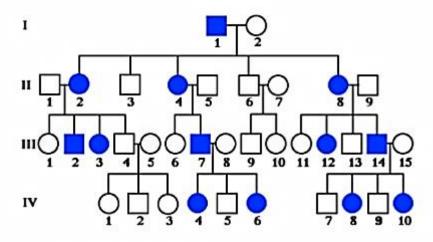
Disciplina: Genética (LGN 0218) 3^a semana

2ª Lei de Mendel ou Lei da Segregação Independente ou 2ª Regra da Genética

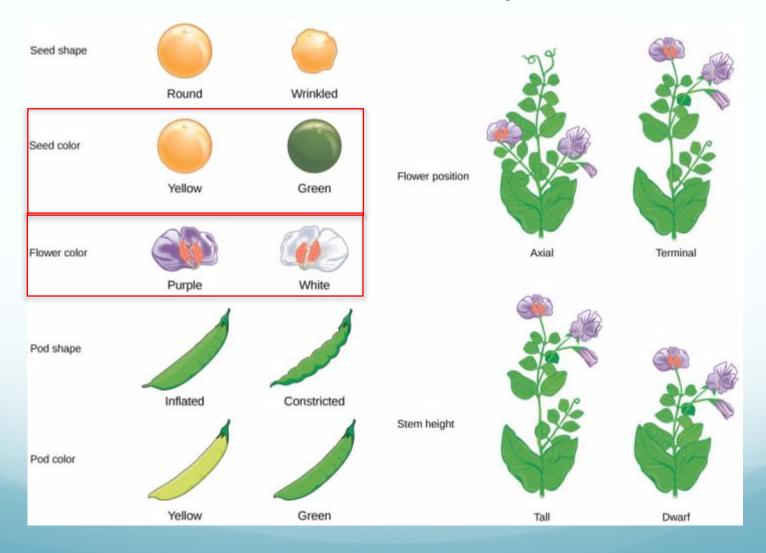
- Material didático do Departamento de Genética, ESALQ/USP
 - Profa. Maria Lucia Carneiro Vieira <mlcvieir@usp.br>
 - Estagiário PAE: Francisco José de Novais
 <francisco.novais@usp.br>

Exercício 2^a semana: com base na análise da genealogia, qual o tipo de herança?



- · Trait is common in pedigree
- Affected fathers pass to ALL of their daughters
- Males and females are equally likely to be affected

3^a semana Caracteres analisados por Mendel



Sementes amarelas (AA) & flores púrpuras (BB)

ou

Linhas puras AABB (Pai 1) X aaBB (Pai 2)

Flower color

Gametas do pai 1 (P_1): 100% AB

Gametas do pai 2 (P_2): 100% ab

 $Zigoto = F_1 = AaBb$

Gametas de $F_1 = 25\%$ ou $\frac{1}{4}$ de cada: AB, Ab, aB, ab

Plantas F₁ cruzadas entre si

¹/₄ AB, ¹/₄ Ab, ¹/₄ aB, ¹/₄ ab X ¹/₄ AB, 1/4 Ab, ¹/₄ aB, ¹/₄ ab

As proporções de F₂ a partir do xadrez Mendeliano

Gametas ♀ / ♂	¹⁄₄ AB	¹⁄₄ A b	¹⁄₄ aB	¹⁄₄ ab	
¹⁄₄ AB	1/16 AABB ♡	1/16 AABb ★	1/16 AaBB ⊊	1/16 AaBb ♀	
¹⁄₄ A b	1/16 AABb ★	1/16 AAbb ☆	1/16 AaBb ♀	1/16 Aabb ◊	
¹⁄₄ aB	1/16 AaBB 🔇	1/16 AaBb ♀	1/16 aaBB ੈ	1/16 aaBb 🤊	
¹⁄₄ ab	1/16 AaBb ♀	1/16 Aabb ◊	1/16 aaBb 🤇	1/16 aabb ⊡	

```
    ♠ AABB 1/16
    ♠ AABB 2/16
    ♠ AABB 2/16
    ♠ AaBB 2/16
    ♠ AaBb 4/16
    ♠ Aabb 1/16
    ♠ Aabb 2/16
    □ aabb 1/16
```

Quando há dominância nos dois locos (A e B), somam-se os fenótipos iguais:

A_B_ =
$$1/16$$
 \(\phi + $2/16$ \(\phi + $4/16$ \(\phi = 9/16\)

A_bb = $1/16$ \(\phi + $2/16$ \(\phi = 3/16\)

aaB_ = $1/16$ \(\pri + $2/16$ \(\phi = 3/16\)

aabb = $1/16$ \(\phi = 1/16\)

Entendendo as proporções de F₂ multiplicando as probabilidades de ocorrência de cada genótipo loco a loco:

