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KEY CONCEPT Under
certain conditions, viscous
effects can be neglected.

3.1 INTRODUCTION

This chapter serves as an introduction to all the following chapters that deal with
fluid motions. Fluid motions manifest themselves in many different ways. Some
can be described very easily, while others require a thorough understanding of
physical laws. In engineering applications, it is important to describe the fluid
motions as simply as can be justified. This usually depends on the required accu-
racy. Often, accuracies of £ 10% are acceptable, although in some applications
higher accuracies have to be achieved. The general equations of motion are very
difficult to solve; consequently, it is the engineer’s responsibility to know which
simplifying assumptions can be made. This, of course, requires experience and,
more importantly, an understanding of the physics involved.

Some common assumptions used to simplify a flow situation are related to
fluid properties. For example, under certain conditions, the viscosity can affect
the flow significantly; in others, viscous effects can be neglected, greatly simplify-
ing the equations without significantly altering the predictions. It is well known
that the compressibility of a gas in motion should be taken into account if the
velocities are very high. But compressibility effects do not have to be taken into
account to predict wind forces on buildings or to predict any other physical quan-
tity that is a direct effect of wind. Wind speeds are simply not high enough.
Numerous examples could be cited. After our study of fluid motions, the appro-
priate assumptions used should become more obvious.

This chapter has three sections. In the first section we introduce the reader
to some important general approaches used to analyze fluid mechanics problems.
In the second section we give a brief overview of different types of flow, such as
compressible and incompressible flows, and viscous and inviscid flows. Detailed
discussions of each of these flow types follow in later chapters. The third section
introduces the reader to the commonly used Bernoulli equation, an equation that
establishes how pressures and velocities vary in a flow field. The use of this equa-
tion, however, requires many simplifying assumptions, and its application is,
therefore, limited.

3.2 DESCRIPTION OF FLUID MOTION

The analysis of complex fluid flow problems is often aided by the visualization of
flow patterns, which permit the development of a better intuitive understanding
and help in formulating the mathematical problem. The flow in a washing
machine is a good example. An easier, yet difficult problem is the flow in the
vicinity of where a wing attaches to a fuselage, or where a bridge support inter-
acts with the water at the bottom of a river. In Section 3.2.1 we discuss the
description of physical quantities as a function of space and time coordinates. The
second topic in this section introduces the different flow lines that are useful in
our objective of describing a fluid flow. Finally, the mathematical description of
motion is presented.

3.2.1 Lagrangian and Eulerian Descriptions of Motion

In the description of a flow field, it is convenient to think of individual particles
each of which is considered to be a small mass of fluid, consisting of a large number
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Sec. 3.2 / Description of Fluid Motion 89

of molecules, that occupies a small volume A¥ that moves with the flow. If the fluid
is incompressible, the volume does not change in magnitude but may deform. If the
fluid is compressible, as the volume deforms, it also changes its magnitude. In both
cases the particles are considered to move through a flow field as an entity.

In the study of particle mechanics, where attention is focused on individual
particles, motion is observed as a function of time. The position, velocity, and
acceleration of each particle are listed as s(xo, Yo, 2o, 1), V(x0, Yo, 20, 1), and
a(xo, Yo, Zo, t), and quantities of interest can be calculated. The point (xo, yo, Zo)
locates the starting point—the name—of each particle. This is the Lagrangian
description, named after Joseph L. Lagrange (1736-1813), of motion that is used in
a course on dynamics. In the Lagrangian description many particles can be fol-
lowed and their influence on one another noted. This becomes, however, a difficult
task as the number of particles becomes extremely large in even the simplest fluid
flow.

An alternative to following each fluid particle separately is to identify points
in space and then observe the velocity of particles passing each point; we can
observe the rate of change of velocity as the particles pass each point, that is,
dV/ax,oV/dy,and dV/dz, and we can observe if the velocity is changing with time
at each particular point, that is, 9V/ot. In this Eulerian description, named after
Leonhard Euler (1707-1783), of motion, the flow properties, such as velocity, are
functions of both space and time. In Cartesian coordinates the velocity is
expressed as V = V(x, y, z,1). The region of flow that is being considered is called
a flow field.

An example may clarify these two ways of describing motion. An engineer-
ing firm is hired to make recommendations that would improve the traffic flow
in a large city. The engineering firm has two alternatives: Hire college students
to travel in automobiles throughout the city recording the appropriate observa-
tions (the Lagrangian approach), or hire college students to stand at the inter-
sections and record the required information (the Eulerian approach). A correct
interpretation of each set of data would lead to the same set of recommenda-
tions, that is, the same solution. In this example it may not be obvious which
approach would be preferred; in an introductory course in fluids, however, the
Eulerian description is used exclusively since the physical laws using the
Eulerian description are easier to apply to actual situations. Yet, there are exam-
ples where a Lagrangian description is needed, such as drifting buoys used to
study ocean currents.

