

MICROUSINAGEM: AULA 2

MECÂNICA DO MICROCORTE

Prof. Assoc. Alessandro Roger Rodrigues

INTRODUÇÃO

Cinemática do Microcorte

Redução simples de escala

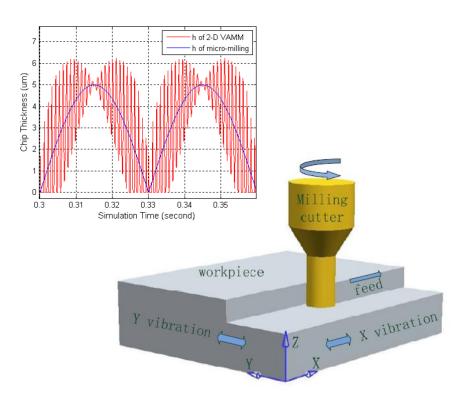
Quando $h \sim r_e$ ou TG:

 γ < 0, contato peça-folga, h_{min} , microestrutura da peça etc

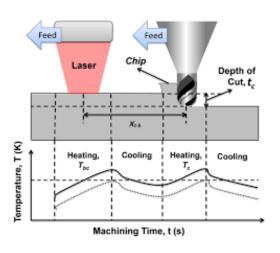
Problemas identificados pela força e energia específica de corte

Depende de máquinas-ferramentas, ferramentas e sistemas de medição

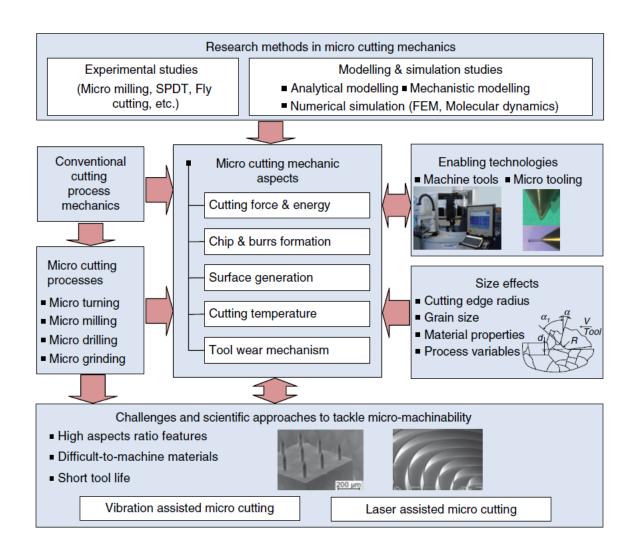
Questões críticas:


Desgaste, rigidez da ferramenta, materiais de difícil usinabilidade

Inovações: vibração e laser em fresamento



INTRODUÇÃO


Vibration-assisted micromilling

Laser-assisted micromilling

CARACTERIZAÇÃO DO MICROCORTE

Microusinagem mecânica

Microtorneamento, fresamento, furação, retificação

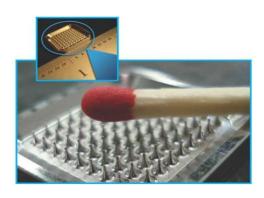
Máquinas CNC 3D

Dimensões funcionais de micrometros a poucos milímetros

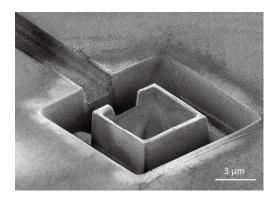
Definição baseia-se em h

Células de combustível, labs-on-chips, lentes, bocais, fibra ótica

Inox, Ti, Latão, Al, plásticos, cerâmicas e compósitos



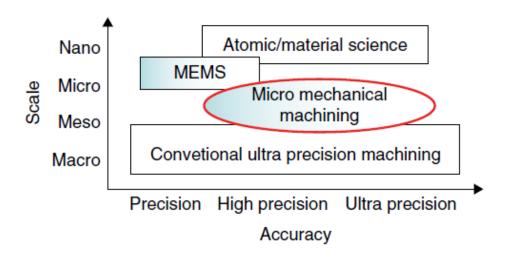
CARACTERIZAÇÃO DO MICROCORTE


Biomedicina: bocal furo 0,07 mm

Inox 440: matriz cones 0,2 x 0,5 x 1,5 mm

Microfuro laser poliamida

Lab-on-chip alumina laser



Entrada mini turbina latão

CARACTERIZAÇÃO DO MICROCORTE

Futuro dos processos de ataque químico e litrografia

Material x precisão x acabamento

MICROCORTE X ULTRAPRECISÃO

Semelhanças: h_{min}, a_p, formação de cavaco, energia específica **Distinções**: processos, tamanhos de peças, ferramental, aplicações

