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PREFACE

THIS book has various aims, closely connected with each other. In the

first place, this book intends to serve students and teachers of mathematics

in an important but usually neglected way. Yet in a sense the book is also

a philosophical essay. It is also a continuation and requires a continuation.

I shall touch upon these points, one after the other.

1. Strictly speaking, all our knowledge outside mathematics and

demonstrative logic (which is, in fact, a branch of mathematics) consists of

conjectures. There are, of course, conjectures and conjectures. There are

highly respectable and reliable conjectures as those expressed in certain

general laws of physical science. There are other conjectures, neither

reliable nor respectable, some ofwhich may make you angry when you read

them in a newspaper. And in between there are all sorts of conjectures,

hunches, and guesses.

We secure our mathematical knowledge by demonstrative reasoning, but we

support our conjectures by plausible reasoning. A mathematical proof is

demonstrative reasoning, but the inductive evidence of the physicist, the

circumstantial evidence of the lawyer, the documentary evidence of the

historian, and the statistical evidence of the economist belong to plausible

reasoning.

The difference between the two kinds of reasoning is great and manifold.

Demonstrative reasoning is safe, beyond controversy, and final. Plausible

reasoning is hazardous, controversial, and provisional. Demonstrative

reasoning penetrates the sciences just as far as mathematics does, but it is in

itself (as mathematics is in itself) incapable of yielding essentially new

knowledge about the world around us. Anything new that we learn about

the world involves plausible reasoning, which is the only kind of reasoning,

for which we care in everyday affairs. Demonstrative reasoning has rigid

standards, codified and clarified by logic (formal or demonstrative logic),

which is the theory of demonstrative reasoning. The standards of plausible

reasoning are fluid, and there is no theory of such reasoning that could be

compared to demonstrative logic in clarity or would command comparable
consensus.

2. Another point concerning the two kinds of reasoning deserves our

attention. Everyone knows that mathematics offers an excellent opportunity
to learn demonstrative reasoning, but I contend also that there is no subject

in the usual curricula of the schools that affords a comparable opportunity
to learn plausible reasoning. I address myself to all interested students of
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mathematics of all grades and I say: Certainly, let us learn proving, but

also let us learn guessing.

This sounds a little paradoxical and I must emphasize a few points to

avoid possible misunderstandings.
Mathematics is regarded as a demonstrative science. Yet this is only one

of its aspects. Finished mathematics presented in a finished form appears
as purely demonstrative, consisting of proofs only. Yet mathematics in the

making resembles any other human knowledge in the making. You have

to guess a mathematical theorem before you prove it; you have to guess

the idea of the proof before you carry through the
^
details. You have to

combine observations and follow analogies; you have to try and try again.
The result of the mathematician's creative work is demonstrative reasoning,
a proof; but the proof is discovered by plausible reasoning, by guessing.

If the learning of mathematics reflects to any degree the invention of

mathematics, it must have a place for guessing, for plausible inference.

There are two kinds of reasoning, as we said : demonstrative reasoning
and plausible reasoning. Let me observe that they do not contradict each

other; on the contrary, they complete each other. In strict reasoning the

principal thing is to distinguish a proof from a guess, a valid demonstration

from an invalid attempt. In plausible reasoning the principal thing is to

distinguish a guess from a guess, a more reasonable guess from a less reason-

able guess. If you direct your attention to both distinctions, both may
become clearer.

A serious student of mathematics, intending to make it his life's work,
must learn demonstrative reasoning; it is his profession and the distinctive

mark of his science. Yet for real success he must also learn plausible

reasoning; this is the kind of reasoning on which his creative work will

depend. The general or amateur student should also get a taste of demon-
strative reasoning: he may have little opportunity to use it directly, but he
should acquire a standard with which he can compare alleged evidence of

all sorts aimed at him in modern life. But in all his endeavors he will need

plausible reasoning. At any rate, an ambitious student of mathematics,
whatever his further interests may be, should try to learn both kinds of

reasoning, demonstrative and plausible.
3. 1 do not believe that there is a foolproof method to learn guessing. At

any rate, if there is such a method, I do not know it, and quite certainly I

do not pretend to offer it on the following pages. The efficient use of

plausible reasoning is a practical skill and it is learned, as any other practical

skill, by imitation and practice. I shall try to do my best for the reader who
is anxious to learn plausible reasoning, but what I can offer are only examples
for imitation and opportunity for practice.

lii V/hat follows, I shall often discuss mathematical discoveries, great and
&ii&l: 1 cannot tell the true story how the discovery did happen, because

Adbckiy really knows that. Yet I shall try to make up a likely story how the
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discovery could have happened. I shall try to emphasize the motives

underlying the discovery, the plausible inferences that led to it, in short,

everything that deserves imitation. Of course, I shall try to impress the

reader; this is my duty as teacher and author. Yet I shall be perfectly

honest with the reader in the point that really matters : I shall try to impress
him only with things which seem genuine and helpful to me.

Each chapter will be followed by examples and comments. The
comments deal with points too technical or too subtle for the text of the

chapter, or with points somewhat aside of the main line of argument. Some
of the exercises give an opportunity to the reader to reconsider details only
sketched in the text. Yet the majority of the exercises give an opportunity
to the reader to draw plausible conclusions of his own. Before attacking
a more difficult problem proposed at the end of a chapter, the reader should

carefully read the relevant parts of the chapter and should also glance at the

neighboring problems; one or the other may contain a clue. In order to

provide (or hide) such clues with the greatest benefit to the instruction of the

reader, much care has been expended not only on the contents and the form
of the proposed problems, but also on their disposition. In fact, much more
time and care went into the arrangement of these problems than an outsider

could imagine or would think necessary.
In order to reach a wide circle of readers I tried to illustrate each important

point by an example as elementary as possible. Yet in several cases I was

obliged to take a not too elementary example to support the point impressively

enough. In fact, I felt that I should present also examples ofhistoric interest,

examples of real mathematical beauty, and examples illustrating the

parallelism of the procedures in other sciences, or in everyday life.

I should add that for many of the stories told the final form resulted from

a sort of informal psychological experiment. I discussed the subject with

several different classes, interrupting my exposition frequently with such

questions as: "Well, what would you do in such a situation?" Several

passages incorporated in the following text have been suggested by the

answers of my students, or my original version has been modified in some
other manner by the reaction of my audience.

In short, I tried to use all my experience in research and teaching to give
an appropriate opportunity to the reader for intelligent imitation and for

doing things by himself.

4. The examples of plausible reasoning collected in this book may be put
to another use: they may throw some light upon a much agitated philo-

sophical problem: the problem of induction. The crucial question is:

Are there rules for induction? Some philosophers say Yes, most scientists

think No. In order to be discussed profitably, the question should be put

differently. It should be treated differently, too, with less reliance on
traditional verbalisms, or on new-fangled formalisms, but in closer touch

with the practice of scientists. Now, observe that inductive reasoning is a
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particular case of plausible reasoning. Observe also (what modern writers

almost forgot, but some older writers, such as Euler and Laplace, clearly

perceived) that the role of inductive evidence in mathematical investigation

is similar to its role in physical research. Then you may notice the possibility

of obtaining some information about inductive reasoning by observing and

comparing examples of plausible reasoning in mathematical matters. And
so the door opens to investigating induction inductively.

When a biologist attempts to investigate some general problem, let us say,

of genetics, it is very important that he should choose some particular species
of plants or animals that lends itself well to an experimental study of his

problem. When a chemist intends to investigate some general problem
about, let us say, the velocity of chemical reactions, it is very important
that he should choose some particular substances on which experiments
relevant to his problem can be conveniently made. The choice of appro-
priate experimental material is of great importance in the inductive investi-

gation of any problem. It seems to me that mathematics is, in several

respects, the most appropriate experimental material for the study of

inductive reasoning. This study involves psychological experiments of a
sort: you have to experience how your confidence in a conjecture is swayed
by various kinds of evidence. Thanks to their inherent simplicity and

clarity, mathematical subjects lend themselves to this sort of psychological

experiment much better than subjects in any other field. On the following

pages the reader may find ample opportunity to convince himself of this.

It is more philosophical, I think, to consider the more general idea of

plausible reasoning instead of the particular case of inductive reasoning.
It seems to me that the examples collected in this book lead up to a definite

and fairly satisfactory aspect of plausible reasoning. Yet I do not wish to

force my views upon the reader. In fact, I do not even state them in Vol. I;
I want the examples to speak for themselves. The first four chapters of
Vol. II, however, are devoted to a more explicit general discussion ofplausible
reasoning. There I state formally the patterns of plausible inference

suggested by the foregoing examples, try to systematize these patterns, and
survey some of their relations to each other and to the idea of probability.

I do not know whether the contents of these four chapters deserve to be-

called philosophy. If this is philosophy, it is certainly a pretty low-brow
kind of philosophy, more concerned with understanding concrete examples
and the concrete behavior of people than with expounding generalities. I

know still less, of course, how the final judgement on my views will turn out.
Yet I feel pretty confident that my examples can be useful to any reasonably
unprejudiced student of induction or of plausible reasoning, who wishes to

form^his views in close touch with the observable facts.

5. This work on Mathematics and Plausible Reasoning, which I have always
regarded as a unit, falls naturally into two parts: Induction and Analogy
in Mathematics (Vol. I), and Patterns of Plausible Inference (Vol. II). For the
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convenience of the student they have been issued as separate volumes. Vol.

I is entirely independent of Vol. II, and I think many students will want to

go through it carefully before readingVol. II . It has more ofthe mathematical
"meat" of the work, and it supplies "data5 *

for the inductive investigation* of

induction in Vol. II. Some readers, who should be fairly sophisticated and

experienced in mathematics, will want to go directly to Vol. II, and for

these it will be a convenience to have it separately. For ease of reference

the chapter numbering is continuous through both volumes. I have not

provided an index, since an index would tend to render the terminology
more rigid than it is desirable in this kind of work. I believe 'the table of

contents will provide a satisfactory guide to the book.

The present work is a continuation of my earlier book How to Solve It.

The reader interested in the subject should read both, but the order does not

matter much. The present text is so arranged that it can be read indepen-

dently of the former work. In fact, there are only few direct references in

the present book to the former and they can be disregarded in a first reading.
Yet there are indirect references to the former book on almost every page,
and in almost every sentence on some pages. In fact, the present work

provides numerous exercises and some more advanced illustrations to the

former which, in view of its size and its elementary character, had no space
for them.

The present book is also related to a collection of problems in Analysis

by G. Szego and the author (see Bibliography). The problems in that

collection are carefully arranged in series so that they support each other

mutually, provide cues to each other, cover a certain subject-matter jointly,

and give the reader an opportunity to practice various moves important in

problem-solving. In the treatment of problems the present book follows

the method of presentation initiated by that former work, and this link is

not unimportant.
Two chapters in Vol. II of the present book deal with the theory of

probability. The first ofthese chapters is somewhat related to an elementary

exposition of the calculus of probability written by the author several years

ago (see the Bibliography). The underlying views on probability and the

starting points are the same, but otherwise there is little contact.

Some of the views offered in this book have been expressed before in my
papers quoted in the Bibliography. Extensive passages of papers no. 4, 6,

8, 9, and 10 have been incorporated in the following text. Acknowledgment
and my best thanks are due to the editors of the American Mathematical

Monthly, Etudes de Philosophic des Sciences en Hommage a Ferdinand Gonseth> and

Proceedings of the International Congress of Mathematicians 1950, who kindly

gave permission to reprint these passages.
Most parts of this book have been presented in my lectures, some parts

several times. In some parts and in some respects, I preserved the tone of

oral presentation. I do not think that such a tone is advisable in printed
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presentation of mathematics in general, but in the present case it may be

appropriate, or at least excusable.

6. The last chapter of Vol. II of the present book, dealing with Invention

and Teaching, links the contents more explicitly to the former work of the

author and points to a possible sequel.

The efficient use of plausible reasoning plays an essential role in problem-

solving. The present book tries to illustrate this role by many examples,

but there remain other aspects of problem-solving that need similar

illustration.

Many points touched upon here need further work. My views on

plausible reasoning should be confronted with the views of other authors,

the historical examples should be more thoroughly explored, the views on

invention and teaching should be investigated as far as possible with the

methods of experimental psychology,
1 and so on. Several such tasks

remain, but some of them may be thankless.

The present book is not a textbook. Yet I hope that in time it will

influence the usual presentation of the textbooks and the choice of their

problems. The task of rewriting the textbooks of the more usual subjects

along these lines need not be thankless.

7. I wish to express my thanks to the Princeton University Press for the

careful printing, and especially to Mr. Herbert S. Bailey, Jr., Director of the

Press, for understanding help in several points. I am much indebted also

to Mrs. Priscilla Feigen for the preparation of the typescript, and to Dr.

Julius G. Baron for his kind help in reading the proofs.
GEORGE POLYA

Stanford University

May 1953

1
Exploratory work in this direction has been undertaken in the Department of Psychology

of Stanford University, within the framework of a project directed by E. R. Hilgard, under
O.N.R. sponsorship.



HINTS TO THE READER

THE section 2 of chapter VII is quoted as sect. 2 in chapter VII, but as sect.

7.2 in any other chapter. The subsection (3) of section 5 of chapter XIV
is quoted as sect. 5 (3) in chapter XIV, but as sect. 14.5 (3) in any other

chapter. We refer to example 26 of chapter XIV as ex. 26 in the same

chapter, but as ex. 14.26 in any other chapter.

Some knowledge of elementary algebra and geometry may be enough to

read substantial parts of the text, Thorough knowledge of elementary

algebra and geometry and some knowledge of analytic geometry and

calculus, including limits and infinite series, is sufficient for almost the whole

text and the majority of the examples and comments. Yet more advanced

knowledge is supposed in a few incidental remarks of the text, in some pro-

posed problems, and in several comments. Usually some warning is given

when more advanced knowledge is assumed.

The advanced reader who skips parts that appear to him too elementary

may miss more than the less advanced reader who skips parts that appear

to him too complex.

Some details of (not very difficult) demonstrations are often omitted

without warning. Duly prepared for this eventuality, a reader with good

critical habits need not spoil them.

Some of the problems proposed for solution are very easy, but a few are

pretty hard. Hints that may facilitate the solution are enclosed in square

brackets [ ]. The surrounding problems may provide hints. Especial

attention should be paid to the introductory lines prefixed to the examples

in some chapters, or prefixed to the First Part, or Second Part, of such

examples.

The solutions are sometimes very short: they suppose that the reader

has earnestly tried to solve the problem by his own means before looking

at the printed solution.

A reader who spent serious effort on a problem may profit by it even if

he does not succeed in solving it. For example, he may look at the solution,

try to isolate what appears to him the key idea, put the book aside, and then

try to work out the solution.

At some places, this book is lavish of figures or in giving small inter-

mediate steps of a derivation. The aim is to render visible the evolution of a

figure or a formula ; see, for instance, Fig. 16. 1-1 6,5. Yet no book can have

enough figures or formulas. A reader may want to read a passage "in
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first approximation" or more thoroughly. If he wants to read more
thoroughly, he should have paper and pencil at hand: he should be pre-

pared to write or draw any formula or figure given in, or only indicated by,
the text. Doing so, he has a better chance to see the evolution of the

figure or formula, to understand how the various details contribute to the

final product, and to remember the whole thing.
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INDUCTION

It will seem not a little paradoxical to ascribe a great importance to observa-

tions even in that part of the mathematical sciences which is usually called

Pure Mathematics, since the current opinion is that observations are restricted

to physical objects that make impression on the senses. As we must refer the

numbers to the pure intellect alone, we can hardly understand how observations

and quasi-experiments can be ofuse in investigating the nature of the numbers.

Yet, infact, as I shall show here with very good reasons, the properties of the

numbers known today have been mostly discovered by observation, and dis-

covered long before their truth has been confirmed by rigid demonstrations.

There are even many properties of the numbers with which we are well

acquainted, but which we are notyet able to prove; only observations have led

us to their knowledge. Hence we see that in the 'theory of numbers, which is

still very imperfect, we can place our highest hopes in observations; they will

lead us continually to new properties which we shall endeavor to prove after-

wards. The kind ofknowledge which is supported only by observations and

is not yet proved must be carefully distinguishedfrom the truth; it is gained

by induction, as we usually say. Tet we have seen cases in which mere

induction led to error.
*

Therefore, we should take great care not to accept as

true such properties of the numbers which we have discovered by observation

and which are supported by induction alone. Indeed, we should use such a

discovery as an opportunity to investigate more exactly the properties discovered

and to prove or disprove them; in both cases we may learn something

Useful. EULER1

i. Experience and belief. Experience modifies human beliefs. We
learn from experience or, rather, we ought to learn from experience. To

make the best possible use of experience is one of the great human tasks and

to work for this task is the proper vocation of scientists,

A scientist deserving this name endeavors to extract the most correct

belief from a given experience and to gather the most appropriate experience

in order to establish the correct belief regarding a given question. The

1
Euler, Optra Omnia, ser. 1, vol. 2, p. 459, Specimen de usu observationum in mathesi

pura.
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scientist's procedure to deal with experience is usually called induction.

Particularly clear examples of the inductive procedure can be found in

mathematical research. We start discussing a simple example in the next

section.

a. Suggestive contacts. Induction often begins with observation. A
naturalist may observe bird life, a crystallographer the shapes of crystals.

A mathematician, interested in the Theory of Numbers, observes the

properties of the integers 1, 2, 3, 4, 5, . . . .

If you wish to observe bird life with some chance of obtaining interest-

ing results, you should be somewhat familiar with birds, interested in

birds, perhaps you should even like birds. Similarly, if you wish to observe

the numbers, you should be interested in, and somewhat familiar with,

them. You should distinguish even and odd numbers, you should know
the squares 1, 4, 9, 16, 25, ... and the primes 2, 3, 5, 7, 11, 13, 17, 19, 23,

29, .... (It is better to keep 1 apart as "unity" and not to classify it as

a prime.) Even with so modest a knowledge you may be able to observe

something interesting.

By some chance, you come across the relations

3 + 7 = 10, 3 + 17 = 20, 13 + 17 = 30

and notice some resemblance between them.- It strikes you that the numbers

3, 7, 13, and 17 are odd' primes. The sum of two odd primes is necessarily

an even number; in fact, 10, 20, and 30 are even. What about the other

even numbers ? Do they behave similarly ? The first even number which
is a sum of two odd primes is, of course,

6=3 + 3.

Looking beyond 6, we find that

8 = 3 + 5

10 = 3 + 7 = 5 + 5
t

12 = 5 + 7

14 = 3 + 11 =7 + 7

16 = 3 + 13 = 5 + 11.

\Vill it go on like this forever? At any rate, the particular cases observed

suggest a general statement : Any even number greater than 4 is the sum of two

odd primes. Reflecting upon the exceptional cases, 2 and 4, which cannot

be split into a sum of two odd primes, we may prefer the following more

sophisticated statement : Any even number that is neither a prime nor the square

of a prime, is the sum of two odd primes.
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We arrived so at formulating a conjecture. We found this conjecture by
induction. That is, it was suggested by observation, indicated by particular
instances.

f
These indications are rather flimsy; we have only very weak grounds to

believe in our conjecture. We may find, however, some consolation in the

fact that the mathematician who discovered this conjecture a little more than
two hundred years ago, Goldbach, did not possess much stronger

grounds for it.

Is Goldbach's conjecture true? Nobody can answer this question today.
In spite of the great effort spent on it by some great mathematicians,
Goldbach's conjecture is today, as it was in the days of Euler, one of those

"many properties of the numbers with which we are well acquainted, but
which we are not yet able to prove" or disprove.

Now, let us look back and try to perceive such steps in the foregoing

reasoning as might be typical of the inductive procedure.
First, we noticed some similarity. We recognized that 3, 7, 13, and 17 are

primes, 10, 20, and 30 even numbers, and that the three equations
3 + 7 = 10, 3 + 17 = 20, 13 + 17 = 30 are analogous to each other.

Then there was a step of generalization. From the examples 3, 7, 13, and
17 we passed to all odd primes, from. 10, 20, and 30 to all even numbers,
and then on to a possibly general relation

even number = prime + prime.

We arrived so at a clearly formulated general statement, which, however,
is merely a conjecture, merely tentative. That is, the statement is by no means

proved, it cannot have any pretension to be true, it is merely an attempt
to get at the truth.

This conjecture has, however, some suggestive points of contact with

experience, with "the facts," with "reality." It is true for the particular
even numbers 10, 20, 30, also for 6, 8, 12, 14, 16.

With these remarks, we outlined roughly a first stage of the inductive
*

process.

3. Supporting contacts. You should not put too much trust in any

unproved conjecture, even if it has been propounded by a great authority,

even if it has been propounded by yourself. You should try to prove it or

to disprove it; you should test it.

We test Goldbach's conjecture if we examine some new even number
and decide whether it is or is not a sum of two odd primes. Let us examine,
for instance, the number 60. Let us perform a "quasi-experiment," as

Euler expressed himself. The number 60 is even, but is it the sum of two

primes? Is it true that

60 = 3 + prime?
No, 57 is not a prime. Is

60 = 5 + prime?
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The answer is again "No" : 55 is not a prime. If it goes on in this way,
the conjecture will be exploded. Yet the next trial yields

60 = 7 + 53

and 53 is a prime. The conjecture has been verified in one more case.

The contrary outcome would have settled the fate of Goldbach's con-

jecture once and for all. If, trying all primes under a given even number,
such as 60, you never arrive at a decomposition into a sum of two primes,

you thereby explode the conjecture irrevocably. Having verified the

conjecture in the case of the even number 60, you cannot reach such a

definite conclusion. You certainly do not prove the theorem by a single
verification. It is natural, however, to interpret such a verification as a

favorable sign, speaking for the conjecture, rendering it more credible) although,
of course, it is left to your personal judgement how much weight you attach

to this favorable sign.

Let us return, for a moment, to the number 60. After having tried the

primes 3, 5, and 7, we can try the remaining primes under 30. (Obviously,
it is unnecessary to go further than 30 which equals 60/2, since one of the

two primes, the sum of which should be 60, must be less than 30.) We
obtain so all the decompositions of 60 into a sum of two primes :

60 = 7 + 53 = 13 + 47 = 17 + 43 = 19 + 41 = 23 + 37 = 29 + 31.

We can proceed systematically and examine the even numbers one after

the other, as we have just examined the even number 60. We can tabulate

the results as follows :

6 = 3 + 3

8 = 3 + 5

12 = 5 + 7
<

14 = 3 + 11 =7 + 7

16^3+13 = 5+11
18 = 5 + 13 = 7+11
20 = 3+17 = 7+13
22 = 3+ 19 = 5+ 17 = II + 11

24 = 5 + 19 = 7 + 17 = 11 + 13

26 = 3 + 23 = 7 + 19 = f3 + 13

28 = 5 + 23 = 11 + 17

30 = 7 + 23 *= 11 + 19 = 13 + 17.
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The conjecture is verified in all cases that we have examined here. Each
verification that lengthens the table strengthens the conjecture, renders it

more credible, adds to its plausibility. Of course, no amount of such
verifications could prove the conjecture.

We should examine our collected observations, we should compare
and combine them, we should look for some clue that may be hidden
behind them. In our case, it is very hard to discover some essential clue

in the table. Still examining the table, we may realize more clearly the

meaning of the conjecture. The table shows how often the even numbers
listed in it can be represented as a sum of two primes (6 just once, 30 three

times). The number of such representations of the even number 2n seems

to "increase irregularly" with n. Goldbach's conjecture expresses the hope
that the number of representations will never fall down to 0, however far

we may extend the table.

Among the particular cases that we have examined we could distinguish
two groups: those which preceded the formulation of the conjecture and
those which came afterwards. The former suggested the conjecture, the

latter supported it. Both kinds ofcases provide some sort of contact between
the conjecture and "the facts." The table does not distinguish between

"suggestive" and "supporting" points of contact.

Now, let us look back at the foregoing reasoning and try to see in it traits

typical of the inductive process.

Having conceived a conjecture, we tried to find out whether it is true or

false. Our conjecture was a general statement suggested by certain par-
ticular instances in which we have found it true. We examined further

particular instances. As it turned out that the conjecture is true in all

instances examined, our confidence in it increased.

We did, it seems to me, only things that reasonable people usually do.

In so doing, we seem to accept a principle: A conjectural general statement

becomes more credible if it is verified in a new particular case.

Is this the principle underlying the process of induction?

4. The inductive attitude. In our personal life we often cling to

illusions. That is, we do not dare to examine certain beliefs which could

be easily contradicted by experience, because we are afraid of upsetting our

emotional balance. There may be circumstances in which it is not unwise

to cling to illusions, but in science we need a very different attitude, the

inductive attitude. This attitude aims at adapting our beliefs to our experience
as efficiently as possible. It requires a certain preference for what is matter

of fact. It requires a ready ascent from observations to generalizations, and

a ready descent from the highest generalizations to the most concrete

observations. It requires saying "maybe" and "perhaps" in a thousand

different shades. It requires many other things, especially the following

three.



8 INDUCTION

First, we should be ready to revise any one of our beliefs.

Second, we should change a belief when there is a compelling reason

to change it.

Third, we should not change a beliefwantonly, without some good reason.

These points sound pretty trivial. Yet one needs rather unusual qualities

to live up to them.

The first point needs "intellectual courage.'
3 You need courage to revise

your beliefs. Galileo, challenging the prejudice of his contemporaries and

the authority of Aristotle, is a great example of intellectual courage.

The second point needs "intellectual honesty." To stick to my conjecture

that has been clearly contradicted by experience just because it is my con-

jecture would be dishonest.

The third point needs "wise restraint." To change a belief without

serious examination, just for the sake of fashion, for example, would be

foolish. Yet we have neither the time nor the strength to examine seriously

all our beliefs. Therefore it is wise to reserve the day's work, our questions,

and our active doubts for such beliefs as we can reasonably expect to amend.

"Do not believe anything, but question only what is worth questioning."
Intellectual courage, intellectual honesty, and wise restraint are the

moral qualities of the scientist.

EXAMPLES AND COMMENTS ON CHAPTER I.

i. Guess the rule according to which the successive terms of the following

sequence are chosen :

11,31,41,61, 71, 101, 131, ... .

2* Consider the table ;

1 = + 1

2+3+4 =1+8
5+6+7+8+9 =8 + 27

10+11 + 12 + 1.3 + 14+15 + 16 ==27 + 64

Guess the general law suggested by these examples, express it in suitable

mathematical notation, and prove it.

3. Observe the values of the successive sums

1, 1+3, 1+3 + 5, 1+3 + 5 + 7, ... .

Is there a simple rule ?
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4. Observe the values of the consecutive sums

1, 1+8, 1+8 + 27, 1+8 + 27 + 64, ... .

Is there a simple rule?

5. The .three sides of a triangle are of lengths /, m, and 72, respectively.

The numbers Z, m, and n are positive integers, / <^ m <I n. Find the number
of different triangles of the described kind for a given* TZ. [Take n = 1, 2, 3,

4, 5, ...
.] Find a general law governing the dependence of the number

of triangles on n.

6. The first three terms of the sequence 5, 15, 25, ... (numbers ending
in 5) are divisible by 5. Are also the following terms divisible by 5 ?

The first three terms of the sequence 3, 13, 23, ... (numbers ending in 3)

are prime numbers. Are also the following terms prime numbers ?

7. By formal computation we find

== 1 x - x2 3r> 13*4 71*5 461*6 ... .

This suggests two conjectures about the following coefficients of the right

hand power series: (1) they are all negative; (2) they are all primes. Are
these two conjectures equally trustworthy?

a. Set

We find that for

n=0 123456 7 8 9

An = 1 1 1 2 4 14 38 216 600 6240.

State a conjecture.

9. The great French mathematician Fermat considered the sequence

5, 17, 257, 65537,

the general term of which is 22n + 1. He observed that the first four terms

(here given), corresponding to n = 1, 2, 3, and 4, are primes. He con-

jectured that the following terms are also primes. Although he did not

prove it, he felt so sure of his conjecture that he challenged Waljis and

other English mathematicians to prove it. Yet Euler found that the very

next term, 232 + 1, corresponding to n = 5, is not a prime: it is divisible
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by 641.
2 See the passage of Euler at the head of this chapter: "Yet we

have seen cases in which mere induction led to error."

10. In verifying Goldbach's conjecture for 2n = 60 we tried successively

the primes p under n = 30. We could have also tried, however, the

primes p' between n = 30 and 2n = 60. Which procedure is likely to be

more advantageous for greater n ?

n. In a dictionary, you will find among the explanations for the words

"induction," "experiment," and "observation" sentences like the following.

"Induction is inferring a general law from particular instances, or a

production of facts to prove a general statement."

"Experiment is a procedure for testing hypotheses."
"Observation is an accurate watching and noting of phenomena as they

occur in nature with regard to cause and effect or mutual relations."

Do these descriptions apply to our example discussed in sect. 2 and 3 ?

12. Tes and No. The mathematician as the naturalist, in testing some

consequence of a conjectural general law by a new observation, addresses a

question to Nature: "I suspect that this law is true. Is it true?" If the

consequence is clearly refuted, the law cannot be true. If the consequence
is clearly verified, there is some indication that the law may be true. Nature

may answer Yes or No, but it whispers one answer and thunders the other,
its Yes is provisional, its No is definitive.

13. Experience and behavior. Experience modifies human behavior. And
experience modifies human beliefs. These two things are not independent
of each other. Behavior often results from beliefs, beliefs are potential
behavior. Yet you can see the other fellow's behavior, you cannot see his

beliefs. Behavior is more easily observed than belief. Everybody knows
that "a burnt child dreads the fire," which expresses just what we said:

experience modifies human behavior.

Yes, and it modifies animal behavior, too.

In my neighborhood there is a mean dog that barks and jumps at people
without provocation. But I have found that I can protect myself rather

easily. If I stoop and pretend to pick up a stone, the dog runs away howling.
All dogs do not behave so, and it is easy to guess what kind of experience
gave this dog this behavior.

The bear in the zoo "begs for food." That is, when there is an onlooker

around, it strikes a ridiculous posture which quite frequently prompts the

onlooker to throw a lump of sugar into the cage. Bears not in captivity

probably never assume such a preposterous posture and it is easy to imagine
what kind of experience led to the zoo bear's begging.
A thorough investigation of induction should include, perhaps, the study

of animal behavior.

Qmmat scr. 1, vol, 2, p. 1-5. Hardy and Wright, The Theory of Numbers,
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14. The logician, the mathematician, the physicist, and the engineer. "Look at

this mathematician," said the logician. "He observes that the first ninety-
nine numbers are less than hundred and infers hence, by what he calls

induction, that all numbers are less than a hundred.5 '

"A physicist believes," said the mathematician, "that 60 is divisible by
all numbers. He observes that 60 is divisible by 1, 2, 3, 4, 5, and 6. He
examines a few more cases, as 10, 20, and 30, taken at random as he says.

Since 60 is divisible also by these, he considers the experimental evidence

sufficient."

"Yes, but look at the engineers," said the physicist. "An engineer

suspected that all odd numbers are prime numbers. At any rate, 1 can be
considered as a prime number, he argued. Then there come 3, 5, and 7,

all indubitably primes. Then there comes 9 ; an awkward case, it does not

seem to be a prime number. Yet 1 1 and 13 are certainly primes. 'Coming
back to 9/ he said, *I conclude that 9 must be an experimental error.'

"

It is only too obvious that induction can lead to error. Yet it is remark-
able that induction sometimes leads to truth, since the chances oferror appear
so overwhelming. Should we begin with the study of the obvious cases in

which induction fails, or with the study of those remarkable cases in which
induction succeeds ? The study of precious stones is understandably more
attractive than that of ordinary pebbles and, moreover, it was much more
the precious stones than the pebbles that led the mineralogists to the

wonderful science of crystallography.
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GENERALIZATION, SPECIALIZATION,

ANALOGY

And I cherish more than anything else the Analogies, my most trustworthy
masters. They know all the secrets of Nature^ and they ought to be least

neglected in Geometry. KEPLER

1. Generalization, Specialization, Analogy, and Induction. Let us

look again at the example of inductive reasoning that we have discussed in

some detail (sect. 1.23 1.3). We started from observing the analogy of the

three relations

3 + 7 = 10, 3 + 17 = 20, 13 + 17 = 30,

we generalized in ascending from 3, 7, 13, and 17 to all primes, from 10, 20,

and 30 to all even numbers, and then we specialized again, came down to test

particular even numbers such as 6 or 8 or 60.

This first example is extremely simple. It illustrates quite correctly the

role of generalization, specialization, and analogy in inductive reasoning.
Yet we should examine less meager, more colorful illustrations and, before

that, we should discuss generalization, specialization, and analogy, these

great sources of discovery, for their own sake.

2. Generalization is passing from the consideration of a given set of

objects to that of a larger set, containing the given one. For example, we
generalize when we pass from the consideration of triangles to that of

polygons with an arbitrary number of sides. We generalize also when we
pass from the study of the trigonometric functions of an acute angle to the

trigonometric functions of an unrestricted angle.
It may be observed that in these two examples the generalization was

effected in two characteristically different ways. In the first example, in

passing from triangles to polygons with n sides, we replace a constant by a

variable, the fixed integer 3 by the arbitrary integer n (restricted only by the

inequality n ]> 3) . In the second example, in passing from acute angles to
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arbitrary angles a, we remove a restriction, namely the restriction that

< a < 90.
We often generalize in passing from just one object to a whole class

containing that object.

3. Specialization is passing from the consideration of a given set of

objects to that of a smaller set, contained in the given one. For example,
we specialize when we pass from the consideration of polygons to that of

regular polygons, and we specialize still further when we pass from regular

polygons with n sides to the regular, that is, equilateral, triangle.
These two subsequent passages were effected in two characteristically

different ways. In the first passage, from polygons to regular polygons, we
introduced a restriction, namely that all sides and all angles of the polygon
be equal. In the second passage we substituted a special object for a

variable, we put 3 for the variable integer n.

Very often we specialize in passing from a whole class of objects to just
one object contained in the class. For example, when we wish to check

some general assertion about prime numbers we pick out some prime number,
say 17, and we examine whether that general assertion is true or not for

just this prime 17.

4. Analogy. There is nothing vague or questionable in the concepts of

generalization and specialization. Yet as we start discussing analogy we
tread on a less solid ground.

Analogy is a sort of similarity. It is, we could say, similarity on a more
definite and more conceptual level. Yet we can express ourselves a little

more accurately. The essential difference between analogy and other

kinds of similarity lies, it seems to me, in the intentions of the thinker.

Similar objects agree with each other in some aspect. If you intend to

reduce the aspect in which they agree to definite concepts, you regard those

similar objects as analogotts. Ifyou succeed in getting down to clear concepts,

you have clarified the analogy.

Comparing a young woman to a flower, poets feel some similarity, I

hope, but usually they do not contemplate analogy. In fact, they scarcely
intend to leave the emotional level or reduce that comparison to something
measurable or conceptually definable.

Looking in a natural history museum at the skeletons ofvarious mammals,
you may find them all frightening. If this is all the similarity you can find

between them, you do not see much analogy. Yet you may perceive a

wonderfully suggestive analogy if you consider the hand of a man, the paw
of a cat, the foreleg of a horse, the fin of a whale, and the wing of a bat,

these organs so differently used, as composed of similar parts similarly
related to each other.

The last example illustrates the most typical case of clarified analogy;
two systems are analogous, if they agree in cleurly definable relations of their

respective parts.
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For instance, a triangle in a plane is analogous to a tetrahedron in space.
In the plane, 2 straight lines cannot include a finite figure, but 3 may include

a triangle. In space, 3 planes cannot include a finite figure but 4 may include

a tetrahedron. The relation of the triangle to the plane is the same as that

of the tetrahedron to space in so far as both the triangle and the tetrahedron

are bounded by the minimum number of simple bounding elements.

Hence the analogy.

Fig. 2.1. Analogous relations in plane and space.

One of the meanings of the Greek word "analogia," from which the

word "analogy
55

originates, is "proportion." In fact, the system of the

two numbers 6 and 9 is "analogous
55

to the system of the two numbers 10

and 15 in so far as the two systems agree in the ratio of their corresponding

terms,
6 : 9= 10 : 15.

Proportionality, or agreement in the ratios of corresponding parts, which
we may see intuitively in geometrically similar figures, is a very suggestive
case of analogy.

Here is another example. We may regard a triangle arid a pyramid as

analogous figures. On the one hand take a segment of a straight line, and
on the other hand a polygon. Connect all points of the segment with a

point outside the line of the segment, and you obtain a triangle. Connect
all points of the polygon with a point outside the plane of the polygon, and

you obtain a pyramid. In the same manner, we may regard a parallelo-

gram and a prism as analogous figures. In fact, move a segment or a poly-

gon parallel to itself, across the direction of its line or plane, and the one
will describe a parallelogram, the other a prism. We may be tempted to

express these corresponding relations bciween plane and solid figures by a
sort of proportion and if, for once, we do not resist temptation, we arrive at

fig. 2.1. This figure modifies the usual meaning ofcertain symbols ( : and =}
in the same way as the meaning of the word "analogia

5* was modified in the

course of linguistic history: from "proportion
55

to "analogy.
55

The last example is instructive in still another respect. Analogy,
especially incompletely clarified analogy, may be ambiguous. Thus,

comparing plane and solid geometry, we found first that a triangle in a



GENERALIZATION, SPECIALIZATION, ANALOGY 15

plane is analogous to a tetrahedron in space and then that a triangle is

analogous to a pyramid. Now, both analogies are reasonable, each is

valuable at its place. There are several analogies between plane and solid

geometry and not just one privileged analogy.

Fig. 2.2 exhibits how, starting from a triangle, we may ascend to a polygon
by generalization, descend to an equilateral triangle by specialization, or

pass to different solid figures by analogy there are analogies on all sides.

more general

analogous
analogous

more special

Fig. 2.2. Generalization, specialization, analogy.

And, remember, do not neglect vague analogies. Yet, if you wish them
respectable, try to clarify them.

5. Generalization, Specialization, and Analogy often concur in

solving mathematical problems.
1 Let us take as an example the proof of

the best known theorem of elementary geometry, the theorem of Pythagoras.
The proof that we shall discuss is not new; it is due to Euclid himself

(Euclid VI, 31).

(I) We consider a right triangle with sides a, b, and c, of which the first,

0, is the hypotenuse. We wish to show that

1 This section reproduces with slight changes a Note of the author in the American Mathe-
matical Monthly, v. 55 (1948), p. 241-243.
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This aim suggests that we describe squares on the three sides of our right

triangle. And so we arrive at the not unfamiliar part I of our compound
figure, fig. 2.3. (The reader should draw the parts of this figure as they

arise, in order to see it in the making.)

(2) Discoveries, even very modest discoveries, need some remark, the

recognition of some relation. We can discover the following proof by

observing the analogy between the familiar part I of our compound figure

Fig. 2.3.

and the scarcely less familiar part II : the same right triangle that arises in

I is divided in II into two parts by the altitude perpendicular to the

hypotenuse.

(3) Perhaps, you fail to perceive the analogy between I and II. This

analogy, however, can be made explicit by a common generalization of I

and II which is expressed in III. There we find again the same right

triangle, and on its three sides three polygons are described which are similar

to each other but arbitrary otherwise.

(4) The area of the square described on the hypotenuse in I is a2. The
area of the irregular polygon described on the hypotenuse in III can be put
equal to A<2

2
;

the factor A is determined as the ratio of two given areas.

Yet then, it follows from the similarity of the three polygons described on
the sides a, , and c of the triangle in III that their areas are equal to Afl

2
,

A 2
, and Ac2, respectively.

Now, if the equation (A) should be true (as stated by the theorem that

we wish to prove), then also the following would be true:

(B) Aa2 = Xb* + ^2
-
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In fact, very little algebra is needed to derive (B) from (A). Now, (B)

represents a generalization of the original theorem of Pythagoras: If three

similar polygons are described on three sides of a right triangle, the one described on

the hypotenuse is equal in area to the sum of the two others.

It is instructive to observe that this generalization is equivalent to the

special case from which we started, In fact, we can derive the equations

(A) and (B) from each other, by multiplying or dividing by X (which is, as

the ratio oftwo areas, different from 0).

(5) The general theorem expressed by (B) is equivalent not only to the

special case (A), but to any other special case. Therefore, if any such

special case should turn out to be obvious5 the general case would be

demonstrated.

Now, trying to specialize usefully, we look around for a suitable special
case. Indeed II represents such a case. In fact, the right triangle described

on its own hypotenuse is similar to the two other triangles described on the

two legs, as is well known and easy to see. And, obviously, the area of the

whole triangle is equal to the sum of its two parts. And so, the theorem of

Pythagoras has been proved.
The foregoing reasoning is eminently instructive. A case is instructive

if we can learn from it something applicable to other cases, and the more
instructive the wider the range of possible applications. Now, from the

foregoing example we can learn the use of such fundamental mental opera-
tions as generalization, specialization, and the perception of analogies.
There is perhaps no discovery either in elementary or in advanced mathe-
matics or, for that matter, in any other subject that could do without these

operations, especially without analogy.
The foregoing example shows how we can ascend by generalization from

a special case, as from the one represented by I, to a more general situation

as to that of III, and redescend hence by specialization to an analogous case,

as to that of II. It shows also the fact, so usual in mathematics and still so

surprising to the beginner, or to the philosopher who takes himself for

advanced, that the general case can be logically equivalent to a special
case. Our example shows, naively and suggestively, how generalization,

specialization, and analogy are naturally combined in the effort to attain

the desired solution. Observe that only a minimum of preliminary

knowledge is needed to understand fully the foregoing reasoning.

6. Discovery by analogy. Analogy seems to have a share in all

discoveries, but in some it has the lion's share. I wish to illustrate this

by an example which is not quite elementary, but is of historic interest

and far more impressive than any quite elementary example of which
I can think.

Jacques Bernoulli, a -Swiss mathematician (1654-1705), a contem-

porary of Newton and Leibnitz, discovered the sum of several infinite
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series, but did not succeed in finding the sum of the reciprocals of the

squares, Jfy

"If somebody should succeed," wrote Bernoulli, "in finding what till now
withstood our efforts and communicate it to us, we shall be much obliged
to him."
The problem came to the attention of another Swiss mathematician,

Leonhard Euler (1707-1783), who was born at Basle as was Jacques
Bernoulli and was a pupil of Jacques' brother, Jean Bernoulli (1667-1748).
He found various expressions for the desired sum (definite integrals, other

series) ,
none ofwhich satisfied him. He used one of these expressions to com-

pute the sum numerically to seven places (1.644934). Yet this is only an

approximate value and his goal was to find the exact value. He dis-

covered it, eventually. Analogy led him to an extremely daring conjecture.

(1) We begin by reviewing a few elementary algebraic facts essential to

Euler's discovery. If the equation of degree n

==

has n different roots

the polynomial on its left hand side can be represented as a product of n

linear factors,

. . .+ anx
n =

a) (x ocw).

By comparing the terms with the same power of x on both sides of this

identity, we derive the well known relations between the roots and the
coefficients of an equation, the simplest of which is

<*2 + . . . + <xn) ;

we find this by comparing the terms with xn~l .

^ There is another way of presenting the decomposition in linear factors,
If none of the roots a1? a2,

. . . an is equal to 0, or (which is the same) if

BO is different from 0, we have also

*o + W + <W? + - * +

and

a (1- 4-1
\ &1 #2 OCWi
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There is still another variant. Suppose that the equation is of degree
2n, has the form

* - V2 + V4 -
- * + (-1)V* =

and 2n different roots

Pl> l> P& fit* Pn> &i-
Then

*o
- V2 + V4 -

. . + (-1)V
and

(2) Euler considers the equation

sin # =
or

i =0
1 1-2-3 1 -2-3-4-5

The left hand side has an infinity ofterms, is of "infinite degree." Therefore,
it is no wonder, says Euler, that there is an infinity of roots

0, -TT, TT, 2-rr, ZTT, STT, STT, ... .

Euler discards the root 0, He divides the left hand side of the equation by
x, the linear factor corresponding to the root 0, and obtains so the equation

1--*-+_*___*_ +... =2-3^2-3-4-5 2-3-4-5-6-7^
with the roots

7T, 77, 27T, 27T, 37T, 377, ... .

We have seen an analogous situation before, under (1), as we discussed the

last variant of the decomposition in linear factors. Euler concludes, by
analogy, that

sin x

_L -I + 2.+JL
2-3 772

^
47T2

^
97T2
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This is the series that withstood the efforts of Jacques Bernoulli but it

was a daring conclusion.

(3) Euler knew very well that his conclusion was daring, "The method
was new and never used yet for such a purpose," he wrote ten years later.

He saw some objections himself and many objections were raised by his

mathematical friends when they recovered from their first admiring surprise*
Yet Euler had his reasons to trust his discovery. First of all, the numerical

value for the sum of the series which he has computed before, agreed to the
last place with 7r

2
/6. Comparing further coefficients in his expression of

sin x as a product, he found the sum ofother remarkable series, as that of the

reciprocals of the fourth powers,

1+ 1+1 , J_+ .1 , -I?^
16
^

81
^

256
^

625
^ ----

90*

Again, he examined the numerical value and again he found agreement.
(4) Euler also tested his method on other examples. Doing so he

succeeded in rederiving the sum ?r
2
/6 for Jacques Bernoulli's series by various

modifications of his first approach. He succeeded also in rediscovering by
his method the sum of an important series due to Leibnitz.

Let us discuss the last point. Let us consider, following Euler, the

equation
1 sin x = 0.

It has the roots

TT Sir 5tr 7rr QTT UTT
'

Each of these roots is, however, a double root. (The curvey = sin x does
not intersect the line y = 1 at these abscissas, but is tangent to it. The
derivative of the left hand side vanishes for the same values of #, but not the
second derivative.) Therefore, the equation

,
_^

1 1-2-3 1-2-3-5

has the roots t ._

1L -
' '

2' 2' T' ^T' T5 TJ ~~T' ""T'
"""

and Euler's analogical conclusion leads to the decomposition in linear factors

i i
*

1 sin x = 1 --- _
1-2-3-4-5

'"
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Comparing the coefficient of x on both sides, we obtain

-,__++...
7T O7T D7T /7T

'*
=B 1_I + 1 _ 1

4.
1 _1 +

4 S^S 7^9 11
^ " *

This is Leibnitz's celebrated series; Euler's daring procedure led to a known
result. "For our method/

9

says Euler, "which may appear to some as not

reliable enough, a great confirmation comes here to light. Therefore, we
should not doubt at all of the other things which are derived by the same
method."

(5) Yet Euler kept on doubting. He continued the numerical verifica-

tions described above under (3), examined more series and more decimal

places, and found agreement in all cases examined. He tried other

approaches, too, and, finally, he succeeded in verifying not only numerically,
but exactly, the value 7^/6 for Jacques Bernoulli's series. He found a new

proof. This proof, although hidden and ingenious, was based on more
usual considerations and was accepted as completely rigorous. Thus, the

most conspicuous consequence of Euler's discovery was satisfactorily verified.

These arguments, it seems, convinced Euler that his result was correct.2

7. Analogy and induction. We wish to learn something about the

nature of inventive and inductive reasoning. What can we learn from the

foregoing story?

(1) Euler's decisive step was daring. In strict logic, it was an outright

fallacy: he applied a rule to a case for which the rule was not made, a rule"

about algebraic equations to an equation which is not algebraic. In strict

logic, Euler's step was not justified. Yet it was justified by analogy, by the

analogy of the most successful achievements of a rising science that he called

himself a few years later the "Analysis of the Infinite." Other mathe-

maticians, before Euler, passed from finite differences to infinitely small

differences, from sums with a finite number of terms to sums with an infinity

of terms, from finite products to infinite products. And so Euler passed
from equations of finite degree (algebraic equations) to equations of infinite

degree, applying the rules made for the finite to the infinite.

This analogy, this passage from the finite to the infinite, is beset with

pitfalls. How did Euler avoid them? He was a genius, some people will

answer, and of course that is no explanation at all. Euler had shrewd

2 Much later, almost ten years after his first discovery, Euler returned to the subject,

answered the objections, completed to some extent his original heuristic approach, and gave
a new, essentially different proof. See L. Euler, Opera Omnia, ser. 1, vol. 14, p. 73-86,

138-155, 177-186, and also p* 156-176, containing a note by Paul Stackel on the history
of the problem.
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reasons for trusting his discovery. We can understand his reasons with a

little common sense, without any miraculous insight specific to genius.

(2) Euler's reasons for trusting his discovery, summarized in the fore-

going,
3 are not demonstrative. Euler does not reexamine the grounds for

his conjecture,
4 for his daring passage from the finite to the infinite; he

examines only its consequences. He regards the verification of any such

consequence as an argument in favor of his conjecture. He accepts both

approximative and exact verifications, but seems to attach more weight to

the latter. He examines also the consequences of closely related analogous

conjectures
5 and he regards the verification of such a consequence as an

argument for his conjecture.
Euler's reasons are, in fact, inductive. It is a typical inductive procedure

to examine the consequences of a conjecture and to judge it on the basis of

such an examination. In scientific research as in ordinary life, we believe,

or ought to believe, a conjecture more or less according as its observable

consequences agree more or less with the facts.

In short, Euler seems to think the same way as reasonable people,
scientists or non-scientists, usually think. He seems to accept certain

principles : A conjecture becomes more credible by the verification of any new conse-

quence. And: A conjecture becomes more credible if an analogous conjecture becomes

more credible.

Are the principles underlying the process of induction of this kind?

EXAMPLES AND COMMENTS ON CHAPTER H

First Part

x. The right generalization.

A. Find three numbers x,yy and z satisfying the following system ofequations :

g^^Gy 10* = 1,

# = 9.

If you have to solve A, which one of the following three generalizations
does give you a more helpful suggestion, B or C or D?

B. Find three unknowns from a system of three equations.
C. Find three unknowns from a system of three equations the first two

of which are linear and the third quadratic.

* Under sect. 6 (3), (4), (5). For Euler's own summary see Opera Omma, ser. 1, vol. 14.

p. 140,
4 The representation of sin x as an infinite product.
*

Especially the product for 1 sin x.
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D. Find n unknowns from a system of n equations the first n 1 of

which are linear.

a. A point and a "regular" pyramid with hexagonal base are given in

position. (A pyramid is termed "regular" if its base is a regular polygon
the center ofwhich is the foot of the altitude of the pyramid.) Find a plane
that passes through the given point and bisects the volume of the given

pyramid.
In order to help you, I ask you a question: What is the right

generalization ?

3. A. Three straight lines which are not in the same plane pass through
the same point 0. Pass a plane through that is equally inclined to the

three lines.

B. Three straight lines which are not in the same plane pass through the

same point. The point P is on one of the lines
; pass a plane through P

that is equally inclined to the three lines.

Compare the problems A and B. Could you use the solution of one in

solving the other? What is their logical connection?

4. A. Compute the integral

uw

f

B. Compute the integral

oo

J

where p is a given positive number.

Compare the problems A and B. Could you use the solution of one in

solving the other? What is their logical connection?

5. An extreme special case. Two men are seated at a table of usual

rectangular shape. One places a penny on the table, then the other does

the same, and so on, alternately. It is understood that each penny lies

flat on the table and not on any penny previously placed. The player who

puts the last coin on the table takes the money. Which player should win,

provided that each plays the best possible game ?

This is a time-honored but excellent puzzle. I once had the opportunity
to watch a really distinguished mathematician when the puzzle was pro-

posed to him. He started by saying, "Suppose that the table is so small

that it is covered by one penny. Then, obviously, the first player must

win." That is, he started by picking out an extreme special case in which the

solution is obvious.
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From this special case, you can reach the full solution when you imagine
the table gradually extending to leave place to more and more pennies.
It may be still better to generalize the problem and to think of tables of

various shapes and sizes. If you observe that the table has a center of

symmetry and that the right generalization might be to consider tables with a
center of symmetry, then you have got the solution, or you are at least very
near to it.

6. Construct a common tangent to two given circles.

In order to help you, I ask you a question: Is there a more accessible

extreme special case?

7. A leading special case. The area of a polygon is A, its plane includes

with a second plane the angle a. The polygon is projected orthogonally
onto the second plane. Find the area of the projection.

Observe that the shape of the polygon is not given. Yet there is an endless

variety of possible shapes. Which shape should we discuss? Which
shape should we discuss first?

There is a particular shape especially easy to handle : a rectangle, the base
of which is parallel to the line /, intersection of the plane of the projected
figure with the plane of the projection. If the base of such a rectangle is

a, its height b, and therefore its area is ab, the corresponding quantities for

the projection are a, b cos a, and ab cos a. If the area of such a rectangle
is A^ the area of its projection is A cos a.

This special case of the rectangle with base parallel to / is not only par-
ticularly accessible; it is a leading special case. The other cases follow; the

solution of the problem in the leading special case involves the solution in the general
case. In fact, starting from the rectangle with base parallel to /, we can
extend the rule "area of the projection equals A cos a" successively to all

other figures. First to right triangles with a leg parallel to / (by bisecting
the rectangle we start from) ; then to any triangle with a side parallel to /

(by combining two right triangles) ; finally to a general polygon (by dissect-

ing it into triangles of the kind just mentioned). We could even pass to

figures with curvilinear boundaries (by considering them as limits of

polygons) .

8. The angle at the center of a circle is double the angle at the circum-
ference on the same base, that is, on the same arc. (Euclid III, 20.)

If the angle at the center is given, the angle at the circumference is not

yet determined, but can have various positions. In the usual proof of the
theorem (Euclid's proof), which is the "leading special position"?

9. Cauchy's theorem, fundamental in the theory x>f analytic functions,
asserts that the integral of such a function vanishes along an arbitrary
closed curve in the interior of which the function is regular. We may
consider the special case of Cauchy's theorem in wmch the closed curve is a

triangle as a leading special case: having proved the theorem for a triangle,
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we can easily extend it successively to polygons (by combining triangles)

and to curves (by considering them as limits of polygons). Observe the

analogy with ex. 7 and 8.

10. A representative special case. You have to solve some problem about

polygons with n sides. You draw a pentagon, solve the problem for it,

study your solution, and notice that it works just as well in the general case,

for any n, as in the special case n = 5. Then you may call n = 5 a represen-

tative special case : it represents to you the general case. Of course, in order

to be really representative, the case n = 5 should have no particular

simplification that could mislead you. The representative special case should

not be simpler than the general case.

Representative special cases are often convenient in teaching. We may
prove a theorem on determinants with n rows in discussing carefully a

determinant with just 3 rows.

n. An analogous case. The problem is to design airplanes so that the

danger of skull fractures in case of accident is minimized. A medical

doctor, studying this problem, experiments with eggs which he smashes

under various conditions. What is he doing ? He has modified the original

problem, and is studying now an auxiliary problem, the smashing of eggs
instead of the smashing of skulls. The link between the two problems, the

original and the auxiliary, is analogy. From a mechanical viewpoint, a

man's head and a hen's egg are roughly analogous: each consists of a rigid,

fragile shell containing gelatinous material.

12. If two straight lines in space are cut by three parallel planes, the

corresponding segments are proportional.
In order to help you to find a proof, I ask you a question : Is there a simpler

analogous theorem?

13. The four diagonals of a parallelepiped have a common point which is

the midpoint of each.

Is there a simpler analogous theorem?

14. The sum of any two face angles of a trihedral angle is greater than the

third face angle.
Is there a simpler analogous theorem?