If the quantities of interest do not depend on time, thatis, V = V(x, y, z), the
flow is said to be a steady flow. Most of the flows of interest in this introductory
textbook are steady flows. For a steady flow, all flow quantities at a particular
point are independent of time, that is,

d,—V=0 d,—p=0 2=0 (3.2.1)
ot ot ot

to list a few. It is implied that x, y, and z are held fixed in the above. Note that the

properties of a fluid particle do, in general, vary with time; the velocity and pres-
sure vary with time as a particular fluid particle progresses along its path in a

flow, even in a steady flow. In a steady flow, however, properties do not vary with

time at a fixed point.

Lagrangian: Description of
motion where individual
particles are observed as a
function of time.

Eulerian: Description of
motion where the flow
properties are functions of
both space and time.

Flow field: The region of
interest in a flow.

ﬂ Eulerian vs. Lagrangian,
31-33

Steady flow: Where flow
quantities do not depend on
time.
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3.2.2 Pathlines, Streaklines, and Streamlines

Pathline:  The history of a Three different lines help us in describing a flow field. A pathline is the locus
particle’s locations. of points traversed by a given particle as it travels in a field of flow; the path-
line provides us with a “history” of the particle’s locations. A photograph of a
pathline would require a time exposure of an illuminated particle. A photo-
graph showing pathlines of particles below a water surface with waves is given

™ Pathlines, 91

in Fig. 3.1.
Streakline: An instantaneous A streakline is defined as an instantaneous line whose points are occupied by
line. all particles originating from some specified point in the flow field. Streaklines

tell us where the particles are “right now.” A photograph of a streakline would be
a snapshot of the set of illuminated particles that passed a certain point.
Figure 3.2 shows streaklines produced by the continuous release of a small-
diameter stream of smoke as it moves around a cylinder.

H‘ Streamlines, 122

Fig. 3.1 Pathlines underneath a wave in a tank of water.
(Photograph by A. Wallet and F. Ruellan. Courtesy of M. C. Vasseur.)

H‘ Streaklines, 122

Fig. 3.2 Streaklines in the unsteady flow around a cylinder.
(Photography by Sadatoshi Taneda. From Album of Fluid Motion, 1982,
The Parabolic Press, Stanford, California.)
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Fig. 3.3 Streamline in a flow field.

A streamline is a line in the flow possessing the following property: the veloc-
ity vector of each particle occupying a point on the streamline is tangent to the
streamline. This is shown graphically in Fig. 3.3. An equation that expresses that
the velocity vector is tangent to a streamline is

V X dr=0 (32.2)

since V and dr are in the same direction, as shown in the figure; recall that the
cross product of two vectors in the same direction is zero. This equation will be
used in future chapters as the mathematical expression of a streamline. A pho-
tograph of a streamline cannot be made directly. For a general unsteady flow
the streamlines can be inferred from photographs of short pathlines of a large
number of particles.

A streamtube is a tube whose walls are streamlines. Since the velocity is tan-
gent to a streamline, no fluid can cross the walls of a streamtube. The streamtube
is of particular interest in fluid mechanics. A pipe is a streamtube since its walls
are streamlines; an open channel is a streamtube since no fluid crosses the walls
of the channel. We often sketch a streamtube with a small cross section in the
interior of a flow for demonstration purposes.

In a steady flow, pathlines, streaklines, and streamlines are all coincident. All
particles passing a given point will continue to trace out the same path since the
velocity in our Eulerian system does not change with time; hence the pathlines
and streaklines coincide. In addition, the velocity vector of a particle at a given
point will be tangent to the line that the particle is moving along; thus the line is
also a streamline. Since the flows that we observe in laboratories are invariably
steady flows, we call the lines that we observe streamlines even though they may
actually be streaklines, or for the case of time exposures, pathlines.

3.2.3 Acceleration

The acceleration of a fluid particle is found by considering a particular particle
shown in Fig. 3.4. Its velocity changes from V(¢) at time ¢ to V(¢ + df) at time
t + dt. The acceleration is, by definition,

Streamline: The velocity
vector is tangent to the
streamline.

Streamtube: A tube whose
walls are streamlines.