	Micro cutting	Ultra-precision machining
Processes	Micro turning, milling, drilling, grinding, etc.	Single point diamond turning, fly cutting, etc.
Tooling	Various tooling materials: (coated) tungsten carbide, CVD, CBN, diamond tools	Natural diamond tools
Component size	1–1000 μm	1 mm above, Can be very large
Shape	3D shape with high aspect ratios and geometric complexity	Rotational parts, both spherical and aspheric surface, normally low aspec ratios.
Accuracy	Absolute: <10 μm	Absolute: <1 μm
	Relative: 10 ⁻² –10 ⁻⁵	Relative: 10 ⁻⁵ –10 ⁻⁶
Surface finish	<100 nm Ra	Typically <20 nm Ra
Machines	Precision machining centres, precision micro machines, ultra-precision turning machines	Ultra-precision turning machines
Applications	Various applications requiring micro components	Electro-optics
Depth of cut (uncut chip thickness)	1–10 μm	$0.1\mu m-10\mu m$

Máquinas-Ferramentas

Torno e centros de usinagem

Comerciais ou montadas em laboratório

Erros de forma < 100 nm

Rugosidades Ra 10 a 100 nm

Rigidezes, distorção térmica, erros de movimentação e amortecimento

Categorias: torno de ultra precisão e centros de retificação/fresamento

Tamanho menor: temperatura, pressão, humidade, força de inércia, energia, precisão e custo

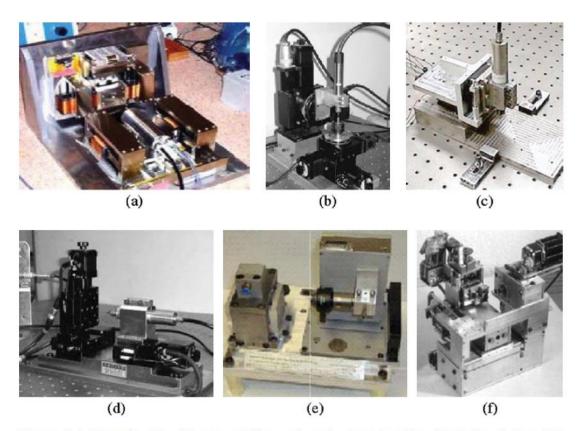


Figure 2.3 Industrial precision machine tools with micro cutting capability: (Reproduced from [2]) (a) Kern micro. Copyright KERN Microtechnik GmbH; (b) Sodick AZ150. Image courtesy of Sodick, Inc.; (c) Fraunhofer IPT Minimill. Reproduced from [6]; (d) Makino Hyper2J. Image courtesy of Makino; (e) Kuglar MicroMaster MM2. Image courtesy of Kugler GmbH; (f) Fanuc ROBOnano. Images courtesy of FANUC; (g) Precitech freeform 700 Ultra. Image courtesy of Ametek Precitech; (h) Moore Nanotech 350FG. Copyright Moore Nanotech

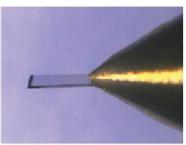
Figure 2.4 Examples of miniature machine tools and micro factories. (Reproduced from [2]) (a) Reproduced with permission from [10]; (b) Reproduced from [11]. Copyright 2005 Spriger; (c) Reproduced from [12]. Copyright 2006 ASME; (d) Reproduced from [13]. Copyright 2008 Springer; (e) Reproduced with permission from [10]; (f) Reproduced with permission from [8]. Copyright 2002 IOP Publishing

Ferramentas

Geometria do microcorte

Desgaste, formação do cavaco, geração da superfície, calor.

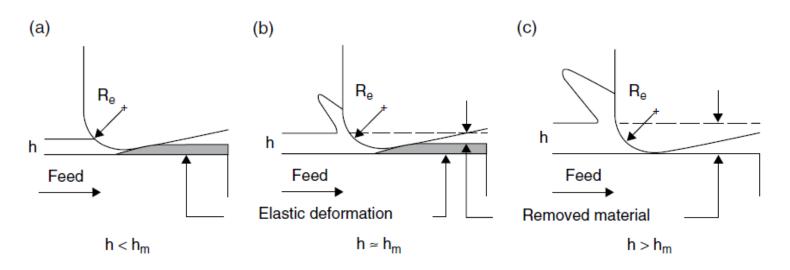
Altas tensões térmicas e mecânicas


Diamante (afinidade) x metal duro (TG e revestimento)