15. Consider a tetrahedron as the solid that is analogous to a triangle.

List the concepts of solid geometry that are analogous to the following

concepts of plane geometry: parallelogram, rectangle, square, bisector of an

angle. State a theorem of solid geometry that is analogous to the following

theorem of plane geometry : The bisectors of the three angles of a triangle meet in

one point which is the center of the circle inscribed in the triangle.

16. Consider a pyramid as the solid that is analogous to a triangle. List

the solids that are analogous to the following plane figures: parallelogram,

rectangle, circle. State a theorem of solid geometry that is analogous to the
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following theorem of plane geometry: The area of a circle is equal to the area

of a triangle the base of which has the same length as the perimeter of the circle and

the altitude of which is the radius.

17. Invent a theorem of solid geometry that is analogous to the following
theorem of plane geometry: The altitude of an isosceles triangle passes

through the midpoint of the base.

What solid figure do you consider as analogous to an isosceles triangle?

18. Great analogies. (1) The foregoing ex. 12-17 insisted on the analogy
between plane geometry and solid geometry. This analogy has many aspects
and is therefore often ambiguous and not always clearcut, but it is an
inexhaustible source of new suggestions and new discoveries.

(2) Numbers and figures are not the only objects ofmathematics, Mathe*
matics is basically inseparable from logic, and it deals with all objects which

may be objects of an exact theory. Numbers and figures are, however, the

most usual objects of mathematics, and the mathematician likes to illustrate

facts about numbers by properties of figures and facts about figures by
properties of numbers. Hence, there are countless aspects of the analogy
between numbers and figures. Some of these aspects are very clear. Thus,
in analytic geometry we study well-defined correspondences between

algebraic and geometric objects and relations. Yet the variety of geometric

figures is inexhaustible, and so is the variety of possible operations on

numbers, and so are the possible correspondences between these varieties.

(3) The study of limits and limiting processes introduces another kind

of analogy which we may call the analogy between the infinite and the finite.

Thus, infinite series and integrals are in various ways analogous to the finite

sums whose limits they are; the differential calculus is analogous to the

calculus of finite differences; differential equations, especially linear and

homogeneous differential equations, are somewhat analogous to algebraic

equations, and so forth. An important, relatively recent, branch of mathe-
matics is the theory of integral equations; it gives a surprising and beautiful

answer to the question: What is the analogue, in the integral calculus, of

a system of n linear equations with n unknowns? The analogy between the

infinite and the finite is particularly challenging because it has charac-

teristic difficulties and pitfalls. It may lead to discovery or error; see ex. 46.

(4) Galileo, who discovered the parabolic path of projectiles and the

quantitative laws of their motion, was also a great discoverer in astronomy,
With his newly invented telesqope, he discovered the satellites of Jupiter.
He noticed that these satellites circling the planet Jupiter are analogous to

the moon circling the earth and also analogous to the planets circling the

sun. He also discovered the phases of the planet Venus and noticed their

similarity with the phases of the moon. These discoveries were received

as a great confirmation of Copernicus's heliocentric'tfiteory, hotly debated at

that time* It is strange that Galileo failed to consider the analogy between



GENERALIZATION, SPECIALIZATION, ANALOGY 27

the motion of heavenly bodies and the motion of projectiles, which can be

seen quite intuitively. The path of a projectile turns its concave side

towards the earth, and so does the path of the moon. Newton insisted on

this analogy: "... a stone that is projected is by the pressure of its own

weight forced out of the rectilinear path, which by the initial projection
alone it should have pursued, and made to describe a curved line in the

air, and ... at last brought down to the ground; and the greater the

Fig. 2.4. From the path of the stone to the path of the moon. From Newton's Principia

velocity is with which it is projected, the farther it goes before it falls to the

earth. We may therefore suppose the velocity to be so increased, that it

would describe an arc of 1, 2, 5, 10, 100, 1000 miles before it arrived at the

earth, till at last, exceeding the limits of the earth, it should pass into space
without touching it." 6 See fig. 2.4.

Varying continuously, the path of the stone goes over into the path of

the moon. And as the stone and the moon are to the earth, so are the

satellites to Jupiter, or Venus and the other planets to the sun. Without

visualizing this analogy, we can only very imperfectly understand Newton's

discovery of universal gravitation, which we may still regard as the greatest

scientific discovery ever made.

* Sir Isaac Newton's Mathematical Principles ofNatural Philosophy and his System of the World.

Translated by Motte, revised by Gajori. Berkeley, 1946; see p. 551.
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19. Clarified analogies. Analogy is often vague. The answer to the

question, what is analogous to what, is often ambiguous. The vagueness
ofanalogy need not diminish its interest and usefulness; those cases, however,
in which the concept of analogy attains the clarity of logical or mathematical

concepts deserve special consideration.

(1) Analogy is similarity of relations. The similarity has a clear meaning
if the relations are governed by the same laws. In this sense, the addition of

numbers is analogous to the multiplication of numbers, in so far as addition

and multiplication are subject to the same rules. Both addition and

multiplication are commutative and associative,

a + b = b + 0> &b = ba,

(a + b) + c = a + (6 + c) 9 (ab}c = a(bc).

Both admit an inverse operation; the equations

a + x = b
3 ax = b

are similar, in so far as each admits a solution, and no more than one solution.

(In order to be able to state the last rule without exceptions we must admit

negative numbers when we consider addition, and we must exclude the

case a = when we consider multiplication.) In this connection sub-

traction is analogous to division; in fact, the solutions of the above equations
are

x = b -

a, x = -,
a

respectively. Then, the number is analogous to the number 1 ; in fact,

the addition of to any number, as the multiplication by 1 of any number,
does not change that number,

-|- = 0, a +\ -_. af

These laws are the same for various classes of numbers; we may consider
here rational numbers, or real numbers, or complex numbers. In general,

systems of objects subject to the same fundamental laws (or axioms) may be con-
sidered as analogous to each other, and this kind of analogy has a completely
clear meaning.

(2) The addition of real numbers is analogous to the multiplication of

positive numbers in still another sense. Any real number r is the logarithm
of some positive number /?,

r = log p.

(If we consider ordinary logarithms, r = 2 if p = 0.01.) By virtue of
this relation, to each positive number corresponds a perfectly determined
real number, and to each real number a perfectly determined positive
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number. In this correspondence the addition of real numbers corresponds
to the multiplication of positive numbers. If

then any of the following two relations implies the other:

r + r' = r", #>'=/".
The formula on the left and that on the right tell the same story in two

different languages. Let us call one of the
.
coordinated numbers the

translation of the other; for example, let us call the real number r (the

logarithm ofp) the translation of />, and/? the original of r. (We could have

interchanged the words "translation" and "original," but we had to choose,

and having chosen, we stick to our choice.) In this terminology addition

appears as the translation of multiplication, subtraction as the translation

of division, as the translation of 1, the commutative law and associative

law for the addition of real numbers are conceived as translations of these

laws for the multiplication of positive numbers. The translation is, of

course, different from the original, but it is a correct translation in the

following sense: from any relation between the original elements, we can

conclude with certainty the corresponding relation between the corres-

ponding elements of the translation, and vice versa. Such a correct trans-

lation, that is a one-to-one correspondence that preserves the laws of certain relations)

is called isomorphism in the technical language of the mathematician.

Isomorphism is a fully clarified sort of analogy.

(3) A third sort of fully clarified analogy is what the mathematicians call

in technical language homomorphism (or merohedral isomorphism). It would

take too much time to discuss an example sufficiently, or to give an exact

description, but we may try to understand the following approximate

description. Homomorphism is a kind of systematically abridged translation.

The original is not only translated into another language, but also abridged
so that what results finally from translation and abbreviation is uniformly,

systematically condensed into one-half or one-third or some other fraction

of the original extension. Subtleties may be lost by such abridgement but

everything that is in the original is represented by something in the trans-

latipn, and, on a reduced scale, the relations are preserved.

20. Quotations.

"Let us see whether we could, by chance, conceive some other general

problem that contains the original problem and is easier to solve. Thus,

when we are seeking the tangent at a given point, we conceive that we are

just seeking a straight line which intersects the given curve in the given point
and in another point that has a given distance from the given point. After

having solved this problem, which is always easy to solve by algebra, we
find the case of the tangent as a special case, namely, the special case in

which the given distance is minimal, reduces to a point, vanishes."

(LEIBNITZ)
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"As it often happens, the general problem turns out to be easier than the

special problem would be if we had attacked it directly." (P. G. LEJEUNE-

DIRICHLET, R. DEDEKIND)

"[It may be useful] to reduce the genus to its several species, also to a few

species. Yet the most useful is to reduce the genus to just one minimal

species." (LEIBNITZ)

"It is proper in philosophy to consider the similar, even in things far

distant from each other." (ARISTOTLE)

"Comparisons are ofgreat value in so far as they reduce unknown relations

to known relations.

"Proper understanding is, finally, a grasping of relations (un saisir de

rapports). But we understand a relation more distinctly and more purely
when we recognize it as the same in widely different cases and between

completely heterogeneous objects." (ARTHUR SCHOPENHAUER)
You should not forget, however, that there are two kinds ofgeneralizations.

One is cheap and the other is valuable. It is easy to generalize by diluting;

it is important to generalize by condensing. To dilute a little wine with a

lot of water is cheap and easy. To prepare a refined and condensed extract

from several good ingredients is much more difficult, but valuable. General-

ization by condensing compresses into one concept of wide scope several

ideas which appeared widely scattered before. Thus, the Theory of

Groups reduces to a common expression ideas which were dispersed before

in Algebra, Theory of Numbers, Analysis, Geometry, Crystallography, and
other domains. The other sort of generalization is more fashionable

nowadays than it was formerly. It dilutes a little idea with a big teroi-

nology. The author usually prefers to take even that little idea from

somebody else, refrains from adding any original observation, and avoids

solving any problem except a few problems arising from the difficulties of
his own terminology. It would be very easy to quote examples, but I

don't want to antagonize people.
7

Second Part

The examples and comments of this second part are all connected with
sect. 6 and each other. Many of them refer directly or indirectly to ex, 21,
which should be read first.

21. The conjecture E. We regard the equation

as a conjecture; we call it the "conjecture E" Following Euler, we wish
to investigate this conjecture inductively.

7 Cf. G. P61ya and G. Szcgo, Aufgaben und Lehrstdze aus <kr Analysis, vol. 1, p. VII.



GENERALIZATION, SPECIALIZATION, ANALOGY 3!

Inductive investigation of a conjecture involves confronting its conse-

quences with the facts. We shall often "predict from E and verify."

"Predicting from E" means deriving under the assumption that E is true,

"verifying" means deriving without this assumption. A fact "agrees with

j" if it can be (easily) derived from the assumption that E is true.

In the following we take for granted the elements of the calculus (which,
from the formal side, were completely known to Euler at the time of his

discovery) including the rigorous concept of limits (about which Euler

never attained full clarity) . We shall use only limiting processes which can

be justified (most of them quite easily) but we shall not enter into detailed

justifications.

22. We know that sin ( #) = sin x. Does this fact agree with E?

23. Predict from E and verify the value of the infinite product

24. Predict from E and verify the value of the infinite product

25. Compare ex. 23 and 24, and generalize.

26. Predict from E the value of the infinite product

2-4 4-6 6J* 8- 10

3^
'

iTV T"7 ?
"

9 9
* " "

27. Show that the conjecture E is equivalent to the statement

shiTri __ (t + n) . . . (z + l)gQs 1) ... (z ft)~
"n'^o (-l)

n
(l)

f
'

28. We know that sin (x + IT)
= sin x. Does this fact agree with E?

29. The method of sect. 6 (2) leads to the conjecture

_l 4*W 4**W
~\ ~^J\ &)\COS X

Show that this is not only analogous to, but a consequence of, the conjec-

ture E.

30. We know that

sin x = 2 sin (x/2) cos (*/2).

Does this fact agree with E?

31. Predict from E and verify the value of the infinite product
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32. Predict from E and verify the value of the infinite product

33. Compare ex. 31 and 32, and generalize.

34. We know that cos ( x) = cos x. Does this fact agree with E?

35. We know that cos (x + TT)
= cos x. Does this fact agree with E?

36* Derive from E the product for 1 sin x conjectured in sect. 6 (4).

37. Derive from E that

38. Derive from E that

I 2x( 111 1 \
cot # = ---- i H i i i h . . . 1

x 7r
2
\ ^4^9 M6^25^ /

(l
l l

\
TT*\

+
16
+

81
+

256
+

625
+ ' '

7

-*Vl + l + -L + \

7r6\
1+

64
+

729
+ "7

and find the sum of the infinite series appearing as coefficients on the right
hand side.

39. Derive from E that

cos*
__ /TT x\

1 sin*
~~~

\4
"~~

2/

= -2 7 l

o * ~r n x "7T * H 7T

,

9
+

25
+

49
+ 81--7

~27 + T25~343 + --7

81
+

625
+ "

7

and find the sum of the infinite series appearing as coefficients in the last

expression.
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40. Show that

which yields a second derivation for the sum of the series on the left.

41 (continued). Try to find a third derivation, knowing that

1*3 1 3 x5 1 3 5 x>

and that, for n = 0, 1, 2, . . .
,

f f 2 4 2n

J
*

J 3 5 -

(2 +
o o

42 (continued). Try to find a fourth derivation, knowing that

2 ** 2 4 A?
6 2 4 6 *8

(arcsin # = * + -- + - + ----- + ...

and that, for n = 0, 1,2,...

/

J
(l_

1 3 2n 1 TT

o o

43. Euler (Opera Omnia, ser. 1, vol. 14, p. 40-41) used the formula

x - x - -
= log A;

-

log (1
-

x) + ------------h -
^
---

1

----
9-

+ ...,

valid for < x < 1, to compute numerically the sum of the series on the

left hand side.

(a) Prove the formula.

(b) Which value of x is the most advantageous in computing the sum

on the left?

44. An objection and a first approach to a proof. There is no reason to admit

a priori that sin x can be decomposed into linear factors corresponding to

the roots of the equation
sin x = 0.

Yet even if we should admit this, there remains an objection: Euler did not

prove that

0, 7T, IT, 27T, -277, 37T, 377, . . .
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are all the roots of this equation. We can satisfy ourselves (by discussing
the curve y = sin x) that there are no other real roots, yet Euler did by no
means exclude the existence of complex roots.

This objection was raised by Daniel Bernoulli (a son ofJean, 1700-1788).
Euler answered it by considering

where

is a polynomial (of degree n if n is odd) .

Show that Pn (x) has no complex roots.

45* A second approach to a proof. Assuming that n is odd in ex. 44, factorize

Pn(x)jx so that its &-th factor approaches

i

*"

AM
as n tends to oo, for any fixed k (k = 1, 2, 3, . . . ).

46. Dangers of analogy. In short, the analogy between the finite and the

infinite led Euler to a great discovery. Yet he skirted a fallacy. Here is

an example showing the danger on a smaller scale.

The series
i i i i i i i

1 ~2 + 3~4 + 5~6 + ~7~8 + ---- '

converges. Its sum I can be roughly estimated by the first two terms:

o;_ 2 '.L* ^ 2 ^ 2
_L.2,_-_- + -_

2+ -_-+-_- + ... .

In this series, there is just one term with a given even denominator (it is

negative), but two terms with a given odd denominator (one positive, and
the other negative). Let us bring together the terms with the same odd
denominator: 21212

T~2 + 3~4 + 5~ "'

_ 1 _1 _ 1

I 3 ~5

Yet 21 ^ /, since / ^ 0. Where is the mistake and how can you protect

yourself from repeating it?
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INDUCTION IN SOLID GEOMETRY

Even in the mathematical sciences, our principal instruments to discover
the truth are induction and analogy. LAPLACE1

i. Polyhedra. "A complicated polyhedron has many faces, corners,
and edges." Some vague remark of this sort comes easily to almost anybody
who has had some contact with solid geometry. Not so many people will,

however, make a serious effort to deepen this remark and seek some more
precise information behind it. The right thing to do is to distinguish'

clearly the quantities involved and to ask some definite question. Let us

denote, therefore, the number of faces, the number of vertices and the

number of edges of the polyhedron by F, F, and E, respectively (correspond-

ing initials), and let us ask a clear question as: "Is it generally true that

the number of faces increases when the number of vertices increases? Does
F necessarily increase with F?"
To begin with, we can scarcely do anything better than examine examples,

particular polyhedra. Thus, for a cube (the solid I in fig. 3.1)

^ = 6, F=8, =12.

Or, for a prism with triangular base (the solid II in fig. 3.1)

F = 5, V = 6, E = 9.

Once launched in this direction, we naturally examine and compare various

solids, for example, those exhibited in fig. 3.1 which are, besides No. I and
No. II already mentioned, the following: a prism with pentagonal base

(No. Ill), pyramids with square, triangular, or pentagonal base (Nos.

IV, V, VI), an octahedron (No. VII), a "tower with roof" (No. VIII;
a pyramid is placed upon the upper face of a cube as base), and a "truncated

cube" (No. IX). Let us make a little effort of imagination and represent

1 Essai philosophique sur les probabilities ; see Oeuvres completes de Laplace, vol. 7, p. V.

35
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these solids, one after the other, clearly enough to count faces, vertices, and

edges. The numbers found are listed in the following table.

Polyhedron F V E
I. cube .... 6 8 12

II. triangular prism 5 6 9
III. pentagonal prism 7 10 15

IV. square pyramid ... 5 5 8
V. triangular pyramid 4 4 6
VI. pentagonal pyramid 6 6 10

VII. octahedron ... 8 6 12
VIII. "tower" .... 9 9 16
IX. "truncated cube" 7 10 15

Our fig. 3.1 has some superficial similarity with a mineralogical display,
and the above table is somewhat similar to the notebook in which the

physicist enters the results of his experiments. We examine and compare
our figures and the numbers in our table as the mineralogist or the physicist
would examine and compare their more laboriously collected specimens
and data. We now have something in hand that could answer our original

question : "Does 7increase with F?" In fact, the answer is "No" ; compar-
ing the cube and the octahedron (Nos. I and VII) we see, that one has more
vertices and the other more faces. Thus, our first attempt at establishing
a thoroughgoing regularity failed.

We can, however, try something else. Does E increase with F? Or
with F? To answer these questions systematically, we rearrange our table.

We dispose our polyhedra so that E increases when we read down the
successive items :

Polyhedron F V E
triangular pyramid 4 4 6

square pyramid 5 5 8

triangular prism 5 6 9

pentagonal pyramid .6 6 10
cube .... 6 8 12
octahedron ... 8 6 12

pentagonal prism 7 10 15
"truncated cube" 7 10 15
"tower" ... 9 9 16

Looking at our more conveniently arranged data, we can easily observe
that no regularity of the suspected kind exists. As E increases from 15 to

16, 7 drops from 10 to 9. Again, as we pass from the octahedron to the

pentagonal prism, E increases from 1 2 to 1 5 butF drops from 8 to 7. Neither
F nor V increases steadily with E.
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We again failed in finding a generally valid regularity. Yet we do not

like to admit that our original idea was completely wrong. Some modi-

fication of our idea may still be right. Neither F nor V increases with E,

it is true, but they appear to increase "on the whole." Examining our

T H III
^

v

VIII IX

Fig. 3.1. Polyhedra.

well-arranged data, we may observe that F and V increase "jointly":

F _|_ v increases as we read down the lines. And then a more precise

regularity may strike us: throughout the table

F+ 7 = + 2.

This relation is verified in all nine cases listed in our table. It seems

unlikely that such a persistent regularity should be mere coincidence.
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Thus, we are led to the conjecture that, not only in the observed cases, but in

any polyhedron the number effaces increased by the number of vertices is equal to

the number of edges increased by two.

2, First supporting contacts* A well-trained naturalist does not

easily admit a conjecture. Even if the conjecture appears plausible and
has been verified in some cases, he will question it and collect new observa-

tions or design new experiments to test it. We may do the very same thing.

We are going to examine still other polyhedra, count their faces, vertices,

and edges, and compare F + V to E + 2. These numbers may be equal
or not. It will be interesting to find out which is the case.

Looking at fig. 3.1, we may observe that we have already examined
three of the regular solids, the cube, the tetrahedron, and the octahedron

(I, V, and VII). Let us examine the remaining two, the icosahedron

and the dodecahedron.

The icosahedron has 20 faces, all triangles, and so F = 20. The 20

triangles have together 3 X 20 = 60 sides of which 2 coincide in the same

edge of the icosahedron. Therefore, the number of edges is 60/2
= 30 = E. We can find V analogously. We know that 5 faces of the

icosahedron are grouped around each of its vertices. The 20 triangles
have together 3 X 20 = 60 angles, of which 5 belong to the same vertex.

Therefore, the number of vertices is 60/5 = 12 = 7.

The dodecahedron has 12 faces, all pentagons, of which 3 are grouped
around each vertex. We conclude hence, similarly as before, that

We can now add to our list on p. 36 two more lines:

Polyhedron F V E
icosahedron 20 12 30
dodecahedron 12 20 30

Our conjecture, that F + F = E + 2, is verified in both cases*

3. More supporting contacts. Thanks to the foregoing verifications,
our conjecture became perceptibly more plausible; but is it proved now?
By no means. In a similar situation, a conscientious naturalist would feel

satisfaction over the success of his experiments, but would go on devising
further experiments. Which polyhedron should we test now?
The point is that our conjecture is so well verified by now that verification

in just one more instance would add only little to our confidence, so little

perhaps that it would be scarcely worth the trouble ofchoosing a polyhedron
and counting its

parts. Could we find some more worthwhile way of

testing our conjecture ?
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Looking at fig. 3.1, we may observe that all solids in the first line are of

the same nature; they are prisms. Again, all solids in the second line are

pyramids. Our conjecture is certainly true of the three prisms and the

three pyramids shown in fig. 3.1 ; but is it true of all prisms and pyramids?
If a prism has n lateral faces, it has n + 2 faces in all, 2n vertices and 3n

edges. A pyramid with n lateral faces has n + 1 faces in all, n + 1 vertices

and 2n edges. Thus, we may add two more lines to our list on p. 36:

Polyhedron F V E
Prism with n lateral faces n + 2 2n 3n

Pyramid with n lateral faces n + 1 n -f- 1 2n

Our conjecture asserting that F -f- V = E + 2 turned out to be true not

only for one or two more polyhedra but for two unlimited series ofpolyhedra.

4. A severe test. The last remark adds considerably to our confidence

in our conjecture, but does not prove it, of course. What should we do?
Should we go on testing further particular cases ? Our conjecture seems to

withstand simple tests fairly well. Therefore we should submit it to some

severe, searching test that stands a good chance to refute it.

Let us look again at our collection of polyhedra (fig. 3.1). There are

prisms (I, II, III), pyramids (IV, V, VI), regular solids (I, V, VII); yet
we have already considered all these kinds of solids exhaustively. What
else is there? Fig. 3.1 contains also the "tower" (No. VIII) which is

obtained by placing a "roof" on the top of a cube. Here we may perceive
the possibility of a generalization. We take any polyhedron instead of the

cube, choose any face of the polyhedron, and place a "roof" on it. Let the

original polyhedron have F faces, V vertices, and E edges, and let its face

chosen have n sides. We place on this face a pyramid with n lateral faces

and so obtain a new polyhedron. How many faces, vertices, and edges has

the new "roofed" polyhedron? One face (the chosen one) is lost in the

process, and n new ones are won (the n lateral faces of the pyramid) so that

the new polyhedron has F 1 + n faces. All vertices of the polyhedron

belong also to the new one, but one vertex is added (the summit of the

pyramid) and so the new polyhedron has V + 1 vertices. Again, all edges
of the old polyhedron belong also to the new one, but n edges are added

(the lateral edges of the pyramid) and so the new polyhedron has E -f- n

edges.
Let us summarize. The original polyhedron had F, F, and E faces,

vertices, and edges, respectively, whereas the new "roofed" polyhedron has

F+n 1, F+l, and E + n

parts of the corresponding kind. Are these facts consistent with our

conjecture?

If the relation F + V E + 2 holds, then, obviously,

(F + w - 1 ) + (F + 1 )
=

( + a) + 2
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holds also. That is, if our conjecture happens to be verified in the case of
the original polyhedron, it must be verified also in the case of the new
"roofed" polyhedron. Our conjecture survives the "roofing," and so it

has passed a very severe test, indeed. There is such an inexhaustible variety
of polyhedra which we can derive from those already examined by repeated

"roofing," and we. have proved that our conjecture is true for all of them.

By the way, the last solid of our fig. 3.1, the "truncated cube" (IX),
opens the way to a similar consideration. Instead of the cube, let us
"truncate" any polyhedron, cutting off an arbitrarily chosen vertex. Let
the original polyhedron have

F, 7, and E

faces, vertices, and edges, respectively, and let n be the number of the edges
radiating from the vertex we have chosen. Cutting off this vertex we
introduce 1 new face (which has n sides), n new edges, and also n new
vertices, but we lose 1 vertex. To sum up, the new "truncated" polyhedron
has

F+l, F+a 1, and E + n

faces, vertices, and edges, respectively. Now, from

F+ V^E + 2

follows

That is, our conjecture is tenacious enough to survive the "truncating."
It has passed another severe test.

It is natural to regard the foregoing remarks as a very strong argument
for our conjecture. We can perceive in them even something else; the
first hint of a proof. Starting from some simple polyhedron, as the tetra-

hedron or the cube, for which the conjecture holds, we can derive by roofing
and truncating a vast variety of other polyhedra for which the conjecture
also holds. Could we derive all polyhedra ? Then we would have a proof!
Besides, there may be other operations which, like truncating and roofing,
preserve the conjectural relation.

5. Verifications and verifications. The mental procedures of the
trained naturalist are not essentially different from those of the common
man, but they are more thorough. Both the common man and the scientist

are led to conjectures by a few observations and they are both paying
attention to later cases which could be in agreement or not with the con-
jecture. A case in agreement makes the conjecture more likely, a conflict-

ing case disproves it, and here the difference begins: Ordinary people are

usually more apt to look for the first kind of cases, but the scientist looks
for the second kind. The reason is that everybody has a little vanity, the
common man as the scientist, but different people take pride in different
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things. Mr. Anybody does not like to confess, even to himself, that he was
mistaken and so he does not like conflicting cases, he avoids them, he is even
inclined to explain them away when they present themselves. The scientist,

on the contrary, is ready enough to recognize a mistaken conjecture, but
he does not like to leave questions undecided. Now, a case in agreement
does not settle the question definitively, but a conflicting case does. The
scientist, seeking a definitive decision, looks for cases which have a chance
to upset the conjecture, and the more chance they have, the more they are

welcome. There is an important point to observe. Ifa case which threatens

to upset the conjecture turns out, after all, to be in agreement with it, the

conjecture emerges greatly strengthened from the test. The more danger,
the more honor; passing the most threatening examination grants the

highest recognition, the strongest experimental evidence to the conjecture.
There are instances and instances, verifications and verifications. An
instance which is more likely to be conflicting brings the conjecture in any case

nearer to decision than an instance which is less so, and this explains the

preference of the scientist.

Now, we may get down to our own particular problem and see how the

foregoing remarks apply to the "experimental research on polyhedra" that

we have undertaken. Each new case in which the relation F + V = E + 2

is verified adds to the confidence that this relation is generally true. Yet

we soon get tired of a monotonous sequence of verifications. A case little

different from the previously examined cases, if it agrees with the conjecture,
adds to our confidence, ofcourse, but it adds little. In fact we easily believe,

before the test, that the case at hand will behave as the previous cases from

which it differs but little. We desire not only another verification, but

a verification of another kind. In fact, looking back at the various phases of

our research (sect. 2, 3, and 4), we may observe that each one yielded a kind

of verification that surpassed essentially those obtained in the foregoing.

Each phase verified the conjecture for a more extensive variety of cases than the

foregoing.

6. A very different case. Variety being important, let us look for

some polyhedron very different from those heretofore examined. Thus, we

may hit upon the idea of regarding a picture frame as a polyhedron. We
take a very long triangular rod, we cut four pieces of it, we adjust these

pieces at the ends, and fit them together to a framelike polyhedron. Fig.

3.2 suggests that the frame is placed on a table so that the edges which have

already been on the uncut rod all lie horizontally. There are 4 times 3,

that is, 12, horizontal edges, and also 4 times 3 non-horizontal edges, so

that the total number of edges is E = 12 + 12 = 24. Counting the faces

and vertices, we find that F = 4 X 3 = 12, and 7=4x3 = 12. Now,
F + V = 24 is different from E + 2 = 26. Our conjecture, taken in full

generality, turned out. to be false !

We can say, of course, that we have never intended to state the proposition
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in such generality, that we meant all the time polyhedra which are convex

or, so to say, "sphere-shaped" and not polyhedra which are "doughnut-

shaped" as the picture frame. But these are excuses. In fact, we have to

shift our position and modify our original statement. It is quite possible

that the blow that we received will be beneficial in the end and lead us

eventually to an amended and more precise statement of our conjecture.
Yet it was a blow to our confidence, anyway.

Fig. 3.2. A doughnut-shaped polyhedron.

7. Analogy. The example of the "picture frame" killed our conjecture
in its original form but it can be promptly revived in a revised {and, let

us hope, improved) form, with an important restriction.

The tetrahedron is convex, and so is the cube, and so are the other poly-
hedra in our collection (fig. 3.1), and so are all the polyhedra that we can
derive from them by truncating and by "moderate" roofing (by placing
sufficientlyfiat roofs on their various faces). At any rate, there is no danger
that these operations could lead from a convex or "sphere-shaped" poly-
hedron to a "doughnut-shaped" solid.

Observing this, we introduce some much-needed precision. We con-

jecture that in any convex polyhedron the relation F -f- V = E + 2 holds
between the numbers of faces, vertices, and edges, (The restriction to

"sphere-shaped" polyhedra may be even preferable, but we do not wish
to stop to define here the meaning of the term.)

This conjecture has some chance to be true. Nevertheless, our confidence
was shaken and we look around for some new support for our conjecture.
We cannot hope for much help from further verifications. It seems that
we have exhausted the most obvious sources. Yet we may still hope for

some help from analogy. Is there any simpler analogous case that could
be instructive?
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Polygons are analogous to polyhedra. A polygon is a part of a plane as a

polyhedron is a part of space. A polygon has a certain number, V, of
vertices (the vertices of its angles) and a certain number, E, of edges (or

sides). Obviously
V=E.

Yet this relation, valid for convex polygons, appears too simple and throws
little light on the more intricate relation

F+ V=E + 2

which we suspect to be valid for all convex polyhedra.
If we are genuinely concerned in the question, we naturally try to bring

these two relations nearer to each other. There is an ingenious way of

doing so. We have to bring first the various numbers into a natural order.

The polyhedron is 3-dimensional; its faces (polygons) are 2-dimensional,
its edges 1 -dimensional, and its vertices (points) Q-dimensional, of course.

We may now rewrite our equations, arranging the quantities in the order of

increasing dimensions. The relation for polygons, written in the form

becomes comparable to the relation for polyhedra, written in the form

The 1, on the left hand side of the equation for polygons, stands for the only
two-dimensional element concerned, the interior of the polygon. The 1,

on the left hand side of the equation for polyhedra, stands for the only three-

dimensional element concerned, the interior of the polyhedron. The
numbers, on the left hand side, counting elements of 0, 1,2, and 3 dimensions,

respectively, are disposed in this natural order, and have alternating signs.

The right hand side is the same in both cases; the analogy seems complete.
As the first equation, for polygons, is obviously true, the analogy adds to

our confidence in the second equation, for polyhedra, which we have

conjectured.

8. The partition ofspace* We pass now to another example ofinductive
research in solid geometry. In our foregoing example, we started from a

general, somewhat vague remark. Our point of departure now is a par-
ticular clear-cut problem. We consider a simple but not too familiar

problem of solid geometry: Into how many parts is space divided by 5 planes?
This question is easily answered if the five given planes are all parallel to

each other, in which case space is visibly divided into 6 parts. This case,

however, is too particular. If our planes are in a "general position," no
two among them will be parallel and there will be considerably more parts
than 6. We have to restate our problem more precisely, adding an essential

clause: Into how many parts is space divided by 5 planes, provided that these planes
are in a general position?
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The idea of a "general position" is quite intuitive; planes are in such a

position when they are not linked by any particular relation, when they are

given independently, chosen at random. It would not be difficult to clear

up the term completely by a technical definition but we shall not do so,

for two reasons. First, this presentation should not be too technical.

Second, leaving the notion somewhat hazy, we come nearer to the mental

attitude of the naturalist who is often obliged to start with somewhat hazy
notions, but clears them up as he goes ahead.

9. Modifying the problem. Let us concentrate upon our problem.
We are given 5 planes in general position. They cut space into a certain

number of partitions. (We may think of a cheese sliced into pieces by 5

straight cuts with a sharp knife.) We have to find the number of these

partitions. (Into how many pieces is the cheese cut?)
It seems difficult to see at once all the partitions effected by the 5 planes.

(It may be impossible to "see" them. At any rate, do not overstrain your
geometric imagination; rather, try to think. Your reason may carry you
farther than your imagination.) But why just 5 planes? Why not any
number of planes ? In how many parts is space divided by 4 planes ? By
3 planes ? Or by 2 planes ? Or by just 1 plane ?

We reach here cases which are accessible to our geometric intuition.

One plane divides space obviously into 2 parts. Two planes divide space
into 3 parts if they are parallel. We have to discard, however, this particular

position; 2 planes in a general position intersect, and divide space into 4

parts. Three planes in a general position divide space into 8 parts. In
order to realize this last, more difficult, case, we may think of 2 vertical

walls inside a building, crossing each other, and of a horizontal layer,

supported by beams, crossing both walls and forming around the point
where it crosses both the ceiling of 4 rooms and the floor of 4 other rooms.

10. Generalization, specialization, analogy* Our problem is con-

cerned with 5 planes but, instead of considering 5 planes, we first played
with 1, 2, and 3 planes. Have we squandered our time? Not at all. We
have prepared ourselves for our problem by examining simpler analogous
cases. We have tried our hand at these simpler cases; we have clarified

the intervening concepts and familiarized ourselves with the kind of problem
we have to face.

Even the way that led us to those simpler analogous problems is typical
and deserves our attention. First, we passed from the case of 5 planes to the

case of any number of planes, let us say, to n planes : we generalized. Then,
from n planes, we passed back to 4 planes, to 3 planes, to 2 planes, to just
1 plane, that is, we put n ~ 4, 3, 2 9 1 in the general problem: we specialized.
But the problem about dividing space by, let us say, 3 planes is analogous to

our original question involving 5 planes. Thus, we have reached analogy
in a typical manner, by introductory generalization and subsequent specialization.
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ix. An analogous problem. What about the next case of 4 planes?
Four planes, in general position, determine various portions of space, one

of which is limited, contained by four triangular faces, and is called a tetra-

hedron (see fig. 3.3). This configuration reminds us of three straight lines

in a plane3
in general position, which determine various portions of the

plane, one of which is limited, contained by three line-segments, and is a

triangle (see fig. 3.4). We have to ascertain the number of portions of

space determined by the four planes. Let us try our hand at the simpler

analogous problem : Into howmanyportions is the plane divided by three lines ?

Fig. 3.3. Space divided by four planes.

Many of us will see the answer immediately, even without drawing a

figure, and anybody may see it, by using a rough sketch (see fig. 3.4). The

required number of parts is 7.

We have found the solution of the simpler analogous problem; but can

we use this solution for our original problem ? Yes, we can, if we handle

the analogy of the two configurations intelligently. We ought to consider

the dissection of the plane by 3 straight lines so that we may apply afterwards

the same consideration to the dissection of space by 4 planes.

Thus, let us look again at the dissection of the plane by 3 lines, bounding
a triangle. One division is finite, it is the interior of the triangle. And
the infinite divisions have either a common side with the triangle (there are

3 such divisions), or a common vertex (there are also 3 of this kind). Thus
the number of all divisions is 1 + 3 + 3 = 7.

Now, we consider the dissection of space by 4 planes bounding a tetra-

hedron. One division is finite, it is the interior of the tetrahedron. An
infinite division may have a common face (a 2-dimensional part of the

boundary) with the tetrahedron (there are 4 such divisions), or a common
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edge (1 -dimensional part of the boundary; there are 6 divisions of this kind)
or a common vertex (0-dimensional part of the boundary; there are 4
divisions of this kind, emphasized in fig. 3.3). Thus the number of all

divisions is 1 +4 + 6 + 4=15.
We have reached this result by analogy, and we have used analogy in a

typical, important way. First, we devised an easier analogous problem
and we solved it. Then, in order to solve the original, more difficult

problem (about the tetrahedron), we used the new easier analogous problem

Fig. 3.4. Plane divided by three lines.

(about the triangle) as a model \ in solving the more difficult problem we
followed the pattern of the solution of the easier problem. But before

doing this, we had to reconsider the solution of the easier problem. We
rearranged it, remade it into a new pattern fit for imitation.

To single out an analogous easier problem, to solve it, to remake its solution

so that it may serve as a model and, at last, to reach the solution of the

original problem by following the model just created this method may seem
roundabout to the uninitiated, but is frequently used in mathematical and
non-mathematical scientific ^research.

is. An array of analogous problems. Yet our original problem is

still unsolved. It is concerned with the dissection of space by 5 planes.
What is the analogous problem in two dimensions? Dissection by 5

straight lines ? Or by 4 straight lines ? It may be better for us to consider
these problems in full generality, the dissection of space by n planes and
the dissection of a plane by n straight lines. These dissecting straight lines

must be, of course, in general position (no 2 are parallel and no 3 meet in

the same point).
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If we are accustomed to use geometrical analogy, we may go one step
further and consider also the division of the straight line by n different

points. Although this problem seems to be rather trivial, it may be

instructive. We easily see that a straight line is divided by 1 point into 2

parts, by 2 points into 3, by 3 points into 4, and, generally, by n points into

n + 1 different parts.

Again, if we are accustomed to pay attention to
% extreme cases, we may

consider the undivided space, plane or line, and regard it as a "division

effected by dividing elements."

Let us set up the following table that exhibits all our results obtained

hitherto.

13* Many problems may be easier than just one. We started out

to solve a problem, that about the dissection of space by 5 planes. We
have not yet solved it, but we set up many new problems. Each unfilled

case of our table corresponds to an open question.

This procedure of heaping up new problems may seem foolish to the

uninitiated. But some experience in solving problems may teach us that

many problems together may be easier to solve than just one of them if

the many problems are well coordinated, and the one problem by itself is

isolated. Our original problem appears now as one in an array of unsolved

problems. But the point is that all these unsolved problems form an array;

they are well disposed, grouped together, in close analogy with each other

and with a few problems solved already. If we compare the present

position of our question, well inserted into an array of analogous questions,

with its original position, as it was still completely isolated, we are naturally

inclined to believe that some progress has been made.

14. A conjecture. We look at the results displayed in our table as a

naturalist looks at the collection of his specimens. This table is a challenge

to our inventive ability, to our faculties of observation. Can we discover

any connection, any regularity? ,



48 INDUCTION IN SOLID GEOMETRY

Looking at the second column (division of space by planes) we may notice

the sequence 1, 2, 4, 8 there is a clear regularity; we see- here the successive

powers of2. Yet, what a disappointment ! The next term in the column is

15, and not 16 as we have expected. Our first guess was not so good; we
must look for something else.

Eventually, we may chance upon adding two juxtaposed numbers and

observe that their sum is in the table. We recognize a peculiar connection;

we obtain a number of the table by adding two others, the number above

it and the number to the right of the latter. For example,87 '

15

are linked by the relation

8 + 7=15.

This is a remarkable connection, a striking clue. It seems unlikely that

this connection which we can observe throughout the whole table so far

calculated should result from mere chance.

Thus, the situation suggests that the regularity observed extends beyond
the limits of our observation, that the numbers of the table not yet calculated

are connected in the same way as those already calculated, and so we are

led to conjecture that the law we chanced upon is generally valid.

If this is so, however, we can solve our original problem. By adding

juxtaposed numbers we can extend our table till we reach the number we
wished to obtain:

In the table as it is reprinted here two new numbers appear in heavy
type, computed by addition, 11 =s 7 + 4, 26 = 15 + 11. If our guess is

correct, 26 should be the number of portions into which space is dissected

by 5 planes in general position. We have solved the proposed problem, it

seems. Or, at least, we have succeeded in hitting on a plausible conjecture

supported by all the evidence heretofore collected.
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15. Prediction and verification. In the foregoing we have followed

exactly the typical procedure of the naturalist. If a naturalist observes a
striking regularity, which cannot be reasonably attributed to mere chance,
he conjectures that the regularity extends beyond the limits of his actual
observations. Making such a conjecture is often the decisive step in
inductive research.

The following step may be prediction. On the basis ofhis former observa-
tions and their concordance with conjectural law, the naturalist predicts
the result of his next observation. Much depends on the outcome of that
next observation. Will the prediction turn out to be true or not? We are

very much in the same position. We have found, or, rather, guessed or

/ \ \/ \\
Fig. 3.5. Plane divided by four lines. Fig. 3.6. Transition from three lines to four.

predicted that 1 1 should be the number of regions into which a plane is

dissected by 4 straight lines in general position. Is that so? Is our

prediction correct?

Examining a rough sketch (see fig. 3.5) we can convince ourselves that

our guess was good, that 1 1 is actually the correct number. This confirma-

tion of our prediction yields inductive evidence in favor of the rule on the

basis ofwhich we made our prediction. Having passed the test successfully,

our conjecture comes out strengthened.
16. Again and better. We have verified that number II by looking

at the figure and counting. Yes, 4 lines in general position seem to divide

the plane into 1 1 portions. But let us do it again and do it better. We
have counted those portions in some way. Let us count them again and
count them so that we should be certain of avoiding confusion and miscounts

and traps set by special positions.
Let us start from the fact that 3 lines determine exactly 7 portions of the

plane. We have some reasons to believe that 4 lines determine 1 1 portions.

Why just 4 portions more? Why does the number 4 intervene in this

connection? Why does the introduction of a new line increase the number
of portions just by 4?
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We emphasize one line in fig. 3.5, we redraw it in short strokes (see fig.

3.6). The new figure does not look very different but it expresses a very

different conception. We regard the emphasized line as new and the three

other lines as old. The old lines cut the plane into 7 portions. What happens
when a new line is added ?

The new line, drawn at random, must intersect each old line and each

one in a different point. That makes 3 points. These 3 points divide the

new line into 4 segments. Now each segment bisects an old division of the

plane, makes two new divisions out of an old one. Taken together, the

4 segments of the new line create 8 new divisions and abolish 4 old divisions

the number of divisions increases by just 4. This is the reason that the

number of divisions now is just 4 more than it was before: 7+4=11.
This way of arriving at the number 1 1 is convincing and illuminating.

We may begin now to see a reason for the regularity which we have observed

and on which we have based our prediction of that number 1 1 . We begin
to suspect an explanation behind the facts and our confidence in the general

validity of the observed regularity is greatly strengthened.

17. Induction suggests deduction; the particular case suggests
the general proof. We have been careful all along to point out the

parallelism between our reasoning and the procedures of the naturalist.

We started from a special problem as the naturalist may start from a

puzzling observation. We advanced by tentative generalizations, by

noticing accessible special cases, by observing instructive analogies. We
tried to guess some regularity and failed, we tried again and did better.

We succeeded in conjecturing a general law which is supported by all

experimental evidence at our disposal. We put one more special case to

the test and found concordance with the conjectured law, the authority

of which gained by such verification. At last, we began to see a reason for

that general law,' a sort of explanation, and our confidence was greatly

strengthened. A naturalist's research may pass through exactly the same

phases.

There is, however, a parting of the ways at which the mathematician

turns sharply away from the naturalist. Observation is the highest authority
for the naturalist, but not for the mathematician. Verification in many
well-chosen instances is the only way of confirming a conjectural law in the

natural sciences. Verification in many well-chosen instances may be very

helpful as an encouragement, but can never prove a conjectural law in the

mathematical sciences. Let us consider our own concrete case. By
examining various special cases and comparing them, we have been led

to conjecturing a general rule from which it would follow that the solution

of our originally proposed problem is 26. Are all our observations and

verifications sufficient to prove the general rule? Or
}

can they prove the

special result that the solution of our problem is actually 26? Not in the
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least. For a mathematician with rigid standards, the number 26 is just a

clever guess and no amount of experimental verification could demonstrate
the suspected general rule. Induction renders its results probable, it

never proves them.

It may be observed, however, that inductive research may be useful in

mathematics in another respect that we have not yet mentioned. The
careful observation of special cases that leads us to a general mathematical
result may also suggest its proof. From the intent examination of a particular
case a general insight may emerge.

In fact, this actually happened to us already in the foregoing section.

The general rule that we have discovered by induction is concerned with

two juxtaposed numbers in our table, such as 7 and 4, and with their sum,
which is 11 in the case at hand. Now, in the foregoing section we have

visualized the geometrical significance of 7, 4, and 1 1 in our problem and,
in doing so, we have understood why the relation 7 + 4 ~ 1 1 arises there.

We dealt, in fact, with the passage from 3 lines dividing the plane to 4 such

lines. Yet there is no particular virtue in the numbers 3 and 4; we could

pass just as well from any number to the following, from n to n + ! The

special case discussed may represent to us the general situation (ex. 2.10).

I leave to the reader the pleasure of fully extracting the general idea from the

particular observation of the foregoing section. In doing so, he may give
a formal proof for the rule discovered inductively, at least as far as the last

two columns are concerned.

Yet, in order to complete the proof, we have to consider not only the

dissection of a plane by straight lines, but also the dissection of space

by planes. We may hope, however, that if we are able to clear up the

dissection of a plane, analogy will help us to clear up the dissection of space.

Again, I leave to the reader the pleasure of profiting from the advice of

analogy.
18. More conjectures. We have not yet exhausted the subject of

plane and space partitions. There are a few more little discoveries to

make and they are well accessible to inductive reasoning. We may be

easily led to them by careful observation and understanding combination

of particular instances.

We may wish to find a.formula for the number of divisions of a plane by n

lines in general position. In fact, we have already a formula in a simpler

analogous case: n different points divide a straight line into n + 1 segments.

This analogous formula, the particular cases listed in our table, our induc-

tively discovered general rule (which we have almost proved), all our results

hitherto obtained may help us to solve this new problem. I do not enter

into details. I just note the solution which we may find, following the fore-

going hints, in various manners.

1 .)_. n is the number of portions into which a straight line is divided by
n different points.
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is the number of portions into which a plane is divided

by n straight lines in general position.

The reader may derive the latter formula or at least he can check it in

the simplest cases, for n = 0, 1, 2, 3, 4, I leave also to the reader the pleasure

of discovering a third formula of the same kind, for the number of space

partitions. In making this little discovery, the reader may broaden his

experience of inductive reasoning in mathematical matters and enjoy the

help that analogy lends us in the solution of problems little or great*

EXAMPLES AND COMMENTS ON CHAPTER m
The formula F + V = E + 2, conjectured in sect. 1, is due to Leonhard

Euler. We ball it "Euler's formula," regard it as a conjecture, and examine
it in various ways, sometimes inductively and sometimes with a view to

finding a proof; in ex. 1-10. We return to it in ex. 21-30 and ex. 31-41.

Before attempting any example in these two divisions, read ex. 21 and ex.

31, respectively.

i. Two py^mids, standing on opposite sides of their common base, form

jointly a "doiifelfc pyramid." An octahedron is a particular double pyramid;
the common tfase is a square. Does Euler's formula hold for the general
double pyramid ?

a. Take a convex polyhedron with F faces, V vertices, and E edges,
choose a poitit P in its interior (its centroid, for example), describe a sphere
with center P Send project the polyhedron from the center P onto the surface

of the sphere. This projection transforms the F faces into F regions or

"countries" on the surface of the sphere, it transforms any of the E edges into

a boundary line separating two neighboring countries and any of the F
vertices into a "corner" or a common boundary point of three or more
countries (a ''three-country corner" or a "four-country corner," etc.)-

This projection yields boundary lines of particularly simple nature (arcs of

great circles) but, obviously, the validity of Euler's formula for such a

subdivision of the surface of the sphere into countries is independent of the precise
form of the boundary lines; the numbers F, F, and E ate not influenced by
continuous deformation of these lines.

(1) A meridian is one half of a great circle connecting the two poles,
South and North. A parallel circle is the intersection of the globe's surface

with a plane parallel to the equator. The earth's surface is divided by m
meridians and p parallel circles into F countries. Compute F, F, and *.

Does Euler's formula hold?

(2) The projection of the octahedron from its center P onto the surface

of the sphere is a special case of the situation described in (1). For which
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3. Chance plays a role in discovery. Inductive 'discovery obviously

depends on the observational material. In sect. 1 we came across certain

polyhedra, but we could have chanced upon others. Probably we would
not have missed the regular solids, but our list could have come out thus:

Polyhedron F V E
tetrahedron 4 4 6

cube 6 8 12

octahedron 8 6 12

pentagonal prism 7 10 15

pentagonal double pyramid 10 7 15

dodecahedron 12 20 30

icosahedron 20 12 30

Do you observe some regularity? Can you explain it? What is the

connection with Euler's formula ?

4. Try to generalize the relation between two polyhedra observed in

the table of ex. 3. [The relation described in the solution of ex. 3 under

(2) is too "narrow," too "detailed." Take, however, the cube and the

octahedron in the situation there described, color the edges of one in red,

those of the other in blue, and project them from their common center P
onto a sphere as described in ex. 2. Then generalize.]

5. It would be sufficient to prove Euler's formula in a particular case:

for convex polyhedra that have only triangular faces. Why? [Sect. 4.]

6. It would be sufficient to prove Euler's formula in a particular case:

for convex polyhedra that have only three-edged vertices. Why?
[Sect. 4.]

7. In proving Euler's formula we can restrict ourselves to figures in a

plane. In fact, imagine that F 1 faces of the polyhedron are made of

cardboard, but one face is made of glass; we call this face the "window."

You look through the window into the interior of the polyhedron, holding

your eyes so close to the window that you see the whole interior. (This

may be impossible if the polyhedron is not convex.) You can interpret

what you see as a plane figure drawn on the window pane: you see a

subdivision of the window into smaller polygons.
In this subdivision there are N polygons, N straight boundary lines

(some outer, some inner) and NQ vertices.

(1) Express N& Nv N2 in terms ofF, V, E.

(2) If Euler's formula holds for F, F, and E, which formula holds for

8. A rectangle is / inches long and m inches wide; I and m are integers.

The rectangle is subdivided into Im equal squares by straight lines parallel

to its sides.
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: is the number of portions into which a plane is divided

by n straight lines in general position.

The reader may derive the latter formula or at least he can check it in

the simplest cases, for n = 0, 1 , 2, 3, 4. I leave also to the reader the pleasure

of discovering a third formula of the same kind, for the number of space

partitions. In making this little discovery, the reader may broaden his

experience of inductive reasoning in mathematical matters and enjoy the

help that analogy lends us in the solution of problems little or great.

EXAMPLES AND COMMENTS ON CHAPTER m
The formula F + V = E + 2, conjectured in sect. 1, is due to Leonhard

Euler. We call it "Euler's formula," regard it as a conjecture, and examine

it in various ways, sometimes inductively and sometimes with a view to

finding a proof,
1 in ex. 1-10. We return to it in ex. 21-30 and ex. 31-41.

Before attempting any example in these two divisions, read ex. 21 and ex.

31, respectively.

i. Two pytfetmids, standing on opposite sides of their common base, form

jointly a "doiiblfc pyramid." An octahedron is a particular double pyramid ;

the common ttese is a square. Does Euler's formula hold for the general

double pyramid?
a. Take a convex polyhedron with F faces, V vertices, and E edges,

choose a poirit P in its interior (its centroid, for example), describe a sphere
with center JP Send project the polyhedron from the center P onto the surface

of the sphere. This projection transforms the F faces into F regions or

"countries
" on the surface of the sphere, it transforms any of the E edges into

a boundary line separating two neighboring countries and any of the V
vertices into a "corner" or a common boundary point of three or more
countries (a "three-country corner" or a "four-country corner/* etc.)*

This projection yields boundary lines of particularly simple nature (arcs of

great circles) but, obviously, the validity of Euler's formula for such a

subdivision of the surface of the sphere into countries is independent of the precise

form of the boundary lines ;
the numbers F, 7, and E afe not influenced by

continuous deformation of these lines.

(1) A meridian is one half of a great circle connecting the two poles,

South and North. A parallel circle is the intersection of the globe's surface

with a plane parallel to the equator. The earth's surface is divided by m
meridians and p parallel circles into F countries. Compute F9 V, and JF.

Does Euler's formula hold?

(2) The projection of the octahedron from its center P onto the surface

of the sphere is a special case of the situation described in (1). For which

values of m and p?
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3. Chance plays a role in discovery. Inductive -discovery obviously
depends on the observational material. In sect. 1 we came across certain

polyhedra, but we could have chanced upon others. Probably we would
not have missed the regular solids, but our list could have come out thus:

Polyhedron F V E
tetrahedron 4 4 '6
cube 6 8 12
octahedron 8 6 12

pentagonal prism 7 10 15

pentagonal double pyramid 10 7 15

dodecahedron 12 20 30
icosahedron 20 12 30

Do you observe some regularity? Can you explain it? What is the

connection with Euler's formula?

4. Try to generalize the relation between two polyhedra observed in

the table of ex. 3. [The relation described in the solution of ex. 3 under

(2) is too "narrow," too "detailed." Take, however, the cube and the
octahedron in the situation there described, color the edges of one in red,
those of the other in blue, and project them from their common center P
onto a sphere as described in ex. 2. Then generalize.]

5. It would be sufficient to prove Euler's formula in a particular case:

for convex polyhedra that have only triangular faces. Why? [Sect. 4.]

6. It would be sufficient to prove Euler's formula in a particular case:

for convex polyhedra that have only three-edged vertices. Why?
[Sect. 4.]

7. In proving Euler's formula we can restrict ourselves to figures in a

plane. In fact, imagine that F 1 faces of the polyhedron are made of

cardboard, but one face is made of glass; we call this face the "window."
You look through the window into the interior of the polyhedron, holding
your eyes so close to the window that you see the whole interior. (This

may be impossible if the polyhedron is not convex.) You can interpret
what you see as a plane figure drawn on the window pane: you see a
subdivision of the window into smaller polygons.

In this subdivision there are N% polygons, N^ straight boundary lines

(some outer, some inner) and NQ vertices.

(1) Express # , Nv N2 in terms ofF, F, E.

(2) If Euler's formula holds for F, F, and , which formula holds for

8. A rectangle is / inches long and m inches wide; / and m are integers.
The rectangle is subdivided into Im equal squares by straight lines parallel
to its sides.



54 INDUCTION IN SOLID GEOMETRY

(1) Express N ,
N19

and N2 (defined in ex. 7) in terms of / and m.

(2) Is the relation ex. 7 (2) valid in the present case?

9. Ex. 5 and 7 suggest that we should examine the subdivision of a

triangle into N^ triangles with NQ 3 vertices in the interior of the sub-

divided triangle. In computing the sum of all the angles in those N%
triangles in two different ways, you may prove Euler's formula.

10. Sect. 7 suggests the extension of Euler's formula to four and more

dimensions. How can we make such an extension tangible? How can

we visualize it ?

Ex. 7 shows that the case of polyhedra can be reduced to the subdivision

of a plane polygon. Analogy suggests that the case of four dimensions

may be reduced to the subdivision of a polyhedron in our visible three-

dimensional space. If we wish to proceed inductively, we have to examine

some example of such a subdivision. By analogy, ex. 8 suggests the

following.
A box (that is, a rectangular parallelepiped) has the dimensions /, m,

and rc; these three numbers are integers. The box is subdivided into Imn

equal cubes by planes parallel to its faces. Let NQ, Nv N& and Nz denote

the number of vertices, edges, faces, and polyhedra (cubes) forming the

subdivision, respectively.

(1) Express N& Nv N& and #3 in terms of/, m, and n.

(2) Is there a relation analogous to equation (2) in the solution of ex. 7?

n. Let Pn denote the number of parts into which the plane is divided

by n straight lines in general position. Prove that Pn+l = Pn + (n + 1).

12. Let Sn denote the number of parts into which space is divided by n

planes in general position. Prove that Sn^ = Sn + Pn.

13. Verify the conjectural formula

forn= 0, 1, 2, 3, 4.

14. Guess a formula for Sn and verify it for n = 0, 1
, 2, 3, 4, 5.

15. How many parts out of the 1 1 into which the plane is divided by
4 straight lines in general position are finite? [How many are infinite?]

16. Generalize the foregoing problem.

17. How many parts out of the 26 into which space is divided by 5 planes
in general position are infinite?

18. Five planes pass through the center of a sphere, but in other respects
their position is general. Find the number of the parts into which the

surface of the sphere is divided by the five planes,

i^. Into how many parts is the plane divided by 5 mutually intersecting
circles in general position ?
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20. Generalize the foregoing problems.

21. Induction: adaptation of the mind, adaptation of the language. Induction

results in adapting our mind to the facts. When we compare our ideas to

the observations, there may be agreement or disagreement. If there is

agreement, we feel more confident of our ideas; if there is disagreement,
we modify our ideas. After repeated modification our ideas may fit the

facts somewhat better. Our first ideas about any new subject are almost

bound to be wrong, at least in part; the inductive process gives us a chance

to correct them, to adapt them to reality. Our examples show this process
on a small scale, but pretty clearly. In sect. 1, after two or three wrong
conjectures, we arrived eventually at the right conjecture. We arrived at

it by accident, you may say. "Yet such accidents happen only to people
who deserve them," as Lagrange said once when an incomparably greater

discovery, by Newton, was discussed.

Adaptation of the mind may be more or less the same thing as adaptation
of the language; at any rate, one goes hand in hand with the other. The

progress of science is marked by the progress of terminology. When the

physicists started to talk about "electricity," or the physicians about "con-

tagion," these terms were vague, obscure, muddled. The terms that the

scientists use today, such as "electric charge," "electric current," "fungus

infection," "virus infection," are incomparably clearer and more definite.

Yet what a tremendous amount of observation, how many ingenious

experiments lie between the two terminologies, and some great discoveries

too. Induction changed the terminology, clarified the concepts. We can

illustrate also this aspect of the process, the inductive clarification of con-

cepts, by a suitable small-scale mathematical example. The situation, not

infrequent in mathematical research, is this: A theorem has been already

formulated, but we have to give a more precise meaning to the terms in

which it is formulated in order to render it strictly correct. This can be

done conveniently by an inductive process, as we shall see.

Let us look back at ex. 2 and its solution. We talked about the "sub-

division of the sphere into countries" without proposing a formal definition

of this term. We hoped that Euler's formula remains valid if F, V, and E
denote the number of countries, boundary lines, and corners in such a

subdivision. Yet again, we relied on examples and a rough description

and did not give formal definitions for F, 7, and E. In what exact sense

should we take these terms to render Euler's formula strictly correct?

This is our question.

Let us say that a subdivision of the sphere (that is, of the spherical surface)

with a corresponding interpretation of F, 7, and E is "right" if Euler's

formula holds, and is "wrong" if this formula does not hold. Propose

examples of subdivisions which could help us to discover some clear and

simple distinction between "right" and "wrong" cases.
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22. The whole surface of the globe consists ofjust one country. Is that

right?
'

(We mean "right" from the viewpoint of Euler's formula.)

23. The globe's surface is divided into just two countries, the western

hemisphere and the eastern hemisphere, separated by a great circle. Is

that wrong?

24* Two parallel circles divide the sphere into three countries. Is it

right or wrong?

25. Three meridians divide the sphere into three countries. Is it right

or wrong ?

26. Call the division of the sphere by m meridians and p parallel circles

the "division (ffz,/0"; cf. ex. 2 (1). Is the extreme case (0?j&) right or

wrong ?

27. Is the extreme case (m,0) right or wrong? (Cf. ex. 26.)

28. Which subdivisions (m,p} (cf. ex. 26) can be generated by the process
described in ex. 2 ? (Projection of a convex polyhedron onto the sphere,
followed by continuous shifting of the boundaries which leaves the number
of countries and the number of the boundary lines around each country

unaltered.) Which conditions concerning m and p characterize such

subdivisions ?

29. What is wrong with the examples in which Euler's formula fails?

Which geometrical conditions, rendering more precise the meaning of

jF, F, and E, would ensure the validity of Euler's formula ?

30. Propose more examples to illustrate the answer to exl 29.

31. Descartes' work on polyhedra. Among the manuscripts left by Descartes

there were brief notes on the general theory of polyhedra. A copy of these

notes (by the hand of Leibnitz) was discovered and published in 1860,
more than two hundred years after Descartes' death; cf. Descartes* Oeuvres,

vol. 10, pp. 257-276. These notes treat of subjects closely related to

Euler's theorem: although the notes do not state the theorem explicitly,

they contain results from which it immediately follows.

We consider, with Descartes, a convex polyhedron. Let us call any

angle of any face of the polyhedron a surface angle, and let Sot stand for the

sum of all surface angles. Descartes computes Sa in two different manners,
and Euler's theorem results immediately from the comparison of the two

expressions.
The following examples give the reader an opportunity to reconstruct

some of Descartes' conclusions. We shall use the following notation:

Fn denotes the number of faces with n edges,
Vn the number of vertices in which n edges end, so that

V* + PI + Vs + ---- V.

We continue to call E the number of all edges of the polyhedron.
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32. Express the number of all surface angles in three different ways:
in terms ofF3,

F4,
F5, . . . , of F3,

F4, F5, . . . , and of E, respectively.

33. Compute Safer the five regular solids: the tetrahedron, the cube, the

octahedron, the dodecahedron, and the icosahedron.

34. Express Soc in terms of F3, F^ F5, . . . .

35. Express Sa in terms of E and F.

36. Supplementary solid angles, supplementary spherical polygons. We call

solid angle what is more usually called a polyhedral angle.
Two convex solid angles have the same number of faces and the same

vertex, but no other point in common. To each face of one solid angle

corresponds an edge of the other, and the face is perpendicular to the

corresponding edge. (This relation between the two solid angles is recip-
rocal: the edge e, intersection of two contiguous faces of the first solid

angle, corresponds to the face/', of the second solid angle, iff is bounded

by the two edges corresponding to the two above mentioned faces.) Two
solid angles in this mutual relation are called supplementary solid angles.

(This name is not usual, but two ordinary supplementary angles can be

brought into an analogous mutual position.) Each of two supplementary
solid angles is called the supplement of the other.

The sphere with radius 1, described about the common vertex of two

supplementary solid angles as center, is intersected by these in two spherical

polygons: also these polygons are called supplementary.
We consider two supplementary spherical polygons. Let al9 a^ . . . an

denote the sides of the first polygon, ax, a2, . . . an its angles, A its area, P
its perimeter, and let a'v a'2 , . . . a'n, a'1? o4> o4> A', P' stand for the

analogous parts of the other polygon. Then, if the notation is appropriately

chosen,

ai + i
= az + 4 = =* an + fl

= *>

ai + i 4 + a2
= . . . = an + ocn = TT;

this is well known and easily seen.

Prove that

P + A' = P' + A = 27T.

[Assume as known that the area ofa spherical triangle with angles a, /?,
and y

is the "spherical excess" a + P + 7 ^0

37. "As in a plane figure all exterior angles jointly equal 4 right angles,

so in a solid figure all exterior solid angles jointly equal 8 right angles."

Try to interpret this sentence found in Descartes' notes as a theorem which

you can prove. [See fig. 3.7.]

38. Express Za in terms of V.



39- Prove Euler's theorem.

40. The initial remark of sect. 1 is vague, but can suggest several precise
statements. Here is one that we have not considered in sect. 1 : "If any one
of the three quantities F> F, and E tends to oo, also the other two must
tend to oo.'

J Prove the following inequalities which hold generally for

convex polyhedra and give still more precise information :

Fig. 3.7. Exterior angles of a polygon.

Can the case of equality be attained in these inequalities ? For which kind
of polyhedra can it be attained?

41. There are convex polyhedra all faces of which are polygons of the

same kind, that is, polygons with the same number of sides. For example,
all faces of a tetrahedron are triangles, all faces of a parallelepiped quadri-
laterals, all faces of a regular dodecahedron pentagons. "And so on,"

you may be tempted to say. Yet such simple induction may be misguiding :

there exists nq convex polyhedron with faces which are all hexagons. Try
to prove this. [Ex. 31.]



TCTIV

INDUCTION IN THE THEORY
OF NUMBERS

In the Theory of Numbers it happens rather frequently that., by some
unexpected luck, the most elegant new truths spring up by induction.

GAUSS1

i. Right triangles in integers.
2 The triangle with sides 3, 4, and 5 is a

right triangle since

32 + 42 = 52.

This is the simplest example of a right triangle of which the sides are
measured by integers. Such "right triangles in integers" have played a
role in the history of the Theory of Numbers; even the ancient Babylonians
discovered some of their properties.
One of the more obvious problems about such triangles is the following :

Is there a right triangle in integers, the hypotenuse of which is a given integer n?

We concentrate upon this question. We seek a triangle the hypotenuse
of which is measured by the given integer n and the legs by some integers
x andj>. We may assume that x denotes the longer of the two legs. There-

fore, being given n, we seek two integers x andy such that

We may attack the problem inductively and, unless we have -some quite

specific knowledge, we cannot attack it any other way. Let us take an

example. We choose n = 12. Therefore, we seek two positive integers
x and j, such that x ^> y and

144 = x* +f.

1
Werke, vol. 2, p. 3.

8 Parts of this chapter appeared already under the title "Let us teach guessing" in the
volume fltudes de philosophic des sciences en hommage a Ferdinand Gonseth. Editions du Grifibn,

1950; see pp. 147-154.

59



Which values are available for #2 ? The following:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121.

Is *2 =121? That is, is

144 -*2 = 144-121 =/
a square? No, 23 is not a square. We should now try other squares

but, in fact, we need not try too many of them. Sincey ^ x,

x* ;> 72.

Therefore, #2 = 100 and x2 =81 are the only remaining possibilities,

Now, neither of the numbers

144 - 100 = 44, 144 81 = 63

is a square and hence the answer : there is no right triangle in integers with

hypotenuse 12.

We treat similarly the hypotenuse 13. Of the three numbers

169 144 = 25, 169 - 121 = 48, 169 - 100 = 69

only one is a square and so there is just one right triangle in integers with

hypotenuse 13:

169 = 144 + 25.

Proceeding similarly, we can examine with a little patience all the

numbers under a given not too high limit, such as 20. We find only five

"hypotenuses" less than 20, the numbers 5, 10, 13, 15, and 17:

25= 16+ 9

100= 64 + 36

169= 144 + 25

225 = 144 + 81

289 = 225 + 64.

By the way, the cases 10 and 15 are not very interesting. The triangle

with sides 10, 8, and 6 is similar to the simpler triangle with sides 5, 4, and 3,

and the same is true of the triangle with sides 15, 12, and 9. The remaining
three right triangles, with hypotenuse 5, 13, and 17, respectively, are essen-

tially different, none is similar to another among them.

We may notice that all three numbers 5, 13, and 17 are oddprimes. They
are, however, not all the odd primes under 20; none ofthe other odd primes,

3, 7, 1 1
, and 1 9 is a hypotenuse. Why that ? What is the difference between



the two sets? When, under which circumstances, is an odd prime the hypotenuse

ofsome right triangle in integers, and when is it not?-

This is a modification of our original question. It may appear more

hopeful; at any rate, it is new. Let us investigate it again, inductively.
With a little patience, we construct the following table (the dash indicates

that there is no right triangle with hypotenuse/?).

Odd prime p Right triangles with hypotenuse p
3

5 25 = 16 + 9

7

11

13 169 = 144 + 25

17 289 = 225 + 64

19

23

29 841 = 441 + 400

31 .

When is a prime a hypotenuse; when is it not? What is the difference

between the two cases ? A physicist could easily ask himself some very
similar questions. For instance, he investigates the double refraction of

crystals. Some crystals do show double refraction; others do not. Which

crystals are doubly refracting, which are not? What is the difference

between the two cases ?

The physicist looks at his crystals and we look at our two sets of primes

5,13,17,29,... and 3,7,11,19,23,31,

We are looking for some characteristic difference between the two sets.

The primes in both sets increase by irregular jumps. Let us look at the

lengths of these jumps, at the successive differences :

5 13 17 29 37 11 19 23 31

84 12 4484.8
Many of these differences are equal to 4, and, as it is easy to notice, all are

divisible by 4. The primes in the first set, led by 5, leave the remainder 1

when divided by 4, are of the form 4n + 1 with integral n. The primes in

the second set, led by 3, are ofthe form 4n + 3. Could this be the character-

istic difference we are looking for? If we do not discard this possibility

from the outset, we are led to the following conjecture: A prime of the form

4n + 1 is the hypotenuse ofjust one right triangle in integers; a prime of the form

4n + 3 is the hypotenuse of no such triangle.



2* Sums of squares. The problem of the right triangles in integers, one

aspect of which we have just discussed (in sect. 1), played, as we have said,

an important role in the history of the Theory of Numbers. It leads on, in

fact, to many further questions. Which numbers, squares or not, can be

decomposed into two squares? What about the numbers which cannot

be decomposed into two squares? Perhaps, they are decomposable into

three squares; but what about the numbers which are not decomposable
into three squares?
We could go on indefinitely, but, and this is highly remarkable, we need

not. Bachet de Meziriac (author of the first printed book on mathematical

recreations) remarked that any number (that is, positive integer) is either a

square, or the sum of two, three, orfour squares. He did not pretend to possess
a proof. He found indications pointing to his statement in certain problems
of Diophantus and verified it up to 325.

In short, Bachet5

s statement was just a conjecture, found inductively. It

seems to me that his main achievement was to put the question: HOW
MANY squares are needed to represent all integers'? Once this question is

clearly put, there is not much difficulty in discovering the answer inductively.

We construct a table beginning with

1= 1

2=1 + 1

3^1+1+1
4=4
5 = 4+ 1

6=4+1+1
7=4+1+1+1
8 = 4 + 4

9=9
10 = 9 + 1.

This verifies the statement up to 10. Only the number 7 requires four

squares; the others are representable by one or two or three, Bachet
went on tabulating up to 325 and found many numbers requiring four

squares and none requiring more. Such inductive evidence satisfied him,
it seems, at least to a certain degree, and he published his statement. He
was lucky. His conjecture turned out to be true and so he became the

discoverer of the 'Tour-square theorem" which we can state also in the

form: The equation

where n is any given positive integer has a solution in which x> y^ , and w
are non-negative integers.



The decomposition of a number into a sum of squares has still other

aspects. Thus, we may investigate the number of solutions of the equation

in integers x and y. We may admit only positive integers, or all integers,

positive, negative, and 0. Ifwe choose the latter conception of the problem
and take as example n ~ 25, we find 12 solutions of the equation

25 :=.**+/,
namely the following

25 = 52 + O2 = (~5)
2 + O2 == O2 + 52 == O2 + ( 5)

2

= 42 + 32 = (-4)
2 + 32 = 42 + (-3)

2 = (-4)
2 + (-3)

2

= 32 + 42 = (-3)
2 + 42 = 32 + (-4)

2 = (-S)
2 + (~4)

2
.

By the way, these solutions have an interesting geometric interpretation,
but we need not discuss it now. See ex. 2.

3. On the sum offour odd squares* Of the many problems concerned
with sums of squares I choose one that looks somewhat far-fetched, but will

turn out to be exceptionally instructive.

Let u denote a positive odd integer. Investigate inductively the number of the

solutions of the equation

in positive odd integers x, y, z, and w.

For example, if u = 1 we have the equation

4 = x2 +y* + + w*

'and there is obviously just one solution, #=j;==a;=l. In fact,

we do not regard

#=1, jy=l, *=1, w=\
or

#=2, J>=0, =0, H;=O

as a solution, since we admit only positive odd numbers for x, y, , and w.

If u = 3, the equation is

12 =
and the following two solutions:

#=3, _>>=1, = 1, wl
*= 1, ^,= 3, s= 1, w= 1

are different.

In order to emphasize the restriction laid upon the values of x, y, *, and w,

we shall avoid the term "solution" and use instead the more specific de-

scription : "representation of 4w as a sum of four odd squares." As this
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2. Sums of squares. The problem of the right triangles in integers, one

aspect of which we have just discussed (in sect. 1), played, as we have said,

an important role in the history of the Theory of Numbers. It leads on, in

fact, to many further questions. Which numbers, squares or not, can be

decomposed into two squares? What about the numbers which cannot

be decomposed into two squares? Perhaps, they are decomposable into

three squares; but what about the numbers which are not decomposable
into three squares?
We could go on indefinitely, but, and this is highly remarkable, we need

not. Bachet de M6ziriac (author of the first printed book on mathematical

recreations) remarked that any number (that is, positive integer) is either a

square, or the sum of two, three, orfour squares. He did not pretend to possess
a proof. He found indications pointing to his statement in certain problems
of Diophantus and verified it up to 325.

In short, Bachet's statement was just a conjecture, found inductively. It

seems to me that his main achievement was to put the question: HOW
MANT squares are needed to represent all integers'? Once this question is

clearly put, there is not much difficulty in discovering the answer inductively.

We construct a table beginning with

1= 1

2=1 + 1

3=1+1+1
4=4
5 = 4+1
6^=4+1 + 1

7=4+1+1+1
8 = 4 + 4

9=9
10=9 + 1.

This verifies the statement up to 10. Only the number 7 requires four

squares; the others are representable by one or two or three. Bachet

went on tabulating up to 325 and found many numbers requiring four

squares and none requiring more, Such inductive evidence satisfied him,
it seems, at least to a certain degree, and he published his statement. He
was lucky. His conjecture turned out to be true and so he became the

discoverer of the 'Tour-square theorem'* which we can state also in the

form; The equation
n =*

where n is any given positive integer has a solution in which x, y, z, and w
are non-negative integers.
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The decomposition of a number into a sum of squares has still other

aspects. Thus, we may investigate the number of solutions of the equation

n =
in integers x and y. We may admit only positive integers, or all integers,

positive, negative, and 0. Ifwe choose the latter conception of the problem
and take as example n = 25, we find 12 solutions of the equation

namely the following

25 = 52 + O2 =
( 5)

2 + O2 = O2 + 52 = O2 + ( 5)
2

= 42 + 32 = (-4)
2 + 32 = 42 + (-3)2 = (-4)

2 + (-3)
2

= 32 + 42 = (-3)
2 + 42 = 32 + (-4)

2 = (-3)2 + (-4)
2
.

By the way, these solutions have an interesting geometric interpretation,
but we need not discuss it now. See ex. 2.

3. On the sum offour odd squares. Ofthe many problems concerned

with sums of squares I choose one that looks somewhat far-fetched, but will

turn out to be exceptionally instructive.

Let u denote a positive odd integer. Investigate inductively the number of the

solutions of the equation

4u=

in positive odd integers x, y^ z, and w.

For example, if u = 1 we have the equation

4 =r

'and there is obviously just one solution, x=y=z=w=l. In fact,

we do not regard
#=--1, ^==1, z= 1 5 w=\

or

*=2, j=0, =0, w=0
as a solution, since we admit only positive odd numbers for x, y, z> and w.

If u = 3, the equation is

and the following two solutions :

A? =3, j=l, *=1, w=l
*= 1, ^==3, =1, w=l

are different.

In order to emphasize the restriction laid upon the values ofx>y, z, and w>

we shall avoid the term "solution" and use instead the more specific de-

scription: "representation of 4w as a sum of four odd squares." As this
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description is long, we shall abbreviate it in various ways, sometimes even
to the one word "representation."

4. Examining an example. In order to familiarize ourselves with the

meaning of our problem, let us consider an example. We choose u = 25.

Then 4u == 100, and we have to find all representations of 100 as a sum
of four odd squares. Which odd squares are available for this purpose ?

The following:

1, 9, 25, 49, 81.

If 81 is one of the four squares the sum of which is 100, then the sum of the

three others must be

100 81 = 19.

The only odd squares less than 19 are 1 and 9, and 19 = 9 + 9+1 is

evidently the only possibility to represent 19 as a sum of 3 odd squares if

the terms are arranged in order of magnitude. We obtain

100=81+9 + 9 + 1.

We find similarly
100 = 49 + 49 + 1 + 1,

100 = 49 + 25 + 25 + 1,

100 = 25 + 25 + 25 + 25.

Proceeding systematically, by splitting off the largest square first, we may
convince ourselves that we have exhausted all possibilities, provided that

the 4 squares are arranged in descending order (or rather in non-ascending
order). But there are more possibilities if we take into account, as we
should, all arrangements of the terms. For example,

100 = 49 + 49 + 1 + 1

= 49 _|_ i _|_ 49 + i

= 49 + i + i + 49
= 1+49 + 49 + 1

= i + 49 4. i + 49 .

= 1 + 1+49 + 49.

These 6 sums have the same terms, but the order of the terms is different;

they are to be considered, according to the statement of our problem, as

6 different representations ;
the one representation

100 = 49 + 49 + 1 + 1

with non-increasing terms is a source of 5 other representations, of 6 repre-
sentations in all. We have similarly

Non-increasing terms Number of arrangements

81+9 + 9+1 12

49 4. 49 + i + i 6
49 + 25 + 25 + 1 12

25 + 25 + 25 + 25 1
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To sum up, we found in our case where u = 25 and 4u= 100

12 + 6+12 + 1 = 31

representations of 4u = 100 as a sum of 4 odd squares.

5. Tabulating the observations. The special case u = 25 where
4u = 100 and the number of representations is 31 has shown us clearly the

meaning of the problem. We may now explore systematically the simplest

cases, u = 1, 3, 5, ... up to u = 25. We construct Table I. (See below;
the reader should construct the table by himself, or at least check a few items.)

Table I

6. What is the rule? Is there any recognizable law, any simple con-

nection between the odd number u and the number of different representa-

tions of 4u as a sum of four odd squares?
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This question is the kernel of our problem. We have to answer it on the

basis of the observations collected and tabulated in the foregoing section.

We are in the position of the naturalist trying to extract some rule, some

general formula from his experimental data. Our experimental material

available at this moment consists of two parallel series of numbers

1357 9 11 13 15 17 19 21 23 25

1 4 6 8 13 12 14 24 18 20 32 24 31.

The first series consists of the successive odd numbers, but what is the rule

governing the second series ?

As we try to answer this question, our first feeling may be close to despair.
That second series looks quite irregular, we are puzzled by its complex
origin, we can scarcely hope to find any rule. Yet, if we forget about the

complex origin and concentrate upon what is before us, there is a point

easy enough to notice. It happens rather often that a term of the second

series exceeds the corresponding term of the first series by just one unit.

Emphasizing these cases by heavy print in the first series, we may present
our experimental material as follows:

1357 9 11 13 15 17 19 21 23 25

1 4 6 8 13 12 14 24 18 20 32 24 31.

The numbers in heavy print attract our attention. It is not difficult to

recognize them: they are primes. In fact, they are all the primes in the

first row as far as our table goes. This remark may appear very surprising
if we remember the origin of our series. We considered squares, we made
no reference whatever to primes. Is it not strange that the prime numbers

play a role in our problem ? It is difficult to avoid the impression that our
observation is significant, that there is something remarkable behind it.

What about those numbers of the first series which are not in heavy print?

They are odd numbers, but not primes. The first, 1, is unity, the others are

composite

9=3x3, 15=3X5, 21 = 3x7, 25=5x5.

What is the nature of the corresponding numbers in the second series?

If the odd number u is a prime, the corresponding number is u -{- 1 ;

if a is not a prime, the corresponding number is not u + 1. This we have
observed already. We may add one little remark. If M=*l, the corre-

sponding number is also 1, and so less than u + 1, but in all other cases in

which u is not a prime the corresponding number is greater than u + 1 . That .

is, the number corresponding to u is less than, equal to, or greater than w + 1

accordingly as u is unity, a prime, or a composite number. There is some

regularity.
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Let us concentrate upon the composite numbers in the upper line and the

corresponding numbers in the lower line :

3X3 3x5 3x7 5x5
13 24 32 31 .

There is something strange. Squares in the first line correspond to primes
in the second line. Yet we have too few observations; probably we should

not attach too much weight to this remark. Still, it is true that, conversely,

under the composite numbers in the first line which are not squares, we find

numbers in the second line which are not primes :

3x5 3x7
4x6 4x8.

Again, there is something strange. Each factor in the second line exceeds

the corresponding factor in the first line by just one unit. Yet we have too

few observations; we had better not attach too much weight to this remark.

Still, our remark shows some parallelism with a former remark. We noticed

before

P

P+ l

and we notice now
pq

where p and q are primes. There is some regularity.

Perhaps we shall see more clearly if we write the entry corresponding to

pq differently:

What can we see there ? What are these numbers pq, />,?,!? At any rate,

the cases

9 25

13 31

remain unexplained. In fact, the entries corresponding to 9 and 25 are

greater than 9 + 1 and 25 + 1, respectively, as we have already observed:

13 = 9 + 1+3 31 = 25 +1+5.
What are these numbers?

If one more little spark comes from somewhere, we may succeed in com-

bining our fragmentary remarks into a coherent whole, our scattered indica-

tions into an illuminating view of the full correspondence :

p pq 9 25 1

q +l 9 + 3 + 1 25 + 5 + 1 1.
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DIVISORS 1 The second line shows the divisors of the numbers in the

first line. This may be the desired rule, and a discovery, a real discovery:
To each number in the first line corresponds the sum of its divisors.

And so we have been led to a conjecture, perhaps to one of those "most

elegant new truths" of Gauss : Ifu is an odd number, the number of representations

of4u as a sum offour odd squares is equal to the sum of the divisors ofu.

7. On the nature of inductive discovery. Looking back at the fore-

going sections (3 to 6) we may find many questions to ask.

What have we obtained? Not a proof, not even the shadow of a proof, just
a conjecture: a simple description of the facts within the limits of our experi-
mental material, and a certain hope that this description may apply beyond
the limits of our experimental material.

How have we obtained our conjecture? In very much the same manner that

ordinary people, or scientists working in some non-mathematical field,

obtain theirs. We collected relevant observations, examined and compared
them, noticed fragmentary regularities, hesitated, blundered, and eventually
succeeded in combining the scattered details into an apparently meaningful whole.

Quite similarly, an archaeologist may reconstitute a whole inscription from
a few scattered letters on a worn-out stone, or a palaeontologist may recon-

struct the essential features of an extinct animal from a few of its petrified
bones. In our case the meaningful whole appeared at the same momentwhen
we recognized the appropriate unifying concept (the divisors).

8. On the nature of inductive evidence. There remain a few more

questions.
How strong is the evidence? Your question is incomplete. You mean, of

course, the inductive evidence for our conjecture stated in sect. 6 that we can
derive from Table I ofsect. 5 ; this is understood. Yet what do you mean by
"strong"? The evidence is strong if it is convincing; it is convincing if it

convinces somebody. Yet you did not say whom it should convince me,
or you, or Euler, or a beginner, or whom?

Personally, I find the evidence pretty convincing. I feel sure that Euler
would have thought very highly of it. (I mention Euler because he came
very near to discovering our conjecture; see ex. 6.24.) I think that a

beginner who knows a little about the divisibility of numbers ought to find

the evidence pretty convincing, too. A colleague of mine, an excellent

mathematician who however was not familiar with this corner of the

Theory of Numbers, found the evidence * 'hundred per cent convincing,"
/ am not concerned with subjective impressions. What is the precise, objectively

evaluated degree of rational belief, justified by the inductive evidence? You give me
one thing (A), you fail to give me another thing (B), and you ask me a third

thing (C).

(A) You give me exactly the inductive evidence: the conjecture has been
verified in the first thirteen cases, for the numbers 4, 12, 20, . . .

,
100. This

is perfectly clear.
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(B) You wish me to evaluate the degree of rational beliefjustified by tixis

evidence. Yet such beliefmust depend, ifnot on the whims and the tempera-
ment, certainly on the knowledge of the person receiving the evidence. He
may know a proofof the conjectural theorem or a counter-example exploding
it. In these two cases the degree ofhis belief, already firmly established, will

remain unchanged by the inductive evidence. Yet if he knows something
that comes very close to a complete proof, or to a complete refutation, of

the theorem, his belief is still capable of modification and will be affected by
the inductive evidence here produced, although different degrees of belief

will result from it according to the kind of knowledge he has. Therefore, if

you wish a definite answer, you should specify a definite level of knowledge
on which the proposed inductive evidence (A) should bejudged. You should

give me a definite set of relevant known facts (an explicit list of known

elementary propositions in the Theory of Numbers, perhaps) .

(C) You wish me to evaluate the degree of rational beliefjustified by the

inductive evidence exactly. Should I give it to you perhaps expressed in

percentages of "full credence" ? (We may agree to call "full credence" the

degree of beliefjustified by a complete mathematical proof of the theorem in

question.) Do you expect me to say that the given evidence justifies a belief

amounting to 99% or to 2.875% or to .000001% of "full credence"?

In short, you wish me to solve a problem: Given (A) the inductive evi-

dence and (B) a definite set of known facts or propositions, compute the

percentage of full credence rationally resulting from both (C).

To solve this problem is much more than I can do. I do not know anybody
who could do it, or anybody who would dare to do it. I know ofsome philo-

sophers who promise to do something of this sort in great generality. Yet,

faced with the concrete problem, they shrink and hedge and find a thousand

excuses why not to- do just this problem.

Perhaps the problem is one of those typical philosophical problems about

which you can talk a lot in general, and even worry genuinely, but which

fade into nothingness when you bring them down to concrete terms.

Could you compare the present case of inductive inference with some standard case

and so arrive at a reasonable estimate ofthe strength ofthe evidence? Let ur compare
the inductive evidence for our conjecture with Bachet's evidence for his

conjecture.
Bachet's conjecture was: For n = 1, 2, 3, ... the equation

has at least one solution in non-negative integers x, y, z, and w. He verified

this conjecture for n = 1, 2, 3, . . . , 325. (See sect. 2, especially the short

table.)

Our conjecture is: For a given odd w, the number of solutions of the

equation
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in positive odd integers x, j>, z, and w is equal to the sum of the divisors of u.

We verified this conjecture for M = 1, 3, 5, 7, . . .
, 25 (13 cases). (See

sect. 3 to 6.)

I shall compare these two conjectures and the inductive evidence yielded

by their respective verifications in three respects.

Number of verifications. Bachet's conjecture was verified in 325 cases, ours

in 1 3 cases only. The advantage in this respect is clearly on Bachet's side.

Precision of prediction. Bachet's conjecture predicts that the number of

solutions is ^ 1 ; ours predicts that the number of solutions is exactly equal
to such and such a quantity. It is obviously reasonable to assume, I think,

that the verification ofa more precise prediction carries more weight than that of $ less

precise prediction. The advantage in this respect is clearly on our side.

Rival conjectures. Bachet's conjecture is concerned with the maximum
number of squares, say M> needed in representing an arbitrary positive

integer as sum of squares. In fact, Bachet's conjecture asserts that M = 4.

I do not think that Bachet had any a priori reason to prefer M = 4 to, say,M = 5, or to any other value, as M = 6 or M= 7; even M = oo is not

excluded a priori. (Naturally, M= oo would mean that there are larger

and larger integers demanding more and more squares. On the face,M= oo could appear as the most likely conjecture.) In short, Bachet's

conjecture has many obvious rivals. Yet ours has none. Looking at the

irregular sequence of the numbers of representations (sect. 6) we had the

impression that we might not be able to find any rule. Now we did find an

admirably clear rule. We hardly expect to find any other rule.

It may be difficult to choose a bride if there are many desirable young
ladies to choose from; if there is just one eligible girl around, the decision

may come much quicker. It seems to me that our attitude toward conjec-
tures is somewhat similar. Other things being equal, a conjecture that has

many obvious rivals i$ more difficult to accept than one that is unrivalled.

If you think as I do, you should find that in this respect the advantage is on
the side of our conjecture, not on Bachet's side.

Please observe that the evidence for Bachet's conjecture is stronger in one

respect and the evidence for our conjecture is stronger in other respects, and
do not ask unanswerable questions.

EXAMPLES AND COMMENTS ON CHAPTER IV

x. Notation. We assume that n and k are positive integers and consider

the Diophantine equation

n = *? + *1 + + 4
We say that two solutions xl9 #2, . . . xk and xl9 x'2, . . . x'k are equal if, and

only if, *j = x\, x2 = x'%, #* = x'k . If we admit for xv x2> . . . xk all

integers, positive, negative, or null, we call the number of solutions Rk(n) . If
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we admit only positive odd integers, we call the number of solutions Sk(n)~
This notation is important in the majority of the following problems.

Bachet's conjecture (sect. 2) is expressed in this notation by the inequality

RM > Oforn = 1,2, 3, ... .

The conjecture that we discovered in sect. 6 affirms that S4(4(2n 1))

equals the sum of the divisors of 2n 1, for n = 1, 2, 3, . . . .

a. Let x and y be rectangular coordinates in a plane. The points for

which both x andj are integers are called the "lattice points" of the plane.
Lattice points in space are similarly defined.

Interpret R2(n) and Rz (n) geometrically, in terms of lattice points.

3. Express the conjecture encountered in sect. 1 in using the symbol
*()

4. When is an odd prime the sum of two squares? Try to answer this

question inductively, by examining the table

3

5=4+1
7

11

13= 9 + 4

17= 16+ 1

19

23

29 = 25 + 4

31

Extend this table if necessary and compare it with the table in sect. 1.

5. Could you verify by mathematical deduction some part of your answer

to ex. 4 obtained by induction? After such a verification, would it be

reasonable to change your confidence in the conjecture?

6. Verify Bachet's conjecture (sect. 2) up to 30 inclusively. Which
numbers require actually four squares ?



72 INDUCTION IN THE THEORY OF NUMBERS

7. In order to understand better Table I in sect. 5, let a2
,
b2

,
c2,

and d2

denote four different odd squares and consider the sums

(1) a2 + b2 + c2 + d2

(2) a2 + az + b2 + <*

(3) az + a* + b2 + b2

(4) a2 + a2 + a2 + b2

(5) a2 + a2 + a2 + a2 .

How many different representations (in the sense of sect. 3) can you derive

from each by permuting the terms ?

8. The number of representations of 4w, as a sum of four odd squares is

odd if, and only if, u is a square. (Following the notation of sect. 3, we
assume that u is odd.) Prove this statement and show that it agrees with

the conjecture of sect, 6. How does this remark influence your confidence

in the conjecture?

9. Now, let 0, b, c, and d denote different positive integers (odd or even).

Consider the five sums mentioned in ex. 7 and also the following :

(6) a2 + b2 + c* (9) a2 + &

(7) a2 + a2 + b2 (10) a2 + a2

(8) a2 + a2 + a2 (11) a2 .

Find in each of these eleven cases the contribution to /24(n). You derive

from each sum all possible representations by the following obvious opera-
tions : you add O2 as many times as necessary to bring the number of terms

to 4, you change the arrangement, and you replace some (or none, or all) of

the numbers a, b, c, d by a, b, c, d, respectively. (Check examples
in Table II.)

10. Investigate inductively the number of solutions of the equation
n = x2 +j2 + z? + w2 in integers x, y> z, and w, positive, negative, or 0.

Start by constructing a table analogous to Table I.

11 (continued). Try to use the method, or the result, of sect. 6.

12 (continued). Led by the analogy of sect. 6 or by your observation of

Table II, distinguish appropriate classes of integers and investigate each

class by itself.

13 (continued). Concentrate upon the most stubborn class.

14 (continued). Try to summarize all fragmentary regularities and

express the law in one sentence.
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15 (continued) . Check the rule found in the first three cases not contained
in Table II.

16. Find#8(5) and S8(40).

17. Check at least two entries of Table III, p. 75, not yet given in

Tables I and II.

18. Using Table III, investigate inductively RB (n) and SB(8n).

19 (continued). Try to use the method, or the result, of sect. 6 and
ex. 10-15.

20 (continued). Led by analogy or observation, distinguish appropriate
classes of integers and investigate each class by itself.

21 (continued) . Try to discover a cue in the most accessible case.

22 (continued) . Try to find some unifying concept that could summarize
the fragmentary regularities.

23 (continued). Try to express the law in one sentence.

24. Which numbers can and which numbers cannot be expressed in the

form 3x + $y, where x andjy are non-negative integers?

25. Try to guess the law of the following table:

Last integer not expressible
in form ax + by

It is understood that x andj; are non-negative integers. Check a few items

and extend the table, if necessary, [Observe the change in the last column
when just one of the two numbers a and b changes.]

26. Dangers of induction. Examine inductively the following assertions:

(1) (n 1) ! + 1 is divisible by n when n is a prime, but not divisible by n

when n is composite.

(2) 2n
~1

1 is divisible by n when n is an odd prime, but not divisible by n

when n is composite.
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Table II
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Table II (continued)



TTV

MISCELLANEOUS EXAMPLES
OF INDUCTION

Whenyou have satisfiedyourself that the theorem is true, you start proving
it. THE TRADITIONAL MATHEMATICS PROFESSOR1

i. Expansions. In dealing with problems of any kind, we need
inductive reasoning of some kind. In various branches of mathematics
there are certain problems which call for inductive reasoning in a typical
manner. The present chapter illustrates this point by a few examples.
We begin with a relatively simple example.

Expand into powers of x thefunction 1/(1 x -(- #
2
).

This problem can be solved in many ways. The following solution is

somewhat clumsy, but is based on a sound principle and may occur naturally
to an intelligent beginner who knows little, yet knows at least the sum of the

geometric series:
j

1 + r + r + + . . . =
j

.

There is an opportunity to use this formula in our problem:
1 1

= 1 4- x _ *2

+ X2 2r>+

+ xi - 5*6 + iw _ 10^8 + ...

+ * 6x7 + 15*8 . . .

+ X7 - 7*8 + ...

+ *-...

= 1 + X K3 - X4 + *6 + X1 ....

1 This dictum of the well-known pedagogue (How to Solve It, p. 181) is sometimes pre-
ceded by the following exhortation: "If you have to prove a theorem, do not rush. First
of all, understand fully what the theorem says, try to see clearly what it means. Then
check the theorem ; it could be false. Examine its consequences, verify as many particular
instances as are needed to convince yourself of its truth. When ..."

76
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The result is striking. Any non-vanishing coefficient has either the value 1

or the value 1. The succession of the coefficients seems to show some
regularity which becomes more apparent if we compute more terms:

1 x 4- X2
= l + * ~~ ** ~~ ** + *6 + *7 - x* ^ *10 + *12 + *13 -

Periodic ! The sequence of coefficients appears to be periodical with the

period 6:

1, 1,0, -1, -1,0
|

1, 1,0, -1, -1,0
I
1,1, ... .

,
We naturally expect that the periodicity observed extends beyond the

limit ofour observations. Yet this is an inductive conclusion, or a mere guess,
which we should regard with due skepticism. The guess, however, is based
on facts, and so it deserves serious examination. Examining it means,
among other things, restating it. There is an interesting way of restating
our conjecture:

Now, we may easily notice two geometric series on the right hand side, both
with the same ratio tf

3
, which we can sum. And so our conjecture boils

down to

* = 1 * 1+*
1 * + ** 1 + ** "M + * l + ^>

which is, of course, true. We proved our conjecture.
Our example, simple as it is, is typical in many respects. If we have to

expand a given function, we can often obtain the first few coefficients

without much trouble. Looking at these coefficients, we should try, as
we did here, to guess the law governing the expansion. Having guessed the

law, we should try, as we did here, to prove it. It may be a great advantage,
as it was here, to work out the proofbackwards, starting from an appropriate,
clear statement of the conjecture.

By the way, our example is quite rewarding (which is also typical). It

leads to a curious relation between binomial coefficients.

It is not superfluous to add that the problem ofexpanding a given function

in a series frequently arises in various branches of mathematics. See the
next section, and the Examples and Comments on Chapter VI.

a. Approximations.2 Let E denote the length of the perimeter of an

ellipse with semiaxes a and b. There is no simple expression for E in terms
of a and b, but several approximate expressions have been proposed among
which the following two are perhaps the most obvious:

4 Cf. Putnam, 1949,
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P is a proximate, P' another proximate, E an exact, expression for the same

quantity, the length of the perimeter of the ellipse. When a coincides with

b, the ellipse becomes a circle, and both P and P' coincide with E.

How closely do P and P' approximate E when a is different from b?

Which one comes nearer to the truth, P or P'? Questions of this kind

frequently arise in all branches of applied mathematics and there is a widely

accepted procedure to deal with them which we may describe roughly as

follows. Expand (P E)/E9
the relative error of the approximation, in powers ofa

suitable small quantity and base yourjudgement upon the initial term (the first non-

vanishing term) of the expansion.

Let us see what this means and how the procedure works when applied to

our case. First, we should choose a "suitable small quantity." We try e,

the numerical eccentricity of the ellipse, defined by the formula

(fli
-

$2)1/2
B = --

,'

a

we take a as the major, and b as the minor, semiaxis. When a becomes b

and the ellipse a circle, e vanishes. When the ellipse is not very different

from a circle, e is small. Therefore, let us expand the relative error into

powers of e. We obtain (let us skip the details here)

P-E _ 1 P'-E_ 3~~~~~ + '" '
~~~ 6+ '"'

