell testing experiments are useful for both quality control
and for quantitative network studies. Since the amount of equilib-
rium swelling is sensitive to type of solvent and the test temper-
ature, it is recommended that one of the applicable standards be
followed.

2.6 Chemical Characterization Techniques

Most chemical characterization techniques are based on
spectroscopy—the study of spectra—and how a physical property
depend on frequency. Spectroscopy is used for the identification
of substances, through the spectrum emitted or absorbed.
Different spectroscopy techniques are classified according to
the physical quantity which is measured or calculated, or the
measurement process.

There are two main types of spectroscopy. The first is absorp-
tion spectroscopy which uses the range of electromagnetic spectra
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in which a substance absorbs. The sample is vaporized and then
light of a particular frequency is passed through the vapor. The
amount of absorption can be related to the chemical composition
of the material. The second type is emission spectroscopy which
uses the range of electromagnetic spectra in which a substance
radiates. It requires the substance to be vaporized at high temper-
atures by placing it in a spark gap.

Spectroscopy is often used in combination with chro-
matography, which is a broad range of physical methods
used to separate and/or to analyze complex mixtures. The
components to be separated are distributed between two phases:
a stationary phase bed and a mobile phase which percolates
through the stationary bed. These two techniques, and methods
based on them, are discussed in more detail in the following
sections.

2.6.1 Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) is an analytical
technique used to identify organic (and in some cases inorganic)
materials, including polymer compounds. This technique mea-
sures the absorption of various infrared light wavelengths by
the material of interest. These infrared absorption bands identify
specific molecular components and structures. Fourier transform
spectroscopy is more sensitive and has a much shorter sampling
time than conventional spectroscopic techniques.

In a conventional spectrometer, a sample is exposed to elec-
tromagnetic radiation and the responding intensity of transmitted
radiation is monitored. The energy of the radiation is varied over
the desired range and the response is plotted as a function of
radiation energy (or frequency). At certain resonant frequencies
characteristic of the specific sample, the radiation will be ab-
sorbed resulting in a series of peaks in the spectrum, which can
then be used to identify the sample.

In Fourier transform spectroscopy, the sample is exposed to
a single pulse of radiation. The resulting signal, called a free
induction decay, contains a rapidly decaying signal of all possible
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frequencies. Due to resonance in the sample, certain resonant
frequencies will be dominant in the signal and by applying a
Fourier transform to the response signal the frequency spectrum
can be calculated. Using this approach the Fourier transform spec-
trometer can produce the same kind of spectrum as a conventional
spectrometer, but in a much shorter time.

Absorption bands in the range of 4000-1500 wavenumbers
are typical from common functional groups, for example, −OH,
C=O, N−H, and CH3. The region between 1500-400 wavenum-
bers is often referred to as the fingerprint region. Absorption
bands in this region are generally due to intra-molecular phe-
nomena and are highly material specific. The specificity of these
bands allow computerized data searches to be performed against
reference libraries to identify a material. FTIR can be used to
identify the chemical structure of almost any polymer and is
perhaps the most powerful tool for identifying types of chemical
bonds (functional groups).

An exemplar FTIR spectrum is shown in Figure 2.62. This
figure shows both the measured spectrum and the best library
spectrum that was found by the FTIR software to match the
experimentally determined results.

2.6.2 Energy Dispersive Spectroscopy

Energy dispersive X-ray spectroscopy (EDS) is a chemical
microanalysis technique that, as was discussed in Section 2.4.2,
is typically performed in conjunction with an SEM. The EDS
technique utilizes X-rays that are emitted from the sample dur-
ing bombardment by the electron beam to characterize the el-
emental composition of the analyzed volume on a micro- or
nano-scale.

In an SEM, an electron beam is scanned across the sample
surface and generates X-ray fluorescence from the atoms in its
path. The energies of the X-ray photons are characteristic of
the element which produced it. The EDS X-ray detector measures
the number of emitted X-rays versus their energy. The energy of
the X-ray is characteristic of the chemical element from which the
X-ray was emitted.
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Figure 2.62 Exemplar FTIR spectrum from an unknown material,
and the best matching library spectrum.

By determining the energies of the X-rays emitted from the
area being excited by the electron beam, the elements present in
the sample can be determined. This mode of operation is called
qualitative analysis since only the types of elements in the sample
are determined. The rate of detection of these characteristic
X-rays can also be used to measure the amounts of elements
present. This mode is called quantitative analysis. If the electron
beam is swept over an area of the sample, then the EDS systems
can also acquire X-ray maps showing spatial variation of elements
in the sample.
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Figure 2.63 (a) EDS spectrum of a pure polyimide film; (b) EDS
spectrum of polyimide film with a thin silver conductor layer.

An exemplar EDS spectrum is shown in Figure 2.63. This
figure shows the spectrum for a polyimide film that is covered
with a thin silver conductor layer. As indicated in the figure
the EDS system only provides information about the chemical
elements present in the sample, and do not specify the molecular
structure.

Typical applications of EDS are in materials research, quality
control, failure analysis, and forensic science.

2.6.3 Size-Exclusion Chromatography

Size-exclusion chromatography (SEC), also known as gel per-
meation chromatography (GPC), is a chromatographic method in
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which molecules are separated based on their size. This method
is most widely used in the analysis of polymer molecular weights
(or molar mass).

In SEC, a column typically made of steel with a diameter of
10 mm and a length of 500-1000 mm, is packed with a porous
material (typically silica or crosslinked polystyrene) and solvent
is forced through the column at rates typically 1 ml/min and
pressures of 50-200 bar. A sample is dissolved in the same
solvent that is running through the column and is then introduced
into the solvent stream going through the column. A detector
monitors the concentration of sample exiting the end of the
column. Inside the column, molecules are separated based on
their hydrodynamic volume (the volume the molecule occupies
in a dilute solution). For polymers this can vary greatly with the
particular solvent and the temperature. By studying the properties
of polymers in particular solvents and by calibrating each column
setup with samples of known molecular weight, it is possible
to get a relative distribution of molecular weights for a given
polymer sample. Using this data, it is possible to calculate
number-average molecular weight, weight-average molecular
weight, polydispersity, as well as higher order molecular weights
to within a useful level of accuracy.

Inside the column, molecules are separated by whether or not
they can fit within the pore size of the packing material. When
columns are created they are packed with porous beads with a
specific pore size so that they are most accurate at separating
molecules with sizes similar to the pore size. As a molecule flows
through the column it passes by a number of these porous beads.
If the molecule can fit inside the pore then it is drawn in by the
force of diffusion. There it stays a short while and then moves on.
If a molecule cannot fit into a pore then it continues following
the solvent flow. For this reason, in an SEC column, molecules
with larger size will reach the end of the column before molecules
with smaller size. The effective range of the column is determined
by the pore size of the packing. Any molecules larger than all
the pores in a column will be eluted together regardless of their
size. Likewise, any molecules that can fit into all the pores in the
packing material will elute at the same time.
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Figure 2.64 SEC results for a Nylon 66 showing the definition of MN,
MW, and MZ.

It is important to remember that the only absolute measure
in SEC is volume of the molecule (hydrodynamic volume), and
even that measurement has certain error built into it. Interactions
between the solvent, packing, and or the sample will affect the
measurement as will concentration due to sample-sample interac-
tions. Calculating the molecular weight from this molecular size
introduces even more error into the system. SEC is a useful tool
for determining molecular weight in polymers, but it is essential
that the column and instrumentation be carefully equilibrated and
properly calibrated for the results to be trusted.

The molecular weight of a polymer is typically continuously
distributed over a certain range, see Figure 2.64. Three different
scalar quantities are commonly used to describe the molecular
weight distribution:

1. The number average (arithmetic mean) molecular
weight, MN, is defined by

MN =
∑

i

{
Ni∑
j Nj

}
Mi =

∑
i NiMi∑

j Nj
. (2.16)
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The number average is sensitive to small molecules.
2. The weight average molecular weight, MW, is de-

fined by

MW =
∑

i

{
NiMi∑
j NjMj

}
Mi =

∑
i NiM2

i∑
j NjMj

=
∑

i wiMi∑
j wj

,

(2.17)

where wi is the weight fraction of molecule i. The
weight average molecular weight is more sensitive
to heavy molecules.

3. The Z-averaged molecular weight, MZ, is defined by

MZ =
∑

i NiM3
i∑

j NjM2
j

. (2.18)

It is important to realize that the weight-averaged molecular
weight is larger than or equal to the number average molecular
weight: MW ≥ MN. The ratio of the weight-average and number-
average molecular weight is referred to as the polydispersity
index:

PDI = MW

MN
, (2.19)

and is a measure of how widely distributed the molecular weight
distribution is.

The mechanical properties of a polymeric material is often
strongly dependent on the molecular weight of the material.
Figure 2.65 shows the results from an SEC investigation of two
Nylon 66 specimens. One of the specimens had been exposed to
chlorinated water for an extended amount of time. This specimen
was heavily discolored and contained a large amount of surface
cracks. The other specimen had only been exposed to chlorinated
water for a short amount of time. As is shown in Figure 2.65,
the molecular weight of the Nylon 66 material is decreasing with
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Figure 2.65 SEC results for two Nylon 66 samples exposed to
different amounts of chlorinated water.

exposure time to chlorinated water and the polydispersity of the
material is also increased.

2.6.4 Thermogravimetric Analysis

Thermogravimetric analysis (TGA) is a thermal analysis tech-
nique that can measure changes in the weight (mass) of a sam-
ple as a function of temperature and time. TGA is commonly
used to determine polymer degradation temperatures, residual
solvent levels, absorbed moisture content, and the amount of in-
organic (noncombustible) filler in polymer or composite material
compositions.

In slightly simplified terms, in TGA a sample is placed into a
tared TGA sample pan which is attached to a sensitive microbal-
ance device. The sample holder portion is subsequently placed
into a high temperature furnace. The balance device measures the
initial sample weight at room temperature and changes in sample
weight as heat is applied to the sample. TGA tests can be run
either in heating mode at a controlled heating rate, or isothermally.
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Typical weight loss profiles can then be analyzed for the amount
or percent of weight loss at any given temperature, the amount or
percent of noncombusted residue at some final temperature, and
the temperatures of various sample degradation processes.

Various atmospheres can be used to investigate sample re-
actions. Furthermore, TGA can be coupled with infrared spec-
troscopy (TGA/FTIR) to identify the evolved gases.

Typical applications of TGA include:

• weight loss/gain;
• drying rate;
• reactivity with atmospheres;
• oxidative degradation;
• reaction kinetics;
• volatilization analysis;
• compound composition; and
• stabilizer effectiveness.

As an example of the use of TGA is shown in Figure 2.66,
two TGA scans of silicone rubber. The first scan is for an unfilled
silicon rubber and the second scan is for a silicone rubber with

Figure 2.66 TGA scans of two silicon rubbers.
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40 pph carbon black. The figure shows that the highly filled
rubber start to degrade at a higher temperature than the unfilled
rubber.

2.6.5 Raman Spectroscopy

Raman spectroscopy is a spectroscopic technique used to study
vibrational, rotational, and other low-frequency modes in a mate-
rial system. It relies on inelastic scattering, or Raman scattering
of monochromatic light, usually from a laser in the visible, near
infrared, or near ultraviolet range. Phonons or other excitations
in the system are absorbed or emitted by the laser light, resulting
in the energy of the laser photons being shifted up or down. The
shift in energy gives information about the phonon modes in the
system. Infrared spectroscopy yields similar, but complementary
information.

When light is scattered from a molecule, most photons are
elastically scattered. The scattered photons have the same energy
(frequency) and, therefore, wavelength, as the incident photons.
However, a small fraction of light (approximately 1 in 107 pho-
tons) is scattered at optical frequencies different from, and usually
lower than, the frequency of the incident photons. The process
leading to this inelastic scatter is called the Raman effect. Raman
scattering can occur with a change in vibrational, rotational, or
electronic energy of a molecule. Polymer chemists are concerned
primarily with the vibrational Raman effect. In the following, we
will use the term Raman effect to mean vibrational Raman effect
only.

The difference in energy between the incident photon and the
Raman scattered photon is equal to the energy of a vibration of the
scattering molecule. A plot of intensity of scattered light versus
energy difference is called a Raman spectrum.

In Raman spectroscopy, a laser beam is used to irradiate a
spot on the sample under investigation. The scattered radiation
produced by the Raman effect contains information about the
energies of molecular vibrations and rotations, and these depend
on the particular atoms or ions that comprise the molecule,
the chemical bonds that connect them, the symmetry of their
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molecule structure, and the physico-chemical environment where
they reside.

Typically, a sample is illuminated with a laser beam. Light from
the illuminated spot is collected with a lens and sent through
a monochromator. Wavelengths close to the laser line (due to
elastic Rayleigh scattering) are filtered out and those in a certain
spectral window away from the laser line are dispersed onto a
detector.

Spontaneous Raman scattering is typically very weak, and as a
result the main difficulty of Raman spectroscopy is separating the
weak inelastically scattered light from the intense Rayleigh scat-
tered laser light. Raman spectrometers typically use holographic
diffraction gratings and multiple dispersion stages to achieve a
high degree of laser rejection. A photon-counting photomultiplier
tube (PMT) or, more commonly, a CCD camera is used to detect
the Raman scattered light.

Raman spectroscopy is commonly used for polymers, since
vibrational information is very specific for the chemical bonds
in molecules. It therefore provides a fingerprint by which the
molecule can be identified.

2.7 Exercises

1. Does a semicrystalline polymer have a glass transition
temperature? Why/why not?

2. How does the Young’s modulus change with tempera-
ture for an amorphous polymer? For a semi-crystalline
polymer?

3. What is Mullins effect? What type of polymer exhibit
the strongest Mullins effect?

4. What are the most common ways to reduce the influence
of friction in a uniaxial compression test?

5. Does all polymers neck when pulled in tension?
Why/why not?

6. What are some common mechanical tests that are per-
formed on polymers to determine the mechanical behav-
ior?
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7. What tests would you recommend in order to get ex-
perimental data for calibrating a viscoplastic material
model?

8. What is the difference between the Sharpy and Izod
impact tests?

9. What are the strengths and weaknesses of the DMA
testing?

10. What are the two most common hardness tests that are
performed on polymers?

11. What cannot SHPB testing be performed on soft poly-
mers?

12. When is it necessary to perform bulk modulus testing on
a polymer?

13. What are some of the most common experimental tech-
niques for determining the failure behavior of a poly-
mer?

14. What is the difference between verification and valida-
tion?

15. What experimental tests would you perform in order to
validate an already calibrated material model?

16. List a few common techniques that can be used to study
the surface characteristics of a polymer sample.

17. How does the DSC technique work? What data can be
obtained from a DSC experiment?

18. Is SEM or TEM more commonly used for polymer
mechanics analysis? Why?

19. What is the Bragg law and How is used in X-ray
diffraction experiments?

20. Explain how birefringence can be used to aid the devel-
opment of a hyperelastic material model for a rubber.

21. What are two techniques that can be used to determine
the molecular weight of a polymer sample?

22. What are the definitions of number-average, weight-
average, and z-average molecular weight?

23. What information can be obtained from an FTIR exper-
iment?

24. Explain a situation when it might be useful to perform a
TGA experiment.
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3.1 Introduction

Polymer mechanics is the study of how the mechanical be-
havior of polymers depend on external load environments. It is
a broad subject that provides tools to engineers and scientist
interested in understanding the behavior of polymer components
and how their performance can be predicted and optimized. This
chapter provides a broad overview of different approaches and
techniques that can be used when studying polymer mechanics
problems, and as indicated in the title, the focus is on the use of
the finite element (FE) method.

Polymeric materials have during the last few decades been
gradually transformed from being conceived as low-budget, low-
technology materials—exemplified by expression such as “it is
just a plastic”—to highly reliable and advanced materials with
excellent mechanical properties. One of the driving forces for this
transformation has been the development of a better understand-
ing of polymer behavior and how polymer components should
be designed. In other word, experimental and theoretical polymer
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mechanics have paved the way for new and improved uses of
polymers.

Designing components and products using polymers require
specific knowledge about their behavior. This is important since
their mechanical behavior is very different than traditional en-
gineering metals, see Table 3.1. One of the main challenges
of polymer mechanics is that it is a multi-disciplinary subject
that has strong ties to mechanical engineering, material science,
bioengineering, and chemical engineering—all of which are core

Table 3.1 Overview of Differences in Properties of Polymers
and Metals

Polymers Metals

Exhibit nonlinear viscoelastic
behavior when deformed at
room temperature

Exhibit elastic-plastic behavior
when deformed at room
temperature

Often contain both amorphous
and semi-crystalline domains

Crystalline microstructurea

Visco-plastic deformation driven
by macromolecular
reorganization

Plastic deformation driven by
dislocation motion and
twinning

At temperatures close to room
temperature, the material
response is very strongly
dependent on deformation rate
and temperature

Rather weak dependence on
deformation rate and
temperature at temperatures
close to room temperatures

The maximum usage temperature
is never more than 300 ◦C and
is often less than 100 ◦C

Can be used in very high
temperature applications
(higher than 800 ◦C)

Do not corrode Corrodes in an aggressive
environment

Can dissolve in an aggressive
environment

Generally impervious
to solvents

aBy using specialized manufacturing methods it is possible to create metals that are
amorphous.
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subjects of most educational institutions. Polymer mechanics, as a
subject, draws heavily on these disciplines, although the emphasis
of polymer mechanics in this context is perhaps most strongly
connected with mechanical engineering.

There are different analytical techniques that can be used when
studying the mechanical behavior of polymers. The traditional
approach, and until about 30 years ago the only approach, is to use
closed-form analysis to study deformations and stresses and how
these influence ultimate properties such as fatigue and fracture.

The development of the FE method and computers have revolu-
tionized not only polymer mechanics, but all fields of component
design and analysis. The reason for this is that the FE method
enables direct analysis of complex geometries with relatively
little effort, problems that cannot even be solved using traditional
closed-form analytical techniques. A summary of different classes
of analysis techniques, and their strengths and weaknesses is
presented in Table 3.2.

As indicated in this table, closed-form analysis, when applica-
ble, provides the most detailed information. For example, using
this technique it is possible to determine not only the stress state
for a given imposed deformation state but also the mathematical
dependence of how geometry and load history directly influence
the stress state.

FE tools have reached a high level of maturity and are widely
used in both academia and industry. The easy access to com-
mercial FE codes has created both great possibilities to solve
advanced problems, and to some extent reduced the need for
costly experimental tests. However, this computational modeling
approach also presents serious challenges since the FE programs,
albeit being easy to use, can provide inaccurate and misleading
results if not used properly. One of the overall aims of this text
is to assist the creation and selection of FE models and analysis
techniques for polymer problems.

3.1.1 Required Inputs for FEA

To perform an FE simulation, or indeed any stress analysis
calculation, there are three different types of inputs that need to
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Table 3.2 Summary of Different Analysis Techniques,
Their Strengths and Limitations, and How They Can Be
Applied to Polymer Mechanics Problems

Analysis Method Strengths Limitations

Closed-form
calculation using a
simple material
model (e.g., linear
elasticity)

+ Computationally
efficient

+ Provides the
mathematical
relationship
between
deformation and
stress

− Only applicable
to simple
geometries

FE simulation using a
simple material
model

+ Captures nonlinear
geometric effects

− Easy to calíbrate
material model

− Simple material
models often do
not give accurate
results

FE simulation using
an advanced
material model

+ Captures nonlinear
geometric effects

+ Can very
accurately capture
the material
response

− More difficult to
calíbrate material
model

− More
computationally
costly

be specified, see Figure 3.1. Note that these inputs are also needed
for traditional closed-form solution methods.

The fundamental problem of polymer mechanics can be written
in mathematical form as a boundary value problem (BVP), with
governing equations for: compatibility, constitutive response,
and equilibrium. More details of these equations are given in
Chapter 4. One of the overall themes of this book is that of the
three different types of input to the FE models: (1) geometry; (2)
loading and boundary conditions (BC); and (3) material behavior;
it is the specification of the material behavior that is typically
most challenging.
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Figure 3.1 Inputs needed for FE analysis.

3.2 Types of FEA

The FE method can be described as a numerical tool for solving
ordinary and partial differential equations over nontrivial geomet-
ric domains. In practice, finite element analysis (FEA) can be
divided into two different categories: implicit and explicit simula-
tions, see Table 3.3. FEA can also be used to study eigenfrequen-
cies and eigenmodes of deformation for a component or system.

As mentioned, one of the most difficult steps in an FE sim-
ulation is to specify the material model. A material model is
here defined as a constitutive equation and a corresponding set
of material parameters:

FE software contains a library of different constitutive equa-
tions that can be chosen, but the material parameters are typically
not provided and the selection of constitutive models that are
available is typically targeted to metals. There are generally only
a limited set of constitutive models that are suitable for predicting
the deformation behavior of polymers. One way to get around this
is to use an external user material subroutine (UMAT) to define
the material behavior, see Chapter 10 for more details.
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Table 3.3 Comparison Between Implicit and Explicit FEA

Implicit Analysis Explicit Analysis

Solves the equilibrium equations
at each time step

Solves the problem using
Newton’s law of motion

Good for static problems Good for short duration
dynamic problems

Is numerically stable Is only numerically stable for
small time increments

If the FE software finds a
solution, that solution is likely
to have small numerical errors

Often easy to find a solution,
but care is needed to find a
solution with small
numerical errors

Contact problems are sometimes
difficult to handle

Good at handling problems
with contact

3.3 Review of Modeling Techniques

Most polymer mechanics problems can be divided into two
main categories: predictions of deformation behavior and predic-
tions of failure events. A common approach is to start with a de-
formation analysis to determine the magnitudes and distributions
of stress and strain, and then, if needed, use this information as
part of a predictive failure analysis. The following subsections
provide brief examples of these modeling types. More detailed
presentations of the modeling theories are given in the following
chapters.

3.3.1 Deformation Modeling

A key component of polymer mechanics analyses involves
determining the deformation response as a function of applied
loads. The following two examples illustrate common problems
that a polymer mechanist may be exposed to.
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Example: Thermomechanical Deformations of a Threaded
Connection Gasket.
One example of a deformation model is a PTFE gasket in a
threaded connection for high pressure pipelines, see the illustra-
tion in Figure 3.2. The pipeline shown in this figure is used to
transport gases at temperatures between 20 ◦C and 200 ◦C. The
two parts of the pipeline are threaded together, and the primary
seal to prevent gas leakage is created by a metal-to-metal seal. In
this example, a PTFE gasket is used as a secondary seal to reduce
the risk of gas leaks. The gasket used in this seal is made from
PTFE filled with 10 vol% glass fibers.

The manufacturer of the pipeline wanted to reduce the number
of costly experiments and enable faster design evaluations. To
achieve these goals it was decided to develop an FE model of
the PTFE gasket and threaded connection, see Figure 3.3. In this
figure, the interior pipe, the gasket, and the exterior pipe have been
separated vertically to better illustrate the geometry.

The goal of the analysis was to predict the amount of residual
sealing force between the PTFE gasket and the interior and
exterior pipes as a function of time, temperatures, and seal
design. During the assembly of the threaded connection, the
gasket it exposed to very large deformations and pressures. It is

Primary seal

PTFE gasket

Figure 3.2 Cross-section of a pipeline with a threaded connection
containing a PTFE gasket as a secondary seal.
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PTFE gasket

Exterior pipe

Interior pipe

Figure 3.3 Details of the FE mesh close to the PTFE gasket.

therefore necessary to use a constitutive model capable of predict-
ing the large-strain time-dependent thermomechanical behavior
of the PTFE. To accomplish this, an advanced material model
specifically developed for PTFE was used (the Dual Network
Fluoropolymer [DNF] model [1], see Section 8.4). The DNF
model is not yet a built-in feature of commercial FE codes, but
have been implemented as a UMAT in Abaqus, ANSYS, and
LS-DYNA [2]. The results presented below were obtained using
Abaqus/Standard.

The first step in this project was to experimentally character-
ize the nonlinear response of the gasket material. This testing
included uniaxial monotonic and cyclic loading at different tem-
peratures, volumetric compression experiments, and a multiaxial
small punch test [3]. The second step was to calibrate the consti-
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tutive model to the experimental data and to validate the material
model by comparison to the small punch data (see Section 2.3.2).
After the DNF model had been calibrated and validated, it could
be used to simulate the deformation behavior of the PTFE gasket
at the temperatures and deformation states of interest.

One example of the results that were obtained from the stress
analysis are presented in Figures 3.4 and 3.5.

Figure 3.4 shows contours of Mises stress (in MPa) in the
gasket region. It is clear that the stresses in the metal pipes
are very high and that the PTFE gasket has been significantly
deformed.

A more detailed picture of the stress state in the PTFE gasket is
shown in Figure 3.5.

In summary, by calibrating an advanced material model to the
PTFE gasket material it is possible to use FE simulations to

S, Mises
(avg . crit . : 75%)

+9 . 014e + 02
+8 . 263e + 02
+7 . 513e + 02
+6 . 762e + 02
+6 . 012e + 02
+5 . 261e + 02
+4 . 511e + 02
+3 . 761e + 02
+3 . 010e + 02
+2 . 260e + 02
+1 . 509e + 02
+7 . 587e + 01
+8 . 211e − 01

Figure 3.4 Contours of Mises stress (in MPa) in the threaded
connection and the PTFE gasket. A mesh refinement study is needed
in order to make sure the mesh is refined enough.
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Figure 3.5 Details of the Mises stress (in MPa) in the gasket.

directly predict the sealing capability as a function of seal design
and loading conditions.

Example: Deformation of a Flex Circuit Pressure Sensor.
Flex circuit pressure sensors are used in a wide variety of applica-
tions, including touch displays and child seat sensors in car seats.
This type of sensor typically consists of a top and bottom layer
separated by a spacer layer. The actual sensing region consists of
a cavity in the spacer layer, see Figure 3.6. The top and bottom
layers are often made from a thermoplastic, and the spacer layer
is often made from an adhesive. The bottom surface of the top
layer and the top surface of the bottom layer are made conducting
by adding conducting particles, such as carbon black. The applied
pressure can be determined by measuring the resistance between
the top and bottom layers.

This example illustrates the use of the FE method to examine
the influence of sensor curvature on the sensor performance. The
electrical resistance is directly related to the contact area, so the

Top layer
Spacer

Bottom layer
Resistance
measurement

P

Figure 3.6 Schematic side view of a flex circuit pressure sensor.
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Deformed mesh at 40 kPa

Deformed mesh at 80 kPa

Deformed mesh at 140 kPa

Figure 3.7 Deformed shapes of the flex circuit pressure sensor at
different applied pressures.

goal of these simulations is to determine the contact area as a
function of applied pressure and curvature.

The performance of the pressure sensor will depend on the
electric stability and creep characteristics of the materials in
the sensor, and how the pressure is applied. In this case, the
behavior of each layer of the sensor was first experimentally
examined. Then appropriate constitutive models were calibrated
to each material. One example of the type of simulations that
were performed to study the pressure sensor design is shown in
Figure 3.7. Here, an axisymmetric representation of the sensor
was placed on a rigid surface with a given radius of curvature.
This approach enabled a direct determination of the influence of
radius of curvature and applied pressure on the contact area.

3.3.2 Failure Modeling

The perhaps most obvious criterion when designing a part is
that it should not fail in normal use during its intended lifetime.
Here, failure is defined as material failure or fracture by the
creation of new material surfaces and parts. Failure is a collective
term for both fracture and rupture, where rupture is a special
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Figure 3.8 Schematic representation of different failure modes.

failure mode in which failure occurs by localized thinning to a
point, see Figure 3.8. Both fracture and rupture can occur either
by monotonic or cyclic loading. Note, rupture is a somewhat
uncommon event that is only seen in the most ductile polymers.

Failure can be caused by different mechanisms and be of
different types; for example, monotonic overloading, cyclic
fatigue, or wear. For polymers, failure is also often caused by
a combination of mechanical loads and material degradation
due to environmental exposure. This combination of mechanical
loads and material degradation is commonly referred to as
environmental stress cracking (ESC).

The following examples illustrate the analysis of common
failure scenarios.

Example: Failure of a Water Filter.
Failure of polymer components can often be attributed to one or
more of the following reasons:

• material selection;
• part design;
• manufacturing processes; and
• service/environmental conditions.

This example illustrates a failure that was caused by a combina-
tion of material selection and part design. The failed component in
this case is a water purification system. The water filter consisted
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Figure 3.9 Details of a two-dimensional axisymmetric FE model of the
tank (green), connector head (blue), and o-ring (red).

of a water inlet, a tank filled with the purification agent, and a
water outlet. In this case, the water filter frequently failed by the
connector head breaking off from the tank. The bottom threaded
region of the connector head was made of acrylonitrile butadiene
styrene (ABS). By examining the fracture surfaces of failed parts
it was clear that the fracture initiation site was the top thread of
the connector head.

To study the failure mode a two-dimensional axisymmetric
FE model was created to assess the stress level in the head,
see Figure 3.9. This figure shows that in its assembled state, an
interior o-ring that is located between the connector head and the
tank becomes severely distorted.

An example of the stress-contours in the connector head in the
assembled state is shown in Figure 3.10.

The figure shows that there is a stress concentration near the
threads of the plastic head. The maximum Mises stress was 65%
of the yield stress of the polymer. The conclusion of the stress
analysis is that the material was not defective, either the design
needs to be modified to reduce the stress or a different material
should be used.

Example: Failure of Corrugated Hose.
A corrugated PTFE hose was used to transport liquid SO3 (sulfur
trioxide) at a chemical plant. The hose consisted of an exterior
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Max stress

Figure 3.10 Contours of Mises stress in the connector head in the
assembled state.

layer of braided stainless steel with a corrugated PTFE liner inside
Over time, a small amount of SO3 diffused through the PTFE
liner and reached the load-carrying stainless steel braid which
gradually corroded due to its interaction with the SO3 and exterior
water.

Eventually, all stainless steel corroded away in one section,
and the axial load and internal pressure were applied directly
to the PTFE liner. In the section where the steel had been
corroded away, the PTFE liner could not take the applied
loads and failed, causing a release of SO3, and environmental
problems.

An FEA was performed to better understand the failure events
and what the internal pressure was at the time of the failure. Two
examples illustrating the results from this analysis are presented
in Figures 3.11 and 3.12.

Figure 3.11 shows the deformed shape of a cross-section of
the hose, and contours of the maximum principal stress. In
this simulation, the applied temperature was 100 ◦C, the internal
pressure was 120 kPa, and the results are shown 1 s after the
application of the load.
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Figure 3.11 Contours of maximum principal stress (in MPa):
temperature T = 100 ◦C, P = 120 kPa, F = 0 N, loading time t = 1 s.
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Figure 3.12 Contours of maximum principal stress (in MPa):
temperature T = 100 ◦C, P = 120 kPa, F = 0 N, loading time t = 60 s.
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Figure 3.12 shows the results from the same load scenario,
except that the results in this case are for a time of 60 s after
the application of the load. It is clear that the liner undergoes
large viscoplastic deformations at this temperature and applied
pressure. Also, note that the location of the maximum stress
changes as a function of time from the internal surface to the
exterior surface.

3.4 Exercises

1. What are some of the key differences between polymers
and metals?

2. What are the three required input types for an FE simula-
tion?

3. What are some of the key differences between explicit
and implicit FE simulations? When is it appropriate to
perform an implicit simulation, and when is it appropriate
to perform an explicit simulation?

4. Describe the difference between a material model and a
constitutive model.

5. What are the four most common reasons a polymer
component might fail?
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4.1 Introduction

Continuum mechanics is a subject that unifies solid mechanics,
fluid mechanics, thermodynamics, and heat transfer, all of which
are core subjects of mechanical engineering. The approach taken
in this text is to use continuum mechanics as a universal tool
in which to formulate the polymer mechanics theories that will
be presented in the following chapters. In some undergraduate
textbooks, the polymer mechanics frameworks are often presented
using a traditional small-strain solid mechanics approach in an
effort to make the theory less abstract. Here, a different ap-
proach is taken. Polymer components, due to their mechanical
characteristics, are often both able and designed to undergo
large deformations, and it is therefore important for the polymer
mechanist to know that it is not sufficient to simply talk about
stress and strain when working with polymers, but that there are
in fact different types of stress and strain that can be used, and
hence it is important to specify and correctly use the different
types of stress and strain that are available.

The most logical approach for presenting these concepts is to
use a continuum mechanics approach, specifically tailored to solid
polymers. The approach taken here has been to reduce some of the
abstraction, while at the same time keep the direct tensor notation
due to its simplicity. The content presented in this chapter is meant
to be self-sufficient, and has been given a somewhat condensed
representation in order to fit into one chapter. There are many
excellent references that present a more comprehensive treatment
of the subject [1–8]. The chapter starts with a discussion about
the small-strain definitions of stress and strain followed by a brief
review of tensor algebra, and then introduces the different topics
in a logical order.
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4.2 Classical Definitions of Stress and Strain

The classical approach to define stress and strain is based
on the assumption of small deformations. As will be discussed
below, this means that the functional dependence of the
displacement of each material point1 is assumed to be linear.
The implications of this linearized theory for uniaxial loading
is presented in Section 4.2.1, and for multiaxial loading in
Section 4.2.2.

4.2.1 Uniaxial Loading

The classical approach to define stress and strain in uniaxial
deformation is given in Figure 4.1.

This figure shows a cylinder with an initial length L0 and initial
cross-sectional area A0 that is uniaxially loaded with a force F.
The bottom of the cylinder is held fixed, and the top is displaced
a distance u as a result of the applied force F.

Figure 4.1 Classical definition of stress and strain for uniaxial loading
with small deformations.

1A material point is a location that is fixed in a body and moves with the material during
deformations.
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In general, the length of the cylinder L can be a nonlinear func-
tion of the applied force: L = L̂(F). This functional relationship
can be represented as a Taylor series expansion:

L = L0 + dL̂(F)

dF
F + · · · . (4.1)

In the small-strain theory, only the linear term (first derivative of
L̂(F)) is included. By defining u = L − L0 and k = dF/dL,
the force-displacement relationship becomes the classical linear
elastic spring equation:

F = ku. (4.2)

The mechanical stress is defined as the force intensity, that is,
stress = force/area. One important question is what area should
be used in the calculation of the stress. When a tensile force is
applied on the cylindrical specimen it will not only get longer, but
it will also typically2 reduce its cross-sectional area. Let us start
by defining the radius of the cylinder at a given applied force to be
r, the initial (undeformed) radius to be r0, and the change in radius
to be �r, then r = r0 + �r. In the small deformation approach,
the change in radius is assumed to be much smaller than the initial
radius:�r � r0. The cross-sectional area in a deformed state can
then be calculated from:

A = πr2 = π(r0 +�r)2 = π(r2
0 + 2�rr0 +�r2) ≈ πr2

0. (4.3)

This means that for small deformations the cross-sectional area is
constant and the stress is simply given by σ = F/A0 = F/A.

As mentioned, the strain is given by the normalized displace-
ment ε = u/L0. With these definitions the stress is proportional to
the applied force and inversely proportional to the cross-sectional
area, and the strain is given by the normalized displacement. Note
that the stress can take any value, but the strain has be to be larger
than −1.

2The amount of reduction of the cross-sectional area is determined by the Poisson’s ratio. Almost
all materials have a positive Poisson’s ratio.
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The small-strain classical theory is based on the assumption
that the geometric changes that occur during the loading are
so small that they can be represented using a first-order linear
representation. Within this theory there is only one stress and one
strain measure to consider.

4.2.2 Multiaxial Loading

A small deformation multiaxial loading situation is shown in
Figure 4.2.

In the multiaxial case, the stress and strain at each point of the
sample are characterized by six values: σ11, σ12, σ13, σ22, σ23, σ33
and ε11, ε12, ε13, ε22, ε23, ε33. These values are often arranged
into symmetric 3 × 3 matrices:

σij =
⎡
⎣σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

⎤
⎦ , (4.4)

εij =
⎡
⎣ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

⎤
⎦ . (4.5)

Figure 4.2 Classical definition of multiaxial stresses. The strain
components are defined analogously.
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In the multiaxial case, the stress and strain at each point can be
represented by normal and shear stresses on a small cube-shaped
volume element, as shown in Figure 4.2. The first subscript of
a stress or strain quantity represents the normal direction of the
face and the second subscript represents the direction of the stress
or strain quantity.3 Each face contains one normal stress and two
shear stresses. To satisfy force equilibrium, the shear stress matrix
is symmetric, that is, σ12 = σ21, σ13 = σ31, and σ23 = σ32.

The strain in the multiaxial case can be calculated in a similar
way to the uniaxial case. Start by defining a displacement vector
U = [U1, U2, U3] that varies with the position in the material
specified by X = [X1, X2, X3]:

U(X) = x(X)− X. (4.6)

In this equation, (uppercase) X is the initial location of the mate-
rial point that in the deformed state is at location (lowercase) x.
The partial derivative of the displacement vector with respect to
the initial position is the gradient of the displacements:

Grad U(X) = ∂U(X)
∂X

= ∂Ui

∂Xj
=

⎡
⎢⎢⎢⎣
∂U1
∂X1

∂U1
∂X2

∂U1
∂X3

∂U2
∂X1

∂U2
∂X2

∂U2
∂X3

∂U3
∂X1

∂U3
∂X2

∂U3
∂X3

⎤
⎥⎥⎥⎦ . (4.7)

The strain matrix is defined as the symmetric part of
Equation (4.7):

εij = 1

2

[
∂Ui

∂Xj
+ ∂Uj

∂Xi

]
(4.8)

=

⎡
⎢⎢⎢⎣

∂U1
∂X1

1
2

(
∂U1
∂X2

+ ∂U2
∂X1

)
1
2

(
∂U1
∂X3

+ ∂U3
∂X1

)
1
2

(
∂U2
∂X1

+ ∂U1
∂X2

)
∂U2
∂X2

1
2

(
∂U2
∂X3

+ ∂U3
∂X2

)
1
2

(
∂U3
∂X1

+ ∂U1
∂X3

)
1
2

(
∂U3
∂X2

+ ∂U2
∂X3

)
∂U3
∂X3

⎤
⎥⎥⎥⎦ .

3In some textbooks, the interpretation of the two subscripts is reversed. Since the stress and strain
matrices are symmetric, this does not have a significant influence.
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These definitions of stress and strain are sufficient for analyzing
problems involving small deformations. The situation, however,
becomes more complicated if the applied deformations become
sufficient large such that the shape or size of the specimen
becomes significantly different during the applied deformation.
In these cases, a more general description of stress and strain is in
order. The next section presents an extension of the theory suitable
for large deformations.

Example
To demonstrate the short comings of the small-strain approach
consider a situation in which the cylinder in Figure 4.1 is made
from a flexible rubber and a large force is applied. In this case, the
change in both the specimen length and cross-section area can be
significant. In the small-strain theory, the stress is calculated from
σ = F/A, but one obvious complication here is that the cross-
sectional area is changing during the deformation. In the small-
strain case, A is assumed to be constant, but in the large strain
case that assumption is not valid. In fact, if we use the initial area
A0 in the calculation of the stress we get the engineering stress:
σeng = F/A0, and if we use the current (actual) area we get the
true stress: σtrue = F/A.

Note: There is no hard rule for when the small-strain theory is
sufficient, but a general rule is that the strain magnitude has to be
less than 1%. If an effective strain is larger than that magnitude it
is usually better to switch to large strain theory.

In Abaqus, you can switch on large-deformation theory by
setting NLGEOM=yes on the *STEP command.

In ANSYS, you can switch on large-deformation theory by
setting nlgeom,on.

4.3 Large Strain Kinematics

Polymer mechanics, and solid mechanics in general, are topics
concerned with the evolution of stresses and strains when a
component is exposed to external loads in the form of forces,
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displacements, and temperatures. One of the key foundations of
this topic is related to the kinematics of the deformation, that
is how to mathematically express the displacements of different
parts of a body of interest.

To study this topic, we will start by considering a body that
initially (at time 0) has a configuration (shape and location) �0
and then at a later time t has another configuration �c, see
Figure 4.3.

The body can be considered to consist of a collection of small
volume elements that collectively make up the body. Each of these
infinitesimal volume elements is referred to as a material point.
Kinematics is a topic that describes the movement of material
points during a deformation event. As was discussed earlier, in the
small-strain theory, the displacements are assumed to be so small
that the configuration of the body does not significantly change
during a loading event. This is one of the key factors that make
small-strain theory easy to understand and work with.

When the deformations are finite, the shape and location of
a body can undergo large changes during a loading event. The
following example illustrates two different ways to keep track of
the motion of a deforming body.

Figure 4.3 Schematic figure showing a body that move and change
shape as a function of time.
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Example: Lagrangian and Eulerian Formulations.
To illustrate the use of different kinematic formulations we will
consider a rubber band that is axially stretched by a time-varying
force f(t), see Figure 4.4. In this example, one material point on
the rubber band has been marked with a ×.

One way to keep track of the stresses and strains in the rubber
band is to focus on one material point at a time (e.g., the location
on the rubber band with the ×). If we specify the location of the
× in the unloaded configuration we can then uniquely express
the stress and strain of that material point as a function of time.
This approach where we focus on each material point labeled by
its position in the reference configuration is called a Lagrangian
formulation.

An alternative approach to specify the stresses and strains in the
rubber band is to superimpose a fixed grid (coordinate system),
as is shown in Figure 4.5, and then use the spatial coordinates
to specify the stresses and strains in the rubber band during the
loading event.

This way we can keep track of the rubber band in terms of its
current spatial coordinates. This way to describe the motion is
called an Eulerian formulation.

We can mathematically formalize the previous example by
considering a material point that is initially located at X and at
time t located at x(t). The motion of the material point can be
described by the mapping:

Figure 4.4 Example of a Lagrangian representation of a deformation.
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Figure 4.5 Example of an Eulerian representation of a deformation.

x = X (X, t), (4.9)

where X (·) is a vector function that as input takes an initial
position vector and a time, and as an output gives the position
of that material point at the specified time. The vector X is called
the reference (or material) location, and the vector x is called the
current (or spatial) location of the material point.

When studying continuum quantities it is often necessary to
follow and keep track of a certain region of a body. As discussed
in the example above, there are two ways to do this. One is to label
each point of the region of interest based on the its initial reference
location. This way we can make statements such as: “the material
point that at time 0 was at the location X is having a velocity of V
at time t.” This formulation, where everything is referred back to
the initial configuration, is called a Lagrangian formulation.

The other way to keep track of the motion of a body is to utilize
the current configuration to label the material points. This way
we can make statements as: “the material point which at time t
is at x has a velocity of v.” This formulation, where everything
is referred to in the current configuration is called an Eulerian
formulation.

The nomenclature in this text closely follows recent continuum
mechanics texts (e.g., Holzapfel [2]). Specifically, quantities that
are expressed in the reference configuration are denoted with
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uppercase letters, and quantities that are expressed in the current
configuration are denoted with lowercase letters.

The following discussion will utilize tensor notation and tensor
algebra. In order to fully understand the continuum mechanics
theory, it is important to have a good understanding of what
tensors are and how they can be manipulated. The following
section presents a brief summary of this topic.

4.4 Vector and Tensor Algebra

It can be shown that, in a mathematical sense, both stress
and strain are second-order tensors [2, 4, 7], hence the rules of
tensor algebra are of importance in polymer mechanics. For the
novice, second-order tensors can at first appear to be complicated
and abstract. This conception is fueled by the many different
ways tensor notation have been written in different books. The
approach taken here is to limit the discussion to results that are
commonly used in polymer mechanics, and not to place too much
emphasis of mathematical proofs. For the interested reader there
are numerous resources [1–4, 9] that focus on the mathematical
details.

The three types of variables that are of importance in polymer
mechanics are scalars (e.g., temperature, density), vectors (e.g.,
force, velocity), and second-order tensors (e.g., stress, strain). In
some texts, scalars are referred to as zeroth-order tensors, and
vectors as first-order tensors. Here, we will not use those terms,
and the second-order tensors will simply be called tensors.

4.4.1 Vector Operations

A vector represents a direction and a magnitude in three-
dimensional (3D) space. In the following, a vector is represented
by a bold-face letter, or by letters with indices, for example:

v = v1ê1 + v2ê2 + v3ê3 = viêi. (4.10)

In this example, [ê1, ê2, ê3] is a set of orthogonal basis vectors.
Here, and in the following, vectors with unit length are denoted
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with a superscript hat; for example, ê1. The last term in Equa-
tion (4.10) illustrates the use of the Einstein repeated indexes
summation convention: if exactly two variables in a term have
the same subscript then that subscript is to be repeated with the
values 1, 2, and 3. For example:

uiui = u1u1 + u2u2 + u3u3 = |u|2,

Ajj = A11 + A22 + A33,

Ai1ui = A11u1 + A21u2 + A31u3.

When working with vectors there are a number of operations
that are commonly used. The following is a short summary of the
most common vector functions and operations.

The length of a vector, also called the norm, is defined by:

|u| = √
u · u = √

uiui =
√

u2
1 + u2

2 + u2
3. (4.11)

Two vectors can be added or subtracted by adding or subtracting
the components of the vectors:

u + v =
3∑

i=1

(ui + vi)êi, (4.12)

u − v =
3∑

i=1

(ui − vi)êi. (4.13)

A scalar and a vector can be multiplied by multiplying the scalar
with each of the components of the vector:

au = (aui)êi. (4.14)

There are different ways to multiply two vectors. A first way is
through the dot-product which is defined by:

u · v = uivj = u1v1 + u2v2 + u3v3 = |u| · |v| · cos θ , (4.15)

where θ is the angle between the two arbitrary vectors u and v.
Note that the dot-product of two vectors becomes a scalar. A
second way to multiply two vectors is through the cross-product
which is defined by:
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u × v =
⎡
⎣ê1 ê2 ê3

u1 u2 u3
v1 v2 v3

⎤
⎦ = uivjεijkêk, (4.16)

where εijk is the permutation symbol defined by

εijk =

⎧⎪⎨
⎪⎩

+1 if (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2)

−1 if (i, j, k) = (1, 3, 2) or (3, 2, 1) or (2, 1, 3)

0 for any other combination of i, j, k

.

(4.17)
The cross-product of two vectors is a vector quantity that is
orthogonal to the two initial vectors.

4.4.2 The Dyadic Product

A third way to multiply two vectors a and b is through the dyad
(or tensor product) denoted by a ⊗ b. The dyad is a second-order
tensor, which will be discussed in more detail in the next section,
and that can be defined by how it operates on an arbitrary vector x:

(a ⊗ b) x = (b · x) a. (4.18)

The dyad between two vectors can also more intuitively be written
as a 3 × 3 matrix:

a ⊗ b =
⎡
⎣a1b1 a1b2 a1b3

a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤
⎦ . (4.19)

In general, any general tensor can be written as a sum of nine dyad
terms (also called a dyadic):

A = Aijêi ⊗ êj (summation implied). (4.20)

For example, the identity tensor can be written as the sum of three
dyads:

I =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ =

3∑
i=1

êi ⊗ êi = êi ⊗ êi. (4.21)
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The following pre- and post-multiplications between a dyad and
a vector or second-order tensor (A) are commonly used:

(a ⊗ b)(c ⊗ d) = (b · c)(a ⊗ d), (4.22)

(a ⊗ b)A = a ⊗ (A�b), (4.23)

A(a ⊗ b) = (Aa)⊗ b. (4.24)

The proof of these relations are discussed in various text books
[1–3, 10] and are here left as exercises.

4.4.3 Tensor Operations

A (second-order) tensor represents a quantity that contain more
information than a vector: it assigns a value and direction for each
value and direction, and can hence be thought of as a mapping
from one vector to another. In index-form, a second-order tensor
can be written as A = Aij.

There are different ways to interpret a second-order tensor. For
example, as mentioned, a second-order tensor can be thought of
as a linear operator A that acts on a vector u generating another
vector v = Au. In the context of this text, it is often sufficient to
simply consider a second-order tensor as a 3 × 3 matrix.

When working with tensors there are also numerous operations
that are important. The following are definitions of the most
common operations:

• Two tensors can be added (or subtracted) by adding
(or subtracting) their indices:

(A + B)ij = Aij + Bij (4.25)

(A − B)ij = Aij − Bij. (4.26)

• A tensor can be operated on a vector creating another
vector using the following multiplication and summa-
tion:

Au = Aijujêj = A11u1ê1 + A12u2ê2 + A13u3ê3.
(4.27)
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• Two tensors can be multiplied, giving a new tensor,
using the following multiplication and summation:

(AB)ij = AikBkj = Ai1B1j + Ai2B2k + Ai3B3k. (4.28)

• The inner product of two tensors (also called the dot-
product or the contraction) is a scalar defined by

A : B = tr[AB�] = AijBij. (4.29)

• The transpose of a tensor A is defined by

Au · v = u · A�v, for all vectors u, v. (4.30)

The transpose of a tensor can also be written in index
notation

(Aij)
� = Aji. (4.31)

which also gives the following useful equation

(AB)� = B�A�. (4.32)

• The trace of a tensor is a scalar quantity that is given
by the sum of the diagonal terms:

tr[A] = Aii = A11 + A22 + A33. (4.33)

• The determinant of a tensor can be calculated the
same way as it is calculated for a 3 × 3 matrix:

det[A] = det

⎡
⎣A11 A12 A13

A21 A22 A23
A31 A32 A33

⎤
⎦ . (4.34)

• A tensor can be uniquely decomposed into deviatoric
and volumetric parts:

A = dev[A] + vol[A], (4.35)

where

dev[A] = A − 1

3
tr[A]I, (4.36)
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vol[A] = 1

3
tr[A]I. (4.37)

A deviatoric tensor has a trace of zero. This decom-
position is useful when working with the deformation
gradient, as will be discussed in later chapters.

• A tensor can also be decomposed into a product of
distortional and dilatational parts:

A = distortional[A] dilatational[A], (4.38)

where

distortional[A] = det[A]−1/3 A, (4.39)

dilatational[A] = (det[A])1/3 I. (4.40)

A distortional tensor has a determinant of zero. This
deformation gradient is useful when working with the
deformation gradient, as will be discussed in later
chapters.

• An orthogonal tensor Q is a tensor with the following
properties:

Q� = Q−1 (4.41)

det Q = 1. (4.42)

• A diagonal tensor is a tensor with zero off-diagonal
terms:

Aij = 0, if i �= j. (4.43)

• The components of a tensor Aij can be determined
from the unit vectors êi and êj as follows:

Aij = Aêi · êj. (4.44)

• It is often useful to calculate functions of a tensor,
such as exp(A). One way to calculate these functions
is to write the tensor A in its spectral representation
(see Section 4.5.1) and then apply the function on the
principal values of the tensor:
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f (F) =
3∑

i=1

f (λi)n̂i ⊗ N̂i. (4.45)

This theorem is discussed in more detail in linear
algebra texts [11, 12].

From the discussion above it is clear that direct notation is more
compact and often easier to understand than index notation. For
these reasons direct notation will be used almost exclusively in
the following.

4.4.4 Derivatives of Scalar, Vector, and Tensor Fields

When formulating and integrating certain advanced constitu-
tive theories it is important to incorporate time and spacial deriva-
tives of scalar, vector, and tensor fields. This section summarizes
the most commonly used approach to perform these derivatives.