(a) Tungsten carbide

(b) CVD diamond

(c) Single crystal diamond

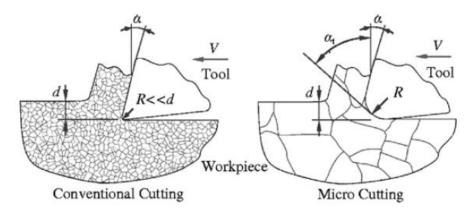


Mecânica do Microcorte

Aresta da ferramenta afiada + material da peça homogêneo

Redução de escala (scaling down) do macrocorte

Efeito de escala da ferramenta (SET): plowing + cutting + sliding


Mecânica do Microcorte


Efeito de escala do material da peça:

(**SEM**): Microestrutura (grãos)

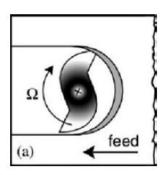
(SEP): Feature size/grain size ~ 1 ou

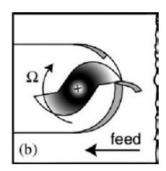
surface/volume aumenta

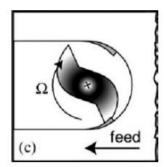
Mecânica do Microcorte

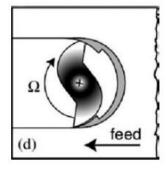
Espesura mínima de corte (h_{min})

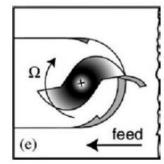
Usinagem de ultra precisão

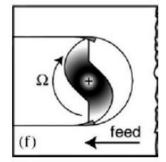

Rubbering => plowing => shearing

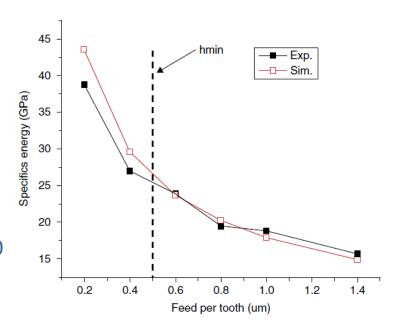

Razões hmin/r_{e:}


~1/20 (MD)


~1/10 (UPT-Cu)


~1/3 (fresamento metais)



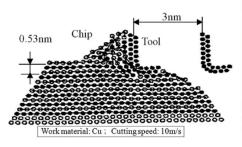


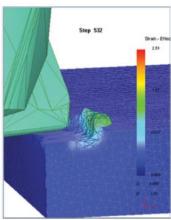
Energia Específica de Corte

$$E = \frac{P}{MRR} = \frac{F_c v}{vbd} = \frac{F_c}{bd} \left(\text{in J/mm}^3, \text{N/mm}^2 \text{or MPa} \right)$$

b constante => menor d, menor F. Menor E?

- Resistência do material da peça: falta de defeitos
- Raio de aresta da ferramenta: ângulo de saída < 0




Estimação das Forças de Corte

Analítica: espessura de corte instantânea / modelo campo linhas escorregamento

$$F = k_m bh$$

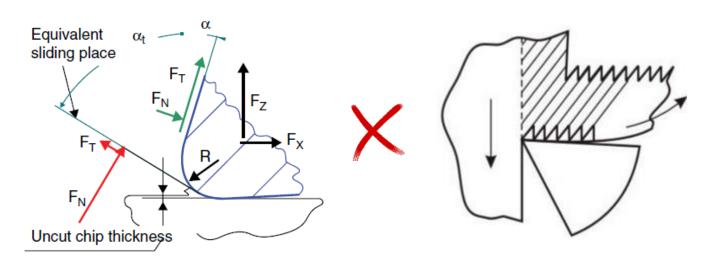
Numérica: dinâmica molecular / elementos finitos

Experimental: dinamometria

Estimação das Forças de Corte

Analítica: raio de aresta (plano de cisalhamento e ângulo de saída)

$$\alpha_t = \arcsin\left(\frac{h}{r_{\varepsilon}} - 1\right)$$
 for $h < h_{\lim}$

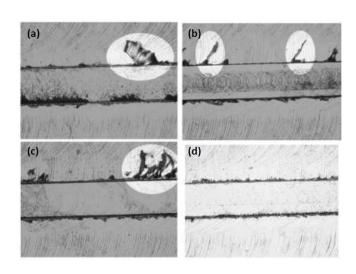

$$L_f = \frac{S}{\sin \theta_{\rm f}} = \frac{K_1 r_{\varepsilon} H}{E \sin \theta_{\rm f}}$$