We computed only the initial term which, in both cases, is of order 4,

contains e4. We omitted in both expansions the terms of higher order,

containing e5, se, . . . . The terms omitted are negligible in comparison
with the initial terms when e is very small (infinitely small), that is, when the

ellipse is almost circular. Therefore, for almost circular ellipses, P comes
nearer to the true value E than P'. (In fact, the ratio of the errors becomes
1 : 3 as e tends to 0.) Both P and P' approximate E from below:

E>P>P'.
All this holds for very small e, for almost circular ellipses. We do not

know yet how much of these results remains valid when e is not so small. In

fect^ at this jpopnient we know only limit relations, valid for -> 0. We do
not yet know anything definitive about the error ofour approximations when
e ?= 0,5 or e === 0.1. Of course, what we need in practice is information

about such concrete cases.

In such circumstances, practical people test their formulas numerically.
We may follow them, but which case should we test first? It is advisable

not to forget the extreme cases. The numerical eccentricity e varies between
the extreme values and 1. When e = 0, b = a and the ellipse becomes a
circle. Yet we know this case fairly well by now and we turn rather to the
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other extreme case. When e = 1, & = 0, the ellipse becomes a line segment
of length 2a, and the length of the perimeter is 4<z. We have

=40, P=7r0, P'=0 when=l.
It may be worth noticing that in both extreme cases, for s = 1 just as for

very small e, E > P > P'. Are these inequalities generally valid?

For the second inequality, the answer is easy. In fact, we have, for a > b,

P = w(a 4. 4) > 2ff(fli)i/a= P'

since this is equivalent to

(a + b}* > 4a

or to

(a 4) > 0.

We focus our attention upon the remaining question. Is the inequality

E>P generally valid ? It is natural to conjecture that what we found true

in the extreme cases (e small, and s = 1) remains true in the intermediate

cases (for all values of e between and 1). Our conjecture is not supported

by many observations, that is true, but it is supported by analogy. A
similar question (concerning P > P') which we asked in the same breath

and based on similar grounds has been answered in the affirmative.

Let us test a case numerically. . We know a little more about the case

where e is nearly than about the case where it is nearly 1 . We choose a

simple value for e, nearer to 1 than to 0: a = 5, b = .3, e = 4/5. We find

for this e (using appropriate tables)

E = 27r X 4.06275, P = STT X 4.00000.

The inequality E > P is verified. This numerical verification of our

conjecture comes from a new side, from a different source, and therefore

carries some weight. Let us note also that

(P E)/E = -0.0155, e*/64 = 0.0064.

The relative error is about 1.5%. It is considerably larger than the initial

term of its expansion, but has the same sign. As e = 4/5 = 0.8 is not too

small, our remark fits into the whole picture and tends to increase our

confidence in the conjecture.

Approximate formulas play an important role in applied mathematics.

Trying to judge such a formula, we often adopt in practice the procedure
followed in this section. We compute the initial term in the expansion of

the relative error and supplement the information so gained by numerical

tests, considerations ofanalogy, etc., in short, by inductive, non-demonstrative

reasoning.

3. Limits. In order to see inductive reasoning at work in still another

domain, we consider the following problem.
3

1 See Putnam, 1948.



8O MISCELLANEOUS EXAMPLES OF INDUCTION

Let a^ 2,
. . . , an,

. . . be an arbitrary sequence ofpositive numbers. Show that

This problem requires some preliminary knowledge, especially familiarity
with the concept of "lim sup" or "upper limit of indetermination."4 Yet
even if you are thoroughly familiar with this concept, you may experience
some difficulty in finding a proof. My congratulations to any undergraduate
who can do the problem by his own means in a few hours.

If you have struggled with the problem yourself a little while, you may
follow with more sympathy the struggle described in the following sections.

4. Trying to disprove it. We begin with the usual questions.
What is the hypothesis? Just an > 0, nothing else.

What is the conclusion? That inequality with e on the right and that

complicated limit on the left.

Do you know a related theorem? No, indeed. It is very different from

anything I know.
Is it likely that the theorem is true? Or is it more likely that it isfalse? False,

of course. In fact I cannot believe that such a precise consequence can be
derived from such a broad hypothesis, just an ^> 0.

What areyou required to do? To prove the theorem. Or to disprove it. I

am very much for disproving it.

Canyon test any particular case of the theorem? Yes, that is what I am about
to do.

[In order to simplify the formulas, we set

and write bn -> b for lim bn = 4.]

I try an = 1, for n = 1, 2, 3, . . . . Then

i

= 2n -> oo.

In this case, the assertion of the theorem is verified.

Yet I could set ^ = 0, an = 1 for n 2, 3, 4, . . . . Then

The theorem is exploded ! No, it is not. The hypothesis allows a = 0.0000 1
,

but it prohibits a = 0. What a pity !

4 See e.g., G. H. Hardy, Pure Mathematics, sect. 82.
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Let me try something else. Let an = n. Then

Again verified.

Now, let an = n2. Then

2n+l

Again verified. And again e2. Should e2 stand on the right hand side in

the conclusion instead of e? That would improve the theorem.
Let me introduce a parameter. Let me take .... Yes, let me take a = c,

where I can dispose of c, but an = n forn = 2, 3, 4, . . . . Then

<.-(-
+ (n + 1)

This is always > e, since c = a > 0. Yet it can come as close to e as we
please, since c can be arbitrarily small. I cannot disprove it, I cannot

prove it.

Just one more trial. Let me take an = nc
. Then [we skip some computa-

tions]

coifO< C <l,

n"
e2 ifV=

e
c ifc>

Again, the limit can come as close to e as we please, but remains always

superior to e. I shall never succeed in bringing down this . . . limit below e.

It is time to turn round.

5* Trying to prove it. In fact, the indications for a volte-face are quite

strong. In the light of the accumulated inductive evidence the prospects
of disproving the theorem appear so dim that the prospects of proving it

look relatively bright.

Therefore, nothing remains but to start reexamining the theorem, its

statement, its hypothesis, its conclusion, the concepts involved, etc,

Canyon relax the hypothesis? No, I cannot. If I admit an = 0, the conclusion

is no more valid, the theorem becomes false (a^
= 0, 2

=*= &$ = #4 = - - = 1 )

Canyou improve the conclusion? I certainly cannot improve it by substituting
some greater number for e, since then the conclusion is no more valid, the

theorem becomes false (examples in the foregoing sect. 4) .

Have you taken into account all essential notions involved in the problem? No, I

have not. That may be the trouble.

What have you failed to take into account? The definition of lim sup. The
definition of the number e.
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What is lim sup bn l It is the upper limit of indetermination of bn as n

tends to infinity.

What is e? I could define e in various ways. The above examples

suggest that the most familiar definition of e may be the best:

/ 1

Could you restate the theorem? ....................
Couldyou restate the theorem in some more accessibleform? ..........
Could you restate the conclusion? What is the conclusion? The conclusion

contains e. What is e ? (I failed to ask this before.) Oh, yes the conclu^

sion is

or, which is the same,

hm sup
-

L (n + I

This looks much better!

Can the conclusion be false, when the hypothesis is fulfilled? Yes, that is the

question. Let me see it. Let me look squarely at the negation of the

assertion, at the exactly opposite assertion. Let me write it down:

I put a query in front of it, because just this point is in doubt. Let me call

it the "formula ( ?) ." What does ( ?) mean ? It certainly implies that there

is an N such that

|X*1
+ M.l)1*

L (n + IK J
< 1 for n ^ IV.

L (n + !)* J
-

.

It follows hence that

(n + IK ~~

It follows further .... Let me try something. Yes, I can write it.neatly !

It follows further from (?) that

or

n+ 1 n n
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Let me write this out broadly. It follows that

n n I n

n 1 n 2 n 1

and so

^ < ^~ 1 \N+\ + N~+2
+ "' +

n -1 + n)

where C is a constant, independent of n provided that n ^ N. It does not

really matter but, in fact,

It matters, however, that n can be arbitrarily large, and that the harmonic

series diverges. It follows, therefore, that

lim = oo.
'

n-^oo n

Now, this contradicts flatly the hypothesis that an > for n = 1, 2, 3, . . . .

Yet this contradiction follows faultlessly from the formula (?). Therefore,

in fact, (?) must be responsible for the contradiction; (?) is incompatible

with the hypothesis an > 0; the opposite to (?) must be true the theorem

is proved !

6. The role of the inductive phase. Looking back at the foregoing

solution superficially, we could think that the first, inductive, phase of the

solution (sect. 4) is not used at all in the second, demonstrative, phase (sect. 5) .

Yet this is not so. The inductive phase was useful in several respects.

First, examining concrete particular cases of the theorem, we understood it

thoroughly, and realized its full meaning. We satisfied ourselves that its

hypothesis is essential, its conclusion sharp. This information was helpful

in the second phase: we knew that we must use the whole hypothesis and

that we must take into account the precise value of the constant e.

Second, having verified the theorem in several particular cases, we gathered

strong inductive evidence for it. The inductive phase overcame our initial

suspicion and gave us a strong confidence in the theorem. Without such
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confidence we would have scarcely found the courage to undertake the proof
which did not look at all a routine job. "When you have satisfied yourself
that the theorem is true, you start proving it" the traditional mathematics

professor is quite right.

Third, the examples in which the familiar limit formula for e popped up
again and again, gave us reasonable ground for introducing that limit

formula into the statement of the theorem. And introducing it turned out

the crucial step toward the solution.

On the whole, it seems natural and reasonable that the inductive phase

precedes the demonstrative phase. First guess, then prove.

EXAMPLES AND COMMENTS ON CHAPTER V.

i. By multiplying the series

x 1* 13**

I
+ --+---+...

you find the first terms of the expansion

y = (1
-

*2)-i/2 arcsin * = * + - *8 + . . . .

o

(a) Compute a few more terms and try to guess the general term.

(b) Show thaty satisfies the differential equation

and use this equation to prove your guess.

a* By multiplying the series

X

I
*!

1 ~~2l3
+ 2^4 5"

o

you find the first terms of the expansion

(a) Compute a few more terms and try to guess the general term.

(b) Your guess, if correct, suggests that y satisfies a simple differential

equation. By establishing this equation, prove your guess.



MISCELLANEOUS EXAMPLES OF INDUCTION

3. The functional equation

2V*

is satisfied by the power series

1 Q

Verify these coefficients, derive a few more, if necessary, and try to guess the

general term.

Fig. 5.1. Compounds C4H9OH.

4. The functional equation

is satisfied by the power series

/* = 1 + x + # 4*4 anx
n

It is asserted that an is the number of the structurally different chemical

compounds (aliphatic alcohols) having the same chemical formula

CnH27l+1OH. In the case n = 4, the answer is true. There are a4 = 4

alcohols G4H9OH; they are represented in fig. 5.1, each compound as a

"tree," each G as a little circle or "knot," and the radical OH as an arrow;

the H's are dropped. Test other values of n.

according as n s= 0, 1, 2, 3, 4, 5 (mod. 6).

6. An ellipse describes a prolate, or an oblate, spheroid according as it

rotates about its major, or minor, axis.

For the area of the surface of the prolate spheriod

E = 27r6[(l - 2
)
1/2 + (arcsin e)/e], P =
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are the exact, and a proximate expression, respectively (a, b, and e as in

sect. 2). Find

(a) the initial term of the relative error

(b) the relative error when b = 0.

What about the sign of the relative error?

7. For the area of the surface of the oblate ellipsoid

3

are the exact, and a proximate, expression, respectively. Find

(a) the initial term of the relative error

(b) the relative error when b = 0.

What about the sign of the relative error?

8. Comparing ex. 6 and ex. 7, which approximate formula would you
propose for the area of the surface of the general ellipsoid with semiaxes

<z, b, and c?

What about the sign of the error?

9* [Sect. 2.] Starting from the parametric representation of the ellipse,

x = a sin t, y = b cos t, show that

7T/2

=40
|

(1 ^sin2 *)
1 '2 ^

and derive hence the initial terms given without proof in sect. 2.

10 (continued) . Using the expansions in powers of e, prove that E > P
forO< 6<1 1.

ii. [Sect. 2.] Determine the number a so that the expression

P" = oP + (1
-

oc)P'

should yield the best possible approximation to E for small e. (That is,

the order of the initial term of (P" E)/E should be as high as possible.)

12 (continued). Investigate the approximation by P" following the

method of sect. 2. (Inductively!)

13. Given a positive integer p and a sequence of positive numbers

%> 2> 03> 3 <** Show that
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14 (continued). Point out a sequence a^ a2> <%, . . . for which equality is

attained.

15. Explain the observed regularities. A discovery in physics is often attained

in two steps. First a certain regularity is noticed in the data of observation.
Then this regularity is explained as a consequence of some general law.

Different persons may take the two steps which may be separated by a long
interval of time. A great example is that of Kepler and Newton : the regu-
larities in the motion of the planets observed by Kepler have been explained

by the law of gravitation discovered by Newton. Something similar may
happen in mathematical research, and here is a neat example which requires
little preliminary knowledge.
The usual table of four-place common logarithms lists 900 mantissas,

those of the logarithms of the integers from 100 to 999. We may be inclined

to think, before observation, that the ten figures, 0, 1, . . . , 9 are about

equally frequent in these tables, but this is not so: they certainly do not

turn up equally often as the first figure of the mantissa. By counting the

mantissas that have the same first figure, we obtain Table I. (Check it!)

Table I. Mantissas with the same first figure in four-place logarithms

First figure Nr. of mantissas Ratios

Inspecting the second column of Table I we may notice that any two

consecutive numbers in it have approximately the same ratio. This

induces us to compute these ratios to a few decimals : they are listed in the

last column of Table I.

Why are these ratios approximately equal ? Try to perceive some precise

regularity behind the observed approximate regularity. The numbers in
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the second column of Tablfe I are approximately the terms of a geometric

progression. Could you discover an exact geometric progression to- which
the terms of the approximate progression are simply related ? [The ratio of

the exact progression should be, perhaps, some kind of average of the ratios

listed in the last column of Table I.]