KEY CONCEPT I/na
steady flow, pathlines,
streaklines, and streamlines
are all coincident.
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z av
V()
V(t+ db)
V() V(t+ df)
Fluid particle The same fluid particle
at time ¢
Y
X
Fig. 3.4 Velocity of a fluid particle.
a= A (3.2.3)
dt

where dV is shown in Fig. 3.4. The velocity vector V is given in component
form as

V = ul + vj + wk (3.2.4)

where (1, v, w) are the velocity components in the x-, y-, and z- directions, respec-
tively, and 1, j and k are the unit vectors. The quantity dV is, using the chain rule
from calculus with V = V(x, y, z, 1),

V= Yoy s Vg + Ny (32.5)
0x ay a9z ot

This gives the acceleration using Eg. 3.2.3 as

L_Vdx  @Vdy  aVdz, oV

= 3.2.6
dx dt 9y dt 9z dt ot ( )

Since we have followed a particular particle, as in Fig. 3.4, we recognize that

dx _ dy _ dz _

il i il (3.2.7)
The acceleration is then expressed as

) AN\ A\ A\ (328)

w
0x dy 0z ot

The scalar component equations of the above vector equation for Cartesian coor-
dinates are written as
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gm0 0u ou
ot ax ay z

=Lt ul 0 (32.9)
ot ax ay 0z

_w , ow  ow ow

< ot d Ay 0z

We often return to Eq. 3.2.3 and write Eq. 3.2.8 in a simplified form as

DV
=— 3.2.10
a=7 ( )
where, in Cartesian coordinates,
J J J
—=u—+v— — 4= 3.2.11
Dt “ ox ¢ J w 0z at ( )

This derivative is called the substantial derivative, or material derivative. It is
given a special name and special symbol (D/Dt instead of d/dt) because we
followed a particular fluid particle, that is, we followed the substance (or mate-
rial). It represents the relationship between a Lagrangian derivative in which
a quantity depends on time ¢ and an Eulerian derivative in which a quantity
depends on position (x, y, z) and time . The substantial derivative can be used
with other dependent variables; for example, D7/Dt would represent the rate
of change of the temperature of a fluid particle as we followed the particle
along.

The substantial derivative and acceleration components in cylindrical and
spherical coordinates are presented in Table 3.1 on page 96.

The time-derivative term on the right side of Eqs. 3.2.8 and 3.2.9 for the
acceleration is called the local acceleration and the remaining terms on the right
side in each equation form the convective acceleration. Hence the acceleration of
a fluid particle is the sum of the local acceleration and convective acceleration.
In a pipe, local acceleration results if, for example, a valve is being opened or
closed; and convective acceleration occurs in the vicinity of a change in the pipe
geometry, such as a pipe contraction or an elbow. In both cases fluid particles
change speed, but for very different reasons.

We must note that the foregoing expressions for acceleration give the
acceleration relative to an observer in the observer’s reference frame only.
In certain situations the observer’s reference frame may be accelerating; then

Substantial or material
derivative:  The derivative
D/Dt.

Local acceleration: The time-
derivative term 9 V/dt for
acceleration.

Convective acceleration:
All terms other than the local
acceleration term.

KEY CONCEPT Convec-
tive acceleration occurs in
the vicinity of a change in
the geometry.
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Irrotational flows: Flows
where the fluid particles do not
rotate.

Particle

X

Fig. 3.5 Motion relative to a noninertial reference frame.

the acceleration of a particle relative to a fixed reference frame may be need-
ed. It is given by

2
A=a + % + 20xV +.Q><(.Q><r)+dd—?><r (32.12)
acceleration of Coriolis normal angular
reference frame  acceleration acceleration  acceleration

where a is given by Eq. 3.2.8, d?S/dt? is the acceleration of the observer’s refer-
ence frame, V and r are the velocity and position vectors of the particle, respec-
tively, in the observer’s reference frame, and  is the angular velocity of the
observer’s reference frame (see Fig. 3.5). Note that all vectors are written using
the unit vectors of the XYZ-reference frame. For most engineering applications,
reference frames attached to the earth yield A = a, since the other terms in
Eq. 3.2.12 are often negligible with respect to a. We may decide, however, to
attach the xyz-reference frame to an accelerating device (a rocket), or to a rotat-
ing device (a sprinkler arm); then certain terms of Eq. 3.2.12 must be included
along with a of Eq. 3.2.8.

If the acceleration of all fluid particles is given by A = a in a selected refer-
ence frame, it is an inertial reference frame. If A # a, it is a noninertial reference
frame. A reference frame that moves with constant velocity without rotating is an
inertial reference frame. When analyzing flow about, for example, an airfoil mov-
ing at a constant speed, we attach the reference frame to the airfoil so that a steady
flow is observed in that reference frame.