First consider a scalar function a(x, t) that is expressed in the
spatial configuration. The spatial time derivative of the spatial
field a(x, t) is given by the partial derivative of a with respect to t
holding x constant:

∂a(x, t)

∂ t
. (4.46)

Another commonly used time derivative is the material time
derivative of the spatial field a(x, t). This time derivative is
defined by the partial derivative of a with respect to t holding X
constant:

∂a(x, t)

∂ t
= ∂a(x, t)

∂ t
+ ∂a(x, t)

∂x
· ∂X (X, t)

∂ t
, (4.47)

giving

Da(x, t)

Dt
= ȧ(x, t) = ∂a(x, t)

∂ t
+ (grad a(x, t)) · v(x, t). (4.48)

This can be written as a total derivative

D

Dt
a(x, t) = ȧ(x, t) =

[
∂

∂ t
+ v · ∂

∂x

]
a(x, t). (4.49)
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Spacial derivatives are commonly used in addition to time
derivatives. The gradient of a scalar and a vector field is defined
as follows:

grad φ(x) = ∂φ

∂xi
êi, (4.50)

grad u(x) = ∂ui

∂xj
êi ⊗ êj. (4.51)

The divergence of a vector field u(x) and a tensor field A(x) is
defined by

div u = ∂ui

∂xi
. (4.52)

div A = ∂Aij

∂xj
êi. (4.53)

The divergence theorem is commonly used in theoretical poly-
mer mechanics and will be extensively used in the following
sections. As shown in Figure 4.6, let u(x) be a vector field defined
on a domain�c with the boundary ∂�c.

The divergence theorem [1, 2, 10] then states that the surface
integral of a vector field can be related to the volume integral of
the divergence of the same vector field as follows:∫

∂�c

u · n̂ ds =
∫
�c

div u dv, (4.54)

Figure 4.6 Definition of the domain �c that is studied in the
divergence theorem.
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where n̂ is the surface normal, ds is a surface area element, and dv
is a volume element.

There are other more general forms of the divergence theorem,
and other integral theorems such as the Stokes theorem. These
theorems and the proof of Equation (4.54) are discussed in
introductory vector algebra books [10]. For the topics of this book
it is sufficient to only cover the divergence theorem as presented
in Equation (4.54).

4.4.5 Coordinate Transformations

In polymer mechanics analysis, it is often necessary to perform
coordinate transformations. To illustrate how to perform these
transformations we will consider two coordinate systems ê′

i and
êi that are related by a rotation Q

ê′
i = Q�êi, (4.55)

where Q is an orthogonal tensor. Now consider one compo-
nent of Q:

Qij = Qêj · êi (4.56)

= êj · Q�êiêj · ê′
i (4.57)

= cos(angle between ê′
i and êj). (4.58)

Hence, each component of Q is given by the dot-product of
the corresponding unit vectors. Since an arbitrary vector can be
written x = xiêi, we see that the coordinate transformation implies
the vector transformation:

x′ = Qx. (4.59)

Similarly, as will be shown in Section 4.12, a second-order tensor
is transformed according to:

A′ = QAQ�, (4.60)

where Qij is equal to cosine between the basis vectors ê′
i and êi.
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4.4.6 Invariants

The invariants of a tensor are very important for many polymer
mechanics constitutive theories. A second-order tensor has three
invariants that are related to the eigenvalues defined by:

An̂i = λin̂i, (4.61)

which can also be written

(A − λiI) = 0. (4.62)

This equation only has nontrivial solutions if

det (A − λiI) = 0, (4.63)

where

det (A − λiI) = −λ3
i + I1λ

2
i − I2λi + I3 = 0. (4.64)

This cubic polynomial in λi is called the characteristic polyno-
mial. The scalar values I1, I2, and I3 are the principal invariants of
A and are given by:

I1(A) = tr A = λ1 + λ2 + λ3, (4.65)

I2(A) = 1

2

[
(tr A)2 − tr

(
A2
)]

= λ1λ2 + λ2λ3 + λ3λ1, (4.66)

I3(A) = det A = λ1λ2λ3. (4.67)

As will be discussed in Chapter 5, the invariants of the defor-
mation gradient are used to formulate hyperelastic constitutive
models. What the deformation gradient is and how it can be used
is the topic of the next section.

4.5 Deformation Gradient

One of the most important goals of polymer mechanics is to
determine the stress state as a function of applied displacements
and loads. The stress at a given material point is determined by
how stretched and distorted the material is at that point relative
to its initial undeformed configuration. One convenient way to
express the local stretch state is to use the deformation gradient F
defined by:
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F = ∂X (X, t)

∂X
, (4.68)

which in index notation can be written Fij = ∂xi/∂Xj. The
deformation gradient is a very important descriptor of the applied
deformation state and is extensively used in both theoretical and
computational works. In fact, it can be said that: deformation
gradients rule theoretical polymer mechanics.

The following examples illustrate the definition and use of the
deformation gradient F.

Example: Deformation Gradient in the Undeformed State.
If a specimen is undeformed, then the current state is equal to
the reference state and the deformation gradient is equal to the
identity tensor

F = I =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

Example: Uniaxial Tension.
Consider a cube that is uniaxially stretched in the one-direction by
a stretch ratio λ = L/L0. Further assume that the contraction in
the two- and three-directions are equal and that the total volume
is conserved. In this case, the coordinates of a material point in
the current configuration is given by

x1 = λ · X1 (4.69)

x2 = 1√
λ

· X2 (4.70)

x2 = 1√
λ

· X3. (4.71)

The deformation gradient in this case can be directly obtained
from the definition (4.68)

F =
⎡
⎣λ 0 0

0 1/
√
λ 0

0 0 1/
√
λ

⎤
⎦ . (4.72)
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Example: Simple Shear.
Consider a specimen that is deformed in simple shear. In this case,
the coordinates of a material point in the current configuration are
given by

x1 = X1 + γX2, (4.73)

x2 = X2, (4.74)

x3 = X3. (4.75)

Note that we have assumed that there is no deformation in the
three-direction. The deformation gradient in this case is given by:

F =
⎡
⎣1 γ 0

0 1 0
0 0 1

⎤
⎦ , (4.76)

illustrating that F in general is not symmetrical.

From the definition of the deformation gradient we can also
write F as a mapping or linear transformation:

dx = F(X) dX. (4.77)

That is, by operating F on a vector dX in the reference config-
uration we get the location of that vector in the current config-
uration. This is a general result: operating a second-order tensor
(such as F) on a vector creates another vector that is the linear
transformation of the second-order tensor (F). This can also be
expressed in matrix terminology: multiplying a 3×3 matrix (such
as F) with a 3 × 1 vector gives another 3 × 1 vector.
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Since the deformation gradient F is a linear transformation
from the reference configuration to the current configuration, the
inverse of the deformation gradient F−1 must also exist and is
the transformation from the current configuration to the reference
configuration:

dX = F−1 dx. (4.78)

Furthermore, if we first operate with F and then with F−1 (or
first with F−1 and then with F), then we get back the original
configuration, that is F−1F = FF−1 = I, giving X = F−1FX.

Example: Volumetric Deformation.
One important use of the deformation gradient is that it spec-
ifies how the volume is changed during a transformation. If
dV is a small volume element in the reference configuration,
then that volume element is transformed into the volume ele-
ment

dv = det(F) dV (4.79)

in the current configuration. The quantity det(F) is commonly
referred to as J (the Jacobian determinant)

J = det F. (4.80)

The proof of this theorem is given in different text books [2, 10]
and is here left as an exercise.

The deformation of a body can be divided into different classes
depending on the structure of the deformation gradient:

• If F does not vary from location to location in a body
then the deformation is said to be homogeneous.

• If F(X) is a function of the position then the deforma-
tion is said to be inhomogeneous.

• If J = det F = 1 then the deformation is said to be
isochoric.
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4.5.1 Eigenvalue and Spectral Decompositions

As is known from linear algebra [12], any symmetric tensor
A can be characterized by its eigenvalues (λ1, λ2, λ3) and its
eigenvectors (n̂1, n̂2, n̂3) by:

An̂i = λin̂i (for i=1, 2, 3; no summation implied).
(4.61-repeat)

In this equation, and in the following, unit vectors are distin-
guished from other vector quantities by a superimposed hat-sign;
for example, n̂. For a symmetric tensor A, the eigenvalues (λi) are
real and the eigenvectors (n̂i) form a mutually orthogonal basis
of unit vectors. The tensor A can in this case be written in its
eigenvalue representation as:

A =
3∑

i=1

λin̂i ⊗ n̂i. (4.81)

This eigenvalue representation is based on the dyadic product that
was defined and discussed in Section 4.4.2.

Another way of writing the eigenvalue decomposition of a
symmetric tensor A is:

A = Q�Q�, (4.82)

where Q is orthogonal (Q� = Q−1), and � is diagonal (� =∑3
i=1 λiêi ⊗ êi). Hence, A can also be written

A = Q

[
3∑

i=1

λiêi ⊗ êi

]
Q� =

3∑
i=1

λi(Qêi)⊗(Qêi) =
3∑

i=1

λin̂i⊗n̂i,

(4.81-repeat)

which is another way of writing the eigenvalue representa-
tion of A.

The focus of this section is on the deformation gradient F,
which in general is nonsymmetric and hence does not have real
eigenvalues [12]. Instead of using the eigenvalue decomposition,
the deformation gradient F is often decomposed using the singu-
lar value decomposition:
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F = Q1�Q2, (4.83)

where Q1 and Q2 are two different orthogonal tensors (rotations),
and � is diagonal. Hence, the singular value decomposition of F
can also be expressed as follows:

F = Q1

[
3∑

i=1

λiêi ⊗ êi

]
Q�

2 (4.84)

F =
3∑

i=1

λi(Q1êi)⊗ (Q2êi) (4.85)

F =
3∑

i=1

λin̂i ⊗ N̂i. (4.86)

In these equations, λi is the principal stretches of the deformation,
n̂i and N̂ are the basis vectors of the deformation gradient. This
way of writing a tensor as a sum of the dyadic product of its
eigenvectors is called the spectral representation.

The following two examples illustrate how the deformation
gradient can be used to transform line and area elements.

Example: Transformation of Line Elements.
Consider a vector dX = dSN̂ in the reference configuration,
where dS is the length of the vector and N̂ is a unit vector in the
direction of the vector dX.

If we operate with F on dX we get

dx = F dX. (4.77-repeat)

The length of dx is

|dx| ≡ ds =
∣∣∣F (dSN̂

)∣∣∣ = dS
∣∣∣FN̂

∣∣∣ . (4.87)

Hence, the length of a vector in the current configuration is
equal to the length of that vector in the reference configuration
times |FN̂|.
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Example: Transformation of Area Elements (Nanson’s
Formula).
Let dS be an area element in the reference configuration with a
unit normal vector N̂, and let ds be the corresponding area element
in the current configuration with a unit normal n̂.

In this case, the corresponding volume element dv in the current
configuration can be written

dv = ds · dx = JdS · dX, (4.88)

but dx = FdX giving

ds · (FdX)− JdS · dX = 0 (4.89)

F�ds = JdS (4.90)

ds = JF−TdS. (4.91)

This relation between area elements is often called the Nanson’s
formula and is useful when defining different stress measures.

When working with continuum mechanics formulations it is
often necessary to consider the gradient and the divergence of
scalar and vector fields. The following two examples illustrate
how to perform these operations in the reference and the current
configurations.

Example: Gradient of a Scalar Field.
Consider a scalar field that is a(x, t) in spatial coordinates and
A(x, t) in reference (material) coordinates. The gradient of this
field in the reference frame is then the space derivative of A(X, t)
and can be written

∂A(X, t)

∂Xi
= ∂a(x, t)

∂xk

∂xk

∂Xi
, (4.92)

which is equivalent to

Grad A = F� grad a. (4.93)

In this equation, and in the following, we will use Grad to
represent the gradient in the reference configuration and grad to
represent the gradient with respect to the spatial coordinates.
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Example: Divergence of a Vector Field.
The divergence of a reference vector field U(X, t) can be written

Div U(X, t) = ∂Ui(X, t)

∂Xi
= ∂ui(x, t)

∂xk

∂xk

∂Xi
= grad U(X, t) : F�.

(4.94)
Similarly, the divergence of a spatial vector field u(x, t) can be
written

div u(x, t) = ∂ui(x, t)

∂xi
. (4.95)

In these equations, and in the following, we will use Div to
represent the gradient in the reference configuration and div to
represent the gradient with respect to the spatial coordinates.

4.6 Strain, Stretch, and Rotation

From the polar decomposition theorem [2, 10] it is known
that any general deformation can be uniquely decomposed into a
rotation followed by a stretch component, or a stretch component
followed by a rotation:

F = RU = vR, (4.96)

where

• F is the deformation gradient,
• R is the rotation tensor, which is orthogonal, (R−1 =

R�) and volume conserving (det R = 1),
• U is the right stretch tensor, which is positive definite

and symmetric (U = U�),
• v is the left stretch tensor, which is positive definite

and symmetric (v = v�).

Note that if U = v = I, then F = R is a rigid body rotation.
Similarly, if R = I then F = U = v is a pure stretch.

From Equation (4.96) we know that the right stretch tensor U is
symmetric, hence it can be written in a spectral representation as

U =
3∑

i=1

λiN̂i ⊗ N̂i. (4.97)
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In this equation, λi is the principal stretches and N̂i is the
corresponding eigenvectors of the tensor U. Similarly the left
stretch tensor can be written

v =
3∑

i=1

λin̂i ⊗ n̂i. (4.98)

Note that U and v have the same principal stretches but different
principal directions (basis vectors) since they are expressed in
different reference frames. The eigenvectors of v can be related
to the eigenvectors of U by solving for v in Equation (4.96):

v = RUR� =
3∑

i=1

λi

(
RN̂i

)
⊗
(

RN̂i

)
. (4.99)

Hence, the eigenvectors of U and v are related by

n̂i = RN̂i (4.100)

and

N̂i = R�n̂i. (4.101)

The deformation gradient can also be expressed in spectral form
by F = RU giving

F = R
3∑

i=1

λiN̂i ⊗ N̂i =
3∑

i=1

λi

(
RN̂i

)
⊗ N̂i =

3∑
i=1

λin̂i ⊗ N̂i,

(4.102)
which is the same result that was presented in Equation (4.86).
Since the basis vectors of F contain both n̂i and N̂i, F is called a
two-point tensor.

The rotation tensor R can by written as

R = RI = R
3∑

i=1

N̂i ⊗ N̂i, (4.103)

giving

R =
3∑

i=1

n̂i ⊗ N̂i. (4.104)
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There are a number of other important and useful tensor
quantities that are defined from the polar decomposition of F:

• C = F�F is the right Cauchy-Green tensor. Since
F = RU, we get C = U�R�RU = U2. Hence, C can
also be written

C = F�F =
3∑

i=1

λ2
i N̂i ⊗ N̂i. (4.105)

• b = FF� is the left Cauchy-Green tensor.4 From
Equation (4.96) the tensor b can also be written

b = FF� = vRR�v� = v2. (4.106)

Hence, b is also given by

b =
3∑

i=1

λ2
i n̂i ⊗ n̂i. (4.107)

Example: How to Calculate the Polar Decomposition
of a Tensor.
One of the easiest ways to calculate the polar decomposition of
a tensor F = RU is to recall that C = F�F = U2. This allows
U to be determined from U = √

FF�. One way to perform the
square root operation is to write U2 in its spectral representation
by calculating the eigenvalues and eigenvectors of U2:

U2 =
3∑

i=1

λ2
i N̂i ⊗ N̂i. (4.108)

The tensor U can then be calculated from

U =
3∑

i=1

λiN̂i ⊗ N̂i. (4.109)

4The left versus right terms in the definitions of the Cauchy-Green tensors is determined by which
side F is compared to F�.
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Once U has been determined, the tensor R can be calculated from

R = FU−1 (4.110)

and v from

v = FR�. (4.111)

Example: Determination of the Deformation Gradient for a
Case of Stretch and Rotation.
Consider a deformation that is performed in two steps: first, the
material is stretched by a factor of two in the one-direction, and
then rotated 45◦ around the three-direction, see the figure below.

The stretch deformation is given by:⎧⎪⎨
⎪⎩

y1 = 2X1

y2 = 0.5X2

y3 = X3

(4.112)

giving the right stretch tensor:

U =
⎡
⎣2 0 0

0 0.5 0
0 0 1

⎤
⎦ . (4.113)

The components of the rotation can be written⎧⎪⎨
⎪⎩

x1 = cos θy1 + sin θy2

x2 = − sin θy1 + cos θy2

x3 = y3

(4.114)
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giving the rotation tensor

R =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦ . (4.115)

In this case, θ = 45◦ giving the deformation gradient F = RU:

F =
⎡
⎣ 1.41 0.35 0

−1.41 0.35 0
0 0 1

⎤
⎦ . (4.116)

Example: Numerical Calculation of the Deformation
Gradient for a Case of Stretch and Rotation.
The polar decomposition is straightforward to calculate using a
high-level math application or language. For example, Matlab
[13], Mathematica [14], and Python [15] are all suitable tools.
Many of the examples in this book are based on Python with
NumPy and SciPy. Since these tools are very mature, powerful,
and free, it is an excellent choice for numerical calculations.

In this example, we will start with the deformation gradient
in Equation (4.116) and then calculate the U and R tensors. The
Python code for this calculation is shown below.
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The strain at a material point, by definition, should not be
influenced by rigid body rotations. This means that the strain
tensor cannot directly depend on the deformation gradient F,
since F also depends on rotations. Instead the strain tensor has
to depend on the right or left stretch tensors. If the right stretch
tensor (U) is used to define the strains then the strain will be
expressed in the reference configuration, and if the left stretch
tensor (v) is used, the strain will be expressed in the current
configuration.

The strain tensor in the reference configuration can most
generally be written as a function of U:

E = Ê(U). (4.117)

This tensorial dependence can be expressed in the spectral repre-
sentation

E = E(U) =
3∑

i=1

f (λi)N̂i ⊗ N̂i, (4.118)

where f (λi) is a scalar function of the principal stretches. Hence,
E will be coaxial5 with U but have different eigenvalues. The
function f (λi) need to fulfill three requirements for E to become
a valid strain tensor:

1. The strain has to be zero in the undeformed state,
hence f (1) = 0.

2. At small deformations the strain should become
equal to the classical strain defined in Section 4.2,
hence f ′(1) = 1.

3. The strain has to increase monotonically with the ap-
plied deformation, that is f (λ) has to monotonically
increase with increasing λ.

5Two tensors are said to be coaxial if they have the same basis vectors.
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The following are commonly used strain measures expressed
in the reference configuration. These strains are also called
Lagrangian strains.

• The Green-Lagrange strain, which corresponds to
f (λi) = 1

2(λ
2
i − 1), can be written

E = 1

2

[
U2 − I

]
. (4.119)

• The Hencky strain (also called the true strain, or the
logarithmic strain), which corresponds to f (λi) =
lnλi, can be written

E = ln U. (4.120)

• The Biot strain, corresponding to f (λi) = λi − 1, can
be written

E = U − I. (4.121)

• The Almansi strain, corresponding to f (λi) = 1
2

(1 − λ−2
i ), can also be written

E = 1

2

[
I − U−2

]
. (4.122)

It is also possible to formulate the strain in the current (spatial)
configuration:

e = e(v), (4.123)

which can also be expressed in its spectral representation

e =
3∑

i=1

f (λi)n̂i ⊗ n̂i. (4.124)

The following are commonly used strain measures expressed in
the current configuration. These strains are also called Eulerian
strains.
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• The nominal strain, corresponding to f (λi) = λi − 1,
can be written

e = v − I. (4.125)

• The Hencky strain (also called the true strain or the
logarithmic strain), which corresponds to f (λi) =
ln(λi), can be written

e = ln v. (4.126)

• The Euler-Almansi strain, corresponding to f (λi) =
1
2(1 − λ−2

i ), can also be written

e = 1

2

[
I − b−1

]
. (4.127)

Note: Most FE programs, for example Abaqus and ANSYS, can
create contour plots of the Eulerian nominal (engineering) strain,
and the Eulerian logarithmic (true) strain. These strains are often
simply called the “engineering strain” and the “true strain,”
respectively.

4.7 Rates of Deformation

Many advanced constitutive theories for polymers includes
considerations of the inherent viscoelasticity and viscoplasticity
of the material. To incorporate these effects into a model it is nec-
essary to consider the time derivative of the deformation gradient

Ḟ = ∂

∂ t

∂xi

∂Xj
= ∂

∂Xj

∂xi

∂ t
= ∂v
∂X

= Grad v. (4.128)

From this equation we can also write the time derivative of F as

Ḟ = ∂vi

∂Xj
= ∂vi

∂xk

∂xk

∂Xj
= lF, (4.129)

where l is a tensor quantity called the spatial velocity gradient:

l ≡ ∂v
∂x

= grad v. (4.130)



4: Continuum Mechanics Foundations 165

It is often useful to decompose the spatial velocity gradient into a
symmetric (d = d�) and an anti-symmetric (w = −w�) part:

l = d + w, (4.131)

where

d = 1

2

(
l + l�

)
, (4.132)

w = 1

2

(
l − l�

)
. (4.133)

The tensor d is called the rate of deformation tensor and w is
called the spin tensor. Note that d captures rates of deformation
and w captures rates of rotation. All three of l, d, and w are spatial
fields.

The spatial velocity gradient can also be used to determine the
time rate of change of a vector in the current configuration:

l dx = lFdX = ḞdX = D

Dt
(dx). (4.134)

Another useful relationship is the time derivative of J = det F:

DJ

Dt
= J̇ = J tr l = J div v. (4.135)

4.8 Stress Tensors

In order to answer real-life polymer mechanics questions, such
as: how much will a polymer component deform when subjected
to an external load field, it is necessary to introduce the concept
of mechanical stress. To do this we will consider a general
body exposed to external forces on its surface as illustrated in
Figure 4.7. This figure shows the configuration and acting forces
on the body at time t. Now let us perform a virtual cut along a
plane through the body, see Figure 4.8. In order to satisfy force
equilibrium for each of the two parts of the body there must be
internal surface forces on the cut plane. The magnitude of the
internal surface forces will depend on the direction of the cut
surface (specified by the normal n to the surface) and the location
x of the force:
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Figure 4.7 Schematic figure showing a body in its deformed
configuration �c loaded by external forces, here exemplified by forces
distributed over an area.

Figure 4.8 Schematic figure of a body in its deformed configuration
showing that internal forces df are need to keep the body in equilibrium
when a virtual cut is made.
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df = df(x, n). (4.136)

These surface forces can be represented as tractions t (i.e., force
per unit area):

df(x, n) = t(x, n) ds, (4.137)

which is the force acting on the surface element ds. The force at
each material point can be related to a stress field by the Cauchy
stress theorem [2, 3] which states that there exists a unique
tensorial stress field σ (x) that is independent of the direction of
the virtual cut (specified by the normal n) and is defined by:

t(x, n) = σ (x)n. (4.138)

In this equation, t(x, n) is the Cauchy (true) surface traction, and

σ =
3∑

i=1

σin̂i ⊗ n̂i (4.139)

is the Cauchy stress tensor.
The traction vector and the stress tensor in Equation (4.138)

can also be written in the reference configuration as

T(X, N) = P(X)N, (4.140)

where T is the nominal traction vector (also called the first Piola-
Kirchhoff traction vector), and P(X) is the nominal stress tensor
(also called the first Piola-Kirchhoff stress tensor) which can be
written

P =
3∑

i=1

Pin̂i ⊗ N̂i, (4.141)

illustrating that P is a two-point tensor.
The force vector in the reference and the current configurations

have to be equal:

T(X, N) dS = t(x, n) ds (4.142)

giving

P(X)N dS = σ (x)n ds. (4.143)
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From Nanson’s formula ds = JF−1dS we get the following
relationship between the Cauchy stress tensor and the first Piola-
Kirchhoff stress tensor:

P(X) = JσF−�, (4.144)

or when solved for the Cauchy stress

σ = J−1PF�, (4.145)

showing that the first Piola-Kirchhoff stress tensor is not symmetric.
There are numerous other stress tensors that have been defined

and used in the literature. One common stress is the Kirchhoff
stress defined by:

τ = Jσ . (4.146)

Another common stress is the second Piola-Kirchhoff stress S.
If we apply F−1 on the Cauchy surface traction vector we get a
traction vector in the reference configuration denoted by T̃:

T̃ = F−1t = F−1σn. (4.147)

The traction vector T̃ is obtained from the second Piola-Kirchhoff
stress:

T̃ = SN. (4.148)

The force vector in the reference and the current configurations
have to be the same:

SNdS = F−1σnds. (4.149)

From Nanson’s formula (Equation (4.91)) we get

S = JF−1σF−T = F−1P. (4.150)

Example: Uniaxial Loading.
To illustrate the different stress measures let us consider a uniaxial
tension case in which the deformation gradient is

F =
⎡
⎣2 0 0

0 0.7 0.7
0 0 0.7

⎤
⎦
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and the Cauchy stress is given by

σ =
⎡
⎣σ11 0 0

0 0 0
0 0 0

⎤
⎦ .

In this case, the first Piola-Kirchhoff stress is given by Equa-
tion (4.144):

P =
⎡
⎣0.49σ11 0 0

0 0 0
0 0 0

⎤
⎦ ,

and the second Piola-Kirchhoff stress is given by Equa-
tion (4.150):

S =
⎡
⎣0.245σ11 0 0

0 0 0
0 0 0

⎤
⎦

and the Kirchhoff stress is given by Equation (4.146):

τ =
⎡
⎣0.985σ11 0 0

0 0 0
0 0 0

⎤
⎦ .

This example shows that the magnitude of the different
stress measures can be quite different for a finite deformation
load case.

4.8.1 Stress Invariants

Since a stress tensor contains six or nine different compo-
nents (depending on whether it is symmetric or not) it is often
convenient to consider a single scalar quantity that characterizes
certain aspects of the stress tensor. These scalar values are often
characteristic values or invariants of the stress tensor. Since
multiplying or adding two invariants leads to another invariant,
there are infinitely many invariants that can be defined and
used.

The perhaps easiest invariants to define, interpret, and use
are the principal values of the stress tensor. As was shown in
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Equation (4.83), any tensor can be uniquely decomposed into a
singular value decomposition:

A = Q1�Q2, (4.151)

where Q1 and Q2 are orthogonal tensors that specify rotations,
and � is a diagonal tensor with three principal values. If the
stress tensor is symmetric (such as the Cauchy stress and the
second Piola-Kirchhoff stress), the singular value decomposition
becomes the same as the eigenvalue decomposition, and the
principal values coincide with the eigenvalues of the stress tensor.
The principal stresses are often referred to as σ1 > σ2 > σ3.

From Equation (4.151) it is clear that the diagonal stress matrix
� is given by:

� = Q�
1 AQ�

2 . (4.152)

Hence, by premultiplying a stress tensor with a suitable rotation
Q�

1 and then postmultiplying with another rotation Q�
2 the stress

tensor can be transformed into diagonal form, corresponding to a
purely axial stress state with only normal stresses and no shear
stresses. This means that σ1 corresponds to the largest tensile
stress, and σ3 corresponds to the smallest tensile stress (i.e., the
largest compressive stress).

There are two other invariants of the stress tensor that are
commonly used when describing the magnitude of shear stress
at a point: the Mises stress and the Tresca stress. The Mises stress
is defined by:

σM =
√

1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] (4.153)

and the Tresca stress is defined by:

σT = σ1 − σ3. (4.154)

As will be discussed in more detail in a later chapter, the
maximum principal stress (σ1) is the driving force for crack
nucleation and growth, and the Mises and Tresca stresses are
driving viscoplastic flow.
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4.9 Balance Laws and Field Equations

When developing constitutive equations for a material, or
when solving continuum mechanics problems, it is important
to obey important physical principles such as: conservation of
mass, conservation of linear momentum, conservation of angular
momentum, conservation of energy, and the first and second
laws of thermodynamics. These principles apply to all materials
and loading conditions, and give rise to balance laws and field
equations that need to be satisfied.

In this context, a balance law is a physical rule expressed in
terms of a given volume of material, and a field equation is a
physical rule expressed at a material point.

The following sections present these physical principles in the
context of continuum mechanics. Field variables that are needed
for this discussion, and have not been defined yet, are listed in
Table 4.1. A summary of all variables that are used in this chapter
is given in Section 4.14.

To facilitate the upcoming discussion of the balance laws and
field equations it is useful to establish the following transport
theorem expressing the time derivative of a quantity inside a
volume:

D

Dt

∫
�c

φ dv =
∫
�c

(
φ̇ + φ tr l

)
dv. (4.155)

In this equation, φ(x, t) is any spatial scalar field, �c is the
volume of the studied region at time t, and l is the spatial velocity
gradient. The transport theorem can be proved by the help of
Equations (4.79) and (4.135) as follows:

D

Dt

∫
�c

φ(x, t) dv = D

Dt

∫
�0

φJ dV

=
∫
�0

D

Dt
[φJ] dV

=
∫
�0

(
Jφ̇ + φJ̇

)
dV
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=
∫
�c

(
φ̇ + φ

J

J̇

)
dv

=
∫
�c

(
φ̇ + φ div v

)
dv.

The transport theorem and its derivation is discussed in more
detail in the next section.

Table 4.1 Field Variables Used in the Balance Laws
and Field Equations

Specific mass (density)
ρc Mass density in the current configuration
ρ0 Mass density in the reference configuration

Temperature
θc Temperature in the current configuration
θ0 Temperature in the reference configuration

Specific internal energy
ec Internal energy per unit current volume
e0 Internal energy per unit reference volume

Specific Helmholtz free energy
ψ Helmholtz free energy per unit current volume
� Helmholtz free energy per unit reference volume

Specific internal entropy
ηc Entropy per unit current volume
η0 Entropy per unit reference volume

Specific heat flux
q Heat flux per unit current surface area
Q Heat flux per unit reference surface area

Specific heat supply
r Rate of heat supply per unit current volume
R Rate of heat supply per unit reference volume

Specific body force
bf Body force per unit reference volume
Bf Body force per unit current volume
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4.9.1 Conservation of Mass

This section presents the principle of mass conservation and
how it applies to mechanics of continuous media. The discussion
presented here is based on the simple fact that the mass of a body
is given by the sum of its parts. As before, we are focusing on a
body that does not exchange material with its surroundings.

Let �c be the configuration of the body at time t, as illustrated
in Figure 4.9. Since no material is entering or leaving the body,
the total mass must be constant and the time derivative of the total
mass has to be zero:

D

Dt

∫
�c

ρc(x, t) dv = 0, (4.156)

which when expressed in the reference configuration can be
written

D

Dt

∫
�0

ρ0(X, t) dV = 0, (4.157)

where�0 is the configuration of the body at the initial time. These
equations integrate the density over the volume of the body to
get the total mass. Equations (4.156) and (4.157) are the balance

Figure 4.9 Schematic figure showing the configuration of the body at
time t is �c. The boundary of the body is denoted by ∂�c.
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laws for mass conservation. The balance laws, which govern the
response of a finite domain, can be converted to field equations
that are valid at each point of the body. Let us first focus on
Equation (4.157) that expresses the time rate of change of mass in
the reference configuration. In this equation, the domain�0 is not
dependent on time and we can therefore move the time derivative
operator inside the integral sign:∫

�0

D

Dt

[
ρ0(X, t)

]
dV = 0. (4.158)

This equation has to be valid also for an arbitrary subdomain of
�0, and hence the integrand has to be identically zero for the
equation to always hold. Hence

ρ̇0(X, t) = 0 (4.159)

is the field equation for mass concentration in the reference
configuration.

The field equation for mass conservation in the current (spa-
tial) configuration can in a similar way be derived from Equa-
tion (4.156). In this case, the volume integral is over �c which is
changing with time. We therefore cannot directly move the time-
derivative operator inside the integral. To simplify the equation
we will instead first perform a variable substitution to bring the
integral back to the reference configuration. Specifically, from
Equations (4.9) and (4.79), we chose the variable substitution
x = X (X, t), giving dv = J dV and the integration domain is
transformed from �c to �0:

D

Dt

∫
�0

ρc(X (X, t)) JdV . (4.160)

We can now move the time-derivative operator inside the integral
giving ∫

�0

D

Dt
[ρc(X (X, t))J] dV . (4.161)

Since this equation also has to be valid for an arbitrary subdomain
of �0, the integrand has to be identically zero giving the useful
equation:
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D

Dt
[ρc(X, t)J] = 0. (4.162)

The field equation for mass conservation expressed in the current
configuration can be obtained by applying the chain-rule on
Equation (4.161):∫

�0

[
ρ̇c (X (X, t)) J + ρc (X (X, t)) J̇

]
dV = 0. (4.163)

By applying the reverse variable substitution, X = X−1(x, t), this
equation can be converted back to the current configuration:∫

�c

[
ρ̇c(x, t)+ ρc(x, t)

J̇

J

]
dv = 0. (4.164)

From Equation (4.135) we know that J̇/J = div x, giving the field
equation for mass conservation as

ρ̇c(x, t)+ ρc(x, t) div v = 0. (4.165)

From Equations (4.158) and (4.161) we also get the interesting
result that

ρ0(X) = Jρc(x). (4.166)

To summarize, a balance equation expresses the time derivative
of an extensive quantity contained in a volume in terms of
its fluxes through the boundary and the internal source of the
quantity. In this case, as is commonly done for solids, we have
limited our interest to closed systems where no mass can pass
through the boundary, hence the mass fluxes are zero. When
studying fluids, on the other hand, it is often convenient to use
an open system in which material can enter and leave through the
boundary of the domain of interest [16].

4.9.2 Balance of Linear Momentum

From the theory of rigid body dynamics we know that Newton’s
law of motion can be expressed as [17]:

The force on a body is equal to the time-derivative of its
linear momentum.
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In this text, we are focusing on deformable bodies undergoing
large deformations, for which the balance of linear momentum
can be written in the following form:

This principle can be written as a balance law expressed in the
current configuration:

∫
∂�c

t ds +
∫
�c

bf dv = D

Dt

∫
�c

v ρc dv, (4.167)

where t is the distribution of Cauchy surface tractions on the
boundary of the current configuration, ds is a surface area element
in the current configuration, ∂�c is the surface of the body in the
current configuration, v is the velocity field, and bf is the vector
field of body forces per unit current volume. The forces used in
this equation are defined and illustrated in Figure 4.10.

To convert Equation (4.167) to a field equation we will start
by first applying the Cauchy stress theorem (Equation (4.138)):
t = σn, giving

∫
∂�c

σn ds +
∫
�c

bf dv = D

Dt

∫
�c

vρc dv. (4.168)

Applying the divergence theorem (Equation (4.54)) on the first
term in Equation (4.168) gives
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Figure 4.10 Schematic figure illustrating the definition of forces used
in the balance of linear momentum.

∫
∂�c

σnds =
∫
�c

div σ dv. (4.169)

The time-derivative of the linear momentum can be simplified
further by using the same variable substitution that was used
in the derivation of the field equation for mass conservation
x = X (X, t):

D

Dt

∫
�c

v(x, t)ρc(x, t) dv = D

Dt

∫
�0

v(X, t)ρc(X, t)J dV (4.170)

=
∫
�0

[
v̇(X, t)ρc(X, t)J + v(X, t)

D

Dt
(ρc(X, t)J)

]
dV .

(4.171)

From mass conservation (Equation (4.162)) the term D(ρcJ)/
Dt = 0, giving

D

Dt

∫
�c

vρc dv =
∫
�0

v̇(X, t)ρc(X, t)J dV =
∫
�c

v̇ρc dv. (4.172)

The balance of linear momentum can therefore be obtained from
Equations (4.168), (4.169), and (4.172) as∫

�c

[div σ + bf − ρcv̇] dv = 0. (4.173)
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This equation has to be valid also for an arbitrary sub-domain
of �c, hence the integrand has to be identically zero giving the
following field equation representation of the balance of linear
momentum:

div σ + bf = ρcv̇. (4.174)

The derivation presented above can be repeated in the reference
configuration. The details of the derivation are left as an exercise,
the final field equation for the balance of linear momentum is:

Div P + Bf = ρ0V̇. (4.175)

4.9.3 Balance of Angular Momentum

The balance of angular momentum principle states that the
moment that is applied on a body is equal to the time-derivative
of the angular momentum. This principle is directly obtained
from the linear momentum equation by taking the cross-product
of both the force and the linear momentum with the position
vector [17]. It is therefore to be expected that the balance of
angular momentum will provide similar results to the balance of
linear momentum.

For a deformable body undergoing large deformations the
balance of angular momentum can be written as follows:

This can be written as a balance law expressed in the current
configuration:

∫
∂�c

x × t ds +
∫
�c

x × bf dv = D

Dt

∫
�c

x × v ρc dv. (4.176)
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This equation can be simplified using the Cauchy stress theorem
(Equation (4.138)), t = σn, and converting it to index form. From
Equation (4.16) the index form becomes∫

∂�c

εijkxjσklnlds +
∫
�c

εijkxjbfk dv = D

Dt

∫
�c
εijkxjvkρc dv,

(4.177)

where bfk is the kth component of the body force vector bf. The
first term on the left-hand side can be simplified by applying the
divergence theorem:∫

∂�c

εijkxjσklnlds =
∫
�c

εijk
∂

∂xl

[
xjσkl

]
dv (4.178)

=
∫
�c

[
εijkσkj + εijkxj

∂σkl

∂xl

]
dv. (4.179)

The term on the right-hand size can be simplified by transform-
ing the integration from the current to the reference configuration
by the variable substitution x = X (X):

D

Dt

∫
�c

εijkxjvkρc dv = D

Dt

∫
�0

εijkXjVkρcJ dV

=
∫
�0

[
εijkVjVkρcJ + εijkXjV̇kρcJ + εijkXjVk

D

Dt
(ρcJ)

]
dV

=
∫
�c

εijkxjv̇kρc dv. (4.180)

Inserting Equations (4.180) and (4.179) into Equation (4.177)
gives ∫

�c

{
εijkσkj + εijkxj

[
∂σkl

∂xl
+ bfk − v̇kρc

]}
dv. (4.181)

This equation has to be valid also for an arbitrary sub-domain of
�c, hence the integrand has to be identically zero. Furthermore,
the expression within the square bracket is also zero from the
balance of linear momentum (Equation (4.172)).

By expanding the terms in εijkσkj = 0, we get the equivalent
condition

σ = σ�. (4.182)
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Hence, the balance of angular momentum is satisfied if the
balance of linear momentum is satisfied and the Cauchy stress
is symmetrical.

The balance of angular momentum can also be expressed in the
reference configuration using a similar derivation. The details are
left as an exercise, the final field equation is:

PF� = FP�, (4.183)

where P is the first Piola-Kirchhoff stress and F is the deformation
gradient.

4.9.4 First Law of Thermodynamics

In this section, we will introduce the concept of energy conser-
vation, specifically the first law of thermodynamics which has far
reaching consequences in many fields of mechanical engineering.

The system we are studying is a closed system that can perform
work and exchange heat with its surroundings, but that cannot
transfer material through its boundary, see Figure 4.11. The
body has internal volumetric heat generation (r) and heat flux
(q) through its boundary to the surroundings. The body is also
exposed to external surface tractions (t) and a volumetric body
force (bf).

Figure 4.11 Schematic figure illustrating the definition of
thermodynamic quantities in the current configuration.
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The first law of thermodynamics states that [18, 19]:

This can be written as a balance law in the current configura-
tion:

D

Dt

∫
�c

(
ec + ρc

2
v · v

)
dv =

{∫
∂�c

−q · nds +
∫
�c

r dv

}

+
{∫

∂�c

t · vds +
∫
�c

bf · v dv

}
,

(4.184)

or as a balance law in the reference configuration:

D

Dt

∫
�0

(
e0 + ρ0

2
V · V

)
dV =

{∫
∂�0

−Q · N dS +
∫
�0

R dV

}

+
{∫

∂�0

T · V dS+
∫
�0

Bf · V dV

}
.

(4.185)

In the following, we will focus on the expression for the current
configuration. The first term on the left-hand side in Equa-
tion (4.184) expresses the time derivative of the internal and
kinetic energies. This term can be simplified by introducing the
variable substitution, x(x) = X (X, t), transforming the integra-
tion to the reference configuration:

D

Dt

∫
�c

(
ec + ρc

2
v2
)

dv =
∫
�0

D

Dt

(
ecJ + ρc

2
v2J

)
dV

=
∫
�0

(
ėcJ + ecJ̇ + 1

2

D

Dt
(ρc + J) v2 + v̇ · vJ

)
dV .

(4.186)
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From Equation (4.162) we know that D/Dt(ρcJ) = 0, giving

D

Dt

∫
�c

(
ec + ρc

2
v2
)

dv =
∫
�c

[ėc + ec div v + ρcv̇ · v] dv.

(4.187)
The rate of heat supply to the system is given by∫

∂�c

−q · nds +
∫
�c

r dv =
∫
�c

[− div q + r] dv. (4.188)

By using the divergence theorem (Equation (4.54)), the rate of
work down by external surface forces on the system can be written∫

∂�c

t · vds =
∫
∂�c

(σn) · vds =
∫
∂�c

σijnjnids

=
∫
�c

∂(σijvi)

∂xj

=
∫
�c

(
∂σij

∂xj
vi + σij

∂vi

∂xj

)
dv

=
∫
�c

(div σ · v + σ : d) dv. (4.189)

By inserting Equations (4.187), (4.188), and (4.189) into Equa-
tion (4.184) we get the following expression∫

�c

(σ : d − div q + r − [div σ + bf − ρcv̇] · v

− ėc − ec div v) dv. (4.190)

From the balance of linear momentum (Equation (4.174)), this
equation gives the field equation for energy conservation in the
current configuration:

σ : d − div q + r = ėc + ec div v. (4.191)

Using a similar derivation the corresponding field equation for
energy conservation in the reference configuration can be written:

P : Ḟ − Div Q + R = ė0. (4.192)
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4.9.5 Second Law of Thermodynamics

The second law of thermodynamics applies to all systems and
can be written in many different forms. One form suitable for the
discussion in this section is that [18, 19]:

The entropy of a thermally isolated macroscopic system never
decreases.

Entropy is a measure of the amount of energy in a system that
cannot be converted to work. The unit of entropy is J/K. Through
the field of statistical mechanics it be shown that entropy is also
be a measure of the disorder in the system [20]. As is taught in
introductory thermodynamics [21], if a system is undergoing a
reversible process during which a given amount of heat is applied
at a known temperature, then the change in entropy of the system
is given by the heat divided by the temperature.

For a deformable body the second law of thermodynamics can
for a closed system be written as the following balance law, see
Figure 4.12.

By using the nomenclature presented in Table 4.1, we can write
the second law of thermodynamics as the following balance law
in the current configuration:

D

Dt

∫
�c

ηc dv =
∫
∂�c

−q · n
θc

ds +
∫
�c

r

θc
dv + �, (4.193)

or when expressed in the reference configuration

D

Dt

∫
�0

η0 dV =
∫
∂�0

−Q · N
θ0

dS +
∫
�0

R

θ0
dV + �. (4.194)
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Figure 4.12 Schematic figure showing the definition of thermodynamic
quantities in the current configuration.

In these equations, � ≥ 0 is the entropy generation rate due to
irreversible mechanisms. These equations are often referred to as
the Clausius-Duhem equation.

By using the divergence theorem (Equation (4.54)), the field
equation in the current configuration becomes:

η̇c + ηc div v ≥ − div

(
q
θc

)
+ r

θc
. (4.195)

and in the reference configuration:

η̇0 ≥ − Div

(
Q
θ0

)
+ R

θ0
. (4.196)

These equations are very useful when developing constitutive
equations as will be discussed in Section 4.11.

4.10 Energy Balance and Stress Power

The balance of mechanical effect is introduced in this section,
and it is shown how that leads to the definition of stress power. To
start, define the rate of work done by external forces on a body in
configuration �c:

Pext =
∫
∂�c

t · v ds +
∫
�c

bf · v dv, (4.197)
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where t is a surface traction, bf is the body force, and v is the
velocity field, all of which are expressed in the current config-
uration. By using the Cauchy stress theorem (Equation (4.138))
and the divergence theorem (Equation (4.54)), this equation can
be written

Pext =
∫
�c

[div(σv)+ bf · v] dv (4.198)

=
∫
�c

[σ : l + (div σ ) · v + bf · v] dv (4.199)

=
∫
�c

σ : d dv +
∫
�c

ρcv̇ · v dv (4.200)

=
∫
�c

σ : d dv + D

Dt

∫
�c

1

2
ρcv2 dv (4.201)

= Pint + D

Dt
K. (4.202)

Hence, the rate of external work (Pext) is equal to the rate of
internal mechanical work (also called the stress-power Pint) plus
the time derivative of the kinetic energy (DK/Dt).

From this equation we see that the stress power per unit current
volume is σ : d, which can be converted to reference volume by
Equation (4.79) giving:

Jσ : d, (4.203)

where Jσ is the Kirchhoff stress τ . From this equation, we say
that τ and d are work conjugate stress and deformation rate
measures.

The expression for stress power can be converted to other stress
measures. First, recall from Equation (4.150) that Jσ = PFT ,
inserting this into Equation (4.203) gives

Jσ : d = PFT : d

= PFT : l
= P : lF

= P : Ḟ, (4.204)
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illustrating that the first Piola-Kirchhoff stress is work conjugate
to the time derivative of the deformation gradient.

The stress power per unit reference volume can also be ex-
pressed in terms of the second Piola-Kirchhoff stress S. Recall
from Equation (4.150) that σ = FSFT/J, giving

Jσ : d = FSFT : d

= S : FTdF. (4.205)

The term F�dF can be simplified by inserting F = RU, d = l−w,
Ḟ = ṘU + RU̇, and Ṙ = wR, giving

F�dF = U̇U = ĖG, (4.206)

where the Green strain (Equation (4.119)) is defined by:
EG = 1

2

[
U2 − I

]
, giving

Jσ : d = S : ĖG. (4.207)

Hence, the second Piola-Kirchhoff stress is work conjugate to the
time derivative of the Green strain.

When developing constitutive equations it is important to use
work conjugate stress and strain measures. The following table
summarizes the three most commonly used pairs of stress and
strain measures:

Table 4.2 Work Conjugate Stress and Deformation
Rate Measures

Stress Measure Work Conjugate Deformation
Rate Measure

Kirchhoff stress Jσ ≡ τ Stress rate tensor d

First Piola-Kirchhoff stress P Time derivative of deformation
gradient Ḟ

Second Piola-Kirchhoff stress S Time derivative of Green
strain ĖG
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4.11 Constitutive Equations

A constitutive equation (sometimes also called a material
model or constitutive model) is a relationship that describes how
a material behaves, for example, the stress response for a given
strain, or the heat transfer for a given temperature gradient.
The constitutive equations are what distinguish the response of
different materials. Everything presented so far in this chapter is
valid for all materials. Next, we will discuss how the continuum
mechanics framework that we have developed can be used to for-
mulate the constitutive equations for a material. The presentation
will focus on general relations that all constitutive equations need
to fulfill. The following chapters of this book will demonstrate
how these results can be used to develop specific material models
for polymers.

There are different classes of constitutive models that can
be developed and used. For example, a nonlinear elastic model
is based on a stress function that only depend on the applied
deformation:

σ = σ̂ (F) . (4.208)

In this equation, we have indicated that the Cauchy stress σ̂ (F)
is a function of the deformation gradient. Note that this and other
constitutive models can equally well be written also in terms of
other stress measures, for example

P = P̂(F), (4.209)

S = Ŝ(F). (4.210)

For simplicity we will in the following focus mostly on the
Cauchy stress in the derivations.

As a second example of a constitutive equation, consider
a more common polymeric material characterized by a rate-
dependent response (i.e., a material with a slight memory of past
deformation). For this material the stress depends on both the
current deformation state (F) and the rate of deformation (Ḟ):

σ = σ̂
(
F, Ḟ

)
. (4.211)
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In general, to specify the response of a material that is exposed
to thermal and mechanical loads it is necessary to specify how
the stress (σ ), internal energy (ε), heat flux (q), and entropy (η)
depend on the applied fields. To completely know the state of the
material it is necessary to know the following field variables at
each point:

• the velocity v,
• the stress tensor σ ,
• the mass density ρ,
• the internal energy per unit current volume εc,
• the temperature θ ,
• the heat flux vector q, and
• the entropy η.

In total, by using the symmetry of σ , there are therefore 16
unknown field variable that need to be determined. The following
equations are needed to solve for the field variables:

Governing Field Equations Number of Equations

Conservation of mass 1

Conservation of linear
momentum

3

Conservation of angular
momentum

0 (already used)

First law of thermodynamics 1

Second law of thermodynamics 0 (only an inequality)

Total of 5 equations

Since there are only 5 governing field equations and there
are 16 unknown field variables, more equations are needed. The
missing equations are the constitutive equations which provide
the following relationships.
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Constitutive Equation Number of Equations

Stress σ (·) 6

Internal energy εc(·) 1

Heat flux per unit volume q(·) 3

Entropy per unit volume ηc(·) 1

Total of 11 equations

In summary, by combining the constitutive equations with the
field equations we get 16 governing equations to solve for the 16
unknown field variables.

As mentioned, there are many different classes of constitutive
equations that can be used to describe the behavior of a solid
material. One of the most basic approaches is to model the
material as thermoelastic and specifying constitutive equations
that depend on the deformation gradient (F), the temperature
(θc), and the gradient of the temperature (grad θc). This case is
discussed in more detail in the next section.

4.11.1 Constitutive Equations for a
Thermoelastic Material

A thermoelastic material is characterized by having the heat
flux vector (q), Cauchy stress (σ ), internal energy per unit current
volume (εc), and entropy per unit current volume (ηc) all de-
pend on the deformation gradient, temperature, and temperature
gradient:

σ = σ̂ (F, θc, grad θc), (4.212)

q = q̂(F, θc, grad θc), (4.213)

εc = ε̂c(F, θc, grad θc), (4.214)

ηc = η̂c(F, θc, grad θc). (4.215)
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The requirements on these constitutive equations for a thermoe-
lastic material can be further specified by using an approach that
was originally developed by Truesdell et al. [7]. To derive the
governing equations we will start by listing the balance laws in
the reference configuration:

• linear momentum

Div P + Bf = ρ0V̇, (4.175-repeat)

• angular momentum

PF� = FP�, (4.183-repeat)

• first law of thermodynamics

P : Ḟ − Div Q + R = ė0, (4.192-repeat)

• second law of thermodynamics

η̇0 ≥ − Div
(

Q
θ0

)
+ R

θ0
. (4.196-repeat)

The constitutive functions in Equations (4.212)–(4.215) need to
satisfy all of these governing equations in order to be valid. These
requirements can be simplified by first solve for R/θ0 in Equa-
tion (4.196) and then inserting the result into Equation (4.196):

− Div

(
Q
θ0

)
+ ė0

θ0
− P : Ḟ

θ0
+ Div Q

θ0
≥ η̇0. (4.216)

The term − Div(Q/θ0) can be simplified by expanding the diver-
gence operator:

− Div
(

Q
θ0

)
= − ∂

∂Xi

(
Qi

θ0

)

= − 1

θ0

∂Qi

∂Xi
+ Qi

θ2
0

∂θ0

∂Xi

= − 1

θ0
Div Q + Q · Grad θ0

θ2
0

, (4.217)
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which when inserted into Equation (4.216) give

Q · Grad θ0

θ2
0

+ ė0

θ0
− P : Ḟ

θ0
≥ η̇0. (4.218)

When working with thermoelastic materials it is often more
convenient to work with the Helmholtz free energy (�) instead
of the internal energy (ec). The Helmholtz free energy per unit
reference volume is defined by:

� = e0 − θ0η0. (4.219)

From the definition of � we can solve for ė0:

ė0 = �̇ + θ̇0η0 + θ0η̇0. (4.220)

Inserting Equation (4.220) into Equation (4.218) gives

�̇ + η0θ̇0 − P : Ḟ + Q · Grad θ0

θ0
≥ 0. (4.221)

As shown in Equations (4.212)–(4.215), the constitutive equations
for a thermoelastic material are given by the following functional
forms

P = P̂(F, θ0, Grad θ0), (4.222)

Q = Q̂(F, θ0, Grad θ0), (4.223)

� = �̂(F, θ0, Grad θ0), (4.224)

η0 = η̂0(F, θ0, Grad θ0). (4.225)

Inserting Equation (4.224) into Equation (4.221) gives:

{
∂�̂

∂F
: Ḟ + ∂�̂

∂θ0
θ̇0 + ∂�̂

∂(Grad θ0)
·
(

d(Grad θ0)

dt

)}

+ η̂0θ̇0 − P̂ : Ḟ + 1

θ 0
Q̂ · (Grad θ0) ≥ 0, (4.226)

which also can be written:
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∂�̂

∂F
− P̂

}
: Ḟ +

{
∂�̂

∂θ0
+ η̂0

}
θ̇0 +

{
∂�̂

∂(Grad θ0)
· d

dt
(Grad θ0)

}

+ 1

θ0
Q̂ · (Grad θ0) ≥ 0. (4.227)

This equation has to be valid for all processes, hence for all possi-
ble values and histories of F, Ḟ, θ , θ̇ , Grad θ0, and d(Grad θ0)/dt.