16. Classify the observedfacts. A great part of the naturalist's work is aimed
at describing and classifying the objects that he observes. Such work was

DQI
/ / / f

\ \ \ \ \ \ \

UOJJJU t

Fig, 5.2. Symmetries of friezes.

predominant for a long time after Linnaeus when the main activity of the

naturalists consisted in describing new species and genera of plants and

animals, and in rfeelassifying the known species and genera. Not only

plants and animals are described and classified by the naturalists, but also

other objects, especially minerals; the classification of crystals is based on
their symmetry. A good classification is important ; it reduces the observable

variety to relatively few clearly characterized and well ordered types. The
mathematician has not often opportunity to indulge in description and
classification, but it may happen.

Ifyou are acquainted with a few simple notidns of plane geometry (line of

symmetry, center of symmetry) you may have fun with ornaments. Fig. 5.2
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exhibits fourteen ornamental bands each of which is generated by a simple

figure, repeated periodically along a (horizontal) straight line. Let us call

such a band a "frieze." Match each frieze on the left-hand side of fig. 5.2

(marked with a numeral) with a frieze on the right-hand side (marked with a

letter) so that the two friezes matched have the same type ofsymmetry. More-

over, examine ornamental bands which you can find on all sorts of objects, or

in older architectural works, and try to match each with a frieze in fig. 5.2.

Finally, give a complete list of the various types ofsymmetry that a frieze may
have and an exhaustive description of each type of symmetry. [Consider a

fiieze as infinitely long, in both directions, and the generating figure as

periodically repeated an infinity of times. Observe that the term "type of

symmetry" was not formally defined: to arrive at an appropriate inter-

pretation of this term is an important part of your task.]

Fig. 5.3. Symmetries of wallpapers.

17. Find two ornaments in fig. 5.3 that have the same type of symmetry.
Each ornament must be conceived as covering the whole plane with its

repeated patterns.
18. What is the difference? The twenty-six capital letters are divided into

five batches as follows:

AMTUVWY
BCDEK
NSZ
HIOX
FGJLPQR.

What is the difference? What could be a simple basis for the exhibited

classification ? [Look at the five equations :

What is the difference?]



A MORE GENERAL STATEMENT

He [Euler] preferred instructing his pupils to the little satisfaction of
amazing them. He would have thought not to have done enoughfor science

if he should have failed to add to the discoveries, with which he enriched

science, the candid exposition of the ideas that led him to those discoveries.

CONDORCET

z. Euler. Of all mathematicians with whose work I am somewhat
acquainted, Euler seems to be by far the most important for our inquiry. A
master of inductive research in mathematics, he made important discoveries

(on infinite series, in the Theory of Numbers, and in other branches of

mathematics) by induction, that is, by observation, daring guess, and shrewd
verification. In this respect, however, Euler is not unique; other mathe-

maticians, great and small, used induction extensively in their work.
Yet Euler seems to me almost unique in one respect: he takes pains

to present the relevant inductive evidence carefully, in detail, in gooJL order.

He presents it convincingly but honestly, as a genuine scientist should do.
His presentation is "the candid exposition of the ideas that led him to those
discoveries" and has a distinctive charm. Naturally enough, as any other

author, he tries to impress his readers, but, as a really good author, he tries

to impress his readers onlybysuch things as have genuinely impressed himself.

The next section brings a sample of Euler's writing. The memoir chosen
can be read with very little previous knowledge and is entirely devoted to

the exposition of an inductive argument.
a. Baler's memoir is given here, in English translation, in extenso,

except for a few unessential alterations which should make it more accessible

to a modern reader.1

1 The original is in French; see Euler's Opera Omnia, ser. I, vol. 2, p. 241-253. The
alterations consist in a different notation (footnote 2), in the arrangement of a table (ex-
plained in footnote 3), in slight changes affecting a few formulas, and in dropping a repetition
of former arguments in the last No. 13 of the memoir. The reader may consult the easily
available original.

90
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DISCOVERY OF A MOST EXTRAORDINARY LAW OF THE NUMBERS
CONCERNING THE SUM OF THEIR DIVISORS

1 . Till now the mathematicians tried in vain to discover some order in the

sequence of the prime numbers and we have every reason to believe that

there is some mystery which the human mind shall never penetrate. To
convince oneself, one has only to glance at the tables of the primes, which
some people took the trouble to compute beyond a hundred thousand, and
one perceives that there is no order and no rule. This is so much more

surprising as the arithmetic gives us definite rules with the help of which we
can continue the sequence of the primes as far as we please, without noticing,

however, the least trace of order. I am myself certainly far from this goal,
but I just happened to discover an extremely strange law governing the

sums of the divisors of the integers which, at the first glance, appear just

as irregular as the sequence of the primes, and which, in a certain sense,

comprise even the latter. This law, which I shall explain in a moment, is,

in my opinion, so much more remarkable as it is ofsuch a nature that we can

be assured of its truth without giving it a perfect demonstration. Never-

theless, I shall present such evidence for it as might be regarded as almost

equivalent to a rigorous demonstration.

2. A prime number has no divisors except unity and itself, "and this dis-

tinguishes the primes from the other numbers. Thus 7 is a prime, for it is

divisible only by 1 and itself. Any other number which has, besides unity

and itself, further divisors, is called composite, as for instance, the number 15,

which has, besides 1 and 15, the divisors 3 and 5. Therefore, generally, if

the numberp is prime, it will be divisible only by 1 and p; but ifp was com-

posite, it would have, besides 1 and p, further divisors. Therefore, in the

first case, the sum of its divisors will be 1 + p, but in the latter it would

exceed 1 + p. As I shall have to consider the sum of divisors of various

numbers, I shall use2 the sign a(n) to denote the sum of the divisors of the

number n. Thus, cr(12) means the sum of all the divisors of 12, which are

1, 2, 3, 4, 6, and 12; therefore, <r(12) 5= 28. In the same way, one can see

that <r(60) = 168 and a(100) = 217. Yet, since unity is only divisible by

itself, <r(l) 1. Now, (zero) is divisible by all numbers. Therefore,

cr(0) should be properly infinite. (However, I shall assign to it later a

finite value, different in different cases, and this will turn out serviceable.)

3. Having defined the meaning of the symbol a(ri), as above, we see

clearly that ifp is a prime a(p) =!+/>. Yet cr(l)
= 1 (and not 1 + 1);

hence we see that 1 should be excluded from the sequence of the primes;

1 is the beginning of the integers, neither prime nor composite. If, however,

n is composite, cr(n) is greater than 1 + n-

1 Euler was the first to introduce a symbol for the sum of the divisors; he used /, not

the modern a(n) of the textl
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In this case we can easily find a(n) from the factors of n. If a, b, c, d, . . .

are different primes, we see easily that

a(ab) = 1 + a + b + ab = (1 + a) (1 + b}
= o(a)a(b),

a(abc) = (1 + a) (1 + *) (!+*) o(a)a(b}a(c),

a(abcd] = a(a}a(b)a(c)a(d)

and so on. We need particular rules for the powers of primes, as

= + a <Z
2 =

- 1

and, generally,

a- 1

1

Using this, we can find the sum of the divisors of any number, composite in

any way whatever. This we see from the formulas

and, generally,

For instance, to find cr(360) we set, since 360 factorized is 23 32 5,

^(360) = (r(2
3
)<7(3

2
)<r(5) = 15 13 6 = 1170.

4. In order to show the sequence of the sums of the divisors, I add the

following table3 containing the sums of the divisors of all integers from 1

up to 99.

8 The number in the intersection of the row marked 60 and the column marked 7, that

is, 68, is cr(67). If p is prime, a(p) is in heavy print. This arrangement of the table is a
little more concise than the arrangement in the original.
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Ifwe examine a little the sequence of these numbers, we are almost driven to

despair. We cannot hope to discover the least order. The irregularity of
the primes is so deeply involved in it that we must think it impossible to

disentangle any law governing this sequence, unless we know the law

governing the sequence of the primes itself. It could appear even that the

sequence beforfe us is still more mysterious than the sequence of the primes.
5. Nevertheless, I observed that this sequence is subject to a completely

definite law and could even be regarded as a recurring sequence. This
mathematical expression means that each term can be computed from the

foregoing terms, according to an invariable rule. In fact, if we let a(n)
denote any term of this sequence, and a(n 1), a(n 2), a(n 3),

a(n 4), a(n 5), ... the preceding terms, I say that the value of a(n]
can always be combined from some of the preceding as prescribed by the

following formula:

C (n)
= a(n 1) + a(n - 2)

- a(n 5)
- a(n 7)

+ a(n 12) + a(n 15)
-

a(n 22) a(n 26)

+ o(n 35) + a(n 40) a(n - 51) a(n 57)

+ cr(n 70) + a(n 77) a(n - 92) o(n 100)

On this formula we must make the following remarks.

I; In the sequence of the signs + a**d
,
each arises twice in succession,

II. The law of the numbers 1, 2, 5, 7, 12, 15, ... which we have to

subtract from the proposed number n, will become clear if we take their

differences :

Nrs. 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100,...

Diff. 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 63 13, 7, 15, 8,...

In fact, we have here, alternately, all the integers 1, 2, 3, 4, 5, 6, ... and the

odd numbers 3, 5, 7, 9, 1 1, . . . , and hence we can continue the sequence of

these numbers as far as we please.

III. Although this sequence goes to infinity, we must take, in each case,

only those terms for which the numbers under the sign a are still positive
and omit the a for negative values.

IV. If the sign or(0) turns up in the formula, we must, as its value in

itself is indeterminate, substitute for <y(0) the number n proposed.
6. After these remarks it is not difficult to apply the formula to any given

particular case, and so anybody can satisfy himself of its truth by as many
examples as he may wish to develop. And since I must admit that I am not

in a position to give it a rigorous demonstration, I willjustify it by a sufficiently

large number of examples.
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(7(1) -
(7(0) =1 =1

or(2) = 0(1) + cr(0)
= 1 + 2 - =3

or(3) = 0(2) + <*(l)
= 3 + 1 =4

cr(4) =
cr(3) + 0(2) =4+3 =7

<y(5) = cr(4) + d(3)
-

<r(0) =7 + 4-5 =6
<r(6)

=
cr(5) + 0(4)

-
er(l) =6 + 7-1 =12

cr(7)
= 0(6) + (7(5)

-
cr(2)

- 0(0) =12 + 6-3-7 =8
<r(8) =

op(7) + 0(6)
-

<y(3)
-

0(1) =8+12-4-1 =15

0(9) = a(8) + (7(7)
-

(7(4)
-

(7(2) =15 + 8-7-3 =13

<7(10) a(9) + (7(8)
-

0(5)
-

a(3) =13+15-6-4 =18
0(11) = 0(10) + 0(9)

-
0(6)

-
(7(4) =18+13-12-7 =12

a(12) = 0(11) + or(10)
- 0(7)

-
0(5) + 0(0) =12+18-8-6+12 =28

a(13) 0(12) + 0(11) - (7(8)
- a(6) + 0(1) =28+12-15-12+1 =14

0(14) = 0(13) + 0(12) - 0(9)
-

0(7) + 0(2) = 14 + 28 - 13 - 8 + 3 =24

0(15) = 0(14) + 0(13) - 0(10) - cr(8) + 0(3) + 0(0) - 24 + 14 - 18 - 15 + 4 + 15 = 24

0(16) = 0(15) + 0(14) - 0(11)
-

c(9) + 0(4) + 0(1) =24+24-12-13 + 7+1 =31

0(17) = 0(16) + 0(15) - 0(12) - 0(10) + 0(5) + 0(2) =31 + 24-28-18 + 6 + 3 =18

0(18) 0(17) + 0(16) - 0(13) - <7(11) + 0(6) + 0(3) = 18 + 31 - 14 - 12 + 12 + 4 = 39

0(19) = 0(18) + 0(17)
- 0(14) - 0(12) + 0(7) + 0(4) =39+18-24-28 + 8 + 7 =20

0(20) = 0(19) + 0(18)
-

0(15)
-

0(13) + 0(8) + 0(5) = 20 + 39 - 24 - 14 + 15 + 6 = 42

I think these examples are sufficient to discourage anyone from imagining
that it is by mere chance that my rule is in agreement with the truth.

7. Yet somebody could still doubt whether the law of the numbers

1, 2, 5, 7, 12, 15, ... which we have to subtract is precisely that one which
I have indicated, since the examples given imply only the first six of these

numbers. Thus, the law could still appear as insufficiently established and,

therefore, I will give some examples with larger numbers.

I. Given the number 101, find the sum of its divisors. We have

cr(lOl) = 0(100) + <r(99)
-

0(96)
-

a(94)

+ a(89) + <r(86)
-

<r(79)
-

<r(75)

and hence we could conclude, if we would not have known it before, that 101

is a prime number.
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II. Given the number 301, find the sum of its divisors. We have

diff. 1325
cr(301) = <r(300) + a(299) - erf296) - <r(294) +3749

+ a(289) + or(286)
-

y(279) <r(275) +
5 11 6 13

+ or(266) + or(261)
-

<r(250)
- a(244) +

7 15 8 17

+ cr(231) + <r(224)
-

a(209) cr(201) +
9 19 10 21

+ <r(184) + <7(175)
-

or(156)
-

<r(146) +
11 23 12 25

+ <7(125) + (7(114)
-

or(91) a(79) +
13 27 14

+ <r(54)+ a(41)- cr(14)
-

<r(0).

We see by this example how we can, using the differences, continue the

formula as far as is necessary in each case. Performing the computations,
we find

<r(301) = 4939 4587 = 352.

We see hence that 301 is not a prime. In fact, 301 = 7 43 and we obtain

cr(301) = <y(7)a(43) = 8 44 = 352

as the rule has shown.

8. The examples that I have just developed will undoubtedly dispel any

qualms which we might have had about the truth of my formula. Now,
this beautiful property of the numbers is so much more surprising as we do

not perceive any intelligible connection between the structure ofmy formula

and the nature of the divisors with the sum of which we are here concerned.

The sequence ofthe numbers 1, 2, 5, 7, 12, 15, ... does not seem to have any
relation to the matter in hand. Moreover, as the law of these numbers is

"interrupted" and they are in fact a mixture of two sequences with a regular

law, of 1, 5, 12, 22, 35, 51, ... and 2, 7, 15, 26, 40, 57, ... ,
we would not

expect that such an irregularity can turn up in Analysis. The lack of

demonstration must increase the surprise still more, since it seems wholly

impossible to succeed in discovering such a property without being guided

by some reliable method which could take the place of a perfect proof. I

confess that I did not hit on this discovery by mere chance, but another

proposition opened the path to this beautiful property another proposition

of the same nature which must be accepted as true although I am unable to
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prove it. And although we consider here the nature ofintegers to which the

Infinitesimal Calculus does not seem to apply, nevertheless I reached my
conclusion by differentiations and other devices. I wish that somebody
would find a shorter and more natural way, in which the consideration ofthe

path that I followed might be of some help, perhaps.

9. In considering the partitions of numbers, I examined, a long time ago,
the expression

in which the product is assumed to be infinite. In order to see what kind
of series will result, I multiplied actually a great number of factors and found

1 X X2 + X5 + X> *12 X15 + X + X X **<> + . . . .

The exponents of x are the same which enter into the above formula; also

the signs + and arise twice in succession. It suffices to undertake this

multiplication and to continue it as far as it is deemed proper to become
convinced of the truth of this series. Yet I have no other evidence for this,

except a long induction which I have carried out so far that I cannot in any
way doubt the law governing the formation ofthese terms and their exponents.
I have long searched in vain for a rigorous demonstration of the equation
between the series and the above infinite product (

1 x) (1 -A;2
) (1 a3). . . ,

and I have proposed the same question to some of my friends with whose

ability in these matters I am familiar, but all have agreed with me on the
truth of this transformation of the product into a series, without being able
to unearth any clue of a demonstration. Thus, it will be a known truth,
but not yet demonstrated, that if we put

the same quantity s can also be expressed as follows :

For each of us can convince himself of this truth by performing the multi-

plication as far as he may wish; and it seems impossible that the law which
has been discovered to hold for 20 terms, for example, would not be observed
in the terms that follow.

10. As we have thus discovered that those two infinite expressions are

equal even though it has not been possible to demonstrate their equality,
all the conclusions which may be deduced from it will be of the same nature,
that is, true but not demonstrated. Or, if one of these conclusions could bs

demonstrated, one could reciprocally obtain a clue to the demonstration
of that equation; and it was with this purpose in mind that I maneuvered
those two expressions in many ways, and so I was led among other discoveries

to that which I explained above; its truth, therefore, must be as certain as
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that of the equation between the two infinite expressions. I proceeded as

follows. Being given that the two expressions

are equal, I got rid of the factors in the first by taking logarithms

log J= log(l
-

*) + log(l
-

**) + log(l
-

**) + log(l -**)+... .

In order to get rid of the logarithms, I differentiate and obtain the equation

1 ds _ _L___2x_ 3*2
__

4*3
__

5s4
__

7^~~'l *~~1--*2 ~~~1---*3 ~~1--*4 1 A:
S

or

xds x 2*2 3** 4** 5*5

-;^ = r~* + i 2̂+ f^ + r^
From the second expression for s> as infinite series, we obtain another value

for the same quantity

xds _ * + 2*2 - 5*5 - 7xi + 12*12 + 15*15 - 22*** 26*26 + . . .

~~
i dx

^ 1-^-^2 + ^5 +"^TTiS _ ^15 + ^22 + ^.26 _ . . .

1 1 . tet us put
x ds

~~s&
=t'

We have above two expressions for the quantity t. In the first expression, I

expand each term into a geometric series and obtain

t = X + X*+ X* + ** + *5 + *6 + *? + *8 +
. + 2*2 + 2** + 2*6 + 2*8 + . . .

+ S*3 + 3x + . . .

+ 4** + 4*8 + . . .

+ 5*5 + . . .

+ 6* +

Here we see easily that each power of* arises as many times as its exponent

has divisors, and that each divisor arises as a coefficient of the same power

of*. Therefore, if we collect the terms with like powers, the coefficient of

each power of x will be the sum of the divisors of its exponent. And, there-

fore, using the above notation a(n) for the sum of the divisors of n, I obtain

t = (7(1)* + ff(2)*
a + cr(3)* + <r(4)** +
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The law of the series is manifest. And, although it might appear that some
induction was involved in the determination of the coefficients, we can easily

satisfy ourselves that this law is a necessary consequence.
12. By virtue of the definition of t, the last formula ofNo. 10 can be written

as follows :

t(\
_ X _ X* -f- *5 + xl _ *12 _ j!5 + *22 + j.26 _ _ .)

__ x 2*2 .+ 5*5 + 7*7 - 12*12 - 15*15 + 22*22 + 26*26 - . . . = 0.

Substituting for t the value obtained at the end of No. 1 1, we find

= ff(l)* + a(2)*
2 + a(3)x* + or(4)** + a(5)*

5 + cr(6)*
6 + ...

~ * - cr(l)*
2 -

Collecting the terms, we find the coefficient for any given power ofx. This

coefficient consists of several terms. First comes the sum of the divisors of

the exponent of #, and then sums of divisors of some preceding numbers,
obtained from that exponent by subtracting successively 1, 2, 5, 7,. 12, 15,

22, 26, ... . Finally, if it belongs to this sequence, the exponent itself

arises. We need not explain again the signs assigned to the terms just

listed. Therefore, generally, the coefficient of xn is

a(n) a(n 1)
-

a(n 2) + a(n 5) + a(n 7) cr(
-

12)

_ a(n
-

15) + . . . .

This is continued as long as the numbers under the sign a are not negative.

Yet, if the term o'(O) arises, we must substitute n for it.

13. Since the sum of the infinite series considered in the foregoing No. 12

is 0, whatever the value of* may be, the coefficient of each single power of*
must necessarily be 0. Hence we obtain the law that I explained above in

No. 5; I mean the law that governs the sum of the divisors and enables us

to compute it recursively for all numbers. In the foregoing development,
we may perceive some reason for the signs, some reason for the sequence of

the numbers

1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, ...

and, especially, a reason why we should substitute for a(Q) the number n

itself, which could have appeared the strangest feature of my rule. This

reasoning, although still very far from a perfect demonstration, will certainly
lift some doubts about the most extraordinary law that I explained here.
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3. Transition to a more general viewpoint. Euler's foregoing text

is extraordinarily instructive. We can learn from it a great deal about

mathematics, or the psychology of invention, or inductive reasoning. The
examples and comments at the end of this chapter provide for opportunity
to examine some of Euler's mathematical ideas, but now we wish to

concentrate on his inductive argument.
The theorem investigated by Euler is remarkable in several respects and

is of great mathematical interest even today. However, we are concerned

here not so much with the mathematical content of this theorem, but rather

with the reasons which induced Euler to believe in the theorem when it was
still unproved. In order to understand better the nature of these reasons, I

shall ignore the mathematical content ofEuler's memoir and give a schematic

outline of it, emphasizing a certain general aspect of his inductive argument.
As we shall disregard the mathematical content of the various theorems

that we must discuss, we shall find it advantageous to designate them by
letters, as T, T*, Cx, C2, . . . , C? , CJ, . . . . The reader may ignore the

meaning of these letters completely. Yet, in case he wishes to recognize
them in Euler's text, here is the key.

T is the theorem

The law ofthe numbers 1, 2, 5, 7, 12, 15, ... is explained in sect. 2, No. 5, II.

Cn is the assertion that the coefficient of xn is the same on both sides of the

foregoing equation. For example, C6 asserts that expanding the product on

the left hand side, we shall find that the coefficient of x* is 0. Observe that

Cn is a consequence of the theorem T.

C* is the equation

a(n) = a(n
-

1) + a(n 2)
-

<r( 5)
-

or(ii 7) + * -

explained at length in sect. 2, No. 5. For example, C asserts that

*(6) = er(5) + cr(4)
-

or(l).

T* is the "most extraordinary law," asserting that Cf, Cf, C, . . . are all

true. Observe that C* is a consequence (a particular case) ofthe theorem T* .

4. Schematic outline of Euler's memoir.* Theorem T is of such a

nature that we can be assured of its truth without giving it a perfect demon-

stration. Nevertheless, I shall present such evidence for it as might be

regarded as almost equivalent to a rigorous demonstration.

Theorem T includes an infinite number of particular cases: Cv C2, C3,
. . . .

Conversely, the infinite set of these particular cases Cv C2, C3, . . . is equivalent to

theorem T. We can find out by a simple calculation whether Cx is true or not.

4 This outline was first published in my paper, "Heuristic Reasoning and the Theory of

Probability," Amer. Math. Monthly, vol. 48, 1941, p. 450-465. The italics indicate phrases

which are not due to Euler.
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Another simple calculation determines whether C2 is true or not, and similarly for C3,

and so on. I have made these calculations and Ifind that Cly C2, C3, . . . , C40 are

all true. It suffices to undertake these calculations and to continue them as far

as is deemed proper to become convinced of the truth of this sequence
continued indefinitely. Yet I have no other evidence for this, except a long
induction which I have carried out so far that I cannot in any way d^ubt
the law of which Cl3 C2, . . . are the particular cases. I have long searched in

vain for a rigorous demonstration of'theorem T, and I have proposed the same

question to some of my friends with whose ability in these matters I am
familiar, but all have agreed with me on the truth of theorem T without being
able to unearth any clue of a demonstration. Thus it will be a known
truth, but not yet demonstrated; for each of us can convince himself of this

truth by the actual calculation of the cases Cv C2,
C3, . . . as far as he may wish;

and it seems impossible that the law which has been discovered to hold for

20 terms, for example, would not be observed in the terms that follow.

As we have thus discovered the truth of theorem T even though it has not

been possible to demonstrate it, all the conclusions which may be deduced
from it will be of the same nature, that is, true but not demonstrated. Or,
if one of these conclusions could be demonstrated, one could reciprocally
obtain a clue to the demonstration of theorem T ; and it was with this purpose
in mind that I maneuvered theorem T in many ways and so discovered among
others theorem T* whose truth must be as certain as that of theorem T.

Theorems T and T* are equivalent; they are both true orfalse; they stand orfall

together. Like T, theorem T* includes an infinity ofparticular cases Cf,C$,C$, . . . ,

and this sequence of particular cases is equivalent to theorem T*. Here again, a

simple calculation shows whether C* is true or not. Similarly, it ispossible to determine

whether C* is true or not, and so on. It is not difficult to apply theorem T* to any
given particular case, and so anybody can satisfy himself of its truth by as

many examples as he may wish to develop. And since I must admit that I

am not in a position to give it a rigorous demonstration, I will justify it by a

sufficiently large number of examples, by Cf, C$, . . . , Cf .
.
I think these

examples are sufficient to discourage anyone from imagining that it is by
mere chance that my rule is in agreement with the truth.

Ifone still doubts that the law is precisely that one which I have indicated,
I will give some examples with larger numbers. By examination, I find that

C*01 and C*01 are true, and so Ifind that theorem T* is valid evenfor these cases which

areJar removedfrom those which I examined earlier. These examples which I have

just developed undoubtedly will dispel any qualms which we might have had
about the truth of theorems T and T*.

EXAMPLES AND COMMENTS ON CHAPTER VI

In discovering his "Most Extraordinary Law of the Numbers" Euler
"reached his conclusion by differentiations and other devices" although "the
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Infinitesimal Calculus does not seem to apply to the nature ofintegers/
5 In

order to understand Euler's method, we apply it to similar examples. We
begin by giving a name to his principal "device" or mathematical tool.

i. Generatingfunctions. We restate the result ofNo. 1 1 ofEuler's memoir in
modern notation:

00 nxn

The right hand side is a power series in x. The coefficient ofxn in this power
series is a(ri) 9 the sum ofthe divisors ofrc. Both sides ofthe equation represent
the same function of x. The expansion of this function in powers of x

"generates" the sequence a(l), a(2), . . . cr(), . . . and so we call this

function the generatingfunction of a(n). Generally, if

we say thatf(x) is the generating function of <zn, or the function generating
the sequence aQ, a^ a& . . . an, . . . .

The name "generating function" is due to Laplace. Yet, without giving it

a name, Euler used the device ofgenerating functions long before Laplace, in

several memoirs of which we have seen one in sect. 2. He applied this

mathematical tool to several problems in Gombinatory Analysis and the

Theory of Numbers.
A generating function is a device somewhat similar to a bag. Instead of

carrying many little objects detachedly, which could be embarrassing, we
put them all in a bag, and then we have only one object to carry, the bag.

Quite similarly, instead of handling each term of the sequence <z
,
aly a*& . . .

an,
. . . individually, we put them all in a power series fln#

n
, and then we

have only one mathematical object to handle, the power series.

2. Find the generating function of n. Or, what is the same, find the sum
of the series

3. Being given that/(#) generates the sequence , %, a2, . . . an> . . . find

the function generating the sequence

0<z , lap 2<z2,
. . . nan, ....

4. Being given thatf(x) generates the sequence , a1? a2,
. . . aw, . . - , find

the function generating the sequence

5. Being given that/(#) is the generating function ofan, find the generating
function of
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6. Being given that/() and g(x) are the generating functions of an and bn ,

respectively, find the generating function of

7. A combinatorial problem in plane geometry. A convex polygon with n sides

is dissected into n 2 triangles by n 3 diagonals; see fig. 6.1. Call Dn

the number of different dissections.

Find Dn for n = 3, 4, 5, 6.

Fig. 6.1. Three types of dissection for a hexagon.

8 (continued). It is not easy to guess a general, explicit expression for

Dn on the basis of the numerical values considered in ex. 7. Yet the sequence
>
3,

Z>4,
I>5,

. . . is a "recurring" sequence in the following, very general

sense: each term can be computed from the foregoing terms according

to an invariable rule, a "recursion formula." (See Euler's memoir, No. 5.)

Define >2
= 1

,
and show that for n ^ 3

Dn -

[Check the first cases. Refer to fig. 6.2.]

9 (continued) . The derivation of an explicit expression for Dn from the

recursion formula of ex. 8 is not obvious. Yet consider the generating

function

g(x) ^

Show that g(x) satisfies a quadratic equation and derive hence that for

n = 3, 4, 5, 6, ...

__
26 10 14 4n 10

D* ~~
23"? 5"*" n-T*
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10. Sums of squares. Recall the definition of Rk (ii) (ex. 4.1), extend it to

n= in setting Rk(Q) = 1 (a reasonable extension), introduce the generating
function

?c

and show that

Rk(l)X

2x + 2.x4

/7+1-Xr

Fig. 6.2. Starting the dissection of a polygon with n sides.

[What is R$(n) ? The number of solutions of the equation

w2 + 22 + uP = n

in integers u, vy
and t^3 positive, negative, or 0.

What may be the role of the series on the right-hand side of the equation
that you are required to prove?

1 + 2* + 2** + 2x + . . . = | ** = 2 #i(*)*
n

.

U= 00 7l=0

How should you conceive the right-hand side of the equation you are

aiming at? Perhaps so:

S*"
1 SX S*"'.]

n. Generalize the result of ex. 10.

12. Recall the definition of Sk (ri) (ex. 4.1) and express the generating
function

13. Use ex. 1 1 to prove that, forn ^ 1, R2(n) is divisible by 4, fl4 (n) by 8,

and RB(n) by 16. (The result was already used in ch. IV, Tables II and III.)
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14* Use ex. 12 to prove that

S2(n)
= if n is not of the form 8m + 2,

4 (n)
= if n is not of the form 8m + 4,

Ss(ri)
= if n is not of the form 8m.

15. Use ex. 1 1 to prove that

16. Prove that

$M.I() = -S(1)S,(
-

1) + ^(2)J,( -
2)

17. Propose a simple method for computing Table III of ch. IV from the

Tables I and II of the same chapter.

18. Let crk (n) stand for the sum of the kth powers of the divisors of n.

For example,
<r8 (15) = I

3 + 33 + 53 + 153 = 3528;

Oi(n) = a(n).

(1) Show that the conjectures found in sect. 4.6 and ex. 4.23 imply

<jr(l)cr(2
-

1) + or(3)<jr(2ii
-

3) + . . . + a(2u - l)cr(l)
= cr8 (ii)

where u denotes an odd integer.

(2) Test particular cases of the relation found in (1) numerically.

(3) How does such a verification influence your confidence in the con-

jectures from which the relation verified has been derived ?

19. Another recursion formula. We consider the generating functions

G= | Si(m)*", H= | 54(m)*.
m= l m l

We set

where M is an odd integer. Then

by ex. 14 and 12. We derive from the last equation, by taking the logarithms
and differentiating, that

4 log G = log H,

4G' _ Jf

'G~~!t'

G xff = 4 *G' /f,

9*'
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Comparing the coefficients of #5
,
#13

, tf
21

, . . . on both sides of the

foregoing equation, we find, after some elementary work, the following
relations :

0^ =0
lja -%! =
2*5 3j3 =
3,r7 2j5 12^ =
%9 -Lr7 -Ilj8

=
5% 10,y5

=
6% + I-TII 9*7

-
24$i =
23J3 =
22*5

=
21*7 =

10% + 5j19 5% 20j-9 40^ =
1 1*23 + 6j21 4j17 19jn 39^3 ==

The very first equation of this system is vacuous and is displayed here only
to emphasize the general law. Yet we know that s = 1. Knowing this,

we obtain from the next equation s%. Knowing ^3,
we obtain from the

following equation ,r5. And so on, we can compute from the system the

terms of the sequence sl9 J3,
*5,

. . . as far as we wish, one after the other,

recurrently.

The system has a remarkable structure. There is 1 equation containing 1

of the quantities s
l9 s^ ^5,

. . . , 2 equations containing 2 of them, 3 equations

containing 3 of them, and so on. The coefficients in each column are

increased by 1 and the subscripts by 2 as we pass from one row to the next.

The subscript at the head of each column is 1 and the coefficient is 4

multiplied by the first coefficient in the same row.

We can concentrate the whole system in one equation (recursion formula) ;

write it down.

20. Another Most Extraordinary Law of the Numbers Concerning the Sum of their

Divisors. If the conjecture of sect. 4.6 stands

and so ex. 19 yieUs a recursion formula connecting the terms of the sequence

a(l), a(3), <r(5), or(7), . . . which is in many ways strikingly similar to Euler's

formula.

Write out in detail and verify numerically the first cases of the indicated

recursion formula.
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SKI. For us there is also a heuristic similarity between Euler's recursion

formula for cr(n) (sect. 2) and the foregoing recursion formula for a(2n 1)

(ex. 20). For us this latter is a conjecture. We derived this conjecture, as

Euler has derived his, "by differentiation and other devices" from another

conjecture.

Show that the recursion formula for cr(2n 1) indicated by ex. 20 is

equivalent to the equation

S4(4(2n - 1))
= a(2n - 1)

to which we arrived in sect. 4.6. That is, if one of the two assertions is true,

the other is necessarily also true,

22. Generalize ex. 19.

23. Devise a method for computing RQ (n) independently of R^(n).

24. How Euler missed a discovery. The method illustrated by ex. 19 and
ex. 23, and generally stated in ex. 22, is due to Euler.5 In inventing his

method, Euler aimed at the problem of four squares and some related

problems. In fact, he applied his method to the problem offour squares and

investigated inductively the number of representations, but failed to discover

the remarkable law governing R^(n) 9 which is after all not so difficult to

discover inductively (ex. 4.10-4.15). How did it happen?
In examining the equation

we may choose various standpoints, especially the following:

(1) We admit for #,jy, ,
and w only non-negative integers.

(2) We admit for x, y, z, and w all integers, positive, negative, and null.

The second standpoint may be less obvious, but leads to R^(n) and to the

remarkable connection between R^n) and the divisors of n. The first

standpoint is more obvious, but the number of solutions does not seem to

have any simple remarkable property. Euler chose the standpoint (1), not

the standpoint (2), he applied his method explained in ex. 22 to

(1 + x + x* + * + . . .)*,

not to

(1 + 2* + 2x* + 2*9 + . . .)*,

and so he bypassed a great discovery. It is instructive to compare two lines

ofinquiry which look so much alike at the outset, but one ofwhich is wonder-

fully fruitful and the other almost completely barren.

5
Opera Omnia, scr. I, vol. 4, p. 125-135.
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The properties of #4(n), S4(n), R6(n), and Ss(n) investigated in ch. IV

(ex. 4.10-4.15, sect. 4.3-4.6, ex. 4.18-4.23) have been discovered by Jacobi,
not inductively, but as incidental corollaries of his researches on elliptic

functions. Several proofs of these theorems have been found since, but no

known proof is quite elementary and straightforward.
6

25. A generalization ofEuler's theorem on a(ri). Given , set

and show that, for n = 1, 2, 3, ...

n-l
cr(n)

== 2 ama(n m) + najk.

Which particular case yields Euler's theorem of sect. 2 ?

See also for further references G. H. Hardy and E. M. Wright, An introduction to the

theory ofnumJbers^ Oxford, 1938, chapter XX.
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Jacques Bernoulli's method is important also to the naturalist. Wefind
what seems to be a property A of the concept B by observing the cases C13 C2,

C3> . . . . We learn from Bernoulli** method that we should not attribute

such a property A, found by incomplete, non-mathematical induction, to the

concept , unless we perceive that A is linked to the characteristics of B
and is independent of the variation of the cases. As in many other points,
mathematics offers here a model to natural science. ERNST MACH1

i. The inductive phase. Again, we begin with an example.
There is little difficulty in finding the sum of the first n integers. We

take here for granted the formula

. .. .

which can be discovered and proved in many ways.
2 It is harder to find

a formula for the sum of the first n squares

1+4 + 9 +16 + ...+**.
There is no difficulty in computing this sum for small values of n, but it is

not so easy to disentangle a rule. It is quite natural, however, to seek

some sort ofparallelism between the two sums and to observe them together:

n 1 2 3 4 5 6 ...

1 +2 + . .. +n 13 6 10 15 21 ...

12 + 2* + . . . + n2 1 5 14 30 55 91 ... .

How are the last two rows related ? We may hit upon the idea ofexamining
their ratio:

n 1 2 3 4 5 6 ...

I2 + 22 + . . . + ff 5 7 H 13

1 +2 + ... +n 33 3 3
" "

>x Erkermtnis und Irrtum, 4th ed., 1920, p. 312.
* See How to Solve It, p. 107.

108
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Here the rule is obvious and it is almost impossible to miss it if the foregoing
ratios are written as follows :

3 5 7 9 11 13

3 3 3 3 T Y"

We can hardly refrain from formulating the conjecture that

12 4. 2* + , . . -f n* _ 2n + 1

1 +2 + .. . +n
""

3
"

Using the value of the denominator on the left-hand side, which we took

for granted, we are led to restating our conjecture in the form

Is this true ? That is, is it generally true ? The formula is certainly true

in the particular cases n = 1, 2, 3, 4, 5, 6 which suggested it. Is it true also

in the next case n = 7 ? The conjecture leads us to predicting that

7-8-15
1 + 4 -f 9 + 16 + 25 + 36 + 49 = ----

o i.

and, in fact, both sides turn out to be equal to 140.

We could, of course, go on to the next case n = 8 and test it, but the

temptation is not too strong. We are inclined to believe anyhow that the

formula will be verified in the next case too, and so this verification would
add but little to our confidence so little that going through the computation
is hardly worth while. How could we test the conjecture more efficiently?

If the conjecture is true at all, it should be independent of the variation of

the cases, it should hold good in the transition from one case to another.

Supposedly,
n(n + 1) (2n + 1)2 V ^ ;

Yet, if this formula is generally true, it should hold also in the next case", we
should have

(n +i)(n + 2) (2n + 3)
l + 4+...+*?+(n+l)a =^

g
'

Here is an opportunity to check efficiently the conjecture: by subtracting

the upper line from the lower we obtain

t -LIM (n + 1) (n + 2) (2n + 3) n(n + 1) (2n + 1)

(*+!)=----- ----
6

.,

Is this consequence of the conjecture true ?



MATHEMATICAL INDUCTION

An easy rearrangement of the right hand side yields

[( + 2) (2 + 3)
- n(2n + 1)]

D

= -"-
[2

2 + 3 + 4 + 6 - 2 a -
n]

6

rc , c,= -- [6n + 6]

The consequence examined is incontestably true, the conjecture passed a

severe test.

2. The demonstrative phase. The verification, of any consequence
increases our confidence in the conjecture, but the verification of the conse-

quence just examined can do more: \{ ran_ftfpHg t^^ ^pnjert^iyy.. We need

only a little change of our viewpoint and a little reshuffling of our remarks.

It is supposedly true that

!
,
3.

I
...

,
fl, = ( + l)(2 + l)

j

6

It is incontestable true that

,_(n+l)( + 2)(2n + 3) n(n + 1) (2n + 1)

It is consequently true that

(we added the two foregoing equations). This means: If our conjecture
is true for a certain integer n, it remains necessarily true for the next integer

n+ L
Yet we know that the conjecture is true for n = 1,2, 3> 4, 5, 6, 7. Being

true for 7
5
it must be true also for the next integer 8; being true for 8, it

must be true for 9; since true for 9, also true for 10, and so also for 1 \, and
so on. The conjecture is true for all integers; we succeeded in proving it

in full generality.

3. Examining transitions* The last reasoning of the foregoing section

can be simplified a little, It is enough to know two things about the

conjecture:
It is true for n = 1 ,

Being true for n, it is also true for n + 1.

Then the conjecture is true for all integers : true for 1 , therefore, also for

2; true for 2, therefore, also for 3; and so on.
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We have here a fundamentally important procedure of demonstration.

We could call it "passing from n to n + 1," but it is usually called" mathe-

matical induction." This usual designation is a very inappropriate name
for a procedure of demonstration, since induction (in the meaning in which

the term is most frequently used) yields only a plausible, and not a demon-

strative, inference.

Has mathematical induction anything to do with induction ? Yes, it has,

and we consider it here for this reason and not only for its name.
In our foregoing example, the demonstrative reasoning of sect. 2 naturally

completes the inductive reasoning of sect. 1, and this is typical. The
demonstration of sect. 2 appears as a "mathematical complement to induc-

tion," and if we take "mathematical induction" as an abbreviation in this

sense, the term may appear quite appropriate, after all. (Therefore,- let

us take it in this sense no use quarreling with established technical terms.)

Mathematical induction often arises as the finishing step, or last phase, of

an inductive research, and this last phase often uses suggestions which

turned up in the foregoing phases.
Another and still better reason to consider mathematical induction in

the present context is hinted by the passage quoted from Ernst Mach at the

beginning of this chapter.
3 Examining a conjecture, we investigate the

various cases to which the conjecture is supposed to apply. We wish to

see whether the relation asserted by the conjecture is stable, that is,

independent of, and undisturbed by, the variation of the cases. Our
attention turns so naturally to the transition from one such case to another.

"That by means of centripetal forces the planets may be retained in certain

orbits, we may easily understand, if we consider the motions of projectiles"

says Newton, and then he imagines a stone that is projected with greater

and greater initial velocity till its path goes round the earth as the path of

the moon; see ex. 2.18 (4). Thus Newton visualizes a continuous transition

from the motion of a projectile to the motion of a planet. He considers the

transition between two cases to which the law of universal gravitation, that

he undertook to prove, should equally apply. Any beginner, who uses

mathematical induction in proving some elementary theorem, acts like

Newton in this respect: he considers the transition from n to n + 1, the

transition between two cases to which the theorem that he undertook to

prove should equally apply.

4. The technique of mathematical induction* To be a good
mathematician, or a good gambler, or good at anything, you must be a good

guesser. In order to be a good guesser, you should be, I would think,

naturally clever to begin with. Yet to be naturally clever is certainly not

3 Mach believed that Jacques IJernoulli invented the method of mathematical induction,
but most of the credit for its invention seems to be due to Pascal. Cf. H. Freudenthal,

Archives inteniatiotiales d'histoire. des sciences, no. 22, 1953, p. 17-37. Cf. also Jacobi Bernoulli

Basileensis Opera, Geneva 1744, vol. I, p, 282-283.
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enough. You should examine your guesses, compare them with the facts,

modify them if need be, and so acquire an extensive (and intensive)

experience with guesses that failed and guesses that came true. With such

an experience in your background, you may be able to judge more com-

petently which guesses have a chance to turn out correct and which have not.

Mathematical induction is a demonstrative procedure often useful in

verifying mathematical conjectures at which we arrived by some inductive

procedure. Therefore, if we wish to acquire some experience in inductive

mathematical research, some acquaintance with the technique of mathe-
matical induction is desirable.

The present section and the following examples and comments may give
a little help in acquiring this technique.

(1) The inductive phase. We begin with an example very similar to that

discussed in sect. 1 and 2. We wish to express in some shorter form another

sum connected with the first n squares,

o Tc TTe: ~T" * "T
3

'

15
'

35
' '

4n2 -l111 1

We compute this sum in the first few cases and tabulate the results:

n = 1, 2, 3, 4,..,.

1 J_
1 1234

3
+

15
+ "

4tt2*~~ 1

~
3' 5' 7' 9'

" " '

There is an obvious guess:

I I 1 I _ n

3
"^"

15
+

35
+

4n2 1
~"

2n + T

Profiting from our experience with our former similar problem, we test

our conjecture right away as efficiently as we can: we test the transition

from n to n + 1 If our conjecture is generally true, it must be true both
for n and forn + 1 :

O I l C ' ]
.

{]3
^

15
^ " ' ^

4n2 - 1 2n 4- 1'

3
^

15
^ ' * '

By subtracting we obtain
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Is this consequence of our conjecture true? We transform both sides,

trying to bring them nearer to each other:

(2n + 2)
2 - 1

=
(2^3H2^FT)

'

Very little algebra is enough to see that the two sides of the last equation
are actually identical. The consequence examined is incontestably true.

(2) The demonstrative phase. Now we reshuffle our remarks, as in our

foregoing example, sect. 2.

Supposedly 1.1. .1 n

~2n~+

n+l

3
'

15
' '

4rc2 - 1 2n+ 1

Incontestably

4(n + 1)2
_ i 2n + 3 2n + 1

Consequently

3
'

15
l '

4n2 1
'

4(n + I)
2 1 2n + 3

The conjecture, supposed to be true for n} turns out to be true, in conse-

quence of this supposition, also for n + 1. As it is true for n= 1, it is

generally true.

(3) Shorter. We could have spent a little less time on the inductive phase
of our solution. Having conceived the conjecture, we could have suspected
that mathematical induction may be appropriate to prove it. Then,
without any testing, we could have tried to apply mathematical induction

directly, as follows.

Supposedly

3
'

15
'

4n2 1 2n + 1

Consequently

1+1+ i

l
-

1 =
|

!

3 M5 T "
4n2 1 ^4(n + l)

2
1 2n + 1

^
4( + I)

2
1

i

=
2n+ 1

+
(2n + 2)

2
1

(2 + 3) + l

(2n + 1) (2n + 3)

_ 2n2 + 3n + 1=
(2n + 1) (2n + 3J

_ (2n +!)(+ 1)

n+l
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and so we succeeded in deriving for n + 1 the relation that we have supposed
for n. This is exactly what we were required to do, and so we proved the

conjecture.
This variant of the solution is less repetitious, but perhaps also a trifle

less natural, than the first, presented under (1) and (2).

(4) Stilt shorter. We can see the solution almost at a glance if we notice

that

_!__ A _i/J L\
4n2 -l (2n-l)(2n+l) 2 \2n-l 2n+l/

(We are led to this formula quite naturally, if we are familiar with the

decomposition of rational functions in partial fractions.) Putting n = 1,

2, 3, . . . ,
n and adding, we obtain111 1

I

I I

1 /? 1 I O" 1 '

* * *
'

4 _ i
'

16 1
'

36 1
'

" "
'

4n2 -

"~~~
i <> I o e ' c *7 ' | .j.

1 -3
l 3-5 5-7 '

"
'

(2n l)(2n+ 1)

=
2 1( I

~
3)
+

(s
~"

s)
+

(5
~~

7)
+ '

==
1

f l L_l
2[ 2+lJ

2n+ 1

What has just happened happens not infrequently. A theorem proved
by mathematical induction can often be proved more shortly by some other

method. Even the careful examination of the proof by mathematical
induction may lead to such a shortcut.

(5) Another example. We examine two numbers, a and b, subject to the

inequalities

<a < 1. <b < 1.

Then, obviously,

(1
_

a) (1 b] = 1 a b + ab > 1 - a - b.

A natural generalization leads us to suspect the following statement: If
n 2> 2 and < ^ < 1, < a2 < 1, . . . < an < 1, then

(1 i) (1 fla) . (1 flj > !
i 2 <V

We use mathematical induction to prove this. We have seen that the

inequality is true in the first case to which it is asserted to apply, for n = 2.

Therefore, supposing it to be true for n, where n ^> 2, we have to derive

it for n + 1.
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Supposedly

and we know that

Consequently

< n+1 < 1.

>!-!-. ..-0.-,
'n+1-

We derived for n + 1 what we have supposed for n: the proofis complete.

A',

Fig. 7.1. From n to n -f 1. Fig. 7.2. The case n = 1.

Let us note that mathematical induction may be used to prove propositions
which apply, not to all positive integers absolutely, but to all positive integers
from a certain integer onwards. For example, the theorem just proved is

concerned only with values n ^> 2.

(6) What is n? We discuss now a theorem of plane geometry.
If the polygon P is convex and contained in the polygon , the perimeter of P is

shorter than the perimeter of Q/
That the area of the inner polygon P is less than the area of the outer

polygon d is obvious. Yet the theorem stated is not quite so obvious;
without the restriction that P is convex, it would be false.

Fig. 7.1 shows the essential idea of the proof. We cut off the shaded
piece from the outer polygon ; there remains a new polygon Q, a part
of , which has two properties:

First, Q still contains the convex polygon P which, being convex, lies

fully on one side of the straight line A'B' into which the side AB ofP has been
produced.
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Second, the perimeter of Q,' is shorter than that of Q. In fact, the peri-

meter of Q differs from that of Q^in so far as the former contains the straight

line-segment joining the points A! and B', and the latter contains a broken
line instead, joining the same points (on the far side of the shaded piece).
Yet the straight line is the shortest distance between the points A' and Bf

.

As we passed from Q, to QL> so we can Pass fr m Q to another polygon

QJ. We thus obtain a sequence of polygons Q^, Q,', Q,", .... Each

polygon is included in, and has a shorter perimeter than, the foregoing,
and the last polygon in this sequence is P. Therefore, the perimeter of P
is shorter than that of Q,.

We should recognize the nature of the foregoing proof: it is, in fact, a

proof by mathematical induction. But what is n ? With respect to which

quantity is the induction performed ?

This question is serious. Mathematical induction is used in various

domains and sometimes in very difficult and intricate questions. Trying to

find a hidden proof, we may face a crucial decision: What should be n?

With respect to what quantity should we try mathematical induction ?

In the foregoing proof it is advisable to choose as n the number of those

sides of the inner convex polygon which do not belong entirely to the perimeter of the

outer polygon. Fig. 7.2 illustrates the case n = 1. I leave to the reader to

find out what is advisable to call n in fig. 7.1.

EXAMPLES AND COMMENTS ON CHAPTER VH

1. Observe that

1 = 1

1-4= -(1+2)
1 -4 + 9 = 1+2 + 3

1 - 4 + 9 - 16 = -(1 + 2 + 3 + 4).

Guess the general law suggested by these examples, express it in suitable

mathematical notation, and prove it.

2. Prove the explicit formulas for Pn, Sn and S* guessed in ex. 3.13,

3.14 and 3.20, respectively. [Ex. 3.11, 3.12.]

3. Guess an expression for

is + 28 + 3* +...+
and prove it by mathematical induction. [Ex. 1 .4.]

4. Guess an expression for

valid forn I> 2 and prove it by mathematical induction.
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5. Guess an expression for

valid forn ^ 1 and prove it by mathematical induction.

6. Generalize the relation

2*2 4* 8*8 x 16*16

and prove your generalization by mathematical induction.

7, We consider the operation that consists in passing from the sequence

<*!> 2> <%> - > an>
to the sequence

with the general term

We shall call this operation (the formation of the sequence sl9 s# s& . . . )

"summing the sequence a^ <%, a& . . . ". With this terminology, we can

express a fact already observed (in ex, 1.3) as follows.

You can pass from the sequence of all positive integers 1, 2, 3, 4, ... to

the sequence of the squares 1, 4, 9, 16 ... in two steps: (1) leave out each
second term (2) sum the remaining sequence. In fact, see the table:

1 2 3 4 5 6 7 8 9 10 11 12 13 ...

1 3 5 7 9 11 13 ...

1 4 9 16 25 36 49 ...

Prove this assertion by mathematical induction.

8 (continued). You can pass from the sequence of all positive integers

1, 2, 3, 4, ... to the sequence of the cubes 1, 83 27, 64, ... in four steps:

(1) leave out each third term (2) sum the remaining sequence (3) leave out
each second. term (4) sum the remaining sequence. Prove this by mathe-
matical induction, after having examined the table:

1234 567 8 9 10 11 12 13 ...

12 45 78 10 11 13 ...

13 7 12 19 27 37 48 61 ...

1 7 19 37 61 ...

1 8 27 64 125 ...



Il8 MATHEMATICAL INDUCTION

9 (continued) . You can pass from the sequence of all positive integers

1, 2, 3, 4, ... to the sequence of the fourth powers 1, 16, 81, 256, ... in

six steps, visible from the table:

What do these facts suggest?

10. Observing that

1 = 1

15 = 4

1-5 + 10 =6
1 _ 5 + 10 10 = 4

we are led to the general statement

for < k < n, n = 1, 2, 3, . . . .

In proving this by mathematical induction, would you prefer to proceed
from n to n + 1 or rather from k to k + 1 ?

n* In a tennis tournament there are 2n participants. In the first round
of the tournament each participant plays just once, so there are n games,
each occupying a pair of players. Show that the pairing for the first round
can be arranged in exactly

1 -3-5-7-'- (2n 1)

different ways.

12* To prove more may be less trouble. Let
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and define the sequencefQ (x) ,fi(x),fz(x), ... by the condition that

_//(*)~
dT

for n = 0, 1, 2, 3, . . . . (Such a definition is called recursive: to find

J^ we have to go back to/,.) Observing that

prove by mathematical induction that, for > 1, the numerator offn(x)
is a polynomial, the constant term of which is and the other coefficients

positive integers.

13 (continued). Find by induction and prove by mathematical
induction further properties offn(x).

14. Balanceyour theorem. The typical proposition A accessible to proof by
mathematical induction has an infinity of cases Av A2, A3) . . . An,

. . . ;

The case A is often easy; at any rate, A^ has to be handled by specific

means. Once A^ is established, we have to prove An+I assuming An. A
proposition A! stronger than A may be easier to prove than A.41 In fact,

let A1
consist of the cases A{ A^ . . . , A'n) .... In passing from A to A'

we make the burden of the proof heavier: we have to prove the stronger
A'n+I instead of An^. Yet we make also the support of the proof stronger:
we may use the more informative A'n instead of An.

The solution of ex. 12 provides an illustration. Yet we would have made
this solution uselessly cumbersome by including the materials treated in

ex. 13 which are more conveniently handled by additional remarks, as a

corollary.

In general, in trying to devise a proof by mathematical induction, you
may fail for two opposite reasons. You may fail because you try to prove
too much : your An+l is too heavy a burden. Yet you may also fail because

you try to prove too little: your An is too weak a support. You have to

balance the statement of your theorem so that the support is just enough for

the burden. And so the machinery of the proof edges you towards a more

balanced, better adapted view of the facts. This may be typical of the

r61e of proofs in building up science.

15. Outlook. More intricate problems in more difficult domains demand
a more sophisticated technique of mathematical induction and lead to

various modifications of this important method of proof. The theory of

groups provides some of the most remarkable examples. An interesting

variant is the "backward mathematical induction" or "inference from n to

4 This is the "inventor's paradox"; see How to Solve It, p. 110.
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n 1"; for an interesting elementary example cf. G. H. Hardy, J. E.

Littlewood, and G. P61ya, Inequalities, p. 17 and p. 20.

16. Being given that Q,i = 1 and

n-i,n
2"<"-i> 0! 1 ! 2! ...(!)!

for n = 2, 3, . . .
, find, and prove, a general expression for Q,n.

17. ^ ?z^ numbers equal? You would say. No. Yet we can try to

prove the contrary by mathematical induction. It may be more attractive

however, to prove the assertion: "Any n girls have eyes of the same color."

For n = 1 the statement is obviously (or "vacuously") true. It remains
to pass from n to n + 1 - For the sake of concreteness, I shall pass from 3 to

4 and leave the general case to you.
Let me introduce you to any four girls, Ann, Berthe, Carol, and Dorothy,

or A, B, C, and D, for short. Allegedly (n = 3) the eyes of A9 B, and C
are of the same color. Also the eyes of B, C, and D are of the same color,

allegedly (n = 3). Consequently, the eyes of all four girls, A, B, C, and D,
must be of the same color; for the sake of full clarity, you may look at the

diagram :

A, B, C, D.

This proves the point for n + 1 = 4, and the passage from 4 to 5, for example,
is, obviously, not more difficult.

Explain the paradox. You may try the experimental approach by looking
into the eyes of several girls.