- AABB é $\frac{1}{4}$ x $\frac{1}{4}$ = 1/16
- AABb é $\frac{1}{4}$ x ($\frac{1}{4}$ + $\frac{1}{4}$) = 2/16
- AAbb é $\frac{1}{4}$ x $\frac{1}{4}$ = 1/16
- AaBB é ($\frac{1}{4} + \frac{1}{4}$) x $\frac{1}{4} = \frac{2}{16}$
- AaBb é ($\frac{1}{4} + \frac{1}{4}$) x ($\frac{1}{4} + \frac{1}{4}$) = 4/16
- Aabb é é ($\frac{1}{4} + \frac{1}{4}$) x $\frac{1}{4} = \frac{2}{16}$
- aaBB é $\frac{1}{4}$ x $\frac{1}{4}$ = 1/16
- aaBb é $\frac{1}{4}$ x ($\frac{1}{4}$ + $\frac{1}{4}$) = 2/16
- aabb é $\frac{1}{4}$ x $\frac{1}{4}$ = 1/16
 - Portanto, as proporções genotípicas em F₂ são:
 1: 2: 1: 2: 4: 2: 1: 2: 1

Concluindo: se olharmos <u>simultaneamente</u> dois caracteres, pode-se dizer que os pais são puros **AABB** e **aabb** e que a F_1 é uniforme (**AaBb**) e a probabilidade de ocorrência de cada classe genotípica em F_2 é:

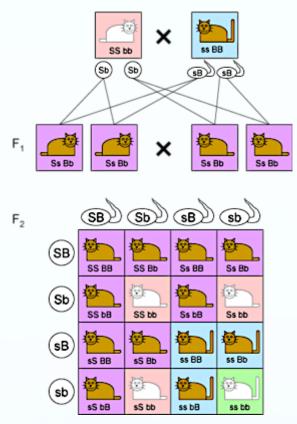
- AABB = 1/16
- AABb = 2/16
- AAbb = 1/16
- AaBB = 2/16
- AaBb = 4/16
- Aabb = 2/16
- aaBb = 2/16
- aaBB = 1/16
- aabb = 1/16

- Se não houver dominância nos dos locos, as proporções genotípicas são iguais as fenotípicas ou 1:2:1:2:4:2:1:2:1
- Se houver dominância nos 2 locos, as proporções genotípicas são 1:2:1:2:4:2:1:2:1, mas as fenotípicas são 9:3:3:1

Quando há dominância nos dois caracteres, podese <u>também</u> calcular a probabilidade de ocorrência de cada classe fenotípica em F_2 como segue:

A_B_ é
$$\frac{3}{4}$$
 x $\frac{3}{4}$ = 9/16
A_bb é $\frac{3}{4}$ x $\frac{1}{4}$ = 3/16
aaB_ é $\frac{1}{4}$ x $\frac{3}{4}$ = 3/16
aabb é $\frac{1}{4}$ x $\frac{1}{4}$ = 1/16

 Estes resultados foram observados por Mendel, que afirmou que a segregação de dois caracteres ocorre de modo independente!



- ✓Dois locos segregando independentemente Loco S e Loco B
- √Ambos mostram dominância completa Só há dois fenótipos por loco:
 - √Cor marrom é dominante sobre a branca
 - √Cauda curta é dominante sobre cauda longa

Como definir a 2ª Regra da Genética

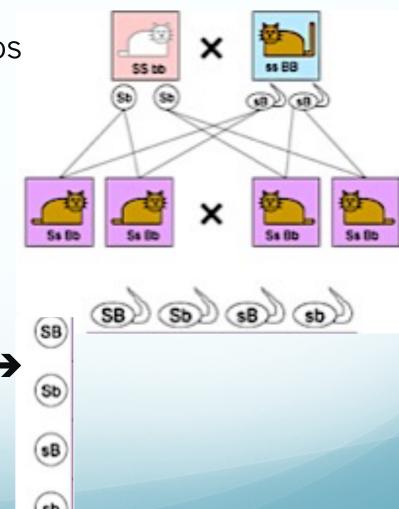
 Cruzando-se pais puros para os caracteres em estudo:

SS bb × ss BB

 Obtém-se uma geração F₁ uniforme (todos os indivíduos são iguais):

F₁ Ss Bb

Os F₁ formam os gametas



• Cruzando-se indivíduos F_1 entre si obtém-se uma geração F_2 em que:

•(1/16) SS BB (2/16) Ss BB (1/16) ss BB •(2/16) SS Bb (4/16) Ss Bb (2/16) ss Bb •(1/16) SS bb (2/16) Ss bb (1/16) ss bb

Portanto, a segregação genotípica em F_2 é de 1: 2: 1: 2: 4: 2: 1: 2: 1

Como há dominância completa em ambos os locos, a segregação fenotípica de F_2 é:

S_ B_	9/16	Marrom e cauda curta
S_ bb	3/16	Marrom e cauda longa
ss B_	3/16	Branco e cauda curta
ss bb	1/16	Branco e cauda longa

Resultado de retrocruzamentos, quando 2 locos segregam independentemente

 \checkmark F₁ Ss Bb \times ss bb (pai recessivo)

Ss Bb (1/4) Marrom de cauda curta Ss bb (1/4) Marrom de cauda longa ss Bb (1/4) Branco de cauda curta ss bb (1/4) Branco de cauda longa

 \checkmark F₁ Ss Bb \times SS BB (pai dominante)

SSBB; SSBb; SsBB; SsBb (1/4 de cada) 100% Marrom de cauda curta

Exercício em classe:

Qual a segregação genotípica e fenotípica esperada em uma geração F₂ se um dos locos mostrar dominância completa e o outro loco mostrar codominância?

Supor que foram cruzadas linhas puras e obtidas plantas F₁. Em F2 foram coletadas 310 flores púrpuras e 90 brancas. Sugere-se que a herança é controlada por um gene com dominância completa. A hipótese está correta?

F ₀ Freqüência observada (dados)	F _E Freqüência esperada (hipótese)	F ₀ -F _E (desvio dos dados em rela- ção à hipótese)	(F ₀ -F _E) ² (desvio ao quadrado)	$\chi^2 = \sum (F_0 - F_E)^2$ F_E
310	300	10	100	100/300=0,333
90	100	-10	100	100/100=1
400	400	zero	Não preencher	$\chi^2 = 0.333 + 1 =$ 1,333

Genética e testes estatísticos

Para saber se um determinado caráter segue o padrão da herança Mendeliana é necessário empregar a análise estatística em diferentes experimentos. A estatística nos ajuda a saber quão distantes os resultados observados podem estar afastados do teórico esperado e ainda serem considerados reais, e não apenas deverem-se a um erro do experimento ou da formulação da hipótese.

O experimentador frequentemente tem que decidir se os seus dados podem ser considerados suficientemente adequados à proporção teórica esperada de 3:1, por exemplo ou não.

Existem dois tipos de erros que podem ocorrer na tomada de decisão:

- (l) O pesquisador pode decidir que a proporção verdadeira não segue o modelo esperado (ou teórico), por exemplo de 3:1, quando na verdade segue
- (2) o pesquisador pode decidir que a proporção real é de 3:1 quando não é. Esses dois exemplos são conhecidos como erros Tipo I e II. O objetivo da aplicação estatística é o de amenizar a ocorrência desses erros nas tomadas de decisão.

Em 1900 Karl Pearson desenvolveu o método do qui-quadrado (χ₂) que permite testar se um determinado grupo de dados observados está próximo dos valores esperados teóricos (propostos com base numa hipótese) é necessário agrupar os dados em classes distintas, por exemplo, sementes lisas e enrugadas. O cálculo do qui-quadrado é dado pela equação:

$$\chi^2 = \sum (F_0 - F_E)^2 / F_E$$

Onde:

 F_0 representa a frequência observada para cada classe F_E a frequência esperada de cada classe com base na hipótese teórica. O símbolo Σ representa o somatório de todas as classes. O valor de $\chi 2$ obtido é confrontado com os dados da tabela do quiquadrado, para obter a probabilidade do evento.

Supor que foram cruzadas linhas puras e obtidas plantas F₁. Em F2 foram coletadas 310 flores púrpuras e 90 brancas. Sugere-se que a herança é controlada por um gene com dominância completa. A hipótese está correta?

F ₀ Freqüência observada (dados)	F _E Freqüência esperada (hipótese)	F ₀ -F _E (desvio dos dados em rela- ção à hipótese)	(F ₀ -F _E) ² (desvio ao quadrado)	$\chi^2 = \sum (F_0 - F_E)^2$ F_E
310	300	10	100	100/300=0,333
90	100	-10	100	100/100=1
400	400	zero	Não preencher	$\chi^2 = 0.333 + 1 =$ 1,333

Percentage Points of the Chi-Square Distribution

Degrees of	Probability of a larger value of x 2								
	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57

Para a consulta dessa tabela é necessário levar em consideração o número de graus de liberdade (GL). O número de GL é dado pelo nº de classes menos 1. A interpretação da probabilidade dada pela tabela representa a probabilidade de a hipótese estar correta. Se a probabilidade é um valor alto, existe uma boa concordância entre os valores esperados e observados. Por outro lado, se a probabilidade é muito pequena consideramos que os dados não confirmam a hipótese e são rejeitados.

O valor da probabilidade para aceitar ou rejeitar uma hipótese é normalmente arbitrário. Entretanto, a seguinte regra pode ser empregada: se a probabilidade é maior do que 0,05 os dados observados são normalmente considerados em concordância com o esperado e as diferenças entre o observado e o esperado explicam-se provavelmente apenas pelo acaso.