If we consider a process in which θ̇0 = 0 and d(Grad θ0)/dt =
0, then the entropy inequality (Equation (4.226)) becomes:{

∂�̂

∂F
− P̂

}
: Ḟ + 1

θ0
Q̂ · (Grad θ0) ≥ 0. (4.228)

This equation has to be true for all Ḟ, hence the first Piola-
Kirchhoff stress has to be equal to the partial derivative of the
Helmholtz free energy with respect to the deformation gradient:

P̂(F, θ0) = ∂�̂

∂F
. (4.229)

If we instead consider a process in which Ḟ = 0 and
d(Grad θ0)/dt = 0, then the entropy inequality (Equation (4.226))
becomes:{

∂�̂

∂θ0
+ η̂0

}
θ̇0 + 1

θ0
Q̂ · (Grad θ0) ≥ 0. (4.230)

This equation has to be true for all θ̇0, hence the entropy per unit
reference volume has to be given by the partial derivative of the
Helmholtz free energy with respect to the temperature:

η̂0(F, θ) = −∂�̂
∂θ0

. (4.231)

Finally, if we consider a process in which Ḟ = 0 and θ̇0 = 0,
the entropy inequality (Equation (4.226)) becomes:{

∂�̂

∂(Grad θ0)

}
·
(

d

dt
Grad θ0

)
+ 1

θ0
Q̂ · (Grad θ0) ≥ 0. (4.232)
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For this to hold for any value of d(Grad θ0)/dt, it is clear that �̂
cannot depend on Grad θ0, that is

∂�̂

∂(Grad θ0)
= 0. (4.233)

By inserting Equations (4.228), (4.230), and (4.232) into Equa-
tion (4.226) we finally get the entropy inequality as:

Q̂ · (Grad θ0) ≥ 0, (4.234)

which simply states that the heat has to flow in the same direction
as the temperature gradient. In summary, the constitutive behavior
of a thermoelastic material is completely specified by the two
functions �̂(F, θ0) and Q̂(F, θ0). The remaining field variables
can be determined from these two functions:

P̂(F, θ0) = ∂�̂(F, θ0)

∂F
(4.228-repeat)

η̂0(F, θ0) = ∂�̂(F, θ0)

∂F
. (4.230-repeat)

From these equations, we can also determine expressions for
other stress measures. For example, from Equation (4.145), we
get that the Cauchy stress can be determined from the Helmholtz
free energy by

σ (F, θ0) = 1

J

∂�̂(F, θ0)

∂F
F�. (4.235)

For many materials, the rate of heat flow Q is often modeled using
Fourier’s equation of heat conduction [18]:

Q = K(F, θ0)(Grad θ0). (4.236)

If the heat conductivity tensor K is positive definite then the
entropy inequality (Equation (4.233)) is always satisfied.

The are many other classes of material models that can be
defined and used. The following two examples present two simple
cases. More advanced models are discussed in the following
chapters.
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Example
An adiabatic thermoelastic material is defined by having no heat
flux (q = 0), and having the Cauchy stress (σ ), internal energy per
unit volume (ec), and entropy per unit volume (ηc) only depend on
the deformation gradient and the temperature

σ = σ̂ (F, θ), (4.237)

ec = êc(F, θ), (4.238)

ηc = η̂c(F, θ). (4.239)

For this material, the second law of thermodynamics is satisfied if

P̂(F, θ) = ∂�(F, θ)

∂F
, (4.240)

η̂0(F, θ) = −�(F, θ)

θ0
. (4.241)

That is, for this material, only one thermoelastic function is
needed.

Example
An isothermal thermoelastic material is defined by zero heat flux
and entropy generation, and having Cauchy stress (σ (F)), internal
energy (ec) only depend on F. For this material, the second law of
thermodynamics is satisfied if

P̂(F) = ∂�(F)
∂F

= ∂ec(F)
∂F

. (4.242)

In this case, the Helmholtz free energy and the internal energy
become equal.

4.12 Observer Transformation

The functions σ̂ (·), q̂(·), êc(·), and η̂c(·) cannot take arbitrary
forms. One of the requirements on the constitutive functions is
that they satisfy material frame indifference. That is, if we first
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apply a deformation field specified by F and then apply a rotation
Q, then the combined deformation

x∗ ≡ QFX = Qx (4.243)

should not change the specific internal energy or the specific
entropy:

êc(QF) = êc(F), (4.244)

η̂c(QF) = η̂c(F). (4.245)

These equations must hold for all nonsingular deformation gra-
dients F and for all proper orthogonal rotations Q. If we chose
Q = R� then we get the following necessary condition on êc(·)
and η̂c(·):

êc(R�F) = êc(U) = ε̂c(F), (4.246)

η̂c(R�F) = η̂c(U) = η̂c(F). (4.247)

Now if we instead insert F = RU into Equations (4.246) and
(4.247) we get the both necessary and sufficient conditions:

êc(F) = êc(U), (4.248)

η̂c(F) = η̂c(U). (4.249)

Hence, to fulfill frame-indifference the functions êc(·) and η̂c(·)
cannot depend directly on F but only on U.

If we, as before, after deforming the body apply a proper
rotation Q, then the resulting surface traction vector and the heat
flux vectors need to be rotated as well:

t∗ ≡ t̂(QF) = Qt̂(F), (4.250)

q∗ ≡ q̂(QF) = Qq̂(F). (4.251)

Recall from the Cauchy stress theorem (Equation (4.138)) that
t = σn, which here gives

t∗ = σ ∗n∗ = Qt = Qσn, (4.252)

but n∗ = Qn giving

t∗ = σ ∗Qn = Qσn. (4.253)



196 Mechanics of Solid Polymers

This has to hold for any vector n, hence

σ ∗ = QσQ�. (4.254)

In summary, to satisfy the requirement of frame indifference the
stress and heat flux need to have the following forms

σ̂ (QF) = Qσ̂ (F)Q�, (4.255)

q̂(QF) = Qq̂(F). (4.256)

These equations have to be valid for any arbitrary proper orthog-
onal Q. If we chose Q = R� then we get a necessary condition
for Equations (4.255) and (4.256) to be true:

σ̂ (R�F) = σ̂ (U) = R�σ̂ (F)R, (4.257)

q̂(R�F) = q̂(U) = R�q̂(F). (4.258)

By inserting F = RU into Equations (4.255) and (4.256) we get
the both necessary and sufficient conditions:

σ̂ (QRU) = Qσ̂ (RU)Q� (4.259)

⇒ QRσ̂ (U)R�Q� = Qσ̂ (F)Q� (4.260)

⇒ σ̂ (F) = Rσ̂ (U)R� (4.261)

and

q̂(QRU) = Qq̂(RU) (4.262)

⇒ QRq̂(U) = Qq̂(F) (4.263)

⇒ q̂(F) = Rq̂(U). (4.264)

That is, the Cauchy stress cannot directly depend on F, but has
to have the following form

σ̂ (F) = Rσ̂ (U)R� (4.265)

to satisfy material frame indifference. Similarly, the heat flux
vector has to be given by

q̂(F) = Rq̂(U). (4.266)
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These restrictions on the constitutive response can be formu-
lated in a more general observer transformation. If we have two
observers inspecting a mechanical experiment or deformation
event then the measured distances between points should not
depend on the locations of the observers. The two observers can
be specified by their coordinate systems which are related by:

x′ = c + Qx, (4.267)

where c is a displacement and Q is a proper orthogonal tensor
(a rotation).

If one observer determines that the deformation gradient is F
at one specific location, then the second observer should see the
deformation gradient QF at the same location. If we now consider
a scalar field that is φ when referred to by the first observer, and
as φ′ when referred to by the second observer then

φ′(x) = φ(x). (4.268)

If we have a vector field that the first observer refers to as u and
the second observer refers to as u′ then

u′(x′) = Qu(x). (4.269)

Finally, if we have a tensor field that the first observer refers to
as A and the second observer refers to as A′, and if n and n′ are
the representations of an arbitrary vector from the two observers,
then

A′n′ = Q(An), (4.270)

but since n′ = Qn we also get

A′Qn = QAn. (4.271)

This must hold for any n, hence A′Q = QA which is equivalent
to

A′ = QAQ�. (4.272)

If the scalar, vector, or tensor field satisfies these conditions
then they are said to be objective, or invariant to observer
transformation.
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4.12.1 Objective Rates

To demonstrate the time-derivative of second-order tensors
consider a case where the basis vectors in the current spatial
configuration rotate as a function of time with respect to the
reference configuration:

n̂i = Q(t)N̂i. (4.273)

Then ˙̂ni = Q̇N̂i = Q̇Q�n̂i ≡ �n̂i. Consider a tensor σ = σijn̂i ⊗
n̂j. From the chain rule, the time derivative of this tensor can be
written

σ̇ = σ̇ijn̂i ⊗ n̂j + σij
˙̂ni ⊗ n̂j + σijn̂i ⊗ ˙̂ni. (4.274)

Define σ̊ ≡ σ̇ijn̂i ⊗ n̂j to be the co-rotational rate, giving

σ̇ = σ̊ + σij�n̂i ⊗ n̂j + σijn̂i ⊗ (�n̂i), (4.275)

which also can be written

σ̇ = σ̊ + �σ + σ��. (4.276)

If we are spinning with the material (� = W) this becomes:

σ̇ = σ̊ + Wσ + σW�, (4.277)

where

σ̊ = σ̇ − Wσ − σW� (4.278)

is a commonly used rate definition called the Jaumann rate.

4.13 Material Symmetry

Consider a case in which a body is exposed to a given deforma-
tion F resulting in a stress state σ . Now, consider another body
that is identical to the first except that it has been rotated 90◦
before the deformation was applied, as is shown in Figure 4.13.
For some materials, the initial 90◦ prerotation (i.e., change of
reference configuration) does not influence the final stress state σ .
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Figure 4.13 Example of material symmetry during deformation.

These materials are said to have material symmetry with respect
to 90◦ rotation.

If the material response is invariant to any rotation then the
material is said to be isotropic. A material that is not invariant
to arbitrary rotations will have different properties in different
directions and is called anisotropic.

In mathematical terms, if P is the mapping from the initial
configuration to an alternative configuration, F is the deformation
gradient, and the stress is independent of the initial mapping:

σ = σ̂ (F) = σ̂ (FP), (4.279)

then the mapping P is said to be a symmetry group of the
material. The use of symmetry groups is discussed in more detail
in Chapter 5.

4.14 List of Symbols

The following is a list of the variables that are used in this
chapter and the rest of the book. The nomenclature is similar to
various recent text books, particular [2]. Direct notation is used
throughout, with the same conventions as in [1, 3, 7].
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Symbol Description Definition

bf Body force per unit current volume −
Bf Body force per unit reference volume −
b Left Cauchy-Green tensor (spatial

configuration)
b = FF�

C Right Cauchy-Green tensor (reference
configuration)

C = F�F

d Rate of deformation tensor (spatial
configuration)

l = d + w

e Strain tensor (spatial configuration) e = ê(v)

e0 Internal energy per unit reference
volume

−

ec Internal energy per unit current volume −
ηc Entropy per unit current volume −
η0 Entropy per unit reference volume −
E Strain tensor (reference configuration) E = Ê(U)

f Force vector (spatial configuration) df = tds

F Force vector (reference configuration) dF = T dS

F Deformation Gradient (two-point
tensor)

∂x
∂X

J Jacobian determinant −
K Kinetic energy of the body −
l Spatial velocity gradient (spatial

configuration)
l = grad v

ni Eigenvectors of v (spatial configuration) −
Ni Eigenvectors of U (reference

configuration)
−

�0 Volume of body in reference
configuration

−
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�c Volume of body in spatial configuration −
∂�0 Surface area of body in reference

configuration
−

∂�c Surface area of body in the current
configuration

−

P First Piola-Kirchhoff stress (two-point
tensor)

T = PN

Pext External work done on the body −
Pint Internal work done on the body −
� Helmholtz free energy per unit current

volume
� = e0 − θ0η0

ψ Helmholtz free energy per unit reference
volume

−

q Heat flux vector per unit current area −
qn Heat flux per unit current surface area −
Q Heat flux vector per unit reference area −
Qn Heat flux per unit reference surface area −
ρ0 Mass density in reference configuration −
ρc Mass density in spatial configuration −
r Rate of heat supply per unit current volume −
R Rate of heat supply per unit reference

volume
−

R Rotation tensor (two-point tensor) F = RU = vR

σ Cauchy stress in spatial configuration −
s Area element in spatial configuration −

Area element in reference configuration −
S Second Piola-Kirchhoff stress (reference

configuration)
S = F−1σF−�

σi Principal Cauchy stresses (spatial
configuration)

−
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σM Mises stress −
σT Tresca stress −
θ0 Temperature (reference configuration) −
θc Temperature (spatial configuration) −
t Cauchy surface traction (spatial

configuration)
t = σn

T Nominal surface traction (reference
configuration)

T = PN

τ Kirchhoff stress (spatial configuration) τ = Jσ

U Right stretch tensor (reference
configuration)

F = RU

v Left stretch tensor (spatial configuration) F = vR

v Velocity of a material point in the current
configuration

dx
dt

V Velocity of a material point in the reference
configuration)

dX
dt

v Volume element in spatial configuration −
V Volume element in reference configuration −
w Spin tensor (spatial configuration) l = d + w

x Position vector in spatial configuration −
X Position vector in reference configuration −

4.15 Exercises

1. What is the difference between a Lagrangian and an
Eulerian reference frame?

2. How many different stress and strain measures can
be defined? Which stress and strain measure is your
favorite?

3. Use an applied math software to calculate the singular
value decomposition of the following matrix:
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F =
⎡
⎣1.6 0.15 0

0.1 1.1 0.1
0.3 0.05 0.8

⎤
⎦ .

4. Use the definition of a dyad (Equation (4.18)) to prove
the following equations:

(a ⊗ b)(c ⊗ d) = (b · c)(a ⊗ d), (4.22-repeat)

(a ⊗ b)A = a ⊗ (A�b), (4.23-repeat)

A(a ⊗ b) = (Aa)⊗ b. (4.24-repeat)

5. Calculate the trace, determinant, invariants (I1, I2, I3),
deviatoric, volumetric, distortional, and dilatational
parts of the following tensor:

F =
⎡
⎣1.3 0.25 0

0.2 1.1 0.1
0 0.05 1.1

⎤
⎦ .

6. Typically a second-order tensor is said to have the
invariants I1, I2, and I3. Is it possible to define other
invariants of a second-order tensor?

7. What deformation gradients have the same left and right
Cauchy-Green tensors?

8. Calculate the natural logarithm of the following defor-
mation gradient using Equation (4.45):

F =
⎡
⎢⎣

2.1 0.25 0

0.25 1.1 0.1

0 0.1 0.9

⎤
⎥⎦ .

9. A material point in a body is exposed to the following
deformation gradient:

F =
⎡
⎢⎣

2.6 0.15 0

0.10 1.1 0.1

0 0.1 0.9

⎤
⎥⎦ .

(a) Calculate the rotation tensor R, the right stretch
tensor U, the left stretch tensor v, the right
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Cauchy-green tensor C, the left Cauchy-Green
tensor b, and the spectral representation of F.

(b) Calculate the following Lagrangian strain: the
Green strain, the Hencky strain, the Biot strain,
and the Almansi strain.

(c) Calculate the following Eulerian strains: the
Euler-Almansi strain and the Hencky strain.

10. Consider two coordinate systems defined by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ê1 = 1√
2

[
1.0êx + 1.0êy

]
ê2 = 1√

2

[
1.0êy + 1.0êz

]
ê3 = 1√

3

[
1.0êx − 1.0êy + 1.0êz

]
and ⎧⎪⎪⎨

⎪⎪⎩
ê′

1 = 1√
2

[
2.0êx − 1.0êy

]
ê′

2 = 1√
2

[−1.0êy + 1.0êz
]

ê′
3 = 1

3

[−1.0êx − 2.0êy − 2.0êz
] .

Calculate the rotation tensor Q defined in Equa-
tion (4.55).

11. A polymer melt is exposed to the following deformation
history for times t ∈ [0, 1]:

⎧⎪⎪⎨
⎪⎪⎩

x1 = X1et,

x2 = X2t,

x3 = X3.

Determine:
(a) the deformation gradient F,
(b) the velocity gradient l,
(c) the components of the velocity of a material

point at time t,
(d) Grad v and grad v, and
(e) Div v and div v.
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12. A test sample is deformed in simple shear:⎧⎪⎨
⎪⎩

x1 = X1 + ktX2

x2 = X2

x3 = X3

.

Calculate:
(a) the strain tensor E = ln U,
(b) the strain-rate tensor Ė, and
(c) the co-rotational strain-rate tensor E̊:

E̊ = Ė − WE − EW�.

13. In simple shear defined by

F =
⎡
⎢⎣

1 γ 0

0 1 0

0 0 1

⎤
⎥⎦ ,

show that U is given by:

U = 1√
4 + γ 2

⎡
⎣2 γ 0
γ 2 + γ 2 0
0 0 1

⎤
⎦ ,

show that v is given by:

v = 1√
4 + γ 2

⎡
⎣2 + γ 2 γ 0

γ 2 0
0 0 1

⎤
⎦ ,

show that R is given by:

R = 1√
4 + γ 2

⎡
⎣ 2 γ 0

−γ 2 0
0 0 1

⎤
⎦ ,

and finally show that the engineering shear strain ε12
(that is used by most FE software) is given by

ε12 = γ√
1 + γ 2/4

.

14. Show that the largest engineering shear strain NE12 that
Abaqus will predict for simple shear is 2.0.
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15. Two symmetric tensors are coaxial if they have the same
principal axes. Prove that Cauchy stress tensor σ and the
left Cauchy-Green tensor b = FF� are coaxial.

16. How can you check if the first law of thermodynamic is
satisfied in an FE simulation?

17. What deformation rate measure is work conjugate to the
Kirchhoff stress?

18. What deformation rate measure is work conjugate to the
Cauchy stress?

19. How many governing field equations can be formulated
from the conservation laws? How many unknown field
variables are there? and What are the missing equations?
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5.1 Introduction

Linear elasticity and hyperelasticity are two classes of con-
stitutive models that are both easy to use and computationally
efficient. Here, a constitutive model is considered to be easy
to use if it requires little effort to calibrate and if it provides
robust predictions for other loading conditions than what was
used for the calibration. Both of these classes of models can
provide useful predictions of the mechanical behavior of different
polymers. The following sections discuss the theory behind these
two classes of models, and how and when they can be applied to
solve polymer mechanics problems.

Note that although the hyperelastic models that are discussed in
this chapter are most useful for rubber-like material, they are also
a critical component/building block for both linear and non-linear
viscoelastic and viscoplastic models that will be discussed in de-
tail in the following chapters. Hence, the theory of hyperelasticity
is of significant importance and will be discussed in detail in this
chapter.
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The last few sections of this chapter introduce extensions
of traditional hyperelastic models that allow for predictions of
anisotropic non-linear hyperelastic behaviors, and predictions of
the Mullins [1–3] effect that is commonly observed for elas-
tomers, thermo-plastic elastomers (TPE), and other elastomer-like
materials.

5.2 Linear Elasticity

Linear elasticity is the most direct way to represent the small
strain mechanical behavior of solid polymers. The theory of linear
elasticity is covered in numerous introductory textbooks [4–6] and
in advanced textbooks [7–12]. The advanced theory of elasticity
is very elegant but requires more sophisticated mathematics than
what is covered in this introductory text. For our purposes it is
sufficient to consider simple forms of isotropic and anisotropic
elasticity, which are discussed in the following two sections.

5.2.1 Isotropic Elasticity

The most elementary form of the theory of elasticity is isotropic
elasticity. In this form of the theory the stress is proportional to the
applied strain and independent of the orientation of the material
body. The constitutive equation for an elastic material is often
called Hooke’s law and can be written in different equivalent but
alternative forms. One common representation is given by the
following set of equations that determine the strain for a given
stress state:

ε11 = 1

E
[σ11 − ν (σ22 + σ33)] , (5.1)

ε22 = 1

E
[σ22 − ν (σ33 + σ11)] , (5.2)

ε33 = 1

E
[σ33 − ν (σ11 + σ22)] , (5.3)

ε12 = σ12

2μ
, (5.4)
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ε23 = σ23

2μ
, (5.5)

ε31 = σ31

2μ
. (5.6)

In these equations, E is the Young’s modulus (also called the
modulus of elasticity), μ is the shear modulus, and ν is the
Poisson’s ratio. This set of equations can also be written in a more
condensed form as follows:

εij = 1 + ν

E
σij − ν

E
σkkδij, (5.7)

where the indices i and j take the values 1, 2, and 3, and δij is the
Kronecker delta function defined by:

δij =
{

1, if i = j,

0, if i �= j.
(5.8)

Another common and useful way to write Hooke’s law is to
instead solve for the stresses in terms of the applied strains:

σij = 2μεij + λεkkδij, (5.9)

where μ is the shear modulus and λ is Lame’s constant.
The constitutive theory for linear elasticity requires two mate-

rial parameters that need to be specified from experimental data.
There are different, equally valid, pairs of material parameters
that can be chosen. The most common material parameters and
conversion formulas between the different parameters are sum-
marized in Table 5.1. This table shows that if we know two of the
elastic constants then we can calculate any of the other constants,
e.g. if we know the shear modulus (μ) and the bulk modulus (κ),
then the Poisson’s ratio can be calculated from:

ν = 3κ − 2μ

6κ + 2μ
. (5.10)

The typical approach to calibrate a linear elasticity model
involves a uniaxial tension experiment where the stress-strain
response determines the Young’s modulus, and the Poisson’s ratio
is obtained from the transverse contraction in the tension exper-
iment. After the two material parameters have been determined,
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Table 5.1 Conversion Equations Between Different Common
Linear Elastic Material Parameters

Known Elastic
Constants

E ν μ κ λ

Shear modulus μ,
Bulk modulus κ

9κμ
3κ+μ

3κ−2μ
6κ+2μ

μ κ
3κ−2μ

3

Young’s modulus E,
Poisson’s ratio ν

E ν E
2(1+ν)

E
3(1−2ν)

Eν
(1+ν)(1−2ν)

Young’s modulus E,
Shear modulus μ

E E−2μ
2μ

μ
Eμ

3(3μ−E)
μ(E−2μ)

3μ−E

Young’s modulus E,
Bulk modulus κ

E 3κ−E
6κ

3κE
9κ−E κ

3κ(3κ−E)
9κ−E

Shear modulus μ,
Lame’s constant λ

μ(3λ+2μ)
λ+μ

λ
2(λ+μ)

μ
3λ+2μ

3 λ

the calibrated linear elasticity model can be used to predict the be-
havior of the material in any deformation state in a finite element
(FE) analysis (as long as the material behavior is linear elastic).

The main limitation of using a linear elastic model for predict-
ing the mechanical behavior of polymer materials is that polymers
behave linearly only for very small strains1 and a restricted
range of strain-rates and temperatures. When performing FE
simulations it is sometimes possible to capture the response at
different temperatures by specifying the temperature dependence
of the elastic constants.

One example illustrating the use and limitations of linear elas-
ticity is shown in Figure 5.1. This figure compares experimental
data for ultra high molecular weight polyethylene (UHMWPE) at
three different strain rates and two temperatures with predictions
from linear elasticity theory. It is clear that the linear elasticity
model predictions are only accurate at one temperature and for

1Note that some polymers, for example low density polyethylene, often do no exhibit a linear elastic
response for any strains at room temperature.



214 Mechanics of Solid Polymers

Figure 5.1 Comparison between experimental data for UHMWPE and
predictions from linear elasticity. (a) Stress-strain response from a
compression followed by an unloading cycle. (b) Small strain response.

strains smaller than about 1%. The figure also shows that the
strain range within the response is linear elastic decreases with
increasing temperature.

Linear elasticity is mostly useful for predicting the small-
strain behavior of thermoplastics below the glass transition
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temperature, and for thermosets. For elastomer-like materials
it is recommended to use a hyperelastic model or one of the more
advanced models discussed in later chapters.

5.2.2 Anisotropic Elasticity

The theory for linear elasticity can be extended to include
anisotropic behavior. Many polymers, e.g. fiber reinforced com-
posites, drawn polymer films, or other polymers with a pre-
ferred molecular orientation, including many biopolymers, are
anisotropic to various degrees. For these materials it is sometimes
useful to represent their behavior using anisotropic elasticity.

For an anisotropic elastic material the Hooke’s law can be
written:

εij = Sijklσkl, (5.11)

or when expressed as a function of the strain state

σij = Cijklεkl. (5.12)

In these equations Sijkl is the compliance tensor, and Cijkl is the
stiffness tensor. These equations show that the stress and strain
tensors are linearly dependent on each other by a linear stiffness
or compliance tensor.2

The theory for anisotropic elasticity is covered in detail in
numerous textbooks [4–6], here we will simply summarize some
of the more important and useful results for engineering analysis.
As is shown in Equations (5.11) and (5.12), the stiffness and
compliance tensors have 3 × 3 × 3 × 3 = 81 components.
Fortunately, since both the strain and stress tensors are symmetric,
the number of independent components of S and C can be reduced
to 36 by using symmetry arguments. Hence, it is common to
arrange the stiffness and compliance tensors into 6 × 6 tensors
as shown in the following equations:

2The stiffness and compliance tensors are forth-order tensors that are discussed in more detail in
various textbooks [4–6, 12].
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⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
ε12
ε13
ε23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ12
σ13
σ23

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5.13)

and⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ12
σ13
σ23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
ε12
ε13
ε23

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.14)

Depending on the degree of anisotropy these 6 × 6 matrices can
often be simplified further. The following subsections present
common special cases.

Orthotropic Elasticity

If the mechanical response of a material contain three orthogo-
nal symmetry planes, as illustrated in the example in Figure 5.2,
then the material is said to be orthotropic.

One common case of an orthotropic material is a material
which contains fibers in three orthogonal directions. In this case
the material contains three-fold symmetry and the constitutive
equations are given by:

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
ε12
ε13
ε23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1/E1 −ν21/E2 −ν31/E3 0 0 0
−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/(2G12) 0 0
0 0 0 0 1/(2G13) 0
0 0 0 0 0 1/(2G23)

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ12
σ13
σ23

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(5.15)

where E1, E2, E3, G12, G13, G23, ν12, ν13, ν21, ν23, ν31, and ν32
are material parameters. Here, the Poisson’s ratios νij is defined
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Figure 5.2 The microstructure of wood is typically orthotropic.

by the transverse strain in the j-direction when the material is
stressed in the i-direction. In general, the Poisson’s ratio terms
are not symmetric, i.e. νij �= νji.

5.2.3 Transversely Isotropic Elasticity

A special case of orthotropic materials are those that have
isotropic properties in one plane (here taken to be the 1-2 plane),
and different properties in the direction normal to this plane.
This type of material symmetry is called transverse isotropic and
is described by 5 material parameters (Ep, Et, Gt, νp, νtp, and
νpt = νtpEp/Et) as shown in the following equations

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
ε12
ε13
ε23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1/Ep −νp/Ep −νtp/Et 0 0 0
−νp/Ep 1/Ep −νtp/Et 0 0 0
−νpt/Ep −νpt/Ep 1/Et 0 0 0

0 0 0 (1 + νp)/Ep 0 0
0 0 0 0 1/Gt 0
0 0 0 0 0 1/Gt

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ12
σ13
σ23

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(5.16)

An example of material that is transversely isotropic is a fiber-
reinforced composite with all fibers oriented in one direction, see
Figure 5.3.
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Figure 5.3 Fiber-reinforced composite having a transverse isotropic
behavior.

Note. The number of experimental tests required to fully deter-
mine the material parameters for these anisotropic elastic mate-
rial models can be large. The exact number and type of required
tests depends on the type of anisotropic response, typically a
combination of tension (or compression) tests and shear tests are
required.

5.3 Isotropic Hyperelasticity

Hyperelasticity is a generalization of linear elasticity that is
non-linear and suitable for large strain predictions. Throughout
the years there have been an extensive amount of work done
developing different hyperelasticity theories, and many of these
models are available in commercial FE software. One of the
most important and interesting aspects of hyperelasticity is that
it is the simplest model representation that in some cases can
be connected to the micromechanisms that drive the deformation
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behavior of polymers. In the following sections we will present
some of the most common and useful theories of hyperelasticity.

The continuum mechanics foundation of the hyperelastic the-
ories was derived in Section 4.11.1. In the next section we will
extend the general expressions for the stress in terms of the
Helmholtz free energy into different and easily applied represen-
tations. This section focuses on the different theories, and the
strengths and limitations of the different theories to predict the
behavior of different polymeric materials.

5.3.1 Continuum Mechanics Foundations

As was shown in Section 4.11.1, the Helmholtz free energy per
unit reference volume3 �(·), the first Piola-Kirchhoff stress P(·),
the entropy per unit reference volume η0(·), and the heat flux per
unit reference surface area Q(·) of a thermoelastic material only
depend on the deformation gradient F, the temperature θ0, and the
gradient of temperature Grad θ0.

To satisfy the Clausius-Duhem inequality Cauchy stress for a
thermoelastic material has to be given by:

σ (F, θ0) = 1

J

∂�(F, θ0)

∂F
F�. (4.235-repeat)

To satisfy objectivity (see Section 4.12), a change of observer
implies that the stress and the Helmholtz free energy have to have
the following functional forms4:

σ (F) = Rσ (U)R� = Rσ (C)R�, (5.17)

�(F, θ0) = �(U, θ0) = �(C, θ0), (5.18)

which when inserted into (4.235) gives

σ (U, θ0) = R
[

1

J

∂�(U, θ0)

∂U
U�

]
R�. (5.19)

3The notation �(·), P(·), etc. indicates that these quantities are functions of arguments that are
not listed for notational simplicity.
4Here, and in the following, the tensorial functionals are not explicitly showing the inherent
arguments. That is, instead of writing σ̂ (F) = Rσ̃ (U)R� = Rσ (C)R�, we have for notational
simplicity skipped the superscripts giving: σ (F) = Rσ (U)R� = Rσ (C)R�.
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The partial derivative of the Helmholtz free energy with respect to
the right stretch tensor (U) can be converted to a derivative with
respect to the right Cauchy-Green tensor (C) by the following
theorem.

Theorem. The partial derivative ∂�/∂U can be written as fol-
lows:

∂�(U)

∂U
= 2U

∂�(C)

∂C
. (5.20)

Proof. This theorem can be proven in different ways. Here, we
will start by converting the left-hand-side of Equation (5.20) to
index notation: (

∂�

∂U

)
ij

= ∂�

∂Uij
(5.21)

= ∂�

∂Ckl

∂Ckl

∂Uij
(5.22)

= ∂�

∂Ckl

∂(UkmUml)

∂Uij
. (5.23)

Then by expanding terms and taking the partial derivative, this
expression becomes:(

∂�

∂U

)
ij

= 2Uik
∂�

∂Ckj
(5.24)

=
(

2U
∂�(C)

∂C

)
ij

, (5.25)

which completes the proof.

By inserting (5.20) into (5.19), the expression for the Cauchy
stress automatically satisfies objectivity if:

σ (C, θ0) = 2

J
F

∂�(C, θ0)

∂C
F�. (5.26)

When working with isotropic hyperelastic models it is often
convenient to express the Helmholtz free energy in terms of
invariants of the right Cauchy-Green tensor instead of the actual
tensor (C). It is common to use the invariants from (4.65) to
(4.67): I1(C), I2(C), and I3(C):
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I1(C) = λ2
1 + λ2

2 + λ2
3, (5.27)

I2(C) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (5.28)

I3(C) = λ2
1λ

2
2λ

2
3. (5.29)

With these invariants the Helmholtz free energy can be written
�(I1, I2, I3, θ0) which when inserted in (5.26) gives:

σ (I1, I2, I3, θ0) = 2

J
F
[
∂�

∂I1

∂I1

∂C
+ ∂�

∂I2

∂I2

∂C
+ ∂�

∂I3

∂I3

∂C

]
F�.

(5.30)

This equation can be simplified further by the following theorem.

Theorem. The partial derivative of I1, I2, and I3 with respect to
C can be written:

∂I1(C)

∂C
= I, (5.31)

∂I2(C)

∂C
= I1I − C, (5.32)

∂I3(C)

∂C
= I3C−1 = I3F−1F−�. (5.33)

Proof. The proof of this theorem can be obtained through
tensor manipulations as discussed in [13, 14]. Since the proof is
somewhat lengthy it is here left as an exercise.

Inserting the partial derivatives of I1, I2, and I3 into (5.30) give
the following expression for the Cauchy stress:

σ (I1, I2, I3, θ0) = 2

J

(
∂�

∂I1
+ I1

∂�

∂I2

)
b − 2

J

∂�

∂I2
b2 + 2

J
I3

∂�

∂I3
I.

(5.34)

It is often more common to use the invariant I3(F) = J instead
of I3(C) = J2. By inserting this substitution into Equation (5.34)
and using the chain rule we get:

σ (I1, I2, J, θ0) = 2

J

(
∂�

∂I1
+ I1

∂�

∂I2

)
b− 2

J

∂�

∂I2
b2 + ∂�

∂J
I. (5.35)
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The hyperelasticity models that are available in most FE pro-
grams are based on a decomposition of the deformation gradient
into dilatational (volume change) and distortional5 (no volume
change) components (see Equations (4.38)–(4.40)):

F = J1/3F∗, (5.36)

C = F�F = J2/3C∗. (5.37)

Similarly, the invariants can also be divided into dilatational and
distortional parts:

I1(C) = tr(C) = tr(J2/3C∗) = J2/3 tr(C∗) = J2/3I∗
1 , (5.38)

I2(C) = 1

2

[
(tr C)2 − tr

(
C2
)]

= J4/3I∗
2 . (5.39)

Using these invariants, the Helmholtz free energy can be
written �(I∗

1 (I1, J), I∗
2(I2, J), J). Inserting this functional form

into Equation (5.35) and using the chain rule gives:

σ (I∗
1 , I∗

2 , J, θ0) = J

2

(
∂�

∂I∗
1

∂I∗
1

∂I1
+ J2/3I∗

1
∂�

∂I∗
2

∂I∗
2

∂I2

)
b − 2

J

∂�

∂I∗
2

∂I∗
2

∂I2
b2

+
(

∂�

∂I∗
1

∂I∗
1

∂J
+ ∂�

∂I∗
2

∂I∗
2

∂J
+ ∂�

∂J

)
I. (5.40)

This equation can be simplified by inserting the invariants from
Equations (5.38) and (5.39) giving the Cauchy stress as:

σ = 2

J

[
∂�

∂I∗
1

+ ∂�

∂I∗
2

I∗
1

]
b∗− 2

J

∂�

∂I∗
2

(
b∗)2+

[
∂�

∂J
− 2I∗

1

3J

∂�

∂I∗
1

− 4I∗
2

3J

∂�

∂I∗
2

]
I.

(5.41)

If there is no dependence on I∗
2 , then the Cauchy stress can be

written

σ = 2

J

∂�

∂I∗
1

dev[b∗] + ∂�

∂J
I. (5.42)

Equations (5.41) and (5.42) are very useful and will be used
extensively in the remainder of this chapter.

5Here, and in the following, distortional scalars and tensors are denoted by a superscript ∗.
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Example
For an incompressible material, Equation (5.41) be simplified to:

σ = 2
[
∂�

∂I1
+ ∂�

∂I2
I1

]
b − 2

∂�

∂I2
(b)2 + pI, (5.43)

where p is a pressure term that is determined from the boundary
conditions. Hence, if an incompressible hyperelastic material is
exposed to uniaxial loading, then the Cauchy stresses in the
loading and transverse directions are given by:

σuniax = 2
[
∂�

∂I1
+ ∂�

∂I2
I1

]
λ2 − 2

∂�

∂I2
λ2 + p, (5.44)

σtransverse = 2

[
∂�

∂I1
+ ∂�

∂I2
I1

]
1

λ
− 2

∂�

∂I2

1

λ2
+ p ≡ 0 (5.45)

giving

σuniax = 2

[
∂�

∂I1
+ ∂�

∂I2
I1

](
λ2 − 1

λ

)
− 2

∂�

∂I2

(
λ4 − 1

λ2

)
.

(5.46)

Furthermore, if the material has no dependence on I2, and
is exposed to incompressible uniaxial loading, then the Cauchy
stress is given by

σuniax = 2
∂�

∂I1

(
λ2 − 1

λ

)
. (5.47)

If the hyperelastic material has no dependence on I2, the Cauchy
stress in incompressible planar loading is given by

σplanar = 2
∂�

∂I1

(
λ2 − 1

λ2

)
, (5.48)

and if exposed to incompressible biaxial loading, the Cauchy
stress is given by

σbiaxial = 2
∂�

∂I1

(
λ2 − 1

λ4

)
. (5.49)

Instead of using the invariants I1, I2, and I3, it is sometimes
useful to express the Helmholtz free energy in terms of the
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principal stretches λ1, λ2, and λ3: �(λ1, λ2, λ3, θ0). In this
case the principal Cauchy stresses can be obtained from
Equation (5.26) as follows:

σi(λ1, λ2, λ3, θ0) =
3∑

j=1

2

J
λ2

i
∂�

∂λj

∂λj

∂Cii
. (5.50)

From the definition of C we get that ∂λi/∂Cii = 1/(2λi), which
when inserted in Equation (5.50) gives:

σi(λ1, λ2, λ3, θ0) = λi

J

∂�

∂λi
(no summation). (5.51)

The complete Cauchy stress tensor can then be obtained from:

σ =
3∑

i=1

λi

J

∂�(λ1, λ2, λ3, θ)

∂λi
n̂i ⊗ n̂i, (5.52)

where n̂i are the principal directions of the left Cauchy-Green
tensor b = FF�, see (4.106). Using the same approach we can
similarly show that the principal values of the first Piola-Kirchhoff
stress can be obtained from:

Pi(λ1, λ2, λ3, θ0) = ∂�

∂λi
, (5.53)

giving the Piola-Kirchhoff stress tensor

P =
3∑

i=1

∂�(λ1, λ2, λ3, θ0)

∂λi
n̂i ⊗ N̂i. (5.54)

Similarly, if the Helmholtz free energy is expressed in terms of
the distortional stretches: λ∗

i = J−1/3λi, then the Cauchy stress is
given by:

σ =
3∑

i=1

λ∗
i

J

∂�

∂λ∗
i

n̂i ⊗ n̂i + ∂�

∂J
I. (5.55)
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5.3.2 Similarity Between Uniaxial Compression
and Biaxial Tension

The deformation gradient in incompressible uniaxial compres-
sion is

F =
⎡
⎣λ 0 0

0 1/
√

λ 0
0 0 1/

√
λ

⎤
⎦ , (5.56)

and the deformation gradient in incompressible biaxial tension is
given by

F =
⎡
⎣1/λ2 0 0

0 λ 0
0 0 λ

⎤
⎦ . (5.57)

At first sight these two deformation gradients look quite different
but if we select λ = 0.5 in uniaxial compression, and λ = 2
in biaxial tension, then the deformation gradient in both cases
becomes

F =
⎡
⎣0.5 0 0

0 2 0
0 0 2

⎤
⎦ . (5.58)

This means that for an incompressible material uniaxial com-
pression and biaxial tension impose the same deformation state
on the material, and hence are equivalent. The two loading modes,
however, give different stresses due to the difference in required
pressure to satisfy the stress boundary conditions.

Since no real material is fully incompressible, this similarity
between uniaxial compression and biaxial tension is not strictly
valid. To explore the difference in the predicted stresses due to the
material compressibility consider a compressible Neo-Hookean
(NH) material model with a shear modulus of μ = 1 MPa, and
different values for the bulk modulus κ . To get concrete stress
values consider a compressible stretch state of λ = 0.5, and
a biaxial tensile stretch of 1/

√
0.5. Under these conditions the

calculated true stress values are listed in Table 5.2.
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Table 5.2 Summary of Calculated Stress Values in
Uniaxial Compression and the Corresponding Biaxial
Tension Deformation State

κ ν Stress Uniaxial Stress Biaxial Error

500 0.499 −1.7511 MPa 1.7421 MPa 0.5%

100 0.495 −1.7554 MPa 1.7116 MPa 2.6%

50 0.49 −1.7610 MPa 1.6761 MPa 5.1%

10 0.45 −1.8097 MPa 1.4570 MPa 24.2%

The shear modulus was μ = 1 MPa. The applied uniaxial stretch was
λ = 0.5, and the applied biaxial stretch was λ = 1/

√
0.5.

The table shows that the bulk modulus needs to very high
compared to the shear modulus in order for there to be a similarity
between the predicted stress in uniaxial compression and biaxial
tension.

5.3.3 Similarity Between Pure Shear and
Planar Tension

The results from a planar tension test can under certain condi-
tions be converted to equivalent pure shear data.6 On occasion,
this can be useful if shear data is required, but the experimental
equipment for performing shear tests is not available.

To show this similarity between pure shear and planar tension,
start with the deformation gradient of an incompressible material
in pure shear:

F =
⎡
⎣1/(1 − α2) 0 0

0 1 α

0 α 1

⎤
⎦ , (5.59)

where α is the shear displacement. The term F11 is taken to be
1/(1 − α2) in order to conserve volume, that is to get det(F) = 1.
Figure 5.4 shows how a square is deformed in pure shear for
different α values.

6Note that pure shear does not impose the same deformation as simple shear. Both loading modes
apply shear, but in different ways.
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a = 0 a = 0.2 a = 0.4

Figure 5.4 Deformation of a square in pure shear with different α

values. Note that the deformation of a square becomes a rhombus
(with all equal sides). This is different than simple shear of a square
that becomes a parallelogram.

Now consider the deformation gradient in incompressible plane
strain tension:

F =
⎡
⎣1 0 0

0 1 + α 0
0 0 1/(1 + α)

⎤
⎦ , (5.60)

where α is the same displacement value as in (5.59). With this
deformation gradient the stretching is in the 2-direction, and the
1-direction has no strain.

If we rotate this deformation state by 45% around the
1-direction then the rotation matrix becomes:

Q =
⎡
⎣1 0 0

0 cos 45% sin 45%
0 − sin 45% cos 45%

⎤
⎦ = 1√

2

⎡
⎣

√
2 0 0

0 1 1
0 −1 1

⎤
⎦ ,

(5.61)
and the rotated deformation gradient becomes:

F = Q� ·
⎡
⎣1 0 0

0 1 + α 0
0 0 1/(1 + α)

⎤
⎦ · Q. (5.62)

For small applied strains this equation can be simplified to:

F =
⎡
⎣1 +  0 0

0 (1 + α2/2 + O(α3)) (α − α2/2 + O(α3))

0 (α − α2/2 + O(α3)) (1 + α2/2 + O(α3))

⎤
⎦ ,

(5.63)
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where  is a small value that is needed in order to enforce
incompressibility, O(α3) is big O notation indicating the term is
of order α3. If α � 1 then α2 and higher terms can be ignored
giving

F =
⎡
⎣1 +  0 0

0 1 α

0 α 1

⎤
⎦ , (5.64)

which is the same deformation gradient as in pure shear. This
shows that for incompressible materials, at small strains the pure
shear and planar tension behaviors are the same.

The difference between pure shear and planar tension increases
with the applied deformation. Figure 5.5 shows the true stress
as a function of the deformation α for the idealized case of
incompressible loading.7 In this figure the stress is σ23 for pure
shear and σ22 for planar tension. The stress was calculated using
a Neo-Hookean (NH) material model with a shear modulus of
1 MPa. The figure shows that the two deformation modes start to
diverge significantly for deformations α > 0.5.

Figure 5.5 Comparison between predicted stress in pure shear and
the corresponding planar tension for different applied deformations.

7The difference between the two loading modes will be even larger if the material is compressible.
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5.3.4 Dependence of Stored Energy on I1 and I2

The Helmholtz free energy that is stored in a solid polymer8

as it is being deformed depends on the applied deformation
invariants I1, I2, and J. That is, a hyperelastic theory is uniquely
defined by how the stored energy depends on these invariants.

To better illustrate these dependencies it is useful to consider
real experimental data for an elastomer. Figure 5.6 shows exper-
imental data from Treloar [15, 16] for a natural rubber tested in
uniaxial tension, biaxial tension, and pure shear.

In this case the rubber material was deformed to very large
engineering strains in excess of 300%, and for each applied strain
value the equilibrium stress was measured after the material was
allowed to relax. This figure shows, as expected, that the stress-

Figure 5.6 Experimental data in uniaxial tension, biaxial tension, and
pure shear [15, 16].

8This is only true for materials that are non-linear elastic and follow the theory of hyperelasticity.
In other cases some of the applied energy is dissipated and some is stored.
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strain response for all three loading modes is non-linear, and that
the biaxial stress is the highest and that the uniaxial stress is the
lowest.

From this data it is straightforward to calculate the stored
energy in the material as a function of the applied deformation in
each loading mode. Figure 5.7 shows how the free energy depends
on the first invariant I1. As mentioned, in general the internal
energy does not only depend on the first invariant I1 but also on I2
and J. This is clearly shown in the figure since the energy curves
for the three loading modes do not perfectly overlap.

The influence of I1 and I2 on the free energy can be studied by
calculating how I1 and I2 depend on the applied stretch in different
loading modes. For example, directly inserting the deformation
gradients from Equations (5.78)–(5.80) into the definitions for I1
and I2 (see Equations (4.65) and (4.66)) gives the results shown
in Figures 5.8 and 5.9. The figures show that of the three loading
modes, biaxial loading exposes the material to much higher I2
values than in uniaxial loading or plane strain loading.

Another way to plot the data is look at the ratio I2/I1 as a
function of the applied stretch λ, see Figure 5.10. For any arbitrary
deformation state there are three invariants, and if the material is

Figure 5.7 Calculated Helmholtz free energy as a function of the first
invariant I1 for data from Treloar [15, 16].
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Figure 5.8 Comparison between the I2 value in uniaxial, plane strain,
and biaxial loading, as a function of the applied stretch λ1.

Figure 5.9 Comparison between the I2 value in uniaxial, plane strain,
and biaxial loading, as a function of the applied I1.
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Figure 5.10 Normalized I2/I1 value for all loading modes for isotropic
materials.

incompressible there are only two: I1 and I2. To make the example
concrete consider a deformation state where λ1 = 2, and then
vary λ2. The I1 and I2 values can be directly calculated from the
λ1 and λ2 values, and the ratio I2/I1 established. The results from
that calculation is shown in Figure 5.10.

Figure 5.10 shows that I2 is the lowest in uniaxial loading, and
the highest in biaxial loading.

These results help understand the experimental Helmholtz
energy that was shown in Figure 5.7. In that case the free energy
in biaxial loading was higher than the energies in uniaxial loading
or pure shear. One of the reasons for this is likely that the value of
I2 is higher in biaxial loading, and hence plotting the energy only
as a function of I1 will underestimate the free energy.

5.3.5 Freely Jointed Chain Model

The presentation in this chapter has so far focused on deriving
suitable continuum mechanics expressions for the stress response
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for a given deformation history. Specifically, it has been shown
that the stress can be directly calculated if the expression for the
Helmholtz free energy is known. The Helmholtz free energy can
either be taken from a phenomenological (often parametrized) ex-
pression for �(·), or from a micromechanism inspired represen-
tation based on the deformation behavior of the microstructure.

This subsection presents a simple micromechanism inspired
molecular chain model called the Freely Jointed Chain (FJC)
model. Other micromechanical chain models, like the Kratky-
Porod chain model [17] and the worm-like chain mode [18, 19]
have been developed in the literature. These models are not
discussed in this text.

In the FJC model the macromolecules in the polymer mi-
crostructure are represented as n “rigid links” (called Kuhn
segments), each of length l, for a total chain contour length of
L = nl, see Figure 5.11. This model is also called the random
walk model since the molecular chains are assumed to not interact
and to have a distribution that corresponds to a random walk.

The Helmholtz free energy of this molecular chain model is
given by the sum of the entropies of the individual molecular

Exemplar randomly freely jointed chain:

Figure 5.11 Randomly generated freely jointed chain with n = 100,
and l = 1.
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chains, which can be obtained from a statistical survey of the
possible molecular configurations using statistical mechanics.

As a macromolecule is stretched, the number of available
configurations which can accommodate the extended chain end-
to-end distance decrease, thus giving a decrease in configurational
entropy, η. By assuming the molecules to be freely jointed with
a fixed bond length, the entropy can be determined from the
statistical mechanics relation [20]:

η0 = NkB ln �(r) + c, (5.65)

where �(r) is the probability distribution of the end-to-end
distance of the molecular chain, N is the number of chains per
reference unit volume, and kB = 1.38×10−23 J/K is Boltzmann’s
constant. Flory [21] showed that the probability distribution under
these conditions can be written:

�(r) = 1

2π2r

∫ ∞

0
q sin(qr)

[
sin ql

ql

]n

dq. (5.66)

One approximation of the integral (5.66) that is good for n 
 1
and r ≈ n is the Langevin expression attributed to Kuhn and
Grün [22]:

�(r) = A′

l3

[
sinh β

β

]n

exp

[−βr

l

]
, (5.67)

where β = L−1(r/(nl)) and L(x) = coth(x) − 1/x is the
Langevin function. The inverse Langevin function L−1(x) cannot
be expressed in elementary functions but can be approximated
from the following expression [23] that has a max relative error
of 6.4 × 10−4:

L−1(x) ≈
{

1.31446 tan(1.58986x) + 0.91209x, if |x| < 0.84136,

1/(sign(x) − x), if 0.84136 ≤ |x| < 1.
(5.68)

The inverse Langevin function is plotted in Figure 5.12.
Note that in the limit as n → ∞, Equation (5.67) becomes a

Gaussian distribution:

�(r) =
[

3

2πnl3

]3/2

exp

[−3r2

2nl2

]
. (5.69)
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Figure 5.12 Inverse Langevin function L(x). The value of the function
is only defined for x-values between −1 and +1.