18. If parallel lines are regarded as intersecting (at infinity) the statement

"Any n lines in a plane have a common point" is true for n = 1 (vacuously)
and for n= 2 (thanks to our interpretation)* Construct a (paradoxical)
proof by mathematical induction.
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MAXIMA AND MINIMA

Since thefabric of the world is the most perfect and was established by the

wisest Creator, nothing happens in this world in which some reason of
maximum or minimum would not come to light. EULER

i. Patterns. Problems concerned with greatest and least values, or

maximum and minimum problems, are more attractive, perhaps, than other

mathematical problems of comparable difficulty, and this may be due to a

quite primitive reason. Everyone ofus has his personal problems. We may
observe that these problems are very often maximum or minimum problems
of a sort. We wish to obtain a certain object at the lowest possible price,
or the greatest possible effect with a certain effort, or the maximum work
done within a given time and, of course, we wish to run the minimum risk.

Mathematical problems on maxima and minima appeal to us, I think,

because they idealize our everyday problems.
We are even inclined to imagine that Nature acts as we would like to act,

obtaining the greatest effect with the least effort. The physicists succeeded

in giving clear and useful forms to ideas of this sort; they describe certain

physical phenomena in terms of ' eminimum principles.

' * The first dynamical

principle of this kind (the "Principle of Least Action" which usually goes
under the name of Maupertuis) was essentially developed by Euler; his

words, quoted at the beginning of this chapter, describe vividly a certain

aspect of the problems on minima and maxima which may have appealed
to many scientists in his century.

In the next chapter we shall discuss a few problems on minima and maxima
arising in elementary physics. The present chapter prepares us for the next.

The Differential Calculus provides a general method for solving problems
on minima and maxima. We shall not use this method here. It will be

more instructive to develop a few "patterns" of our own instead.

Having solved a problem with real insight and interest, you acquire a

precious possession: a pattern, a model, that you can imitate in solving
similar problems. You develop this pattern if you try to follow it, if you
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score a success in following it, if you reflect upon the reasons of your success,

upon the analogy of the problems solved, upon the relevant circumstances

that make a problem accessible to this kind of solution, etc. Developing
such a pattern, you may finally attain a real discovery. At any rate,

you have a chance to acquire some well ordered and readily available

knowledge.

2, Example. Given two points and a straight line, all in the same plane, both

points on the same side of the line. On the given straight line, find a pointfrom which

the segment joining the two given points is seen under the greatest possible angle.

B

Y

X X
Fig. 8.1. Looking for the best view. Fig. 8.2. The variation of the angle may

look like this.

This is the problem that we wish to solve. We draw a figure (fig. 8.1)
and introduce suitable notation. Let
A and B denote the two given points,
/ the given straight line,

X a variable point of the line /.

We consider /_ AXB, the angle subtended by the given -segment AB at the

variable point X. We are required to find that position of X on the given
line I for which this angle attains its maximum.

Imagine that / is a straight road. If frpm some point of the road / you
wish to fire a shot on a target stretching from A to B, you should choose
the point that we are seeking; it gives you the best chance to hit. If you
have the more peaceful intention to take, from the road /, a snapshot of a

facade the corners of which are at A and at B, you should again choose the

point that we are seeking; it gives you the most extensive view.

The solution of our problem is not quite immediate. But, even if we do
not know yet where the maximum is attained, we do not doubt that it is

attained somewhere. Why is this so plausible?
We can account for the plausibility if we visualize the variation of the

angle the maximum of which we are trying to find. Let us imagine that

we walk along the line / and look at the segment AB. Let us start from the

poteM which the line I and the line through A and B intersect and proceed
to tfte' right. At the start, the angle under which AB appears vanishes;
then the angle increases; yet finally, when we are very far from AB9 it must
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decrease again since it vanishes at infinite distance.1 Between the two
extreme cases in which the angle vanishes it must become a maximum some-
where. But where ?

This question is not easy to answer, although we could point out long
stretches of the line / where the maximum is probably not attained. Let
us choose any point on the line and call it X. This point, chosen at random,
is very likely not in the maximum position that we are trying to find. How
could we decide quite clearly whether it is in the maximum position or not?
There is a fairly easy remark.2 If a point is not in the maximum position,

there must be another point, on the other side of the maximum position, at

which the angle in question has the same value. Is there any other point
X' on the line I seen from which the segment AB appears under the same

angle as it does from XI Here is, at last, a question that we can readily
answer : both X and Xf

(if there is an X'} must be on the same circle passing

through the points AB by virtue of a familiar property ofthe angles inscribed

in a circle (Euclid III, 21).
And now, the idea may appear. Let us draw several circles passing

through the given points A and B. If such a circle intersects the line in

two points, as X and X' in fig. 8.3, the segment AB is seen from both points
X and X' under the same angle, but this angle is not the greatest possible:
a circle that intersects / between X and X' yields a greater angle. Inter-

secting circles cannot do the trick : the vertex of the maximum angle is the

point at which a circle through A and B touches the line / (the point M in

fig. 8.3).

3. The pattern of the tangent level line. Let us look back at the

solution that we have just found. What can we learn from it? What is

essential in it ? Which features are capable ofan appropriate generalization ?

The step which appears the most essential after some reflection is not too

conspicuous. I think that the decisive step was to broaden our viewpoint,
to step out of the line /, to consider the values of the quantity to be maxi-

mized (the angle subtended by AB) at points of the plane outside L We
considered the variation of this angle when its vertex moved in the plane,
we considered the dependence of this angle on the position of its vertex.

In short, we conceived this angle as thefunction of a variable point (its vertex),
and regarded this point (the vertex) as varying in the plane.

The angle remains unchanged when its vertex moves along an arc of

circle joining the points A and B. Let us call such an arc of circle a level

line. This expression underscores the general viewpoint that we are about

to attain. The lines along which a function of a variable point remains

constant are usually called the level lines of that function.

1 Ifwe consider /. AXB as function of the distance measured along the line I, we can graph
it (represent it in rectangular coordinates) in the usual manner. Fig. 8.2 gives a qualitative
sketch of the graph; Z. AXB is represented by the ordinate XY.

8 Very easy if we look at fig. 8.2.
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Yet, let us not forget the unknown of our problem. We were required
to find the maximum of the angle (of this function of a variable point)
when its vertex (the variable point) cannot move freely in the plane, but
is restricted to a prescribed path, the line /. At which point of the prescribed
path is the maximum attained ?

We know the answer already, but let us understand it better, let us look
at it from a more general viewpoint. Let us consider an analogous, fairly

general and very intuitive, example.

Fig. 8.3. A tangent level line. Fig. 8,4. Another tangent level line.

You know what "level lines" or "contour lines" are on a map or in the
terrain (let us think of a hilly country) that the map represents. They are
the lines of constant elevation; a level line connects those points on the map
which represent points upon the earth's surface of equal height above sea
level. If you imagine the sea rising 100 feet, a new coastline with bays
intruding into the valleys appears at the new sea level. This new coastline
is the level line of elevation 100. The map-maker plots only a few level

lines, at constant intervals, for example, at elevations 100, 200, 300, . . . ;

yet we can think a level line, there is- a level line, at each elevation, through
each point of the terrain. The function of the variable point that is impor-
tant for the map-maker, or for you when you move about in the terrain,
is the elevation above sea level; this function remains constant along each
level line.

Now, here is a problem analogous to our problem just discussed (in sect.

2) . You walk along a road, a prescribed path. At which point of the road
do you attain the maximum elevation?

It is very easy to say where you do not attain it. A point which you pass
going up or down is certainly not the point of maximum elevation, nor the

point of minimum elevation. At such a point, your road crosses a level
line: the maximum (or the minimum) can NOT be attained at a point where the

prescribed path crosses a level line.
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With this essential remark, let us return to our example (sect. 2, fig.

8.1, 8.2, 8.3). Let us consider the whole prescribed path: the line / from

its intersection with the line through A and B to infinite distance (to the

right). At each of its points, this prescribed path intersects a level line

(an arc of circle with endpoints A and B} except in just one point, where it

is tangent to a level line (to such a circle). If the maximum is anywhere,
it must be at that point: at the point of maximum the prescribed path is tangent

to a level line.

This hints very strongly the general idea behind our example. Yet let

us examine this hint. Let us apply it to a simple analogous case and see

how it works. Here is an easy example.
On a given straight line find the point which is at minimum distance from a given

point.

Let us introduce suitable notation:

A is the given point,
a is the given straight line.

It is understood that the given point A is not on the given line a. We
have to find the shortest distance from A to a.

Everybody knows the solution. Imagine that you are swimming in a

calm sea ;
in this moment you are at the point A ;

the line a marks a straight

uniform beach. Suddenly you are scared, you wish to reach firm ground
as quickly as possible. Where is the nearest point of the beach? You know
it without reflection. A dog would know it, A dog or a cow, thrown into

the water, would start swimming without delay along the perpendicular
from A to a.

Yet our purpose is not just to find the solution, but to examine a general
idea in finding it. The quantity that we wish to minimize is the distance

of a variable point from the given point A. This distance depends on the

position of the variable point. The level lines of the distance are obviously

concentric circles with A as their common center. The "prescribed path"
is the given straight line a. The minimum is not attained at a point where

the prescribed path crosses a level line. In fact, it is attained at the (only)

point at which the prescribed path is tangent to a level line (at the point M
of fig. 8.4) . The shortest distance from the point A to the line a is the radius

of the circle with center A that is tangent to a as we knew from the start.

Still, we learned something. The general idea appears now more clearly

and it may be left to the reader to clarify it completely.
With the essential common features of the foregoing problems clearly in

mind, we are naturally looking, out for analogous problems to which we could

apply the same pattern of solution. In the foregoing, we considered a

point variable in a plane and sought the minimum or maximum ofa function

of such a point along a prescribed path. Yet we could consider a point

variable in space and seek the minimum or maximum of a function of such

a point along a prescribed path, or on a prescribed surface. In the plane,
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the tangent level lines played a special role. Analogy prompts us to expect
that the tangent level surfaces will play a similar role in space.

4. Examples. We discuss two examples which can be treated by the

same method, but have very little in common otherwise.

(1) Find the minimum distance between two given skew straight lines.

Let us call

a and b the two given skew lines,

X a variable point on 0,

Y a variable point on b ;

see fig. 8.5. We are required to determine that position of the line-segment
XY in which it is the shortest.

The distance XY depends on the position of its two end-points, X and F,
which are both variable. There are two variable points, not just one, and
this may be the characteristic difficulty of the problem. If one of the two

points were given, fixed, invariable, and only the other variable, the problem
would be easy. In fact, it would not even be new; it would be identical

with a problem just solved (sect. 3).

Let us fixfor a moment one of the originally variable points, say, Y. Then
the segment XY is in the plane through the fixed point Y and the given line

a, and only one of its end points, X, is variable, running along the line a.

Obviously, XY becomes a minimum when it becomes perpendicular to a

(by sect. 3, fig. 8.4).

Yet we could interchange the roles of the two points, X and Y. Let us

now, for a change, fix Xand make Y alone variable. Obviously, the segment
XY becomes shortest when perpendicular to b.

The minimum position of XY, however, is independent of our whims and
of our choice of roles for X and F, and so we are led to suspect that it is

perpendicular both to a and to b. Yet let us look more closely at the situation.

In fact, the foregoing argument shows directly where the minimum
position can not be (and only indirectly where it should be). I say that a

position in which the segment XY is not perpendicular to the line a at the

point X, is not the minimum position. In fact, I fix the point Y and move X
to another position where XY becomes perpendicular to a and so doing I

make XY shorter (by sect. 3). This reasoning obviously applies just as

well to Y as to X3 nd so we see : the length ofthe segment XY cannot be a minimum
unless this segment is perpendicular both to a and to b. Ifthere is a shortest distance,

it must be along the common perpendicular to the two given lines.

We need not take anything for granted. In fact, we can see at a glance
that the common perpendicular is actually the shortest distance. Let us

assume that, in fig. 8.5, the plane of the drawing is parallel to both given
lilies a and b (a above, b below). We may consider any point or line in

space as represented in fig, 8.5 by its orthogonal projection. The true

imgth of the segment XY is the hypotenuse of a right triangle of which
another side is the orthogonal projection of -XT seen in fig. 8.5; the third
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side is the shortest distance of two parallel planes, one through a, the other

through b, both parallel to the plane of the drawing to which that third side

is perpendicular. Therefore, the shorter the projection of XY shown in

fig. 8.5, the shorter is XY itself. The projection of XY reduces to a point,
its length to nil, and so the length of XY is a minimum if, and only if, XY
is perpendicular to the plane of the drawing and so to both lines a and b.

And so we have verified directly what we discovered before by another
method.

(2) Find the maximum of the area of a polygon inscribed in a given circle and

having a given number of sides.

Y

Fig. 8.5. Two skew lines.

The circle is given. On this circle, we have to choose the n vertices

/,..., W, X, Y9 and Z of a polygon so that the area becomes a maximum.
Just as in the foregoing problem, under (1), the main difficulty seems to

be that there are many variables (the vertices U9
- . . , W, X, 7, and Z).

We should, perhaps, try the method that worked in the foregoing problem.
What is the essential point of this method ?

Let us take the problem as almost solved. Let us imagine that we have
obtained already the desired position of all vertices except one, say, X.

The n 1 other points, C7, . . . , W, Y, and Z, are already fixed, each in

the position where it should be, but we have yet to choose .AT so that the area

becomes a maximum. The whole area consists, however, of two parts:
the polygon U . . . WYZ with n 1 fixed vertices which is independent
of X and the triangle WXY which depends on X. We focus our attention

upon this triangle which must become a maximum when the whole area

becomes a maximum; see fig. 8.6. The base WY of kWXY is fixed.

If the vertex X moves along a parallel to the base WY9 the area remains

constant: such parallels to WY are the level lines. We pick out the tangent
level line : the tangent to the circle parallel to WY. Its point of contact
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is obviously the position of X that renders the area of APKATF a maximum.
With X in this position the triangle is isosceles, WX = XY. These two

adjacent sides must be equal, if the area of the polygon is a maximum.
Yet the same reasoning applies to any pair of adjacent sides: all sides must
be equal when the maximum of the area is attained, and so the inscribed

polygon with maximum area must be regular.

5. The pattern of partial variation. Comparing the two examples
discussed in the foregoing section (sect. 4), we easily recognize some common
features and a common pattern of solution. In both problems we seek the

extremum (minimum or maximum) of a quantity depending on several

variable elements. In both solutions we fix for a moment all originally

Fig. 8.6. Triangle of maximum area.

variable elements except one and study the effect of the variation of this

single element. The simultaneous variation of all variable elements, or

total variation, is not so easy to survey. We treated our example with good
results in studying the partial variation when only a single element varies

and the others are fixed. The principle underlying our procedure seems to

be: a functionf of several variables cannot attain a maximum with respect to all its

variables jointly, unless it attains a maximum with respect to each single variable.

This statement is fairly general, although unnecessarily restricted in one

respect: it clings too closely to the foregoing examples in which we varied

just one element at a time. Yet we can imagine that in other examples it

may be advantageous to vary just two elements at a time and fix the others,

or perhaps just three, and so on. In such cases we could still speak appro-

priately of "partial variation." The general idea appears now fairly clearly
and after one more example the reader may undertake by himself to clarify
it completely.
A line , of length I is divided into n parts. Find the maximum of the product of

these n parts.

Let
#]_,

#2,
. . . xn denote the lengths of the n parts; xl9 x2, . . . xn are

positive numbers with a given sum

*1 + *2 + + * = /

We are required to make x^ . . . xn a maximum.
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We examine first the simplest special case: Being given the sum xl + *2
of two positive quantities, find the maximum of their product x^. We
can interpret xl and #2 as adjacent sides ofa rectangle and restate the problem
in the following more appealing form: Being given L, the length of the

perimeter of a rectangle, find the maximum of its area. In fact, the sum of

the two sides just mentioned is given :

There is an obvious guess: the area becomes a maximum when the

rectangle becomes a square. This guess cannot be hard to verify. Each
side of the square with perimeter L is equal to

We have to verify that the area of the square is greater than the area of the

rectangle, or, which is the same, that their difference

is positive. Is that so ? Very little algebra is enough to see that

/*! + *>\* _ /*!
-

*2\
2

\~T~~; -****-{ z~)'
This formula shows the whole situation at a glance. The right hand side

is positive, unless xl = x2 and the rectangle is a square.
In short, the area ofa rectangle with given perimeter becomes a maximum

when the rectangle is a square; the product of two positive quantities with

given sum becomes a maximum when these two quantities are equal.
Let us try to use the special case just solved as a stepping stone to the

solution of the general problem. Let us take the problem as almost solved.

Let us imagine that we have obtained already the desired values of all

parts, except those of the first two, x^ and #2. Thus, we regard x^ and #2
as variables, but #3,

#4,
. . . xn as constants. The sum of the two variable

parts is constant,

#1 T~ #2 == *3 *4 * * " *"

Now, the product of all parts

cannot become a maximum unless the product x^ of the first two parts
becomes a maximum, too. This requires, however, that x^ = x2. Yet

there is no reason why any other pair of parts should behave differently.
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The desired maximum of the product cannot be attained unless all the

quantities with given sum are equal. We quote Colin Maclaurin (1698-
1746) to whom the foregoing reasoning is due: "If the Line AB is divided
into any Number of Parts AC, CD, DE, EB, the Product of all those Parts

multiplied into one another will be a Maximum when the Parts are equal
amongst themselves."

The reader can learn a great deal in clarifying the foregoing proof. Is

it quite satisfactory?

6* The theorem of the arithmetic and geometric means and its

first consequences. Let us reconsider the result of the foregoing section :

If

*i + *2 + x* + + xn = l

then

#1*2*3 #< I
~

unless xl = #2 = #3 . . . = xn = l/n. Eliminating /, we can restate this

result in the form :

or

unless all the positive quantities xls #2,
. . . xn are equal; if these quantities are

equal, the inequality becomes an equation. The left-hand side of the

above inequality is called the geometric, the right-hand side the arithmetic,
mean of xv x2,

. . . xn. The theorem just stated is sometimes called the

"theorem of the arithmetic and geometric means" or, shortly, the "theorem
of the means."

The theorem of the means is interesting and important in many respects.
It is worth mentioning that it can be stated in two different ways:

The product of n positive quantities with a given sum becomes a maximum when
these quantities are all equal*

The sum of n positive quantities with a given product becomes a minimum when
these quantities are all equal.

The first statement is concerned with a maximum, the second with the

corresponding minimum. The derivation of the foregoing section is aimed
at the first statement. Changing this derivation systematically we could
arrive at the second statement. It is simpler, however, to observe that the

inequality between the means yields impartially both statements : to obtain
one or the other, we have to regard one or the other side of the inequality as

given. We may call these two (essentially equivalent) statements conjugate
statements.
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The theorem of the means yields the solution of many geometric problems
on minima and maxima. We discuss here just one example (several others
can be found at the end of this chapter).

Being given the area of the surface of a box, find the maximum of its volume.
I use the word "box" instead of "rectangular parallelepiped" because

"box" is expressive enough and so much shorter than the official term.
The solution is easily foreseen and, once foreseen, it is easily reduced to

the theorem of the means as follows. Let

a, b, c denote the lengths of the three edges of the box drawn from the
same vertex,

S the area of the surface,
V the volume.

Obviously

Observing that the sum of the three quantities ab, ac> and be is SJ2 and their

product F2
, we naturally think of the theorem of the means which yields

unless

ab = ac = be

or, which is the same,
a = b = c.

That is

unless the box is a cube, when equality occurs. We can express the result
in two different (although essentially equivalent) forms.

Ofall boxes with a given surface area the cube has the maximum volume.

Of all boxes with a given volume the cube has the minimum surface area.

As above, we may call these two statements conjugate statements. As
above, one of the two conjugate statements is concerned with a maximum,
the other with a minimum.
The preceding application of the theorem of the means has its merits.

We may regard it as a pattern and collect cases to which the theorem of the
means can be similarly applied.

EXAMPLES AND COMMENTS ON CHAPTER Vm
First Part

i. Minimum and maximum distances in plane geometry. Find the minimum
distance between (1) two points, (2) a point and a straight line, (3) two
parallel straight lines.
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Find the minimum, and the maximum, distance between (4) a point and
a circle, (5) a straight line and a circle, (6) two circles.

The solution is obvious in all cases. Recall the elementary proof at

least in some cases.

2. Minimum and maximum distances in solid geometry. Find the minimum
distance between (1) two points, (2) a point and a plane, (3) two parallel

planes, (4) a point and a straight line, (5) a plane and a parallel straight

line, (6) two skew straight lines.

Find the minimum, and the maximum, distance between (7) a point and
a sphere, (8) a plane and a sphere, (9) a straight line and a sphere, (10) two

spheres.

3. Level lines in a plane. Consider the distance of a variable point from
a given (1) point, (2) straight line, (3) circle. What are the level lines?

4. Level surfaces in space. Consider the distance of a variable point from
a given (1) point, (2) plane, (3) straight line, (4) sphere. What are the

level surfaces ?

5. Answer the questions of ex. 1 using level lines.

6. Answer the questions of ex. 2 using level surfaces.

7. Given two sides of a triangle, find the maximum of the area using level

lines.

8. Given one side and the length of the perimeter of a triangle, find the

maximum of the area using level lines.

9. Given the area of a rectangle, find the minimum of the perimeter

using level lines. (In a rectangular coordinate system, let (0,0), (#,0),

(0,j>), (x,y) be the four vertices of the rectangle and use analytic

geometry.)

10. Examine the following statement: "The shortest distance from a

given point to a given curve is perpendicular to the given curve."

n. The principle of the crossing level line. We consider a function,/ of a

point which varies in a plane, the maximum and the minimum off along
a prescribed path, and a level line of/ which separates two regions of the

plane; in one of these regions/takes higher, in the other lower, values than

on the level line itself.

If the prescribed path crosses the level line, neither the maximum nor

the minimum of/is attained at the point of crossing.

12. The contour-map of fig. 8.7 shows a peak P and a pass (or saddle-

point with horizontal tangent plane) S. Hiking through such a country,
do you necessarily attain the highest point of your path at a point where the

path is tangent to a level line?.

13. Let A and B denote two given points and X a variable point in a

plane. The angle at X subtended by the segment AB (/_AXE) which can
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take any value between and 180 (limits inclusively) is a function of the

variable point X.

(1) Give a full description of the level lines.

(2) Of two different level lines, which one corresponds to a higher value

of the angle ?

You may use figs. 8.1 and 8.3, but you should realize that now you may
look at the segment AB from both sides.

14. Consider figs. 8.1, 8.2, 8.3, take AXB as in ex. 13, and find its

minimum along /. Does the result conform to the principle of ex. 11?

Fig. 8.7. Level lines on a contour map.

15. Given the volume of a box (rectangular parallelepiped), find the

minimum of the area of its surface, using partial variation.

16. Of all triangles with a given perimeter, which one has the maximum
area? [Ex. 8.]

17. Of all tetrahedra inscribed in a given sphere, which one has the maxi-

mum volume? [Do you know a related problem?]
18. Given a, b, and c, the lengths of three edges of a tetrahedron drawn

from the same vertex, find the maximum of the volume of the tetrahedron.

[Do you know an analogous problem?]

19* Find the shortest distance between a sphere and a cylinder. (Cylinder
means: infinite cylinder of revolution.)

20. Find the shortest distance between two cylinders with skew axes.
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21. Examine the following statement: "The shortest distance between
two given surfaces is perpendicular to both."

22. The principle ofpartial variation. The function/^, F,Z, . . . ) of several
variables Z,r,Z, . . . attains its maximum for X = A, Y = B, Z = C, . . . .

Then the function/^^C, . . . ) ofthe single variable Xattains its maximum
for X= A; and the function f(X,J,C> . . . ) of the two variables X and Y
attains its maximum for X= A, Y = B; and so on.

A function of several variables cannot attain a maximum with respect to all its

variables jointly, unless it attains a maximum with respect to any subset of variables.

23. Existence of the extremum. Both the principle of the level line and that
of partial variation give usually only "negative information." They show
directly in which points a proposed function f can not attain a maximum,
and we have to infer hence wheref may attain one. Thatf must attain a
maximum somewhere, cannot be derived from these principles alone. Yet
the existence of the maximum can sometimes be derived by some modifica-
tion of the reasoning. Moreover, the existence of the maximum can often

be derived from general theorems on continuous functions of several

variables.3 At any rate, whenever the existence of the maximum appears
obvious from the intuitive standpoint, we have a good reason to hope that
some special device or some general theorem will apply and prove the
existence,

24. A modification of the pattern ofpartial variation: An infinite process. Find
the maximum of xyz, being given that x +y + z = /.

It is understood that x, j>, and z are positive, and that / is given. The
present problem is a particular case of the problem of sect. 5. Following
the method used there, we keep one of the three numbers x, y, and z fixed

and change the other two so that they become equal, which increases their

product. Let us start from any given system (x,y, z) ; performing the change
indicated we pass to another system (x^y^ z^ ; then we pass to still another

(*2?^29 ^2) ancl hence to (#3,.)>3, *3), and so on. Let us leave the three terms

unchanged in turn: first the #-term, then y, then z, then again x, thenj>,
then z, then again x, and so on. Thus, we set

--- "'

8 A function of several variables, continuous in a closed set, attains there its lower and
upper boun^v ThkgeneitOizes G. H. Hardy, Pure Mathematics, p. 194, theorem 2.
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Each step leaves the sum unchanged, but increases the product:

xyz < x^y^Zi < x2yzz2 < . . .

We assumed that y ^ z and that #x ^ r (This is the non-exceptional

case; in the exceptional case we attain our end more easily.) We naturally

expect that the three numbers xn, yn) and zn become less and less different

from each other as n increases. J>Twe can prove that finally

Km xn = limjyn = lim zn
n-+ oo

we can immediately infer that

We obtain so this result at considerable expense, yet without assuming the

existence of the maximum from the outset.

Prove that lim xn = Hmjyn = lim zn.

25. Another modification of the pattern of partial variation : A finite process.

We are still concerned with the problem of ex. 24, but we use now a more

sophisticated modification of the method of sect. 5.

Let / = 3-4
; thus, A is the arithmetic mean of x, y, and z, and we have

It may happen that x ~y = z* If this is not the case, one of the differences

on the left hand side of our equation must be negative and another positive,

Let us choose the notation so that

y < A < z.

We pass now from the system (x,y, z) to (#',/, <O> putting

we left the first quantity unchanged. Then

and
z yz

= (A-y)(z-A}>$
so that

xyz < x'y'z'.
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It may happen that *' =/ = ^'. If this is not the case, we pass from
(*',/> *',) to (*",/', z"), putting

which gives

and again increases the product (as we know from sect. 5) so that

xyz < x'y'z
r < x"y"z" = A*

'+-7 + *V
3

Pig. 8.8. Triangular coordinates. Fig. 8.9. Successive steps approaching
the center.

We proved the desired result, without assuming the existence of the maximum
and without considering limits.

By a suitable extension of this procedure, prove the theorem of the means
(sect. 6) generally for n quantities.

36. Graphic comparison. Let P be a point in the interior of an equilateral
triangle with altitude I, and x9 y, and z the distances of P from the three
sides of the triangle; see fig. 8.8. Then

(Why?) The numbers x,y, and are the triangular coordinates of the point
P. Any system of three positive numbers x, y, and z with the sum / can be
interpreted as the triangular coordinates of a uniquely determined point
inside the triangle.
The sequence

considered in ex. 24 is represented by a sequence of points in fig. 8.9. The
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segments joining the consecutive points are parallel to the various sides of

the triangle in succession, to the first, the second, and the third side, respec-

tively, then again to the first side, and so on; each segment ends on an

altitude of the triangle. (Why?) The procedure of ex. 25 is represented

by three points and two segments. (How?)

27. Reconsider the argument of sect. 4(2) and modify it, taking first

ex. 24, then ex. 25 as a model.

28. A necessary condition for a maximum or a minimum value of a

functionf(x,y,z) at the point (a,b,c] is that the partial derivatives

dx dy dz

vanish for x = a, y = by z = c.

The usual proof of this theorem exemplifies one of our patterns. Which
one?

29* State the well-known necessary condition (in terms of partial

derivatives) for a maximum or minimum value of the functionf(x,y) under

the side-condition (or subsidiary condition) that x and y are linked by the

equation g(x,y) = 0. Explain the connection with the pattern of the

tangent level line.

30* Reexamine the cases mentioned in the solution of ex. 12 in the light

of the condition mentioned in ex. 29. Is there any contradiction ?

31. State the well-known necessary condition for a maximum or minimum
value of a function f(x,y,z) under the side-condition that g(x>y,z) = 0.

Explain the connection with the pattern of the tangent level surface.

32. State the well-known necessary condition for a maximum or minimum
value of a function f(x,y,z) under the two simultaneous side-conditions

that g(x,y,z) = and h(x,y,z) = 0. Explain the connection with the

pattern of the tangent level surface.

Second Part

The terminology and notation used in the following are explained in ex.

33, which should be read first.

33. Polygons and polyhedra. Area and perimeter. Volume and surface. Deal-

ing with polygons, we shall use the following notation most of the time:

A for the area, and
L for the length of the perimeter.

Dealing with polyhedra, we let

V denote the volume, and
S the area of the surface.
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We shall discuss problems of maxima and minima concerned with A and

L, or V and S. Such problems were known to the ancient Greeks.4 We
shall discuss mainly problems treated by Simon Lhuilier and Jacob Steiner,5

Elementary algebraic inequalities, especially the theorem of the means

(sect. 6), will turn out useful in solving the majority ofthe following problems.
Most of the time these problems deal only with the simplest polygons

(triangles and quadrilaterals) and the simplest polyhedra (prisms and

pyramids). We have to learn a few less usual terms.

Two pyramids, standing on opposite sides of their common base, form

jointly a double pyramid. If the base has n sides, the double pyramid has

2n faces, n + 2 vertices, and Zn edges. The base is not a face of the double

pyramid.
If all lateral faces are perpendicular to the base, we call the prism a

right prism.
If the base of a pyramid is circumscribed about a circle and the altitude

meets the base at the center of this circle, we call the pyramid a right pyramid.
If the two pyramids forming a double pyramid are right pyramids and

symmetrical to each other with respect to their common base, we call the

double pyramid a right double pyramid.
Ifa prism, pyramid, or double pyramid is not "right," we call it "oblique."

Among the five regular solids, there is just one prism, just one pyramid,
and just one double pyramid: the cube, the tetrahedron, and the octa-

hedron, respectively. Each of these three is a "right" solid of its kind.

We shall consider also cylinders, cones, and double cones; if there is

no remark to the contrary, their bases are supposed to be circles.

34. Right prism with square base. Of all right prisms with square base

having a given volume, the cube has the minimum surface.

Prove this special case of a theorem already proved (sect. 6, ex. 15)

directly, using the theorem of the means.

You may be tempted to proceed as follows. Let F, S, #, andjy denote the

volume, the surface area, the side of the base, and the altitude of the prism,

respectively. Then

F=^, S = 2*2 + 4xy.

Applying the theorem of the means, we obtain

= [(2*
2 + 4*jO/2] I> 2*2 4xy

Yet this has no useful relation to V= A^ the theorem of the means does

not seem to be applicable.
This was, however, a rash, thoughtless, unprofessional application of the

theorem. Try again. [What is the desired conclusion?]

4
Pappus, GolUctiorus, Book V.

* Simon Lhuilier, Polygonomttrie et Abrtgi d*I$opirinUtrie HUmentaire, Geneve, 1789. J.

Steiner, Gesammelte Werke, vol. 2, p. 1777308.
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35. Right cylinder. Observe that, of all the prisms considered in ex. 34,

only the cube is circumscribed about a sphere and prove: Of all right

cylinders having a given volume, the cylinder circumscribed about a sphere
has the minimum surface. [What is the desired conclusion ?]

36. General right prism. Of a right prism, given the volume and the shape
(but not the size) of the base. When the area of the surface is a minimum,
which fraction ofit is the area ofthe base ? [Do you know a related problem ?]

37* Right double pyramid with square base. Prove: Of all right double

pyramids with square base having a given volume, the regular octahedron
has the minimum surface.

38. Right double cone. Observe that the inscribed sphere touches each
face of the regular octahedron at its center, which divides the altitude of
the face in the ratio 1 : 2 and prove: Of all right double cones having a

given volume, the minimum of the surface is attained by the double cone
the generatrices of which are divided in the ratio 1 : 2 by the points of

contact with the inscribed sphere.

39. General right double pyramid. Of a right double pyramid, given the

volume and the shape (but not the size) of the base. When the area of the

surface is a minimum, which fraction of it is the area of the base?

40* Given the area of a triangle, find the minimum of its perimeter.

[Could you predict the result ? Ifyou wish to try the theorem of the means,

you may need the expression of the area in terms of the sides.]

41. Given the area of a quadrilateral, find the minimum of its perimeter.

[Could you predict the result? Call a, b, c9 and d the sides of the quadri-

lateral, e the sum of two opposite angles, and express the area A in terms of

a, b, c> d, and e. This is a generalization of the problem solved by Heron's

formula.]

42* A right prism and an oblique prism have the same volume and the

same base. Then the right prism has the smaller surface.

A right pyramid and an oblique pyramid have the same volume and the

same base. Then the right pyramid has the smaller surface,

A right double pyramid and an oblique double pyramid have the same
volume and the same base. Then the right double pyramid has the smaller

surface.

In all three statements, the bases of the two solids compared agree both in

shape and in size. (The volumes, of course, agree only in size.)

Choose the statement that seems to you the most accessible ofthe three and

prove it.

43* Applying geometry to algebra. Prove: If u^ uz,
. . . n, vly z>2,

. . . vn

are real numbers,
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and equality is attained if, and only if,

[Consider n -f- 1 points P
,
Pls P2, . . . Pn in a rectangular coordinate

system and the length of the broken line P^P^P2 Pn-]

44. Prove the inequality of ex. 43 independently of geometric considera-

tions. [In the geometric proof of the inequality, the leading special case

is n = 2.]

45. Applying algebra to geometry. Prove: Of all triangles with given base

and area, the isosceles triangle has the minimum perimeter. [Ex. 43.]

46. Let F, S, A, and L denote the volume, the area of the whole surface,

the area of the base, and the length of the perimeter of the base of a pyramid
P, respectively. Let F , S , A ,

and L stand for the corresponding quantities

connected with another pyramid P . Supposing that

and that P is a right pyramid, prove that

Equality is attained if, and only if, L = L and P is also a right pyramid.

[Ex. 43.]

47. Let V, S3 A, and L denote the volume, the area of the surface, the area

ofthe base, and the perimeter ofthe base ofa double pyramid D, respectively.

Let F
,
5 , AQ9 and L stand for the corresponding quantities connected

with another double pyramid D . Supposing that

F= 7 , A~A
, L^L

and that DQ is a right double pyramid, prove that

Equality is attained if, and only if, L = LQ and D is also a right double

pyramid. [Ex. 45, 46.]

48. Prove : Of all quadrilateral prisms with a given volume, the cube

has the minimum surface. [Compare with ex. 34; which statement is

stronger?]

49. Prove : Of all quadrilateral double pyramids with a given volume,
the regular octahedron has the minimum surface. [Compare with ex,

37; which statement is stronger?]

50. Prove: Of all triangular pyramids with a given volume, the regular
tetrahedron has the minimum surface.
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51. Right pyramid with square base. Prove: Of all right pyramids with

square base having a given volume, the pyramid in which the base is J
of the total surface has the minimum surface.

52. Right cone. Of all right cones having a given volume, the cone in

which the base is J of the total surface has the minimum surface.

53. General right pyramid. Of a right pyramid, given the volume and the

shape (but not the size) of the base. When the area of the surface is a

minimum, which fraction of it is the area of the base? [Do you know a

special case?]

54. Looking back at our various examples dealing with prisms, pyramids,
and double pyramids, observe their mutual relations and arrange them in a
table so that the analogy of the results becomes conspicuous. Point out the

gaps which you expect to fill out with further results.

55. The box with the lid off. Given S$, the sum of the areas of five faces

of a box. Find the maximum of the volume V. [Do you know a related

problem? Could you use the result, or the method?]

56. The trough. Given S4,
the sum of the areas of four faces of a right

triangular prism; the missing face is a lateral face. Find the maximum of
the volume V.

57. A fragment. In a right prism with triangular base, given 3, the sum
of the areas of three mutually adjacent faces (that is, of two lateral faces

and one base). Show that these three faces are of equal area and per-

pendicular to each other when the volume V attains its maximum. [A
fragment of what ?]

58. Given the area of a sector of a circle. Find the value of the angle at

the center when the perimeter is a minimum.

59. In a triangle, given the area and art angle. Find the minimum (1) of

the sum of the two sides including the given angle, (2) of the side opposite
the given angle, (3) of the whole perimeter.

60. Given in position an angle and a point in the plane of the angle,
inside the angle. A variable straight line, passing through the given point,
cuts off a triangle from the angle. Find the minimum of the area of this

triangle.

61. Given E, the sum of the lengths of the 12 edges of a box, find the

maximum (1) of its volume 7, (2) of its surface S.

62. A post office problem. Find the maximum of the volume of a box,

being given that the length and girth combined do not exceed I inches.

63. A problem of Kepler. Given rf, the distance from the center of a

generator of a right cylinder to the farthermost point of the cylinder. Find

the maximum of the volume of the cylinder. ,
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PHYSICAL MATHEMATICS

The science ofphysics does not only give us [mathematicians] an opportunity
to solve problems, but helps us also to discover the means of solving them,
and it does this in two ways: it leads us to anticipate the solution and

suggests suitable lines of argument. HENRI POINCAR I

i. Optical interpretation. Mathematical problems are often inspired

by nature, or rather by our interpretation of nature, the physical sciences.

Also, the solution of a mathematical problem may be inspired by nature;

physics provides us with clues with which, left alone, we had very little chance
to provide ourselves. Our outlook would be too narrow without discussing
mathematical problems suggested by physical investigation and solved with
the help ofphysical interpretation. Here follows a first, very simple problem
of this kind.

(
1
) Nature suggests a problem. The straight line is the shortest path between

two given points. Light, travelling through the air from one point to

another, chooses this shortest path, so at least our everyday experience seems
to show. But what happens when light travels from one point to another
not directly, but undergoing a reflection on an interposed mirror? Will

light again choose the shortest path ? What is the shortest path in these

circumstances ? By considerations on the propagation of light we are led to

the following purely geometrical problem:
Given twopoints and a straight line) all in the same plane, both points on the same

side of the tine. On a given straight line, find a point such that the sum ofits distances

from the two given points be a minimum.

Let (see fig, 9.1)

A and B denote the two given points,

/ the given straight line,

X a variable point of the line /.

We consider AX + XB, the sum of two distances or, which is the same, the

1 La valeur de la science, p. 152.

142
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length of the path leading from A to X and hence to B. We are required to

find that position of X on the given line I for which the length of this path
attains its minimum.
We have seen a very similar problem before (sect. 8.2, figs. 8.1, 8.2, 8.3).

In fact, both problems have exactly the same data, and even the unknown
is of the same nature : Here, as there, we seek the position of a point on a

given line for which a certain extremum is attained. The two problems
differ only in the nature of this extremum : Here we seek to minimize the

sum of two lines
; there we sought to maximize the angle included by those

two lines.

Still, the two problems are so closely related that it is natural to try the

same method. In solving the problem of sect. 8.2, we used level lines ; let us

use them again.

Fig. 9.1. Which path is the shortest?

M
Fig. 9.2. A tangent level line.

Consider a point X that is not bound to the prescribed path but is free to

move in the whole plane. If the quantity AX + XB (which we wish to

minimize) has a constant value, how can X move? Along an ellipse with
foci A and B. Therefore, the level lines are "confbcal" ellipses, that is,

ellipses with the same foci (the given points A and B). The desired minimum
is attained at the point of contact of the prescribed path I with an ellipse the foci of
which are the given points A and B (see fig. 9.2) .

(2) Nature suggests a solution. We have found the solution, indeed. Yet,
unless we know certain geometric properties of the ellipse, our solution is not
ofmuch use. Let us make a fresh start and seek a more informative solution.

Let us visualize the physical situation that suggested our problem. The
point A is a source of light, the point B the eye ofan observer, and I marks the

position of a reflecting plane surface; we may think of the horizontal surface

of a quiet pool (which is perpendicular to the plane of fig. 9.1, and inter-

sects it in the line /). The broken line AXB represents, if the point X is

correctly chosen, the path of light. We know this path fairly well, by
experience. We suspect that the length ofthe broken line AXB is a minimum
when it represents the actual path of the reflected light.

Your eye is in the position B and you look down at the reflecting pool
observing in it the image of A. The ray of light that you perceive does not
come directly from the object A, but appears to come from a point under the
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surface of the pool. From which point? From the point .4*, the mirror

image of the object A, symmetrical to A with respect to the line /.

Introduce the point A*, suggested by your physical experience, into the

figure ! This point A* changes the face of the problem. We see a host of
new relations (fig. 9.3) which we proceed to order and to exploit rapidly.

Obviously
AX=A*X.

(A*Xis the mirror image of AX. You can also argue from the congruence
of the triangles &ACX, A*CX', the line / is the perpendicular bisector

of the segment AA*.) Therefore,

AX + XB = A*X + XB.

Fig. 9.3. A more informative solution.

Both sides of this equation are minimized by the same position ofX. Yet the

right-hand side is obviously a minimum when A*, X, and B are on the same

straight line. The straight line is the shortest.

This is the solution (see fig. 9.3). The point M, the minimum position
of Z, is obtained as intersection of the line / and of the line joining A* and B.

Obviously, AM and MB include the same angle with /. Introducing the

line MN, normal to / (parallel to A*A), we see that

AMN = /_ BMN.

The equality of these two angles characterizes the shortest path. Yet the

very same equality

angle of incidence = angle of reflection

characterises the actual path of light, as we know by experience. Therefore,
in fact, the reflected ray of light takes the shortest possible course between the

object and the eye. This discovery is due to Heron ofAlexandria.

(3) Comparing two solutions. It is often useful to look back at the completed
solution. In the present case it should be doubly useful, since we have two

solutions which we can compare with each other (under (1) and (2)). Both
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methods of solving the problem (figs. 9.2 and 9.3) must yield the same result

(imagine the two figures superposed). We can obtain the point M, the

solution of our minimum problem, by means of an ellipse tangent to /,

or by means of two rays equally inclined to /. Yet these two constructions

must agree, whatever the relative position ofthe data (the points A and B and
the line /) may be. The agreement of the two constructions involves a

geometric property of the ellipse: The two straight lines, joining the two foci

of an ellipse to any point on the periphery of the ellipse, are equally inclined to the

tangent of the ellipse at the point where they meet.

If we conceive the ellipse as a mirror and take into account the law of

reflection (which we have just discussed), we can restate the geometric

property in intuitive optical interpretation : Any ray of light coming from a

focus of an elliptic minor is reflected into the otherfocus.

(4) An application. Simple as it is, Heron's discovery deserves a place in

the history ofscience. It is the first example ofthe use ofa minimum principle
in describing physical phenomena. It is a suggestive example of inter-

relations between mathematical and physical theories. Much more general
minimum principles have been discovered after Heron and mathematical

and physical theories have been interrelated on a much grander scale, but the

first and simplest examples are in some respects the most impressive.

Looking back at the impressively successful solution under (2), we should

ask : Can you use it ? Can you use the result ? Can you use the method ?

In fact, there are several openings. We could examine the reflection of

light in a curved mirror, or successive reflections in a series of plane mirrors,

or combine the result with methods that we learned before, and so on.

Let us discuss here just one example, the problem of the "traffic center."

Three towns intend to construct three roads to a common traffic center

which should be chosen so that the total cost of road construction is a mini-

mum. If we take all this in utmost simplification, we have the following

purely geometric problem: Given three points, find afourth point so that the sum

of its distancesfrom the three given points is a minimum.

Let A, B, and C denote the three given points (towns) and X a variable

point in the plane determined by A, B, and C. We seek the minimum of

AX + BX+ CX.
This problem seems to be related to Heron's problem. We should bring

the two problems together, work out the closest possible relation between

them. If, for a moment, we take the distance CX as fixed (= r, say), the

relation appears very close indeed : Here, as there, we have to find the mini-

mum of AX + BX, the sum of the distances of one variable point from two

fixed points. The difference is that X is obliged to move along a circle here

(with radius r and center C), and along a straight line there. The former

problem was about reflection in a plane mirror, the present problem is

about reflection in a circular mirror.

Let us rely on the light: it is clever enough to find by itself the shortest
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path from A to the circular mirror and hence to B. Yet the light moves so
that the angle of incidence is equal to the angle of reflection. Therefore, in
the desired minimum position, ^AXB must be bisected by the straight line

passing through C and X (see fig. 9.4) . By the principle of partial variation
and the symmetry of the situation, /_AXC and /_BXC must be similarly
bisected. The three straight lines joining X to A, B, and C dissect the plane
into six angles, the common vertex of which is X. Focussing our attention

upon the pairs of vertical angles in fig. 9.5, we easily see that all six angles
are equal and, therefore, each ofthem is equal to 60. The three roads diverging

from the traffic center are equally inclined to each other; the angle between any two
is 120.

Fig. 9.4. Traffic center and circular mirror. Fig. 9.5. The" traffic center.

(If we remember that the method of partial variation which we have used
is subject to certain limitations, we may find a critical reexamination of our
solution advisable.)

2. Mechanical interpretation. Mathematical problems and their

solutions can be suggested by anyv
sector of our experience, by optical,

mechanical, or other phenomena^- We shall discuss next how simple
mechanical principles can help us to discover the solution.

(1) A string, ofwhich both extremities are fixed, passes through a heavy ring. Find
the position of equilibrium.

It is understood that the string is perfectly flexible and inextensible,
its weight is negligible, the ring slides along the string without friction, and
the dimensions of the ring are so small that it can be regarded as a
mathematical point.

Let A and B denote the fixed endpoints of the string and X any position
of the ring. The string forms the broken line AXB on fig. 9.6.
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The proposed problem can be solved by two different methods.

First, the ring must hang as low as possible. (In fact, the ring is heavy;
it "wants" to come as close to the ground, or to the center of the earth, as

possible.) Both parts of the inextensible string, AX and BX, are stretched,

and so the ring, sliding along the string, describes an ellipse with foci A and B.

Obviously, the position of equilibrium is at the lowest point M of the ellipse

where the tangent is horizontal.

Second, the forces acting on the point M of the string must be in equi-
librium. The weight of the ring and the tensions in the string act on the

point M. The tensions in both parts of the string, MA and MB,
are equal and directed along the string to A and B3 respectively.

Fig. 9.6. Two conditions of equilibrium.

Their resultant bisects the /_AMB and, being opposite to the weight
of the ring, is vertical.

The two solutions, however, must agree. Therefore, the lines MA and

MB, equally inclined to the vertical normal of the ellipse, are^also equally
inclined to its horizontal tangent: The two straight lines, joining the two foci of
an ellipse to any point M on the periphery, are equally inclined to the tangent at the

point M. (By keeping the length AB but changing its angle of inclination

to the horizontal, we can bring M in any desired position on one half of the

ellipse.)

We derived a former result (sect. 1(3)) by a new method which may be

capable of further applications.

(2)' We seem to have a surplus of knowledge. Without having learned

too much mechanics, we know enough of it, it seems, not only to find a

solution of a proposed mechanical problem, but to find two solutions,

based on two different principles. These two solutions, compared, led us

to an interesting geometrical fact. Could we divert some more of this

overflow of mechanical knowledge into other channels?

With a little luck, we can imagine a mechanism to solve the problem of

the traffic center considered above (sect. 1 (4)) : Three pulleys turn around

axles (nails) fixed in a vertical wall at the points A> B, and C; see fig. 9.7.
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Three strings, XAP, XBQ, and XCR in fig. 9.7, pass over the pulleys at A, B,
and C, respectively. At their common endpoint X the three strings are

attached together and each carries a weight, P, Q,, and R, respectively, at its

other end. These weights P, Q, and R are equal. Our problem is to find

the position of equilibrium.
Of course, this problem must be understood with the usual simplifica-

tions: The strings are perfectly flexible and inextensible, the friction, the

weight of the strings, and the dimensions of the pulleys are negligible (the

pulleys are treated as points). As under (1) we can solve the problem by
two different methods.

Fig. 9.7. Traffic center by mechanical device.

First, the three weights must hang jointly as low as possible. That is,

the sum of their distances from a given horizontal level (the ground) must be

a minimum. (That is, the potential energy ofthe system must be a minimum ;

remember that the three weights are equal.) Therefore AP + BQ,+ CR
must be a maximum. Therefore, since the length ofeach string is invariable,

AX + BX + CX must be a minimum and so our problem turns out to be

identical with the problem of the traffic center of sect. 1 (4), fig. 9.4, 9.5.

Second, the forces acting at the point X must be in equilibrium. The
three equal weights pull, each at its own string, with equal force and these

forces are transmitted undiminished by the frictionless pulleys. Three equal
forces acting at X along the lines XA, XB, and XG> respectively, must be in

equilibrium. Obviously, by symmetry, they must be equally inclined to

each other; the angle between any two of the three strings meeting at X is

120. (The triangle formed by the three forces is equilateral, its exterior

angles are 120.)
This confirms the solution of sect. 1 (4). (On the other hand, the

mechanical interpretation may emphasize the necessity of some restriction

concerning the configuration of the three points A, By and C.)
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3, Reinterpretation. A stick, half immersed in water, appears sharply
bent. We conclude hence that the light that follows a straight course in the

water as in the air undergoes an abrupt change ofdirection in emerging from
the water into the air. This is the phenomenon ofrefraction a phenomenon
apparently more complicated and more difficult to understand than reflec-

tion. The law of refraction, after unsuccessful efforts by Kepler and others,

was finally discovered by Snellius (about 1621) and published by Descartes.

Still later came Fermat (1601-1665) who took up the thread of ideas started

by Heron.

The light, proceeding from an object A under water to an eye B above the

water describes a broken line with an angular point on the surface that separ-
ates the air from the water; see fig 9.8. The straight line is, however, the

shortest path between A and B, and so the light, in its transition from one
medium into another, fails to obey Heron's principle. This is disappointing;
we do not like to admit that a simple rule that holds good in two cases (direct

propagation and reflection) fails in a third case (refraction). Fermat hit

upon an expedient. He was familiar with the idea that the light takes time

to travel from one point to another, that it travels with a certain (finite)

speed; in fact, Galileo proposed a method for measuring the velocity of

light. Perhaps the light that travels with a certain velocity through the air

travels with another velocity through the water; such a difference in velocity
could explain, perhaps, the phenomenon of refraction. As long as it

travels at constant speed, the light, in choosing the shortest course, chooses also

the fastest course. If the velocity depends on the medium traversed, the

shortest course is no more necessarily the fastest. Perhaps the light chooses

always the fastest course, also in proceeding from the water into the air.

This train of ideas leads to a clear problem of minimum (see fig. 9.8) :

Given two points A and B, a straight line I separating A from B, and two velocities

u and v, find the minimum time needed in travellingfrom A to B; you are supposed to

travelfrom A to I with the velocity u, andfrom I to B with the velocity v.

Obviously, it is the quickest to follow a straight line from A to a certain

point X on I, and some other straight line from X to B. The problem consists

essentially in finding the point X. Now, in uniform motion time equals
distance divided by speed. Therefore, the time spent in travelling from A
to X and hence to B is

AX XB
u v

This quantity should be made a minimum by the suitable choice of the

point X on /. We have to find X, being given A, B, u> v> and /.

To solve this problem without differential calculus is not too easy.

Fermat solved it by inventing a method that eventually led to the differential

calculus. We rather follow the lead given by the examples of the

foregoing section. With a little luck, we can succeed in imagining a
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mechanism that solves for us the proposed problem of minimum;
see fig. 9.9.

A ring X can slide along a fixed horizontal rod / that passes through it.

Two strings XAP and ZBQ^are attached to the ring X. Each of these strings

passes over a pulley (at A and at B, respectively) and carries a weight at

its other end (at P and at Q,, respectively). The main point is to choose the

weights. These weights cannot be equal; if they were, the line AXE would
be straight in the equilibrium position (this seems plausible at least) and so

AXE would not be fit to represent the path of refracted light. Let us post-

pone the choice of the weights, but let us introduce a suitable notation. We

Fig. 9.8. Refraction. Fig. 9.9. Refraction by mechanical device.

call p the weight at the endpoint P of the first string and q the weight at the

endpoint Q,of the second string. And now we have to find the position of

equilibrium. (We assume the usual simplifications: the rod is perfectly

inflexible, the strings perfectly flexible, but also inextensible ;
we disregard

the friction, the weight and stiffness of the strings, the dimensions of the

pulleys, and those of the ring.) As in sect. 2, we solve our problem by two

different methods.

First, the two weights must hang jointly as low as possible. (That is, the

potential energy of the system must be a minimum.) This implies that

must be a maximum. Therefore, since the length ofeach string is invariable,

AX - p + XE q
must be a minimum.

This is very close to Fermat's problem, but not exactly the same. Yet
the two problems, the optical and the mechanical, coincide mathematically
if we choose

#=!/, ?=!/.
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Then the problem ofequilibrium (fig. 9.9) requires, just as Fermat's problem
of the fastest travel, that

AX XB
u v

be a minimum. This we found in looking at the equilibrium of the

mechanical system in fig. 9.9 from a first viewpoint.

Second, the forces acting at the point X must be in equilibrium. The

pull of the weights is transmitted undiminished by the frictionless pulleys.

Two forces, of magnitude Iju and 1/0, respectively, act on the ring, each

pulling it in the direction ofthe respective string. They cannot move it in the

Fig. 9, 10. The law of refraction.

vertical direction, because the rod / passing through the ring is perfectly rigid

(there is a vertical reaction of unlimited amount due to the rod). Yet the

horizontal components of the two pulls, which are opposite in direction, must

cancel, must be equal in magnitude. In order to express this relation, we
introduce the angles a and /} between the vertical through the point X and
the two strings; see fig. 9.10. The equality of the horizontal components
is expressed by

- sin a = - sin 8
u v

or
sin a u

sin )3 v

This is the condition of minimum.

Now, let us return to the optical interpretation. The angle a between

the incoming ray and the normal to the refracting surface is called the angle
of incidence, and /? between the outgoing ray and the normal the angle of

refraction. The ratio ujv of the velocities depends on the two media, water

and air, but not on geometric circumstances, as the situation of the points
A and B. Therefore, the condition of minimum requires that the sines of
the angles ofincidence and refraction are in a constant ratio depending on the two media

alone (called nowadays the refractive index). .Fermat's "principle of least

time" leads to Snellius' law ofrefraction, confirmed by countless observations.
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We reconstructed as well as we could the birth of an important discovery.
The procedure of solution (that we used instead of Fermat's) is also worth

noticing. Our problem had from the start a physical (optical) interpreta-
tion. Yet, in order to solve it, we invented another physical (mechanical)

interpretation. Our solution was a solution by reinterpretation. Such solutions

may reveal new analogies between different physical phenomena and have a

peculiar artistic quality.

4. Jean Bernoulli's discovery of the Brachistochrone. A heavy
material point starts from rest at the point A and glides without friction

along an inclined plane to a lower point B. The material point starting

Fig. 9, 1 1 . Path of a material point.

from rest could also swing from A to B along a circular arc, as the bob of a

pendulum. Which motion takes less time, that along the straight line or

that along the circular arc? Galileo thought that the descent along the

circular arc is faster. Jean Bernoulli imagined an arbitrary curve in the

vertical plane through A and B connecting these two points. There are

infinitely many such curves, and he undertook to find the curve that makes
the time of descent a minimum; this curve is called the "curve of fastest

descent** or the "brachistochrone." We wish to understandJean Bernoulli's

wonderfully imaginative solution of his problem.