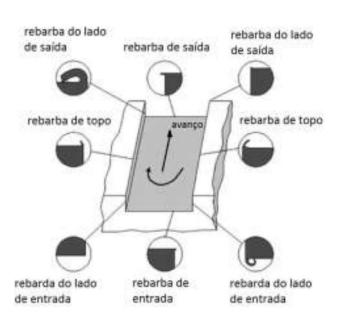
$$F_{fc} = \frac{CY}{\sqrt{3}} L_f b$$

$$\alpha_t = \alpha$$

for
$$h > h_{\text{lim}}$$

$$F_{ft} = CYL_f b$$

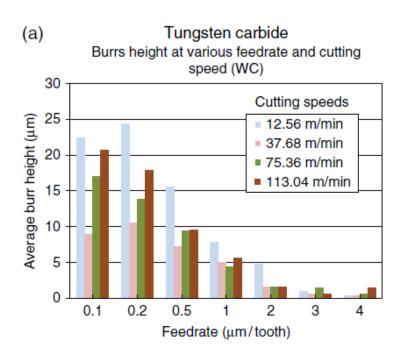


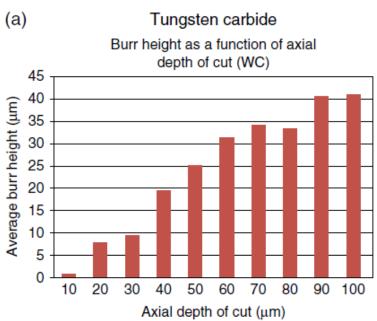

Geração de Superfície

Rebarba: micro maior que macro escala para burr size/feed

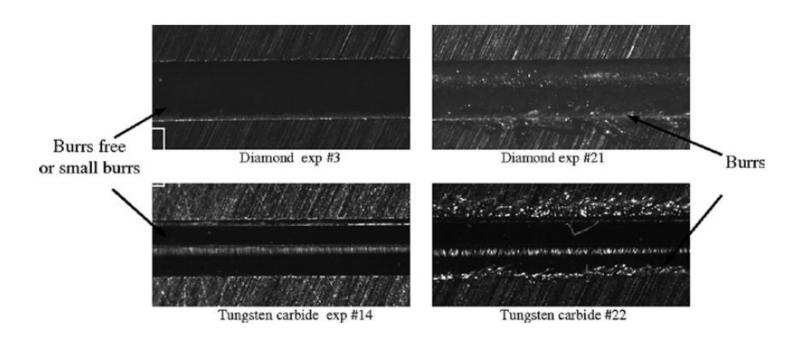
Remoção difícil em micropeças

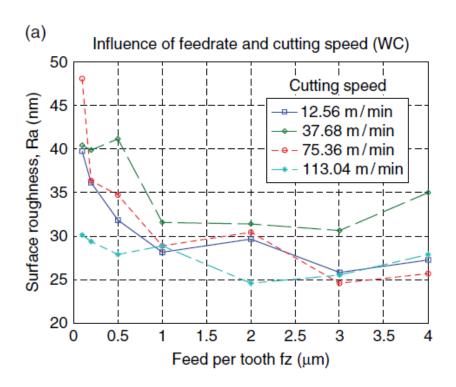
Classificação: entrada, saída, topo e superfície usinada

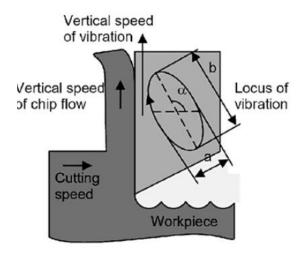


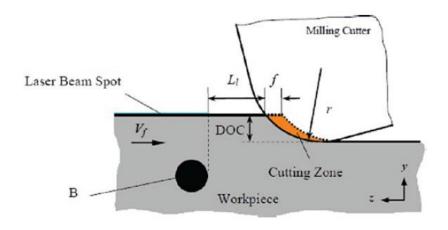


Formação de Rebarba (OFHC)




Formação de Rebarba (OFHC)


Rugosidade (OFHC)


Microusinagem Assistida

Vibration-Assisted Micromilling

Ultrassom (> 20 kHz) Baixa frequência (< 500 Hz)

Modo dúctil em materiais frágeis Torneamento com diamante Reduz força de corte Melhora acabamento

Laser-Assisted Micromilling

Materiais cerâmicos Reduz potência Aumenta taxa de remoção Melhora precisão e acabamento Reduz danos na superfície Aumenta vida da ferramenta