The change in entropy with chain length for the Langevin
expression therefore can be written:

∂η0

∂r
= ∂[NkB ln �(r)]

∂r
= −NkB

l
L−1

( r

nl

)
, (5.70)

and that the corresponding expression for Gaussian chains
becomes:

∂η0

∂r
= ∂[NkB ln �(r)]

∂r
= −3NkBr

nl2
, (5.71)

where N is the number of chains per reference unit volume, kB
is Boltzmann’s constant, and r is the end-to-end distance of the
molecular chains.

The definition of Helmholtz free energy per unit reference
volume:

� = e0 − θ0η0, (4.219-repeat)

together with the lack of storage of internal energy (e0 ≡ 0)
since each link in the molecular chain model is rigid, allows us
to directly obtain the force required to stretch a molecular chain
to a given end-to-end distance:
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fc = ∂�

∂r
= NkBθ0

l
L−1

( r

nl

)
. (5.72)

This type of micromechanics inspired model can be used to gain
a better understanding the behavior of the mechanical response of
polymers. This approach is also directly used in some commonly
used hyperelastic material models, like the Arruda-Boyce Eight-
Chain model (see Section 5.3.10).

The next few subsections discusses some of the more com-
monly used hyperelastic models that are available in FE programs.
The purpose of this review is to illustrate some of the similarities
between these models, how they work, and under what conditions
they can provide accurate predictions of real polymer materials.

5.3.6 Neo-Hookean Model

The NH model is a simple hyperelastic model that is based
on two material parameters: a shear modulus μ and a bulk
modulus κ . Here, as is often done, the theory for the NH
model will be presented both for compressible and incompressible
deformations.9 The incompressible form is often easier to use
in theoretical derivations, but for practical studies, including FE
simulations, the compressible version is often more useful and
will emphasized in the following. Hyperelasticity models, such as
the NH model, are mostly used for solid, rubber-like materials.
These materials are characterized by an almost incompressible
response and the actual value of the bulk modulus therefore
typically has very little influence on the response of the rubber-
like component. The only exception is in applications where the
component is highly confined, e.g. o-rings that are compressed in
a confined space (see Chapter 2, Section 2.2.9).

Like all hyperelastic material models, the NH model is spec-
ified by the expression for its Helmholtz free energy per unit
reference volume. Here, the Helmholtz free energy is assumed
to be independent of the temperature, and is hence identical to the

9The compressible version of the model can be made incompressible by studying the case when
κ → ∞. The incompressible version of the NH model consequently only contain one material
parameter, the shear modulus μ.
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internal energy per unit reference volume e0. For the NH model,
the Helmholtz free energy per unit reference volume is given by:

�(I∗
1 , J) = μ

2
(I∗

1 − 3) + κ

2
(J − 1)2. (5.73)

Note 1: The equation for the free energy is linear in I∗
1 , and can

therefore not accurately capture the large-strain non-linear
response of many elastomers.

Note 2: The equation for the free energy is not including any
dependence on the second invariant I∗

2 . As shown in the
example below, this may cause the stress predictions to be
too low in situations where the loading is mainly biaxial.

Note 3: The energy from volumetric deformations is quadratic in
(J − 1), giving a volumetric stress that is linear in (J − 1),
see Equation (5.74).

By using Equations (5.41), (4.66), and (4.36) it is easy to show
that the compressible NH model has the following expression for
the Cauchy stress for an arbitrary deformation state:

σ = μ

J
dev

[
b∗]+ κ(J − 1)I, (5.74)

where μ is the shear modulus, and κ is the bulk modulus.
For the incompressible NH model, the Cauchy stress is given

by Equations (5.47)–(5.49) giving the following expressions for
uniaxial, planar, and biaxial deformations:

σuniax = μ

(
λ2 − 1

λ

)
, (5.75)

σplanar = μ

(
λ2 − 1

λ2

)
, (5.76)

σbiaxial = μ

(
λ2 − 1

λ4

)
. (5.77)

Here, and in the remainder of this text, incompressible uniaxial
deformation is defined by

F =
⎡
⎣λ 0 0

0 1/
√

λ 0
0 0 1/

√
λ

⎤
⎦ , (5.78)
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incompressible planar deformation is defined by

F =
⎡
⎣λ 0 0

0 1 0
0 0 1/λ

⎤
⎦ , (5.79)

and incompressible biaxial deformation is defined by

F =
⎡
⎣λ 0 0

0 λ 0
0 0 1/λ2

⎤
⎦ . (5.80)

For incompressible uniaxial loading the NH material model can
be implemented into Matlab code as follows:

And as Python code as follows:

The response of the NH model in this case is only controlled
by the shear modulus μ. A direct comparison between predictions
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Figure 5.13 Comparison between experimental data from Treloar
[15, 16] and predictions from the Neo-Hookean material model.

from the NH model and classical experimental data for vulcanized
natural rubber from Treloar [15, 16] is shown in Figure 5.13.
This figure shows experimental data in simple tension, equibiaxial
tension, and planar tension. As illustrated in the figure, the NH
model does not capture the large strain response very well. This
limitation of the model is caused by its inability to capture the
limiting molecular chain stretch of the material as it becomes
highly deformed.

As shown in the following code and figure, it is also easy to
implement the NH model for compressible loading. This code
numerically searches for the transverse strain that gives σ22 = 0
for each value of the applied strain ε11.

The value of the NH model lies in its simplicity—if the shear
modulus is known, the response in any loading mode can be
determined in a robust and computationally efficient way. The
main limitation of the NH model is its limited range of conditions
that give accurate predictions.

Example: Shear Modulus in the NH Model.
In this example we will demonstrate that the material parameter
μ in Equation (5.73) is indeed the shear modulus of the material.
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One way to show this is to consider a case of simple shear
defined by:

F =
⎡
⎣1 γ 0

0 1 0
0 0 1

⎤
⎦ . (5.81)

Inserting this deformation gradient into Equation (5.74) gives
the shear stress σ12 = μγ , which together with Equation (5.4)
demonstrates that μ is the shear modulus.

Another way to show that μ in Equation (5.73) is the shear
modulus is to consider the derivative of σuniax in Equation (5.75)
with respect to λ in the limit when λ → 1:

lim
λ→1

dσuniax

dλ
= lim

ε→0

dσuniax

dε
= 3μ, (5.82)

where ε is the uniaxial small strain. The derivative in Equa-
tion (5.82) is also, by definition, equal to the Young’s modulus,
and for an incompressible material the Young’s modulus is equal
to 3 times the shear modulus, hence μ is indeed the shear modulus
of the material.

Example: Bulk Modulus in the NH Model.
This example will demonstrate that the material parameter κ in
Equation (5.73) is the bulk modulus of the material. One way to
show this is to consider a case of triaxial deformation:

F =
⎡
⎣ε 0 0

0 ε 0
0 0 ε

⎤
⎦ . (5.83)

Inserting this into Equation (5.74) gives σ11 = σ22 = σ33 =
σ = κ(λ3 − 1). Taking the stretch derivative in the limit of small
deformations gives

lim
λ→1

dσ

dλ
= lim

ε→0

dσ

dε
= 3κ . (5.84)
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From Equation (5.9) and Table 5.1 we also know that dσ/dε in
a triaxial deformation is equal to 3κ , hence the parameter κ in
Equation (5.73) is the initial bulk modulus of the material.

Example: Alternative Formulation of the NH Model.
The NH model can also be written using the following alternative
equation:

σ = μ

J
(b − I) + κ(J − 1)I. (5.85)

That is, the stress is not strictly divided into deviatoric and
volumetric parts. For cases when the bulk modulus κ is large the
standard NH model and this alternative NH model give similar
predictions, but the smaller the bulk modulus the more different
the two models become.

Figure 5.14 shows the stress-strain predictions from the stan-
dard NH model and the alternative NH model. In this case the
shear modulus was taken to be μ = 1 MPa, and the bulk modulus
was taken as κ = 5 MPa.

Figure 5.14 Comparison between predictions from the standard and
an alternative NH model formulations.
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5.3.7 Mooney-Rivlin Model

The Mooney-Rivlin (MR) model is an extension of the NH
model that attempts to improve the accuracy by including a linear
dependence on I∗

2 in the Helmholtz free energy per unit reference
volume:

�(C10, C01, κ) = C10
(
I∗
1 − 3

)+ C01
(
I∗
2 − 3

)+ κ

2
(J − 1)2 .

(5.86)

As illustrated in this equation, the compressible version of the MR
model requires three material parameters: C10, C01, and κ . Using
Equation (5.41) it can be shown that the Cauchy stress for the
Mooney-Rivlin model is given by:

σ = 2

J

(
C10 + C01I∗1

)
b∗−2C01

J

(
b∗)2+

[
κ(J − 1) − 2I∗

1 C10

3J
− 4I∗2 C01

3J

]
I.

(5.87)

For the incompressible version of the MR model (κ → ∞), the
Cauchy stresses in uniaxial, planar, and equibiaxial deformations
are given by the following expressions:

σuniax = 2
(

λ2 − 1

λ

)[
C10 + C01

λ

]
, (5.88)

σplanar = 2

(
λ2 − 1

λ2

)
[C10 + C01] , (5.89)

σbiaxial = 2C10

(
λ2 − 1

λ4

)
+ 2C01

(
λ4 − 1

λ2

)
. (5.90)

The accuracy of the Mooney-Rivlin model to predict the behavior
of elastomers is demonstrated in Figure 5.15 by comparison to
vulcanized natural rubber data of Treloar [16].

This figure shows that the Mooney-Rivlin model can improve
the predictions of the NH model. However, the improvements can
come with a price—having a negative C01 term, although often
improving the predictions in one loading mode, can at the same
time make the model unstable at finite deformations in a different
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Figure 5.15 Comparison between experimental data from Treloar [16]
and predictions from the incompressible Mooney-Rivlin material model.

loading mode (see Section 5.8.2). One example of this is shown
in Figure 5.16.

For incompressible uniaxial loading the Mooney-Rivlin ma-
terial model can be implemented in Python using the following
code:

The following code example shows one way to implement
the Mooney-Rivlin material model for compressible uniaxial
loading.
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5.3.8 Yeoh Model

The Yeoh model [24] is based on a Helmholtz free energy that
is a third-order polynomial in I∗

1 , with no dependence on I∗
2 . Due

to the higher order I∗
1 terms, this model will enable more accurate

predictions than the NH model, and at the same time potentially
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Figure 5.16 Example illustrating stability problems with the
Mooney-Rivlin model.

avoid some of the stability issues of the Mooney-Rivlin model.
One convenient way to write the Helmholtz free energy per unit
reference volume for a compressible version of the Yeoh model is
as follows:

�(C10, C20, C30, κ) = C10
(
I∗
1 − 3

)+ C20
(
I∗
1 − 3

)2

+ C30
(
I∗
1 − 3

)3 + κ

2
(J − 1)2 . (5.91)
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The model requires four material parameters: C10, C20, C30,
and κ . Note that some FE programs also use higher order terms
to represent the energy from volumetric deformations. As was
discussed in Section 2.2.9, these higher order terms rarely play
a role in the accuracy of the model predictions.

One of the main motivations for the Yeoh model is that for most
elastomers the Helmholtz free energy is much weaker dependent
on the invariant I∗

2 than the first invariant I∗
1 [24–26]. Also, it turns

out to be difficult to experimentally determine the dependence
of the Helmholtz free energy on the I∗

2 term. Based on these
arguments, Yeoh [24] suggested that it is reasonable to neglect
the dependence on I∗

2 altogether. It has also been shown that by
neglecting the I∗

2 dependence it becomes easier to ensure that a
hyperelastic model is Drucker stable [24] (see Section 5.8.2).

Using Equation (5.41), it can be shown that the Cauchy stress
for the compressible Yeoh model is given by:

σ = 2

J

{
C10 + 2C20

(
I∗
1 − 3

)+ 3C30
(
I∗
1 − 3

)2
}

dev[b∗]
+ κ(J − 1)I. (5.92)

For the incompressible version of the Yeoh model, the Cauchy
stresses in uniaxial, planar, and equibiaxial deformations are
given by the following expressions:

σuniax = 2
[
C10 + 2C20(I1 − 3) + 3C30(I1 − 3)2

](
λ2 − 1

λ

)
,

(5.93)

σplanar = 2
[
C10 + 2C20(I1 − 3) + 3C30(I1 − 3)2

](
λ2 − 1

λ2

)
,

(5.94)

σbiax = 2
[
C10 + 2C20(I1 − 3) + 3C30(I1 − 3)2

](
λ2 − 1

λ4

)
.

(5.95)

The accuracy of the Yeoh model to predict the behavior of
elastomers is demonstrated in Figure 5.17.

This figure shows that the Yeoh model can improve the
predictions of the NH model for the different loading modes,
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Figure 5.17 Comparison between experimental data from Treloar [16]
and predictions from the incompressible Yeoh material model.

particularly at large deformations. For many elastomeric materials
it has been shown [27] that a useful rule-of-thumb rule for
the material parameters is to select C10 to be positive and
C20 ≈ −0.01C10, and C30 ≈ −0.01C20.

For incompressible uniaxial loading the Yeoh material model
can be implemented in Python using the following code:

The following code example shows one way to implement the
Yeoh material model for compressible uniaxial loading.
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5.3.9 Polynomial in I1 and I2 Model

A generalization of the NH, Mooney-Rivlin, and the Yeoh
models can be obtained by taking the Helmholtz free energy to
be a polynomial expansion in terms of I∗

1 and I∗
2 . One common

way to express this series expansion is as follows10:

�(C10, C01, . . . ; D1, D2, . . .) =
N∑

i+j=1

Cij
(
I∗
1 − 3

)i (
I∗
2 − 3

)j+
N∑

i=1

1

Di
(J − 1)2i .

(5.96)

This expression for the Helmholtz free energy is quite general
and encompasses the NH, Mooney-Rivlin, and Yeoh models, but
its generality also makes it difficult to determine the best set
of material parameters that give accurate and robust predictions
in multiaxial loading cases. This polynomial representation is
therefore not as commonly used as the simpler models with a fixed
number of terms.

5.3.10 Eight-Chain Model

The eight-chain (EC) model by Arruda and Boyce [28] is a
hyperelasticity model that is motivated by the deformation be-
havior of the microstructure of elastomers. The basic assumption
of the EC model is that the macromolecules (also called chain
molecules) on average are located along the diagonals of a unit
cell located in principal stretch space as illustrated in Figure 5.18.
The side lengths of the unit cell in the reference state are denoted
by a0, and the undeformed chain length by r0. It then directly
follows that r0 = a0

√
3. Further, the macromolecules are taken to

be freely jointed with n rigid links each of length l. For this FJC
model the average end-to-end distance in the absence of an exter-
nal force field is l

√
n [21]. By defining λ∗

1, λ∗
2, and λ∗

3 to be the
applied principal distortional stretches, the effective distortional
chain length becomes r = a0[(λ∗

1)
2 + (λ∗

2)
2 + (λ∗

2)
2]1/2, giving

the effective distortional chain stretch

10This is the expression that is used, for example, by the FE program Abaqus [27].
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Figure 5.18 (a) Eight chain molecules are located in the unit cell.
(b) Volume element for one chain molecule.

λ∗ =
[

(λ∗
1)

2 + (λ∗
2)

2 + (λ∗
3)

2

3

]1/2

=
√

tr C∗
3

=
√

tr b∗
3

=
√

I∗
1

3
,

(5.97)

where b∗ = (J)−2/3b. This shows that the distortional chain
stretch is in fact a function only of the first invariant I∗

1 .
Based on this physically motivated model, an eight-chain

material is defined as an isotropic thermoelastic material whose
Helmholtz free energy per unit reference volume, �, only de-
pends on the two deformation invariants λ∗(b∗) = [tr(b∗)/3]1/2

and J = det(F), and the temperature θ0.
By noting that the effective chain stretch is related to the first

invariant of b∗ through λ∗ = [I1(b∗)/3]1/2, it follows that the
Helmholtz free energy per unit reference volume can be written
�(λ∗, J, θ), or alternatively �(I∗

1 , J, θ0) where I∗
1 = I1(b∗) =

tr(b∗). The Cauchy stress for an EC material can then be obtained
from the continuum mechanics Equation (5.41) which in this case
with no dependence on I∗

2 can be simplified to

σ = 2

J

∂�

∂I∗
1

dev[b∗] + ∂�

∂J
I, (5.98)
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or when expressed in terms of the effective chain stretch λ∗

σ = 1

J

1

3λ∗
∂�

∂λ∗ dev[b∗] + ∂�

∂J
I. (5.99)

The Helmholtz free energy per unit reference volume (�) can
be determined by first using the experimental observation that
for elastomers the internal energy is typically not a function of
the applied distortional stretch [16], i.e. e0(J, θ0). Hence, the
functional form of the Helmholtz free energy has the form:

�(λ∗, J, θ0) = e0(J) − θ0η0(λ∗). (5.100)

Note that the dependence on J in η0(λ∗, J) has been neglected
due to the assumption of small volume change. The assumption
of small volumetric deformations also enable the relationship
between the pressure component of the Cauchy stress σ and the
volumetric deformation J to be taken as linear:

σ : I = ∂�(λ∗, J, θ0)

∂J
= κ(J − 1), (5.101)

giving the internal energy e0(J) = κJ(J/2−1). The Cauchy stress
can then be calculated from Equation (5.99) giving

σ = −θ0

3Jλ∗
∂η0(λ∗)

∂λ∗ dev[b∗] + κ[J − 1] I. (5.102)

To completely specify the constitutive relationship it now only
remains to determine how the entropy depends on the effective
chain stretch. From the chain rule we get:

∂η0(r(λ∗))
∂λ∗ = ∂η0

∂r

∂r

∂λ∗ = ∂η0

∂r

1
∂
∂r

[
rl

√
n
] = l

√
n

∂η0

∂r
. (5.103)

Thus it is sufficient to determine how the entropy of a single
macromolecule depends on its end-to-end distance in order to
finalize the constitutive equation. This derivation was discussed
in detail in Section 5.3.5.

By using Equation (5.70), the equation for the Cauchy stress
(5.102) can now be written

σ = NkBθ

3J

λlock

λ∗ L−1

(
λ∗

λlock

)
dev[b∗] + κ[J − 1]I, (5.104)
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where λlock ≡ nl is the maximum (fully extended) stretch that a
molecule can be exposed to.

For the special case of incompressible uniaxial deformation
Equation (5.104) simplifies to

σuniax = NkBθ

3J

λlock

λ∗ L−1

(
λ∗

λlock

)[
λ2 − 1

λ

]
, (5.105)

and for simple shear defined by F = I + γ e1 ⊗ e2 the shear stress
is given by

σshear = NkBθ0

3J

λlock

λ∗ L−1

(
λ∗

λlock

)
γ , (5.106)

where λ∗ = √
1 + γ 2/3.

The initial shear modulus of the material is given by

μ = ∂σ12
∂γ

∣∣∣
γ =0

giving

μ = NkBθ0

3
λlockL−1

(
1

λlock

)
, (5.107)

which when inserted in (5.104) gives the Cauchy stress for the EC
model as

σ = μ

J λ∗
L−1

(
λ∗

λlock

)
L−1

(
1

λlock

) dev[b∗] + κ[J − 1] I. (5.108)

In this equation [μ, λlock, κ] are the material parameters.
For the incompressible version of the EC model, the Cauchy

stresses in uniaxial, planar, and equibiaxial deformations are
given by the following expressions:

σuniax = μ

λ∗
L−1

(
λ∗

λlock

)
L−1

(
1

λlock

) [λ2 − 1

λ

]
, (5.109)

σplanar = μ

λ∗
L−1

(
λ∗

λlock

)
L−1

(
1

λlock

) [λ2 − 1

λ2

]
, (5.110)
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Figure 5.19 Comparison between experimental data from Treloar [16]
and predictions from the eight-chain material model.

σbiax = μ

λ∗
L−1

(
λ∗

λlock

)
L−1

(
1

λlock

) [λ2 − 1

λ4

]
. (5.111)

The compressible EC model contains three material param-
eters: a shear modulus μ, a limiting chain stretch λlock, and a
bulk modulus κ . The EC model has no dependence on I2 and
give predictions that are similar in accuracy to the Gent model
[29]. The accuracy of the EC model to predict the behavior
of elastomers is demonstrated in Figure 5.19 by comparison to
vulcanized natural rubber data of Treloar [16].

The figure shows that the EC model in this case is more
accurate than the NH model and the Mooney-Rivlin model, and
almost as accurate as the Yeoh model. The figure also shows that
the EC model slightly underpredicts the biaxial response. This can
be expected since the model is I1-based, and does not include any
dependence on I2.

For incompressible uniaxial loading the EC material model can
be implemented into Matlab using the following code:
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For incompressible uniaxial loading the NH material model can
be implemented in Python using the following code:

*
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The following code example shows one way to implement the
EC material model for compressible uniaxial loading.

Example: Different Implementations for the Inverse Langevin
Function.
The Langevin function is defined by:

L(x) = coth(x) − 1/x. (5.112)



5: Elasticity/Hyperelasticity 257

The inverse of this function is called the inverse Langevin func-
tion L−1(x) and cannot be expressed in elementary functions.
As shown above, to numerically calculate the stress for the EC
model it is necessary to evaluate the inverse Langevin function.
This can be done by solving for x in Equation (5.112) using
a numerical equation solver, such as the Newton method. This
approach, however, is computationally expensive and multiple
alternative faster approximations have been developed.

One method that was developed by Arruda and Boyce [28] is
to express the inverse Langevin function as a series expansion:

L(x) ≈ 3x + 9

5
x3 + 297

175
x5 + 1539

875
x7. (5.113)

The function can also be approximated using a Padé approach
[30]:

L(x) ≈ x(3 − x2)

1 − x2
. (5.114)

Yet another approach was developed by Bergstrom [23] who
derived the functional response into two regions. For small x
values the function was represented using a curve fit based on
a tan-function, and for large x values the function was represented
by its asymptotic form:

L−1(x) ≈
{

1.31446 tan(1.58986x) + 0.91209x, if |x| < 0.84136,
1/(sign(x) − x), if 0.84136 ≤ |x| < 1.

(5.115)

These different approximations are compared in Figure 5.20,
and a comparison between the accuracy of the approximations is
given in Table 5.3.

The difference between these numerical approximations may
seem more like an academic issue than an important practical
concern, but the issue becomes important since different FE
codes have decided to implement the inverse Langevin function
in different ways. For example, Abaqus uses a series expansion,
and the PolyUMod library [31] uses the more accurate Bergstrom
solution approach.
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Figure 5.20 Comparison between different approaches for calculating
the inverse Langevin function.

Table 5.3 Comparison in Errors in the Different Approaches
for Calculating the Inverse Langevin Function

Approximation Method Relative Error in Prediction
at x = 0.7

Bergstrom Approximation 0.06%

5-term Series Expansion 18.5%

Padé Approximation 4.3%

In other words, it is difficult to translate the parameters for the
EC model from one FE solver to another. It may be necessary to
recalibrate the model for each specific FE package.

Example: Gaussian Chains.
The constitutive relationship for the EC model for the case of
Gaussian chains (instead of Langevin chains) can be directly
obtained by replacing the inverse Langevin function by the first
term in its series expansion:
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L−1 (x) = 3x + 9

5
x3 + 297

175
x5 + O(x7),

giving for uniaxial tension

σ = μ0

J
dev[b∗] + κ[J − 1] I, (5.116)

which is identical to the NH model (Equation (5.74)).

5.3.11 Ogden Model

The Ogden model [12] is a very general hyperelasticity model
with a Helmholtz free energy per reference volume that is ex-
pressed in terms of the applied principal stretches. The Helmholtz
free energy for the Ogden model can be written in different
ways. One common compressible representation [27] is given
in Equation (5.117). In this equation the volumetric response is
written in terms of Di parameters instead of the bulk modulus
terms.

�(λ∗
1, λ∗

2, λ∗
3) =

N∑
k=1

2μk

α2
k

((
λ∗

1

)αk + (
λ∗

2

)αk + (
λ∗

3

)αk − 3
)

+
N∑

k=1

1

Dk
(J − 1)2k . (5.117)

This general form of the Helmholtz free energy makes the model
powerful but can also complicate the selection of an appropriate
set of material parameters that give stable predictions of general
deformation states.

The principal stresses σi, i ∈ [1, 2, 3], for the Ogden model, are
given by:

σi = 2

J

N∑
k=1

μk

αk

(
(λ∗

i )
αk − 1

3

[
(λ∗

1)
αk + (λ∗

2)
αk + (λ∗

3)
αk
])

+
N∑

k=1

2k

Dk
(J − 1)2k−1 . (5.118)
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The stresses from the incompressible Ogden model in uniaxial
loading, planar loading, and biaxial loading are given by:

σuniax =
N∑

k=1

2μk

αk

[
λαk −

(
1√
λ

)αk
]

, (5.119)

σplanar =
N∑

k=1

2μk

αk

[
λαk −

(
1

λ

)αk
]

, (5.120)

σbiax =
N∑

k=1

2μk

αk

[
λαk −

(
1

λ2

)αk
]

. (5.121)

It is interesting to note that if N = 1 and α2 = 1, then the Ogden
model becomes equal to the NH model.

The accuracy of the Ogden model to predict the behavior
of elastomers is demonstrated in Figure 5.21 by comparison to

Figure 5.21 Comparison between experimental data from Treloar [16]
and predictions from a three-term Ogden model.
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vulcanized natural rubber data of Treloar [16]. The figure shows
that a 3-term Ogden model in this case is more accurate than the
NH model and the Mooney-Rivlin model, but not as accurate as
the Yeoh model or the EC model.

For incompressible uniaxial loading the Ogden material model
can be implemented into Matlab using the following code:

For incompressible uniaxial loading the Ogden material model
can also be implemented in Python using the following code:

The following code example shows one way to implement the
Ogden material model for compressible uniaxial loading.
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5.3.12 Gent Model

The Gent model [32] is an extension of the NH model that aims
at better characterizing the response of elastomer-like materials at
large deformations. The Helmholtz free energy per unit reference
volume for the Gent model is given by11 [32]:

�(I1, J) = −μ

2
Jm ln

(
1 − I∗

1 − 3

Jm

)
+ κ

2
[J − 1]2 . (5.122)

This expression contains three material parameters: the shear
modulus μ, a dimensionless parameter Jm that controls the limited
chain extensibility at large applied strains, and the bulk modu-
lus κ . The Cauchy stress for the Gent model is given by

σ = μ

J
· 1

1 − I∗
1−3
Jm

dev[b∗] + κ[J − 1] I. (5.123)

In the Gent model the first invariant I∗
1 is always less than Jm + 3,

and in the limit as Jm → ∞, the model becomes identical to the
NH model.

The Cauchy stresses for the incompressible Gent model in
uniaxial loading, planar loading, and biaxial loading are given by:

σuniax = μ

(
λ2 − 1

λ

)
Jm

Jm − (
λ2 + 2/λ − 3

) , (5.124)

σplanar = μ

(
λ2 − 1

λ2

)
Jm

Jm − (
λ2 + 2/λ − 3

) , (5.125)

σbiax = μ

(
λ2 − 1

λ4

)
Jm

Jm − (
λ2 + 2/λ − 3

) . (5.126)

The accuracy of the Gent model to predict the behavior of
elastomers is demonstrated in Figure 5.22 by comparison to
vulcanized natural rubber data of Treloar [16].

For incompressible uniaxial loading the Gent material model
can be implemented into Matlab using the following code:

11The original version of the Gent model was incompressible. Here we have added a simple
compressibility term. Other forms of the compressibility can be chosen if desired.
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Figure 5.22 Comparison between experimental data from Treloar [16]
and predictions from the Gent model.

For incompressible uniaxial loading the Gent material model
can also be implemented in Python using the following code:
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The following code example shows one way to implement the
Gent material model for compressible uniaxial loading.

5.3.13 Horgan and Saccomandi Model

Horgan and Saccomandi have developed a model [33, 34]
that is an extension of the Gent model. This model, henceforth
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called the HS model, also involves three material parameters. The
main difference between the Gent and the HS models is that the
latter depends on both the first and second strain-invariants and
thus might in some cases agree more closely with experimental
data. In addition, the limiting chain parameter in the HS model
is related directly to the maximum allowable stretch and so
is more physically accessible than its counterpart for the Gent
model that depends on a maximum value of the first invariant
[33]. The Helmholtz free energy per unit reference volume of a
compressible version of the HS is given by:

�(I∗
1 , I∗

2 , J) = −μ

2
λ2

max ln

[
λ6

max − λ4
maxI∗

1 + λ2
maxI∗

2 − 1

(λ2
max − 1)3

]

+ κ

2
[J − 1]2, (5.127)

where μ is the shear modulus, λmax is the limiting chain stretch,
and κ is the bulk modulus.

The Cauchy stress for the compressible HS model is given by

σ = μλ4
max

J

[λ2
max − I∗

1 ]b∗ + (b∗)2 − 1
3 [λ2

maxI∗
1 − 2I∗

2 ]I
λ6

max − λ4
maxI∗

1 + λ2
maxI∗

2 − 1
+κ[J−1]I.

(5.128)
In this model max(λ1, λ2, λ3) < λmax. In the limit as λmax → ∞,
the model becomes identical to the NH model. The Cauchy
stresses of the incompressible version of the HS model in uniaxial,
planar, and equibiaxial deformations are given by the following
expressions:

σuniax = μλ4
max

λ3 − 1

(λλ2
max − 1)(λ2

max − λ2)
, (5.129)

σplanar = μλ4
max

λ4 − 1

(λ2λ2
max − 1)(λ2

max − λ2)
, (5.130)

σbiax = μλ4
max

λ6 − 1

(λ4λ2
max − 1)(λ2

max − λ2)
. (5.131)

The accuracy of the HS model to predict the behavior of elas-
tomers is demonstrated in Figure 5.23.

One nice feature of the HS model is that the model is uncondi-
tionally stable if μ > 0 and λmax > 1.

The following code example shows one way to implement the
HS material model for compressible uniaxial loading.
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Figure 5.23 Comparison between experimental data from Treloar [16]
and predictions from the Horgan-Saccomandi model.

5.3.14 Knowles Model

The Knowles hyperelastic model [35] is a simple and versatile
hyperelastic material model that is an extension of the NH model,
but is not a built-in native feature of most FE software. The
Helmholtz free energy per unit reference volume of a compress-
ible version of the Knowles model [36] is given by:

�(I∗
1 , J) = − μ

2b

[(
1 + b

n
(I∗

1 − 3)

)n

− 1

]
+ κ

2
[J −1]2, (5.132)

where μ is the shear modulus, n is a hardening parameter, b is a
shape parameter, and κ is the bulk modulus. From this equation it
is clear that if n = 1 then the Knowles model becomes equal to
the NH model. The Knowles model was originally developed for
predicting the crack tip response of incompressible elastic solids
[35], but it has recently also been used to study the degradation
response of poly-L-lactic acid (PLLA) materials [37].
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The Cauchy stress for the compressible Knowles model is:

σ = μ

J

(
1 + b

n
(I∗

1 − 3)

)n−1

dev[b∗] + κ(J − 1)I. (5.133)

The Cauchy stresses for the incompressible Knowles model in
uniaxial loading, planar loading, and biaxial loading are given by:

σuniax = μ

(
1 + b

n
(λ2 + 2/λ − 3)

)n−1

·
[
λ2 − 1

λ

]
, (5.134)

σplanar = μ

(
1 + b

n
(λ2 + 1/λ2 − 2)

)n−1

·
[
λ2 − 1

λ2

]
, (5.135)

σbiax = μ

(
1 + b

n
(2λ2 + 1/λ4 − 3)

)n−1

·
[
λ2 − 1

λ4

]
.

(5.136)

The accuracy of the Knowles model to predict the behavior of
elastomers is demonstrated in Figure 5.24.

The following code example shows one way to implement the
Knowles material model for compressible uniaxial loading.
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Figure 5.24 Comparison between experimental data from Treloar [16]
and predictions from the incompressible Knowles material model.

The influence of the parameters n and b on the predicted stress-
strain response of the Knowles model are shown in Figures 5.25
and 5.26. These figures show that the n and b parameters strongly
influence the predicted stress-strain response.

5.3.15 Response Function Hyperelasticity

All hyperelastic models that have been discussed so far in this
chapter have been based on specific equations for the Helmholtz
free energy per unit reference volume, where the energy equation
contains material constants that specify the behavior of a specific
material. Another approach is to specify the free energy directly
based on experimental data in uniaxial loading [27, 38]. One
advantage of this approach is that there are no adjustable material
parameters that need to be found, instead the energy function, and
as a results the stress calculations, are directly obtained from the
provided experimental uniaxial test data.

Most major FE programs have a hyperelastic model of
this type, for example, in Abaqus the model is called the
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Figure 5.25 Influence of parameter n on the stress-strain response for
the Knowles model.

Figure 5.26 Influence of parameter b on the stress-strain response for
the Knowles model.
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Marlow model. This type of model implementation is based on
the assumption that the free energy is only dependent on the first
invariant I1, which is then determined from the experimental data.
A consequence of this is that although this model can predict the
uniaxial tension data with almost perfect accuracy, the predictions
of other loading modes are typically far from perfect.

The accuracy of the response function model to predict the
behavior of elastomers is demonstrated in Figure 5.27 by com-
parison to vulcanized natural rubber data of Treloar [16].

This figure shows that as expected the model predictions agrees
with the provided uniaxial tension data, but the predicted stress
in biaxial loading is too low. This is typical since accurately
predicting the response in biaxial loading often requires an energy
function that includes I2 dependence, which is not the case for
response function hyperelasticity.

Figure 5.27 Comparison between experimental data from Treloar [16]
and predictions from the response function model as implemented by
Abaqus.
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5.3.16 Extended Tube Model

The Extended Tube (ET) model is a statistical mechanics
and micromechanics inspired material model that considers the
network constraints from surrounding molecular chains and the
limited chain extensibility in the derivation of the Helmholtz free
energy expression [39].

The energy function consists of three parts: energy from the
cross-linking of the network (�c), energy from confining tube
constrains (�e), and energy from volumetric deformations (�v):
� = �c + �e + �v, where:

�c = Gc

2

[
(1 − δ2)(I∗

1 − 3)

1 − δ2(I∗
1 − 3)

+ ln
(

1 − δ2(I∗
1 − 3)

)]
, (5.137)

�e = 2Ge

β2

3∑
i=1

(
(λ∗

i )
−β − 1

)
, (5.138)

�v = κ(J − 1)2. (5.139)

In this equation [Ge, Gc, δ, β, κ] are material parameters,
I∗
1 = J−2/3 tr[C], λ∗

i = J−1/3λi, and J = det[F]. The energy
term �c is a simple I∗

1 based expression, �e is a one-term Ogden
model with a negative exponent, and �v gives the volumetric
response.

The Cauchy stress for the ET model can be calculated from
Equations (5.42) and (5.55) giving:

σ = Gc

J

{
1 + (

1 + (I∗
1 )2 − 4I∗

1

)
δ2 + (

5I∗
1 − (I∗

1 )2 − 6
)
δ4[
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]2

}
dev[b∗]

− 2Ge

Jβ

3∑
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[
(λ∗
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−β − 1

3

(
(λ∗

1)
−β + (λ∗

2)
−β + (λ∗

3)
−β
)]

n̂i ⊗ n̂i + κ(J − 1)I.

(5.140)

The Cauchy stresses for the incompressible ET model in
uniaxial loading, planar loading, and biaxial loading are given by:
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σuniax = Gc

{
1 + (

1 + (I∗
1 )2 − 4I∗

1

)
δ2 + (

5I∗
1 − (I∗

1 )2 − 6
)
δ4[

1 − (I∗
1 − 3)δ2

]2

}
·
(

λ2 − 1

λ

)

− 2Ge

β

[
λ−β −

(
1√
λ

)−β
]

, (5.141)
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{
1 + (

1 + (I∗
1 )2 − 4I∗

1

)
δ2 + (

5I∗
1 − (I∗

1 )2 − 6
)
δ4[

1 − (I∗
1 − 3)δ2

]2

}
·
(

λ2 − 1

λ2

)

− 2Ge

β

[
λ−β −

(
1

λ

)−β
]

, (5.142)

σbiaxial = Gc
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The accuracy of the ET model to predict the behavior of
elastomers is demonstrated in Figure 5.28 by comparison to
vulcanized natural rubber data of Treloar [16]. The figure shows
that ET model in this case is more accurate than any of the other
hyperelastic models that have been examined so far.

Figure 5.28 Comparison between experimental data from Treloar [16]
and predictions from the Extended Tube model.
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The following code example shows one way to implement the
ET model for compressible uniaxial loading.

The influence of the parameters δ and β on the predicted
stress-strain response of the ET model are shown in Figures 5.29
and 5.30. These figures show that the δ parameter strongly
influence the predicted stress-strain response.

5.3.17 BAM Model

The BAM model is a new hyperelastic material model that I
developed specifically for this book. The purpose of this exercise
is to show one way to improve the accuracy of the Arruda-Boyce
EC model. The EC model, which was discussed in Section 5.3.10,
is an excellent model for predicting the multiaxial response of
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Figure 5.29 Influence of parameter δ on the stress-strain response for
the Extended Tube model.

Figure 5.30 Influence of parameter β on the stress-strain response for
the Extended Tube model.
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elastomers. One of the main limitations of the EC model is that
it underpredicts the stress in biaxial loading since its Helmholtz
free energy does not depend on the second invariant. One way
to remedy that limitation is to add another contribution to the
Helmholtz free energy that specifically helps in biaxial loading.
One simple way to do that is to follow the approach developed by
the extended tube model, where a first order Ogden model with a
negative α coefficient is used. As was shown in Figure 5.30, a first
order Ogden model with a negative α parameter is exactly what is
needed.

The new hyperelastic model can then be obtained by quickly
combining the energy functions from the EC model (Equa-
tion (5.100)) and the first-order Ogden model (Equation (5.117)),
and bam, a new material model is obtained. We will simply call
this new model the BAM model.

The predictions from the BAM model when compared to the
classical data from Treloar is shown in Figure 5.31. The figure
shows that the BAM model is as accurate as the 3-term Ogden
model and the extended tube model, which were the most accurate
hyperelastic models that have been examined so far for the Treloar
data.

5.4 Summary of Predictive Capabilities of
Isotropic Hyperelastic Models

A summary of the predictive capabilities of the various hyper-
elastic models discussed in the previous sections are summarized
in Table 5.4. In this table the accuracy of the different material
models is quantified by the coefficient of determination (R2). The
table shows that the Ogden (3-term) model and the ET model
are the most accurate. Another way to evaluate the usefulness
of the different models is to compare the accuracy of the model
predictions to the number of required material parameters, see
Figure 5.32. In this case one can argue that a material model
with fewer material parameters should be easier to calibrate and
therefore should be preferable to a material model with many
material parameters. The figure shows that response function
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Figure 5.31 Comparison between experimental data from Treloar [16]
and predictions from the BAM model.

Table 5.4 Comparison Between the Predictive
Capabilities of Different Isotropic Hyperelasticity Models

Hyperelastic Model R2-Prediction

Neo-Hookean 0.794

Mooney-Rivlin 0.843

Yeoh 0.980

Eight-Chain 0.973

Ogden (2-term) 0.977

Ogden (3-term) 0.998

Gent 0.972

Horgan-Saccomandi 0.901

Knowles 0.850

Response Function 0.960

Extended Tube 0.997

BAM 0.994
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Figure 5.32 Comparison between the different hyperelastic material
model with respect to the accuracy and the number of material
parameters.

model, the Arruda-Boyce EC model, the Yeoh model, and the ET
model are the most promising from this condition.

Another way to evaluate the usefulness of the different candi-
date hyperelastic models is to compare the predictive accuracy
to the minimum number of experimental tests that are required
for the model calibration, see Figure 5.33. In this case, material
models that are only based on the first invariant I1 are assigned a
minimum number of experimental tests of one (1), and material
model that are based on both the first and second invariants
(I1 and I2) or the principal stretches are assigned a minimum
number of experimental tests of two (2). This figure suggests that
the Yeoh model, the Arruda-Boyce EC model, the Gent model,
and the response function models are most useful since they only
require one experimental test.

It is important to note that the results presented in this table
were obtained for the classical Treloar [16] data for natural rubber
in uniaxial tension, planar tension, and equibiaxial tension. It is
possible that the relative ranking of the different models would be
different if a different experimental data set was used in the study.
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Figure 5.33 Comparison between the different hyperelastic material
model with respect to the accuracy and the number of required
experimental tests.

The results presented here are included for illustrational pur-
poses, and are not intended to provide a comprehensive review
and evaluation of the various hyperelasticity models. Further-
more, as will be discussed in more detail in Section 5.8.1, the
mechanical behavior of elastomers in real-world applications is
significantly more advanced than the simple data represented in
Treloar’s data set.

For example, the response of elastomers in real loading cases is
characterized not only by a non-linear hyperelastic response but
also non-linear viscoelasticity and damage (Mullins effect) during
cyclic loading. These additional non-linearities of the material
response will make the reported R2-values in Table 5.4 higher
than the actual values in many real-world applications. Hence,
if a hyperelastic model is chosen to represent the behavior of an
elastomer-like material, then there will likely be inaccuracies in
the model predictions due to the lack of viscoelastic effect that
are more significant than the difference between some of the more
advanced hyperelastic model discussed above.
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Figure 5.34 Comparison between experimental data for a chloroprene
rubber and calibrated material models for the Neo-Hookean,
eight-chain, Yeoh, Gent, and Ogden models.

This behavior is depicted in Figure 5.34. This figure shows that
all the different hyperelastic material models provide similar pre-
dictions, and that all are unable to predict the loading-unloading
response of the material.

5.5 Anisotropic Hyperelasticity

Anisotropic hyperelasticity is a relatively new topic that en-
ables many new exciting predictive capabilities, both for biopoly-
mers and other intrinsically anisotropic polymers. Anisotropic
hyperelasticity is also a building block for more advanced vis-
coplastic models as will be discussed in following chapters.

The theory for anisotropic hyperelasticity is covered nicely in
the textbook by Holzapfel [13]. If the applied strains are small
then it is often sufficient to use an anisotropic elastic model. For
larger strains there are two commonly used approaches: strain
based [40] and invariant based [41] hyperelasticity. This section
summarizes the theory of some commonly used anisotropic hy-
perelastic models.
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5.5.1 Generalized Fung Model

The energy function for the generalized Fung anisotropic
hyperelastic model [40] can be written:

�(c, bijkl, κ) = c

2

[
exp(Q) − 1

]+ κ

2
(J − 1)2, (5.144)

where c, bijkl, and κ are material parameters. Note that the
parameter bijkl is a dimensionless symmetric fourth order tensor
of material parameters. The scalar variable Q is given by:

Q = E∗ : b : E∗ = E∗
ijbijklE

∗
kl, (5.145)

where E∗ = [C∗ − I]/2 is the Green-Lagrange strain defined
in Equation (4.119), C∗ = J−2/3F�F is the right Cauchy-Green
tensor, and J = det[F]. For a case with cylindrical coordinates,
this equation can be written:

Q = b1E2
θθ + b2E2

zz + b3E2
rr + 2b4EθθEzz + 2b5EzzErr

+ 2b6ErrEθθ + b7E2
θz + b8E2

rz + b9E2
rθ . (5.146)

The Cauchy stress for the Generalized Fung model is:

σ = 1

J
F

∂�

∂E∗ F� + ∂�

∂J
I. (5.147)

The Fung anisotropic hyperelastic model is commonly used to
model both engineered and native soft tissues used in medical
device and surgical applications [42].

5.5.2 Invariant Based Anisotropy

Another common approach to incorporate anisotropic effects
into a hyperelastic model is to introduce two additional invariants:
I4, I5 defined by:

I4 = (Fa0) · (Fa0) = a0 · Ca0 = λ2
F, (5.148)

I5 = a0 · C2a0, (5.149)

where I4 is the stretch in the provided fiber direction a0, and C is
the right Cauchy-Green tensor. The total Helmholtz free energy is
then given by:
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� = �1(I
∗
1 , I∗

2 , J) + �2(I4, I5). (5.150)

The Cauchy stress for this type of invariant-based anisotropic
hyperelasticity is given by [13]:
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In this equation a = |Fa0| is the direction of fiber a0 it the
deformed state.

Example: Simple Anisotropic Hyperelastic Model.
As an example, consider a NH material with a single family of
fibers with the energy function:

�2(I4) = A
(

I2
4 − 2I4

)
= A

(
λ4

f − λ2
f

)
. (5.152)

For this simple material model the Cauchy stress is given by:

σ = μ

J
dev[b∗]+ κ(J − 1)+ 4A

J
(λ2

f − 1)(Fa0)⊗ (Fa0), (5.153)

which is plotted in Figure 5.35. This figure shows that adding
a single family of fibers can cause a significantly anisotropic
response.

5.5.3 Bischoff Anisotropic Eight-Chain Model

The Arruda-Boyce EC model (see Section 5.3.10) is a use-
ful micromechanism inspired model that has been shown to
accurately capture the equilibrium response of many isotropic
elastomers [43]. Bischoff developed an extension of this model
that also works for anisotropic materials [44]. The basic idea of
this model framework is that the eight chain unit cell is stretched
also its initial unloaded configuration.

The stress predicted by the Bischoff anisotropic EC model is
given by:
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Figure 5.35 Stress-strain prediction in uniaxial tension of a simple
anisotropic Neo-Hookean material model.

σ =
4∑

f=1

3μ

4Jλf

L−1(λf/λL)

L−1(1/λL)
(Fâf)⊗(Fâf)−

3∑
i=1

3μ

(
ai

λL

)2

ei⊗ei+κ(J−1)I,

(5.154)

where μ is the shear modulus, κ is the bulk modulus, [a1, a2, a3]
are the side lengths of the unit cell in the undeformed configu-
ration, J = det[F], L−1(·) is the inverse Langevin function, and
where:

λL =
√

a2
1 + a2

2 + a2
3, (5.155)

â1 = [+a1e1 + a2e2 + a3e3]/λL, (5.156)

â2 = [+a1e1 + a2e2 − a3e3]/λL, (5.157)

â3 = [+a1e1 − a2e2 + a3e3]/λL, (5.158)

â4 = [+a1e1 − a2e2 − a3e3]/λL, (5.159)

λf = ||Fâf|| = (âf · Câf)
1/2. (5.160)

One example of the Bischoff anisotropic EC model is given in
Figure 5.36. This figure shows experimental data for rabbit skin
[45] and the stress-strain response from the Bischoff model.
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Figure 5.36 Comparison between experimental data for rabbit skin
and predictions from the Bischoff model.

5.5.4 Bergstrom Anisotropic Eight-Chain Model

Another way to create an anisotropic hyperelastic model is to
start with the isotropic Arruda-Boyce EC model and then add one
or more families of fibers. Using this approach the Cauchy stress
can be written [31]:

σ = σ 8chain(F) +
[
Aλ2

f + Bλf − (A + B)
]

af ⊗ af, (5.161)

where σ (F), af = Fa0, λf = ||af||. One example of the stress-
strain response from this model is shown in Figure 5.35.

5.5.5 Holzapfel-Gasser-Ogden Model

The Holzapfel-Gasser-Ogden (HGO) model [46, 47] is an
anisotropic hyperelastic material model that was developed to
predict the response of arterial tissue. The HGO model is a
versatile model that is a built-in feature in Abaqus.

The model consists of a NH model representation of the matrix
response, and up to three different families of fibers. The initial
fiber directions are given by the three vectors [a1x, a1y, a1z],
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[a2x, a2y, a2z], and [a3x, a3y, a3z]. The three fiber directions do
not have to be orthogonal.

The strain energy function for the model is given by the
following function:

� = μ

2
(I∗

1 − 3) + k1

2k2

3∑
i=1

[
ek2〈Ei〉2 − 1

]
+ κ

2
(J − 1)2, (5.162)

where:

• the energy term Ei is: Ei = d(I∗
1−3)+(1−3d)[I∗

4i−1],
• d is the dispersion,
• I∗

4i = (F∗ai) · (F∗ai),
• 〈x〉 = (x + |x|)/2 is the ramp function,

If d = 0 then the fibers are perfectly aligned, and if d = 1/3 the
fibers are randomly oriented giving an isotropic response.

One example of the stress-strain predictions from the HGO
model is presented in Figure 5.37. The prediction is based on the
following parameters: μ = 2 MPa, κ = 20 MPa, k1 = 1 MPa,
k2 = 1, d = 0.1 or 0.2, and one family of fibers oriented at
[1,0,0].

Figure 5.37 Predicted stress-strain response from the
Holzapfel-Gasser-Ogden model.
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The figure shows that the stress in the 2-direction is indepen-
dent of the value of d. This, of course, is caused by the lack of
fibers in the 2-direction. The stress in the 1-direction, however, is
dependent on the value of d.

5.6 Hyperelastic Foam Models

The mechanical behavior of compressible polymers, such as
foams, can also be approximated using a hyperelastic represen-
tation. Since foams can undergo large volume change it is often
beneficial to use slightly different forms of the Helmholtz free
energy and to use a different set of experimental data when
calibrating the hyperelastic model. One of the problems with
the common hyperelastic models is illustrated in Figures 5.38
and 5.39.

These figures show the uniaxial tension and compression re-
sponse of the NH model with a stress function:

σ = μ

J
dev

[
b∗]+ κ(J − 1)I, (5.74-repeat)

Figure 5.38 Predicted Poisson’s ratio for the (standard) Neo-Hookean
model with a shear modulus of 1 MPa.
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Figure 5.39 Predicted Poisson’s ratio for the alternative Neo-Hookean
model where the energy function is not divided into distortional and
volumetric parts. The shear modulus is 1 MPa.

and the response of the alternative NH model:

σ = μ

J
(b − I) + κ(J − 1)I. (5.85-repeat)

As shown in the figures, the predicted Poisson’s ratio from the
standard NH material model becomes odd in compressive loading
when the bulk modulus is similar in magnitude to the shear
modulus. This is a problem when modeling foams since foams
often have a small bulk modulus and a corresponding small (but
positive) Poisson’s ratio.

The alternative NH model avoids this problem by using the
total deformation gradient (not only the deviatoric part) in combi-
nation with the volumetric response.

Different hyperelastic models have been proposed in order
to better predict the non-linear elastic response of foam mate-
rials. The following subsections summarize some of the more
commonly used the hyperelastic models for foams: the Blatz-Ko
model, and the hyperfoam model.
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5.6.1 Blatz-Ko Foam Model

A commonly used material model for polymer foams is the
Blatz-Ko hyperelastic model [48]. This model was developed for
porous materials with a known shear modulus, Poisson’s ratio,
and volume fraction of voids, and is called the generalized Blatz-
Ko model.

A more commonly used version of the model is obtained by
setting the void volume fraction parameter f = 0, and by setting
the Poisson’s ration ν = 0.25, giving a model that is typically
just called the Blatz-Ko model [48, 49], and that has the following
strain energy density:

� = μ

2

(
I2

I3
+ 2I1/2

3 − 5

)
. (5.163)

As shown, this material model only has one material parameter:
the shear modulus μ.

The Cauchy stress for the Blatz-Ko model is given by:

σ = μ

J3

[
I1b − b2 − (I2 − J3)I

]
. (5.164)

The following code example shows one way to implement the
Blatz-Ko model for compressible uniaxial loading.

The predicted stress-strain response in uniaxial, biaxial, and
plane strain loading is shown in Figure 5.40.



290 Mechanics of Solid Polymers

Figure 5.40 Predicted stress-strain response for the Blatz-Ko model in
different loading modes.