We place an arbitrary curve descending from A to B in a coordinate

system; see fig. 9.1 1. We choose A as the origin, the #-axis horizontal, and
the j-axis vertically downward. We focus the moment when the material

point sliding down the curve passes a certain point (#,jy) with a certain

velocity v. We have the relation

*2/2 = gy

which was perfectly familiar to Bernoulli; we derive it today from the
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conservation of energy. That is, whatever the path of the descent may be, v9

the velocity attained depends only on y, the depth of the descent :

(i) *=W2
.

What does this mean ? Let us try to see intuitively the significance of this

basic fact.

We draw horizontal lines (see fig. 9.11) dividing the plane in which the

material point descends into thin horizontal layers. The descending
material point crosses these layers one after the other. Its velocity does not

depend on the path that it took, but depends only on the layer that it is just

crossing; its velocity varies from layer to layer. Where have we seen such

a situation ? When the light of the sun comes down to us it crosses several

layers of air each of which is of a different density; therefore, the velocity
of light varies from layer to layer. The proposed mechanical problem
admits an optical ^interpretation.

We see now fig. 9.11 in a new context. We regard this figure as represent-

ing an optically inhomogeneous medium. This medium is stratified, has

strata of different quality; the velocity of light in the horizontal layer at

the depthy is (2gy)
112

. The light crossing this medium from A to B (from one

of the given points to the other) could travel along various curves. Yet the

light chooses the fastest course ;
it travels actually along the curve that renders

the time of travel a minimum. Therefore, the actual path of light} traversing

the described inhomogeneous, stratified medium from A to B, is the brachistochrone !

Yet the actual path of light is governed by Snellius
5 law of refraction :

the solution suddenly appears within reach. Jean Bernoulli's imaginative

reinterpretation renders accessible a problem that seemed entirely novel

and inaccessible.

There still remains some work to do, but it demands incomparably less

originality. In order to make Snellius' law applicable in its familiar form

(which we have discussed in the preceding sect. 3) we change again our

interpretation offig. 9.11, slightly : the velocity v should not vary continuously
with y in infinitesimal steps, but discontinuously, in small steps. We
imagine several horizontal layers of transparent matter (several plates of

glass) each somewhat different optically from its neighbors. Let v, v', v",

0"', ... be the velocity oflight in the successive layers, and let the light crossing

them successively include the angle a, a', a", a"', . . . with the vertical,

respectively; see fig. 9.12. By the law of Snellius (see sect. 3)

sin a sin a' sin a" sin a'*

v"

Now we may return from the medium consisting ofthin plates to the stratified
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medium in which v varies continuously with the depth. (Let the plates
become infinitely thin.) We see that

/
(2)

sn a = const.

along the path of light.

Let ft be the angle included by the tangent to the curve with the horizontal.
Then

a + =90, tanj8= 4?/<k=/
and so

(3) sin a = cos ft
=

(1 +/*)-i/2-

V

V"

Fig. 9.12. Path of light.

We combine the equations (1), (2), and (3) (derived from mechanics,

optics, and the calculus, respectively) introduce a suitable notation for the

constant arising in (2), and obtain so

y(\

c is a positive constant. We obtained a differential equation of the first

order for the brachistochrone. Finding the curves satisfying such an equa-
tion was a problem familiar to Bernoulli. We need not go into detail here

(see, however, ex. 31): the brachistochrone, determined by the differential

equation, turns out to be a cycloid. (The cycloid is described by a point in

the circumference of a circle that rolls upon a straight line; in our case the

straight line is the #-axis and the rolling proceeds upside down: the circle

rolls under the #-axis.)

Let us observe, however, that we can see intuitively without resorting to

formulas, that Snellius' law implies a differential equation. In fact, this

law determines the directions ofthe successive elements ofthe path represented
in fig. 9.12, and this is precisely what a differential equation does.
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Jean Bernoulli's solution of the problem of the brachistochrone, that we
have discussed here, has a peculiar artistic quality. Looking at fig. 9.1 1 or

fig. 9.12, we may see intuitively the key idea of the solution. If we can see

this idea clearly, without effort, anticipating what it implies, we may notice

that there is a real work of art before us.

The key idea of Jean Bernoulli's solution is, of course, reinterpretation.
The geometric figure (fig. 9.11 or 9.12) is conceived successively in two
different interpretations, is seen in two different "contexts": first in a
mechanical context, then in an optical context. Does any discovery
consist in an unexpected contact and subsequent interpenetration of two
different contexts ?

5. Archimedes' discovery of the integral calculus. It so happens
that one of the greatest mathematical discoveries of all times was guided by
physical intuition. I mean Archimedes' discovery of that branch of science

that we call today the integral calculus. Archimedes found the area of the

parabolic segment, the volume ofthe sphere and about a dozen similar results

by a uniform method in which the idea of equilibrium plays an important
role. As he says himself, he "investigated some problems in mathematics

by means of mechanics."2

If we wish to understand Archimedes' work, we have to know something
about the state of knowledge from which he started.

The geometry of the Greeks attained its peak in Archimedes' time;
Eudoxus and Euclid were his predecessors, Apollonius his contemporary.
We have to mention a few specific points that may have influenced

Archimedes' discovery.
As Archimedes himself relates, Democritus found the volume of the cone;

he stated that it is one-third of the volume of a cylinder with the same base

and the same altitude. We know nothing about Democritus* method, but

there seems to be some reason to suspect that he considered what we would
call today a variable cross-section of the cone parallel to its base.3

Eudoxus was the first to prove Democritus' statement. In proving this and
similar results, Eudoxus invented his "method of exhaustion" and set a
standard of rigor for Greek mathematics.

We have to realize that the Greeks knew, in a certain sense, "coordinate

geometry." They were used to handle loci in a plane by considering the

distances of a moving point from two fixed axes of reference. If the sum of

the squares of these distances is constant and the axes of reference are per-

pendicular to each other, the locus is a circle this proposition belongs to

coordinate geometry, but not yet to analytic geometry. Analytic geometry

2 The Method of Archimedes, edited by Thomas L. Heath, Cambridge, 1912. Cf. p. 13.

This booklet will be quoted as Method in the following footnotes. See also

d'Archimede, translated by P. Ver Eecke, pp. 474-519.
3 Cf. Method, pp. 10-11.
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begins in the moment when we express the relation mentioned in algebraic

symbols as

The Mechanics of the Greeks never attained the excellence of their

Geometry, and started much later. Ifwe take vague discussions by Aristotle

and others for what they are worth, we can say that Mechanics as a science

begins with Archimedes. He discovered, as everybody knows, the law of

floating bodies. He also discovered the principle of the lever and the main

properties of the center of gravity which we shall need in a moment.
Now we are prepared for discussing the most spectacular example of

Archimedes* work; we wish to find, with his method, the volume of the

sphere. Archimedes regards the sphere as generated by a revolving circle,

and he regards the circle as a locus, characterized by a relation between the

distances of a variable point from two fixed rectangular axes of reference.

Written in modern notation, this relation is

the equation of a circle with radius a that touches the j;-axis at the origin.
See fig. 9.13 which differs only slightly from Archimedes' original figure;
the circle, revolving about the #-axis, generates a sphere. I think that the

use ofmodern notation does not distort Archimedes' idea. On the contrary,
it seems to me that this notation is suggestive. It suggests motives which

may lead us to Archimedes' idea today and which are, perhaps, not too

different from the motives that led Archimedes himself to his discovery.
In the equation of the circle there is the term jy

2
. Observe that rry^ is

the area of a variable cross-section of the sphere. Yet Democritus found the

volume of the cone by examining the variation of its cross-section. This

leads us to rewriting the equation of the circle in the form

Trx2 + 7T?
2 = 7r2ax.

Now we can interpret TTX* as the variable cross-section of a cone, generated

by the rotation of the linej = x about the #-axis, see fig. 9.13. This suggests
to seek an analogous interpretation of the remaining term ir2ax. If we do
not see such an interpretation, we may try to rewrite the equation in still

other shapes, and so we have a chance to hit upon the form

(A) 2a(iry* + TTX*)
= X7r(2a}\

Much is concentrated in this equation (A). Looking at equation (A),

noticing the various lengths and areas arising in it and suitably disposing them

in the figure, we may witness the birth of a great idea; it will be born from the

intimate union of formula (A) with fig. 9.13.

We notice the areas of three circular disks, Try
2

, TTX*} and 7r(20}
2

. The
three circles are the intersections of the same plane with three solids of
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revolution. The plane is perpendicular to the #-axis and at the distance x
from the origin 0. The three solids of revolution are a sphere, a cone, and a

cylinder. They are described by the three lines the equations of which are

(A),jy = x, andjv = 2a, respectively, when the right hand portion of fig. 9.13

rotates about the Ar-axis. The cone and the cylinder have the same base

and the same altitude. The radius of the common base and the common
altitude have the same length 2a. The vertex of the cone is at the origin 0.
Archimedes treats differently the disks the areas of which appear on

different sides of the equation (A). He leaves the disk with radius 2a>

Fig. 9.13. The birth of the Integral Calculus.

cross-section of the cylinder, in its original position, at the distance x from
the origin. Yet he removes the disks with radii y and xt cross-sections

of the sphere and the cone, respectively, from their original position and

transports them to the point H of the #-axis with abscissa 2a. We let

these disks with radii y and x hang with their center vertically under H>
suspended by a string of negligible weight, see fig. 9.13. (This string is an

addition, of negligible weight, to Archimedes' original figure.)

Let us regard the x-axis as a lever, a rigid bar of negligible weight, and the

origin as its fulcrum or point of suspension. Equation (A) deals with

moments. (A moment is the product of the weight and the arm of the lever.)

Equation (A) expresses that the moment ofthe two disks on the left-hand side

equals the moment of the one disk on the right-hand side and so, by the

mechanical law discovered by Archimedes, the lever is in equilibrium.
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As x varies from to 2<z, we obtain all cross-sections of the cylinder; these

cross-sections Jill the cylinder. To each cross-section of the cylinder there

correspond two cross-sections suspended from the point H and these cross-

sections Jill the sphere and the cone, respectively. As their corresponding

cross-sections, the sphere and the cone, hanging from H, are in equilibrium with the

cylinder. Therefore, by Archimedes' mechanical law, the moments must be

equal. Let us call V the volume of the sphere, let us recall the expression
for the volume of the cone (due to Democritus) and also the volume of the

cylinder and the obvious location of its center of gravity. Passing from
the moments ofthe cross-sections to the moments of the corresponding solids,

we are led from equation (A) to

(B)

which readily yields
4

4-Tnz3

7== ~*
Looking back at the foregoing, we see that the decisive step is that from (A)

to (B), from the filling cross-sections to the full solids. Yet this step is

only heuristically assumed, not logically justified. It is plausible, even very

plausible, but not demonstrative. It is a guess, not a proof, And Archimedes,

representing the great tradition of Greek mathematical rigor, knows this full

well: "The fact at which we arrived is not actually demonstrated by the

argument used; but the argument has given a sort of indication that the

conclusion is true." 5 This guess, however, is a guess with a prospect. The
idea goes much beyond the requirements of the problem at hand, and has

an immensely greater scope. The passage from (A) to (B), from the cross-

section to the whole solid is, in more modern language, the transition from
the infinitesimal part to the total quantity, from the differential to the integral.

This transition is a great beginning, and Archimedes, who was a great enough
man to see himself in historical perspective, knew it full well: "I am
persuaded that this method will be of no little service to mathematics. For
I foresee that this method, once understood, will be used to discover other

theorems which have not yet occurred to me, by other mathematicians, now
living or yet unborn." 6

EXAMPLES AND COMMENTS ON CHAPTER DC.

i. Given in a plane a point P and two intersecting lines / and m, none of

which passes through P. Let T be a variable point on / and Z a variable

4 I presented this derivation several times in my classes and once I received a compliment
I am proud of. After my usual "Are there any questions?'* at the end of the derivation, a

boy asked: "Who paid Archimedes for this research?" I must confess that I was not

prompt enough to answer: "In those days such research was sponsored only by Urania,
the Muse of Science."

Method, p. 17,

Method, p. 14.
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point on m. Determine 7 and Z so that the perimeter of APfZ be a
minimum.

Give two solutions, one by physical considerations, the other by geometry.

2. Three circles in a plane, exterior to each other, are given in position.
Find the triangle with minimum perimeter that has one vertex on each circle.

Give two different physical interpretations.

3. Triangle with minimum perimeter inscribed in a given triangle. Given J\ABC*
Find three points X, Y, and Z on the sides BC, CA, and AB of the triangle,

respectively, such that the perimeter of &XYZ is a minimum.
Give two different physical interpretations.

4. Generalize ex. 3.

5. Criticize the solution of ex. 1. Does it apply to all cases?

6. Criticize the solution of ex. 3. Does it apply to all cases?

7. Give a rigorous solution ofex. 3 for acute triangles. [Partial variation,
ex. 1, ex. 5.]

8. Criticize the solutions of sect. 1 (4) and sect. 2 (2) for the problem of
the traffic center. Do they apply to all cases ?

9. Traffic center offour points in space. Given a tetrahedron with vertices

at the points A, B, C, and D. Assume that there is a point X inside the

tetrahedron such that the sum of its distances from the four vertices

AX+BX + CX+DX
is a minimum. Show that the angles /_AXB and /JCXD are equal and
are bisected by the same straight line; point out other pairs of angles

similarly related. [Do you know a related problem? An analogous

problem ? Could you use its result, or the method of its solution ?]

10. Traffic center offour points in a plane. Consider the extreme case of

ex. 9 in which the points A, B, C, and Z), in the same plane, are the four

vertices of a convex quadrilateral ABCD. Do the statements of ex. 9

remain valid in this extreme case?

ii Traffic networkforfour points. Let A, B9 C, and D be four fixed points,

and X and Y two variable points, in a plane. If the minimum ofthe sum of

five distances AX + BX+ XY + YC + YD is so attained that all six

points A, B> C, D, JT, and Y are distinct, the three lines XA9 XB, and XY are

equally inclined to each other and so are the three lines FC, FZ), and YX.

12. Unfold and straighten. There is still another useful interpretation of

fig. 9.3. Draw /, A*X, and XB on a sheet of transparent paper, then fold

the sheet along the line /: you obtain fig. 9. 1 (with A* instead ofA}. Imagine
the fig. 9.1 originally drawn in this sophisticated manner on a folded

transparent sheet. In order to find the position ofX that renders AX + XB
a minimum, unfold the sheet, draw a straight line from A (or rather A* in

fig. 9.3) to B
9
and then fold the sheet back.
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13. Billiards. On a rectangular billiard table there is a ball at the point P.

It is required to drive the ball in such a direction that after four successive

reflections on the four sides of the rectangle the ball should return to its

original position P. [Fig. 9.14.]

14. Geophysical exploration. At the point E of the horizontal surface of the

earth an explosion takes place. The sound of this explosion is propagated
in the interior of the earth and reflected by an oblique plane layer OR which
includes the angle a with the earth's surface. The sound coming from E
can attain a listening post L at another point of the earth's surface in n

Fig. 9.14. The reflected billiard table.

different ways. (One of the n paths is constructed in fig. 9. 1 5 by the method
of ex. 12.) Being given n (observed by suitable apparatus) give limits

between which a is included.

15* Given, in space, a straight line I and two points, A and B, not on /.

On the line / find a point X such that the sum of its distances from the two

given points AX + XB, be a minimum.
Do you know a related problem ? A more special problem ? Could you

use its result, or the method of its solution ?

16. Solve ex. 15 by using a tangent level surface.

17. Solve ex. 15 by paper-folding.

18. Solve ex. 15 by mechanical interpretation. Is the solution consistent

with ex. 16 and 17?

19. Given three skew straight lines in space, a, b, and c. Show that the

triangle with one vertex on each given line and minimum perimeter has the

following property: the line joining its vertex on the line a to the center of

its inscribed circle is perpendicular to a.

20. Consider the particular case of ex. 19 in which the three skew lines

are three edges of a cube. Where are the vertices of the desired triangle ?
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Where is the center of its inscribed circle? What is its perimeter, if the

volume of the cube is

21. Given three skew straight lines in space, a, b, and c. Let Xvary along
a, Y along b} Z along c, and T freely in space* Find the minimum of

XT + TT + ZT.

22. Specialize ex. 21 as ex. 20 specializes ex. 19.

23. Shortest lines on a polyhedral surface. The end walls of a rectangular
room are squares; the room is 20 feet long, 8 feet wide, and 8 feet high. A
spider is on one of the end walls, 7 feet above the floor and midway between
the side walls. The spider perceives a fly on the opposite wall 1 foot above

O L E
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Fig. 9.15. Reflections underground.

the floor and also midway between the side walls. Show that the spider has

less than 28 feet to travel along the walls, or the ceiling, or the floor, to attain

the fly. [Ex. 17.]

24. Shortest lines (geodesies) on a curved surface. We regard a curved surface

as the limit of a polyhedron. As the polyhedron approaches the curved

surface, the number of its faces tends to oo, the longest diagonal of any face

tends to 0, and the faces tend to become tangential to the surface.

On a polyhedral surface, the shortest line between two points is a polygon.
It may be a plane polygon all points ofwhich lie in one plane, or it may be a

skew polygon the points of which are not contained in one plane. (Both
cases can be illustrated by the solution of ex. 23, the first case by (1), the

second case by (2) and (3).)

On a curved surface, a shortest line is called a "geodesic" because shortest

lines play a role in geodesy, the study ofthe earth's surface. A geodesic may
be a plane curve, fully contained in one plane, or it may be a "space curve"

("tortuous" curve) the points of which cannot be contained in one plane.
At any rate, a geodesic must have some intrinsic geometric relation to the

surface on which it is a shortest line. What is this relation ?

(1) We consider the polygonal line ABC . . . L. Even if ABC ... L is a

skew polygon, two consecutive segments of it, as HI and 7J, lie in the same
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plane. IfABC ... L is the shortest line on a polyhedral surface between its

endpoints A and L, each of its intermediate vertices B, C, D, , . .
, H, 7,

J, . . . K lies on an edge of the polyhedron. The plane that contains the

segments HI and IJ contains also the bisector of /_HIJ, and this bisector is

perpendicular -to the edge ofthe polyhedron that passes through /; see ex. 16
or ex. 18.

We consider a curve. Even if the curve is tortuous, an infinitesimal

(very short) arc of it can be regarded as a plane (almost plane) arc. The
plane of the infinitesimal arc is the osculating plane at its midpoint. The
osculating plane is analogous to the plane in which two successive segments of
a skew polygon lie. If the curve is a geodesic, that is, a shortest line on a
surface, analogy suggests that the osculating plane of a geodesic at a point passes

through the normal to the surface at that point.

(2) A geodesic can be interpreted physically as a rubber band stretched

along a smooth (frictionless) surface. Let us examine the equilibrium of a
small portion of the rubber band. The forces acting on this portion are two
tensions of equal amount acting tangentially at the two endpoints of the
short arc, and the reaction of the frictionless surface acting normally to it.

The reaction of the surface, compounded into a resultant force, and the two
tensions at the endpoints are in equilibrium. Therefore, these three forces
are parallel to the same plane. Yet two "neighboring tangents" determine
the osculating plane which, therefore, contains the normal to the surface.

(3) Each arc of a geodesic is a geodesic. In fact, if in a curve there is a

portion that is not the shortest between its endpoints and, therefore, can be
replaced by a shorter arc between the same endpoints, the whole curve cannot
be a shortest line. Hence it is natural to expect that a geodesic possesses
some distinctive property in each of its points. The property suggested
by two very different heuristic considerations, (1) and (2), is a property of
this kind.

(4) Look out for examples to test the heuristically obtained result.

What are the shortest lines on a sphere? Do they have the properly
suggested ? Do other lines on the spherical surface have the same properly?

25. A material point moves without friction on a smooth rigid surface.

No exterior forces (such as gravitation) act on the point (except, of course,
the reaction of the surface). Give reasons why the point should be expected
to describe a geodesic.

6. A construction by paper-folding. Find a polygon inscribed in a circle if

the sides are given in magnitude and in succession.

Let fl^ #2, fcjj
- &n denote the given lengths. The side of length al is

followed by the side of length a2) this one by the side of length 0g, and so on;
the side oflength an is followed by the side oflength a^ It is understood that

any of the lengths al9 2,
. . . an is less than the sum of the remaining n I

lengths.
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There is a beautiful solution by paper-folding. Draw al3 a2> . . . an on
cardboard as successive chords in a sufficiently large circle so that two
consecutive chords have a common endpoint. Draw the radii from these

endpoints to the center of the circle. Cut out the polygon bounded by the n

chords and the two extreme radii, fold the cardboard along the n 1 other

radii, and paste together the two radii along which the cardboard was cut.

You obtain so an open polyhedral surface; it consists of n rigid isosceles

triangles, is bounded by n free edges, of lengths al9 <z2 >
a>& respectively,

and has n dihedral angles which can still be varied. (We suppose that

>3.)
What can you do to this polyhedral surface to solve the proposed problem?

27. The die is cast. The mass in the interior of a heavy rigid convex

polyhedron need not be uniformly distributed. In fact, we can imagine
a suitable heterogeneous distribution of mass the center of gravity of which
coincides with an arbitrarily assigned interior point of the polyhedron.
Thrown on the horizontal floor, the polyhedron will come to rest on one of

its faces. This yields a mechanical argument for the following geometrical

proposition.
Given any convex polyhedron P and any point C in the interior of P,

we can find a face F of P with the following property: the foot of the

perpendicular drawn from C to the plane ofF is an interior point ofF.

Find a geometrical proof for this proposition. (Observe that the face F
may, but need not, be uniquely determined by the property stated.)

28. The Deluge. There are three kinds of remarkable points on a contour

map: peaks, passes (or saddle points with a horizontal tangent plane),
and "deeps/

1

(On fig. 8.7 P is a peak, S a pass.) A "deep" is the deepest

point in the bottom of a valley from which the water finds no outlet. A
deep is an "inverted" peak: on the contour-map, regard any level line of

elevation A as if it had the elevation h. Then the map is "inverted"; it

becomes the map ofa landscape under the sea, the peaks become deeps, the

deeps become peaks, but the passes remain passes. There is a remarkable

connection between these three kinds of points,

Suppose that there are P peaks, D deeps, and Spasses on an island. Then

In order to derive this theorem intuitively, we imagine that a persistent

rain causes the lake around the island to rise till finally the whole island is

submerged. We may admit that all P peaks are equally high, and that all

D deeps are on, or under, the level of the lake. In fact, we can imagine the

peaks raised and the deeps depressed without changing their number. As it

starts raining, the water gathers in the deeps; we have, counting the lake,

D + 1 sheets of water and 1 island
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at the beginning. Just before the island is engulfed, only the peaks show
above the water and so we have

1 sheet of water and P islands

at the end. How did the transition take place?
Let us imagine that, at any time, the several sheets of water are at the

same elevation. If there is no pass precisely at this elevation, the water can
rise a little more without changing the number of the sheets of water, or the

number of the islands. When, however, the rising water just attains a

pass, the least subsequent rise of its level will either unite two formerly

Fig. 9.16. Neighborhood
of a peak.

Low
Fig. 9.17. Neighborhood of a pass.

separated sheets of water or isolate a piece of land. Therefore, each pass
either decreases the number of the sheets of water by one unit, or increases

the number ofislands by one unit. Looking at the total change, we obtain

(Z)+1-1) + (P-1) = S

which is the desired theorem.

(a) Suppose now that there are P peaks, D deeps, and S passes on the whole

globe (some of them are under water) and show that

(b) The last relation reminds us of Euler's theorem (see sect. 3.1-3.7 and
ex. 3.1-3.9). Could you use Euler's theorem to construct a geometrical

proof for the result just obtained by an intuitive argument ? [Figs. 9. 16 and
9.17 show important pieces of a more complete map in which not only some
level lines are indicated, but also some "lines of steepest descent" which
are perpendicular to the level lines. These two kinds of lines subdivide the

globe's surface into triangles and quadrilaterals. Cf. ex. 3.2.]

(c) Are there any remarks on the method?
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29* Not so deep as a well. In order to find d, the depth ofa well, you drop a

stone into the well and measure the time t between the moment of dropping
the stone and the moment when you hear the stone striking the water.

(a) Given g, the gravitational acceleration, and e, the velocity of sound,

express d in terms of g, c, and t. (Neglect the resistance of the air.)

(b) If the well is, not too deep, even the final velocity of the stone will be
a small fraction of the velocity of sound and so we may expect that much the

greater part ofthe measured time t is taken up by the fall ofthe stone. Hence
we should expect that

d = gt
z
j2 correction

where the correction is relatively small when t is small.

In order to examine this guess, expand the expression obtained as answer
to (a) in powers of t and retain the first two non-vanishing terms.

(c) What would you regard as typical in this example?

30* A useful extreme case. An ellipse revolving about its major axis

describes a so-called prolate spheroid, or egg-shaped ellipsoid of revolution.

The foci of the rotating ellipse do not rotate: they are on the axis of revolu-

tion and are also called the foci of the prolate spheroid. We could make an

elliptic mirror by covering the inner, concave side of the surface with

polished metal; all light coining from one focus is reflected into the other

focus by such an elliptic mirror; cf. sect. 1 (3), Elliptic mirrors are very
seldom used in practice, but there is a limiting case which is very important
in astronomy. What happens if one of the foci of the ellipsoid is fixed and
the other tends to infinity?

31. Solve the differential equation of the brachistochrone found in sect. 4.

32, The Calculus of Variations is concerned with problems on themaxima and
minima of quantities which depend on the shape and size of a variable curve.

Such is the problem of the brachistochrone solved in sect. 4 by optical inter-

pretation. The problem of geodesies, or shortest lines on a curved surface,

discussed in ex. 24, also belongs to the Calculus of Variations, and the

"isoperimetric problem" that will be treated in the next chapter belongs
there too. Physical considerations, which can solve various problems on
maxima and minima as we have seen, can also solve some problems of the

Calculus of Variations. We sketch an example.
Find the curve with given length and given endpoints that has the center of gravity

of minimum elevation. It is assumed that the density of heavy matter is con-

stant along the curve which we regard as a uniform cord or chain. When
the center ofgravity of the chain attains its lowest possible position, the chain

is in equilibrium. Now we can investigate the equilibrium of the chain in

examining the forces acting on it, its weight and its tension. This investiga-

tion leads to a differential equation that determines the desired curve, the

catenary. We do not go into detail. Wejust wish to remark that the solution
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sketched has the same basic idea as the mechanical solutions considered in

sect. 2.

33. From the equilibrium of the cross-sections to the equilibrium of the solids.

Archimedes did not state explicitly the general principle of his method, but
he applied it to several examples, computing volumes, areas and centers of

gravity, and the variety of these applications makes the principle perfectly
clear. Let us apply the variant of Archimedes' method that has been

presented in sect. 5 to some of his examples.
'

Prove Proposition 7 of the Method: Any segment of the sphere has to the

cone with the same base and height the ratio that the sum of the radius of

the sphere and the height of the complementary segment has to the height
of the complementary segment.

34. Prove Proposition 6 of the Method: The center of gravity of a hemi-

sphere is on its axis and divides this axis so that the portion adjacent to the

vertex of the hemisphere has to the remaining portion the ratio of 5 to 3.

35. Prove Proposition 9 of the Method: The center of gravity of any seg-
ment ofa sphere is on its axis and divides this axis so that the portion adjacent
to the vertex has to the remaining part the ratio that the sum of the axis

of the segment and four times the axis of the complementary segment has

to the sum ofthe axis of the segment and double the axis ofthe complementary
segment.

36. Prove Proposition 4 of the Method: Any segment of a paraboloid of

revolution cut off by a plane at right angles to the axis has the ratio of 3 to 2

to the cone that has the same base and the same height as the segment.

37. Prove Proposition 5 of the Method: The center of gravity of a segment
of a paraboloid of revolution cut off by a plane at right angles to the axis is

on the axis and divides it so that the portion adjacent to the vertex is double
the remaining portion.

38. Archimedes' Method in retrospect. What was in Archimedes' mind as he
discovered his method, we shall never know and we can only vaguely guess.
Yet we can set up a clear and fairly short list of such mathematical rules

(well known today but unformulated in Archimedes5

time) as we need to

solve, with contemporary methods, the problems that Archimedes solved

with his method. We need :

(1) Two general rules of the integral calculus :

M*)& = c J/(*)&, /[/(*) + *(*)]& = //(*)<** + /*(*)&;

c is a constant, f(x) and g(x) are functions.

(2) The value of four integrals:

= x+*l(n + 1) for n = 0, 1, 2, 3.
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(3) The geometric interpretation of two integrals:

2,(*) denotes a length in plane geometry and an area in solid geometry;
.t denotes in both cases the variable cross-section of a figure determined by
a. plane perpendicular to the x-axis. The first integral expresses an area
Dr a volume, the second integral the moment of a uniformly filled area or

volume, according as we consider a problem of plane or solid geometry.
Archimedes did not formulate these rules, although we cannot help

thinking that he possessed them, in some form or other. He refrained even
from formulating in general terms the underlying process, the passage from
the variable cross-section to the area or volume, from the integrand to the

integral as we would say today. He described this process in particular
cases, he applied it to an admirable variety of cases, he doubtless knew it

intimately, but he regarded it as merely heuristic, and he thought this a good
enough reason for refraining from stating it generally.

Quote simple geometric facts which can yield intuitively the values of the
four integrals listed under (2).

7

7 For other remarks on Archimedes* discovery cf. B. L. van der Waerden, EUmente der

Mathematiky vol. 8, 1953, p. 121-129, and vol. 9, 1954, p. 1-9.
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THE ISOPERIMETRIG PROBLEM

The circle is thefirst, the most simple, and the most perfect figure. PROCLUS1

Lo cerchio e perfettissima figura. DANTE2

i. Descartes* inductive reasons. In Descartes' unfinished work
Regulae ad Directionem Ingenii (or Rulesfor the Direction of the Mind, which, by
the way, must be regarded as one of the classical works on the logic of

discovery) we find the following curious passage:
3 "In order to show by

enumeration that the perimeter of a circle is less than that of. any other

figure of the same area, we do not need a complete survey of all the possible

figures, but it suffices to prove this for a few particular figures whence we
can conclude the same thing, by induction, for all the other figures."

In order to understand the meaning of the passage let us actually perform
what Descartes suggests. We compare the circle to a few other figures,

triangles, rectangles, and circular sectors. We take two triangles, the

equilateral and the isosceles right triangle (with angles 60, 60, 60 and 90,
45, 45, respectively). The shape of a rectangle is characterized by the

ratio of its width to its height; we choose the ratios 1 : 1 (square), 2:1,
3:1, and 3:2. The shape of a sector of the circle is determined by the

angle at the center; we choose the angles 180, 90, and 60 (semicircle,

cjuadrant, and sextant). We assume that all these figures have the same

area, let us say, 1 square inch. Then we compute the length ofthe perimeter
of each figure in inches. The numbers obtained are collected in the follow-

ing table; the order of the figures is so chosen that the perimeters increase

as we read them down.

1 Commentary on the first book of Euclid's Elements', on Definitions XV and XVI.
2 Convivio II, XIII, 26.
* Oettores de Descartes, edited by Adam and Tannery, vol. 10, 1908, p. 390. The passage

is unessentially altered; the property of the circle under consideration is stated here in a
different form.

1 68
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Table I. Perimeters of Figures of Equal Area

Circle 3.55

Square 4.00

Quadrant 4.03

Rectangle 3 : 2 4.08

Semicircle 4.10

Sextant 4,21

Rectangle 2 : 1 4.24

Equilateral triangle 4.56

Rectangle 3 : 1 4.64

Isosceles right triangle 4.84

Of the ten figures listed, which are all of the same area, the circle, listed

at the top, has the shortest perimeter. Can we conclude hence by induction,
as Descartes seems to suggest, that the circle has the shortest perimeter not

only among the ten figures listed but among all possible figures? By no
means. But it cannot be denied that our relatively short list suggests very

strongly the general theorem. So strongly, indeed, that if we added one
or two more figures to the list, the suggestion could not be made much
stronger.

I am inclined to believe that Descartes, in writing the passage quoted,

thought of this last, more subtle point. He intended to say, I think, that

prolonging the list would not have much influence on our belief.

2. Latent reasons* "Of all plane figures of equal area, the circle has

the minimum perimeter." Let us call this statement, supported by Table I,

the isoperimetric theorem.41 Table I, constructed according to Descartes'

suggestion, yields a fairly convincing inductive argument in favor of the

isoperimetric theorem. Yet why does the argument appear convincing?
Let us imagine a somewhat similar situation. We choose ten trees of

ten different familiar lands. We measure the specific weight of the wood
of each tree, and pick out the tree the wood of which has the least specific

weight. Would it be reasonable to believe merely on the basis of these

observations that the kind of tree that has the lightest wood among the ten

kinds examined has also the lightest wood among all existing kinds of trees?

To believe this would not be reasonable, but silly.

What is the difference from the case of the circle? We are prejudiced in

favor of the circle. The circle is the most perfect figure; we readily believe

that, along with its other perfections, the circle has the shortest perimeter
for a given area. The inductive argument suggested by Descartes appears
so convincing because it corroborates a conjecture plausible from the start.

"The circle is the most perfect figure" is a traditional phrase. We find

it in the writings of Dante (1265-1321), of Proclus (410-485), and of still

earlier writers. The meaning of the sentence is not clear, but there may be

something more behind it than mere tradition.

* An explanation of the name and equivalent forms will be given later (sect. 8).
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3. Physical reasons. "Of all solids of equal volume, the sphere has
the minimum surface." We call this statement the "isoperimetric theorem
in space."
We are inclined to believe the isoperimetric theorem in space, as in the

plane, without any mathematical demonstration. We are prejudiced in

favor of the sphere, perhaps even more than in favor of the circle. In fact,

nature itself seems to be prejudiced in favor of the sphere. Raindrops,

soap bubbles, the sun, the moon, our globe, the planets are spherical, or

nearly spherical. With a little knowledge of the physics of surface tension,

we could learn the isoperimetric theorem from a soap bubble.

Yet even if we are ignorant of serious physics, we can be led to the iso-

perimetric theorem by quite primitive considerations. We can learn it

from a cat. I think you have seen what a cat does when he prepares himself

for sleeping through a cold night: he pulls in his legs, curls up, and, in short,

makes his body as spherical as possible. He does so, obviously, to keep
warm, to minimize the heat escaping through the surface of his body. The
cat, who has no intention of decreasing his volume, tries to decrease his

surface. He solves the problem of a body with given volume and minimum
surface in making himself as spherical as possible. He seems to have some

knowledge of the isoperimetric theorem.

The physics underlying this consideration is extremely crude.5
Still,

the consideration is convincing and even valuable as a sort of provisional

support for the isoperimetric theorem. The elusive reasons speaking in

favor of the sphere or the circle, hinted above (sect. 2), start condensing.
Are they reasons of physical analogy?

4. Lord Rayleigh's inductive reasons. A little more than two

hundred years after the death of Descartes, the physicist Lord Rayleigh

investigated the tones of membranes. The parchment stretched over a

drum is a "membrane" (or, rather, a reasonable approximation to the

mathematical idea of a membrane) provided that it is very carefully made
and stretched so that it is uniform throughout. Drums are usually circular

in shape but, after all, we could make drums of an elliptical, or polygonal,
or any other shape. A drum of any form can produce different tones of

which usually the deepest tone, called the principal tone, is much the strongest.

Lord Rayleigh compared the principal tones of membranes of different

shapes, but of equal area and subject to the same physical conditions.

He constructed the following Table II, very similar to our Table I in sect.

1 . This Table II lists the same shapes as Table I, but in somewhat different

order, and gives for each shape the pitch (the frequency) ofthe principal tone.6

6 A better advised cat should not make the surface ofhis body a minimum, but its thermal
conductance or, which amounts to the same, its electrostatic capacity. Yet, by a theorem
of Poincar6, this different problem of minimum has the same solution, the sphere. See
G. P<51ya, American Mathematical Monthly, v. 54, 1947, p. 201-206.

Lord Rayleigh, The Theory of Sound, 2nd ed., vol. 1, p. 345.
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Table II. Principal Frequencies of Membranes of Equal Area

Circle 4.261

Square 4.443

Quadrant 4.551

Sextant 4.616

Rectangle 3 : 2 4.624

Equilateral triangle 4.774

Semicircle 4.803

Rectangle 2 : 1 4.967

Isosceles right triangle 4.967

Rectangle 3 : 1 5.736

Of the ten membranes listed, which are all of the same area, the circular

membrane, listed at the top, has the deepest principal tone. Can we con-

clude hence by induction that the circle has the lowest principal tone of all

shapes ?

Of course, we cannot; induction is never conclusive. Yet the suggestion
is very strong, still stronger than in the foregoing case. We know (and
Lord Rayleigh and his contemporaries also knew) that of all figures with a

given area the circle has the minimum perimeter, and that this theorem can

be demonstrated mathematically. With this geometrical minimum property
of the circle in our mind, we are inclined to believe that the circle has also

the physical minimum property suggested by Table II. Our judgement is

influenced by analogy, and analogy has a deep influence.

The comparison of Tables I and II is highly instructive. It yields various

other suggestions which we do not attempt to discuss now.

5. Deriving consequences* We have surveyed various grounds in

favor of the isoperimetric theorem which are, of course, insufficient to prove
it but sufficient to make it a reasonable conjecture. A physicist, examining
a conjecture in his science, derives consequences from it. These conse-

quences may or may not agree with the facts and the physicist devises

experiments to find out which is the case. A mathematician, examining
a conjecture in his science, may follow a similar course. He derives conse-

quences from his conjecture. These consequences may or may not be true

and the mathematician tries to find out which is the case.

Let us follow this course in examining the isoperimetric theorem which we
state now in the following form: Of all plane figures ofequal perimeter, the circle

has the maximum area. This statement differs from that given above (sect.

2) and not merely verbally. Yet it can be shown that the two statements

are equivalent. We postpone the proof (see sect. 8) and hasten to examine

consequences.

(1) Dido, the fugitive daughter of a Tyrian king, arrived after many
adventures at the coast of Africa where she became later the founder of

Carthage and its first legendary queen. Dido started by purchasing from
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the natives a piece of land on the seashore "not larger than what an oxhide
can surround." She cut the oxhide into fine narrow strips of which she

made a very long string. And then Dido faced a geometric problem:
what shape of land should she surround with her string of given length in

order to obtain the maximum area ?

In the interior of the continent the answer would be a circle, of course,
but on the seashore the problem is different. Let us solve it, in assuming
that the seashore is a straight line. In fig. 10.1 the arc XYZ has a given

length. We are required to make a maximum the area between this arc

and the straight line XZ (which lies on a given infinite straight line, but
can be lengthened or shortened at pleasure).

x

Y
Fig. 10.1. Dido's problem. Fig. 10.2. Solution by mirror image

To solve this problem we regard the given infinite straight line (the sea-

shore) as a mirror; see fig. 10.2. The line XYZ and its mirror image
XY'Z form jointly a closed curve XYZY' of given length surrounding an
area which is exactly double the one that we have to maximize. This area
is a maximum when the closed curve is a circle of which the given infinite

straight line (the seashore) is an axis of symmetry. Therefore, the solution
of Dido's problem is a semicircle with center on the seashore.

(2) Jakob Steiner derived a host of interesting consequences from the

isoperimetric theorem. Let us discuss one of his arguments which is

especially striking. Inscribe in a given circle a polygon (fig. 1 0.3) . Regard
the segments of the circle (shaded in fig. 10.3) cut off by the sides of the
inscribed polygon as rigid (cut out of cardboard). Imagine these rigid

segments of the circle connected by flexible joints at the vertices of the
inscribed polygon. Deform this articulated system by changing the angles
at the joints. After deformation (see fig. 10.4) you obtain a new curve
which is not a circle, but consists of successive circular arcs and has the same
perimeter as the given circle. Therefore, by the isoperimetric theorem,
the area of the new curve must be less than the area of the given circle.

Yet the circular segments are rigid (of cardboard), their areas unchanged,
and so the deformed polygon must take the blame for lessening the area:
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The area of a polygon inscribed in a circle is greater than the area ofany other polygon
with the same sides. (The sides are the same in length and in order of

succession.)

This consequence is elegant, but as yet unproved, insofar as we have not

proved yet the isoperimetric theorem itself.

Fig. 10.3. An inscribed polygon. Fig. 10.4. Flexible joints and
cardboard segments.

(3) Let us combine Dido's problem with Steiner's method. Inscribe in

a given semicircle a polygonal line; see fig. 10.5. Regard the segments
cut off by the stretches of the polygonal line from the semicircle (shaded in

fig. 10.5) as rigid (of cardboard). Place flexible joints at the vertices of

Fig. 10.5. Dido and Steiner.

the polygonal line, vary the angles, and let the two endpoints shift along the

line of the diameter, which you regard as given. You obtain so a new
curve (fig. 10.6) consisting of circular arcs of the same total length as the

semicircle, but including with the given infinite line less area than the

semicircle, by virtue of the theorem that we have discussed under (1).

Yet the circular segments are rigid (of cardboard) and so the deformed
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polygon is responsible for the lessening of the area. Hence the theorem:

The sides of a polygon are given, except one, in length and succession. The area

becomes a maximum when the polygon is inscribed in a semicircle the diameter of which

is the side originally not given.

6. Verifying consequences. A physicist, having derived various con-

sequences from his conjecture, looks for one that can be conveniently
tested by experiments. If the experiments clearly contradict a consequence
derived from it, the conjecture itself is exploded. If the experiments verify

its consequences, the conjecture gains in authority, becomes more credible.

Fig. 10.6. The segments are of cardboard.

The mathematician may follow a similar course. He looks for accessible

consequences of his conjecture which he could prove or disprove. A con-

sequence disproved disproves the conjecture itself. A consequence proved
renders the conjecture more credible and may hint a line along which

the conjecture itself could be proved.
How about our own case? We have derived several consequences of

the isoperimetric theorem; which one is the most accessible?

( 1 } Some of the consequences derived from the isoperimetric theorem in

the foregoing section are, in fact, concerned with elementary problems on

maxima. Is there any consequence that we could verify? Let us survey
the various cases indicated by figs. 10.3-10.6. Which case is the simplest?

The complexity of a polygon increases with the number of its sides. There-

fore, the simplest polygon of all is the triangle; of course, we like the triangle

best because we know the most about it. Now, the problem of figs. 10.3

and 10.4 makes no sense for triangles or, we may say, it is vacuous in the

case of a triangle : a triangle with given sides is determined, rigid. There

is no transition for a triangle like that from fig. 10.3 to fig. 10.4. Yet the

transition from fig. 10.5 to 10.6 is perfectly possible for triangles. This may
be the simplest consequence that we have derived so far from the isoperimetric
theorem: let us examine it.

The simplest particular case of the result derived in sect. 5 (3) answers

the following problem: Given two sides of a triangle, find the maximum of the

area; see fig. 10.7. Sect. 5 (3) gives this answer: The area is a maximum
when the triangle is inscribed in a semicircle, the diameter of which is the

side originally not given. This means, however, that the area is a maximum
when the, two given sides include a right angle which is obvious (ex. 8.7).

We have succeeded in verifying a first consequence of the isoperimetric
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theorem. Such success naturally raises our spirits. What is behind the

fact just verified ? Could we generalize it ? Could we verify some other

consequence ?

(2) In generalizing the problem discussed under (1), we arrive at the

following: All successive sides of a polygon are given in magnitude, except one.

Find the maximum area.

K

A C
Fig. 10.7. The finger with onejoint. g. 10.8. The super-finger.

We introduce suitable notation and draw fig. 10.8. The lengths AB,

BC, . . . KL are given; the length LA is not given. We can imagine the

broken line ABC . . . F ... KL as a sort of "super-finger" ; the "bones"

AB, BC> . . . KL are of invariable length, the angles at the joints B,C, . . .

F . . . K variable. We are required to make the area ABC . . . KLA
a maximum.
As in some problems that we have considered some time ago (sect. 8.4,

8.5), the characteristic difficulty seems to be that there are many variables

(the angles at B, C, ... F, . . . and K). Yet we have just discussed, under

(1), the extreme special case of the problem where there is just one variable

angle (just one joint; fig. 10.7). It is natural to hope that we can use this

special case as a stepping stone to the solution of the general problem.

K

Fig. 10.9. Only one joint is flexible.

In fact, let us take the problem as almost solved. Let us imagine that

we have obtained already the desired values of all the angles except one.

In fig. 10.9 we regard the angle at F as variable, but all the other angles,

at B, C, . . . K as fixed; the joints B, C, ... K are rigid, only F is flexible,

Wejoin A and L to F. The lengths AF and LF are invariable. The whole

polygon ABC . . . F . . . KLA is decomposed now into three parts, two of
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which are rigid (of cardboard) and only the third variable. The polygons
ABC . . . FA and LK , . . FL are rigid. The triangle AFL has two given
sides, FA and FL, and a variable angle at F. The area of this triangle,
and with it the area of the whole polygon ABC . . . F . . . KLA, becomes a
maximum when /_AFL is a right angle, as we have said a moment ago,
under (1), in discussing fig. 10.7.

This reasoning obviously applies just as well to the other joints, that is,

to the angles at B, C, . . . and K (fig. 10.8), and so we see: the area of the

polygon ABC . . . KLA cannot be a maximum unless the side originally not given,

AL, subtends a right angle at each of the vertices not belonging to it, at B, C, . . .

F, . . . K. If there is a maximum area, it must be attained in the situation

just described. We may take for granted that there is a maximum area

and, remembering a little elementary geometry, describe the situation in

other terms, as follows : the maximum of the area is attained if, and only if, the

polygon is inscribed in a semicircle, the diameter ofwhich is the side originally not given.

We have obtained here exactly the same result as in sect. 5 (3), but we did

not use the isoperimetric theorem here and we did there.

(3) We have verified first, under (1), a very special consequence of the

isoperimetric theorem, then, under (2), a much broader consequence.
We have gathered now, perhaps, enough momentum to attack another
broad consequence, derived above, in sect. 5(2).
We compare two polygons ABC . . . KL and A'B'C' . . . K'L'; see fig.

10.10. The corresponding sides are equal AB = A'B', BC = B'C',
. . . KL = K'L', LA = L'A', but some of the angles are different; ABC. . . KL
is inscribed in a circle, but A'B'C' . . . K'L' is not.

We join a vertex J of ABC . . . KL to the center of the circumscribed

circle and draw the diameter JM. If, by chance, the point M coincides

with a vertex of ABC . . . KL, our task is greatly simplified (we could use

then the result under (2) immediately). If not, M lies on the circle between
two adjacent vertices of the inscribed polygon, say, A and B. Join MA,
MB, consider &AMB (shaded in fig. 10.10) and construct over the base
A'B' the &A'M'B' (also shaded) congruent to &AMB. Finally, join J'M'.
The polygon AMBC . . . KL is divided into two parts by the line JM

(see fig. 10.10,- the corresponding polygon is correspondingly divided by
J'M'). Apply to both parts the theorem proved under (2). The area

of the polygon MBC . . . J, inscribed in a semicircle, is not less than the

area of M'B'C' . . . J'
; in fact, the corresponding sides are all equal, except

that MJ, which forms the diameter of the semicircle, may differ from M'J'.

For the same reason the area of MALK . . . J is not less than that of

M'A'L'K' . . . J'. By adding, we obtain that

area AMBC . . . KL > area A'M'B'C' . . . K'L'.

Yet

&AMB c
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By subtracting, we obtain that

area ABC . . . KL > area A'B'C' . . . K'L'.

The area of a polygon inscribed in a circle is greater than the area of any other polygon

with the same sides.

We have obtained here exactly the same result as in sect. 5 (2), but we
did not use the isoperimetric theorem here and we did there.

(The first inequality, between the areas of the extended polygons, contains

the sign > although a conscientious reader may have expected the sign

2>. Let us append the discussion of this somewhat more subtle point. I

K

Fig. 10.10. One polygon is inscribed, the other is not.

say that the polygon A'M'B'C* . . . K'L is not inscriptible in a circle;

otherwise, A!B'C' . . . K'L' would also be inscriptible, which it is not. I say
that the polygons M'B'C' . . . J' and M'A'LK' . . . J' are not both inscrip-
tible in a semicircle with diameter M'J'\ otherwise, the whole polygon
A'M'B'C' . . . K'L would be inscriptible in a circle, which it is not. Hence
the words "not less," used twice in the derivation of the inequality in

question, can be replaced at least once by "greater.")
7

7. Very close* The consequences that we have succeeded in verifying
render the isoperimetric theorem highly plausible. Yet there is more.

We may have the feeling that these consequences "contain a lot," that we
are "very close" to the final solution, to the complete proof.

7 The theorems and demonstrations of this section are due to Lhuilier; see footnote 5
of Chapter VIII.
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(1) Find the polygon with a given number of sides and a given perimeter that has

the maximum area*

If there is such a polygon, it must be inscribed in a circle. This much we
can conclude immediately from our last remark, sect. 6(3).
On the other hand, take the problem as almost solved. Assume that

you know already the correct position of all vertices except one, say, X.
The n - 1 other vertices, say, 7, . . . W> Y and Z, are already fixed. The
whole polygon U . . . WXYZ consists of two parts: the polygon U . . . WYZ
with n 1 already fixed vertices, which is independent of X, and A WXY9

which depends on X. Of this triangle, A WXY, you know the base WY
and the sum of the two other sides WX + XY; in fact, the remaining
n 2 sides of the polygon are supposed to be known, and you actually
know the sum of all n sides. The area of A WXY must be a maximum.
Yet, as it is almost immediate, the A WXY with known base and perimeter
attains its maximum area when it is isosceles (ex. 8.8). That is, WX= XY,
two adjacent sides of the required polygon are equal. Therefore (by the

symmetry of the conditions and the pattern of partial variation) any two

adjacent sides are equal. All sides are equal: the desired polygon is

equilateral.

The desired polygon, which is inscribed in a circle and also equilateral,
is necessarily regular : Of all polygons with a given number of sides and a given

perimeter, the regular polygon has the largest area.

(2) Two regular polygons, one with n sides and the other with n + 1 sides, have
the same perimeter. Which one has the larger area?

The regular polygon with n + 1 sides has a larger area than any irregular

polygon with n + 1 sides and the same perimeter, as we have just
seen, under (1). Yet the regular polygon with n sides, each equal to

a, say, can be regarded as an irregular polygon with n + 1 sides: n 1

sides are of length a, two sides of length a/29 and there is one angle equal
to 180. (Regard the midpoint of one side of the polygon, conceived in
the usual way, as a vertex, and then you arrive at the present less-usual

conception.) Therefore, the regular polygon with n + 1 sides has a larger area
than the regular polygon with n sides and the same perimeter.

(3) A circle and a regular polygon have the same perimeter. Which one has the

larger area?

Let us realize what the foregoing result, under (2), means. Let us take
n = 3, 4, ... and restate the result in each particular case. In passing
from an equilateral triangle to a square with the same perimeter, we find
the area increased. In passing from a square to a regular pentagon with
the same perimeter, we again find the area increased. And so on, passing
from one regular figure to the next, from pentagon to hexagon, from hexagon
to heptagon, from n to n + 1, we see that the area increases at each step as
the perimeter remains unchanged. Ultimately, in the limit, we reach the
circle. Its perimeter is still the same, but its area is obviously superior to
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the area of any regular polygon In the infinite sequence of which it is the
limit. The area of the circle is larger than that ofany regular polygon with the same
perimeter.

(4) A circle and an arbitrary polygon have the same perimeter. Which one has
the larger area?

The circle. This follows immediately from the foregoing (1) and (3).

(5) A circle and an arbitrary curve have the same perimeter. Which one has the

larger area?

The circle. This follows from the foregoing (4), since any curve is the
limit of polygons. We have proved the isoperimetric theorem!

8* Three forms of the Isoperimetric Theorem. In the foregoing
(sect. 6 and 7) we have proved the following statement of the isoperimetric
theorem:

I. Of all plane figures of equal perimeter, the circle has the maximum area.

In sect. 2, however, we discussed another statement.
II. Of all plane figures of equal area the circle has the minimum perimeter.
These two statements are different, and different not merely in wording.

They need some further clarification.

(1) Two curves are called "isoperimetric" if their perimeters are equal.
"Of all isoperimetric plane curves the circle has the largest area" this is

the traditional wording of statement I, which explains the name
"isoperimetric theorem,"

(2) We may call the two statements of the theorem (I and II) "conjugate
statements" (see sect. 8.6). We shall show that these two conjugate state-

ments are equivalent to each other by showing that they are both equivalent
to the same third.

(3) Let A denote the area and L the length of the perimeter of a given
curve. Let us assume that the given curve and a circle with radius r are

isoperimetric: L = 2-rrr. Then the first form (statement I) of the isoperi-
metric theorem asserts that

Substituting for r its expression in terms of L> r = L/27T, we easily transform
the inequality into

We call this inequality the isoperimetric inequality and the quotient on the left

hand side the isoperimetric quotient. This quotient depends only on the shape
of the curve and is independent of its size. In fact, if, without changing
the form, we enlarge the linear dimensions of the curve in the ratio 1 : 2,

the perimeter becomes 2L and the area 4-4, but the quotient A/L2 remains

unchanged, and the same is true of 47T-4/L
2 and ofenlargements in any ratio.

Some authors call A/JL? the isoperimetric quotient; we have introduced the
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factor 4?r to make our isoperimetric quotient equal to 1 in the case of the

circle. \Vith this terminology, we can say:
III. Of all plane figures, the circle has the highest isoperimetric quotient^

This is the third form of the isoperimetric theorem.

(4) We have arrived at the third form of the theorem in coming from

figures with equal perimeter. Let us now start from statement III and

pass to figures with equal area. Let us assume that a curve with area A
and perimeter L has the same area as a circle with radius r. That is,

A = 7JT2 . Substituting for A this expression, we easily transform the

isoperimetric inequality into L ^ 27rr. That is, the perimeter of the figure
is greater than that of a circle with equal area. We arrive so at the second

conjugate form of the theorem, at statement II.

Y

Fig. 10. 11 . Dido's problem,
complicated by a cape.

Fig. 10.12. Reflection solves it sometimes.

(5) We could, of course, proceed along the same line 9f argument in the

opposite direction and, passing through III, derive I from II. And so we
can satisfy ourselves that all three forms are equivalent.

9. Applications and questions. If Dido bargained with the natives
in the neighborhood of a cape, her problem was, perhaps, more similar to

the following than to that discussed in sect. 5 (1).

Given an angle (the infinite part of a plane between two rays drawn from
the same initial point).* Find the maximum area cut offfrom it by a line ofgiven
length.

In fig. 10.1 1 the vertex of the given angle is called C (cape). The arbi-

trary line connecting the points X and Y is supposed to have the given length
/. We are required to make a maximum the three-cornered area between
this curve and the seashore. We may shift the endpoints X and Y of the
curve and modify its shape, but cannot change its length /.