3.2.4 Angular Velocity and Vorticity

A fluid flow may be thought of as the motion of a collection of fluid particles. As
a particle travels along it may rotate or deform. The rotation and deformation of
the fluid particles are of particular interest in our study of fluid mechanics. There
are certain flows, or regions of a flow, in which the fluid particles do not rotate;
such flows are of special importance, particularly in flows around objects, and are
referred to as irrotational flows. Flow outside a thin boundary layer on airfoils,
outside the separated flow region around autos and other moving vehicles, in the
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’07%%{ A v AA’U+(%Y%(
AQ----- I—> ---¢ B dy

dx

Fig. 3.6 Fluid particle occupying an infinitesimal parallelepiped
at a particular instant.

flow around submerged objects, and many other flows are examples of irrota-
tional flows. Irrotational flows are extremely important.

Let us consider a small fluid particle that occupies an infinitesimal volume
that has the xy-face as shown in Fig. 3.6. The angular velocity (), about the z-axis
is the average of the angular velocity of line segment AB and line segment CD.
The two angular velocities, counterclockwise being positive, are

_ U T U4
Qup = i
dv dx Jv dx Jv
= 4 === _ L ar - %Y
[U P (” ox 2 ﬂ/ &= (3.2.13)
Up — Uc
Qpyy = — 2 7C
cD dy
ou dy ou dy ou
[u ay 2 <u ay 2 )]/ YT Ty (32.14)
Consequently, the angular velocity (), of the fluid particle is
(lz = % (‘(ZAB + (lCD)
_1 <<9_U _ 3_u>
2\ox 9y (3.2.15)

If we had considered the xz-face, we would have found the angular velocity
about the y-axis to be

L _w
0,=3 (02 ax) (32.16)
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Angular velocity:
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average velocity of two perpen-
dicular line segments of a fluid
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Table 3.1 The Substantial Derivative, Acceleration, and Vorticity in Cartesian, Cylindrical, and
Spherical Coordinates
Substantial Derivative Vorticity
Cartesian Cartesian
D J J J J ow  Jv u  Jw Jv  du
ol o - -t Wy ="——"— Wy === =TT
Dt ax )% daz ot dy 0z dz  ox dx  dy
Cylindrical Cylindrical
D_,0,%09 9, 0 w=l((’&>_aﬂ o= 2 _ 30 =1<m_6_vr)
Dt Tor  r a0 Caz ot " or\eg iz "oz ar <o\ or a0
Spherical Spherical
2=vi Yp 9 o 9 .9 0. = 1 [i(v sinH)—Hﬂ] ® :l[i(m)_f)v,]
Dt or  r a0 rsinfaop o " rsing oo ? ad *rlors " a6
P 1] 1 adov, 9
) Acceleration o= — [__ -2 (r%)}
Cartesian rlsin6dp  or
Ju Ju Ju Ju
ay=—+u—+v—+w—
at ax dy a9z
Jv o v v
ay=—+u—+o—+w—
at Cae oy iz
a, = o Jw + v w + wd—w
at ax ay k4
Cylindrical
Jv, du, Vg dU, av, Ug
a, = — [ o aa z 5
at ar r a0 9z r
gy =0 W0 Doy 0 DR
"ot Tar  rae Caz or
PR VY P ¥
oot Tar  rae Caz
Spherical
v, dv, Vg 0, Vg 0O, vi + v%
a, = Tttt
"ot "9r r 90 rsin@ad r
a0y o Vg Vg IV Vg d0y N U, 09 — vi cot 0
a, = —2 e N it ]
7 ot "9t r 90 rsindadp r
v, Jv Vg J, vy 0V 0V, Vg + Vg cOt O
a¢=—¢+v,—¢+—9—‘b ¢ ¢ o7 T
at ar r a0 rsin 6 d¢ r

Vorticity:  Twice the angular
velocity.
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and the yz-face would provide us with the angular velocity about the x-axis:

(5 ~22)

These are the three components of the angular velocity vector. A cork placed in
a water flow in a wide channel (the xy-plane) would rotate with an angular veloc-
ity about the z-axis, given by Eq. 3.2.15.

It is common to define the vorticity » to be twice the angular velocity; its
three components are then

_1

2

Jw  Jou

3.2.17
dy 0z ( )

_dw_
ady oz

_du_ ow
9z 0x

zav ou

ox  dy

W, [0)

w, y (3.2.18)

The vorticity components in cylindrical and spherical coordinates are included in
Table 3.1 above.
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An irrotational flow possesses no vorticity; the cork mentioned above would
not rotate in an irrotational flow. We consider this special flow in Section 8.5.