5.6.2 Hyperfoam Model

One interesting hyperelastic model for polymer foam materials
is the hyperfoam model [27, 50]. In this model the Helmholtz free
energy is given the following expression:

� =
N∑

k=1

2μk

α2
k

[
(λ1)

αk + (λ2)
αk + (λ3)

αk − 3 + 1

βk

(
J−αkβk − 1

)]
,

(5.165)
where [μi, αi, βi], i = 1 . . . k are material parameters, J = det[F],
and λi are the principal stretches. As shown in this equation,
the hyperfoam model is very similar to the Ogden model, except
that it has a slightly different energy function for the volumetric
response. The volumetric response was here selected in order to
get a constant Poisson’s ratio in uniaxial loading.

The Cauchy stress can be derived from Equation (5.52) giving:

σ =
N∑

k=1

2μk

Jαk

{
3∑

i=1

[
(λi)

αk − J−αkβk
]

n̂i ⊗ n̂i

}
. (5.166)

The following code example shows one way to implement the
hyperfoam model for uniaxial loading.
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Exemplar stress-strain predictions for the hyperfoam model are
shown in Figure 5.41. This figure shows the model predictions
when μ = 1 MPa, α = 2, and β = 0.2. The model predictions of
the compressive response are in qualitative agreement with many
polymer foams, but the tensile predictions are not and may require
additional terms in the energy function for proper predictions of
an actual material.

It can be shown [27], that the Poisson’s ratio for the hyperfoam
model is equal to

ν = β

1 + 2β
, (5.167)

if all βi terms are equal. This is a convenient feature of the
hyperfoam model that allows all β parameters to be determined
from the average Poisson’s ratio that can be experimentally
measured. The μi parameters specify the stiffness of the model
response, and the αi parameters specify the shape of the predicted
stress-strain response at larger strains.
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Figure 5.41 Predicted stress-strain response for the hyperfoam model
with μ = 1MPa, α = 2, β = 0.2.

5.7 Mullins Effect Models

The mechanical stress response of elastomers often undergoes
significant softening during the first few load cycles, and af-
ter those load cycles the material response becomes repeatable
[1, 51–54]. This material softening can be considered a damage
accumulation in the material. One example showing experimental
data with the Mullins effect is shown in Figure 2.3.

There is still some uncertainty about the details of the mech-
anisms causing the Mullins effect [54], but the following experi-
mental observations are typically seen in all rubbers that exhibit
Mullins damage:

• The extent of Mullins softening increases with filler
particle concentration.

• The stress at a given strain is higher in the first load
cycle, than in any of the following load cycles.

• The amount of damage that is introduced in the
material is the highest in the first load cycle, and then
goes down with subsequent load cycles. After about
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3 to 5 load cycles (to a given strain level) the material
response becomes repeatable.

• The amount of damage is dependent on the max
applied strain. If a material is conditioned at, say,
30% strain, then the material will start to exhibit more
damage accumulation again if the applied is increased
to a larger strain level at a later time.

• The Mullins damage is not permanent, the material
often slowly recovers with time. The rate of recovery
depends on the temperature.

The most common physical interpretation of the Mullins effect
is that it is caused by molecular chain breakage at interface of
filler particles, or breakdown of filler particle clusters. Note that
the Mullins effect only occurs in elastomers, and elastomer-like
materials. Thermoplastic materials can also soften due to damage
accumulation, but that behavior is not called the Mullins effect.

The following sections summarize two models for predicting
the Mullins effect in a FE simulation.

5.7.1 Ogden-Roxburgh Mullins Effect Model

In an attempt to account for the Mullins effect, Ogden and
Roxburgh [2] proposed a general extension of hyperelasticity in
which the Helmholtz free energy per unit reference volume, �, is
taken to be a function not only of the applied deformation state
but also on an internal state variable η that tracks the damage
evolution in the material. This model is available as a built-in
feature of most FE programs. For incompressible loading, the
following form is used:

�(λ1, λ2, λ3, η) = η�(λ1, λ2, λ3), (5.168)

where λi are the principal stretches. In the Ogden-Roxburgh (OR)
model the damage variable η is taken to evolve with the applied
deviatoric strain energy as follows12:

12This is an extension of the OR model that is used by the FE program Abaqus. The original OR
model had β = 0.
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η = 1 − 1

r
erf

(
�max

dev − �dev

m + β�max
dev

)
, (5.169)

where r, β, and m are material parameters, erf(x) is the error
function, �dev is the current deviatoric strain energy density, and
�max

dev is a state variable for the evolving maximum deviatoric
strain energy density for the material point in its deformation
history. This simple damage model can be applied to any isotropic
hyperelasticity model.

An example of the behavior of the OR model is shown in
Figure 5.42. This figure plots stress-strain predictions for a uni-
axial tension, and a biaxial load case. In both cases the material
was stretched to 30% engineering strain, then unloaded to 10%
engineering strain, and then finally loaded to 50% engineering
strain. The material model was a NH hyperelastic model with
Ogden-Roxburgh Mullins damage parameters: μ = 1 MPa, r =
2, m = 0.2, and β = 0.02. The figure shows that the predicted
stress-strain behavior is the same during unloading and during
the following loading. The model also predicts that all Mullins

Figure 5.42 Predicted stress-strain response for a Neo-Hookean
hyperelastic model with Mullins damage.
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damage occurs in the first load cycle, which is not what is
typically not experimentally seen.

5.7.2 Qi-Boyce Mullins Effect Model

A different approach to account for the Mullins effect has been
developed by Qi and Boyce [3]. In their model the virgin material
is considered to consist of two phases: soft domains and hard
domains. The Qi-Boyce (QB) model introduces a state variable
to track the transformation of hard domains to soft domains with
the applied deformation history. For incompressible loading, the
following form is used:

� = (1 − vf) · �(I1). (5.170)

The volume fraction of hard domains, vf, evolves with the applied
chain stretch as follows:

vf = vff − vfi exp

[−A · (�max
chain − 1)

λlock − �max
chain

]
, (5.171)

where vff is the final volume fraction of hard domains, vfi is
the initial volume fraction of hard domains, and �max

chain is the
maximum chain stretch the during the deformation history of the
material point.

The QB Mullins effect model takes four material parameters:
vff , vfi, A, λlock. The QB-model can be applied to any hyperelastic
model, but is currently not available in most FE programs.

5.8 Use of Hyperelasticity in Polymer
Modeling

Hyperelasticity is commonly used to predict the behavior of
different elastomer-like materials, primarily due to its ease of use
and its availability in virtually all FE programs. Hyperelasticity is
also a building block of linear viscoelasticity, and more advanced
viscoplasticity models.

Not all hyperelastic models that are presented in this chapter
are directly available in all major commercial FE codes. Due
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to the simplicity of the hyperelasticity theory, however, it is
typically straightforward to implement and use some of the
more modern and accurate hyperelastic models if desired. Most
FE codes have the capability to augment the built-in material
models with user-defined material models, typically coded as
external Fortran subroutines that are linked into the FE software
during simulations. The use of external user subroutines can
provide significant advantages in many circumstances. This topic
is discussed in more detail in Chapter 10.

5.8.1 Experimental Testing

There are no strict requirements for what experimental tests
should be performed in order to accurately calibrate a hyper-
elasticity model. The minimum set of recommended types of
experimental tests is dependent on the hyperelastic model, and
performing more experimental testing is always better than run-
ning too few experiments.

There is also some confusion in the general literature about
the recommended types of experimental tests. Specifically, it is
often said that two or preferably three different loading modes are
necessary for accurate calibration of a hyperelastic model. It is
never bad to perform experiments in three different loading modes
(e.g. uniaxial, biaxial, shear), but for many hyperelastic models it
is sufficient to use uniaxial loading only.

A general guideline is that hyperelastic models with no depen-
dence on I2 typically require less experimental tests. The reason
for this is that the free energy function in this case becomes
a scalar function of only one variable (I1), and that functional
dependence can be fully obtained from one experiment. Examples
of models that fall into this category are: the NH model, the Gent
model, the Arruda-Boyce EC model, and the Yeoh model.

Models with a free energy equation that depend on the prin-
cipal stretches (such as the Ogden model), and models with I2
dependence require testing in two or more loading modes such as
uniaxial tension, planar tension, simple shear, or biaxial tension.

Note that to verify the accuracy of a hyperelastic model it
is sometimes recommended to perform experimental tests in
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multiple loading modes. Also note that it is very important to run
the experiments to larger strains than what is expected in the real
application in order to get a hyperelastic model that is reliable for
all strain levels of interest.

5.8.2 Drucker Stability

One of the few complications of hyperelasticity models is that
some calibrated models are not always stable, i.e. increasing
the strain can lead to a reduction in stress (see, for example,
Figure 5.16). One way to examine if a model with a given set
of material parameters is stable is to check its Drucker’s stability
defined by:

(Jσ ) : (Eln) ≥ 0, (5.172)

where J = det[F], σ is the Cauchy stress, Eln is the logarithmic
strain.

The challenge is that some hyperelastic models can be
Drucker’s stable to large strains in tension, but unstable at small
strains in a different loading mode such as shear. To ensure that a
model is Drucker’s stable for all strains of interest it is necessary
to examine all loading model or to use a model with known
stability behavior.

One common practical approach to examine the Drucker’s
stability of a hyperelastic material is to examine the stability of
the model response in a set of common loading modes, such as
uniaxial, biaxial, and simple shear, and apply pre-defined large
strain histories. If the model passes these tests then the model may
be considered relatively safe to use. This numerical approach to
check the Drucker’s stability is used by many of the major FE
codes.

Also note that not all polymers are Drucker’s stable. For
example, many thermoplastics soften after yield causing the stress
to go down as the strain increases. This is not a problem, it simply
means that the Drucker’s stability check for those materials is not
relevant.
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5.8.3 Determination of Material Parameters

To specify the complete hyperelastic material model it is neces-
sary to first select a constitutive model, and then find the material
parameters by calibrating the material parameters to experimental
data. Since one or more experimental stress-strain curves are used
for the calibration, the mathematical procedure of determining the
material parameters involves solving an over constrained set of
equations. Hence, it is typically not possible to get a perfect fit of
the model to the experimental data. Furthermore, all experimental
testing include experimental errors, so the material calibration in
practice is limited to finding a set of material parameters that gives
a good as possible prediction of the experimental data.

The material calibration, even for a simple material model such
as linear elasticity, include selecting a fitness function that express
how close a model prediction is to the experimental data, and then
using an optimization algorithm to calibrate the material model.
Practical aspects of material model calibration are discussed in
Chapter 9.

5.8.4 Limitations of Hyperelasticity

Hyperelastic models can be quite useful for predicting the
behavior of rubber-like polymers. The main strengths of hyper-
elastic models include:

• Easy to use and calibrate.
• Accessible in major commercial FE codes.
• Computationally efficient.

The main limitations of hyperelasticity models include the fol-
lowing:

• Mainly applicable to rubber-like materials.13

• Only accurate for monotonic loading.

13Hyperelasticity can also be used to predict the small strain behavior of amorphous behavior of
amorphous and semicrystalline glassy polymers. For these materials, however, the hyperelasticity
models do not provide any significant advantages over linear elasticity.
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• Do not capture rate-effects or viscoelasticity.
• Do not capture hysteresis during cyclic loading.

A simple way to extend the hyperelastic models presented in
this chapter is to augment the hyperelastic model with linear
viscoelasticity as presented in the next chapter.

5.9 Hyperelastic Code Examples

The behavior of a number of the hyperelastic models pre-
sented in this chapter were examined using short Python func-
tions. In each example, it was listed “Additional Code to Poly-
mer_Mechanics_Chap05.py.” This section summarizes the file
Polymer_Mechanics_Chap05.py. This file can also be
downloaded from this web address: http://PolymerMechanics.
com/Polymer_Mechanics_Chap05.zip.

from pylab import *
import scipy.optimize

def uniaxial_stress(model, trueStrainVec, params):
"""Compressible uniaxial loading. Returns true stress."""
stress = zeros(len(trueStrainVec))
for i in range(len(trueStrainVec)):

lam1 = exp(trueStrainVec[i])
calcS22Abs = lambda x: abs(model([lam1,x,x],params)[1,1])
# search for transverse stretch that gives S22=0
lam2 = scipy.optimize.fmin(calcS22Abs, x0=1/sqrt(lam1),

xtol=1e-9, ftol=1e-9, disp=False)
stress[i] = model([lam1,lam2,lam2], params)[0,0]

return stress

def biaxial_stress(model, trueStrainVec, params):
"""Compressible biaxial loading. Returns true stress."""
stress = zeros(len(trueStrainVec))
for i in range(len(trueStrainVec)):

lam1 = exp(trueStrainVec[i])
calcS33Abs = lambda x: abs(model([lam1,lam1,x],params)[2,2])
# search for transverse stretch that gives S33=0
lam3 = scipy.optimize.fmin(calcS33Abs, x0=1/sqrt(lam1),

xtol=1e-9, ftol=1e-9, disp=False)
stress[i] = model([lam1,lam1,lam3], params)[0,0]

return stress

def planar_stress(model, trueStrainVec, params):
"""Compressible planar loading. Returns true stress."""
stress = zeros(len(trueStrainVec))
for i in range(len(trueStrainVec)):

lam1 = exp(trueStrainVec[i])
calcS33Abs = lambda x: abs(model([lam1,1.0,x],params)[2,2])
# search for transverse stretch that gives S33=0

http://PolymerMechanics.com/Polymer_Mechanics_Chap05.zip
http://PolymerMechanics.com/Polymer_Mechanics_Chap05.zip
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lam3 = scipy.optimize.fmin(calcS33Abs, x0=1/sqrt(lam1),
xtol=1e-9, ftol=1e-9, disp=False)

stress[i] = model([lam1,1.0,lam3], params)[0,0]
return stress

def NH_3D(stretch, param):
"""Neo-Hookean. 3D loading specified by stretches.

param[0]=mu, param[1]=kappa"""
F = array([[stretch[0],0,0], [0,stretch[1],0], [0,0,stretch[2]]])
J = det(F)
Fstar = J**(-1/3) * F
bstar = dot(Fstar, Fstar.T)
dev_bstar = bstar - trace(bstar)/3 * eye(3)
return param[0]/J * dev_bstar + param[1]*(J-1) * eye(3)

def MR_3D(stretch, param):
"""Mooney-Rivlin. 3D loading specified by stretches.

param: [C10, C01, kappa]"""
L1 = stretch[0]
L2 = stretch[1]
L3 = stretch[2]
F = array([[L1,0,0], [0,L2,0], [0,0,L3]])
J = det(F)
bstar = J**(-2.0/3.0) * dot(F, F.T)
bstar2 = dot(bstar, bstar)
I1s = trace(bstar)
I2s = 0.5 * (I1s**2 - trace(bstar2))
C10 = param[0]
C01 = param[1]
kappa = param[2]
return 2/J*(C10+C01*I1s)*bstar - 2*C01/J*bstar2 + \

(kappa*(J-1) - 2*I1s*C10/(3*J) - 4*I2s*C01/(3*J))*eye(3)

def Yeoh_3D(stretch, param):
"""Yeoh. 3D loading specified by stretches.

param: [C10, C20, C30, kappa]. Returns true stress."""
L1 = stretch[0]
L2 = stretch[1]
L3 = stretch[2]
F = array([[L1,0,0], [0,L2,0], [0,0,L3]])
J = det(F)
bstar = J**(-2.0/3.0) * dot(F, F.T)
devbstar = bstar - trace(bstar)/3 * eye(3)
I1s = trace(bstar)
return 2/J*(param[0] + 2*param[1]*(I1s-3) + 3*param[2]*(I1s-3)**2)

*devbstar \ + param[3]*(J-1) * eye(3)

def invLangevin(x):
EPS = spacing(1)
if type(x) == float or type(x) == float64: # x is a scalar

if x >= 1-EPS: x = 1 - EPS
if x <= -1+EPS: x = -1 + EPS
if abs(x) < 0.839:

return 1.31435 * tan(1.59*x) + 0.911249*x
return 1.0 / (sign(x) - x)

# x is an array
x[x >= 1-EPS] = 1 - EPS
x[x <= -1+EPS] = -1 + EPS
res = zeros(size(x))
index = abs(x) < 0.839
res[index] = 1.31435 * tan(1.59*x[index]) + 0.911249*x[index]
index = abs(x) >= 0.839
res[index] = 1.0 / (sign(x[index]) - x[index])
return res
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def EC_3D(stretch, param):
"""Eight-Chain. 3D loading specified by stretches.

param: [mu, lambdaL, kappa]. Returns true stress."""
L1 = stretch[0]
L2 = stretch[1]
L3 = stretch[2]
F = array([[L1,0,0], [0,L2,0], [0,0,L3]])
J = det(F)
bstar = J**(-2.0/3.0) * dot(F, F.T)
lamChain = sqrt(trace(bstar)/3)
devbstar = bstar - trace(bstar)/3 * eye(3)
return param[0]/(J*lamChain) * invLangevin(lamChain/param[1]) / \

invLangevin(1/param[1]) * devbstar + param[2]*(J-1) * eye(3)

def Gent_3D(stretch, param):
"""Gent. 3D loading specified by stretches.

param: [mu, Jm, kappa]. Returns true stress."""
L1 = stretch[0]
L2 = stretch[1]
L3 = stretch[2]
F = array([[L1,0,0], [0,L2,0], [0,0,L3]])
J = det(F)
bstar = J**(-2.0/3.0) * dot(F, F.T)
I1s = trace(bstar)
devbstar = bstar - trace(bstar)/3 * eye(3)
return param[0]/ J / (1 - (I1s-3)/param[1]) * devbstar + \

param[2]*(J-1) * eye(3)

def HS_3D(stretch, param):
"""Horgan-Saccomandi. 3D loading specified by stretches.

param: mu, lamMax, kappa. Returns true stress."""
L1 = stretch[0]
L2 = stretch[1]
L3 = stretch[2]
F = array([[L1,0,0], [0,L2,0], [0,0,L3]])
J = det(F)
bstar = J**(-2.0/3.0) * dot(F, F.T)
bstar2 = dot(bstar, bstar)
I1s = trace(bstar)
I2s = 0.5 * (I1s**2 - trace(bstar2))
mu = param[0]
lamM = param[1]
kappa = param[2]
fac = mu * lamM**4 / J
den = lamM**6 - lamM**4 * I1s + lamM**2 * I2s - 1
return fac/den * ((lamM**2 - I1s)*bstar + bstar2 - (lamM**2*I1s-2*I2s)/

3*eye(3)) \ + kappa*(J-1) * eye(3)

def Ogden_3D(stretch, param):
"""Ogden model. 3D loading specified by stretches.

param: [mu1, mu2, ..., alpha1, alpha2, kappa]. Returns true stress."""
J = stretch[0] * stretch[1] * stretch[2]
lam = J**(-1/3) * stretch
N = round((len(param)-1)/2)
mu = param[0:N]
alpha = param[N:2*N]
kappa = param[-1]
Stress = kappa*(J-1)*eye(3)
for i in range(N):

fac = (2/J) * mu[i] / alpha[i]
tmp = (lam[0]**alpha[i] + lam[1]**alpha[i] + lam[2]**alpha[i]) / 3
Stress[0,0] = Stress[0,0] + fac * (lam[0]**alpha[i] - tmp)
Stress[1,1] = Stress[1,1] + fac * (lam[1]**alpha[i] - tmp)
Stress[2,2] = Stress[2,2] + fac * (lam[2]**alpha[i] - tmp)

return Stress
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def ETube_3D(stretch, param):
"""Extended Tube model. 3D loading specified by stretches.

Param: Ge, Gc, delta, beta, kappa"""
Ge = param[0]
Gc = param[1]
delta = param[2]
beta = param[3]
kappa = param[4]
L1 = stretch[0]
L2 = stretch[1]
L3 = stretch[2]
F = array([[L1,0,0], [0,L2,0], [0,0,L3]])
J = det(F)
bstar = J**(-2.0/3.0) * dot(F, F.T)
devbstar = bstar - trace(bstar)/3 * eye(3)
lam = J**(-1/3) * array(stretch)
I1s = trace(bstar)
fac1 = (1+(1+I1s**2-4*I1s)*delta**2 + (5*I1s-I1s**2-6)*delta**4) / \

(1 - (I1s-3)*delta**2)**2
stressC = Gc/J * fac1 * devbstar
fac2 = -2*Ge/(J*beta)
tmp = (lam[0]**(-beta) + lam[1]**(-beta) + lam[2]**(-beta)) / 3
stressE = zeros((3,3))
stressE[0,0] = fac2 * (lam[0]**(-beta) - tmp)
stressE[1,1] = fac2 * (lam[1]**(-beta) - tmp)
stressE[2,2] = fac2 * (lam[2]**(-beta) - tmp)
stressV = kappa*(J-1)*eye(3)
return stressC + stressE + stressV

def Knowles_3D(stretch, param):
"""Knowles. 3D loading specified by stretches.

param: mu, n, b, kappa. Returns true stress."""
L1 = stretch[0]
L2 = stretch[1]
L3 = stretch[2]
F = array([[L1,0,0], [0,L2,0], [0,0,L3]])
J = det(F)
bstar = J**(-2.0/3.0) * dot(F, F.T)
I1s = trace(bstar)
devbstar = bstar - trace(bstar)/3 * eye(3)
return param[0]/J * (1+param[2]/param[1]*(I1s-3))**(param[1]-1) *

devbstar \ + param[3]*(J-1) * eye(3)

def blatzko_3D(stretch, param):
"""Blatz-Ko. 3D loading specified by stretches.

param[0]=mu"""
F = array([[stretch[0],0,0], [0,stretch[1],0], [0,0,stretch[2]]])
J = det(F)
b = dot(F, F.T)
b2 = dot(b, b)
I1 = trace(b)
I2 = 0.5 * (I1**2 - trace(b2))
return param[0]/J**3.0 * (I1*b - b2 - (I2-J**3.0) * eye(3))

def hyperfoam_3D(stretch, param):
"""Hyperfoam model. 3D loading specified by stretches.

param: [mu1, mu2, ..., alpha1, alpha2, ..., beta1, beta2, ...].
Returns true stress."""

J = stretch[0] * stretch[1] * stretch[2]
lam = array(stretch)
N = int(round(len(param)/3.0))
mu = param[0:N]
alpha = param[N:2*N]
beta = param[2*N:3*N]
Stress = zeros((3,3))
for k in range(N):
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fac = 2.0 * mu[k] / (J * alpha[k])
Stress[0,0] = Stress[0,0] + fac*(lam[0]**alpha[k]

- J**(-alpha[k]*beta[k]))
Stress[1,1] = Stress[1,1] + fac*(lam[1]**alpha[k]

- J**(-alpha[k]*beta[k]))
Stress[2,2] = Stress[2,2] + fac*(lam[2]**alpha[k]

- J**(-alpha[k]*beta[k]))
return Stress

5.10 Exercises

1. In what applications or situations can linear elasticity be
a suitable material model for FE modeling of a polymer?

2. What is the definitions of the three invariants I1, I2, and
I3?

3. Derive the expression for true stress as a function of the
applied stretch for incompressible uniaxial loading of a
NH material model.

4. Why cannot the NH material model accurately predict
the large strain response of most elastomers?

5. What is the difference between the NH and the Mooney-
Rivlin hyperelastic models? Why is it more difficult to
properly use the Mooney-Rivlin model?

6. Under what conditions is the Yeoh model unstable?
What can be done to improve the stability of the Yeoh
model?

7. Show that the Cauchy stress for the Arruda-Boyce EC
model given in Equation (5.98) can be directly derived
from Equation (5.99).

8. What is the definition of the molecular chain stretch that
is defined in the Arruda-Boyce EC model?

9. In what ways are the Ogden model different than the I1,
I2, I3 based hyperelastic models? Is the Ogden model
always stable?

10. How many experimental tests are required to calibrate
the Gent model?

11. What is the foundation of the extended tube model?
What is the reason the extended tube model so accurately
predicts experimental hyperelastic behaviors.
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12. Which hyperelastic model is your favorite? Why?
13. What are the two most common ways to formulate

anisotropic hyperelasticity?
14. What is the difference between traditional hyperelasticity

and hyperelastic models for foams?
15. Can a Mullins effect model be used to predict hysteresis

of a material exposed to cyclic loading?
16. What is Drucker stability and why is it important?
17. What are the strengths and limitations of hyperelasticity?
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6.1 Introduction

Many polymeric materials exhibit a combination of elastic
and viscous responses when subjected to external loads and
displacements. The simplest way to model this combined behav-
ior is through linear viscoelasticity, which is a material model
framework that has been used extensively for many years and its
mathematical foundation has been extensively studied [1–3].

The following sections present the basic theory of linear vis-
coelasticity in relative detail, more advanced concepts and models
that extend linear viscoelasticity are discussed in later chapters.
The theory that is presented is derived from simple arguments,
and is closely tied to the linear elastic and hyperelastic models
that were discussed in the previous chapter.

6.2 Small Strain Linear Viscoelasticity

This section summarizes the theory for small strain linear
viscoelasticity. That is, a material model framework based on
linear elasticity with linear viscoelasticity. The more general large
strain viscoelasticity that is based on hyperelasticity and linear
viscoelasticity is discussed in Section 6.3.

The foundation of linear viscoelasticity is Boltzmann’s super-
position principle [4]. One way to state this linear superposition
principle is through the statement:

Each loading step makes an independent contribution to the
final state.

This formulation of the Boltzmann superposition principle can
be used to create an integral equation representation of linear
viscoelasticity. The approach is to perform a though experiment in
which a step function in strain is applied: ε(t) = ε0H(t), and the
stress response σ(t) is measured, see Figure 6.1. In this equation
H(t) is the Heaviside step function defined by:

H(t) =

⎧⎪⎨
⎪⎩

0, if t < 0,

1/2, if t = 0,

1, if t > 0.

(6.1)
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Figure 6.1 Stress relaxation experiment in which the applied strain is
rapidly ramped from 0 to ε0 and then held constant during which the
stress response is monitored.

In this section we are only considering small deformations,
and only load cases with one non-zero stress component (such
as uniaxial loading).

The stress response from the strain jump experiment can be
used to define a stress relaxation modulus:

Er(t) ≡ σ(t)

ε0
. (6.2)

Note that the applied strain jump ε0 does not have to be infinites-
imal when calculating the stress relaxation modulus due to the
assumed superposition principle.

To develop a model capable of predicting the stress response
due to an arbitrary applied strain history, and not only a step in
strain, we will start by decomposing the strain history into a sum
of infinitesimal strain steps:

ε(t) =
∞∑

i=1

�εiH(t − τi), (6.3)

where �εi is the strain increment applied at time τi, see
Figure 6.2.

The total stress response from applying this strain history can
be obtained from the superposition principle:

σ(t) =
∞∑

i=1

�εiER(t − τi). (6.4)

This stress response can be written in integral form as the number
of strain increments goes to infinity:
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Figure 6.2 The applied strain history can be represented as number of
discrete time increments.

σ(t) =
∫ t

−∞
ER(t − τ) dε(t) =

∫ t

−∞
ER(t − τ)

dε(τ)

dτ
dτ . (6.5)

Note that if the material response is purely elastic (i.e. E(t) = E0),
then the stress response becomes equal to Hookes law: σ(t) =
E0ε(t). Also, once ER(t) has been determined then Equation (6.5)
can be used to predict the stress response due to any imposed
strain history.

In order to create a complete material model, the results pre-
sented so far need to be generalized into a three-dimensional form
suitable for arbitrary deformation histories and finite element
analysis. The most common way to do this is to separate the
stress and strain into deviatoric and volumetric parts, similarly
to what is commonly done for hyperelastic models as discussed
in Chapter 5:

σ (t) =
∫ t

0
2μR(t − τ)ε̇dev dτ +

∫ t

0
κR(t − τ)ε̇vol dτ . (6.6)

In this equation σ is the Cauchy stress tensor, μR(t) is the stress
relaxation shear modulus, ε̇dev = d

dt [dev[ε]] the time derivative
of the applied deviatoric strain tensor, κR(t) the stress relaxational
bulk modulus, and ε̇vol = d

dt [vol[ε]] the time derivative of the
applied volumetric strains.

In this formulation only two relaxation moduli need to be
determined in order to predict any arbitrary deformation: the
shear and bulk relaxation moduli. For most polymeric materials,
the volumetric relaxation is typically much smaller and less



6: Linear Viscoelasticity 313

influential than the deviatoric relaxation. It is therefore often
possible to neglect the volumetric flow response. This assumption
makes it possible to obtain the shear relaxation modulus from the
uniaxial relaxation modulus by:

μR(t) = ER(t)

3 − ER(t)/(3κ)
, (6.7)

which can be approximated as μR(t) = ER(t)/3 if κ � E.
The linear viscoelastic stress-strain equations in Equation (6.6)

can be generalized to anisotropic materials (see also Sec-
tion 5.2.2) by replacing the shear and bulk relaxation moduli
with anisotropic relaxation moduli:

σ ij(t) = Cijkl(0)εkl(t) +
∫ t

0
εkl(t − τ)

dCijkl(τ )

dτ
dτ . (6.8)

Here Cijkl is the time-dependent stiffness relaxation tensor that
need to be determined from experimental data.

6.2.1 Stress Relaxation Behavior

As illustrated in the previous section, a linear viscoelastic
model is completely characterized by its stress relaxation moduli.
This section presents a selection of commonly used functional
forms of the stress relaxation moduli.

First, as an example, consider a polymer sample that is uni-
axially loaded and that has a stress relaxation modulus that is
exponentially decaying:

ER(t) =
{

E0 exp(−t/τ0), if t ≥ 0,

0, if t < 0,
(6.9)

where E0 is the instantaneous Young’s modulus, and τ0 the
characteristic relaxation time, see Figure 6.3 for a graphical
representation. The characteristic relaxation time is here defined
as the time at which the modulus has decayed down to 36.7%1 of
its original value.

136.7% is an approximation of the value 1/e.
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Figure 6.3 Relaxation modulus as a function of time. Figure (a) shows
the relaxation modulus as a function of time on a linear scale, and
figure (b) shows the relaxation modulus as a function of time on a
logarithmic scale.

6.2.2 Monotonic Loading Response

Now consider a load case in which the applied strain is
increasing linearly with time:

ε(t) =
{

0, if t < 0,

ε̇0t, if t ≥ 0.
(6.10)
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Inserting this strain history into Equation (6.5) gives the stress

σ(t) =
∫ t

0
E0ε̇0 exp

[
−(t − τ)

τ0

]
dτ , (6.11)

which can be simplified to:

σ(t) = E0ε̇0τ0

[
1 − exp

(−t

τ0

)]
, (6.12)

or when expressed in terms of applied strains:

σ(t) = E0ε̇0τ0

[
1 − exp

(−ε

ε̇τ0

)]
. (6.13)

This stress-strain response is plotted in Figure 6.4 illustrating
that a small characteristic relaxation time τ0 corresponds to fast
relaxation and more viscous response.

From Equation (6.11) it is also clear that at a fixed time,
the stress response is always predicted to be proportional to the
applied strain rate; but at a fixed strain, the stress is not a linear
function of the applied strain rate. Furthermore, by introducing a
characteristic strain ε̂ ≡ ε̇τ0 it is clear that for ε � ε̂ the stress
σ → E0ε̂ = E0ε̇τ0. Also, when the applied strain is equal to ε̂ the
stress will have reached 63% of its final value.

More commonly, the stress relaxation function is written as the
following normalized series expansion:

gR(t) = ER(t)

E0
= 1 −

N∑
i=1

gi
(
1 − e−t/τi

)
(6.14)

=
(

1 −
N∑

i=1

gi

)
+

N∑
i=1

gie
−t/τi . (6.15)

This relaxation function is used, for example, by Abaqus [5], and
is called a Prony series.

Figure 6.5 shows one example of a two-term Prony series
plotted on a logarithmic time scale. The main differences between
this relaxation function and the simple exponential relaxation
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Figure 6.4 (a) Stress response as a function of time. (b) Stress
response as a function of strain.

function in Equation (6.9) are that the modulus can stay finite as
t → ∞, and that multiple terms can be used to fit the relaxation
function to experimental data.

The stress response in monotonic uniaxial loading for the stress
relaxation modulus in Figure 6.5 is shown in Figure 6.6.

Another interesting but less used functional form of the relax-
ation modulus is the stretched exponential (often called the KWW
form [6, 7]):
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Figure 6.5 Exemplar 2-term Prony series.

Figure 6.6 Predicted stress response from the Prony series shown in
Figure 6.5.
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E(t) = E0 exp

[
−
(

t

τ0

)β
]

, (6.16)

where E0, τ0, and β are material parameters, see Figure 6.7. With
this representation, the relaxation modulus decreases down to
36.7% of its original value at the time t = τ0, and β specifies
the shape of the relaxation function.

Figure 6.7 Stretched exponential stress relaxation modulus as a
function of time. (a) Linear time, (b) Logarithmic time.
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If we again consider a constant strain rate loading situation, the
stress response becomes:

σ(t) =
∫ t

0
E0ε̇ exp

[
−
(

t

τ0

)β
]

dt, (6.17)

which is not easy to solve in closed-form but can be solved
numerically, see Figure 6.8.

Figure 6.8 Stress response using the stretched exponential stress
relaxation modulus, τ0 = 1 s.
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Figure 6.8 shows that the parameter β strongly influences the
shape of the stress-strain response.

6.2.3 Cyclic Loading Response

One of the more common applications of linear viscoelastic-
ity is for predictions of the small-strain dynamic response of
polymers. This section presents in more detail the response of a
general linear viscoelastic model when exposed to a sinusoidal
applied strain. Specifically, consider a case when the applied
strain is given by:

ε(t) =
{

ε0 sin(ωt), if t ≥ 0,

0, if t < 0.
(6.18)

The resulting stress response for this strain history can be obtained
from Equation (6.5) giving:

σ(t) =
∫ ∞

0
E(s)ωε0 cos [ω(t − s)] ds, (6.19)

where s ≡ t − τ . By using the relationship cos(α − β) =
cos α cos β + sin α sin β, this equation can be expanded into

σ(t) = ε0 sin(ωt)

[
ω

∫ ∞

0
E(s) sin(ωs) ds

]

+ ε0 cos(ωt)

[
ω

∫ ∞

0
E(s) cos(ωs) ds

]
. (6.20)

Note, the integrals in Equation (6.20) only converge if

lim
s→∞ E(s) = 0. (6.21)

By defining two frequency-dependent functions: the storage
modulus E′(ω) and the loss modulus E′′(ω), the stress response
can be defined by

σ(t) = ε0
[
E′(ω) sin(ωt) + E′′(ω) cos(ωt)

]
, (6.22)

where {
E′(ω) = ω

∫∞
0 E(s) sin(ωs) ds,

E′′(ω) = ω
∫∞

0 E(s) cos(ωs) ds.
(6.23)
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The stress response can also be written

σ(t) = σ0 sin(ωt + δ), (6.24)

= σ0 sin(ωt) cos δ + σ0 cos(ωt) sin δ. (6.25)

Hence,

ε0E′(ω) = σ0 cos δ, (6.26)

ε0E′′(ω) = σ0 sin δ, (6.27)

giving

tan δ = E′′

E′ . (6.28)

It is sometimes convenient to introduce a complex variable
based notation for the dynamic moduli E′ and E′′:

E∗ = σ ∗

ε∗ = E′ + iE′′. (6.29)

It is also possible to consider a stress driven oscillation giving a
complex compliance:

J∗ = ε∗

σ ∗ = 1

G∗ = J′ − iJ′′. (6.30)

This approach is discussed in more detail in various texts [1]. It
can be shown, for example, that the relationships between J′, J′′,
E′, and E′′ are:

J′ = G′

G′2 + G′′2 , (6.31)

J′′ = G′′

G′2 + G′′2 , (6.32)

G′ = J′

J′2 + J′′2 , (6.33)

G′′ = J′′

J′2 + J′′2 . (6.34)

These relations, whose derivations are left as an exercise, are not
pursued in more detail in this text.

As a last example consider a shear relaxation function that is
given by an exponential function:
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G(t) =
{

G0 exp(−αt) if t ≥ 0,

0 if t < 0
(6.35)

and an applied strain that is sinusoidal:

ε(t) =
{

0 if t < 0,

ε sin(ω0t) if t ≥ 0.
(6.36)

In this case it can be shown that the stress response is given by the
following equations:

σ(t) =
∫ t

0
G0 exp(−αt)εω cos(ωτ) dτ

= G0ε0ω

α2 + ω2

[
α cos(ωt) + ω sin(ωt) − α exp(−αt)

]
. (6.37)

The stress response consists of a transient term superimposed on
a sinusoidal term that is out of phase with the applied strain. The
response due to a sinusoidal strain history is studied in more detail
in the next section.

6.2.4 Experimental Determination of the Storage
and Loss Moduli

As discussed in Chapter 2, the dynamic properties of a polymer
can be determined using a wide variety of loading modes and
experimental techniques. This section presents the use of uniaxial
sinusoidal loading to determine the storage modulus, loss mod-
ulus, tan(δ), and the amount of hysteresis. The results presented
here can easily be converted to other loading modes, for example
simple or pure shear.

First, consider an experiment in which a specimen is uniaxially
loaded with a sinusoidal strain history:

ε(t) = εm + εa sin(ωt), (6.38)

where εm is the mean strain, εa is the strain amplitude, and ω

is the angular frequency of the applied strain. Assume that the
experimentally determined stress response is also sinusoidal with
a mean stress σm and a stress amplitude σa, but is shifted with a
phase angle δ:
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σ(t) = σm + σa sin(ωt + δ). (6.39)

This stress response can be expanded into a term that is in-phase
with the applied strain and a term that is 90◦ out of phase with the
applied strain:

σ(t) = σm + σa cos(δ) sin(ωt) + σa sin(δ) cos(ωt). (6.40)

The storage modulus (E′) is defined as the stiffness of the response
that is in-phase with the applied strain, and the loss modulus
(E′′) is defined as the stiffness of the response that is lagging 90◦
behind the applied strain. Hence, E′ and E′′ can be defined by2:

σ(t) ≡ σm + εaE′ sin(ωt) + εaE′′ cos(ωt). (6.41)

By comparing terms between Equation (6.40) and Equa-
tion (6.41), and by defining E∗ = σa/εa, the storage modulus
E′ and the loss modulus E′′ can be determined from the following
equations:

E′ = E∗ cos(δ), (6.42)

E′′ = E∗ sin(δ). (6.43)

The amount of energy loss (hysteresis) per unit reference volume
per load cycle is given by:

uloss =
∮

1 cycle
σ dε =

∫ 2π/ω

0
σ(t)ε̇ dt. (6.44)

Inserting (6.38) and (6.40) into (6.44) gives

uloss = πεaσa sin(δ), (6.45)

which can also be written

uloss = πε2
a E′′. (6.46)

The quantity tan(δ) can therefore also be calculated from:

tan(δ) = uloss√
(πεaσa)

2 − u2
loss

. (6.47)

2The storage modulus and the loss modulus are secant moduli.
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In summary, if the applied strain is sinusoidal with the ampli-
tude εa, the resulting stress is sinusoidal with known amplitude
σa, and the amount of hysteresis per cycle (uloss) are known, then
the storage modulus, loss modulus, and tan(δ) can be calculated
from:

E′′ = uloss

πε2
a

, (6.48)

E∗ = σa

εa
, (6.49)

E′ =
√

(E∗)2 − (E′′)2, (6.50)

tan(δ) = E′′

E′ . (6.51)

Example
Assume that the experimentally determined stress response from a
uniaxial test with a sinusoidal applied strain is given by a function
σ(t). Then, approximate σ(t) by sum of a sine and a cosine term3:

σ(t) ≈ σm + A sin(ωt) + B cos(ωt), (6.52)

where σm = ω
2π

∫ 2π/ω

0 σ(t) dt is the mean stress. In order to
determine the storage modulus (E′) and the loss modulus (E′′)
multiply each side of (6.52) by sin(ωt) or cos(ωt), and then
integrate4 from 0 to Nπ/ω:∫ Nπ/ω

0
σ(t) sin(ωt) dt = A

∫ Nπ/ω

0
sin2(ωt) dt

+ B
∫ Nπ/ω

0
sin(ωt) cos(ωt) dt, (6.53)∫ Nπ/ω

0
σ(t) cos(ωt) dt = A

∫ Nπ/ω

0
sin(ωt) cos(ωt) dt

+ B
∫ Nπ/ω

0
cos2(ωt) dt. (6.54)

3This is a first order Fourier series expansion of σ(t).
4The variable N is an integer larger than or equal to 1.



6: Linear Viscoelasticity 325

This set of equations is solved if

A = 2ω

Nπ

∫ Nπ/ω

0
σ(t) sin(ωt) dt, (6.55)

B = 2ω

Nπ

∫ Nπ/ω

0
σ(t) cos(ωt) dt. (6.56)

As before, the definition of E′ and E′′ is given by

σ(t) ≡ σm + εaE′ sin(ωt) + εaE′′ cos(ωt). (6.57)

By comparing terms between (6.52), (6.55)–(6.57), the storage
modulus E′ and the loss modulus E′′ can then be determined from
the following equations:

E′ = 2ω

Nπ

∫ Nπ/ω

0

σ(t)

εa
sin(ωt) dt, (6.58)

E′′ = 2ω

Nπ

∫ Nπ/ω

0

σ(t)

εa
cos(ωt) dt. (6.59)

Example
Now consider a case in which the applied strain is not sinusoidal
but instead triangular, square, or some other similar waveform
specified by a function f (·):

ε(t) = εm + εa f (ωt), (6.60)

where as before εa is the applied strain amplitude. Assume that
the stress response in this case is given by a term that is in-phase
with the applied strain and a term that is 90◦ out-of phase with the
applied strain:

σ(t) = Af (ωt) + Bf
(
ωt + π

2ω

)
. (6.61)

Then, if f (x) and f (x + π/2) are orthogonal over the interval
[0, Nπ ], the constants A and B can be found by multiplying (6.61)
by f (ωt) or f (ωt + π/2ω) and then integrating over [0, Nπ/ω].
Using this approach the storage modulus and loss modulus can be
calculated from:
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E′ = 1

εa

∫ Nπ/ω

0 σ(t)f (ωt) dt∫ Nπ/ω

0 f 2(ωt) dt
, (6.62)

E′′ = 1

εa

∫ Nπ/ω

0 σ(t)f
(
ωt + π

2ω

)
dt∫ Nπ/ω

0 f 2
(
ωt + π

2ω

)
dt

. (6.63)

Example
An alternative approach to determine the storage and loss moduli
from experimental time-strain-stress data is to use the Fourier
transform approach [8]:

1. Take the Fourier transform of the strain and stress
data. Shift the means strain to be zero if necessary.

2. Calculate the complex modulus from the ratio of
the transformed stress to transformed strain, at the
location where the transformed strain has the largest
magnitude.

3. The storage modulus is given the real part of the
complex modulus, and the loss modulus is given by
the imaginary part of the complex modulus.

Python code illustrating this approach is listed below:
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The results from running the code is shown in the following
figure.

Note the following restrictions on the dynamic properties
discussed in this section:

• It may or may not be possible to determine E′ and
E′′ for a material that is non-linear viscoelastic, or
for a case when the applied mean strain and/or strain
amplitudes are large. The usefulness of E′ and E′′
depends on whether the resulting stress response is
proportional to a scaled and shifted representation of
the input strain. If the resulting stress has a different
shape (e.g. due to yielding, or other non-linear behav-
ior) then it is not appropriate to utilize E′ and E′′ to
describe the material response.

• It is not possible to determine E′ and E′′ from tests
using monotonic strain histories. The applied strain
need to oscillate with a constant frequency, strain
amplitude, and wave form.
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6.2.5 Representing Linear Viscoelasticity
Using Spectra

Several different means of specifying viscoelastic mechanical
properties have been given in the previous section. Specifically,
relaxation functions, creep functions, and complex moduli have
been discussed. Another way of characterizing the material re-
sponse is through spectra. To introduce the concept of a relaxation
spectrum consider a relaxation modulus given by a series of
exponential terms:

E(t) =
n∑

i=1

Ei exp

[−t

τi

]
. (6.64)

In the limit as i → ∞, the summation can be replaced by an
integral:

E(t) =
∫ ∞

0
f (τ ) exp

[−t

τ

]
dτ . (6.65)

The function f (τ ) is called the relaxation time spectrum. In
practice it is often more convenient to use a logarithmic time scale
when defining the relaxation time spectrum

G(t) =
∫ +∞

−∞
H(τ ) exp

[−t

τ

]
d(ln τ) + G(∞). (6.66)

Similarly, a retardation time spectrum can be defined by

J(t) =
∫ +∞

−∞
L(τ )

[
1 − exp

(−t

τ

)]
d(ln τ) + J(∞). (6.67)

It is possible to solve for H(t) and L(t) by using Laplace trans-
forms, see [1] for more details on the use of relaxation spectra.
The theory of relaxation spectra is elegant and provides a concise
way to represent linear viscoelastic behavior. It is, however, of
limited use in practice since the major finite element programs
specify the linear viscoelastic response using Prony series instead
of relaxation spectra.

Finally, even if a relaxation spectrum is chosen, the Boltz-
mann’s superposition principle does not allow for a sigmoidal
shaped stress-strain response that is typical for polymers at
intermediate to large strains.
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6.2.6 Computer Implementation

To make the linear viscoelasticity theory more concrete it
is useful to consider a simple one-dimensional computational
implementation. This section summarizes two implementations,
one using Matlab and one using Python.

Matlab Implementation

The Matlab files mat_LVE.m and test_mat_LVE.m illus-
trate one possible implementation of small strain linear viscoelas-
ticity for uniaxial loading. The algorithm that is used here is
directly follows the theory that was derived in previous sections,
but the code is not numerically efficient.

The mat_LVE() function takes a time vector, a strain vector,
and a vector with material parameters where the first parameter
is the initial Young’s modulus and the remaining parameters are
the pairs of Prony series parameters [gi, τi]. The code is using
the built-in Matlab function quad() to numerically integrate the
integral.

The predictions from running the test_mat_LVE function
are shown in Figure 6.9. This figure shows that the model predicts
significant hysteresis during cyclic loading.
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Figure 6.9 Example prediction of the linear viscoelasticity model. The
prediction was created using the Matlab file test_mat_LVE.m.

Python Implementation

A linear elastic model with linear viscoelasticity model can also
readily be implemented in Python. Similar to the Matlab example
from the previous section, this implementation aims to illustrate a
simple practical algorithm, and not focus on numerical efficiency.
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Figure 6.10 Example prediction of the linear viscoelasticity model. The
prediction was created using the Python file LVE_small_strain.py.

The predictions from running the file LVE_small_
strain.py are shown in Figure 6.10.

6.3 Large Strain Linear Viscoelasticity

Linear viscoelasticity is often used in large strain predictions.
In order to perform these calculations it is recommended to
generalize the previous derivation of linear viscoelasticity to use
hyperelasticity instead of linear elasticity as the instantaneous and
long-term response.

One way to illustrate this generalization (in a non-rigorous
way) is to start with the basic linear viscoelasticity equation:

σ(t) =
∫ t

−∞
ER(t − τ) dε(t) =

∫ t

−∞
ER(t − τ)

dε(τ)

dτ
dτ .

(6.5-repeat)
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This equation can be integrated in parts to:

σ(t) = E0ε(t) −
∫ t

0
ġR(t − τ)E0ε(τ) dτ , (6.68)

where the normalized relaxation modulus gR(t) = ER(t)/E0 has
been introduced.

We can now introduce the hyperelastic stress function:

σhyp(ε) = σhyp(ε(t)) ≡ E0ε(t), (6.69)

which when inserted into (6.5) becomes:

σ(t) = σhyp(ε(t)) −
∫ t

0
ġR(t − τ)σhyp(ε(τ )) dτ . (6.70)

This equation expresses how a stress relaxation function (ex-
pressed as a Prony series) and a hyperelastic stress function
can be combined to give a complete material model capable
of predicting the stress response caused by any arbitrary large
uniaxial deformation strain history.

The large-strain linear viscoelasticity model is available in all
major finite element programs.

6.3.1 Numerical Implementation

Consider a case of uniaxial incompressible loading. In this case
the stress response at time t is given by Equation (6.5), which can
also be written:

σ(t) = σhyp(t) − σvisc(t), (6.71)

where σvisc(t) is the viscoelastic stress at time t. Similarly, the
stress at t + �t is given by:

σ(t + �t) = σhyp(t + �t) −
∫ t+�t

0
ġR(t + �t − τ) σhyp(τ ) dτ

(6.72)



6: Linear Viscoelasticity 333

≡ σhyp(t + �t) −
N∑

i=1

σ i
visc(t + �t), (6.73)

where σ i
visc is the viscoelastic stress due to Prony series term i,

which is given by:

σ i
visc(t + �t) =

∫ t+�t

0

d

dτ

[
(1 − gi) + gi e−(t+�t−τ)/τ̂i

]
σhyp(τ ) dτ

(6.74)

=
∫ t

0

d

dτ

[
(1 − gi) + gi e−(t+�t−τ)/τ̂i

]
σhyp(τ ) dτ

(6.75)

+
∫ t+�t

t

d

dτ

[
(1 − gi) + gi e−(t+�t−τ)/τ̂i

]
σhyp(τ ) dτ

(6.76)

≡ Ai + Bi. (6.77)

The first integral Ai is given by:

Ai =
∫ t

0

gi

τ̂i

[
e−t/τ̂i · e−�t/τ̂i · eτ/τ̂i

]
σhyp(τ ) dτ (6.78)

= e−�t/τ̂i · σ i
visc(t). (6.79)

To evaluate the second integral Bi, assume σhyp(τ ) varies linearly
with τ in the interval [t, t + �t]:

σhyp(τ ) = σhyp(t) + �σhyp · τ − t

�t
, (6.80)

where

�σhyp = σhyp(ε(t + �t)) − σhyp(ε(t)). (6.81)

With this approximation the integral Bi can be solved in closed
form. The algebra is here left as an exercise, the results become:

Bi = gi σhyp(t)
[
1 − e−�t/τ̂i

]
+ gi

�σhyp

�t

[
(�t − τ̂i) + τ̂ie

−�t/τ̂i

]
.

(6.82)
To summarize, the stress at t + �t can be calculated from:

σ(t + �t) = σhyp(t + �t) −
N∑

i=1

σ i
visc(t + �t), (6.83)
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where

σ i
visc(t + �t) = e−�t/τ̂i · σ i

visc(t) + gi σhyp(t)
[
1 − e−�t/τ̂i

]
+ gi

�σhyp

�t

[
(�t − τ̂i) + τ̂ie

−�t/τ̂i

]
. (6.84)

In this equation, σ i
visc are internal state variables for each Prony

series term. The large strain linear viscoelasticity model shown
here can easily be implemented in Python, as shown below. The
implementation shown here is using a Neo-Hookean hyperelastic
model with a 1-term Prony series, and the implementation is
numerically very efficient. A numerically efficient implemen-
tation for compressible, multiaxial deformations can also be
implemented [5], but is outside the scope of this chapter.

The predictions from running this file are shown in Figure 6.11.
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Figure 6.11 Linear viscoelastic predictions using the Python file
LVE_large_strain.py. Material parameters: μ = 1MPa, g1 = 0.8,
and τ1 = 0.1 s.

6.4 Creep Compliance Behavior

The linear viscoelasticity theory presented in this chapter has
been formulated in terms of strains as the driving quantity. It is
also possible to formulate the linear viscoelasticity theory for the
case when the stress is the driving quantity.