The problem is not too easy, but is one ofthose problems which a particular
choice of the data renders more accessible. If the angle at C is a right angle,

8
Abbreviating "isoperimetric quotient" as I.Q.., we could say that the circle has the

highest I.Q,.
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we may take the mirror image of the figure first with respect to one side of
the angle, then with respect to the other. We obtain so a new figure,
fig. 10.12, and a new problem. The line XT, quadruplicated by reflections,

yields a new closed line of given length, 41. The area to be maximized,
quadruplicated by reflections, yields a new area to be maximized, completely
surrounded by the new given curve. By the isoperimetric theorem, the
solution of the new problem is a circle. This circle has two given axes of

symmetry, XX' and FF, and so its center is at the intersection of these axes,
at the point C. Therefore, the solution of the original problem (Dido's
problem) is a quadrant: a quarter of a circle with center at the vertex of the

given angle.
We naturally recall here the solution of sect. 5(1) based on fig. 10.2 and

observe that it is closely analogous to the present solution. It is easy to
see that there are an infinity of further cases in which this kind of solution
works. If the given angle at C is 360/2n = 180>, we can transform, by
repeated reflections, the curve XY with given length / into a new closed
curve with length 2nl and the proposed problem into a new problem, the
solution of which is a circle, by virtue of the isoperimetric theorem. The
cases treated in sect. 5 (1) and in the present section are just the first two
cases in this infinite sequence, corresponding to n = 1 and n = 2.

That is, if the angle at C is of a special kind (180/n with integral n) the
solution of our problem (fig. 10.11) is a circular arc with center at C. It is

natural to expect that this form of the solution is independent of the magni-
tude of the angle (at least as long as it does not exceed 180). That is, we
conjecture that the solution of the problem of fig. 10.1 1 is the arc of a circle

with center at C, whether the angle at C is, or is not, of the special kind

180/H. This conjecture is an inductive conjecture, supported by the
evidence of an infinity of particular cases, n= 1, 2, 3, .... Is this

conjecture true?

The foregoing application of the isoperimetric theorem and the attached

question may make us anticipate many similar applications and questions.
Our derivation of the theorem raises further questions; its analogues in

solid geometry and mathematical physics suggest still other questions.
The isoperimetric theorem, deeply rooted in our experience and intuition,
so easy to conjecture, but not so easy to prove, is an inexhaustible source
of inspiration.

EXAMPLES AND COMMENTS ON CHAPTER X
First Part

x Looking Back. In the foregoing (sect. 6-8) we have proved the isoperi-
metric theorem have we? Let us check the argument step by step.
There seems to be no objection against the simple result of sect. 6 (1).

Yet, in solving the problem of sect. 6 (2), we assumed the existence of the
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maximum without proof; and we did the same in sect. 7(1). Do these

unproved assumptions invalidate the result?

a. Could you derive some part of the result differently? Verify the simplest
non-trivial particular case of the result found in sect. 5 (2) directly. That
is, prove independently of sect. 6 (3) that the area ofa quadrilateral inscribed
in a circle is greater than the area of any other quadrilateral with the same
sides. [Ex. 8.41.]

3. Restate with more detail the argument of sect. 7 (2) : construct a polygon
with n + 1 sides that has the same perimeter as, but a greater area than,
the regular polygon with n sides.

4. Prove independently of sect. 7 (3) that a circle has a larger area than

any regular polygon with the same perimeter.

5. Prove, more generally, that a circle has a larger area than any circum-
scribable polygon with the same perimeter.

6. Restate with more detail the argument ot sect. 7 (5). Does it prove
the statement I of sect. 8? Is there any objection?

7. Can you use the methodfor some other problem? Use the method of sect. 8
to prove that the following two statements are equivalent:
"Of all boxes with a given surface area the cube has the maximum

volume."

"Of all boxes with a given volume the cube has the minimum surface
area."

8. Sharper form of the Isoperimetric Theorem. Compare the statements

I, II, and III of sect. 8 with the following.
I'. The area of a circle is larger than that of any other plane curve with the same

perimeter.

II'. The perimeter of a circle is shorter than that of any other plane curve with
the same area.

III'. IfA is the area of a plane curve and L the length of its perimeter, then

and equality is attained if, and only if, the curve is a circle.

Show that I', II', and III
7
are equivalent to each other. Have we

proved I'?

9. Given a curve C with perimeter L and area -4; C is not a circle.
Construct a curve C" with the same perimeter L, but with an area A' larger
than A.

This problem is important (why?) but not too easy. If you cannot solve
it in full generality, solve it in significant special cases; put pertinent
questions that could bring you nearer to its general solution; try to restate
it; try to approach it in one way or the other.
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10. Given a quadrilateral C with a re-entrant angle, the perimeter L
and the area A. Construct a triangle C' with the same perimeter L, but
with an area A' larger than A.

11. Generalize ex. 10.

12. The information "C is not a circle" is "purely negative." Could
you characterize C more "positively" in some manner that would give you
a foothold for tackling ex. 9?

[Any three points on any curve are on the same circle, or on a straight
line. What about four points ?]

13. Given a curve C with perimeter L and area A; there are four points
P, (),, R, and S on C which are not on the same circle, nor on the same
straight line. Construct a curve C with the same perimeter L, but with
an area A larger than A. [Ex. 2.]

14. Compare the following two questions.
We consider curves with a given perimeter. If C is such a curve, but

not the circle, we can construct another curve C" with a greater area. (In
fact, this has been done in exs. 10-13. The condition that C is not a circle

is essential; our construction fails to increase the area of the circle.) Can
we conclude hence that the circle has the greatest area?
We consider positive integers. If n is such an integer, but not 1, we can

construct another integer n
f

greater than n. (In fact, set n' = n2. The
condition n > 1 is essential; our construction fails for n = 1 as I

2 =
1.)

Can we conclude hence that 1 is the greatest integer?
Point out the difference if there is any.

15. Prove the statement /' of ex. 8.

Second Part

16. The stick and the string. Given a stick and a string, each end of the
stick attached to the corresponding end of the string (which, of course,
must be longer than the stick). Surround with this contraption the largest

possible area.

Lay down the stick. Its endpoints A and B determine its position com-

pletely. Yet the string can take infinitely many shapes, forming an arbi-

trary curve with given length that begins in A and ends in B; see fig. 10.13.

One of the possible shapes of the string is a circular arc which includes a

segment of a circle with the stick. Complete the circle by adding another

segment (shaded in fig. 10.14, I) and add the same segment to the figure
included by the stick and an arbitrary position of the string (fig. 10.14, II).

The circle I of fig. 10.14 has a larger area than any other curve with the same

perimeter, and II of fig. 10.14 is such a curve. Subtracting the same

(shaded) segment from I and II, we find the result: the area surrounded

by the stick and the string is a maximum when the stringforms a circular arc.
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Thi$ result remains valid if we add to the variable area of fig. 10.13 any
invariable area along its invariable straight boundary line. This remark
is often useful.

State the conjugate result. That is, formulate the fact that has the same
relation to theorem II of sect. 8 as the fact found in the foregoing has to

theorem I of sect. 8.

17. Given an angle (the infinite part of a plane between two rays drawn
from the same initial point) and two points, one on each side of the angle.
Find the maximum area cut off from the angle by a line of given length

Fig. 10.13. Stick and string.

connecting the two given points. (In fig. 10.11 the points X and Y are

given.)

18. Given an angle, with an opening less than 180, and a point on one
of its sides. Find the maximum area cut off from the angle by a line of

given length that begins at the given point. (In fig. 10.11 the point X is

givens but Y is variable.)

19. Given an angle with an opening less than 180. Find the maximum
area cut off from the angle by a line of given length. (In fig. 10.11, the

points X and Y are variable. A conjecture was stated in sect. 9.)

20. Given an angle with an opening less than 180. Find the maximum
area cut off from the angle by a straight line of given length.

21. Two sticks and two strings. We have two sticks, AB and CD. A first

string is attached to the last point B of the first stick at one end and to the
first point C of the second stick at the other end. Another string connects

similarly D and A. Surround with this contraption the largest possible area.

22. Generalize.
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23. Specialize, and obtain by specializing an elementary theorem that

played an important role in the text.

24. Given a circle in space. Find the surface with given area bounded
by the given circle that includes the maximum volume with the disk rimmed
by the given circle. [Do you know an analogous problem?]

25. Dido's problem in solid geometry. Given a trihedral angle (one of the

eight infinite parts into which space is divided by three planes intersecting
in one point). Find the maximum volume cut off from the trihedral angle
by a surface of given area.

This problem is too difficult. You are only asked to pick out a more
accessible special case.

B B

II

Fig. 10.14. The principle of circular arc.

26. Find a problem analogous to ex. 25 ofwhich you can foresee the result.

[Generalize, specialize, pass to the limit, . . . .]

27. Bisectors of a plane region. We consider a plane region surrounded by
a curve. An arc that joins two points of the surrounding curve is called

a bisector of the region if it divides the region into two parts of equal area.

Show that any two bisectors of the same region have at least one common

point.

28. Compare two bisectors of a square. One is a straight line parallel

to one of the sides that passes through the center of the square. The other

is one-quarter of a circle the center of which is a vertex. Which of the two

is shorter ?

29. Find the shortest straight bisector of an equilateral triangle.

30. Find the shortest bisector of an equilateral triangle.
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31. Show that the shortest bisectors of a circle are its diameters.

32. Find the shortest bisector of an ellipse.

33* Try to formulate general theorems covering ex. 28-32.

34. Bisectors of a dosed surface.
9 A not self-intersecting closed curve on a

closed surface is called a bisector of the surface if it divides the surface into

two parts (open surfaces) of equal area.

Show that any two bisectors of the same surface have at least one common
point.

35. A shortest bisector of the surface of a polyhedron consists of pieces

each of which is either a straight line or a circular arc.

36. A shortest bisector ofthe surface of a regular solid is a regular polygon.
Find its shape and location and the number of solutions for each of the

five regular solids. (You may experiment with a model of the solid and a

rubber band.)

37. Show that the shortest bisectors of a spherical surface are the great
circles.

38. Try to find a generalization of ex. 37 that covers also a substantial

part of ex. 36. [Ex. 9.23, 9.24.]

39* Given a sphere S with radius a. We call a diaphragm of S that part
of a spherical surface intersecting S that is within S. Prove:

(1) All diaphragms passing through the center of S have the same area.

(2) No diaphragm bisecting the volume of S has an area less than Tra2.

The last statement, and the analogous cases discussed, suggest a conjecture.
State it. [Ex. 31, 37.]

40. A figure of many perfections. We consider a plane region surrounded

by a curve. We wish to survey some of the many theorems analogous to the

isoperimetric theorem: Of all regions with a given area, the circle has the

minimum perimeter.
We met already with a theorem of this kind. In sect. 4, we considered

some inductive evidence for the statement: Of all membranes with a given

area, the circular membrane emits the deepest principal tone.

Let us now regard the region as a homogeneous plate ofuniform thickness.

We consider the moment of inertia of this plate about an axis perpendicular
to it that passes through its center of gravity. This moment of inertia,

which we call the "polar moment of inertia," depends, other things being

equal, on the size and shape of the plate. Of all plates with a given area,

the circular plate has the minimum polar moment of inertia.

This plate, if it is a conductor of electricity, can also receive an electric

charge, proportional to its electrostatic capacity. Also the capacity depends

9 We consider here only closed surfaces ofthe "topological type" ofthe sphere and exclude,
for instance, the (doughnut shaped) torus.
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on the size and shape of the plate. Of all plates with a given area, the

circular plate has the minimum capacity.
Now let the region be a cross-section of a homogeneous elastic beam. If

we twist such a beam about its axis, we may observe that it resists the twist-

ing. This resistance, or "torsional rigidity," of the beam depends, other

things being equal, on the size and shape of the cross-section. Of all

cross-sections with a given area, the circular cross-section has the maximum
torsional rigidity.

10

Why is the circle the solution of so many and so different problems on
minima and maxima? What is the "reason" ? Is the "perfect symmetry"
of the circle the "true reason" ? Such vague questions may be stimulating
and fruitful, provided that you do not merely indulge in vague talk and

speculation, but try seriously to get down to something more precise or more
concrete.

41. An analogous case. Do you see the analogy between the isoperimetric
theorem and the theorem of the means? (See sect. 8.6.)

The length of a closed curve depends in the same manner on each point,
or on each element, of the curve. Also the area of the region surrounded by
the curve depends in the same manner on each point, or element, of the

curve. We seek the maximum of the area when the length is given. As
both quantities concerned are of such a nature that no point of the curve

plays a favored role in their definition, we need not be surprised that the

solution is the only closed curve that contains each of its points in the same

way and any two elements of which are superposable : the circle.

The sum xl + #2 + - . - + xn is a symmetric function of the variables

*i,x29 . . . xn i that is, it depends in the same manner on each variable.

Also the product x^xz . . . xn depends in the same manner on each variable.

We seek the maximum of the product when the sum is given. As both

quantities concerned are symmetric in the n variables, we need not be

surprised that the solution requires xl = xz = . . . = xn>

Besides the area and the length there are other quantities depending on the

size and shape of a closed curve which "depend in the same manner on each

element of the curve" ;
we listed several such quantities in ex. 40. We seek

the maximum of a quantity of this kind when another quantity of the same

kind is given. Is the solution, if there is one, necessarily the circle?

Let us turn to the simpler analogous case for a plausible answer. Let us

consider two symmetric functions, f(x^x^ . . . #n) and g(xvx2, . . xn),
of n variables and let us seek the extrema off(xl9x29 xn) when we are

given that g(x^x2,
. . . *n)

= 1. There are cases in which there is no

maximum, other cases in which there is no minimum, and still other cases

in which neither a maximum nor a minimum exists. The condition

10 For proofs of the theorems indicated and for similar theorems, see G. P61ya and G.

Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951.
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x^ = #2 = . . . = xn plays an important role/
1
yet it need not be satisfied

when a maximum or a minimum is attained. There is, however, a simple
fact: If

*i = <*!>
*2 = a* *a = <*3> *n = an

is a solution, also

is a solution, by the symmetry of the functions / and g. Therefore, if

a^ T& 2, there are are least two different solutions. If there is a unique

solution (that is, if the extremum is attained, and attained for just one system
of values of xl9x2, . . . xn) the solution requires x1 = #2 = '... = #.

"Comparaison n'est pas raison," say the French.
' Of course, such com-

parisons as the preceding cannot yield a binding reason, only a heuristic

indication. Yet we are quite pleased sometimes to receive such an indication.

Take as an illustration

g(xvx2,
. . . xn) = (*f + A| + . . .

and find the extrema of/ under the condition =1 considering (1) all

real values of xvx2> . . . xn and (2) only non-negative real values of these

variables.

42* The regular solids. Find the polyhedron with a given number n of
faces and with a given surface-area that has the maximum volume.

This very difficult problem is suggested by the analogous problem of sect.

7(1) which also suggests a conjecture: if there is a regular solid with n faces,

it yields the maximum volume. However plausible this conjecture may
seem, it turned out wrong in two cases out of five. In fact, the conjecture is

correct for n = 4, 6, 12,

incorrect for n = 8, 20.

What is the difference? Try to observe some simple geometrical property
that distinguishes between the two kinds of regular solids.

43. Inductive reasons. Let 7 denote the volume of a solid and S the area
of its surface. By analogy, sect. 8 (3) suggests to define

as the isoperimetric quotient in solid geometry. By analogy, we may
conjecture that the sphere has the highest isoperimetric quotient. Table
III supports this conjecture inductively.

11 G. H. Hardy, J. E. Littlewood, and G. P61ya, Inequalities. See pp. 109-10, and the
theorems there quoted.
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Check some of the figures given in Table III and add new material.

In particular, try to find a solid with an isoperimetric quotient higher than

that of the regular icosahedron.

Table III. The Isoperimetric Quotient Z^Y^S*

Sphere 1.0000

Icosahedron 0.8288

Best double cone 0.7698

Dodecahedron 0.7547

Best prism 0.6667

Octahedron 0.6045

Cube 0.5236

Best cone 0.5000

Tetrahedron 0.3023

For "best" double cone, prism, and cone see ex. 8.38, 8.35, and 8.52, respectively.



XI

FURTHER KINDS OF PLAUSIBLE REASONS

The most simple relations are the most common, and this is thefoundation
upon which induction rests. LAPLACE*

x. Conjectures and conjectures. All our foregoing discussions dealt

with the role of conjectures in mathematical research. Our examples gave
us an opportunity to familiarize ourselves with two kinds of plausible

arguments speaking for or against a proposed conjecture: we discussed

inductive arguments, from the verification of consequences, and arguments
from analogy. Are there other kinds of useful plausible arguments for or

against a conjecture ? The examples ofthe present chapter aim at clarifying
this question.
We should also realize that there are conjectures of various kinds : great

and small, original and routine conjectures. There are conjectures which
played a spectacular role in the history of science, but also the solution of
the most modest mathematical problem may need some correspondingly
modest conjecture or guess. We begin with examples from the classroom
and then proceed to others which are of historical importance.

a. Judging by a related case. Working at a problem, we often try
to guess. Of course, we would like to guess the whole solution. If, how-
ever, we do not succeed in this, we are quite satisfied if we can guess this

or that feature of the solution. At least, we should like to know whether
our problem is "reasonable." We ask ourselves : Is our problem reasonable ?

Is it possible to satisfy the condition? Is the condition sufficient to determine the

unknown? Or is it insufficient? Or redundant? Or contradictory?*
Such questions come naturally and are particularly useful at an early

stage of our work when they need not a final answer but just a provisional

1 Essai philosophique sur les probability see Oeuores completes de Laplace, vol. 7.

p. CXXXIX.
1 How to Solve It, p. 111.
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answer, a guess, and there are cases in which we can guess the answer quite
reasonably and with very little trouble.

As an illustration we consider an elementary problem in solid geometry.
The axis of a cylinder passes through the center of a sphere. The surface
of the cylinder intersects the surface of the sphere and divides the solid sphere
into two portions: the "perforated sphere" and the "plug". The first

portion is outside the cylinder, the second inside. See fig. 11.1, which
should be rotated about the vertical line AB. Given r, the radius of the sphere,
and h, the height of the cylindrical hole., find the volume of the perforated sphere.

6
Fig. 11.1. The perforated sphere,

In familiarizing ourselves with the proposed problem, we arrive quite

naturally at the usual questions: Are the data sufficient to determine the unknown?

Or are they insufficient? Or redundant? The data r and h seem to be just

enough. In fact, r determines the size of the sphere and h the size of the

cylindrical hole. Knowing r and h, we can determine the perforated sphere
in shape and size and we also need r and h *o determine it so.

Yet, computing the required volume, we find that it is equal to 7rA3/6;

see ex. 5. This result looks extremely paradoxical. We have convinced

ourselves that we need both r and h to determine the shape and $ize of the

perforated sphere and now it turns out that we do not need r to deterimiie

its volume; this sounds quite incredible.
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Yet, there is no contradiction. If h remains constant and r increases,

the perforated sphere changes considerably in shape: it becomes wider

(which tends to increase the volume) but its outer surface becomes flatter

(which tends to decrease the volume). Only we did not foresee (and it

appears rather unlikely a priori) that these two tendencies balance exactly
and the volume remains unchanged.

In order to understand both the present particular case and the under-

lying general idea, we need, a distinction. We should distinguish clearly

between two related, but different, problems. Being given r and A, we may
be required to determine

(a) the volume and

(b) the shape and size

of the perforated sphere. Our original problem was (a). We have seen

intuitively that the data r and h are both necessary and sufficient to solve

(b). It follows hence that these data are also sufficient to solve (a), but
not that they are necessary to solve (a) ;

in fact, they are not.

In answering the question "Are the data necessary?" wejudged by a related

ta$e, we substituted (b) for (a), we neglected the distinction between the original

problem (a) and the modified problem (b). From the heuristic viewpoint, such

neglect is defensible. We needed only a provisional, but quick, answer.

Moreover, such a difference is usually negligible : the data which are necessary
to determine the shape and size are usually also necessary to determine the

volume. We became involved into a paradox by forgetting that our con-

clusion was only heuristic, or by believing in some confused way that the

unusual can never happen. And, in our example, the unusual did happen.
Judging a proposed problem by a modified problem is a defensible, reasonable

heuristic procedure. We should not forget, however, that the conclusion

at which we arrive by such a procedure is only provisional, not final; only
plausible, but by no means certain to be true.

3. Judging by the general case* The following problem can be

suitably discussed in a class of Algebra for beginners.
The testament of a father of three sons contains the following dispositions.

"The part ofmy eldest son shall be the average of the parts of the two others

and three thousand dollars. The part of my second son shall be exactly
the average of the parts of the two others. The part of my youngest son
shall be the average ofthe parts of the two others less three thousand dollars."

What are the three parts?
Is the condition sufficient to determine the unknowns? There is quite a good

reason to say yes. In fact, there are three unknowns, say, x, y, and
, the

parts of the eldest, the second, and the youngest son, respectively. Each of
the three sentences quoted from the testament can be translated into an

equation. Now, in general, a system of three equations with three unknowns
determines the unknowns. Thus we are quite reasonably led to think that the
condition of the proposed problem is sufficient to determine the unknowns.
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In writing down, however, the three equations, we obtain the following

system:

A?==^-yi + 3000

x + z
y= -7T-

z = -^ - 3000.

Adding these three equations we obtain

or

0=0.

Therefore, any equation of the system is a consequence of the other two

equations. Our system contains only two independent equations and, there-

fore, in fact, it is not sufficient to determine the unknowns.

The problem is essentially modified if the testament contains also the

following sentence: "I divide my whole fortune of 15,000 dollars among
my three sons." This system adds to the above system the equation

Z= 15,000.

We have now a more comprehensive system of four equations. Yet in

general^ a system offour equations with three unknowns is contradictory. In fact,

however, the present system is not contradictory, but just sufficient to

determine the unknowns and yields

x = 7000, y = 5000, z = 3000.

The apparent contradictions of this not too deep example are not too

difficult to disentangle, but a careful explanation may be useful.

It is not true that "a system of n equations with n unknowns determines

the unknowns." In fact, we have just seen a counter-example with n = 3.

What matters here, however, is not a mathematical theorem, but a heuristic

statement, in fact, the following statement: "A system of n equations with

n unknowns determines, in general, the unknowns." The term "in general"

can be interpreted in various ways. What matters here is a somewhat

vague and rough "practical" interpretation: a statement holds "in general"

if it holds "in the great majority ofsuch cases as are likely to occur naturally."

Treating a geometrical or physical problem algebraically, we try to express

an intuitively submitted condition by our equations. We try to express a

different clause of the condition by each equation and we try to cover the

whole condition. If we succeed in collecting as many equations as we have

unknowns, we hope that we shall be able to determine the unknowns,
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Such hope is reasonable. Our equations "occurred naturally"; we may
expect that we are "in the general case.** Yet the example of the present
section did not occur naturally; it was fabricated to show up the lack of

absolute certainty in the heuristic statement. Therefore, this example
does not invalidate at all the underlying heuristic principle.
We rely on something similar in everyday life. We are, quite reasonably,

not too much afraid of things which are very unusual. Letters get lost

and trains crash, yet I still send a letter and board a train without hesitation.

After all, lost letters and train wrecks are extremely unusual; only to a very
small percentage of letters or trains happens such an accident. Why should

it happenjust now ? Similarly, n equations with n unknowns quite naturally
obtained may be insufficient to determine the unknowns. Yet, in general,
this does not happen; why should it happen just now?
We cannot live and we cannot solve problems without a modicum of

optimism.

4. Preferring the simpler conjecture. "Simplex sigillum veri,'* or

"Simplicity is the seal of truth/* said the scholastics. Today, as humanity
is older and richer with the considerable scientific experience of the inter-

vening centuries, we should express ourselves more cautiously; we know that

the truth can be immensely complex. Perhaps the scholastics did not mean
that simplicity is a necessary attribute of truth; perhaps they intended to

state a heuristic principle: "What is simple has a good chance to be true."

It may be even better to say still less and to confine ourselves to the plain
advice: "Try the simplest thing first."

This common sense advice includes (somewhat vaguely, it is true) the

heuristic moves discussed in the foregoing. That the volume changes when
the shape changes is not only the usual case, but also the simplest case.

That a system of n equations with n unknowns determines, the unknowns is

not only the general case, but also the simplest case. It is reasonable to

try the simplest case first. Even if we were obliged to return eventually to

a closer examination ofmore complex possibilities, the previous examination
of the simplest case may serve as a useful preparation.

Trying the simplest thing first is part of an attitude which is advantageous
in face ofproblems little or great. Let us attempt to imagine (with sweeping
simplification and, doubtless, with some distortion) Galileo's situation as

he investigated the law of falling bodies. If we wished to count the era of
modern science from a definite date, the date of this investigation of Galileo's
could be considered as the most appropriate.
We should realize Galileo's position. He had a few forerunners, a few

friends sharing his views, but was strenuously opposed by the dominating
philosophical school, the Aristotelians. These Aristotelians asked, "Why
do the bodies fall ?" and were satisfied with some shallow, almost purelyverbal

explanation. Galileo asked, "How do the bodies fall?" and tried to find an
answer from experiment, and a precise answer, expressible in numbers and
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mathematical concepts. This substitution of "How** for "Why," the

search for an answer by experiment, and the search for a mathematical law

condensing experimental facts are commonplace in modern science, but

they were revolutionary innovations in Galileo's time.

A stone falling from a higher place hits the ground harder. A hammer
falling from a higher point drives the stake deeper into the ground. The
further the falling body gets from its starting point, the faster it moves so

much is clear from unsophisticated observation. What is the simplest thing?
It seems simple enough to assume that the velocity of a falling body starting
from rest is proportional to the distance traveled. "This principle appears very
natural," says Galileo, "and corresponds to our experience with jnachines
which operate by percussion." Still, Galileo rejected eventually the pro-

portionality of the velocity to the distance as "not merely false, but

impossible."
3

Galileo's objections against the assumption that appeared so natural to

him at first can be more clearly and strikingly formulated in the notation

of the calculus. This is, of course, an anachronism; the calculus was
invented after Galileo's time and, in part at least, under the impact of

Galileo's discoveries. Still, let us use calculus. Let t denote the time

elapsed since the beginning of the fall and x the distance traveled. Then
the velocity is dx\dt (one of Galileo's achievements was to formulate a clear

concept of velocity). Let g be an appropriate positive constant. Then
that "simplest assumption," the proportionality of speed to the distance

traveled, is expressed by the differential equation

We have to add the initial condition

(2) x = as t = 0.

From equations (1) and (2) it follows that

(3) | = as <=0;

this expresses that the falling body starts from rest.

We obtain, however, by integrating the differential equation (1) that

log x = gt + log c

See Le Opere di Galileo Galilei, edizione nazionale, vol. 8, p. 203, 373, 383.
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where c is some positive constant. This yields

dx
x^ceot,

at

We obtain hence, however, that

* = <; > 0,
~ = ^>0 as * =
at

in contradiction to (2) and (3) : a motion satisfying the differential equation

(1) cannot startfrom rest. And so the assumption that appeared so "natural,"

just "the simplest thing," is, in fact, self-contradictory: "not merely false,

but impossible" as Galileo expressed himself.

Yet what is the "next simplest thing"? It may be to assume that the

velocity of a falling body starting from rest is proportional to the time

elapsed. This is the well known law at which Galileo eventually arrived.

It is expressed in modern notation by the equation

dx

and a motion satisfying this equation can certainly start from rest.

5. Background. We cannot but admire Galileo's intellectual courage,
his freedom from philosophical prejudice and mysticism. Yet we must also

admire Kepler's achievements; and Kepler, a contemporary of Galileo,

was deeply involved in mysticism and the prejudices of his time.

It is difficult for us to realize Kepler's attitude. The modern reader is

amazed by a title as "A prodrome to cosmographic dissertations, containing
the COSMIC MYSTERY, on the admirable proportion of celestial orbits and the

genuine and proper causes of the number, magnitude, and periodic motions

of the heavens, demonstrated by the five regular geometric solids." The
contents are still more amazing: astronomy mixed with theology, geometry
scrambled with astrology. Yet however extravagant some of the contents

may appear, this first work of Kepler marks the beginning of his great
astronomical discoveries and gives besides a lively and attractive picture
of his personality. His thirst for knowledge is admirable, although it is

almost equalled by his hunger for mystery.
As the title of the work quite correctly says, Kepler set out to discover a

cause or a reason for the number of the planets, for their distances from the

sun, for the period of their revolutions. He asks, in fact : Why are there

just six planets? Why are their orbits just so disposed? These questions
sound strange to us, but did not sound so to some of his contemporaries.

4

4
Kepler rejects Rhaeticus* explanation that there are six planets, since 6 is the first

"perfect number."
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One day he thought that he found the secret and he jotted down in his

notebook i "The earth's orbit or sphere is the measure of all. Circumscribe
about it a dodecahedron : the sphere surrounding it is Mars. Circumscribe
about Mars a tetrahedron : the sphere surrounding it is Jupiter. Circum-
scribe about Jupiter a cube: the sphere surrounding it is Saturn. Now,
inscribe in the Earth an icosahedron: the sphere contained in it is Venus.
Inscribe in Venus an octahedron: the sphere contained in it is Mercury.
Here you have' the reason for the number of the planets."

That is, Kepler imagines 11 concentric surfaces, 6 spheres alternating
with the 5 regular solids. The first and outermost surface is a sphere and
each surface is surrounded by the preceding. Each sphere is associated with

a planet: the radius of the sphere is the distance (mean distance) of the

planet from the sun. Each regular solid is inscribed in the preceding,

surrounding sphere and circumscribed about the following, surrounded

sphere.

And Kepler adds: "I shall never succeed in finding words to express
the delight of this discovery."

Kepler (in this respect a modern scientist) carefully compared his con-

jecture with the facts. He computed a table which is presented here in a

slightly modernized form as Table I.

Table I. Kepler's theory compared with the observations

(1) (2) (3) (4)

Copernicus
1

Kepler's Regular
Planets observation theory solids

Saturn
.635 .577 Cube

Jupiter
.333 .333 Tetrahedron

Mars
.757 .795 Dodecahedron

Earth
.794 .795 Icosahedron

Venus
.723 .577 Octahedron

Mercury

Column (1) lists the planets in order of decreasing distances from the

sun; it contains six entries, one more than the following columns. Column

(2) contains the ratio of the distances of two consecutive planets from the

sun, according to Copernicus; each ratio is inserted between the lines in

which the names of the respective planets are marked; the distance of the

outer planet is the denominator. Column (4) lists the five regular solids

in the order chosen by Kepler. Column (3) lists the ratio of the radii of

the inscribed and circumscribed spheres for the corresponding regular solid.
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The numbers on the same line should agree. In fact, the agreement is good
in two cases, and very bad in the remaining three.

Now Kepler (which reminds us in less glorious way of modern scientists)

starts shifting his standpoint and modifying his original conjecture. (The
main modification is that he compares the distance of Mercury from the

sun not to the radius of the sphere inscribed in the octahedron, but to the

radius of the circle inscribed in the square in which a certain plane of

symmetry intersects the octahedron.) Yet he does not 'arrive at any
startling agreement between conjecture and observation. Still, he sticks

to his idea. The sphere is "the most perfect figure," and next to it the

five regular solids, known to Plato, are the "noblest figures." Kepler
thinks for a moment that the countless crowd of fixed stars may have some-

thing to do with the undistinguished multitude of irregular solids. And it

seems "natural" to him that the sun and the planets, the most excellent

things created, should be somehow related to Euclid's most excellent

figures. This could be the secret of the creation, the "Cosmic Mystery."
To modern eyes Kepler's conjecture may look preposterous. We know

many relations between observable facts and mathematical concepts, but

these relations are of a quite different character. No useful relation is

known to us which would have any appreciable analogy to Kepler's con-

jecture. We find it most strange that Kepler could believe that there is

anything deep hidden behind the number of the planets and could ask such
a question : Why are there just six planets ?

We may be tempted to regard Kepler's conjecture as a queer aberration.

Yet we should consider the possibility that some theories which we are

respectfully debating today may be considered as queer aberrations in a not
far away future, if they are not completely forgotten. I think that Kepler's

conjecture is highly instructive. It shows with particular clarity a point
that deserves to be borne in mind : the credence that we place in a conjecture
is bound to depend on our whole background, on the whole scientific atmosphere
of our time.

6* Inexhaustible. The foregoing example brings into the foreground
an important feature of plausible reasoning. Let us try to describe it with
some degree of generality.
We have a certain conjecture, say A. That is, A is a clearly formulated,

but not proved, proposition. We suspect that A is true, but we do not

actually know whether A is true or not. Still we have some confidence in

our conjecture A. Such confidence may, but need not, have an articulate

basis. After prolonged and apparently unsuccessful work at some problem,
there emerges quite suddenly a conjecture A. This conjecture A may appear
as the only possible escape from an entangled situation,* it may appear as

almost certain, although we could not tell why.
After a while, however, some more articulate reasons may occur to us

that speak distinctly in favor of A9 although they do not prove A : reasons
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from analogy, from induction, from related cases, from general experience,
or from the inherent simplicity ofA itself. Such reasons, without providing
a strict demonstration, can make A very plausible.
Yet it should be a warning to us that we trusted that conjecture without

any of those more distinctly formulated arguments.
And we perceived those arguments successively. There was a first clear

point that we succeeded in detaching from an obscure background. Yet
there was something more behind this point in the background since after-

wards we succeeded in extracting another clear argument. And so there

may be something more behind each clarified point. Perhaps that back-

ground is inexhaustible. Perhaps our confidence in a conjecture is never based

on clarified grounds alone; such confidence may need somehow our whole

background as a basis.

Still, plausible grounds are important, and clarified plausible grounds are

particularly important. In dealing with the observable reality, we can never
arrive at any demonstrative truth, we have always to rely on some plausible

ground. In dealing with purely mathematical questions, we may arrive

at a strict demonstration. Yet it may be very difficult to arrive at it, and the

consideration of provisional, plausible grounds may give us temporary-

support and may lead us eventually to the discovery of the definitive

demonstrative argument.
Heuristic reasons are important although they prove nothing. To

clarify our heuristic reasons is also important although behind each reason

so clarified there may be something more some still obscure and still more

important ground, perhaps.
5

This suggests another remark: If in each concrete case we can clarify

only a few of our plausible grounds, and in no concrete case exhaust them,
how could we hope to describe exhaustively the kinds of plausible grounds
in the abstract?

7. Usual heuristic assumptions. Two of our examples (sect. 2 and

3) bring up another point. Let us recall briefly one of the situations and
touch upon a similar situation.

In working at some problem, you obtain from apparently different sources

as many equations as you have unknowns. You ought to know that n

equations are not always sufficient to determine n unknowns: the equations
could be mutually dependent, or contradictory. Still, such a case is excep-

tional, and so it may be reasonable to hope that your equations will determine

your unknowns. Therefore you go ahead, manipulate your equations, and

see what follows from them. If there is contradiction or indetermination,

it will show itself somehow. On the other hand, ifyou arrive at a neat result,

you may feel more inclined to spend time and effort on a strict demonstration.

In solving another problem you are led to integrate an infinite series

5 How to Solve It, p. 224.
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term by term. You ought to know that such an operation is not always

permissible, and could yield an incorrect result. Still, such a case is

exceptional, and so it may be reasonable to hope that your series will behave.

Therefore, it may be expedient to go ahead, see what follows from your
formula not completely proved, and postpone worries about a complete

proof.
We touched here upon two usual heuristic assumptions, one about systems of

equations, the other about infinite series. In each branch of mathematics

there are such assumptions, and one of the principal assets of the expert in

that branch is to know the current assumptions and to know also how he
can use them and how far he can trust them.

Of course, you should not trust any guess too far, neither usual heuristic

assumptions nor your own conjectures. To believe without proof that your

guess is true would be foolish. Yet to undertake some work in the hope
that your guess might be true, may be reasonable. Guarded optimism is the

reasonable attitude.

EXAMPLES AND COMMENTS ON CHAPTER XI

z. Of a triangle, we are given the base 0, the altitude h perpendicular to

a and the angle a opposite to a. We should (a) construct the triangle,

(b) compute its area. Are all the data necessary?

a. Of a trapezoid, we are given the altitude h perpendicular to the two

parallel sides, the middle line m which is parallel to the two parallel sides

and at the same distance from both, and the angles a and j8 between one
of the two parallel sides and the two remaining (oblique) sides. We should

(a) construct the trapezoid, (b) compute its area. Are all the data necessary ?

3. A zone is a portion of the surface of the sphere contained between two

parallel planes. The altitude of the zone is the distance of the two planes.
Given r the radius of the sphere, h the altitude of the zone, and d the distance

of that bounding plane from the center of the sphere which is nearer to the

center> find the surface of the zone. Any remarks ?

4. A first sphere has the radius a. A second sphere, with radius b, inter-

sects the first sphere and passes through its center. Compute the area ofthat

portion of the surface of the second sphere which lies inside the first sphere.

Any remarks ? Check the extreme cases.

5. Reconsider the example of sect. 2 and prove the solution.

6. A spherical segment is a portion of the sphere contained between two

parallel planes. Its surface consists of three parts : of a zone of the sphere
and of two circles, called the base and the top of the segment. We use the

following notation:

a is the radius of the base,
b the radius of the top,
h the altitude (the distance between the base and the top),
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M the area of the middle cross-section (parallel to, and at the same
distance from, the base and the top)
V the volume of the segment.

Being given a, b, and h, find Mh V.

Any remarks ? Check some extreme cases.

7. The axis of a cone passes through the center of a sphere. The surface

of the cone intersects the surface of the sphere in two circles and divides

the solid sphere into two portions: the "conically perforated sphere" and
the "plug" (see fig. 11.2 which should be rotated about the line AB)i the

plug is inside the cone. Let r denote the radius of the sphere, c the length

Fig. 1 1.2. The conically perforated sphere.

of the chord that in rotating generates the conical hole and h (the height

of the perforated sphere) the projection of c onto the axis of the cone. Given

r, c
9
and A, find the volume ofthe conically perforated sphere. Any remarks ?

8. The axis of a paraboloid of revolution passes through the center of a

sphere and the two surfaces intersect in two circles. Compute the ring-

shaped solid between the two surfaces (inside the sphere and outside the

paraboloid) being given r the radius of the sphere, h the projection of the

ring-shaped solid on the axis of the paraboloid, and d the distance of the

center of the sphere from the vertex of the paraboloid. (Rotate fig. 11.3

about OX.} Any remarks?
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9* Of a trapezoid, given the lower base a, the upper base b, and the

height h, perpendicular to both bases; a > b. The trapezoid, revolving
about its lower base, describes a solid of revolution (a cylinder topped by
two cones) of which find (a) the volume and (b) the surface area. Are the

data sufficient to determine the unknown ?

10. Ten numbers taken in a definite order, ul9 2, 3,
. . . MIO, are so

connected that, from the third onward, each of them is the sum of the two

foregoing numbers :

Un-to for 72 = 3, 4, ... 10.

Being given u
7, find the sum of all ten numbers u + uz + +

Are the data sufficient to determine the unknown ?

Fig. 1 1 .3, The parabolically perforated sphere.

Compute
dx

(!+*) (!+*')'

Any remarks? Check the cases a = 0, a -> oo, a ~> oo.

12. Generalize ex. 11. [Try the simplest thing first.]

13* Write one equation with one unknown that does not determine the

unknown.

14* One equation may determine several unknowns if the nature of the

unknowns is restricted by a suitable additional condition. For example,
if x, y, and are real numbers they are completely determined by the

equation

Find all systems of positive integers x, y satisfying the equation= 128.
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15. Find all systems of positive integers x, y, z, w satisfying the equation

16. The general case. Consider the system of three linear equations with

three unknowns
aIx + b^y + Clz = dl>

We assume that the 12 given numbers al) bv cl9 d^ a2, . . . d3 are real. The

system is called determinate if there is just one solution (just one set x, y^ z of

three numbers satisfying it), indeterminate if there are an infinity of solutions,

and inconsistent if there is no solution. Seen from various standpoints, the

case in which the system is determinate appears as the general, usual,

normal, regular case and the other cases appear as exceptional, unusual,

abnormal, irregular.

(a) Geometrically, we can interpret the set of three numbers x, y, z as a

point in a rectangular coordinate system and each equation as the set of

points satisfying it, as a plane* (For this interpretation we have to assume,

in fact, that on the left-hand side of each equation there is at least one

non-vanishing coefficient, but let us assume this.) The system of three

equations is determinate if the three planes have just one common point.

When they have two common points, they have a straight line in common
and so the system is indeterminate. When the three planes are parallel

to the same straight line, but have no point common to all three, the system

is inconsistent. If the three planes are in a "general position," if they are

"chosen at random," they have just one point in common and the system

is determinate.

(b) Algebraically, the system of three equations is determinate if, and only

if, the determinant of the 9 coefficients on the left-hand sides does not vanish.

Therefore, the system is determinate, unless a particular condition or

restriction is imposed upon the coefficients, in form of an equation*

(c) We may interpret the set ofnine (real) coefficients (%, 0& a3, bv . . . 3)

as a point in nine-dimensional space. The points corresponding to systems

that are not determinate (indeterminate or inconsistent) satisfy an equation

(the determinant = 0) and so they form a manifold of lower dimension (an

eight-dimensional "hypersurface").

(d) It is infinitely improbable that a system of three linear equations with

three unknowns given at random is not determinate. Cf. ex. 14.23.

17. For each of the five regular solids, consider the inscribed sphere and

the circumscribed sphere and compute the ratio of the radii of these two

spheres.
18. Column (3) of Table I would remain unchanged if we interchanged

the cube and the octahedron or the dodecahedron and the icosahedron,

This would leave Kepler's theory embarrassingly indeterminate. Yet



204 FURTHER KINDS OF PLAUSIBLE REASONS

Kepler displays a singular ingenuity in detecting reasons why one of these

five noble solids should be of higher nobility than, and take precedence
over, another, as a baron takes precedence over a baronet.

Find some simple geometrical property that distinguishes the three solids

that Kepler placed around the Earth's orbit from the two that he placed
in this orbit.

19. No idea is really bad. "Many a guess has turned out to be wrong but

nevertheless useful in leading to a better one." "No idea is really bad,
unless we are uncritical. What is really bad is to have no idea at all."6

I use such sentences almost daily to comfort one or the other student who
comes forward with some honest but naive idea. These sentences apply both

to trivial everyday situations and to scientific research. They apply most

spectacularly to Kepler's case.

To Kepler himself, with his mind in that singular transition from the

medieval to the modern standpoint, his idea of combining the six planets
with the five regular solids appeared as brilliant. Yet I cannot imagine that

Galileo, Kepler's contemporary, could have conceived such an idea. To a
modern mind this idea must appear as pretty bad from the start, because

it has so little relation to the rest of our knowledge about nature. Even
if it had been in better agreement with the observations, Kepler's con-

jecture would be weakly supported, because it lacks the support of analogy
with what is known otherwise.

Yet Kepler's guess which turned out to be wrong was most certainly
useful in leading to a better one. It Ipd Kepler to examine more closely
the mean distances of the planets, their orbits, their times of revolution for

which he hoped to find some similar
c

'explanation," and so it led finally
to Kepler's celebrated laws of planetary motion, to Newton, and to our
whole modern scientific outlook.

20. Some usual heuristic assumptions, This subject would deserve a fuller

treatment, yet we have to restrict ourselves to a very short list and sketchy
comments. We must be careful to interpret the words "in general" in a

"practical," necessarily somewhat vague, sense.

"If in a system of equations there are as many equations as unknowns,
the unknowns are determined, in general"

If, in a problem, there are as many "conditions" as available parameters,
it is reasonable to start out with the tentative assumption that the problem
has a solution. For instance, a quadratic form ofn variables has n(n + l)/2

coefficients, and an orthogonal substitution in n variables depends on

n(n l)/2 parameters. Therefore, it is pretty plausible from the outset

that, by a suitable orthogonal substitution, any quadratic form ofn variables

can be reduced to the expression

,
^yl+ ^J+ . . +

' Houi to Sake It, pp. 207-8.
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- A are the new variables introduced by the substitution, and
A19 A2,

- An suitable parameters. In fact, this expression depends on n

parameters and

n(n + l)/2 == n(n - l)/2 + n.

This remark, coining after a proof of the proposition in the particular cases

n = 2 and n = 3, and an explanation of the geometric meaning of these

cases, may create a pretty strong presumption in favor of the general case.

"Two limit operations are, in general, commutative."
If one of the limit operations is the summation of an infinite series and the

other is integration, we have the case mentioned in sect. 7.7

"What is true up to the limit, is true at the limit, in general"*

Being given that an > and lim an = a, we cannot conclude that a > 0;
n *oo

merely a ^ is true. We consider a curve as the limit of an inscribed poly-

gon and a surface as the limit of an inscribed polyhedron. Computing the

length of the curve as the limit of the length of an inscribed polygon yields
the correct result, yet computing the area of the surface as the limit of the

area of an inscribed polyhedron may yield an incorrect result.9
Although

it can easily mislead us, the heuristic principle stated is most fertile in

inspiring suggestions. See, for instance, ex. 9.24.

"Regard an unknown function, at first, as monotonic."

We followed something similar to this advice in sect. 2 as we assumed
that with the change of the shape of a body its volume will change, too, and
we were misled. Nevertheless, the principle stated is often useful. We
may have to prove an inequality of the form

where a < b. We may begin by trying to prove more, namely that

This boils down to the initial assumption that the function with derivative

g(x) /(*) is monotonic. (The problem is to compare the values of this

function for x = a and x = b.) The principle stated is contained in the

more general heuristic principle "try the simplest thing first."

"/ general, a function can be expanded in a power series, the very first

term of which yields an acceptable approximation and the more terms we

take, the better the approximation becomes."

Without the well-understood restriction "in general" this statement would

be monumentally fake. Nevertheless, physicists, engineers, and other

7 See G. H. Hardy, A Course of Pure Mathematics, 7th ed., p. 493-496.
8 Cf. William Whewell, The Philosophyof the Inductive Sciences, new ed., vol. I, p. 146.

See H. A. Schwarz, Gesammelte Mathematische Abhandlwgen, vol. 2, pp. 309-311.
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scientists who apply the calculus to their science seem to be particularly
fond of it. It includes another principle even more sweeping than the one
that we have stated previously: "Regard an unknown function, at first, as
linear/' In fact, if we have the expansion

we may take approximately

/(

(Observe that Galileo, who did not know calculus, had already a strong
preference for the linear function; see sect. 4.) The present principle
underlies the importance often attributed to the initial term of the relative

error; see sect. 5.2. The principle was often useful in suggesting some idea
close to the truth, yet it may easily suggest something very far from the truth.

In fact, a physicist (or an engineer, or a biologist) may be led to believe
that a physical quantity y depends so on another physical quantity x that
there is a differential equation

Now, the integration involved by this equation may be too difficult, or
the form of the function/(j) may be unknown. In both cases the physicist

expands the function/(j) in powers ofy and he may regard the differential

equations hence following as successive approximations:

dy

5=*o + **

~ = a + 1jV

Yet the curves satisfying these three equations are of very different nature
and the approximation may turn out totally misleading. Fortunately, the

physicists rely more on careful judgment than on careful mathematics and
so they obtained good results by similar procedures even in cases in which
the mathematical fallacy was less obvious and, therefore, more dangerous
than in our example.

21. Optimism rewarded. The quantities a} b, c3 d, e,f, g, and h are given.
We investigate whether the system of four equations for the four unknowns
x, y, , and v

a* + h + co + du = 0,
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admits any solution different from the trivial solution #=j=tt=z>=0.
This system (S) has, as we know, a non-trivial solution if, and only if, its

determinant vanishes, but we wish to avoid the direct computation of this

determinant with four rows. The peculiar symmetry of the system (S) may
suggest to set

W=#, 0s=j>.

Then the first equation of the system (S) coincides with the fourth, and the

second with the third, so that the system offour equations reduces to a system
of only two distinct equations

This system admits a non-trivial solution if, and only if, its determinant
vanishes.

Yet we can also reduce the system (S) by setting

u = x, v =
;y.

Again, we obtain only two distinct equations

(a
_ d}x + (b

-
c)y = 0,

(-*)* + (/-*)j>=<0.

The vanishing of the determinant of either system of two equations
involves the vanishing of the determinant of the system (S). Hence we may
suspect (if we are optimistic enough) that this latter determinant with four

rows is the product of the two other determinants, each with two rows.

(a) Prove this, and generalize the result to determinants with n rows.

(b) In which respect have we been optimistic?

22. Take the coordinate system as in sect. 9.4, The #-axis is horizontal

and the j>-axis points downward. Join the origin to the point (a,b)

(1) by a straight line

(2) by a circular arc with center on the x-axis.

A material point starting from rest at the origin attains the point (a,b) in

time Tx or T2 according as it slides down (without friction) following the

path (1) or the path (2). Galileo suggested (as reported in sect. 9.4) that

T! > T2. After some work this inequality turns out to be equivalent to

the following:

if we set

We could try to prove the inequality by expanding both sides in powers of

h. What would be the simplest (or "most optimistic") possibility?
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23. Numerical computation and the engineer. The layman is inclined to think

that the scientist's numerical computations are infallible, but dull. Actually,
the scientist's numerical computation may be exciting adventure, but
unreliable. Ancient astronomers tried, and modern engineers try, to

obtain numerical results about imperfectly known phenomena with

imperfectly known mathematical tools. It is hardly surprising that such

attempts may fail ;
it is more surprising that they often succeed. Here is a

typical example. (The technical details, which are suppressed here, will

be published elsewhere.)

2345
Fig. 11.4. A trial: the abscissa is n.

* i * i

Fig. 1 1.5. Another trial: the abscissa is 1/n.

Fig. 11.6. The abscissa is 1/n
2

: success!

^

An engineer wishes to compute a certain physical quantity J connected
with a square of side 1. (In fact, Q> the torsional rigidity of a beam with
square cross-section, but the reader need not know this in fact, he need
not even know what torsional rigidity is.) An exact solution runs into
mathematical difficulties, and so the engineer, as engineers often do, resorts
to approximations. Following a certain method of approximation, he
divides the given square into equal "elements," that is, n* smaller squares
each of the area 1/n

2
. (In approximating a double integral, we also divide

the given area into elements in this way.) It can be reasonably expected
that the approximate value tends to the true value as n tends to infinity.
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In fact, however, as n increases, the difficulty of the computation also

increases, and so rapidly that it soon becomes unmanageable. The engineer
considers only the cases n = 2, 3, 4, 5 and obtains the corresponding
approximate values for Q:

0.0937 0.1185 0.1279 0.1324

Let us not forget that these numbers correspond to the values

1/4 1/9 1/16 1/25

of a small square used in computing, respectively.

The engineer graphs these results. He decides to plot the approximate
values obtained for Q,as ordinates, but he is hesitant about the choice of the
abscissa. He tries first n as abscissa, then \jn, and finally 1/n

2
(which is the

numerical value of the area of the small square used in the approximation) :

see figs. 11.4, 11.5, and 11.6, respectively. The last choice is the best;
the four points in fig. 11.6 are nearly on the same straight line. Observing
this, the engineer produces the line till it intersects the vertical axis and
regards the ordinate of the intersection as a "good" approximation to Q,.

(a) Why? What is the underlying idea?

(b) Check fig. 1 1.6 numerically: join each point to the next by a straight
line and compute the three slopes.

(c) Choose the two most reliable points in fig. 11.6, use the straight line

passing through them in the engineer's construction, compute, the resulting

approximation to (),, and compare it with 0.1406, the true value of Q.



FINAL REMARK

The reader who went through the foregoing chapters and did some of the

foregoing problems had a good opportunity to acquaint himself with some
aspects of plausible reasoning. To form a general idea of the nature of

plausible reasoning is the aim of the remaining five chapters of this work,
collected in Vol. II. This aim deserves, I believe, considerable theoretical

interest, but it may have also some practical value: we may perform a
concrete task better if we understand more of the underlying abstract idea.

The formulation of certain patterns of plausible reasoning is the principal

object of Vol. II. Yet these patterns will be extracted from, and discussed
in close contact with, concrete examples. Therefore Vol. II will add
several mathematical examples to those treated in the present Vol. I and
will treat them in the same manner.
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Solutions

soLtmoNs, CHAPTER i

i. The primes ending in 1.

a. [Stanford 1948]

(n + 1) + (if + 2) + ... + (+ l)i = tf + (n + 1)3

The terms on the left-hand side are in arithmetic progression.

3. i + 3 + . . . + (2n - 1) = if.

4. 1,9, 36, 100, ... are squares. See How to Solve It, p. 104.

5. [Stanford 1949] 1 -
j

or ( - 1
, according as n is odd or

even. A uniform law for both cases : the integer nearest to (n + 1 )
2
/4.

6. First question: Yes. Second question: No; 33 is not a prime.

7. Not for you, if you have some experience with primes [ex. 1, 6, 9]. In

fact, (1) can be proved (as particular case of a theorem of Kaluza,
Mathematische ^eitschrift, vol. 28 (1928) p. 160-170) and (2) disproved:
the next coefficient (of*

7
) is 3447 = 3 3 - 383. The "formal computa-

tion5 '

has a clear meaning.
Setting

(CO

\ 1 GO

2fl!*) =2"n*n>0/0
we define UQ == 1 and uv t/2, MJ, . . . recurrently by the equations

0!aB + 1 !_,. + 2!an_2 + . . . + (n
-

1) !,. + nln, =
for n = 1, 2, 3, . . . .

8. On the basis of the observed data it is quite reasonable to suspect that

An is positive and increases with n. Yet this conjecture is totally mistaken.

By more advanced tools (integral calculus, or theory of analytic functions

of a complex variable) we can prove that, for large n, the value of An is

approximately ( l)^1 (n l)I(logn)-
2
.

10. In the case 2n = 60 we have to make 9 or 7 trials (p = 3, 5, 7, 1 1, 13,

17, 19, 23, 29 or/ = 31, 37, 41, 43, 47, 53, 59) according as we follow the

first or the second procedure. It is likely that for higher values of n there

213
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will be still a greater difference between the number of trials, in favor of the

second procedure.

No solution: 9, n, 12, 13, 14.

SOLUTIONS, CHAPTER H

z. I think that C or ID is the "right generalization" and B "overshoots the

mark." B is too general to give any specific suggestion. You may prefer
C or D; the choice depends on your background. Yet both C and D
suggest to begin with the linear equations and lead eventually to the following

plan: express two unknowns in terms of the third unknown from the first

two (linear!) equations and, by substituting these expressions in the last

equation, obtain a quadratic equation for the third unknown. (In the

present caseA, canyouexpress any two unknownsfrom the first two equations ?)

There are two solutions:

(x,y>Z) = (I, -2, 2), (29/13, -2/13, 2).

a. Rotated 180 about its axis, the pyramid coincides with itself. The
right generalization of this pyramid is a solid having an axis of symmetry of

this kind and the simplest solution is a plane passing through the axis and the

given point. (There are an infinity of other solutions; by continuity, we
can prescribe a straight line through which the bisecting plane should pass.)

Note that a regular pyramid with pentagonal base does not admit a compar-
ably simple solution. Compare How to Solve It, pp. 98-99.

3. A is a special case of B if we allow in B that P may coincide with 0,

yet the two problems are equivalent: the planes required in A and B are

parallel to one another, and so the solution of each problem involves that

of the other.

The more general problem B is more accessible, provided that P ^ :

choose Q,and J?, on the two other lines, so that OP = OQ= OR. The plane
passing through P, Q,, and R satisfies the condition of the problem. There-

fore, if A is proposed, there is advantage in passing to the more general B.

4. A is a special case ofB (for/ = 1), yet the two problems are equivalent:
the substitution x = j^

1'2 reduces B to A.

The more general problem B is more accessible: differentiate the easy
integral

twice with respect to the parameter^. Therefore, ifA is proposed, there is

advantage in passing to the more general B.