The deformation of the particle of Fig. 3.6 is the rate of change of the angle
that line segment AB makes with line segment CD. If AB is rotating with an
angular velocity different from that of CD, the particle is deforming. The defor-

mation is represented by the rate-of-strain tensor; its component e,, in the xy- Rate-of-strain tensor: The
plane is given by rate at which deformation
OCCUrs.

(Qap — Qcp)

€y

1
2
-1 (ﬁz + ﬂ)

2 ay (3.2.19)

For the xz-plane and the yz-plane we have

1 ou 1/ow | dv
= + = + = 2.
&z 7% <ax Hz) 75 <8y az) (3.2.20)

Observe that e,, x> €xz = Exs and €,.=¢;,. By observation, we see that the
rate-of-strain tensor is symmetric.

The fluid particle could also deform by being stretched or compressed in a
particular direction. For example, if point B of Fig. 3.6 is moving faster than point
A, the particle would be stretching in the x-direction. This normal rate of strain is
measured by

Up — Uy
exx dx

ou dx Ju dx
+ —_——— . — —_—
[” ox 2 ( ox 2 )]/ dx (3221)

Similarly, in the y- and z-directions we would find that

v ow
€y = g €7 = E (3.2.22)

The symmetric rate-of-strain tensor can be displayed as

(32.23)

where the subscripts i and j take on numerical values 1, 2, or 3. Then €, repre-
sents €, in row 1 column 2.

We will see in Chapter 5 that the normal and shear stress components in a
flow are related to the foregoing rate-of-strain components. In fact, in the
one-dimensional flow of Fig. 1.6, the shear stress was related to du/dy with
Eq.1.5.5; note that ou/dy is twice the rate-of-strain component given by Eq.3.2.19
with v = 0.
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Example 3.1

The velocity field is given by V = 2x1 — ytj m/s, where x and y are in meters and ¢ is in
seconds. Find the equation of the streamline passing through (2, —1) and a unit vector
normal to the streamline at (2, —1) att = 4 s.

Solution
The velocity vector is tangent to a streamline so that V X dr = 0 (the cross product of
two parallel vectors is zero). For the given velocity vector we have, att = 4 s,

(2x1 — 4yj) X (dxi + dyj) = (2x dy + 4y dx)k = 0
where we have used 1 X j = k,j X 1= — k,and i X i = 0. Consequently,

- dy dx
2x dy = —4y dx or v 2x

Integrate both sides:

Iny=—-2Inx+InC
where we used In C for convenience. This is written as

Iny=1Inx"2+1nC = In(Cx?)
Hence
x}y=C
At (2, —1) C = —4,so that the streamline passing through (2, —1) has the equation
xy=—4

A normal vector is perpendicular to the streamline, hence the velocity vector, so
that using n = n,1 + n, j we have at (2, —1) and t = 4 s

Vo= (41+4j) (ni+nj) =0
Using 1+ 1=1and1i-j = 0, this becomes
4n, + 4n, =0 ol = = Iy

Then, because n is a unit vector, n2 + n§ = 1 and we find that

2 V2

n2=1-n2 Sony = >

The unit vector normal to the streamline is written as

ﬁ=¥(i—i>
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Example 3.2

A velocity field in a particular flow is given by V = 20y°1 — 20xyj m/s. Calculate the
acceleration, the angular velocity, the vorticity vector, and any nonzero rate-of-strain
components at the point (1, —1,2).

Solution
We could use Eq. 3.2.9 and find each component of the acceleration, or we could use
Eqg. 3.2.8 and find a vector expression. Using Eq. 3.2.8, we have

|
m|z
+
&
=
+
g
e
+

20y%(— 20yj) — 20xy(40yi — 20xj)
—800xy?1 — 400(y° — xzy)i

where we have used u = 20y* and v = —20xy, as given by the velocity vector. All par-
ticles passing through the point (1, —1,2) have the acceleration

a = —8001 m/s*

The angular velocity has two zero components:

0 0 0 0
2 \/gy b4 2 \pz X
The non-zero z-component is, at the point (1, —1,2),

1/0v ou
O =-(2¢_oJu
< 2<ax By)

= % (—20y — 40y) = 30 rad/s
The vorticity vector is twice the angular velocity vector:
o = 20,k = 60k rad/s
The nonzero rate-of-strain components are

1/9v | Ju
= —(— 4+ —
72 (ax 6y)
= % (—20y + 40y) = —10 rad/s
-9
ay
= —20x = —20 rad/s

€y

All other rate-of-strain components are zero.
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