In this case the creep compliance, defined by J(t) ≡ ε(t)/σ , is
the key quantity. And the resulting strain from an applied stress
history can be calculated from:

ε(t) =
∫ t

−∞
J(t − τ)

dσ(τ)

dτ
dτ . (6.85)

Since most major FE programs are formulated in displacement
form, with strain as the driving quantity, this alternative formula-
tion of linear viscoelasticity in terms of stresses is only briefly
discussed in the following, and is discussed in more detail in
various references [1–3].
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6.4.1 Relationships Between Creep Compliance and
Relaxation Modulus

The formal relationship between the relaxation modulus G(t)
and the creep compliance J(t) can be derived by taking the
Laplace transformation:

L {f (t)} =
∫ ∞

0
e−stf (t) dt, (6.86)

of Equations (6.5) and (6.85) giving:

σ̃ (s) = sG̃(s)ε̃(s), (6.87)

ε̃(s) = sJ̃(s)σ̃ (s). (6.88)

This equation can be rewritten

G̃(s) = 1

s2J̃(s)
. (6.89)

Based on the Laplace limit theorems it can be shown [1] that:

lim
t→0

J(t) = lim
t→0

1

G(t)
, (6.90)

lim
t→∞ J(t) = lim

t→∞
1

G(t)
. (6.91)

Also since L−1(1/s2) = t we directly get:∫ t

0
G(t − τ)J(τ ) dτ =

∫ t

0
J(t − τ)G(τ ) dτ = t. (6.92)

These functional relationships can be used when converting a
stress relaxation function to a creep compliance function, or when
converting a creep compliance function to a stress relaxation
function. This type of conversion can also be achieved through
direct numerical optimization of, for example, the Prony series.
This may be of interest if the creep compliance is known and
the corresponding Prony series is required for a finite element
analysis.
One way to perform this conversion is to:

1. Select an initial guess of the Prony series parameters.
2. Calculate the creep compliance through a direct

simulation
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3. Use an optimization algorithm (e.g. the Nelder-Mead
simplex algorithm) to modify the current value of the
Prony series parameters.

4. If the predicted creep compliance is in good agree-
ment with the experimental creep compliance stop,
otherwise go to (2).

This algorithm is implemented in specialized software, e.g.
MCalibration [9], and can be effectively used to determine the
Prony series parameters from creep data.

6.5 Differential Form of Linear Viscoelasticity

So far the presentation of linear viscoelasticity has used an
integral equation formulation:

σ(t) =
∫ t

−∞
E(t − τ)

dε(τ)

dτ
dτ . (6.5-repeat)

This equation can also be written in differential form as

P(D)σ (t) = Q(D)ε(t), (6.93)

where P(D) and Q(D) are polynomials of the differential operator
D ≡ d/dt. To show this start by taking the Laplace transform of
Equation (6.93):

P(s)σ̃ (s) − 1

s

N∑
k=1

pk

k∑
r=1

srσ (k−r)(0)

= Q(s)ε̃(s) −
N∑

k=1

qk

N∑
r=1

srεk−r(0). (6.94)

The Laplace transform of (6.5) is

σ̃ (s) = sG̃(s)ε̃(s), (6.87-rep)

illustrating that the two forms are equal if

sG̃(s) = Q̃(s)

P̃(s)
(6.95)
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and

N∑
r=k

prσ
r−k
ij (0) =

N∑
r=k

qrε
r−k(0), k = 1, 2, . . . , N, (6.96)

which is a restriction on the initial conditions. The integral
equation formulation and the differential equation formulation are
therefore functionally equivalent.

6.5.1 Rheological Models

One interesting way to visualize and develop differential forms
of a linear viscoelastic model is to start with a one-dimensional
rheological representation. This representation uses springs and
dashpots to visualize the material model structure. Rheological
representations can also be used to convert a linear viscoelastic
model to a non-linear viscoelastic model. This will be discussed
in detail in Chapter 8.

To initiate the discussion about rheological models we will first
study two common model structures.

Maxwell Model

The Maxwell rheological model consists of a linear spring
(σ = Eε1) and a linear dashpot (ε̇2 = σ/η) in series, see
Figure 6.12. Here E is the Young’s modulus, and η is the viscosity.

The rate of change in strain of the system is given by the
equilibrium equation

ε̇ = d

dt
(ε1 + ε2) = σ̇

E
+ σ

η
, (6.97)

which is a differential equation representation of the Maxwell
model.

Now consider a stress relaxation experiment with an applied
strain step: ε(t) = ε0H(t). Inserting this into Equation (6.97) gives

dσ

dt
+ E

η
σ = 0 (for t > 0).
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Figure 6.12 Rheological representation of the Maxwell model.

This differential equation can be solved in closed form

σ(t) = σ0 exp

[ −t

η/E

]
. (6.98)

Hence, the stress relaxation function for the Maxwell model is
given by an exponentially decaying stress relaxation modulus

E(t) = E0 exp

[ −t

η/E

]
,

which is a single Prony series term. Or equivalently, a single
Prony series term is equivalent to a Maxwell rheological model.

Multi-Network Maxwell Model

A multi-network Maxwell model consists of a number of
parallel Maxwell models, see Figure 6.13.
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Figure 6.13 A multi-network Maxwell model is equivalent to a
Prony series.

From the results in the previous section it is clear that the eff-
ective stress relaxation modulus for this multi-network model is

ER(t) = E0 +
N∑

i=1

Ei e−t/τi , (6.99)

which is equivalent to the Prony series in Equation (6.14). Hence:

A linear viscoelastic model with a given Prony series is
identical to a multi-network Maxwell model.

This equivalence can be of use when formulating strategies for
solving the constitutive equations, and when developing exten-
sions to linear viscoelasticity.

6.6 The Use of Shift Functions to Generalize
Linear Viscoelasticity Theory

For many polymeric materials the domain in which linear
viscoelasticity theory gives good predictions is unfortunately
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relatively small. Based on experimental observations it turns out
that the influence of variations in external parameters (such as
temperature and aging time), which contribute to the limited
applicability of the theory, can be accounted for by using a shift
function approach. The reason for the success of this simple idea
is that when the material functional is plotted using appropriate
log-scales, changes in these external parameters do not change the
shape of the plotted curve to any significant degree, only shift it.

6.6.1 Time-Temperature Equivalence

The discussion has so far been for a general viscoelastic
material and can therefore be applied also to a polymer. But
when considering polymers a number of complications become
apparent. One of the more important issues that need to be
recognized is the strong temperature dependence of polymeric
materials. It has been shown experimentally that in many cases
the temperature dependence can be modeled by a scaling of time
using what has been termed the time-temperature equivalence.

The basis for this principle is shown in Figure 6.14 illustrating
that if the experimentally determined stress relaxation modulus is
plotted as a function of logarithmic time, the shape of the resulting
curves is the same for a wide interval of temperatures.

Figure 6.14 Dependence of stress relaxation modulus on time and
temperature.
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In fact, the only significant difference between the curves is a
horizontal shift. This observation suggests that if the relaxation
modulus is known at one temperature (i.e. the master curve is
known) then the relaxation modulus at any other temperature can
be obtained if the horizontal shift factor aT = aT(T) is known.
A material that has this property is called a rheologically simple
material.

The time shifts can be defined by

log tT0 − log tT = log aT , (6.100)

where tT is the time at temperature T , and tT0 the time at
temperature T0. Equation (6.100) gives aT = tT0/tT , or tT =
tT0/aT , hence the behavior at a temperature of T becomes exactly
the same as the behavior at the reference temperature T0 if the
time is accelerated by the factor aT .

In general, the temperature can be a function of time T(tT0), so
instead of tT = tT0/aT it is necessary to write

dtT = dtT0

aT(T(tT0))
(6.101)

giving

tT =
∫ tT0

0

dt′T0

aT(T(t′T0
))

. (6.102)

The effective time experienced by the material, the material time,
is a function of temperature and wall clock time. For a rheologi-
cally simple material, the scaling of time with temperature occurs
in all viscoelastic quantities such as G, J, J′, J′′, tan δ, etc. And
the scaling constant must be the same for all quantities for the
material to be rheologically simple.

Another common way to use time-temperature equivalence
is to use experimental data obtained at different temperatures
to estimate the stress-relaxation behavior at longer times than
what was experimentally tested. As an example, consider the
experimental data for butyl rubber [10] shown in Figure 6.15.
The data shows the stress relaxation behavior for times between
10 s and 3 hours and for temperatures between −81.7 ◦C and
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Figure 6.15 Experimental stress relaxation data at different
temperatures.

−40.1 ◦C. As shown in the figure the relaxation modulus is very
temperature sensitive under these conditions.5

The stress relaxation behavior can be horizontally shifted using
the William-Landel-Ferry (WLF) equation using the parameters:
C1 = 9.71, C2 = 63.1 K, and T0 = −62 ◦C, see Figure 6.16. By
applying the time-temperature equivalence the experimental data
now covers stress relaxation times from 10−4 s to 106 s.

Example
To exemplify this idea consider a simple Maxwell element:
G(t) = G0 exp(−t). If the material is rheologically simple the
relaxation modulus becomes

G(t, T) = G0 exp[−aT(T)t].

5The glass transition temperature is approximately −62 ◦C for butyl rubber.
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Figure 6.16 Experimental stress relaxation data after horizontal
shifting using the WLF equation.

The influence of aT(T) on the stress-strain behavior was examined
in Section 6.2.1.

One commonly used representation of the shift factor aT is the
WLF equation [11]:

log aT(T) = C1(T − T0)

C2 + T − T0
, (6.103)

where C1 = 17.4 and C2 = 51.6 K. This relationship is often
used [2] for amorphous polymers in the temperature range T ∈
[Tg − 50 K, Tg + 50 K].

Another common equation for the shift factor aT is the Arrhe-
nius model:

ln aT(T) = −E0

R

(
1

T0
− 1

T

)
, (6.104)
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where E0 is the apparent activation energy for viscoelastic relax-
ation, R ≈ 8.314 J/(mol K) is the gas constant, T0 is a reference
temperature, and T is the current temperature.

6.6.2 Vertical Shifts

As will be discussed in more detail below, the stress relaxation
modulus (and also the creep compliance) curves when plotted as a
function of logarithmic time often turn out to have the same shape
not only for different temperatures but also for variations in other
parameters (such as aging time). But to create a master curve in
these cases it is often necessary to also use vertical shifts (on a
log-scale):

log Gα − log Gα0 = log b (6.105)

giving

b = Gα

Gα0
. (6.106)

In summary, the integral formulation

σ(t) =
∫ t

−∞
G(t − τ)

dε(τ)

dτ
dτ (6.5-rep)

becomes

σ(t) =
∫ t

0
b(t)G(t̂(t) − t̂(τ ))

dε(τ)

dτ
dτ (6.107)

when both vertical shift b(θ1(t)) and horizontal shift t̂(t) =
t̂(θ2(t)), where θ1 and θ2 are external parameters such as temper-
ature, are considered.

6.7 Use of Linear Viscoelasticity in
Polymer Modeling

In this chapter the key aspects of linear viscoelasticity theory
have been presented. It has been shown that to characterize the
material only the instantaneous elastic (or the long-term elastic)
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response and the Prony series relaxation modulus6 function need
to be determined. The Prony series terms can be determined
through one creep, stress relaxation or oscillatory experiment.
Once the material dependent Prony series has been determined
the response due to any arbitrary imposed deformation or loading
can be directly calculated.

Linear viscoelasticity is mainly used for predicting the response
of elastomer-like materials, and to a lesser degree, the very
small strain response of thermoplastic materials. Since linear
viscoelasticity cannot predict plastic or viscoplastic deformations,
it should not be used to predict the response of glassy polymers for
strains that are similar in magnitude to the yield strain, or larger.

One example of what can happen if linear viscoelasticity is
attempted to be used for ultra-high molecular weight polyethylene
(UHMWPE) is shown in Figure 6.17. This figure shows that linear
viscoelasticity is completely unable to predict the response of
thermoplastics beyond yielding.
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Figure 6.17 Application of LVE to the large strain behavior of
UHMWPE.

6Only one material relaxation function is required for an incompressible isotropic material
subjected to a one-dimensional loading situation. For an isotropic material subjected to a general
loading situation two material functionals need to be determined, and for an anisotropic material
the number of functional are dependent on the material symmetry.
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Linear viscoelasticity is also not always able to accurately
predict the viscoelastic response of elastomers. Figure 6.18 shows
experimental data for a chloroprene rubber tested in uniaxial
compression, followed by unloading. The experiment was re-
peated at three different strain rates. The figure also shows the
best predictions from linear viscoelasticity. In this case linear
viscoelasticity does not accurately predict the material response.
The reason for the poor predictions of this material behavior is
that the material is not linearly viscoelastic. The strains in this
case are large enough that the material response is non-linear
viscoelastic. Better material models for predicting this data set
is discussed in Section 8.2 of Chapter 8.

The strain magnitude below which linear viscoelasticity is
an effective tool can be experimentally determined by running
dynamic mechanical analysis (DMA) tests where the strain am-
plitude is gradually ramped from small to large values. Due to
the Boltzmann superposition principle, the predictions from linear
viscoelasticity will be independent of the strain amplitude. So, the
results from this type of DMA tests can be used to determine
the strain level below which the material response is linearly
viscoelastic.
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Figure 6.18 Application of LVE to the large strain behavior of
elastomers.
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Dynamic storage and loss modulus data for natural rubber and
silicone rubber as a function of strain amplitude are shown in
Figures 6.19–6.21. These figures show that response of these
materials is only linear viscoelastic at very small applied strains
(less than 1%).

The storage modulus as a function of strain amplitude, for
many elastomers, is a decreasing function of the strain amplitude.
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Figure 6.19 Experimentally determined storage modulus as a function
of strain amplitude for a natural rubber [12].
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Figure 6.20 Experimentally determined loss modulus as a function of
strain amplitude for a natural rubber [12].
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Figure 6.21 Experimentally determined loss modulus as a function of
strain amplitude for a silicone rubber [12].

This effect, which is called the Payne effect, cannot be captured
using linear viscoelasticity, but can be captured using non-linear
viscoelasticity. To capture the Payne effect requires non-linear
viscoelastic, a topic that will be discussed in Chapter 8.

6.8 Exercises

1. Describe the Boltzmann superposition principle.
2. Explain why linear viscoelasticity in uniaxial loading

only requires an elastic modulus and the stress relaxation
behavior.

3. How many Prony series terms should be experimentally
determined before using linear viscoelasticity? What
controls the required number of Prony series terms?

4. Which of the following sets of experimental data are
sufficient for calibrating a linear viscoelastic model?
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� stress relaxation from a given strain level
� creep from a given stress level
� monotonic uniaxial tension at a given strain rate
� monotonic uniaxial tension at two different

strain rates
� a DMA temperature sweep
� a DMA frequency sweep

5. Which of the following sets of experimental data are rec-
ommended for calibrating a linear viscoelastic model?
� stress relaxation from a given strain level
� creep from a given stress level
� monotonic uniaxial tension at a given strain rate
� monotonic uniaxial tension at two different

strain rates
� a DMA temperature sweep
� a DMA frequency sweep

6. Why is the Prony series written as a sum of exponen-
tially decaying terms?

7. What is the definition of viscoelastic spectra?
8. Draw a schematic rheological model for a linear vis-

coelastic model with a 2-term Prony series.
9. What is a rheologically simple material?

10. What is the definition of the WLF equation?
11. What experiments would you run to determine if the

response of a material is linear viscoelastic?
12. What is the graphical representation of a Maxwell ele-

ment?
13. Describe the time-temperature superposition principle.
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7.1 Introduction

One historically common way to represent the mechanical
behavior of a thermoplastic material in a finite element analysis
is to use a metal plasticity model. This type of material model
is typically easy to use, and is available in all commercial
finite element programs. The main problem with this class of
material models is that they were developed for metals and can
be inaccurate if used incorrectly for polymers. The purpose of
this chapter is to list the most commonly used plasticity models
and to highlight both their usefulness and their limitations.

The theory of metal plasticity is well developed and described
in numerous textbooks [1–5]. This chapter gives a brief introduc-
tion to the theory and how it applies to different types of polymer
materials.
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7.2 J2-Plasticity with Isotropic Hardening

J2-plasticity with isotropic hardening is perhaps the most com-
monly used type of plasticity theory, and is often simply called
plasticity theory. In Abaqus [6], this model is created using the
following commands:

In this example, some of the needed values are simply listed as
variables within square brackets. Also, the yield stress was made
dependent on the plastic strain rate (which is optional).

In ANSYS the model can be selected using the following
commands: Also in this example some of the needed values are

...

simply listed as variables within square brackets, and the rate-
dependence is optional.

The theory and implementation of this model has been exten-
sively covered [3, 6], here a very simplified implementation will
be presented. The theory will be presented for one-dimensional
loading in order to demonstrate how the theory works, and also to
illustrate strength and limitations to the model.

Start by dividing the total strain into elastic (εe) and plastic (εp)
contributions: ε = εe +εp. Only the elastic strain contribute to the
stress: σ = E(ε − εp).

The yield condition can be written as a scalar function:

f (σ ) = |σ | − σy(α) ≤ 0, (7.1)

where σy(α) is the yield stress at the accumulated plastic strain
magnitude α, which is given by α̇ = |ε̇p|.
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If f (σ ) < 0, then the stress magnitude is less than the current
yield stress and plastic flow is not active. If f (σ ) = 0, then the
stress magnitude is equal to the current yield stress and plastic
flow can occur if the loading continues. Note that the yield
function f (σ ) cannot be positive since the stress magnitude cannot
be greater than the current yield stress.

This material model can be graphically represented using a set
of piecewise linear segments as shown in Figure 7.1. This means
that the model can be made to fit almost any monotonic stress-
strain data in a single loading mode. Note, however, that the model
cannot be made to fit the large-strain behavior of elastomers since
these materials often have a tangent modulus at large strains that
is larger than the initial small-strain modulus.

7.2.1 Cyclic Loading

All isotropic hardening plasticity models that are based on
(non-zero) isotropic hardening will exhibit a gradual increase
in the yield stress with increasing plastic strain. As illustrated
in Figures 7.2 and 7.3, this behavior will cause each stress-strain

Figure 7.1 Stress-strain representation of the J2-plasticity model with
isotropic hardening. The model is defined by the Young’s modulus and
the pairs of (ε

p
i , σ p

i ).
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Figure 7.2 In this example two different cyclic strain histories are
examined. The first case is using a strain amplitude of 5%, and the
second case is using a strain amplitude of 10%.

Figure 7.3 Predicted stress-strain response during cyclic loading with
a strain amplitude of 5% and 10%.
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loop to grow in amplitude during cyclic loading. These figures
show the predicted stress-strain response due to two different
strain histories. In the first case the strain is cycled between +5%
and −5%, and in the second case the strain is cycled between
+10% and −10%. The predicted stress-strain response shows
that the predicted stress becomes almost bilinear in response,
and that the stress amplitude gradually increases during the
cyclic loading. These inherent features of the model response
are not in agreement with experimental data for either rubbers
or thermoplastics for which the stress-strain loops during cyclic
loading typically reach a steady-state response, or a response that
is close to steady state.

If the goal of the finite element study is to predict the response
during cyclic loading then it is typically not appropriate to use a
plasticity model based on isotropic hardening. In this case it is
better to use a plasticity model based on kinematic hardening, or
a viscoplastic material model.

7.2.2 Matlab Implementation

The isotropic hardening plasticity model, for the case of uniax-
ial loading, can be implemented using a short Matlab script. In the
implementation shown here, the stress in a given strain increment
is obtained from the radial return mapping algorithm which can
be written:

1. Initialize variables: σ0 = 0, α0 = 0, i = 1, ε
p
0 = 0.

Where σ0 is the initial stress, α0 is the initial plastic
strain, and ε

p
0 is the initial plastic strain.

2. Take an elastic trial step:

σ trial
i = σi−1 + E(εi − εi−1). (7.2)

3. Check if plastic flow is active

f = σ trial
i − σy(αi).

If f < 0 then accept the trial step:

σi = σ trial
i .
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If f ≥ 0 then let h be the tangent modulus (i.e.
hardness) at the current plastic strain magnitude,
then perform the following updates:

�γ = f

E + h
, (7.3)

σi = σ trial
i − �γ E sign(σ trial

i ), (7.4)

αi = αi−1 + �γ . (7.5)

In order to make the theory for the J2-plasticity model with
isotropic hardening more concrete it is useful to study a numerical
implementation of the governing equations. A convenient way to
do this is to use Matlab, as illustrated below.

The code is written in the form of a Matlab function. The function
takes as input a vector of time, a vector of strain, and a vector of
material parameters. The time vector is not used since the model
is strain-rate independent, but kept as an argument to the function
in order to make all material model functions presented in this
book have the same input arguments.

The material parameters that are required for the Matlab im-
plementation are: [E, σ 0

y , σ 1
y , εp

1, σ 2
y , εp

2, . . .]. That is, the Young’s
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modulus followed by pairs of yield stress and the corresponding
plastic strain. Note that the initial plastic strain is automatically
set to be zero.

The example Matlab file presented here can be made strain rate
dependent by incorporating a yield function that depends on the
plastic strain rate. This modification is left as an exercise.

7.2.3 Python Implementation

A slightly more rigorous implementation of isotropic hardening
plasticity is presented in Figure 7.4. In this case the Python code
includes a search for the plastic strain increment that is consistent

Figure 7.4 Python implementation of the J2-plasticity model with
isotropic hardening. File name: mat_PlasticityJ2Iso.py.
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with the yield condition. This can be necessary in cases where the
applied strain increment is large so that the hardening response
becomes non-linear during the increment. The traditional way to
search for the correct plastic strain increment is to use the Newton
method, but the example here is simply using a generic search
algorithm in order to keep the code clean.

The code in this case also contain the commands to generate
and plot the complete stress-strain response during monotonic
tension. The resulting figure showing the predicted stress-strain
behavior is shown in Figure 7.5.

Also in this case the plasticity model can be made rate-
dependent using an equation like the following:

σyield = σ 0
yield ·

[
1 +

(
ε̇p

D

)1/n
]

.

The implementation of this is left as an exercise.

Figure 7.5 Predicted stress-strain response obtained from the file
mat_PlasticityJ2Iso.py.
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7.2.4 Application to Thermoplastics

The applicability of the isotropic hardening plasticity model is
in this section examined by direct comparison with experimental
data for a ultra-high molecular weight polyethylene (UHMWPE)
thermoplastic material. The experimental data in this case was
obtained in uniaxial compression at three different engineering
strain rates (−0.02/s, −0.05/s, and −0.10/s) to a true strain of
about −0.45, followed by unloading to zero stress.

The isotropic hardening plasticity model was calibrated to the
experimental data in two ways. First the model was calibrated
to the monotonic compression to the minimum strain using the
intermediate strain rate. The results from that calibration are
shown in Figure 7.6. This figure shows that, as expected, the
model is very accurate at predicting the monotonic compressive
response, but the model prediction of the unloading response is
quite inaccurate since it severely underestimates the amount of
recovery of the material response during unloading.

Figure 7.6 Comparison between experimental data for UHMWPE and
predictions from the isotropic hardening plasticity model calibrated the
monotonic compressive material response.



362 Mechanics of Solid Polymers

Figure 7.7 Comparison between experimental data for UHMWPE and
predictions from the isotropic hardening plasticity model calibrated all
the experimental data.

A different way to calibrate the material model is use all
compressive data. Figure 7.7 illustrates that when calibrated this
way the overall predictions from the model may be better on
average, but this calibrated model is likely less useful for most
practical applications since the calibrated material model is not
accurate at any section of the experimental stress-strain curve.

To accurately predict this material response requires a more
advanced viscoplastic material model such as the Three Network
(TN) model. This model is discussed in more detail in Section 8.6
of Chapter 8.

7.3 Plasticity with Kinematic Hardening

The stress for a kinematic hardening plasticity model of
Chaboche type [7] is given by the following hardening model:

σ̇ back = 2α

3β
σyε̇

p − ||ε̇p||
β

σ back, (7.6)
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where σ̇ back is the time-derivative of the back stress, and ε̇p the
time-derivative of the plastic strain. The parameter σy is the initial
yield stress, ασy is the final yield stress, and β the transition strain
for the yield evolution.

The applicability of the kinematic hardening plasticity model
was examined by direct comparison with experimental data for
a UHMWPE thermoplastic material. The experimental data in
this case was obtained in uniaxial compression at three different
engineering strain rates (−0.02/s, −0.05/s, and −0.10/s) to a true
strain of about −0.45, followed by unloading to zero stress. The
kinematic hardening plasticity model was calibrated to the experi-
mental data using the MCalibration software [8]. The results from
that calibration are shown in Figures 7.8–7.10.

The first of these figures compare the predictions of the kine-
matic hardening model with one backstress network to the exper-
imental data. The Abaqus material definition that was used in this
figure is shown below.

Figure 7.8 Calibration of an elastic-plastic material model with
combined kinematic hardening and one backstress network.
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Figure 7.9 Calibration of an elastic-plastic material model with
combined kinematic hardening and two backstress networks.

Figure 7.10 Calibration of an elastic-plastic material model with
combined kinematic hardening and three backstress networks.

As is shown in Figure 7.9, adding a second backstress network
slightly improves the model predictions. The Abaqus material
definition that was used in this figure is shown below.
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As is shown in Figure 7.10, adding a third backstress
network slightly further improves the model predictions. The
Abaqus material definition that was used in this figure is shown
below.

One of the main limitations of this material model is that the
tangent modulus is monotonically decreasing, making it impos-
sible to capture the large strain tensile response of many ductile
thermoplastics that are known to have a stress-strain response that
stiffens at large strains.

7.4 Johnson-Cook Plasticity

The Johnson-Cook model is a plasticity model that is based on
Mises plasticity with closed-form analytical equations specifying
the hardening behavior and the strain-rate dependence of the yield
stress. In this model the yield stress is given by the following
equation:

σyield = [
A + B(εp)n] [

1 + C ln

(
ε̇p

ε̇0

)]
(1 − θ̂m), (7.7)

where [A, B, n, C, ε̇0, m] are material parameters that need to be
determined from experimental data. In this equation εp is the
effective plastic strain, and ε̇p is the time derivative of the effective
plastic strain.

Since this material model is based on isotropic hardening,
it cannot accurately predict the unloading response of many
thermoplastics. Figure 7.11 shows the predicted stress-strain re-
sponse when calibrated to cyclic uniaxial compression data for
UHMWPE. The figure shows that the predicted response under
monotonic loading is in good agreement with the experimental
behavior, but that the predicted unloading behavior significantly
overpredicts the residual deformation after unloading. The cali-
brated material parameters that were used to generate the model
predictions are listed in Abaqus inp-file format below.
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Figure 7.11 Comparison between experimental data for UHMWPE
and predictions from a Johnson-Cook plastic material.

7.5 Drucker Prager Plasticity

Drucker Prager plasticity is an isotropic hardening plasticity
model specifically developed for frictional materials like granular
solids. One interesting feature of this model is that it can have
a yield stress that depends on the pressure, and hence can have
different yield stresses in tension and compression. This is an
attractive feature since many thermoplastics are known to have
a pressure dependent yield stress. The model framework can
also incorporate strain-rate dependence and progressive failure
predictions.

One of the main limitations of the Drucker Prager model is
that it is based on isotropic hardening, which means that it cannot
accurately predict the unloading response of many thermoplastics.
Figure 7.12 shows the predicted stress-strain response when
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Figure 7.12 Comparison between experimental data for UHMWPE
and predictions from a Drucker Prager plastic material.

calibrated to cyclic uniaxial compression data for UHMWPE.
The figure shows that the predicted response under monotonic
loading is in good agreement with the experimental behavior, but
that the predicted unloading behavior significantly overpredicts
the residual deformation after unloading. The calibrated material
parameters that were used to generate the model predictions are
listed in Abaqus inp-file format below.

7.6 Use of Plasticity Models in Polymer
Modeling

Plasticity models have a long history of use in finite element
simulations, and have also been extensively used to represent
the behavior of thermoplastic materials. As was shown in this
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chapter, however, using a plasticity model to predict the non-
linear viscoplastic response of polymers can give poor predictions
of the material response, particularly during cyclic loading or
during unloading.

There are many different plasticity models that have been
developed and that are available in finite element software. In
practice, the different models can be divided into two groups:
isotropic hardening plasticity and kinematic hardening plasticity.
The isotropic hardening plasticity models are often easier to
use and can provide accurate predictions all the way to failure
(under monotonic loading). The kinematic hardening models are
often based on non-linear equations with material parameters
that need to be determined from experimental tests, and hence
are often more difficult to calibrate. The kinematic hardening
models often have a restriction that the tangent modulus decreases
with increasing plastic strain, a restriction that is contradicting
experimental behaviors of many polymers.

Plasticity models can still be important for practical use in a
finite element setting since they are numerically very efficient. But
plasticity models are never the most accurate material modeling
framework. The viscoplastic models presented in the next chapter
will always be more accurate.

7.7 Exercises

1. Show how to specify an isotropic hardening plasticity
model in your favorite finite element program.

2. Why is the isotropic hardening plasticity model so easy
to calibrate?

3. What experimental tests would you run in order to
calibrate an isotropic hardening plasticity model?

4. What is the main limitation of isotropic hardening plas-
ticity?

5. Describe the difference between the Matlab and the
Python implementations of the isotropic hardening plas-
ticity model.
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6. What are some of the limitations of the kinematic hard-
ening plasticity model?

7. Create a Matlab or Python implementation of the com-
bined kinematic plasticity model.

8. What experimental tests would you run in order to
calibrate a kinematic hardening plasticity model?

9. What are some features of the Johnson-Cook plasticity
model that make it interesting?

10. What are some differences between the Johnson-Cook
and the Drucker Prager plasticity models?
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8.1 Introduction

Viscoplasticity models are the ultimate models for polymer mod-
eling, both in terms of accuracy and complexity. Some of the
models of this category are truly impressive at predicting the
non-linear, time- and temperature-dependent response of various
polymers. The downsides of these models are that they typically
require more experimental data for proper calibration, they can be
numerically expensive, and typically require additional software
components (user subroutines, like UMATs and VUMATs, see
Chapter 10).

The field of viscoplastic constitutive modeling is evolving,
and new models are developed every year by different research
groups. This chapter attempts to present some of the most useful
models that are available for different polymers, and the trends of
where this field is going in the future.

8.2 Bergström-Boyce Model

The Bergström-Boyce (BB) model [1–5] is an advanced consti-
tutive model for predicting the non-linear time-dependent, large-
strain behavior of elastomer-like materials. The model has been
shown to be accurate for both traditional engineering rubbers, and
soft biomaterials [1–5]. The BB-model can also be considered
a powerful generalization of linear viscoelasticity, and as will
be shown in this section can overcome some of the main issues
with linear viscoelasticity related to both large strain deforma-
tions and strain amplitude dependence of the dynamic properties
(E′ and E′′).

The motivation for the BB-model can be described using
Figure 8.1. This figure shows experimental data for a chloroprene
rubber tested in uniaxial compression at two different strain rates
(−0.1/s, and −0.03/s), although the qualitative response shown
in this figure is true for all elastomers. The red solid curve
shown in the figure is the experimentally determined stress-strain
response after being exposed to the applied strain history shown
in Figure 8.2. The dashed blue line is the experimental data from
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Figure 8.1 Experimental data for a chloroprene rubber tested at two
strain rates. The strain was held constant for 10min at a true strain of
−0.75.

Figure 8.2 Applied strain history used to test the chloroprene rubber.
The strain was held constant for 10min at a true strain of −0.75.
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a similar experiment performed at a 50 times slower applied
strain-rate. What makes the results in Figure 8.1 so interesting is
the stress relaxation that occurs during the hold segments (i.e. B-C
and E-F in Figure 8.2). In this case the stress relaxes significantly
and the stress relaxation during loading and during unloading
appears to asymptotically approach the same stress value. Note
that the stress relaxation during unloading is negative. This is,
even though the specimen has been compressed and has a negative
stress, the stress actually grows larger in magnitude during the
stress relaxation segment.

The stress value that is approached at Point B in Figure 8.1
can therefore be considered the equilibrium stress at a strain
value of about −0.75. By performing a set of experiments of this
type, where stress relaxation segments have been inserted, makes
it possible to experimentally establish an equilibrium response
for the elastomer, see the red curve in Figure 8.3. The equilib-
rium curve is the hypothetical stress-strain curve that would be

Figure 8.3 The experimentally measured stress (red solid line) can be
decomposed into an equilibrium stress (green dashed line) and a
viscoelastic stress (blue dash-dot line).
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obtained if the experiment was run in infinite time (i.e. if the
strain-rate was zero). This observation makes it possible to divide
the experimentally determined stress response into an equilibrium
response (green dashed line in Figure 8.3), and a time-dependent
deviation from the equilibrium response (see the blue dash-dot
curve in Figure 8.3).

In other words, the true response of the elastomer can be
represented using two parallel networks A and B, see Figure 8.4.
Network A is a non-linear hyperelastic network, and network B
consists of a non-linear hyperelastic component in series with a
non-linear viscoelastic flow element.

Note that the viscoelastic flow response has to be non-linear
since otherwise the model framework will be the same as linear
viscoelasticity with a one-term Prony series, which was shown in
Chapter 6 to be insufficient for capturing the general response of
elastomers.

The idea to decompose the total stress into an elastic and a
history dependent component was proposed by Green and Tobol-
sky [6], and the approach to model elastomers as two interacting
networks has been used in different variations by Johnson and

Figure 8.4 Constitutive representation of the elements of the BB
model.
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Quigley [7], Johnson and Stacer [8], Johnson et al. [9], Roland
[10], and Roland and Warzel [11].

In the BB model the applied deformation gradient is acting
on two parallel macromolecular networks: F = FA = FB. The
deformation gradient acting on the time-dependent network B is
further decomposed into elastic and viscoelastic components:

FB = Fe
BFv

B. (8.1)

The decomposition of the deformation gradient into elastic and
viscoelastic components is shown in the deformation map in
Figure 8.5.

The response of network A is given by the eight-chain model
(see Section 5.3.10):

σA = μ

Jλ∗
L−1

(
λ∗/λlock

)
L−1

(
1/λlock

) dev[b∗] + κ(J − 1)I, (8.2)

where [μ, λlock, κ] are material parameters, L−1(·) the inverse
Langevin function, J = det[F], and b∗ the distortional part of
the left Cauchy-Green tensor. The stress on network B is also
given by the eight-chain model, but with a different effective shear
modulus:

Figure 8.5 Multiplicative decomposition of the deformation.
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σB = s μ

JBλe∗
B

L−1
(
λe∗

B /λlock
)

L−1
(
1/λlock

) dev[be∗
B ] + κ(Je

B − 1)I, (8.3)

where s is a dimensionless material parameter specifying how
much stiffer the shear modulus of network B is relative to network
A, and λe∗

B is the chain stretch in the elastic part of Network B.
Using this representation the total Cauchy stress is given by

σ = σA + σB. (8.4)

Note that the presentation here is based on the original BB-
model in which the hyperelastic response is given by the Arruda-
Boyce (AB) eight-chain model. This approach is also used in the
ANSYS [12], MSC.Marc [13], and LS-DYNA [14] native imple-
mentations of the BB-model. The Abaqus [15] implementation
(called *HYSTERESIS), is more general and allows for any of
the built-in hyperelastic models to be used.

Equations (8.1)–(8.3) completely specify how the stress can be
calculated in any given deformation state (with known internal
state Fv

B). To complete the model it is also necessary to specify
the rate of change in the internal state of the material through
viscoelastic flow, that is, the rate kinematics of the model. The
velocity gradient on network B, LB = ḞBF−1

B , can be decomposed
into elastic and viscous components as follows:

LB =
[

d

dt

(
Fe

BFv
B

)] (
Fe

BFv
B

)−1

= [
Ḟe

BFv
B + Fe

BḞv
B

] (
Fv

B

)−1 (Fe
B

)−1

= Ḟe
B

(
Fe

B

)−1 + Fe
BḞv

B

(
Fv

B

)−1 (Fe
B

)−1

= Le
B + Fe

BLv
BFe

B

= Le
B + L̃v

B, (8.5)

where

Lv
B = Ḟv

B

(
Fv

B

)−1 = Dv
B + Wv

B, (8.6)

L̃v
B = D̃v

B + W̃v
B. (8.7)
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To make the unloading unique [16], prescribe W̃v
B ≡ 0. The

rate of viscous deformation of network B is constitutively pre-
scribed by:

D̃v
B = γ̇B(σ B, be∗

B ) Nv
B, (8.8)

where

Nv
B = dev[σ B]

τ
= dev[σB]

|| dev[σB]||F (8.9)

provides the direction of the viscoelastic flow, and τ is the
effective (scalar) stress driving the viscous flow.

The time derivative of Fv
B can be derived as follows:

L̃v
B = γ̇ v

BNv
B, (8.10)

⇒ Fe
BḞv

B

(
Fv

B

)−1 (Fe
B

)−1 = γ̇ v
BNv

B,

⇒ Ḟv
B = γ̇ v

B

(
Fe

B

)−1 dev[σ B]
|| dev[σ B]||F Fe

BFv
B.

(8.11)

These equations for the time-derivative of the deformation
gradient are based on pure kinematics, and only embody the
physics of a specific material through a scalar equation for the
effective flow rate γ̇B. The effective flow rate γ̇B of Network
B must be constitutively prescribed. Here, a micromechanism-
inspired model is proposed on the assumption that the mechanism
responsible for the time-dependent behavior is the reptation of
macromolecules that are “elastically inactive” (i.e. molecules that
carry less load and have the capability to significantly change
conformation during creep loading.)

To illustrate this view consider first an over-simplified model
with one free chain located in a network of chains as shown in
Figure 8.6.

If the network is deformed at a high enough rate then the free
chain will also deform more or less affinely with the network.
Hence the entropy of the free chain is decreased and the free
chain contributes additional deformation resistance. If the applied
strain is then held constant in the deformed state the free chain
will slowly, by Brownian motion, return to a more relaxed
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Figure 8.6 Schematic representation of the molecular deformation
that occurs during deformation and stress relaxation of
crosslinked polymer.

configuration. The rate of return toward a relaxed configuration
is given by the governing reptation motion of the free chain [17].

Let us now turn our attention to a more realistic situation
in which free chains do not exist. In a real polymer network,
however, there are almost always free chain-ends which behave
as the free chain described above. A reasonable extension to the
free chain and free chain-end models is to consider also inactive
chain segments such as A − B − C illustrated in Figure 8.7.

Qualitatively, the same behavior is exhibited by the inactive
chain segment in Figure 8.7 and the free chain in Figure 8.6. The
loop A−B−C in Figure 8.7 undergoes Brownian motion and has
an equilibrium position at a finite distance from the constraining
chain DD′. Hence, DD′ behaves as an obstacle which imposes
an energy barrier to the relaxation process. The relaxation toward
equilibrium can therefore be considered to be energy activated.

To develop the constitutive equation for the time-dependent
element consider a free chain-end of the type illustrated in
Figure 8.7, but bear in mind that the presented arguments also
hold for the more general situation shown in Figure 8.6.

The chain segment at B is constrained to travel back and forth
along the constraining tube by Brownian motion in a combination
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Figure 8.7 The stress relaxation is driven by molecular reptation.

of reptation motion and contour length fluctuations. Call the
displacement of B along the tube u. The average displacement
of B can be shown by the theory of reptational motion of chain
molecules [18] to scale as 〈u〉 = C3〈u2〉1/2 ≡ C3

√
φ(t). The ef-

fective length of the chain in a creep experiment can consequently
be written

l(t) = l0 + C3

√
φ(t), (8.12)

where the mean square displacement of the chain segment φ(t)
has been derived [18] by reptation dynamics considerations to
scale as

φ(t) ∝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t1/2, t ≤ τe,

t1/4, τe ≤ t ≤ τR,

t1/2, τR ≤ t ≤ τd,

t, τd ≤ t,

(8.13)

where τe is the time at which the tube constraint is first felt, τR is
the Rouse relaxation time, and τd is the tube disengagement time.
Equations (8.12) and (8.13) can be simplified to

λ
Bp
chain(t) = l(t)

l0
= 1 + C4tC5, (8.14)
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where C4 > 0 and C5 ∈ [0.5, 1.0]. Taking the time derivative of
(8.14) gives

λ̇
Bp
chain = C4C5tC5−1. (8.15)

It is now possible to eliminate t between (8.14) and (8.15) giving

λ̇
Bp
chain = C6

[
λ

Bp
chain − 1

]C7
, (8.16)

where C6 > 0 and C7 is about −1. This equation shows how the
effective creep rate depends on the chain stretch, where the chain
stretch is correlated to the principal macroscopic stretch state by
the 8-chain assumption [19], i.e.

λ
Bp
chain =

√
IBp
1

3
=

√√√√(
λ

Bp
1

)2 +
(
λ

Bp
2

)2 +
(
λ

Bp
3

)2

3
. (8.17)

Equation (8.16) gives the creep rate at a constant stress level,
but the creep rate also depends on the level of the applied stress.
And as discussed above, this stress dependence is assumed to be
energy activated. The microstructural connection to the activation
parameters is complicated; it is possible, however, to use a generic
expression of the form

γ̇B = C1

[
λ

Bp
chain − 1 + ξ

]C2
(

τB

τ̂B

)m

, (8.18)

where τB is the effective stress measure introduced in Equa-
tion (8.18), τ̂B is a material constant, and ξ is small positive
constant that is introduced to eliminate a removable singularity
in the flow rate in the undeformed state [4].

Note that in the proposed model the constants Ĉ1 ≡ C1/τ̂
m
B and

m are positive; and C2 is a constant that is restricted by reptational
dynamics to be negative.

In summary, the rate-equation for viscous flow is given by [1]:

γ̇ v
B = γ̇0

(
λv

B − 1 + ξ
)C

[
R

(
τ

fvτbase
− τ̂cut

)]m

, (8.19)



382 Mechanics of Solid Polymers

where:

• [ξ , C, τbase, τ̂cut, m] are material parameters.
• γ̇0 ≡ 1/s is a constant introduced to ensure dimen-

sional consistency.
• R(x) = (x + |x|)/2 is the ramp function.
• fv = 1 + αε : εe is a network interaction factor.

This is a modification of the original BB flow model
[3] that makes the flow resistance stress dependent
on the network state through a factor fv that depends
on the two strains ε = ln[v], and εe = ln[ve]. The
reason for the modification is that most elastomer-
like materials are experimentally shown to have less
strain-rate dependence during unloading than during
loading. This flow model introduces the ability to
capture this response.

• τ̂cut is a cut-off stress below which no flow will occur.
The ramp function is introduced in order to increase
the numerical efficiency of the material model for
cases when regions of the FE mesh is not undergoing
significant deformations, and to allow for predictions
of true plastic deformation.

• λv
B =

√
tr[bv

B]
3 is the viscoelastic chain stretch.

• The effective stress driving the viscous flow is:

τ = || dev[σB]||F =
√

tr
[
σ ′

Bσ ′
B

]
, (8.20)

where || · ||F is the Frobenius norm.

8.2.1 Matlab Implementation of the BB-Model

As was discussed in Section 8.2, the BB material model is
formulated as a set of differential equations that need to be solved
for each time increment. One way to solve this set of equations is
to use the following algorithm:

1. Known values at time ti:
• Deformation gradient: F
• State variables: Fv

B
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2. Known values at time ti+1:
• Deformation gradient: F

3. Calculate Fv
B at ti+1 using an ODE solver and Equa-

tion (8.11) for Ḟv
B(t, Fv

B).
4. Calculate Fe using Equation (8.1), and σB using

Equation (8.3) at ti+1.

For the case of incompressible, uniaxial loading this algorithm
can be implemented in Matlab as shown in Figure 8.8.

Figure 8.8 (a) Matlab implementation of the Bergström-Boyce model.
(b) Exemplar Matlab code that calls the Matlab implementation of the
BB model.
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Figure 8.9 Predictions from the Matlab file test_mat_BB.m.

The results from running the test file test_mat_BB are
shown in Figure 8.9.

8.2.2 Python Implementation of the BB-Model

For incompressible uniaxial loading the BB model can be
implemented into Python code as shown below. The function
uniaxial_stress_visco() is a generic function for cal-
culating the stress for any viscoplastic material model specified
by the function model(). This function searches for the trans-
verse strain, at each time increment, that gives the correct stress
boundary condition (σ22 = σ33 = 0).

The implementation of the BB-model is provided in
two functions BB_timeDer_3D() and BB_3D(). The
time-derivative function is used by the Python function
scipy.integrate.odeint().
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The actual commands that sets everything up and calls the
main function are listed in the file BB_Compressible_
Uniaxial.py.

The results from running this code are shown in Figure 8.10.

Figure 8.10 Predictions from the Python file BB_Compressible_
Uniaxial.py.

8.2.3 Generic Numerical Implementation

The theory for the BB model, presented above, used the viscoelas-
tic deformation gradient (Fv

B) as a state variable for amount of
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viscoelastic flow. This is not the only possible state variable. In
fact, you can write the evolution equation for the viscoplastic
deformation in many different and alternative ways:

Ḟv = γ̇

|| dev[b∗
e ]||

F−1
e dev[b∗

e ]F, (8.21)

Ċ∗
v = 2γ̇

|| dev[b∗
e ]||

[
C∗ − 1

3
tr[b∗

e ]C∗
v

]
, (8.22)

Ėv = γ̇

|| dev[b∗
e ]||

[
C − 1

3
tr[b∗

e]Cv

]
, (8.23)

d

dt

[
F−1

v

]
= −γ̇ F−1

v
dev[F−�

v U∗2F−1
v ]

|| dev[b∗
e ]||

, (8.24)

d

dt

[
c−1

v

]
= −2γ̇

|| dev[b∗
e ]||

(
c−1

v U∗2 − λ∗
e

2
I
)

c−1
v . (8.25)

In these equations C∗
v is the viscoelastic right Cauchy-Green

tensor, Ev is the Green strain, F−1
v is the inverse of the viscoelastic

deformation gradient, and C−1
v is called the Finger tensor. All of

these equation are equally valid, and the most appropriate one can
be selected based on personal preference and the desired reference
frame to use for the calculations.

8.2.4 Dynamic Loading Predictions

The dynamic response of elastomers and other soft materials is
an important characteristic in many industrial applications. One
common way to experimentally measure the dynamic response is
to apply a sinusoidal strain with a constant strain amplitude (εa)
and a constant mean strain (εm):

ε(t) = εm + εa sin(ωt). (8.26)

If the strains are sufficiently small then the measured stress
response will also be sinusoidal, but it will be out-of-phase with
the applied strain:
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σ(t) = σm + σa sin(ωt + δ), (8.27)

= σm + σaE′ sin(ωt) + σaE′′ cos(ωt). (8.28)

From this the storage modulus (E′) and the loss modulus (E′′) can
be defined from:

σ(t) = σm + εaE′ sin(ωt) + εaE′′ cos(ωt). (8.29)

Experimentally, the storage and loss moduli of most elastomers
depend on both the applied strain amplitude and the applied
frequency. It is therefore often desirable to have a material model
that agrees with this experimental fact. If we define a Linear Flow
Model as a two-network model where Network A consists of a
Neo-Hookean spring, and Network B consists of a Neo-Hookean
spring in series with a linear dashpot (see the following figure).

The flow of the linear dashpot is given by

γ̇B = γ̇0

[
τ

τB

]
, (8.30)

where γ̇0 ≡ 0. For this model the characteristic relaxation time is
given by: τB/(γ̇0μB), and the characteristic frequency is given by:
γ̇0μB/τB.

The predicted response for a strain amplitude sweep for this
model is shown in Figure 8.11. As expected, the predicted storage



8: Viscoplasticity Models 389

Strain amplitude

G� = const

S
to

ra
ge

 m
od

ul
us

 (
M

P
a)

Frequency = 1 Hz

mA= 0.5 MPa
mB= 1.0 MPa

tB= 0.1 MPa

10−4
0

0.2

0.4

0.6

0.8

1

10−3 10−2 10−1

Strain amplitude

Frequency = 1 Hz

G� = const

10−4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10−3 10−2 10−1

Lo
ss

 m
od

ul
us

 (
M

P
a)

Figure 8.11 Predictions storage and loss moduli for a linear flow
model when exposed to a strain amplitude sweep.
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Figure 8.12 Predictions storage and loss moduli for a linear flow
model when exposed to a frequency sweep.

and loss moduli are both finite, but independent of the applied
strain amplitude.

The predicted response for a frequency sweep for the linear
flow model is shown in Figure 8.12. Similar to what was shown
for linear viscoelasticity, the storage modulus increases with
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frequency, and the loss modulus has a peak at a characteristic
frequency.

As is shown in Figures 8.11 and 8.12, the linear flow model is
not sufficiently advanced to capture the true viscoelastic response
of many polymers that also depend on the strain amplitude.

An extension of this model, called the Power Flow Model, is
exactly as the linear flow model except that the viscoelastic flow
rate is given by:

γ̇B = γ̇0

[
τ

τB

]m

. (8.31)

This equation can be represented in the following rheological
representation.

This model is a slightly simplified version of the BB model.
The predicted response for a strain amplitude sweep for this

model is shown in Figure 8.13. The predicted storage modulus
decreases with increasing strain amplitude, this is what is called
the Payne effect. Similarly, the loss modulus goes through a
peak for a given strain amplitude. Both of these behaviors are
consistent with what is experienced by typical materials.

The predicted response for a frequency sweep for the power
flow model is shown in Figure 8.14. Similar to what was shown
for the linear flow model, the storage modulus increases with
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Figure 8.13 Predicted storage and loss moduli for a power flow model
when exposed to a strain amplitude sweep.
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Figure 8.14 Predicted storage and loss moduli for a power flow model
when exposed to a frequency sweep.

frequency, and the loss modulus has a peak at a characteristic
frequency.

As is shown in Figures 8.13 and 8.14, the power flow model
is significantly more accurate compared to the linear flow model
when it comes to predicting both the strain amplitude, and fre-
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quency dependence. The power flow model (and therefore also the
BB model) qualitatively captures all essential dynamic behaviors
of elastomers. To capture the response also quantitatively can
require multiple parallel networks of the type used in the Power
Flow Model. Each network contributing a portion of the strain
amplitude and frequency spectrum.

8.2.5 Use of the BB-Model for Polymer Modeling

The BB model is very good at predicting the large-strain time-
dependent behavior of isotropic elastomer-like materials. The
model is particularly suitable for predicting large-strain, cyclic,
stress relaxation, and creep behaviors.

Figure 8.15 shows experimental data for a chloroprene rubber
with 25 vol% carbon black. The experimental data consists of
loading-unloading cycles at three different strain rates.
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Figure 8.15 Comparison between experimental data for a chloroprene
rubber with 25 vol% carbon black, and predictions from the BB-model
with Mullins softening.
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Figure 8.16 Comparison between experimental data for a chloroprene
rubber with 7 vol% carbon black, and predictions from the BB-model.

The experiments were performed at room temperature. In the
figure is also shown the best fit of the BB-model. It is shown that
the model accurately captures the loading-unloading behavior at
three strain rates.

Another example, this time for a chloroprene rubber with 7%
volume is shown in Figure 8.16.

Also in this case the material was tested in uniaxial compres-
sion at three different strain rates. The BB model was calibrated
to the experimental data and the model predictions are indicated
in the figure. The figure shows that the BB model captures the
experimentally observed behavior.

8.3 Arruda-Boyce Model

One of the first advanced models for predicting the response
of glassy polymers is the AB model [16, 20, 21]. This model
is not the same as the AB eight-chain model which is a hy-
perelastic model discussed in Section 5.3.10 of Chapter 5. This
AB viscoplasticity model is interesting due to its simplicity
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and structure, that is also used in more advanced models for
thermoplastics.1

The AB model was developed [16, 20, 21] for predicting
the large strain, time- and temperature-dependent response of
glassy polymers. The behavior of this class of materials when
subjected to gradually increasing loads is typically characterized
by an initial linear elastic response followed by yielding and then
strain hardening at large deformations.2 This evolution in material
response with applied loads is directly incorporated into the AB
model.

In the AB framework, the total deformation gradient is decom-
posed into elastic and plastic components, F = FeFp. As is shown
in the one-dimensional rheological representation in Figure 8.17,
this decomposition can be interpreted as two networks acting in
series: one elastic network (e) and one plastic network (p).

Using this decomposition of the deformation gradient
the Cauchy stress can be calculated from the linear elastic
relationship:

Figure 8.17 Rheological representation of the Arruda-Boyce model.

1The AB model is available in the PolyUMod library [22].
2Some thermoplastics, for example LDPE, does not have a linear elastic response even at very
small strains. The material behaves in a non-linear viscoelastic manner even at small strain.
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T = 1

Je

(
2μeEe + λ tr[Ee]I) , (8.32)

where Ee = ln[Ve] is the logarithmic true strain, Je = det[Fe],
and μe, λe are Lamé’s constants. The stress driving the plastic
flow is given by the tensorial difference between the total stress
and the convected back stress

T∗ = T − 1

Je
FeTp(Fe)�, (8.33)

where the deviatoric back stress is given by the incompressible
eight-chain model which can be written:

Tp = μp

λp

L−1
(
λP/λ

p
lock

)
L−1

(
1/λ

p
lock

) dev[bp] (8.34)

with μp, λ
p
lock being physically motivated material constants,

bp = Fp(Fp)� , λp = (tr[bp]/3)1/2 the effective chain stretch
based on the eight-chain topology assumption, and L−1(x) the
inverse Langevin function.

In the original work [16, 20, 21] the plastic flow rate was given
by:

γ̇ p = γ̇0 exp

[
− As

kBθ

(
1 −

(τ

s

)5/6
)]

, (8.35)

where γ̇0, A, s are material constants, kB is Boltzmann’s constant,
and θ is the absolute temperature. It has been shown by Hasan
and Boyce [23] that the difference in behavior between a stress
exponent of 5/6 and 1 is very small. By taking the stress exponent
to be 1 and grouping material constants together the expression
for the plastic flow rate can be simplified to

γ̇ p = γ̇i exp

[
τ

τbase

]
, (8.36)

where γ̇i and τbase are material parameters. The focus of the
current work is on isothermal deformation histories, to explic-
itly include temperature effects the parameter τbase can be re-
placed by kBθ/A. The scalar equivalent stress τ is here taken as
the Frobenius norm of the deviatoric part of the driving stress
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τ = || dev[T∗]||F, where ||A||F ≡ (AijAij)
1/2. The rate of plastic

deformation is given by

DP = γ̇ p

τ
dev[T∗] (8.37)

and the plastic spin is taken to be zero [16], i.e. Wp = 0, which
uniquely specifies the rate kinematics. The time-derivative of Ḟ is
given by

Ḟp = DpFp = γ̇ p

τ
dev[T∗]Fp. (8.38)

Note that the original Boyce model also allows for modeling
of strain softening through an evolution equation of the athermal
shear resistance, s:

ṡ = h

[
1 − s

sss

]
γ̇ p, (8.39)

where h and sss are material parameters. This equation can also be
written in terms of the effective shear strength:

τ̇base = h

[
1 − τbase

τbase.ss

]
γ̇ p, (8.40)

where τbase.0 is the initial flow resistance, and τbase.ss is the steady-
state flow resistance at large strains.

Figure 8.17 shows one exemplar set of predictions from the
AB-model. In this case, the response in uniaxial tension followed
by unloading is shown at three different strain rates. In this
example the flow resistance evolves from an initial value of
20 MPa down to 10 MPa at steady state (Figure 8.18).

In summary, the AB model is based on a simple theoretical
framework, and as a result is easy to use but not always as accurate
as needed for analysis of engineering problems.
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Figure 8.18 Stress-strain predictions from the Arruda-Boyce model.

8.4 Dual Network Fluoropolymer Model

The dual network fluoropolymer (DNF) model is an advanced
material model capable of predicting the large-strain, time- and
temperature-dependent viscoplastic behavior of various types of
fluoropolymers and other types of thermoplastics.3

Fluoropolymers, as well as other thermoplastics, exhibit a com-
plicated non-linear response when subjected to external loads.
At small applied strains, the material response is typically linear
viscoelastic. At larger strains, the material undergoes distributed
yielding that evolves with plastic strain, followed by large-scale
viscoplastic flow, and finally, gradual material stiffening at large
strain until ultimate failure occurs. It is also known that the
material response is strongly dependent on applied strain-rate and
temperature: higher strain rates and lower temperatures increase
the stiffness of the material. The DNF model is a constitutive
model aimed at predicting these experimentally observed char-

3The DNF model is available in the PolyUMod library [22].
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acteristics. The proposed model is an extension of previous work
by Bergström and Boyce [1, 4, 5] and Arruda and Boyce [21] for
elastomers and glassy polymers.

There are a number of different candidate material models
that are documented in the literature for predicting the be-
havior of general thermoplastics (e.g. [21, 24–26]), and some
of these models are summarized in this chapter. Development
of advanced constitutive models for polymers is an active area
of research that is evolving and improving. Up until about year
2000, there were no constitutive models specifically developed
for fluoropolymers, and the most useful models were either
classical isotropic plasticity, linear viscoelasticity models, or
general models for thermoplastics [4, 21]. Since then constitutive
models specifically developed for fluoropolymers have emerged
[27, 28]. These models are typically better at predicting the
experimentally observed characteristics of fluoropolymers than
traditional isotropic plasticity or viscoelasticity models, but have
limitations of isothermal conditions only.

The DNF model can be represented using the rheological
model shown in Figure 8.19.

The DNF model incorporates experimental characteristics by
using a decomposition of the material behavior into a viscoplastic
response, corresponding to irreversible molecular chain sliding
(due to the lack of chemical crosslinks in the material) and a time-
dependent viscoelastic response. The viscoelastic response is
further decomposed into the response of two molecular networks
acting in parallel: a first network (A) captures the equilibrium
(long term) of the viscoelastic response and a second network (B)
the time-dependent (short term) deviation from the viscoelastic
equilibrium state. A schematic illustrating the kinematics of
deformation are shown in Figure 8.20.

The total deformation gradient Fappl contains both a thermal
expansion part Fth = [1 + α(θ − θ0)] I, and a mechanical defor-
mation part F:

Fappl = F Fth.
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Figure 8.19 Structure of the dual network fluoropolymer model.
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Fve

F
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configuration Current
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Figure 8.20 Kinematics of deformation for the DNF model.
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The deformation gradient F is multiplicatively decomposed
into viscoplastic and viscoelastic components:

F = FveFp. (8.41)

The Cauchy stress acting on network A is given by the eight-chain
representation [4, 19]:

σ ve = f8ch(Fve)= μ0
A(θ)

Jveλ∗
L−1

(
λve∗/λlock

)
L−1

(
1/λlock

) dev
[
Bve∗]+κ ln[Jve]

Jve
1,

(8.42)
where Jve = det[Fve], μ0

A(θ) is a temperature-dependent initial
shear modulus, λlock is the chain locking stretch, bve∗ =
(Jve)−2/3Fve(Fve)T is the Cauchy-Green deformation tensor,
λve∗ = (tr[bve∗]/3)1/2 is the effective chain stretch based on
the eight-chain topology assumption [19], L−1(x) is the inverse
Langevin function, where L(x) = coth(x) − 1/x, and κ is
the bulk modulus. By explicitly incorporating the temperature-
dependence of the shear modulus it is possible to capture the
stiffness variation of the material over a range of temperatures.
The following expression is found to accurately capture the
experimentally observed temperature dependence of the shear
modulus for temperatures between 20 ◦C and 200 ◦C:

μA(θ) = μ0
A exp

[
θ0 − θ

θbase

]
, (8.43)

where θ is the current temperature, and μ0
A, θ0, and θbase are

material parameters.
The viscoelastic deformation gradient acting on network B is

decomposed into elastic and viscous parts:

Fve = FeFv. (8.44)

The Cauchy stress acting on network B is obtained from the same
eight-chain network representation that was used for network A.
For simplicity, the response of network B is taken as a scalar
factor sB (a specified material parameter) times the eight-chain ex-
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pression that was used for network A applied on the deformation
gradient Fe:

σ e = sB · f8ch(Fe), (8.45)

where f8ch(·) is the tensorial function defined in Equation (8.42).
Using this framework, the total Cauchy stress in the system is
given by σ = σ ve + σ e.

The total velocity gradient of network B, Lve = Ḟve(Fve)−1,
can similarly be decomposed into elastic and viscous components:
Lve = Le+FeLeFe−1 = Le+L̃v, where Lv = ḞvFv−1 = Dv+Wv

and L̃v = D̃v + W̃v. The unloading process relating the deformed
state with the intermediate state is not uniquely defined, since an
arbitrary rigid body rotation of the intermediate state still leaves
the state stress free. The intermediate state can be made unique in
different ways [16], one particularly convenient way that is used
here is to prescribe W̃v = 0. This will, in general, result in elastic
and inelastic deformation gradients both containing rotations.

The rate of viscoplastic flow of network B is constitutively
prescribed by

D̃v = γ̇ v
devNv

dev + γ̇ v
volN

v
vol, (8.46)

where the first term gives the deviatoric viscoelastic flow and the
second term gives the volumetric viscoelastic flow. The tensors
Nv

dev and Nv
vol specify the directions of the driving deviatoric

and volumetric stresses of the relaxed configuration convected
to the current configuration, and the terms γ̇ v

dev and γ̇ v
vol specify

the effective deviatoric and volumetric flow rates. Noting that σ e

is computed in the loaded configuration, the driving deviatoric
stress on the relaxed configuration convected to the current con-
figuration is given by σ e′ = dev[σ e], and by defining an effective
stress by the Frobenius norm τ e = ||σ e′||F ≡ (

tr[σ e′σ e′])1/2
,

the direction of the driving deviatoric stress becomes Nv
dev =

σ e′/τ e. The effective deviatoric flow rate is given by the reptation-
inspired equation [4]:

γ̇ v
dev = γ̇0

[
λv − 1 + ξ

]C·
(

τ e

τbase + βR(pe)

)m

·
(

θ

θbase

)n

, (8.47)
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where λv = √
tr[Bv∗]/3 is an effective viscoelastic chain stretch,

Bv∗ = (Jv)−2/3Fv(Fv)T is the Cauchy-Green deformation
tension, R(·) is the ramp function, pe = −(σ e

11 + σ e
22 +

σ e
33)/3 is the hydrostatic pressure, γ̇0 is a constant taken

as 1/s (1 reciprocal second) that is needed for dimensional
consistency, and C, β, m, τbase, n, and θbase are specified material
parameters.

In this framework, the temperature dependence of the flow rate
is taken to follow a power law form. Due to the high bulk modulus
of PTFE the effective volumetric flow rate is small and is here
simply represented with a constant viscosity ηvol:

γ̇ v
vol = −pe/ηvol. (8.48)

In summary, the velocity gradient of the viscoelastic flow can be
written

Ḟv = Fe−1
(

γ̇ v
dev

dev[σ e]
τ e

+ γ̇ v
volI
)

Fve. (8.49)

The rate of plastic flow is captured by a simple phenomenolog-
ical representation:

γ̇ p =
{

ab(ε − ε0)
b−1ε̇ if τ > σ0,

0 otherwise,
(8.50)

where a > 0, b > 0 and σ0 > 0 are material parameters,
τ = || dev[σ ]||F is the Frobenius norm of the deviatoric portion
of the Cauchy stress σ , and ε0 is the effective strain at which τ

becomes equal to σ0. The effective strain in Equation (8.50) is
obtained from ε = ||Eln||F , where Eln = ln[V] is the logarithmic
strain, and ε̇ is the rate of change of the effective strain. The key
feature of Equation (8.50) is that it predicts the rate of plastic flow
to be proportional to the applied strain rate and the magnitude
of the current strain. By inserting F = FveFp into L = ḞF−1,
the expression for the velocity gradient can be expanded to
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L = Lve+FveLpFve = LveL̃p. By taking W̃p = 0, the viscoplastic
velocity gradient can be written L̃p = γ̇ p dev[σ ]/τ giving

Ḟp = γ̇ pFve−1 dev[σ ]
τ

F, (8.51)

specifying the rate kinematics of the plastic flow.
The DNF model requires the material parameters in Table 8.1.

Table 8.1 Material Parameters Used by the
DNF Model

Index Symbol Description

1 μ0
A Shear modulus of network A

2 θ0 Reference temperature

3 θbase Temperature factor

4 λlock Locking stretch

5 κ Bulk modulus

6 sB Relative stiffness of network B

7 ξ Strain adjustment factor

8 C Strain exponential

9 τbase Flow resistance

10 β Pressure dependence of flow

11 m Stress exponential

12 n Temperature exponential

13 ηvol Volumetric flow viscosity

14 a Plastic flow ratio

15 b Plastic flow exponent

16 σ0 Plastic flow strength

17 α Thermal expansion coefficient
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8.4.1 Matlab Implementation of the DNF Model

The DNF material model is formulated as a set of differential
equations that need to be solved for each time increment. One way
to solve this set of equations is to use the following algorithm:

1. Known values at time ti:
• Deformation gradient: F
• State variables: Fv, Fp

2. Known values at time ti+1:
• Deformation gradient: F

3. Calculate Fv at ti+1 using an ODE solver and Equa-
tion (8.49) for Ḟv.

4. Calculate Fp at ti+1 using an ODE solver and Equa-
tion (8.51) for Ḟp.

5. Calculate σ using Equation (8.42), and Equa-
tion (8.45) at ti+1.

For the case of incompressible, uniaxial loading this algorithm
can be implemented into Matlab code as shown in Figure 8.21.

Example code that can be used to calculate the stress-strain
response is shown in Figure 8.22. The results from running this
code are shown in Figure 8.23.

8.4.2 Use of the DNF Model for Polymer Modeling

One example of how the DNF model can be used to predict
the response of a fluoropolymer with 15 vol% short glass fibers
is shown in this section. The material model calibrated to the
complete set of uniaxial tension and compression data, and all
predictions shown in Figures 8.24–8.28 were obtained using the
same set of material parameters. As is shown in these figures,
the DNF model can accurately predict the characteristic material
response.
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Figure 8.21 Matlab implementation of the DNF Model.
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Figure 8.22 Matlab test code for the DNF Model.

Figure 8.23 Predicted stress-strain results from the Matlab
implementation of the DNF model.
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Figure 8.24 Comparison between experimental data in uniaxial
tension and compression and model predictions from the DNF model.

Figure 8.25 Comparison between experimental stress relaxation data
and model predictions from the DNF model.
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Figure 8.26 Comparison between experimental volumetric
compression data and model predictions from the DNF model.

Fixture

Punch

Figure 8.27 Deformed specimen used in the punch experiments.
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Figure 8.28 Comparison between experimental data for a
fluoropolymer and model predictions from the DNF model.

8.5 Hybrid Model

The Hybrid Model (HM) is an advanced material model specif-
ically developed for predicting the large strain time-dependent be-
havior of ultra-high molecular weight polyethylene (UHMWPE)
[24, 29]. This model can also be used to predict the response of
many other types of thermoplastics.4

The kinematic framework used in the HM is based on a
decomposition of the applied deformation gradient into elastic
and viscoplastic components: F = FeFp, see Figure 8.29.

The model can also be represented using the rheological repre-
sentation shown in Figure 8.30.

4The HM model is available in the PolyUMod library [22].
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Figure 8.29 Deformation map used in the Hybrid Model.

Figure 8.30 Rheological representation of the Hybrid Model.

The Cauchy stress for the HM at a given deformation state is
given by the isotropic linear elasticity expression:

σ = 1

Je

(
2μEe + λ tr[Ee]I) , (8.52)

where Ve is left stretch tensor, Ee = ln[Ve] is the logarithmic
strain, Je = det[Fe] is the relative volume change, and μ and λ

are the Lamé constants that can be obtained from the Young’s
modulus (E) and the Poisson’s ratio (ν) from:
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μ = E

2(1 + ν)
,

λ = Eν

(1 + ν)(1 − 2ν)
.

The stress acting on the equilibrium portion of the backstress
network A is given by the eight-chain model (see Section 5.3.10):

σA = μA

Jpλp∗
L−1

(
λp∗/λlock

)
L−1

(
1/λlock

) dev
[
bp∗]+ κ(Jp − 1)I, (8.53)

where Jp = det[Fp], bp∗ = (Jp)−2/3FF� is the distortional part of
the left Cauchy-Green deformation tensor, λp∗ = (tr[bp∗]/3)1/2 is
the chain stretch in network A. This hyperelastic network requires
three material parameters: a shear modulus μA, a locking stretch
λlock, and a bulk modulus κ .

The kinematics of the viscoelastic flow portion of the back-
stress network B is represented by an approach similar to the
BB model (see Section 8.2). Specifically, the deformation gra-
dient is decomposed into elastic and viscoelastic components:
Fp = Fe

BFv
B. The stress driving the viscoplastic flow of the

backstress network is obtained from the eight-chain model:

σB = sB
μA

Je
Bλe∗

B

L−1
(
λe∗

B /λlock
)

L−1
(
1/λlock

) dev
[
be∗

B

]+ κ(Je
B − 1)I, (8.54)

where Je
B = det[Fe

B], be∗
B = (Je

B)−2/3Fe
B(Fe

B)�, λe∗
B =

(tr[be∗
B ]/3)1/2, and sB is a dimensionless parameter specifying

the relative stiffness of network B compared to network A.
At small deformations the stiffness of the backstress network

is constant and the material response is linear elastic. At inter-
mediate applied deformations viscoplastic flow is initiated by
molecular chain sliding. With increasing amount of viscoplastic
flow, the crystalline domains become distorted and start to provide
additional molecular material to the backstress network. This is
manifested by an initial reduction in the effective stiffness of the
backstress network with imposed strain and is represented in the
model by allowing the parameter sB to evolve during the plastic
deformation as follows
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ṡB = −αB · (sB − sBF) · γ̇p, (8.55)

where αB is a material parameter specifying the transition rate of
the distributed yielding, and sB in the undeformed state is sBi, and
sBf in the fully transformed state. The quantity γ̇P is the rate of
viscoplastic flow and is given by Equation (8.57).

The time derivative of the viscoelastic deformation gradient of
network B is given by

Ḟv
B = Lv

BFv
B = γ̇0 ·

(
τB

τ base
B [1 + pB/p̂]

)mB

(Fe
B)−1 dev[σB]

τB
Fp ≡ γ̇ v

BNe
B, (8.56)

where γ̇0 ≡ 1/s is a constant that is introduced to maintain
dimensional consistency, τB = || dev[σB]||F is the effective shear
stress driving the viscoelastic flow, pB = − tr[σB]/3 is the
hydrostatic pressure, and τ base

B , mB, and p̂ are material parameters.
The time rate of change of the plastic flow of network P

is captured using a similar energy activation approach as for
network B

Ḟp = LpFp = γ̇0 ·
(

τ p

τ
p
base[1 + pp/p̂]

)mp

(Re)�
dev[Tp]

τ p
ReFp ≡ γ̇ pNp, (8.57)

where γ̇0 ≡ 1/s is a constant that is introduced to maintain
dimensional consistency, τ p = || dev[Tp]||F is the effective shear
stress driving the plastic flow, pp = − tr[Tp]/3 is the hydrostatic
pressure, and τ

p
base, mp, and p̂ are material parameters.

In total, the augmented HM requires 13 material parameters
(see Table 8.2): 2 small strain elastic constants (Ee, νe), 3 hypere-
lastic constants for the back stress network (μA, λlock, κ), 6 flow
constants for the backstress network (sBi, sBf , αB, τ base

B , mB, p̂),
and two yield and viscoplastic flow parameters (τ p

base, mp).



8: Viscoplasticity Models 413

Table 8.2 Material Parameters Used by the
Augmented Hybrid Model

Index Symbol Description

1 E Young’s modulus

2 ν Poisson’s ratio

3 μA Shear modulus A

4 λlock Locking stretch

5 κ Bulk modulus

6 sBi Initial stiffness B

7 sBf Final stiffness B

8 αB Transition rate stiffness B

9 τB
base Flow resistance B

10 mB Stress exponent B

11 p̂ Pressure dependence of flow

12 τ
p
base Flow resistance p

13 mp Stress exponent p

8.5.1 Matlab Implementation of the Hybrid Model

The HM material model is formulated as a set of differen-
tial equations that need to be solved for each time increment
(Figure 8.31). One way to solve this set of equations is to use
the following algorithm:

1. Known values at time ti:
• Deformation gradient: F
• State variables: Fv

B, Fp

2. Known values at time ti+1:
• Deformation gradient: F

3. Calculate Fv
B at ti+1 using an ODE solver and Equa-

tion (8.56) for Ḟv
B.
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Figure 8.31 Matlab implementation of the Hybrid Model.

4. Calculate Fp at ti+1 using an ODE solver and Equa-
tion (8.57) for Ḟp.

5. Calculate the stress at ti+1 using Equation (8.52).

For the case of incompressible uniaxial loading, the results
from running this function are shown in Figure 8.32.

8.5.2 Use of the Hybrid Model for Polymer Modeling

The HM is useful for predicting the mechanical response of
thermoplastic materials below the glass transition temperature,
or semi-crystalline polymers below the melting temperature.
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Figure 8.32 Matlab test of the Hybrid Model.

Figure 8.33 Comparison between experimental data in uniaxial
tension for UHMWPE and predictions from the Hybrid Model.

The HM was originally developed for predicting the response of
UHMWPE in biomedical applications [24, 29], but the model is
suitable also for other thermoplastics.

Figures 8.33–8.35 compare the predictions from the HM to
experimental data for UHMWPE (crosslinked GUR 1050). The



416 Mechanics of Solid Polymers

Figure 8.34 Comparison between cyclic experimental data for
UHMWPE and predictions from the Hybrid Model.

Figure 8.35 Comparison between experimental data in uniaxial
compression for UHMWPE and predictions from the Hybrid Model.

material model was calibrated to all uniaxial tension and com-
pression data simultaneously. The results are here shown in
three separate images in order to better illustrate the predictive
capabilities of the model. These images show that the HM can
accurately predict the behavior of this material.
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8.6 Three Network Model

The Three Network Model (TNM) is a material model specifi-
cally developed for thermoplastic materials. It has many features
that are similar to the HM, but is designed to be more numerically
efficient.5

As specified by its name, the kinematics of the TNM consists
of three parts, or molecular networks, acting in parallel, see the
rheological representation in Figure 8.36.

The total deformation gradient Fappl contains both a thermal
expansion part Fth = [1 + α(θ − θ0)] I, and a mechanical defor-
mation part F:

Fappl = F Fth.

The deformation gradient acting on network A is multiplicatively
decomposed into viscoplastic and viscoelastic components:

F = Fe
AFv

A. (8.58)

Figure 8.36 Rheological representation of the constitutive model.

5The TN model is available in the PolyUMod library [22].
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The Cauchy stress acting on network A is given by the eight-chain
representation [4, 19]:

TA = μA

Je
Aλe∗

A

[
1 + θ − θ0

θ̂

] L−1
(

λe∗
A

λlock

)

L−1
(

1
λlock

) dev
[
be∗

A

]+ κ(Je
A − 1)1,

(8.59)
where Je

A = det[Fe
A], μA is the initial shear modulus, λlock is the

chain locking stretch, θ is the current temperature, θ0 = 293 K is a
fixed reference temperature, θ̂ is a material parameter specifying
the temperature response of the stiffness, be∗

A = (Je
A)−2/3Fe

A(Fe
A)�

is a Cauchy-Green deformation tensor, λe∗
A = (

tr[be∗
A ]/3

)1/2

is the effective chain stretch based on the eight-chain topology
assumption [19], L−1(x) is the inverse Langevin function, where
L(x) = coth(x) − 1/x, and κ is the bulk modulus. By explicitly
incorporating the temperature dependence of the shear modulus it
is possible to capture the stiffness variation of the material over a
wide range of temperatures.

The viscoelastic deformation gradient acting on network B is
decomposed into elastic and viscous parts:

F = Fe
BFv

B. (8.60)

The Cauchy stress acting on network B is obtained from the same
eight-chain network representation that was used for network A.

TB = μB

Je
Bλe∗

B

[
1 + θ − θ0

θ̂

] L−1
(

λe∗
B

λlock

)

L−1
(

1
λlock

) dev
[
be∗

B

]+ κ(Je
B − 1)1,

(8.61)
where Je

B = det[Fe
B], μB is the initial shear modulus, be∗

B =
(Je

B)−2/3Fe
B(Fe

B)� is a Cauchy-Green deformation tensor, and

λe∗
B = (

tr[be∗
B ]/3

)1/2 is the effective chain stretch based on the
eight-chain topology assumption [19]. In Equation (8.61), the
effective shear modulus is taken to evolve with plastic strain from
an initial value of μBi according to:

μ̇B = −β
[
μB − μBf

] · γ̇A, (8.62)
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where γ̇A is the viscoplastic flow rate defined in Equation (8.64).
This equation enables the model to better capture the distributed
yielding that is observed in many thermoplastics.

Similarly the Cauchy stress acting on network C is given by

TC = μC

Jλ∗

[
1 + θ − θ0

θ̂

] L−1
(

λ∗
λlock

)
L−1

(
1

λlock

) dev
[
b∗]+ κ(J − 1)1,

(8.63)
where J = det[F], μC is the initial shear modulus,
b∗ = J−2/3F(F)� is a Cauchy-Green deformation tensor, and
λ∗ = (tr[b∗]/3)1/2 is the effective chain stretch based on the
eight-chain topology assumption [19].

Using this framework, the total Cauchy stress in the system is
given by T = TA + TB + TC.

The total velocity gradient of network A, L = ḞF−1, can be
decomposed into elastic and viscous components: L = Le

A +
Fe

ALv
AFe−1

A = Le
A + L̃v

A, where Lv
A = Ḟv

AFv−1
A = Dv

A + Wv
A and

L̃v
A = D̃v

A + W̃v
A. The unloading process relating the deformed

state with the intermediate state is not uniquely defined since an
arbitrary rigid body rotation of the intermediate state still leaves
the state stress free. The intermediate state can be made unique in
different ways [16], one particularly convenient way that is used
here is to prescribe W̃v

A = 0. This will, in general, result in elastic
and inelastic deformation gradients both containing rotations.
The rate of viscoplastic flow of network A is constitutively
prescribed by D̃v

A = γ̇ANA. The tensor NA specifies the direction
of the driving deviatoric stress of the relaxed configuration con-
vected to the current configuration, and the term γ̇A specifies the
effective deviatoric flow rate. Noting that TA is computed in
the loaded configuration, the driving deviatoric stress on the
relaxed configuration convected to the current configuration is
given by T′

A = dev[TA], and by defining an effective stress by

the Frobenius norm τA = ||T′
A||F ≡ (

tr[T′
AT′

A])1/2, the direction
of the driving deviatoric stress becomes NA = T′

A/τA. The
effective deviatoric flow rate is given by the reptation-inspired
equation [4]:
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γ̇A = γ̇0 ·
(

τA

τ̂A + aR(pA)

)mA

·
(

θ

θ0

)n

, (8.64)

where γ̇0 ≡ 1/s is a constant introduced for dimensional consis-
tency, pA = −[(TA)11 + (TA)22 + (TA)33]/3 is the hydrostatic
pressure, R(x) = (x + |x|)/2 is the ramp function, and τ̂A, β, mA,
n, and θ0 are specified material parameters. In this framework, the
temperature dependence of the flow rate is taken to follow a power
law form. In summary, the velocity gradient of the viscoelastic
flow of network A can be written

Ḟv
A = γ̇AFe−1

A
dev[TA]

τA
F. (8.65)

The total velocity gradient of network B can be obtained very
similarly as for network A. Specifically, L = ḞF−1 can be
decomposed into elastic and viscous components: L = Le

B +
Fe

BLv
BFe−1

B = Le
B + L̃v

B, where Lv
B = Ḟv

BFv−1
B = Dv

B + Wv
B and

L̃v
B = D̃v

B + W̃v
B. The unloading process relating the deformed

state with the intermediate state is not uniquely defined since an
arbitrary rigid body rotation of the intermediate state still leaves
the state stress free. The intermediate state can be made unique in
different ways [16], one particularly convenient way that is used
here is to prescribe W̃v

B = 0. This will, in general, result in elastic
and inelastic deformation gradients both containing rotations. The
rate of viscoplastic flow of network B is constitutively prescribed
by D̃v

B = γ̇BNB. The tensor NB specifies the direction of the
driving deviatoric stress of the relaxed configuration convected
to the current configuration, and the term γ̇B specifies the ef-
fective deviatoric flow rate. Noting that TB is computed in the
loaded configuration, the driving deviatoric stress on the relaxed
configuration convected to the current configuration is given
by T′

B = dev[TB], and by defining an effective stress by the

Frobenius norm τB = ||T′
B||F ≡ (

tr[T′
BT′

B])1/2
, the direction

of the driving deviatoric stress becomes NB = T′
B/τB. The

effective deviatoric flow rate is given by the reptation-inspired
equation [4]:

γ̇B = γ̇0 ·
(

τB

τ̂B + aR(pB)

)mB

·
(

θ

θ0

)n

, (8.66)
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where γ̇0 ≡ 1/s is a constant introduced for dimensional consis-
tency, pB = −[(TB)11 + (TB)22 + (TB)33]/3 is the hydrostatic
pressure, R(x) = (x + |x|)/2 is the ramp function, and τ̂B, β, mB,
n, and θ0 are specified material parameters. In this framework, the
temperature dependence of the flow rate is taken to follow a power
law form. In summary, the velocity gradient of the viscoelastic
flow of network B can be written

Ḟv
B = γ̇BFe−1

B
dev[TB]

τB
F. (8.67)

The TNM model requires the material parameters in Table 8.3.

Table 8.3 Material Parameters Used by the Three
Network Model

Index Symbol Description

1 μA Shear modulus of network A

2 θ̂ Temperature factor

3 λL Locking stretch

4 κ Bulk modulus

5 τ̂A Flow resistance of network A

6 a Pressure dependence of flow

7 mA Stress exponential of network A

8 n Temperature exponential

9 μBi Initial shear modulus of network B

10 μBf Final shear modulus of network B

11 β Evolution rate of μB

12 τ̂B Flow resistance of network B

13 mB Stress exponential of network B

14 μC Shear modulus of network C

15 α Thermal expansion coefficient

16 θ0 Thermal expansion reference temperature
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8.6.1 Matlab Implementation of the Three
Network Model

Like the other models in this chapter, the TNM is formulated
as a set of differential equations. These equations can be quickly
solved for uniaxial loading using the equations in the following
function (Figures 8.37 and 8.38).

A Matlab function that exercises the mat_TNM() function is
shown in the following code, and the results from running the
code are shown in Figure 8.39.

8.6.2 Python Implementation of the Three
Network Model

For incompressible uniaxial loading the Three Network (TN)
model can be implemented into Python code as shown below. The
code builds upon the code from Chapter 5, and previous examples
from this chapter. First a few help functions are defined.

The time-derivative of the state variables in the TN model are
calculated in the function TNM_timeDer_3D(), listed below.
The main function for the TN model is provided by the function
TNM_3D().

The actual commands that sets everything up and calls the
main function are listed in the file TNM_Compressible_
Uniaxial.py.

The results from running this code are shown in Figure 8.40.
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Figure 8.37 Matlab implementation of the Three Network Model.

Figure 8.38 Matlab code to test the implementation of the Three
Network Model.
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Figure 8.39 Matlab test of the Three Network Model.

Figure 8.40 Predictions from the Python file TNM_Compressible_
Uniaxial.py.
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8.6.3 Use of the Three Network Model for Polymer
Modeling

The TNM has many similarities to the HM in terms of target
materials and behaviors. The TNM is specifically useful for pre-
dicting the mechanical response of thermoplastic materials below
the glass transition temperature, or semi-crystalline polymers
below the melting temperature.

Figures 8.41–8.43 compare the predictions from the TNM to
experimental data for UHMWPE (crosslinked GUR 1050). As
shown in the figures the TNM accurately predicts the behavior
of the material.

Figure 8.41 shows the response in uniaxial tension at three
different strain-rates. Figure 8.42 shows the response in cyclic
loading at an intermediate strain, and Figure 8.43 shows the
predictions in unaxial compression.

Figure 8.41 Uniaxial tensile results from the Three Network Model.
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Figure 8.42 Uniaxial cyclic results from the Three Network Model.

Figure 8.43 Uniaxial compressive results from the Three Network
Model.

8.7 Parallel Network Model

The Parallel Network (PN) model is an extension of the
TNM that allows for an arbitrary number of parallel networks,
where each network consists of an elastic component and an
optional flow component. The PN model is supported by both the
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Figure 8.44 Rheological representation of the parallel network model.

MCalibration [30] and the PolyUMod [22] software. Figure 8.44
shows a rheological representation of the PN model.

The constitutive model framework supports a large number
of different isotropic and anisotropic elastic behaviors, coupled
with a large collection of isotropic and anisotropic viscoplastic
behaviors. The model framework also supports many different
damage and failure models. These features make this model
framework one of the most advanced material model frameworks
that have been developed, and it can capture the mechanical
response of almost any polymeric material. This flexibility can
make the model challenging to setup for someone not experienced
in visualizing the response of rheological models. For that reason
this section contains a selection of simple model frameworks and
their corresponding responses. A complete description is provided
in the PolyUMod User’s Manual.

Figure 8.45 shows the stress-strain response for a simple one-
network model consisting of a Neo-Hookean element. As shown
in this figure the material response is independent of the applied
strain rate.
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Figure 8.45 Predictions from a simple PN model with hyperelastic
network.

By adding a viscoelastic flow element with a flow rate that
depends on the normalized shear stress raised to a power:

γ̇ =
(τ

τ̂

)m
, (8.68)

the material response becomes non-linear viscoelastic once the
stress becomes sufficiently large. The predicted stress-strain re-
sponse of this model framework is shown in Figure 8.46.

The stress-strain response after yielding can be modified by
adding a second network (see Figure 8.47. This second network
is typically less stiff than the first network, and makes the model
similar to the BB model discussed in Section 8.2.

Some polymers soften after yielding. The experimentally ob-
served softening can often be captured using a yield evolution
equation that control how the flow resistance evolves with plastic
strain. Figure 8.48 illustrates the predicted stress-strain response
when the flow resistance (τ̂ ) depends exponentially on the plastic
strain:

τ̂ = τ̂0

{
ff + (1 − ff ) exp

[−εp

ε̂

]}
, (8.69)
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Figure 8.46 Predictions from a simple PN model with a Neo-Hookean
hyperelastic component in series with a power-law flow element.

Figure 8.47 Predictions from a simple PN model with two parallel
networks. The second network gives the stiffening beyond the onset of
viscoplastic flow.



8: Viscoplasticity Models 431

Figure 8.48 Predictions from a simple PN model with two parallel
networks. The flow element has an exponential evolution of the flow
resistance.

where ff is the final value that τ̂ evolves to, ε̂ is the characteristic
strain for the evolution, and εp is the effective plastic strain.

8.8 Use of Viscoplasticity in Polymer
Modeling

Viscoplasticity is the most accurate material model framework
available to represent the mechanical response of all polymers.
A large collection of viscoplastic material models have been
developed in the academic literature, and this chapter reviewed
a collection of commonly used models that have been shown to
accurately capture the behavior of elastomers, thermoplastics, and
other polymers.

The material models presented here have been designed to
be easy to use and calibrate. In almost all cases the hyper-
elastic portion of the response is limited to I1-based energy
functions, making it possible to calibrate the material models to
only uniaxial tension and/or compression data. To capture the
viscous time-dependent response also requires that the material
be tested at different strain rates and preferably with loading—
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hold—unloading cycles. Multiple examples of the practical use
of viscoplastic material models are given in Chapter 11.

8.9 Python Code Examples

The behavior of a number of the viscoplastic material models
presented in this chapter were examined using short Python
functions. In each example, it was listed “Additional Code to
Polymer_Mechanics_Chap09.py”. This section summarizes the
file Polymer_Mechanics_Chap09.py. This file can also be
downloaded from this web address:
http://PolymerMechanics.com/Polymer_Mechanics_Chap09.zip.
from Polymer_Mechanics_Chap05 import *
import scipy.integrate

def ramp(x):
return (x + abs(x)) / 2.0

def toVec(A):
"""Convert a 3x3 matrix to vector"""
return array([A[0][0], A[1][1], A[2][2]])

def Dev(A):
"""Deviatoric part of a tensor"""
return A - sum(A)/3.0

def Inv(A):
"""Inverse of a tensor"""
return array([1.0, 1.0, 1.0]) / A

def pressure(A):
"""Pressure of a stress tensor"""
return -sum(A) / 3.0

def uniaxial_stress_visco(model, timeVec, trueStrainVec, params):
"""Compressible uniaxial loading. Returns true stress."""
stress = zeros(len(trueStrainVec))
lam2_1 = 1.0
FBv1 = array([1.0, 1.0, 1.0])
for i in range(1, len(trueStrainVec)):

print ’uniaxial_stress: i=’, i, ’ of ’, len(trueStrainVec)
time0 = timeVec[i-1]
time1 = timeVec[i]
lam1_0 = exp(trueStrainVec[i-1])
lam1_1 = exp(trueStrainVec[i])
lam2_0 = lam2_1
F0 = array([lam1_0, lam2_0, lam2_0])
F1 = array([lam1_1, lam2_1, lam2_1])
FBv0 = FBv1.copy()
calcS22Abs = lambda x: abs(model(F0, array([lam1_1,x,x]), \

FBv0, time0, time1, params)[0][1])
# search for transverse stretch that gives S22=0
lam2_1 = scipy.optimize.fmin(calcS22Abs, x0=lam2_0,

xtol=1e-9, ftol=1e-9, disp=False)
res = model(F0, array([lam1_1, lam2_1, lam2_1]), FBv0, time0,

http://PolymerMechanics.com/Polymer_Mechanics_Chap09.zip
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time1, params)
stress[i] = res[0][0]
FBv1 = res[1]

return stress

def BB_timeDer_3D(Fv, t, params, time0, time1, F0, F1):
"""Returns FvDot"""
mu, lamL, kappa, s, xi, C, tauBase, m, tauCut = params[:9]
F = F0 + (t-time0) / (time1-time0) * (F1-F0)
Fe = F / Fv
Stress = toVec(EC_3D(Fe, [s*mu, lamL, kappa]))
devStress = Stress - sum(Stress)/3
tau = norm(devStress)
lamCh = sqrt(sum(Fv*Fv)/3.0)
lamFac = lamCh - 1.0 + xi
gamDot = lamFac**C * (ramp(tau/tauBase-tauCut)**m)
prefac = 0.0
if tau > 0: prefac = gamDot / tau
FeInv = array([1.0, 1.0, 1.0]) / Fe
FvDot = prefac * (FeInv * devStress * F)
return FvDot

def BB_3D(F0, F1, FBv0, time0, time1, params):
"""BB-model. 3D loading specified by principal stretches.

params: [muA, lamL, kappa, s, xi, C, tauHat, m, tauCut].
Returns: (true stress, FBv1)"""

muA, lamL, kappa, s = params[:4]
StressA = toVec(EC_3D(F1, [muA, lamL, kappa]))
FBv1 = scipy.integrate.odeint(BB_timeDer_3D, FBv0, \

[time0, time1], args=(params, time0, time1, F0, F1))[1]
FBe1 = F1 / FBv1
StressB = toVec(EC_3D(FBe1, [s*muA, lamL, kappa]))
Stress = StressA + StressB
return (Stress, FBv1)

def TNM_timeDer_3D(statev, t, params, time0, time1, F0, F1):
"""Returns statevDot"""
muA, lamL, kappa = params[0:3]
tauHatA, a, mA = params[3:6]
muBi, muBf, beta = params[6:9]
tauHatB, mB, muC = params[9:12]
res = zeros(len(statev))
F = F0 + (t-time0) / (time1-time0) * (F1-F0)

# Network A: FAv
Fv = statev[0:3]
muB = statev[6]
Fe = F / Fv
Stress = toVec(EC_3D(Fe, [muA, lamL, kappa]))
tau = norm(Dev(Stress)) + 1.0e-9
gamDot = (tau / (tauHatA + a * ramp(pressure(Stress))))**mA
res[0:3] = gamDot/tau * (Inv(Fe) * Dev(Stress) * F)
res[6] = -beta * (statev[6] - muBf) * gamDot

# Network B: FBv
Fv = statev[3:6]
muB = statev[6]
Fe = F / Fv
Stress = toVec(EC_3D(Fe, [muB, lamL, kappa]))
tau = norm(Dev(Stress)) + 1.0e-9
gamDot = (tau / (tauHatB + a * ramp(pressure(Stress))))**mB
res[3:6] = gamDot/tau * (Inv(Fe) * Dev(Stress) * F)
return res

def TNM_3D(F0, F1, statev0, time0, time1, params):
"""TN-model. 3D loading specified by principal stretches.
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params: [muA, lamL, kappa, tauHatA, a, mA, muBi, mBf,
beta, tauHatB, mB, muC].

Returns: (true stress, statev1)"""
muA, lamL, kappa, s = params[0:4]
muC = params[11]
StressC = toVec(EC_3D(F1, [muC, lamL, kappa]))

statev1 = scipy.integrate.odeint(TNM_timeDer_3D, statev0, \
[time0, time1], args=(params, time0, time1, F0, F1))[1]

FAv1 = statev1[0:3]
FBv1 = statev1[3:6]
muB = statev1[6]

FAe1 = F1 / FAv1
StressA = toVec(EC_3D(FAe1, [muA, lamL, kappa]))

FBe1 = F1 / FBv1
StressB = toVec(EC_3D(FBe1, [muB, lamL, kappa]))

Stress = StressA + StressB + StressC
return (Stress, statev1)

8.10 Exercises

1. Explain the physical reason why elastomers are viscoelas-
tic.

2. Why cannot a linear viscoelastic material model predict
the strain amplitude dependence of the storage and loss
moduli, but the BB model can?

3. Calibration of the BB model
• Download the experimental data file neoprene.csv

from the PolymerFEM.com website: http://
polymerfem.com/polymer_files/Nitrile_rubber.zip

• Plot the experimental data
• Find the material parameters for the BB-model
• Plot the experimental data and the model predic-

tions in one figure
• How well does the model work?
• In what range is the model accurate?

4. Write a Matlab function file for the BB model with
Ogden-Roxburgh Mullins effect.

5. What are the main features of the AB viscoplastic mate-
rial model?

http://polymerfem.com/polymer_files/Nitrile_rubber.zip
http://polymerfem.com/polymer_files/Nitrile_rubber.zip
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6. The DNF model has been specifically designed for flu-
oropolymers. What aspects of the model make it more
suitable than, say, the AB viscoplastic model?

7. The TNM is an exceptionally versatile material model
that can predict the non-linear viscoplastic response of
most thermoplastics. What materials are the TN model
not suitable for?
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9.1 Introduction

Every finite element model requires a calibrated material model
for each material to be simulated. Each material model, in turn,
consists of two parts: a constitutive model specifying the equa-
tions that govern the material response, and a set of parameters
that go into the equations and are specific for each material.
As an example, the linear elastic material model is given by
Equation (5.7) and takes two material parameters: a Young’s
modulus and a Poisson’s ratio.

Different techniques can be used to determine the necessary
material parameters. All methods, however, require experimental
test data and the selection of an appropriate constitutive model,
followed by some procedure for determining the parameters for
the model from the experimental data. So far in this book we
have focused on the first two of these topics, but have not spent
much time discussing different procedures that can be used for
calibrating the selected material model; and clearly, if the material
parameter extraction is not done properly then the finite element
results will not be very accurate either.
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It is interesting to note that material parameter extraction is a
topic that is not that well covered in the literature, perhaps because
on the surface the theory is not very difficult. The difficulties
involved with finding the best set of material parameters for a
material model, however, are real and often a major challenge
when it comes to using an advanced material model for polymers.

There are various commercial software packages that can be
used to calibrate a material model from experimental data, and
most FE programs contain some functionality for material model
calibration. None of the major FE programs, however, include a
general purpose material model calibration tool, or even tools for
all the material models that are included in their library of material
models. One approach that is sometimes used to overcome this
problem is to rely on graphical techniques, and trial-and-error
techniques. These approaches are useful for learning how a
material model behaves, but it is difficult and time-consuming to
use these approaches in general.

This chapter will introduce the theory behind material parame-
ter extraction, and discuss different techniques that can be used
to find an appropriate set of parameters for both simple and
advanced material models.

9.2 Mathematics of Material Parameter
Determination

Determining the most appropriate material parameters for use
with a material model require: (1) a set of experimental data; and
(2), the selection of a constitutive model. As was discussed in
Chapter 2, different constitutive models need different types of
experimental data for the purpose of calibration. For example, a
hyperelastic material model will require, at a minimum, mono-
tonic loading to a final strain, in one or more loading modes.
A hyperelastic model does not need experimental data at different
strain rates, as this class of models predicts the same stress for
a given strain independent of applied strain rate. To calibrate
a viscoplastic model, on the other hand, requires also data at
different strain-rates.
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Figure 9.1 Flow diagram for material parameter extraction.

To start the material parameter extraction, many techniques
also require an initial guess of the material parameters. This
guess often does not have to be very close to the optimal set
of parameters, and prior knowledge of the parameters of similar
materials is often sufficient.

A flow chart outlining a procedure for determining the material
parameters is given in Figure 9.1.

As illustrated, the first step is to simulate the experimental
loading conditions using the selected material model with an
initial guess of the material parameters. The model predictions
are then compared to the experimental data, and the difference is
used to calculate a scalar error value of the predictions. Finally,
a numerical minimization algorithm is used to determine a new
guess of the material parameters and the procedure is repeated
until no further improvement is achieved.

This procedure can be written in the form of a mathematical
minimization problem:

min
ξ

N∑
i=1

f
(
Mi(ξ) − Ei) , (9.1)

where ξ is the vector of material parameters to optimize, N is the
number of experimental data sets, f (·) is a function for calculating
the error value of a prediction, Mi(ξ) is the model prediction of
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experimental data set i, Ei is the experimental data set i. Both
Mi and Ei are vectors of either stress or strain as discussed
in Section 9.4. This formulation, which is also called a non-
linear programming problem, needs to be solved once for each
material.

To solve this non-linear optimization problem it is necessary
to: (1) have a good strategy for determining the initial material
parameters; (2) select an appropriate error measurement function
f (·); and (3) use a good non-linear optimization finder. These
topics are discussed in more detail in the following sections.

9.3 Initial Guess of the Material Parameters

Finding a good initial guess of the material parameters is
important in order to ensure that the material parameters that
are determined by the minimization algorithm are close to the
global optimum. A poor initial guess can cause the minimization
algorithm to get stuck at an undesirable local minimum, and
it can also significantly slow down the parameter extraction
procedure.

As an example, Figure 9.2 shows experimental data for a
chloroprene rubber tested in uniaxial tension. If one tries to fit an
elastic-plastic material model with isotropic hardening using three
pairs of yield stress and plastic strain values, but use an initial
guess of the yield stress values that are too high, then the material
parameter optimization can get stuck at the solution shown in
Figure 9.2.

By selecting a better initial guess of the yield stress values,
the same material model and optimization algorithm can give the
predictions shown in Figure 9.3, which is significantly better.

This example is somewhat trivial since it is well-known that the
predicted stress-strain curves from the J2-plasticity model with
isotropic hardening is piecewise linear, and hence the predictions
in Figure 9.2 are clearly not optimal. The problem illustrated in
the example, however, can be a significant hurdle when working
with a highly non-linear material model for which the behavior of
the material model may not be clear a priori.
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Figure 9.2 Example of how a bad initial guess of the material
parameters can give poor model predictions. In this case the yield
stress values were too high.
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Figure 9.3 Example of how a better initial guess of the material
parameters can give good model predictions. The example in this
figure uses the same material model and optimization algorithm as in
Figure 9.2.
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The two most common approaches for finding a good initial
guess are:

• The Monte Carlo method
The Monte Carlo method [1, 2] is an optimiza-
tion method in which each material parameter is
first restricted to be in a certain pre-defined interval,
and then for each parameter a random value in the
specified range is generated. The set of parame-
ters is then evaluated using an error measurement
function, as discussed in Section 9.4. The whole
procedure is then repeated a number times and the
best value is used as the initial guess of the material
parameters.

• Prior knowledge of similar materials
Having prior knowledge of the material parameters
of similar materials is typically the best way to
construct a good set of initial material parameters.
Not only does it allow for the determination of a
good set of parameters, but it is also computationally
fast.

9.4 Error Measurement Functions

Once the material model has been used to simulate an experi-
mental test, the next step is to evaluate the magnitude of the error
of the model predictions. If the experiment was run in strain-
control mode, then the simulation will follow the exact same
strain history, and the difference between the model predicted and
experimental stress values can be used to evaluate the accuracy
of the model predictions, see Figure 9.4. That is, the error of the
prediction is given by:

error = f
(
σ pred − σ exp

)
, (9.2)

where σ pred is the predicted stress vector, and σ exp is the experi-
mentally determined stress vector.
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Figure 9.4 Residual error for a strain-controlled experiment.

Figure 9.5 Residual error for a stress-controlled experiment.

On the other hand, if the experiment was run in load-control
mode, then the simulation will follow the exact same stress
history, and the difference between predicted and experimental
strain values can be used to evaluate the accuracy of the model
predictions, see Figure 9.5. That is, the error of the prediction is
given by:

error = f
(
εpred − εexp

)
, (9.3)

where εpred is the predicted strain vector, and εexp is the experi-
mentally determined strain vector.
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The function f (·) in Equations (9.2) and (9.3) is typically
selected from one of the following:

• Normalized Root-Mean Square Difference
This function is defined by

f (ypred, yexp) =
√〈

(ypred − yexp)2
〉/√

〈(yexp)2〉.
(9.4)

• Normalized Mean Absolute Difference
This function is defined by

f (ypred, yexp) = 〈|ypred − yexp|〉
/

〈|yexp|〉. (9.5)

• Coefficient of Determination, R2

This function is defined by

f (ypred, yexp) = 1−
n∑

i=1

(
ypred

i − yexp
i

)2 / n∑
i=1

(
yexp

i − 〈yexp〉) .

(9.6)

In these equations 〈· · · 〉 is the arithmetic mean, ypred and yexp are
either stress or strain vectors depending on if the experiment was
run in displacement control or load control. It is important to note
that all of these equations are normalized. The normalization is
introduced in order to give equal weights to experimental data
with different magnitudes of stress and strain. It is also possible
to apply a weight function to portions of experimental data curves,
or different weights to different experimental tests.

9.5 Algorithms for Parameter Extraction

One way to find the optimal material parameters giving the
smallest difference between predicted and experimental data is
to use a custom computer program written in any mathematical
software or general purpose language. As an example, the Matlab
function find_material_params, shown below, uses the
root mean square error to evaluate the fitness of a set of model
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predictions. The function uses an optimization algorithm based
on the Nelder-Mead simplex method.

The example shown above is using the fminsearch function
which is a built-in Matlab implementation of the Nelder-Mead
Simplex method [3]. The Simplex method is often used for
material parameter extraction because of its robustness. The main
weakness of this optimization algorithm is that it can be slow
and have a tendency of getting stuck at a local minimum. There
are a number of alternative optimization methods that have been
designed to overcome these limitations. One interesting method
is the Powell method [4], another is a class of optimization
algorithms called genetic algorithm [5, 6].

Another option is to use a commercial material parameter
extraction tool, such as the MCalibration software [7]. The goal of
this chapter is to show that it is very important to have a general
purpose material parameter extraction tool, and that a material
parameter extraction tool can be immensely valuable for a finite
element simulation engineer.

9.6 Exercises

1. What are the different steps that are required for calibrat-
ing a material model?

2. What methods are commonly used to determine an initial
site of material parameters? What are the strengths and
limitations of these methods?
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3. What error measurement functions are typically used for
material parameter extraction? Which error measurement
function do you think is most useful?

4. Write a material parameter extraction tool in your favorite
mathematical software language, and use the tool to
determine the optimum Young’s modulus for a linear
elastic material model.
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10.1 Introduction

Commercial finite element (FE) codes contain a limited se-
lection of material models that are suitable for certain materials
and applications, but as has been highlighted in previous chap-
ters it is many times desirable (or even necessary) to achieve
more accurate predictions than what is possible with the built-
in options. Under these circumstances the best approach is to
use a suitable user material subroutine to represent the material
response. A user material subroutine is a source code subroutine
that is used by the FE software to calculate the stress for a
given increment in time and deformation state. User material
subroutines are typically written in Fortran, but can be written
in any computer language. The purpose of the user subroutine is
essentially to update the stress and the state variables during each
increment, as in the following:

1. Known at time t: σ , F, ξ (state variables).
2. Known at time t + dt: F.
3. Use the user material subroutine to calculate the

following at t + dt: σ , ξ .
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There are commercial options that work as plug-ins to the FE
code. The PolyUMod library [1] that was discussed in Chapter 8 is
one example. It is of course also possible to write your own user
material model, and this chapter will briefly introduce how this
can be done. The examples presented in this chapter are based
on the Neo-Hookean hyperelastic material model with a stress
given by:

σ = μ

J
dev[b∗] + κ(J − 1)I, (10.1)

where μ is the shear modulus, κ is the bulk modulus, J = det(F),
b∗ = J−2/3FF� is the distortional left Cauchy-Green tensor, and
σ is the Cauchy stress.

The following subsections provide the code for an Abaqus/
Explicit VUMAT and an Abaqus/Standard UMAT. Subroutines
for other FE solver can also be written but are left as an exercise.
The code examples listed below use real to define a floating
point variable. This code can be compiled into either single
or double precision simply by specifying the command line
argument -r8 or not to the Fortran compiler.

10.2 Abaqus/Explicit VUMAT for the
Neo-Hookean Model

Abaqus/Explicit requires that the stress is returned in a
co-rotational coordinate frame:

σ̂ = RTσR. (10.2)

Since RTb∗R = RT(F∗F∗T)R = RT(RU∗U∗RT)R = U∗2,
the required stress becomes:

σ̂ = μ

J
dev[U∗2] + κ(J − 1)I. (10.3)

These equations can be implemented in the following code:
c FILE:
c vumat_nh.f
c AUTHOR:
c Jorgen Bergstrom (jorgen@polymerFEM.com)
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c CONTENTS:
c Abaqus VUMAT subroutine for the
c Neo-Hookean (NH) model. The subroutine is an example
c of how to write a VUMAT, and not is not designed to
c be a commercial quality implementation.
c USAGE:
c 2 material constants:
c 1: mu (shear modulus)
c 2: kappa (bulk modulus)
c
c |<- column 1 begins here
c |
c *User material, constants=2
c ** mu, kappa
c 5.0, 100.0
c *Density
c 1000e-12
c

subroutine vumat(nblock, ndi, nshr, nstatev, nfieldv, nprops,
. lanneal, stepTime, totTime, dt, cmname, coordMp,
. charLen, props, density, Dstrain, rSpinInc, temp0,
. U0, F0, field0, stressVec0, state0,
. intEne0, inelaEn0, temp1, U1,
. F1, field1, stressVec1, state1, intEne1, inelaEn1)
implicit none
integer nblock, ndi, nshr, nstatev, nfieldv, nprops, lanneal
real stepTime, totTime, dt
character*80 cmname
real coordMp(nblock,*)
real charLen, props(nprops), density(nblock),

. Dstrain(nblock,ndi+nshr), rSpinInc(nblock,nshr),

. temp0(nblock), U0(nblock,ndi+nshr),

. F0(nblock,ndi+nshr+nshr), field0(nblock,nfieldv),

. stressVec0(nblock,ndi+nshr), state0(nblock,nstatev),

. intEne0(nblock), inelaEn0(nblock), temp1(nblock),

. U1(nblock,ndi+nshr), F1(nblock,ndi+nshr+nshr),

. field1(nblock,nfieldv), stressVec1(nblock,ndi+nshr),

. state1(nblock,nstatev), intEne1(nblock), inelaEn1(nblock)

c local variables
real F(3,3), B(3,3), J, t1, t2, t3, mu, kappa
integer i

mu = props(1)
kappa = props(2)

c loop through all blocks
do i = 1, nblock

c setup F (upper diagonal part)
F(1,1) = U1(i,1)
F(2,2) = U1(i,2)
F(3,3) = U1(i,3)
F(1,2) = U1(i,4)
if (nshr .eq. 1) then

F(2,3) = 0.0
F(1,3) = 0.0

else
F(2,3) = U1(i,5)
F(1,3) = U1(i,6)

end if

c calculate J
t1 = F(1,1) * (F(2,2)*F(3,3) - F(2,3)**2)
t2 = F(1,2) * (F(2,3)*F(1,3) - F(1,2)*F(3,3))
t3 = F(1,3) * (F(1,2)*F(2,3) - F(2,2)*F(1,3))
J = t1 + t2 + t3
t1 = J**(-2.0/3.0)
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c Bstar = J^(-2/3) F Ft (upper diagonal part)
B(1,1) = t1*(F(1,1)**2 + F(1,2)**2 + F(1,3)**2)
B(2,2) = t1*(F(1,2)**2 + F(2,2)**2 + F(2,3)**2)
B(3,3) = t1*(F(1,3)**2 + F(2,3)**2 + F(3,3)**2)
B(1,2) = t1*(F(1,1)*F(1,2)+F(1,2)*F(2,2)+F(1,3)*F(2,3))
B(2,3) = t1*(F(1,2)*F(1,3)+F(2,2)*F(2,3)+F(2,3)*F(3,3))
B(1,3) = t1*(F(1,1)*F(1,3)+F(1,2)*F(2,3)+F(1,3)*F(3,3))

c Stress = mu/J * Dev(Bstar) + kappa*log(J)/J * Eye
t1 = (B(1,1) + B(2,2) + B(3,3)) / 3.0
t2 = mu/J
t3 = kappa * log(J) / J
StressVec1(i,1) = t2 * (B(1,1) - t1) + t3
StressVec1(i,2) = t2 * (B(2,2) - t1) + t3
StressVec1(i,3) = t2 * (B(3,3) - t1) + t3
StressVec1(i,4) = t2 * B(1,2)
if (nshr .eq. 3) then

StressVec1(i,5) = t2 * B(2,3)
StressVec1(i,6) = t2 * B(1,3)

end if

end do
return
end

10.3 Abaqus/Implicit UMAT for the
Neo-Hookean Model

The Abaqus UMAT subroutine is very similar to the VUMAT
presented above but it is based on the total deformation gradient
and it also needs the Jacobian matrix, which is the partial
derivative of the stress increment with respect to the applied strain
increment.

The Jacobian for this model is given by: c = ∂�σ/∂�ε.
Here, due to space constraints, each column of [c]ij is presented
individually:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11

c21

c31

c41

c51

c61

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= μ

9J

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8b∗
11 + 2b∗

22 + 2b∗
33

−4b∗
11 − 4b∗

22 + 2b∗
33

−4b∗
11 + 2b∗

22 − 4b∗
33

3b∗
12

3b∗
13

−6b∗
23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ κ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J
J
J
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (10.4)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c12

c22

c32

c42

c52

c62

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= μ

9J

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4b∗
11 − 4b∗

22 + 2b∗
33

2b∗
11 + 8b∗

22 + 2b∗
33

2b∗
11 − 4b∗

22 − 4b∗
33

3b∗
12

−6b∗
13

3b∗
23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ κ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J
J
J
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (10.5)

⎡
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c63

⎤
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= μ

9J

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4b∗
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33
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⎤
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+ κ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J
J
J
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (10.6)

⎡
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c16

c26

c36

c46

c56

c66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= μ

6J

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4b∗
23

2b∗
23

2b∗
23

3b∗
13

3b∗
12

3b∗
22 + 3b∗

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (10.9)
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!
! FILE:
! umat_NH.F90
! AUTHOR:
! Jorgen Bergstrom, Ph.D.
! Copyright Jorgen Bergstrom.
! CONTENTS:
! Abaqus UMAT subroutine for the Neo-Hookean (NH) model.
! The subroutine is an example and not is not designed to
! be a commercial quality implementation.
! USAGE:
! 2 material constants:
! 1: mu (shear modulus)
! 2: kappa (bulk modulus)

subroutine umatErr(str)
implicit none
character(LEN=*), intent(in) :: str
print ’(a,a)’, "UMAT Error: ", trim(str)
stop 3

end subroutine umatErr

subroutine umat(strVec, statev, ddsdde, &
energyElast, energyPlast, energyVisc, &
rpl, ddsddt, drplde, drpldt, stran, dstran, time, dtime, &
temp, dtemp, predef, dpred, cmname, ndi, nshr, ntens, &
nstatev, inProps, nrInProps, coords, drot, pnewdt, celent, &
dfgrd0, dfgrd1, noel, npt, layer, kspt, kstep, kinc)

implicit none
integer, intent (in) :: ndi, nshr, ntens, nstatev, nrInProps, &

noel, npt, layer, kspt, kstep, kinc
character(len=8), intent(in) :: cmname
real, intent(inout) :: strVec(ntens), statev(nstatev)
real, intent(inout) :: energyElast, energyPlast, energyVisc
real, intent(out) :: ddsdde(ntens,ntens), rpl, &

ddsddt(ntens), drplde(ntens), drpldt
real, intent(in) :: stran(ntens), dstran(ntens), time(2), dtime, &

temp, dtemp, predef(1), dpred(1)
real, intent(in) :: inProps(nrInProps), coords(3), drot(3,3)
real, intent(out) :: pnewdt
real, intent(in) :: celent, dfgrd0(3,3)
real, intent(inout) :: dfgrd1(3,3)

! local variables
real :: J, a1, a2, kk, F(3,3), b(3,3), bs(3,3), Stress(3,3),
devbs(3,3)
real :: tmp, Eye(3,3), mu, kappa, I1s

! setup variables
if (nrInProps /= 2) call umatErr("Wrong number of input parameters")
mu = inProps(1)
kappa = inProps(2)
if (mu < 0) call umatErr("Parameter mu has to be positive")
if (kappa < 0) call umatErr("Parameter kappa has to be positive")
if (ndi /= 3 .or. nshr /= 3) call umatErr("This umat only works for
3D elements")
pnewdt=2.0

! take the time-step
F = dfgrd1
J = F(1,1) * (F(2,2)*F(3,3) - F(2,3)*F(3,2)) + &

F(1,2) * (F(2,3)*F(3,1) - F(2,1)*F(3,3)) + &
F(1,3) * (F(2,1)*F(3,2) - F(2,2)*F(3,1))

b(1,1) = F(1,1)*F(1,1) + F(1,2)*F(1,2) + F(1,3)*F(1,3)
b(1,2) = F(1,1)*F(2,1) + F(1,2)*F(2,2) + F(1,3)*F(2,3)
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b(1,3) = F(1,1)*F(3,1) + F(1,2)*F(3,2) + F(1,3)*F(3,3)
b(2,1) = b(1,2)
b(2,2) = F(2,1)*F(2,1) + F(2,2)*F(2,2) + F(2,3)*F(2,3)
b(2,3) = F(2,1)*F(3,1) + F(2,2)*F(3,2) + F(2,3)*F(3,3)
b(3,1) = b(1,3)
b(3,2) = b(2,3)
b(3,3) = F(3,1)*F(3,1) + F(3,2)*F(3,2) + F(3,3)*F(3,3)

bs = J**(-2.0/3.0) * b

tmp = bs(1,1) + bs(2,2) + bs(3,3)
devbs = bs
devbs(1,1) = bs(1,1) - tmp/3.0
devbs(2,2) = bs(2,2) - tmp/3.0
devbs(3,3) = bs(3,3) - tmp/3.0

Eye = 0.0
Eye(1,1) = 1.0
Eye(2,2) = 1.0
Eye(3,3) = 1.0

Stress = mu/J * devbs + kappa*(J-1.0) * Eye

I1s = bs(1,1) + bs(2,2) + bs(3,3)
energyElast = 0.5*mu*(I1s - 3.0) + 0.5*kappa*(J-1.0)**2.0

! calculate the Jacobian
a1 = mu / (9.0 * J)
a2 = mu / (6.0 * J)
kk = kappa * J

ddsdde(1,1) = a1 * ( 8*bs(1,1) + 2*bs(2,2) + 2*bs(3,3)) + kk
ddsdde(2,1) = a1 * (-4*bs(1,1) - 4*bs(2,2) + 2*bs(3,3)) + kk
ddsdde(3,1) = a1 * (-4*bs(1,1) + 2*bs(2,2) - 4*bs(3,3)) + kk
ddsdde(4,1) = a1 * 3*bs(1,2)
ddsdde(5,1) = a1 * 3*bs(1,3)
ddsdde(6,1) = a1 * (-6)*bs(2,3)

ddsdde(1,2) = a1 * (-4*bs(1,1) - 4*bs(2,2) + 2*bs(3,3)) + kk
ddsdde(2,2) = a1 * ( 2*bs(1,1) + 8*bs(2,2) + 2*bs(3,3)) + kk
ddsdde(3,2) = a1 * ( 2*bs(1,1) - 4*bs(2,2) - 4*bs(3,3)) + kk
ddsdde(4,2) = a1 * 3*bs(1,2)
ddsdde(5,2) = a1 * (-6)*bs(1,3)
ddsdde(6,2) = a1 * 3*bs(2,3)

ddsdde(1,3) = a1 * (-4*bs(1,1) + 2*bs(2,2) - 4*bs(3,3)) + kk
ddsdde(2,3) = a1 * ( 2*bs(1,1) - 4*bs(2,2) - 4*bs(3,3)) + kk
ddsdde(3,3) = a1 * ( 2*bs(1,1) + 2*bs(2,2) + 8*bs(3,3)) + kk
ddsdde(4,3) = a1 * (-6)*bs(1,2)
ddsdde(5,3) = a1 * 3*bs(1,3)
ddsdde(6,3) = a1 * 3*bs(2,3)

ddsdde(1,4) = a2 * 2*bs(1,2)
ddsdde(2,4) = a2 * 2*bs(1,2)
ddsdde(3,4) = a2 * (-4)*bs(1,2)
ddsdde(4,4) = a2 * 3*(bs(1,1) + bs(2,2))
ddsdde(5,4) = a2 * 3*bs(2,3)
ddsdde(6,4) = a2 * 3*bs(1,3)

ddsdde(1,5) = a2 * 2*bs(1,3)
ddsdde(2,5) = a2 * (-4)*bs(1,3)
ddsdde(3,5) = a2 * 2*bs(1,3)
ddsdde(4,5) = a2 * 3*bs(2,3)
ddsdde(5,5) = a2 * 3*(bs(1,1) + bs(3,3))
ddsdde(6,5) = a2 * 3*bs(1,2)
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ddsdde(1,6) = a2 * (-4)*bs(2,3)
ddsdde(2,6) = a2 * 2*bs(2,3)
ddsdde(3,6) = a2 * 2*bs(2,3)
ddsdde(4,6) = a2 * 3*bs(1,3)
ddsdde(5,6) = a2 * 3*bs(1,2)
ddsdde(6,6) = a2 * 3*(bs(2,2) + bs(3,3))

! return variables:
strVec(1) = Stress(1,1)
strVec(2) = Stress(2,2)
strVec(3) = Stress(3,3)
strVec(4) = Stress(1,2)
strVec(5) = Stress(1,3)
strVec(6) = Stress(2,3)
energyPlast = 0.0
energyVisc = 0.0
rpl = 0.0
ddsddt(1) = 0.0
drplde = 0.0
drpldt = 0.0

end subroutine umat

Reference

[1] PolyUMod, http://PolyUMod.com/.
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11.1 Introduction

The previous chapters covered different experimental testing
techniques, a continuum mechanics review, and a variety of differ-
ent material models. This chapter will combine these topics into
concrete case studies illustrating how different material models
work by comparing the accuracy of the different approaches.
The goal is to present, by example, what works and what does
not work. Each case study covers a different material, or ma-
terial class, and all results presented here were obtained using
MCalibration.

11.2 Acrylate-Butadiene Rubber

Acrylate-Butadiene rubber (ABR) is a synthetic saturated rub-
ber that is used in sealing and packaging applications. The me-
chanical response of ABR is characteristic of most elastomers and
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consists of non-linear viscoelasticity (non-LVE) with significant
strain-rate dependence.

Figures 11.1 and 11.2 show uniaxial compressive data for a
lightly filled ABR. The material was tested at two true strain rates
of −0.01/s and −0.1/s, using compression followed by unloading
segments. The cyclic response of the material was also examined
by compressing the material to a true strain of −0.3, followed by
600 strain cycles with a strain amplitude of 2.5% at 1 Hz. The
average stress in the material is shown to relax during the cyclic
loading.

The experimentally determined mechanical response of the
ABR can be represented using many different material models,
some of which work better than others. Since ABR exhibits
hysteresis and energy dissipation during cyclic loading one cannot
expect a hyperelastic model to provide an accurate representation
of the material response. Figure 11.3 shows the best possible
calibration of the Yeoh hyperelastic model (see Section 5.3.8).
This model has an average error (calculated using the NMAD
error measured defined in Equation (9.5)) of 17%. As shown in
Table 11.1, other hyperelastic models will have similar errors in
the predictions.

Figure 11.1 Uniaxial compression data for ABR at two different
strain rates.
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Figure 11.2 Stress-time response of the ABR during the first 50 and
the last 50 load cycles.

Figure 11.3 Comparison between experimental data for ABR and the
best model predictions from the Yeoh hyperelastic model.
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Table 11.1 Summary of Results from Material
Model Calibrations for the ABR

Material Model Error in Model
Calibration (%)

Arruda-Boyce eight-chain 16.9

Yeoh 16.8

Linear viscoelasticity (Yeoh,
five Prony series terms)

9.8

Three Network model 6.9

Bergstrom-Boyce (BB) 6.8

BB with Mullins damage 3.0

Higher order Parallel Network
models with Mullins damage

3.0

Another candidate material model is LVE combined with
Yeoh hyperelasticity (see Chapter 6). Since the strains in
this case are relatively large it is no surprise that LVE does
not accurately capture the material response. Figure 11.4
compares the experimental data with the predictions from LVE
(based on Yeoh hyperelasticity and five Prony series terms).
The average error is about 10%, which is better than for
hyperelasticity but still not an accurate representation of the true
response.

To accurately represent the response of this material requires a
nonlinear viscoelastic material model. Figure 11.5 shows the pre-
dictions from the Bergstrom-Boyce (BB) model (see Section 8.2)
with Ogden-Roxburgh Mullins damage (see Section 5.7.1). This
model does an excellent job at capturing the material response.
The average error in the predictions is about 3% (as determined
by the NMAD fitness value). To achieve this level of accuracy it
is necessary to include Mullins damage in the model in order to
capture the increased tangent stiffness right after strain reversal. It
would, of course, have been nice to have additional experimental
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Figure 11.4 Comparison between experimental data for ABR and the
best model predictions from a linear viscoelastic material model based
on Yeoh hyperelasticity. The linear viscoelastic model was based on a
five-term Prony series.

Figure 11.5 Comparison between experimental data for ABR and the
best model predictions from BB model with Mullins softening.

data in order to further validate the accumulation of Mullins
damage at different strain levels.

The original version of the BB model (without Mullins dam-
age) in this case has an average error of 7%. The BB model is
special case of the Parallel Network (PN) model that was covered
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in Section 8.7 of Chapter 8 that is using two parallel networks.
Adding additional network in this case does not provide any
additional truthfulness to the predictions. As is often the case for
rubbers, the Three Network (TN) model (see Section 8.6) is less
accurate than the BB model even though it has three nonlinear
viscoplastic networks compared to only two for the BB model.
The reason for the superior predictions of the BB model is its
Equation (8.19) for the viscoelastic flow rate that also considers
the strain-dependence of the viscosity.

11.3 Chloroprene Rubber

Chloroprene rubber (CR) is a synthetic rubber that is also
known by the trade name Neoprene. CR has a good balance of
properties, including good chemical stability and usefulness over
a wide temperature range. Examples of the uniaxial compressive
response are summarized in Figures 11.6 and 11.7. The rubber
material was tested at four different strain rates in uniaxial
compression to a true strain of −0.8, followed by unloading back
to zero stress. Some of the experiments contained 30 s long stress
relaxation segments during both the loading and the unloading.

Figure 11.6 Uniaxial compression data for a CR with 7 vol% carbon
black.
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Figure 11.7 Stress relaxation response of a CR with 7 vol%
carbon black.

Table 11.2 Summary of Results from Material Model
Calibrations for the Chloroprene Rubber

Material Model Error in Model
Calibration (%)

Arruda-Boyce eight-chain 18.7

Yeoh 17.6

Linear viscoelasticity (Yeoh,
five Prony series terms)

9.9

BB 5.6

BB with Mullins damage 4.4

Three Network model 6.0

Parallel Network model with BB-type
flow and Mullins damage

4.2

Similar to the example in the previous section, CR can be rep-
resented using different material models. Table 11.2 summarizes
the accuracy of various alternative material models. Like virtually
all elastomers, CR exhibits hysteresis during cyclic loading, so a
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Figure 11.8 Comparison between experimental data for CR and the
best model predictions from the Yeoh hyperelastic model.

hyperelastic model is unable to accurately represent the material
behavior. As is shown in Figure 11.8, the best Yeoh hyperelastic
model (see Section 5.3.8) has an average error of 18%
(calculated using the NMAD error defined in Equation (9.5)).
Other hyperelastic material models have similar predictive
accuracy.

A slightly more advanced material model is LVE.
Figure 11.9 shows the predicted stress-strain response of a Yeoh
hyperelasticity-based linear viscoelastic model with five Prony
series terms. The error of the stress-strain predictions is about
10%. This model does not provide accurate predictions of the
material response, but is more accurate than a hyperelastic model.

An accurate material model for the CR is the BB model (Sec-
tion 8.2) with Ogden-Roxburgh Mullins damage (Section 5.7.1).
The average error in the model predictions is about 4.4%. Also in
this case, this level of accuracy can only be obtained by combining
non-LVE from the BB model with Mullins damage in order to
capture the increased tangent stiffness right after strain reversal.
If the BB model is used without Mullins damage then the error in
the model predictions is about 6% (Figure 11.10).
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Figure 11.9 Comparison between experimental data for CR and the
best model predictions from a linear viscoelastic model.

Figure 11.10 Comparison between experimental data for CR and the
best model predictions from the BB model with Mullins damage.
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Adding one additional viscoelastic network to the BB model
increases the accuracy to 4.2%. Adding further networks does not
further improve the accuracy in any significant way. Also for this
elastomer the TN model is less accurate than the BB model due
to the lack of a flow equation with strain dependence.

11.4 Nitrile Rubber

Nitrile rubber, which is also called Buna-N or NBR, is an
unsaturated synthetic copolymer. It is commonly used to make
hoses, seals, gloves, and many other industrial products. The me-
chanical response of nitrile rubber can be tested in many different
ways. The example shown here used uniaxial compression at
different strain rates and strain cycles. Figures 11.11 and 11.12
depict the mechanical response at three strain rates (−0.5, −0.1,
and −0.01/s). In each test, multiple stress relaxation segments
were inserted. The slow strain rate test had 14 stress relaxation
segments inserted, each 300 s long. The two faster tests had 30 s
long stress relaxation segments. As is typically seen with rubbers,
the stress magnitude goes down during the stress relaxation during
the loading phase, and the stress magnitude goes up during the
stress relaxation during the unloading phase (Table 11.3).

Figure 11.11 Uniaxial compression data for a nitrile rubber.
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Figure 11.12 Stress-time response of the nitrile rubber tested at a true
strain rate of −0.5/s.

Table 11.3 Summary of Results from Material
Model Calibrations of the Nitrile Rubber

Material Model Error in Model
Calibration (%)

Arruda-Boyce eight-chain 17.7

Yeoh 17.1

Linear viscoelasticity (Yeoh) 9.8

BB 5.3

BB with Mullins damage 4.6

Higher order Parallel Network
models with Mullins damage

4.6

Like the other two elastomers discussed in this chapter, nitrile
rubber exhibits significant viscoelasticity and hysteresis making
hyperelastic models unable to capture the experimental response.
Figure 11.13 shows that hyperelastic models have an error of
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Figure 11.13 Comparison between experimental data for nitrile
rubber and the best model predictions from the Yeoh hyperelastic
model.

approximately 17% (calculated using the NMAD error defined
in Equation (9.5)).

The next step after trying a hyperelastic model is to exam-
ine a linear viscoelastic material model. Figure 11.14 shows a
comparison between the experimental data for the nitrile rubber
and the best predictions from a linear viscoelastic material model
based on Yeoh hyperelasticity and a five-term Prony series repre-
sentation. Since the material response is nonlinear viscoelastic, a
linear viscoelastic model cannot accurately represent the material
response. The average error is about 9.0%.

The stress-strain response of the nitrile rubber can be accurately
represented using the BB model (Section 8.2) with Ogden-
Roxburgh Mullins damage (Section 5.7.1). This model accurately
represents the material response. The average error of the predic-
tions is about 4.6% (as determined by the NMAD fitness value).
The original BB model without Mullins damage in this case has
an error of about 5.3%. Adding additional nonlinear viscoelastic
networks to the material model framework does not improve the
predicted accuracy (Figure 11.15).



11: Material Modeling Case Studies 467

Figure 11.14 Comparison between experimental data for nitrile rubber
and the best model predictions from a linear viscoelastic material
model based on Yeoh hyperelasticity. The linear viscoelastic model
was based on a five-term Prony series.

Figure 11.15 Comparison between experimental data for nitrile rubber
and the best model predictions from the BB model with Mullins
softening.
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11.5 Santoprene

Santoprene is a thermoplastic vulcanizates (TPV) consisting of
EPDM rubber particles inside a polypropylene (PP) matrix. Due
to this combination, Santoprene has properties that are similar to
both elastomers and thermoplastics. Figure 11.16 shows uniaxial
tensile stress-strain data at three different strain rates. One of the
tests in this figure contained 10 load-unload cycles at intermediate
strains. Figure 11.17 shows the results of another cyclic loading
experiment on the same material. In this case, the strain was
held constant for 10 min at three strain levels. The relaxation
segments, indicated by red lines in the figure, show that the
material undergoes significant relaxation when the strain is held
constant.

The accuracy of many different material models to represent
the experimental data of the Santoprene are examined in this
section. Table 11.4 summarizes the findings.

Figure 11.18 shows that a hyperelastic material model cannot
represent the viscoplastic response of a Santoprene. This figure
shows that a Yeoh hyperelastic model has an average error in

Figure 11.16 Uniaxial tension data for a Santoprene at three different
strain rates.
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Figure 11.17 Uniaxial tension data for a Santoprene. The red-line
segments show the stress relaxation behavior at three strain levels.

the stress-strain predictions of about 41%. Hence, all hyperelastic
models are inadequate for anything but the most basic FE study.

LVE is a more promising candidate model framework, see Fig-
ure 11.19). The LVE model is here based on Yeoh hyperelasticity
and a five-term Prony series. The average error of the model
predictions is 16.3%.

Since the matrix material of Santoprene is PP it is worthwhile to
examine the utility of metal plasticity models. Figure 11.20 shows
the predictions from an isotropic hardening plasticity model with
rate-dependence. Specifically, the following Abaqus keywords
were used:

*Elastic

*Plastic, hardening=isotropic

*Rate Dependent, type=power law

The average error of the model calibration is 18%.
In this example, the material is exposed to cyclic loading, it is

therefore more appropriate to use a kinematic hardening plasticity
model. Figure 11.21 shows the predicted response of an elastic-
plastic material model with combined kinematic hardening and
one backstress network. The average error of this model is 19%.
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Table 11.4 Summary of Results from Material Model
Calibrations for Santoprene

Material Model Error in Model
Calibration (%)

Arruda-Boyce eight-chain 42.5

Yeoh 38.8

Elastic-plastic with kinematic hardening
(one backstress network)

18.6

Elastic-plastic with isotropic hardening
and rate-dependence

17.6

Linear viscoelasticity (Yeoh) 16.3

Three Network model 9.8

Dual Network Fluoropolymer (DNF) model 9.5

Elastic-plastic with kinematic hardening and
rate-dependence (three backstress
networks)

9.0

BB 7.5

BB with Mullins damage 5.6

Parallel Network model with three networks
of BB type and Mullins damage

2.7

Parallel Network model with four or more
networks of BB type and Mullins damage

2.7

The accuracy of the material model can be enhanced by using
three backstress networks and including plastic strain creep. As
shown in Figure 11.22, the average of this model is 9.0%.

A completely different modeling approach is provided by
the BB model, and multi-network versions of this model. Fig-
ure 11.23 shows that the basic BB model captures the ex-
perimental data reasonably well with an average error of the
predictions of 7.5%. This quality of the predictions of this model
can be strengthened by including Mullins damage through the
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Figure 11.18 Comparison between experimental data for Santoprene
and the best model predictions from the Yeoh hyperelastic model.

Figure 11.19 Comparison between experimental data for Santoprene
and the best model predictions from a linear viscoplastic model.
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Figure 11.20 Comparison between experimental data for Santoprene
and the best model predictions from an elastic-plastic material model
with isotropic hardening and rate-dependence.

Figure 11.21 Comparison between experimental data for Santoprene
and the best model predictions from an elastic-plastic material model
with combined kinematic hardening and one backstress network.
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Figure 11.22 Comparison between experimental data for Santoprene
and the best model predictions from an elastic-plastic material model
with combined kinematic hardening, plastic creep, and three
backstress networks.

Figure 11.23 Comparison between experimental data for Santoprene
and the best model predictions from the BB model.



474 Mechanics of Solid Polymers

Figure 11.24 Comparison between experimental data for Santoprene
and the best model predictions from the BB model with Mullins
damage.

Ogden-Roxburgh approach. Figure 11.24 illustrates a signifi-
cantly improved visual appearance of the predicted response. The
average error for this model is 5.6%.

The most accurate material model in this case is the three
network extension of the BB model with Mullins damage. That
is, the model framework consists of three parallel networks where
the first network is a simple Yeoh hyperelastic network, the
second and third networks consist of a Neo-Hookean spring
in series with a BB viscoplastic flow element. The predicted
response of this model is shown in Figures 11.25 and 11.26. The
average error of this model calibration is 2.7%.

11.6 High-Density Polyethylene

High-density polyethylene (HDPE) is a semicrystalline poly-
mer that is commonly used in both industrial and consumer
products. The mechanical response of HDPE is similar to many
soft thermoplastics in that it starts to undergo viscoplastic de-
formations at very small strains. Figure 11.27 shows the stress-
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Figure 11.25 Comparison between experimental data for Santoprene
and the best model predictions from the PN model with three networks
with BB type flow and Mullins damage.

Figure 11.26 Comparison between experimental data for Santoprene
and the best model predictions from the PN model with three networks
with BB type flow and Mullins damage.
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Figure 11.27 Uniaxial tension data for a HDPE.

Figure 11.28 Stress relaxation data for a HDPE.

strain response of a HDPE tested in uniaxial tension at three
different strain rates. The figure also shows the stress relaxation
response when loaded to 3% and 7% engineering strain for 15 h.
Under these conditions the stress relaxes by more than 50%
(Figure 11.28).
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Table 11.5 Summary of Results from Material Model
Calibrations for HDPE

Material Model Error in Model
Calibration (%)

Elastic-plastic with isotropic hardening
and rate-dependence

58.5

Arruda-Boyce eight-chain 38.1

Yeoh 27.2

Linear viscoelasticity (Yeoh) 37.2

BB 8.0

Parallel Network model with two
networks (Power flow)

7.9

Elastic-plastic with kinematic hardening
and rate-dependence (three
backstress)

7.8

DNF model 7.6

Three Network model 5.2

Parallel Network model with three
networks (Power flow)

5.0

Parallel Network model with four
networks (Power flow)

4.8

Parallel Network model with five
networks (Power flow)

4.7

As is summarized in Table 11.5, there are many different
candidate material models than can be used to model the response
of HDPE with varying degree of success.

As a first example, Figure 11.30 presents the predictions
from an elastic-plastic material model with isotropic hardening
and a yield stress that depends on the plastic strain rate (see
Section 7.2). This material model can represent the monotonic
tension response at different strain rates, but since it is based



478 Mechanics of Solid Polymers

on isotropic hardening the unloading response is quite inaccurate
(Figure 11.29).

Similarly, a hyperelastic material model is not adequate for
HPDE. Figure 11.30 illustrates that the Arruda-Boyce eight-chain
model is not suitable for HDPE.

Figure 11.29 Comparison between experimental data for HDPE and
the best model predictions from an elastic-plastic material model with
combined kinematic hardening and one backstress network.

Figure 11.30 Comparison between experimental data for HDPE and
the best model predictions from the Arruda-Boyce eight-chain model.
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Figure 11.31 Comparison between experimental data for HDPE and
the best model predictions from a linear viscoplastic model.

Due to the large amount of plastic deformation that occurs in
the material at finite deformations it is not possible to use a linear
viscoelastic material model for the HDPE data (see Figure 11.31).

The experimental data for the HDPE can be accurately captured
using the PN model (see Section 8.7). Figures 11.32–11.35
demonstrate that the accuracy of the model calibration increases
with increasing number of networks in the model representation.
In this example, the hyperelastic components of the PN model
were taken as Yeoh elements, and the viscoplastic flow elements
were taken as a simple Power-flow model (see Equation (8.31)).

11.7 Polytetrafluoroethylene

Polytetrafluoroethylene (PTFE) is a solid fluorocarbon polymer
containing only carbon and fluorine. PTFE has a lower friction co-
efficient than most other materials, and it has excellent dielectric
properties. It is commonly used in many industrial and medical
device applications.

The mechanical behavior of PTFE is characterized by signifi-
cant nonlinearities in terms of applied loading rates and loading
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Figure 11.32 Comparison between experimental data for HDPE and
the best model predictions from the PN model with two networks
with Power-law type flow.

Figure 11.33 Comparison between experimental data for HDPE and
the best model predictions from the PN model with three networks with
Power-law type flow.

history. Figures 11.36–11.38 show stress-strain data for a PTFE
material filled with 10 vol% glass fibers [1]. As is typical for
PTFE the yield stress is significantly higher in compression
than in tension. This difference in behavior between tension and
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Figure 11.34 Comparison between experimental data for HDPE and
the best model predictions from the PN model with five networks
with Power-law type flow.

Figure 11.35 Comparison between experimental data for HDPE and
the best model predictions from the PN model with five networks with
Power-law type flow.

compression is partly caused by a small amount of microporosity
that is characteristic of PTFE. These figures also show that both
the deviatoric and volumetric response undergoes viscoplastic
relaxation under the tested conditions.
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Figure 11.36 Uniaxial tension and compression data for a PTFE
material. The yield stress is higher in compression than in tension.

Figure 11.37 Uniaxial tension data for a PTFE material tested at
multiple strain rates. The tests include loading, unloading, and stress
relaxation segments.

The predictive capabilities of a number of different candidate
material models are summarized in Table 11.6.

This comprehensive experimental data set containing both
tension and compression data at different strain rates is chal-
lenging for many material models to capture. An elastic-plastic
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Figure 11.38 Volumetric compression data for a PTFE material.

material model, in this case without strain-rate dependence, is
clearly unable to represent the material response as shown in
Figure 11.39. One of the main issues with this material model
is that it is unable to distinguish between flow resistance in
tension and compression. Note that all experimental data and
model predictions are plotted in the same graph in order to get
one comprehensive view of the data.

A significantly more accurate representation of the data is
achieved by a two-network PN model where each network con-
sists of a Neo-Hookean hyperelastic component in series with a
Power-law flow element with pressure dependence. The predic-
tions of this model are shown in Figure 11.40. The average error
in the model predictions is 16%.

An elastic-plastic material model with combined kine-
matic hardening and creep-based rate-dependence captures
the experimental data surprisingly well in this case. As
shown in Figure 11.41, this model has an average error of
about 16.3%.

The DNF model is specifically designed for fluoropolymers
and as shown in Figure 11.42 reasonably accurately captures
the complete experimental data setup for the fiber filled PTFE.
The main limitation of the DNF model is that it under predicts
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Table 11.6 Summary of Results from Material Model
Calibrations for HDPE

Material Model Error in Model
Calibration (%)

Neo-Hookean 79.0

Arruda-Boyce eight-chain 72.0

Linear viscoelasticity (Yeoh) 52.5

Yeoh 49.6

Elastic-plastic with isotropic hardening 32.7

ANSYS Chaboche with Perzyna
rate-dependence

29.0

BB 19.7

Parallel Network model with two networks
(Power flow)

16.4

Elastic-plastic with kinematic hardening and
rate-dependent creep (three backstress)

16.3

DNF model 14.8

Parallel Network model with three networks
(Power flow)

14.0

Parallel Network model with four networks
(Power flow)

13.5

Three Network model 10.8

the recovery during unloading. The average error in the model
predictions is 15%.

The most accurate material model for the PTFE data is the TN
model. Figure 11.43 shows that the TN model provides an overall
accurate representation of all aspects of the stress-strain response
of the PTFE in this study. The average error of the TN model
predictions is 10.8%.
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Figure 11.39 Comparison between experimental data for PTFE and
the best model predictions from an elastic-plastic material model with
isotropic hardening.

Figure 11.40 Comparison between experimental data for PTFE and
the best model predictions from a two-network PN model.
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Figure 11.41 Comparison between experimental data for PTFE and
the best model predictions from the Abaqus elastic-plastic material
model with combined kinematic hardening and creep-based
rate-dependence. The model has three backstress networks.

Figure 11.42 Comparison between experimental data for PTFE and
the best model predictions from the DNF model.
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Figure 11.43 Comparison between experimental data for PTFE and
the best model predictions from the TN model.

11.8 Polyethylene Terephthalate

Polyethylene terephthalate (PET) is a thermoplastic polyester
that is often used in synthetic fibers, bottles, and containers. PET
can be either amorphous or semi-crystalline depending on the
thermal history. Experimental tension data for a PET material is
shown in Figure 11.44 [2]. This figure shows that the stress-strain
response is strain-rate dependent and that the true stress softens
significant after the initial peek value. At large strains the stress
starts to increase again due to molecular alignment.

The predictive capabilities of a number of different candidate
material models are summarized in Table 11.7.

The best calibration of the BB model to the experimental data
is shown in Figure 11.45. As expected, the BB model is unable
to represent the stress reduction after the initial peek stress. The
overall average error in the calibration results is 5.9%.

A significantly more accurate prediction is provided by an
elastic-plastic material model with isotropic hardening and rate-
dependent yield stress (see Figure 11.46). This model does a
good job at reproducing the overall shape of the stress-strain
response, but as was discussed in Section 7.2, it should not
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Figure 11.44 Uniaxial tension data at three different strain rates for a
PET material.

Table 11.7 Summary of Results from Material Model
Calibrations for HDPE

Material Model Error in Model
Calibration (%)

Arruda-Boyce eight-chain 41.2

Yeoh 25.9

Linear viscoelasticity (Yeoh) 26.3

BB 19.7

Abaqus elastic-plastic with isotropic
hardening and creep

7.1

Abaqus elastic-plastic with isotropic
hardening and rate dependence

3.8

Parallel Network model with two networks
(yield evolution)

2.4

Three Network model 2.4
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Figure 11.45 Comparison between experimental data for PET and the
best model predictions from the BB material model.

Figure 11.46 Comparison between experimental data for PET and the
best model predictions from Abaqus elastic-plastic model with isotropic
hardening and rate-dependence.

be used in applications where the applied load also includes
unloading.

The most accurate material model for this material was found
to be the TN model. Figure 11.47 shows that the TN model
represents the experimental data with great accuracy.
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Figure 11.47 Comparison between experimental data for PET and the
best model predictions from the TN model.

11.9 Polyether Ether Ketone

Polyether ether ketone (PEEK) is a high strength and stiffness
semicrystalline thermoplastic. Due to its excellent mechanical
properties it is commonly used in seals and bearings, and more
recently also in medical implants (e.g., spinal implants, screws,
woven textiles).

Experimental data for a PEEK material is shown in Fig-
ure 11.48. This figure summarizes uniaxial tension data at two
strain rates (0.1 and 0.001/s), and uniaxial compression data
at strain rates of −1000, −0.1, and −0.004/s. The response
at −1000/s was obtained using a split Hopkinson pressure bar
testing (see Section 2.2.8). The data illustrate that the material
has slightly higher yield stress in compression than in tension, and
that the stress-strain response after unloading is highly nonlinear.

The predictive capabilities of a number of different candidate
material models are summarized in Table 11.8. The large error
in the elastic-plastic model with isotropic hardening and rate-
dependent plastic flow is a results of the calibration procedure.
First, the plasticity parameters were determined from the large
strain tension results, then the rate-dependence parameters were
found in order to best match the complete data set.
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Figure 11.48 Uniaxial tension and compression data for an unfilled
PEEK material.

The best calibration of the BB model to the experimental data
for PEEK is shown in Figure 11.49. As expected, the BB model
captures the overall response of the material reasonably well, but
is unable to accurately represent the nonlinear stress response
after unloading. The average error in the calibration results is
24.3%.

The Johnson-Cook (JC) plasticity model (see Section 7.4) is
similar to the BB model in its predictive capabilities of the PEEK
data. Also in this case the main limitation of the predictions is the
linear stress response during unloading. The average error in the
calibration results is 24.9% (Figure 11.50).

The PN model has the advantage that it allows for suitable
components to be selected. In this case, an appropriate starting
point is a two-network representation where network 1 has a
Neo-Hookean element, and where network 2 has a Neo-Hookean
element to represent the elastic response and a Power-law flow
element (Equation (8.68) with yield evolution (Equation (8.69))
and pressure dependence of the yield stress (similar to the a
parameter in Equation (8.64)). The calibration results from this
model is shown in Figure 11.51. The predictions are in reasonable
agreement with the experimental data, and the average error in the
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Table 11.8 Summary of Results from Material
Model Calibrations for PEEK

Material Model Error in Model
Calibration (%)

Elastic-plastic with isotropic
hardening and rate-dependence

127

Arruda-Boyce eight-chain 68.4

Yeoh 59.6

DNF 30.9

Elastic-plastic with kinematic
hardening and rate-dependent
creep (three backstress)

30.6

Johnson-Cook 24.8

BB 24.4

Parallel Network model with two
networks (Power flow, yield
evolution, pressure
dependence)

16.5

Parallel Network model with
three networks (Power flow,
yield evolution, pressure
dependence)

9.1

Three Network model 9.1

calibration results is 16.5%. The accuracy of this model frame-
work can be improved further by adding one more viscoelastic
network of similar type.

The TN model accurately predicts the response of the PEEK at
all tested conditions, see Figure 11.52. The stress-strain response
may look somewhat multilinear due to the small number of
mechanisms used to represent the material response. The average
error of the model predictions is 9.1%.
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Figure 11.49 Comparison between experimental data for PEEK and
the best model predictions from the BB material model.

Figure 11.50 Comparison between experimental data for PEEK and
the best model predictions from the JC plasticity model.

The calibrated material models for PEEK were validated by
comparing small punch data (see Section 2.3.2) and indentation
testing with a spherical indenter (see photo in Figure 11.54) to
finite element predictions of the experimental tests.
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Figure 11.51 Comparison between experimental data for PEEK and
the best model predictions from the PN model with two networks.

Figure 11.52 Comparison between experimental data for PEEK and
the best model predictions from the TN model.

Figure 11.53 shows the force-displacement results from a small
punch experiment and the corresponding results from the BB
model, the TN model, and the JC model. The figure shows that
the TN model is more accurate at predicting the force response of
this multiaxial test than the BB and JC models. This results also
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Figure 11.53 Comparison between experimental small punch data for
PEEK and FE predictions from a few different material models.

Figure 11.54 Comparison between experimental small punch data for
PEEK and FE predictions from a few different material models.

demonstrates that these models can be used to accurately predict
the response of a material under multiaxial loading even if they
have only been calibrated using uniaxial data.

Results from the spherical indentation test and the model
predictions from the BB model the TN model, and the JC model
are shown in Figure 11.54. The results shown in this figure are
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similar to the results from the previous figure in that the TN model
is more accurate than the BB and the JC models. Again, these
models can accurately predict the response of a material under
multiaxial loading even if they have only been calibrated using
uniaxial data.

11.10 Exercises

1. The case studies presented in this section cover a wide
variety of different materials. Are there any polymeric
material classes that are not included?

2. Explain why a hyperelastic material model cannot accu-
rately represent the behavior of the ABR.

3. Explain why adding Mullins damage to the material
models of the ABR increases the accuracy of the pre-
dictions?

4. What other aspects than accuracy can be important to
consider when selecting a material model?

5. Why does not LVE provide an accurate representation of
the experimental data for the rubber materials studied in
this chapter?

6. Which hyperelastic material model would you select for
the CR material? Why?

7. Explain how the stress can increase in magnitude during
a stress relaxation experiment.

8. What material model would you select for the Santo-
prene material? Why?

9. Why is the compressive stress so much higher than the
tensile stress (at the same strain level) for the PTFE
material? What material model can capture the stress
difference?

10. Which material models can capture a large drop in stress
after yielding?

11. Why does not a plasticity model work well for PEEK?
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calibrations, 468, 470t
elastic-plastic material model,

469–470, 472f , 473f
isotropic hardening plasticity

model with rate-
dependence, 469,
472f

linear viscoelastic model, 469,
471f

uniaxial tensile stress-strain
data, 468, 468f , 469f

Yeoh hyperelastic model,
468–469, 471f

Scanning electron microscopy
(SEM), 84–86

Second law of thermodynamics,
183–184

Semicrystalline polymers, 5–7, 6f

Shear and bulk relaxation moduli,
312–313

Shear modulus, 239
Shore (durometer) testing, 48–49
Simple anisotropic hyperelastic

model, 283
Simple shear, 37–39, 152
Size-exclusion chromatography

(SEC), 103–107
Small-angle X-ray diffraction, 95
Small punch testing, 77–79
Small-strain classical theory, 135
Small strain linear viscoelasticity

applied strain history,
311, 312f

Boltzmann’s superposition
principle, 310

characteristic relaxation time,
313

cyclic loading response,
320–322

Heaviside step function, 310
Matlab implementation, 329,

330f
mat_LVE( ) function, 329
monotonic loading response,

314–320, 317f
Prony series, 315–316, 317f
Python implementation,

330–331, 331f
relaxation time spectrum, 328
retardation time spectrum, 328
shear and bulk relaxation

moduli, 312–313
storage and loss modulus,

322–327
stress relaxation, 310, 311f ,

313, 314f
stretched exponential stress

relaxation modulus,
316–318, 318f , 319f
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Small strain linear viscoelasticity
(Continued)

test_mat_LVE function, 329,
330f

Spatial velocity gradient,
164–165

Spin tensor, 164–165
Split-Hopkinson pressure bar

(SHPB) testing, 53–63
Stereo microscopy, 84
Storage modulus, 322–323
Strain matrix, 136
Stress invariants, 169–170
Stress-strain response, 24
Stress tensors, 165–170
Surface characterization

techniques
atomic force microscopy,

87–88
optical microscopy, 81–84
scanning electron microscopy,

84–86
Swell testing, 97–99
Synthetic polymers, 4–5, 5f

T
Tensor operations, 144–147
Thermoelastic material,

189–194
Thermogravimetric analysis

(TGA), 107–109
Thermomechanical deformations,

121
Thermoplastics, 5, 6f , 24, 26f
Thermoplastic vulcanizates

(TPV). See Santoprene
Thermosets, 5, 6f , 24, 27f
Threaded connection gasket, 121
Three network model (TNM),

459–460

arbitrary rigid body rotation,
420–421

Cauchy–Green deformation
tensor, 417–418

deformation gradient, 417–418
elastic and viscous components,

419–420
flow rate, 419–420
material parameters, 421, 421t
Matlab implementation, 422
plastic strain, 418–419
polyether ether ketone, 492,

494f
polymer modeling, 426
polytetrafluoroethylene, 484,

487f
Python implementation, 422
rheological representation, 417,

417f
shear modulus, 419
viscoelastic deformation

gradient, 418–419
Time shifts, 342
Time-temperature equivalence,

341–345, 341f , 343f , 344f
TNM. See Three network model

(TNM)
Transmission electron microscopy

(TEM), 90–91
Transversely isotropic elasticity,

217–218
Tresca stress, 170

U
Ultra-high molecular

weight polyethylene
(UHMWPE), 213–214,
214f

isotropic hardening plasticity
model, 361–362
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Johnson–Cook model, 365–
366, 366f

kinematic hardening plasticity
model, 362–365

linear viscoelasticity
application, 346, 346f

Uniaxial compression
vs. biaxial tension,

225–226
testing, 24–29

Uniaxial loading, 133–135
Uniaxial tension, 29–33, 151
User material subroutines

Abaqus/Explicit VUMAT,
448–450

Abaqus/Implicit UMAT,
450–454

description, 447–448
purpose, 447–448

V
Vector and tensor algebra,

141–150
Vertical shifts, 345
Viscoplastic deformations, 130
Viscoplasticity models

Arruda–Boyce model, 393–396
Bergstrom–Boyce model,

372–393
dual network fluoropolymer

model, 397–404
hybrid model, 409–416
parallel network model,

427–431
polymer modeling, 431–432
Python code examples,

432–434

three network model,
417–426

V-notch shear testing, 80
Volume characterization

techniques
birefringence, 95–97
differential scanning

calorimetry, 89–90
swell testing, 97–99
transmission electron

microscopy, 90–91
X-ray diffraction, 92–95

Volumetric deformation, 153
Vulcanized natural rubber,

8–9

W
Water filter failure, 126
Wide-angle X-ray diffraction,

93–94
William–Landel–Ferry (WLF)

equation, 343, 344, 344f
Work conjugate stress, 185

X
X-ray diffraction (XRD), 92–95

Y
Yeoh hyperelastic model, 456,

457f
acrylate-butadiene rubber, 456
chloroprene rubber, 461–462,

462f
nitrile rubber, 465–466, 466f
santoprene, 468–469, 471f

Yeoh model, 245–248
Young’s modulus, 23, 23f
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