Observe the parallel situation in ex. 3.
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6. The extreme special case in which one of the circles degenerates into a

point is more accessilbe and we can reduce to it the general case. In fact, a
common outer tangent of two circles remains parallel to itself when both
radii decrease by the same amount, and a common inner tangent remains

parallel to itself when one of the radii increases, and the other decreases

by the same amount. In both cases, we can reduce one of the circles to a

point, without changing the direction of the common tangent.

8. The special case in which one of the sides of the angle at the circum-
ference passes through the center of the circle is "leading*'. From two such

special angles, we can combine the general angle at the circumference by
addition or subtraction. (This is the gist of the classical proof; Euclid III

20.) For a striking example of a "leading" special case see How to Solve It,

pp. 166-170.

12. If two straight lines in a plane are cut by three parallel lines, the cor-

responding segments are proportional. This helps to prove the more
difficult analogous theorem in solid geometry; see Euclid XI 17.

13. The diagonals of a parallelogram intersect in their common midpoint.

14. The sum of any two sides of a triangle is greater than the third side.

The simpler ofthe two analogous theorems (Euclid 1 20) is used in the proof
of the more difficult (Euclid XI 20).

15. Parallelepiped, rectangular parallelepiped (box), cube, bisecting

plane of a dihedral angle. The bisecting planes of the six dihedral angles of
a tetrahedron meet in onepoint which is the center ofthe sphere inscribed in the tetrahedron.

16. Prism, right prism, sphere. The volume ofa sphere is equal to the volume

of a pyramid the base of which has the same area as the surface of the sphere and the

altitude of which is the radius.

17. Let us call a pyramid an isosceles pyramid if all edges starting from its

apex are equal. All lateral faces of an isosceles pyramid are isosceles

triangles. The base of an isosceles pyramid is inscribed in a circle and the altitude

of the isosceles pyramid passes through the center of this circle. Cf. ex. 9.26.

22. Yes. Interchanging x and x we do not change x2 or the product
that represents (sin x)/x according to E.

23. Prediction: from E follows

sin x sm TT

x(x + TT) x TT

and so, for x -+ TT, by the definition of the derivative,

* COS 7T = -
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Verification :

(n -!)(+!)

_ ln+1 1

o
' ~^

o"
2. n

24. 1/6. As ex. 23, or special case k = 2 of ex. 25.

25. Prediction: if A; is a positive integer

fc_l / Z.2\ oo / 2\

n I--T n (i--) = E
+ Air) kit x

Verification: for .W ^ A: +
- -

-i n w-t+i n n

_ (-I)*-* (A
-

1) l(jy -k)\-(N + k) \l(k\2k)

(l)*-i (JV A) \(N + Jfc)
!

2 ^Ti

2 N (N - 1) ... (JV
-

Jfc + 1) 2

as .W tends to oo.

26. 7T/4, the area ofthe circle with diameter 1. From E, for x = ir/2

_ 1 3 3-5 5-7 7-9 9- 11~
2^2

"

f7!
'

S 7^
'

B^8
*

10 10
* " '

This formula, due to WalHs (1616-1703), was well-known to Euler. There
is another way of stating Wallis' formula:

1 /l-3-5...(2n^l)V- = km I
- - - -

1 n.
77 n^oo\2-4-6 ... 2n J

27. x =5 TT^ in ex. 21 and definition of an infinite product.

28. Yes. From ex. 27

anir(*+l) .. Z + n+l ( + n) ...(+ 1) (- 1) ...(- n)= lim . .K-n (-1)"(0'
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29. From ex. 27 and ex. 26

cos irz = sin ( z + 1/2)

_ (2n- 1 -2<) ... (3-2g) (1 -Ze) (1 + 2g) (3~
(2s 1) ... 3 1-1-3 ...(2n-l)

30. Yes. From and ex. 29

sn

31. Prediction: for x = TT ex. 29 yields cos TT = 1.

Verification: the product of the first n factors

-1*3
ljj> 3^7 5j-9 (2

-
3) (2n + 1) ^ 2n + 1

"TH
'

F3
"

5 5
"

7 7
" '

(2
-

1) (2n
-

1) 2n - 1

33. Prediction: ex. 29 yields cos 2?r = 1.

Verification: as ex. 31, or ex. 31 and ex. 35.

33. Prediction: for x = mr (n = I, 2, 3, . . .) ex. 29 yields

(>-)(-)('-)- COS7Trt= (

Verification: from cos = 1 and ex. 35, or directly as ex. 31.

34. Yes. As ex. 22.

35. Yes. By result, or method, of ex. 28.
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36. 1 -sin x = 1 -c

/sin 7r(~
\ sin 77/4

we set # = 77. By ex. 27

sin 77(1

sin 7T/4

_rm
n+1/4

"
1+ 1/4 1/4 -1+1/4

"

-a+1/4
4n + 1 2z 5 2z 1 2z 3+2z 4n 1 + 2z= hm

4n + l
' ' '

5 i s~'" 4a-l

37. By passing to the logarithms and differentiating in ex. 21 or ex. 27.

The precise meaning of the right hand side is

/I 111
lim __ + ... + +- +

77 X X 77 X H77

38. By ex. 37

cot x = - + 2 ( ~T 1

1 2*

Let us set

^ = cot x = - + a^x + a^ + ajfi + .

Then, expressing the coefficient of a2**-1
, we find

for n = 1, 2, 3, . . . . In order to find the coefficients a^ a^ 0%, . . . , we
use the differential equation
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Substituting for y and/ their expansions and comparing the coefficients of
like powers of*, we obtain relations between the coefficients a^ a^ 03, . . .

which we can most conveniently survey in the array

1 X*

3^ 5*3

2*2 2flj

*

7*

oo-io o

Cf. ex. 5.1. We obtain so the relations

Soj = -1, 5*2 + of = 0, 7% + 2a& =0, ...

and hence successively

S =?2^ ^. **
an-

2
-

6 'go' 9^5' 9450"

for 1,2,3,4,... .

39. Method ofex. 37 and 38 applied to result of ex. 36. We set now

Then

Nowj) satisfies the differential equation

which (observe that b^ = 1) yields the array

1 x **

1

2*4

24. 44, 64. 104,
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Hence we obtain first the relations 2b2 = 2, 4 3
= 2 2, 664 = 2b3 + b\9 . . .

and then the values for

n= 1,2,3,4,5,6,...

_7T 7T*
7T|

7T* 5^ W
W ""'"'''' 3 "" '

40. Generally

This can be used to check the numerical work in ex. 38 and ex. 39:

1 S_l J_.^_J_ J_.^__ J_
6*4~8' 90*16~~96' 945* 64 ""960"

x2}
~1/2 arcsin x dx

o

II?"" +

Now evaluate the integral we started from (=(7r/2)
2
/2) and use ex. 40.

Cf. Euler, Opera Omnia, ser. 1, vol. 14, p. 178-181.

i

4**

o

f (1
- Ar

2
)

-1'2
(arcsin x)*dx

i

= j.. 4..~22 + 32'242 + 353*2462 + ***

Now evaluate the integral we started from (=(7r/2)
3
/3). The expansion of
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(arcsin *)
2 that we have used will be derived in ex. 5.1. Cf. Euler, Opera

Omnia, ser. 1, vol. 14, p. 181-184.

00 xn f j**-1* (a) Ji*
=

J .?i V * " ~
o o

integrate by parts and then introduce as new variable ofintegration s= 1 t.

(b) x = 1/2 which renders the greater of the two values, x and I x, as
small as possible.

44. If Pn(x) = 0, we have

-
n

^n + ,-n
where we take A; = 0, 1, 2, ... n 1 if n is odd.

45. If n is odd, we can take in the expression of the roots, see ex. 44,

*=0, 1, 2, ... (n-l)/2.
Therefore,

*(*) = <

jf>
2

(i _ ** \

AT jb-i \ n2 tan2(7r/)/

Observe that, for fixed ,

lim

Only a relatively small step is needed to carry us from the point now attained
to a proof that is acceptable according to modern standards. A somewhat
different arrangement of Euler's argument due to Gauchy seems to have
served as a model to Abel as he, led by analogy, discovered the representation
ofthe elliptic functions by infinite products. Cf. A. Gauchy, Oeuvres completes,

sen 2, vol. 3, p. 462-465, and N. H.Abel, Oeuvres computes, vol. 1, p. 335-343.

46. The sum of a finite number ofterms is the same in whatever order the

terms are taken. The mistake was to extend this statement uncritically to an
infinite number of terms, that is, to assume that the sum of an infinite series

is the same inwhatever order the terms are taken. The assumed statement is

false; our example shows that it is false. The protection against such a

mistake is to go back to the definitions of the terms used and to rely only on

rigorous proofs based on these definitions. Thus, the sum of an infinite

series is, by definition, the limit of a certain sequence (of the sequence of the

"partial sums") and interchanging an infinity of terms, as we did, we change
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essentially the defining sequence. (Under a certain restrictive condition a

rearrangement of the terms of an infinite series does not change the sum;
see Hardy, Pure Mathematics, p. 346-347, 374, 378-379. Yet this condition

is not satisfied in the present case.)

No solution: 5, 7, 9, 10, n, 18, 19, 20, 21.

SOLUTIONS, CHAPTER HI

1. Yes: F= 2n, F= n + 2, E = 3n.

2. (1) Yes: F = m(p + 1), V=pm + 2, E = m(p + 1) + pm. (2)p=l,
m=4.
3. (1) Exclude for a moment the tetrahedron; the remaining six poly-

hedra form three pairs. The two polyhedra in the same pair, as cube and

octahedron, are so connected that they have the same E, but the F of one

equals the Vofthe other. The tetrahedron remains alone, but it is connected

with itself in this peculiar way. (2) Take the cube. Take any two neigh-

boring faces of the cube and join their centers by a straight line. The 12

straight lines so obtained form the edges of a regular octahedron. This
octahedron is inscribed in the cube, its 6 vertices lie in the centers of the 6
faces of the cube. Reciprocally, the centers of the 8 faces of the regular
octahedron are the 8 vertices of a cube inscribed in the octahedron. A
similar reciprocal relation holds between the polyhedra of the same pair
also in the other cases. (Use cardboard models for the dodecahedron and
the icosahedron.) The tetrahedron has this peculiar relation to itself:

the centers ofits 4 faces are the vertices ofan inscribed tetrahedron. (3) The
passage from one polyhedron of a pair to the other preserves Euler's formula.

4. By E red boundary lines, the sphere is divided into F countries; there

are Fpoints that belong to the boundary ofmore than two countries. Choose
in each country a point, the "capital" of the country. Connect the capitals
of any two neighboring countries by a "road" so that each road crosses just
one boundary line and different roads do not cross each other; draw these

roads in blue. There are precisely E blue lines (roads) ; they divide the

sphere into F' countries with V points belonging to the boundary of three or

more of these countries. Satisfy yourself that V = F and F' = V. The
relation between the red and blue subdivisions of the sphere is reciprocal,
the passage from one to the other preserves Euler's formula.

5. Euler's formula will hold after "roofing" (sect. 4) if, and only if, it did
hold before roofing. Yet by roofing all nontriangular faces of a given
polyhedron we obtain another polyhedron with triangular faces only.

6. Analogous to ex. 5 : "truncating" introduces vertices with three edges
as "roofing" introduces triangular faces. We could also reduce the present
case to ex. 5 by using ex, 4.
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7. (1) # = F, N^E, #2
= F - 1. The subscripts 0, 1, 2 indicate

the respective dimensionality, see sect. 7. (2) NQ N^ + N% = 1.

8. (1) Set / + m = c^ Im = c2. Then

#o=('+l)(m+l) -1+^+^2,
#!=(/ + \}m +(m + 1)1 = ^ + 2*2,

'

NZ= Im = <rg.

(2) Yes, # NI + N% = 1, although this simple subdivision of a rect-

angle cannot be generated exactly in the manner described in ex. 7.

9. N2 180 = (N -
3) 360 + 180. In trying to come closer to our

goal which is the equation (2) in the solution of ex. 7, we transform this

successively into

2^0-^-5=0,
2N - 3^2 + 2N2

- 3 = 2.

By counting the edges in two different ways, we obtain

3tf2 = 2yx
- 3.

The last two equations yield

^-.2^ + ^=1,
which proves Euler's formula, in view of ex. 7 (2).

10. (1) Let I + m + n = clt Im + In + mn cz and Imn = ca. Then

# =
(/ + 1) (m + 1) ( + 1)

= 1 + i + c2 + ca,

JVj = l(m +!)(+!) + n(i + 1) ( + 1) + n(l + 1) (m + 1)

Nz
=

(I + l)im + (m + l)fo + (n + \}lm = ca + 3*3,

^3 = Imn = 3.

(2) Yes, # - NI + N2
- NS = 1.

n. We dealt with the case n = 3 in sect. 16. In dealing with this case we
did not use any simplifying circumstance that would be specific to the

particular case n = 3. Therefore, this particular case may well "represent"
the general case (in the sense of ex. 2.10) as hinted already in sect. 17. The
reader should repeat the discussion of sect. 16, saying n for 3, n + 1 for 4,

Pn for 7> and Pn+l for 1 1, with a little caution. See also ex. 12.

12. Follow the suggestions of sect. 17 and the analogy of ex. 11. Given n

planes in general position. They dissect the space into Sn parts. Adjoin
one more plane ; it is intersected by the foregoing n planes in n straight lines

which, being in a generalposition, determine on it Pn regions. Each such plane
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region acts as a "diaphragm"; it divides an old compartment of space (one
of those Sn compartments) into two new compartments, makes one old com-

partment disappear and two new compartments appear and adds so finally

a unit to the previous number Sn of compartments. Hence the relation that

we desired to prove.

13. See the third column of the table in sect. 14.

14. The second column of the table in sect. 14 agrees with

n(*-V ( -!)(- 2)

we used the usual notation for binomial coefficients.

15. Finite 3, infinite 8.

*6. Let P* denote the number of those among the Pn parts defined in

ex. 1 1 which are infinite. By observation, for

n = 1, 2, 3

PZ - 2, 4, 6.

Guess : P* = 2. Proof: Take a point in one ofthe finite parts and imagine
an ever-increasing circle with this point as center. When this circle becomes

very large, the Pn P% finite parts practically coincide with its center.

Now, n different lines through the center of the circle intersect the periphery
in 2n points and divide it into 2n parts. Hence, in fact, P = 2n.

For instance, the answer to ex. 15 is

1-4 + 6=3.

17. Same as ex. 18, by analogy to the solution of ex. 16.

18. Same as ex. 19.

19. See ex. 20.

o. We consider n circles in the plane any two ofwhich intersect in general

position. We call S* the number ofparts into which these circles dissect the

plan, in view of ex. 17, 18, and 19. In analogy with sect. 16, notice that the

number of parts into which a circle is divided by n circles intersecting it is
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2n (general position assumed). Observe (think of all three interpretations
ofS~):

n= 1 2 3 4

2n = 2 4 6 8

S? = 2 4 8 14.

Guess: 5*+1 = 5* + 2n. Proof: as ex. 11, 12. For instance,

= + 8= 14 + 8=22;
This is the solution of ex. 17, 18, and 19. Further guesses:

21. See ex. 22-30.

22. Wrong: F= 1, 7= == 0, 1 + ^ + 2.

23. Wrong: F= 2, 7= 0, E= 1, 2 + ^ 1 + 2.

24. Wrong: F= 3, 7= 0, E = 2, 3 + ^ 2 + 2.

25. Right: F = 3, 7= 2, E = 3, 3 + 2=3 + 2.

26. Wrong: F = /> + !, 7=0, =
/>, (/> + 1) + ^=p + 2; see

ex. 22, 23, 24 for the cases p = 0, 1, 2, respectively. Observe that, in the

present case, the solution of ex. 2 (1) becomes inapplicable.

27. The case m = 3, p = is right, see ex. 25, and so is, more generally,
the case m ^ 3: F=m, 7=2, E = m, m + 2 = m + 2. The case

m = 0, p = is wrong, see ex. 22. The remaining two cases can be so

interpreted that they appear right. (1) TW= 1,^ = 0: one country with

an interior barrier that has two endpoints, F=l, 7=2, =
1,

1+2=1+2. (2) m = 2, />
= 0: two countries separated by two arcs

and two corners, F= 2, 7= 2, E= 2, 2+2=2 + 2. The more
obvious interpretation given in ex. 23 yields "wrong." With the present

interpretation the solution of ex. 2 (1) remains applicable to the case m > 0,

/>=0.
28. m ^> 3, p _; 1. The proof uses the fact that, in any convex poly-

hedron, at least three edges surround a face and at least three edges meet in

a vertex.

29. Ex. 22-28 suggest two conditions: (1) A country counted in F, as a

face of a convex polyhedron, should be of the "type of a circular region" ;

a full sphere is not of this type, neither is an annulus of this type. (2) A line

counted in E, as an edge ofa convex polyhedron, should terminate in corners ;
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the full periphery of a circle does not terminate so (it does not terminate at

all). Ex. 22 fails to satisfy (1), ex. 23 fails to satisfy (2), ex. 24 fails to

satisfy either, ex. 25 or, more generally, the case m > 0, p 0, interpreted as

in the solution of ex. 27, satisfies both (1) and (2).

30. (1) Take the case (3, 2) of ex. 2 (1), cf. ex. 26, but erase on each

meridian the arc between the two parallel circles: F= 7, 7= 8, E = 12,

7 + 8:^12 + 2, there is a spherical zone among the countries and there-

fore conflict with condition (1), but not with condition (2), of ex. 29.

(2) F= 1, F"= 1, jE= (one country, encompassing the whole globe,

except a mathematical point at the north pole) ; right, 1 + 1 = + 2, no
conflict with (1) or (2) of ex. 29. Etc.

32. 3F3 + 4F4 + 5F5 + . . . = 373 + 474 + 5F5 + . . . = 2E.

33. 477, 1277, 877, 3677, 2077, respectively.

34- SOC = 77F3 + 277^4 + 377F5 + . . . .

35. By ex. 34, 32, 31

Sa = 77S(n
- 2)Fn = 2<n(E

-
F).

36. A convex spherical polygon with n sides can be dissected into n 2

spherical triangles. Therefore,

A i + 02 + . . . + ocn (n 2)77

= 277 -r-
(77 aO - (77 oj)

-
. . . (77 oj

= 277 - a[ 4 ... an

= 277 - P'.

37. The faces of the polyhedron passing through one of the vertices

include an interior solid angle; its supplement is called by Descartes the

exterior solid angle. Describe a sphere with radius 1 around the vertex as

center, but keep only that sector ofthe sphere that is contained in the exterior

solid angle; the sectors so generated at the several vertices of the polyhedron
form, when shifted together, a full sphere as the circular sectors in the analo-

gous plane figure (fig. 3.7) form, when shifted together, a full circle. We
regard as the measure ofa solid angle the area ofthe corresponding spherical

polygon : the joint measure of all the exterior solid angles of the polyhedron
is, in fact, 477.

38. Let Pa> P2,
. . . Pv denote the perimeters of the spherical polygons

that correspond to the V interior solid angles of the polyhedron. Then, by
ex. 36 and 37,

Sa - Px + P2 + . . . + Pv
= 277 A\ + 277 A'z + . . . + 277 Ay
=^=2777-477.
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39. By ex. 35 and 38

-F) = 2a =: 2n(V ~ 2).
40. By ex. 31,32

which yields the first of the six proposed inequalities. The case of equality
is attained when F = F3, that is, when all faces are triangles. Eliminating
first E and then F from Euler's theorem and the inequality just proved, we
obtain the remaining two inequalities in the first row; they go over into

equations if, and only if, all faces are triangles. Interchanging the roles of
Fand F, as suggested by ex. 3 and 4, we obtain the three proposed inequalities
in the second row; they go over into equations if, and only if, all vertices
of the polyhedron are three-edged. Some of the inequalities proved are

given in Descartes' notes.

41. From Euler's theorem

6F ~ 2 = 12 + 2(2E 37)
and hence, by ex. 31, 32, and 40,

3F3 + 2F4 + F5
= 12 + 2(2E - 37) +F7 + 2F8 + . . .

and so any convex polyhedron must have somefaces with less than six sides.

No solution: 31,

SOLUTIONS, CHAPTER IV

i. ^(25) = 12, see sect. 2; S3(ll) = 3.

s. /^(n) denotes the number of the lattice points in a plane that lie on the

periphery of a circle with radius Vn and center at the origin. (Take the
case n = 25, ex. 1, and draw the circle.) R^(n) is the number of lattice

points in space on the surface of the sphere with radius Vn and center at the

origin.

3. If p is an odd prime, R%(p*} = 12 or 4 according as p divided by 4
leaves the remainder 1 or 3.

4* The comparison of the tables suggests : ifp is an odd prime, either both

p and p2 are expressible as a sum of two squares, or neither p nor />
2

is so

expressible. A more precise conjecture is also somewhat supported by our
observations: ifj& is an odd prime, R%(p) = 8 or 0, according as^ divided by
4 leaves the remainder 1 or 3.

5. Ifp = s? +j2
, it follows that

p ^ x* + 2*y +/ - (x* -/)* +
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That is, if R^p) > also B^(jf) > 0. This is only one half of our less

precise, and only a small part of our more precise, conjecture. (If we know

that R^(p
2
) > 0, a conclusion concerning R%(p^

is definitely less obvious.)

Still, it seems reasonable that such a partial verification greatly strengthens

our confidence in the less precise conjecture, and strengthens somewhat our

confidence in the more precise conjecture too.

6* Bt(P) = for n = 7, 15, 23, and 28, and for no other n up to 30; see

Table II on pp. 74-75.

7. The respective contributions to S4(n) are: (1)24, (2) 12, (3)6, (4)4.

(5) 1.

8. First, refer to the cases distinguished in ex. 7. If 4(4w) is odd, the

case (5) necessarily arises, and so

u

Second, to any divisor d ofu corresponds the divisor u/dsmd these two divisors

are different unless u = J*. Therefore, the number of the divisors of u is

odd or even, according as u is or is not a square, and the same holds for the

sum of these divisors, since each divisor of u is odd, as u itself. We con-

jectured in sect. 6 that ^4(4w) and the sum of the divisors of u are equal;

we proved now that these two numbers leave the same remainder when

divided by 2. Having proved a part of our conjecture, we have, of course,

more faith in it.

9. (1) 24 X 24 = 8 X 48 (6) 24 X 23 = 8 X-24

(2) 12 X 2*= 8 X 24 (7) 12 X 23 = 8 X 12

(3) 6 X 24 = 8 X 12 (8) 4 X 23 = 8 X 4

(4) 4x24 =8x 8 (9)12X22 =8X 6

(5) 1 X 24 ** 8 X 2 (10) 6 X 22 = 8 X 3

(11) 4X2=8X1.
10. See Table II, p. 74. Check at least a few entries. It follows from

ex. 9 that J24(fi)
is divisible by 8.

n. Trying to notice at least fragmentary regularities (as we did in sect. 6),

you may be led to grouping some more conspicuous cases as follows :

In (1), (2), and (3) the first line gives , the second line JZ4 (;
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is*. Done in solution of ex. 11 : (1) primes, (2) powers of 2, (3) numbers
divisible by 4.

13. By the analogy of sect. 6 and a little observation, the law is relatively
easy to discover when n is not divisible by 4. Therefore, we concentrate on
the case (3) in the solution of ex. 11.

A number in heavy print in the third line is the sum of all divisors of the cor-

responding number in the second line and, therefore, the sum of some
divisors of the corresponding number in the first line, in which we are

really interested. This observation leads to another trial :

= 4 8 12 16

*4()/8 = 1+2 1+2 1+2 + 3 + 6 1+2
n = 20 24 28

4()/8 =1+2 + 5 + 10 1+2 + 3 + 6 1+2 + 7+14.
Which divisors are added together? Which divisors are omitted?

14* jR4() 9 the number of representations of n as a sum of four squares,

equals 8 times the sum of those divisors of n which are not divisible by 4.

(If n itself is not divisible by 4, none of its divisors is, and hence the rule is

simpler in this more frequent case.)

15. Correspondingly to the columns of Table II:

31 25 + 4+1 + 1 12 X 16 32 = 31 + 1

9 + 9 + 9 + 4 4X16
32 16+16 6X4 3=2 + 1

33 25 + 4 + 4 12X8 48=33+11+3 + 1

16+16+1 12x8
16 + 9 + 4 + 4 12 X 16

16. 5=1 + 1 + 1 + 1 + 1 = 4+1
JRS (5) = () 25 + 8 7 22 = 2016 = 16 X 126.

40= 25 + 9 + 1 + 1 + 1 + 1 + 1 + 1

40= 9 + 9 + 9 + 9 + 1 + 1 + 1 + 1

S8(40) =8-7+^
= 126.

17. Ex. 16. Table III has been actually constructed by a method less

laborious than that of ex. 16; cf. ex. 6.17 and 6.23.
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18. Within the limits of Table III, both R8(n) and S$(Sn) increase steadily

with n whereas R4(n) and 4(4(2fl 1)) oscillate irregularly.

19. The analogy with 4(n) and S4(4(2n 1)) points to divisors. One

fragmentary regularity is easy to observe: if n is odd, RQ (n)/l6 and 3(872)

are exactly equal; if n is even, they are different, although the difference is

relatively small in most cases.

20* Odd and even already in ex. 19. Powers of 2:

n 1 2 4 8 16

S(8n) 1 8 64 512 4096.

Also the second line consists of powers of 2 :

n 2 21 22 23 24

S(8n) 2 23 26 29 212.

What is the law of the exponents?

21. If n is a power of 2, S(8ri) = n3. This (and the smooth increase of

RB (n) and S8(8n)) leads to constructing the following table.

- n3

1

1

8

1

28

8

1

64

1

8

153

1

224

1

64

In the column concerned with RQ(n), the + and signs are regularly
distributed.
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22. Cubes of divisors !

1 13

3 33 + I3

5 53 + I3

7 73+13
9 93 + 33 + I3

11 II 8 + 1*

13 13* + P
15 153 + 53 + 33 + I

8

17 173 + 13

19 193 + 13

,S8(8n)

2 2s I
3

23

4 43 _|_ 23 13 43

6 63 33 + 23 I
3 63 + 2s

.8 8s + 43 + 23 - I
3 8s

10 103 5s + 2s I3 1Q3 4. 2s

12 12s + 63 + 43~-33 + 23 I 3 123 + 43

14 143 73 + 2313 143 + 23

16 163 + 83 + 43 + 23 I3 163

18 183 93 + 63 33 + 23 1
s l83 + 63 + 23

20 203 + 10s 53 + 43 + 23 I
3 20s +43

23. (1) ( l)
n-iR8(n)l\ equals the sum of the cubes of all odd divisors of

n, less the sum of the cubes of all even divisors of n. (2) S8(8n) equals the

sum of the cubes of those divisors of n whose co-divisors a*e odd. (If d is a
divisor of n, we call nfd the co-divisor of d.) See ex. 6.24 on the history of

these theorems and references.

24. Construct the table

3 6 9 12

5 8 11 14

10 13

which should be imagined as extending without limit to the right and
downwards and shows that the only positive integers not expressible in the

proposed form are 1, 2, 4, 7.
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25, Case a = 3, b = 5 in ex. 24; a and are co-prime. Last integer
non-expressible ab a = (a 1) ( 1)

- 1. This is incomparably
easier to prove than the laws concerned with sums of squares.

26. (1) is generally true. (2) is not generally true, but the first exception
is n= 341. (See G. H. Hardy and E. M. Wright, An introduction to the

theory of numbers, Oxford, 1938, p. 69, 72.)

SOLUTIONS, CHAPTER V

i. [Cf. Putnam 1948]

(b) Having verified the differential equation, put

To compare the coefficients of like powers you may use the array

1 x2 x* ... x*n

y <*o 3^ 502 ... (2n + IK

10
which yields aQ = 1 and (2n + \}an = 2nan_l for n ^ 1.

a. [Cf. Putnam 1950]

(b) This expansion satisfies

y = i + v-

x*_.

The given product > satisfies the same differential equation. Both the
expansion and the product vanish when x = 0. Hence, they are identical.
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3. The relations between the coefficients an derived from

! 4 16V

are exhibited in the array (see ex. 1)

They yield

This example is of historical interest. See Gauss, Werke, vol. 3, p. 365-369.

4. Study the arrangement of the following array (see ex. 1, 3):

60^00

3a|a

60! 6o2 603 6o4 6o5

Starting from o = 1, we obtain recursively ols Og, 03, o4,
and o5 = 8.

See G. P61ya, ^eitschrift fur Kristallographie, vol. (A) 93 (1936) p. 415-443,

and Ada Mathematica, vol. 68 (1937) p. 145-252.

5. From comparing the expansions in sect. 1.

6. (a)
2
/15. (b) + oo. In both extreme cases, the error is positive,

the approximate value larger than the true value.
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7. (a)
2
/15. (b) 1/3. In both extreme cases, the approximate value is

larger than the true value.

8. 47r(a
2 + b2 + ^)/3. There is some reason to suspect that this

approximation yields values in excess of the true values. See G. Polya,
Publicadones del Institute di Matematica, Rosario, vol. 5 (1943).

9. In passing from the integral to the series, use the binomial expansion
and the integral formulas ex. 2.42.

P- lira 1 - - 2 - -

10. Use the solution of ex. 9 and put - - -
. . .

-- = gn. Then
246 2#

> n for n ^ 2 and, for s > 0,

2n- 1 > 0.
2

i* The initial term of the relative error of P* is

and so it is of order 4 unless a = 3/2 and P" = P + (P P')/2.

12. (P* - E)/E = 3 2-14 * + . . . when e small

= (37r 8)/8 = .1781 when e = 1

= .0001 9 when e = 4/5.

Hence the conjecture P" > E. See G. Peano, Applicazioni geometriche del

cdcolo infinitesimale, p. 231-236.

nj

Therefore, the desired conclusion is equivalent to

(n

The opposite assumption implies

for n > N9 N fixed, or, which is the same,

an+* &n ^ al
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Consider the values n = (m l)p:

a
mj> _ a(m-I) %
mp (m l)p mp*

___ __
(m - l)p (m - 2)/> (m - I)/

As in sect. 5, we conclude that, with a suitable constant C,

and this leads for m -> oo to a contradiction to the hypothesis an > 0.

14. The example an = nc of sect. 4 suggests

*i=l,
an = n log n for n = 2, 3, 4, . . , .

With this choice

= (

1 + (n +/>) [log n + log (! + (/>/))]
"

I nlogn /

(+/,) logn+

nlog n

since an -> 0.

15. The mantissas in question are the 900 ordinates of the slowly rising

curvej; = log x 2 that correspond to the abscissas x = 100, 101, . . . , 999;

log denotes the common logarithm. Table I specifies how many among
these 900 points on the curve fall in certain horizontal strips of width 1/10.

Let us consider the points at which the curve enters and leaves such a strip.

If xn is the abscissa of such a point

log *n - 2=^n/10>

x = 100

where n = 0, 1, 2, . . . ,
10. The number of integers in any interval is

approximately equal to the length of the interval: the difference is less than

one unit. Therefore, the number of the mantissas in question with first

figure n is xn+l xn, with an error less than L Now,

*n+1
-

Xn = 100(10
1/10 -

1)10*"

is the nth term of a geometric progression with ratio

10i/10 = 1.25893.
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Predict and observe the analogous phenomenon in a six-place table of

common logarithms.

16. The periodical repetition can (and should) be regarded as a kind of

symmetry; but it is present in all cases, and so we shall not mention it

again. The following kinds of symmetry play a role in our classification.

(1) Center of symmetry. Notation: c> c
r
.

(2) Line of symmetry. Notation : h if the line is horizontal, v or v' if

it is vertical.

(3) Gliding symmetry: the frieze shifted horizontally and, reflected in the

central horizontal line simultaneously> coincides with itself (in friezes 5, 7, a, 6).

Notation: g.

The following types of symmetry are represented in fig. 5.2. (The dash '

is used to distinguish two elements ofsymmetry of the same kind, as c and c'9

or v and r/, when their situation in the figure is essentially different.)

1, d: no symmetry (except periodicity)

2, g: c9 c', c, c'9 . ..

3, f: v, v', v, v',...

4, e: A

5, a: g

6, c: h; (v, c), (v'> c'} 9 (v, c), (v, c'} 9 . . .

7, b: g; v9 c, v, c> . . . .

All possible kinds of symmetry are represented in fig. 5.2, as you may
convince yourself inductively.

17. Three different kinds of symmetry are represented: 1 is of the same

type as 2, 3 as 4. Try to find all types. Cf. G. P61ya, ^eitschrift Jur
Kristallographie9 vol. 60 (1924) p. 278-282, P. Niggli, ibid. 9 p. 283-298, and
H. Weyl, Symmetry, Princeton, 1952.

18. Disregard certain details, depending on the style of the print. Then
(1) vertical line of symmetry, (2) horizontal line of symmetry, (3) center of

symmetry, (4) all three preceding kinds ofsymmetryjointly, (5) no symmetry.
The same for the five curves representing the five equations in rectangular
coordinates. Some variant of this problem can be used to enliven a class of

analytic geometry.

SOLUTIONS, CHAPTER VI

a. *(1 *)-*. Particular case of ex. 3, with/(*) = (1 *)~
l

; obtain it

also by combining ex. 4 and 5.

n-0
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oo

4- */(*)= 2 V-i*
n

-

n=l
oo

5. (1 *)~y (*)
= 2 (0 + *i + - + <O*n ; particular case of ex. 6.

n0
7. Z>3 = 1, Z>4 = 2, )

5
= 5, Z>6 = 14. For Z)6, refer to fig. 6.1 ; there are

2 different dissections of type I, 6 of type II, and 6 of type III.

8. The recursion formula is verified for n = 6 :

14 =1x5 + 1x2 + 2x1+5x1.
Choose a certain side as the base of the polygon (the horizontal side in

fig. 6.2) and start the dissection by drawing the second and third sides of the

triangle A whose first side is the base. Having chosen A, you still have to

dissect a polygon with k sides to the left of A and another polygon with

n + 1 k sides to the right; both polygons jointly yield Dk Dn+^k pos-
sibilities. Choose k = 2, 3, 4, . . . n 1 ; of course, you have to interpret

suitably the case k = 2.

9. By ex. 4 and 6, the recursion formula for Dn yields

Choose the solution of this quadratic equation the expansion ofwhich begins
with*2

:

Expanding and using the notation for binomial coefficients, you find:

io. Better so

oo oo oo oo oo oo

2 *' 2 *"* 2 *"'=2 2
UE OO t>" 00 1/0=" 00 00 00 00

where M, vy and u; range over all integers (from oo to + oo) independently,

so that the triple sum is extended over all the lattice points of space (see

ex. 4.2). To see that this is the generating function ofR$(n), you just collect

those terms in which the exponent M2 + r>
2 + wz has the same value n.

ii. 2, Kk(n)x =
n-O Ln-0

12.

r oo i
= 2*'2"-1'

Ln-1 J
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13. Let /, J, K> and L denote certain power series all coefficients ofwhich
are integers. Then the generating functions ofR-^n) ,

R2(n) 9 R^n), and R8(n)

are of the form
1 + 27,

(1 + 2/)
2 - 1 + 4J,

(1+4J)* = 1+ 8#,

= 1 + 161,

respectively.

14. * + x9 + x + x** + x*1 + . . .

= *(1 + X8 + *** + * + AT
80 +..-)= &

where P denotes a power series in which the coefficient of xn vanishes when n

is not divisible by 8. The generating functions of

^(n), S2(n), SM, SB(n)

are

XP, AT
2P2

, X*P*,

respectively.

15. From ex. 6 and 1 1

Qk+l = QkQl

where G stands for the generating function of

16. Analogous to ex. 15, from ex. 6 and 12.

17. Use ex. 15 and 16 with k = /= 4. The actual computation was

performed by this method, with occasional checks from other sources, as

ex. 4.16 and ex. 23.

18. (1) From ex. 14 and ex. 16 follows

n - 4)'+ S4(12)S4(8n- 12) +
It was conjectured in sect. 4.6 that S4 (4(2 1))

= a (2n 1) and in ex.

4.23 that S6(8u)
=

0*3(1*) ifu is an odd number.

(2) <r(l)cr(9) + cr(3)a(7) + <r(5)cr(5) + a(7)cr(3) + er(9)<r(l)

= 2(1 X 13 + 4 X 8) + 6 X 6

= 126 = 5+laa(5).

(3) It seems reasonable that such a verification increases our confidence in

both conjectures, to some degree.
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for u = 1, 3, 5, , . .; the summation is extended over all non-negative

integers k satisfying the inequality

20. <r(3)
= 4cr(l)

2<r(5)
= 3a(3)

3a(7) = 2a(5)

4(7(9)= a(7) + llor(3).

The last is true, since

4 X 13 = 8 + 11 x 4.

21. The recursion formula has been proved for 6
f

4(4(2n 1)) in ex. 19.

This recursion formula means, in fact, an infinite system of relations which

determine S4(4(2n 1)) unambiguously if S4(4) is given. Now, we know
that

J4(4) = a(l) = 1.

If a(2n 1) satisfies the same system of recursive relations as 54(4(2n 1)),

for n = 1, 2, 3, ... because the system is unambiguous. If, conversely,

the last equation holds, a(2n 1) satisfies those recursive relations.

22. Assume that

H= UQ + Utf + Hjj*
2 + Utf* + . . . ,

G* = H.

It follows, as in ex. 19, that

Equate to the coefficient of xn :

2 [-(t+l)
m-0

Consider a , a^ a2,
. . . as given. From the last equation you can express un

in terms of un^ wn_2,
. . . ^, MO provided that aQ ^ 0. Observe that

23. Apply ex. 22 to the case k = 8,

G = 1 + 2* + 2*4 + 2** + 2*16 + . . . .

By ex. 1 1 the result of ex. 22 yields

(n) *= 2(9 - n)Rs(n
-

1) + 2(36
- n)Rs(n 4)
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Set R8(n)l\6
= rn. Then r = 1/16 and we find r15 r2,

r3, . . . r10 successively

from.

ri
= 16r

2r2 = 14rx

3r = 12r2

144r

In using these formulas numerically, we have an important check: the

right hand side of the equation that yields rn must be divisible by n.

The same method yields a recursion formula for Rk(n), k being any given

integer I> 2, and also for Sk(n).

25. Gall s the infinite product. Computing xdlogsjdx and using

No. 10 of Euler's memoir, you obtain

the limits for all three sums are 1 and co. Multiply with the denominator of

the right hand side and focus the coefficient of xn.

Euler's case is k = 1 . Also the case k = 3 yields a relatively simple

result (see the work of Hardy and Wright, quoted in ex. 24, p. 282 and 283,

theorems 353 and 357). In the other cases we do not know enough about

the law of an.

No solution: i, 24.

SOLUTIONS, CHAPTER Vn

i* [Stanford 1950]

l_ 4 + 9 _16 + ... + (-r-iy-i n* =

The step from n to n + 1 requires to verify that



7 c]
SOLUTIONS TO PROBLEMS 24!

2. To prove

we use ex. 3.11, ex. 3.12 combined with the expression of Pn,
and ex. 3.20,

respectively. Then, supposing the above expressions, we are required to

verify

3 +l

All three follow from the well known fact (the basic relation in the Pascal

triangle) that

3. Jfrw to .SUM It, p. 103-1 10.

3 2_4 5 3_ j[ .
n+ 1

*
4' 3

~
6' 8' 5

~
10'

' ' '

2n

The step from to n + 1 requires to verify that

1 n + 2 2n
1

'(+!) 2n + 2 n + 1

Cf. ex. 2.23.

3 5 7 _9 _2n+l
5- -].-'- 5' 7

' ' '

2n - 1'

The step from n to n + 1 requires to verify that

4 2 + 3 2
1

~(2n+l)2= 2n +12n+
Cf. ex., 2.31.
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6. The general case is, in fact, equivalent to the limiting case

x _ x 2#2 4x4 8x8

i -*
"

i + X
+

1 + X*
+ r+74 +

1 + **
+ "

from which the particular case proposed is derived as follows: substitute

xu for x and multiply by 16, obtaining

16*16 16*16 S2*32

;

"I" ;
; ~5 H" 9

1 x 1 + *16
'

1 + ,

then subtract from the original equation. Ifwe set 2n+1 = m, the step from
n to n + 1 requires

mxm 2mx*m mxm

1 +xm
= ~~

1 x*m 1 x

7. To prove

The step from n to n + 1 requires to verify that

2n + 1 = (n + I)
2 n\

8. The nth term in the fourth row of the table is

(1 + 2) + (4 + 5) + . . . + (3n
- 5 + 3n - 4) + 3n - 2

= 3 + 9 + . . . + [6(n 1) 3] + 3n 2

_ 2 = 3n2 3n

The step from n 1 to n requires, in fact,

n3 (n 1)
3 = 3n2 -3n+ 1.

9. After n2
, n3 and n4, the generalization concerned with nk is obvious.

The simple case ofn2 was known since antiquity; Alfred Moessner discovered
the rest quite recently by empirical induction, and Oskar Perron proved it

by mathematical induction. See Sitzungsberichte der Bayerischen Akademie
der Wissmschqften, Math.-naturwissenschaftliche Klasse, 1951, p. 29-43.

10. For k = 1 the theorem reduces to the obvious identity

1 n= (n 1).

The step from k to k + 1 requires to verify that

which is the basic relation in the Pascal triangle, already encountered in ex. 2.
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ix. [Stanford 1946]. Call the required number of pairings of 2n
players Pn. The nth player can be matched with any one of the other
2n 1 players. Once his antagonist is chosen

2n 2 = 2(n - 1)

players remain who can be paired in Pn^ ways. Hence

xa. Call An the statement proposed to prove, concerned with fn(x).
Instead of An we shall prove A'n .

A'n. The functionfn(x) is a quotient the denominator of which is (1 x)"*
1

and the numerator a polynomial of degree n the constant term of which is

and the other coefficients positive integers.
Observe that An asserts more than An \ the points in which A'n goes beyond

An are emphasized by italics. Assuming A'n) set

. . . + anx

where a^ a& . . . an are supposed to be positive integers. From the recursive
definition we derive the recursive formula

and this shows that the coefficients of AT, x2, #*, . . . #n and #n+1 in Pn+1(^) are

a^ n^ + 2<z2, (n 1) az + 3^, ... 2an^ + nan, an, respectively, which
makes the assertion obvious.

13. (1) The sum of all the coefficients of Pn(x) is n! In fact, this sum is

Pn(l) and the recursive formula yields

JWl) = (n + l)P.(l).

(2) Pn(x)/x is a reciprocal polynomial or

Pn(iM#+l = Pn(*).
In fact, assume that ax = an9 a2 = a^j, . . . ; the corresponding relations

for the coefficients of Pn+i(x) follow from their expression given at the end of
the solution of ex. 12.

16. Q,i =1, Q,2 = 3, Q.3 = 45, 0,4 = 4725

0,2/0.1 =35 0,3/0,2=15, 0,4/0.3=105
suggest

Q,n = 13B-15-2
. . . (2n

-
3)

2
(2n
-

I)
1
.

In fact, the definition yields

and hence you prove the general law by inference from n 1 to n + 1.
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Observe that

2nl 1 -2- 3-4-5 -6... (2n l)2n

n!2n 2-4-6... 2n

17, The reasoning that carries us from 3 to 4 applies to the passage from
n to n + 1 with one exception: it breaks down, as it must, in the passage
from 1 to 2.

18. From n= 3 to n + 1 = 4: consider the lines 0, b, c, and d. Consider
first the case that there are two different lines among these four lines, for

example b and c. Then the point of intersection of b and c is uniquely
determined and must also lie on a (because, allegedly, the statement holds

for n = 3) and also on d (for the same reason). Therefore, the statement
holds for n + 1 = 4. If, however, no two among the four given lines are

different, the statement is obvious. This reasoning breaks down, as it must,
in the passage from 2 to 3.

No solution: 14,15.

SOLUTIONS, CHAPTER VIH

1. (1) Straight line, (2) perpendicular, (3) common perpendicular, (4) seg-
ments of line through given point and center (Euclid III, 7, 8), (5) segment
of perpendicular through center, no maximum, (6) segments of line joining
centers. The case in which the minimum distance is has been con-

sistently discarded as obvious, although it may be important.

2. (1) straight line, (2) perpendicular, (3) common perpendicular,

(4) perpendicular, (5) common perpendicular, (6) see sect. 4, (7) segments
of line joining point to center, (8) segment of perpendicular through center,
no maximum, (9) segment of perpendicular through center, no maximum,
(10) segments of line joining centers. The case in which the minimum
distance is has been discarded.

3* (1) concentric circles, (2) parallel lines, (3) concentric circles.

4. (1) concentric spheres, (2) parallel planes, (3) coaxial cylinders, (4)
concentric spheres.

5. (2) See sect. 3. Others similar.

6. (6) There is just one cylinder that has the first given line as axis and the
second given line as tangent. The point of contact is an endpoint of the
shortest distance. Others similar.

7. Call one of the given sides the base. Keep the base in a fixed position,
let the other side rotate about its fixed endpoint and call its other endpoint
X. The prescribed path of X is a circle, the level lines are parallel to the

base, the triangle with maximum area is a right triangle (which is obvious).
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8. Call the given side the base, keep it in a fixed position, call the opposite
vertex X, and let X vary. The prescribed path of X is an ellipse, the level

lines are parallel to the base, the triangle with maximum area is isosceles.

9* The level lines are straight lines x +y = const., the prescribed path
is (one branch of) an equilateral hyperbola with equation xy = A, where A
is the given area. It is clear by symmetry that there is a point of contact

with x=y.
10. Consider expanding concentric circles with the given point as center.

It seems intuitive that there is a first circle hitting the given line ; its radius

is the shortest distance. This is certainly so in the cases ex. 1 (2) and (4).

11. Crossing means passing from one side of the level line to the other,

and on one side/ takes higher, on the other lower, values than at the point
of crossing.

12. You may, but you need not. The highest point may be the peak P
(you may wish to see the view) or the pass S (you may cross it hiking from

one valley to the other) or the initial point of your path, or its final point,

or an angular point of it.

13. (1) The level line for 180 is the segment AB, the level line for

consists of the straight line passing through A and , except the segment AB.

Any other level line consists of two circular arcs both with endpoints A and

B, and symmetrical to each other with respect to the straight line passing

through A and B. (2) If two level lines are different, one lies inside the

other; _AXB takes a higher value on the inner, a lower value on the outer,

level line. With suitable interpretation, this applies also to 0.

14. The minimum is attained at the point where the line / crosses the line

through A and B, that is, a level line. This does not contradict the principle

laid down in ex. 11; on both sides of this particular level line /_AXB takes

higher values than on it.

15. Notation as in sect. 6. Keep c constant for a moment. Then, since

V = abcjS is given, also ab is constant, and

is a minimum, when 2(0 + b), the perimeter of a rectangle with given area

ab, is a minimum. This happens, when a = b. Now, change your stand-

point and keep another edge constant.

16. Keep one of the sides constant. Then you have the case of ex. 8,

and the two other sides must be equal (the triangle is isosceles). Any two

sides are accessible to this argument, and the triangle should be equilateral.

17. Keep the plane of the base and the opposite vertex fixed, but let

vary the base which is a triangle inscribed in a given circle. The aMtu<fc

is constant; the area of the base (and with it the volume) becomes a maxi-

mum when the base is equilateral, by sect. 4 (2). We can choose any lace
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as base, and so each face must be equilateral and, therefore, the tetrahedron

regular when the maximum of the volume is attained.

18. Regard the triangle between a and b as the base. Without changing
the corresponding altitude, change the base into a right triangle; this

change increases the area of the base (ex. 7) and, therefore, the volume.
You could treat now another pair of sides similarly, yet it is better to make c

perpendicular both to a and to b right away.

19. Fixing the endpoint on the cylinder, you find, by ex. 2 (7), that the
shortest distance is perpendicular to the sphere. Fixing the endpoint on the

sphere, you may convince yourself that the shortest distance is also per-

pendicular to the cylinder. Therefore, it should be perpendicular to both.
This can be shown also directly.

20. The procedure of ex. 19 shows that the shortest distance should be

perpendicular to both cylinders. In fact, it falls in the same line as the
shortest distance between the axes of the cylinders; see sect. 4 (1).

21. The procedure of ex. 19 and an analogue of ex. 10 in space.

22. By hypothesis

for all admissible values of Z, 7,Z, . . . . Therefore, in particular

f(X,B,C3 ...)^

and so on; X,Y,Z, . . . may be variable numbers, lengths, angles,

points, ....

24. Either #x == j^ = ^ (exceptional case) or, for n ^ 1, of the three
values xn, y^ zn just two are different. Call dn the absolute value of the

difference; for example

^=K-*l|> rf2=U-*2|-
By definition

2 2

or d2 = d-J2. In the same way

and so

__ |

xn In
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25* We consider n positive numbers xx, #2, . . . xn with given arithmetic
mean A,

If xl} *2, . . . xn are not all equal, one of them, say xl9 is the smallest and
another, say #2, is the largest. (The choice of the subscripts is a harmless

simplification, just a matter of convenient notation. We did not make the
unwarranted assumption that only xI takes the smallest value.) Then

xl <A< #2.

Let us put now

*1 A, #2 = *1 + #2
~" A> *s *== *& * ~ <V

Then

*i + * + +* = *i + 4 + +*
and

*1*2
~~

*1*2 ^ ^*l + ^*2 ^2
*1*2 = (-4 #x) (*2 -4) > 0.

Therefore

. . . x
'

If #1, 4' ^n are not a^ equal, we repeat the process obtaining another
set of n numbers x"l9 x^ . . . x* such that

x =

The set ^, x%> . . .
A:^

has at least one term equal to A, the set x^9 x%>

has at least two terms equal to A. At the latest, the set ^1
(n~1)

, ^2(n
~

xn(n
~1} will contain n\ and, therefore, n terms equal to A, and so

a6. Connecting the common initial point of the perpendiculars #,jy, with

the three vertices of the triangle, we subdivide the latter into three smaller

triangles. Expressing that the sum of the areas of these three parts is equal
to the area of the whole, we obtain x +jy + z = /. The equation
x = const, is represented by a line parallel to the base of the equilateral

triangle, the equation y = * by the altitude. The first segment of the

broken line in fig. 8.9 is parallel to the base and ends on the altitude. The
first step of ex. 25 is represented by a segment parallel to the base and ends

on the line with equation y = //3, which is parallel to another side and

passes through the center. The second step is represented by a segment along

the liney s= Z/3 and ends at the center,
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27. For the solution modelled after ex. 25 see Rademacher-Toeplitz,

pp. 11-14, 114-117.

28. Partial variation.

29. At the point where the extremum is attained, the equations

+l?l=0} ^+A^=0
dx dx

'

dy dy

hold with a suitable value of L This condition is derived under the

assumption that dgjdx and dg/dy do not both vanish. Under the further

assumption that dffdx and dfjdy do not both vanish, the equations with X

express that the curve g = (the prescribed path) is tangent to the curve

f= const, (a level line) that passes through the point of extremum, at this

point.

30. At a peak, or at a pass, df/dx = df/dy = 0. At an angular point of

the prescribed path, dgjdx and dg/dy (if they exist) are both = 0. An
extremum at the initial (or final) point of the prescribed path does not fall

at all under the analytic condition quoted in ex. 29 which is concerned
with an extremum relative to all points (x,y) in a certain neighborhood,
satisfying g(*9y) = 0.

31. The condition is

V+ i*_V *_*_*
ox ox oy oy oz oz

It assumes that the three partial derivatives of g are not all 0. Under the
further assumption that the three partial derivatives of/ are not all 0, the
three equations express that the surface g= and the surface /= const,

passing through the point of extremum are tangent to each other at that

point.

32. The condition consists of three equations of which the first, relative
to the x-axis, is

9f, *3g dh
3-+^a-+^^-=0.ox dx dx

It assumes that three determinants of which the first is

dg dh dg dh

dy dz dz dy

do not all vanish. Under the further assumption that the three partial
derivatives of/are not all 0, the three equations express that the curve which
is the intersection of the two surfaces g = and k = 0, is tangent to the
surface/= const., passing through the point of extremum, at that point.
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34. The desired conclusion is: the cube alone attains the maximum.
Therefore, when the inequality becomes an equality, the cube should

appear; that is, we should have x = y, or (looking at the areas) #2 = xy.

Yet, the inequality used (without success) becomes an equality when
2x2 = 4xy: we could have predicted hence that it will fail.

With, or without, peeking at sect. 6, we divide S into three pairs of

opposite faces

S = 2*2 + 2xy + 2xy

and apply the theorem of the means:

(.S/3)* I> 2*2 -

2xy 2xy = 8*y = 872
.

The equality is attained if, and only if, 2*2 = 2xy, or x = _y; that is, only
for the cube.

Draw the moral: foreseeing the case of equality may guide your choice,

may yield a cue.

35. Let 7, S, x, and y stand for volume, surface, radius, and altitude of

the cylinder, respectively, so that

V= 7TX2y, S = 2m2 + 2-nxy.

The desired conclusion, y = 2x, guides our choice : with

S = 2m2 + Trxy + irxy

the theorem of the means yields

(S/3)
3
;> 2<7TX

2
TTXy TTXy = 27T3*y = 277 T2

,

with equality just forj> =^ 2x.

36. Ex. 34 is a particular case, ex. 35 a limiting case. Let F", ,7, and x

stand for volume, surface, altitude of the prism, and for the length of a

certain side of its base, respectively. Let a and / denote the area and the

perimeter, respectively, of a polygon similar to the base in which the side

corresponding to the side of length x of the base is of length L Then

V= axfy, S = 2o*2 + Ixy.

In ex. 34 and 35, the maximum of S is attained, when the area of the base

(now ax2) is S/6. Expecting that this holds also in the present general case,

we have a cue; we set

and obtain, using the theorem of the means,

(S/3)
3 ^ 2<z*2 -

with equality if ax2 = byfi = S/6.
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37. Let F, S, x, and y stand for the volume of the double pyramid, its

surface, a side of its base, and the altitude of one of the constituent pyramids,
respectively. Then

V= 2*^/3, 5 = 8x[(*/2)
2

In the case of the regular octahedron, the double altitude of a constituent

pyramid equals the diameter of the base, or

2jv
= 21/2

x, or 2y = x2.

Having obtained this cue, we set

= (6F)
4

.

Equality occurs only if x2 = 2/. Note that in this case 5 =* 31/22x2.

38. Let F, $, x, and y denote the volume of the double cone, its surface,
the radius of its base, and the altitude of one of the constituent cones,
respectively. Then

F= 27TX2j;/3, S =: 2 -

2?rx(x
2 +/)*/2

/2.

Consider the right triangle with legs x,y and hypotenuse (x
2 +j>2) 1/2.

If the projection of x on the hypotenuse is 1/3 of the latter (as we hope
that it will be in the case of the minimum),

or 2x2 = y. Having obtained this cue, we set

Equality occurs only if 2x2 = jv
2

. Note that in this case S = 31/22 Trx2.

39. Let F, S, andjv denote the volume of the double pyramid, its surface,
and the altitude of one of the constituent pyramids, respectively. Let
x, a, and I be connected with the base of the double pyramid in the same
way as in the solution of ex. 36 with the base of the prism. Let/> stand for
the radius of the circle inscribed in the base. Then

F=
x2 = kp/2,

In ex. 37 and 38, S is a minimum when S = 31/22a*2 which yields
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Noticing this cue, we set

S* =

Equality occurs if, and only if, the base ax2 = S/(3
1/2

2).

40. There is a plausible conjecture: the equilateral triangle has the
minimum perimeter for a given area, or the maximum area for a given
perimeter. Let a, b, c, A, and L=2p stand for the three sides of the

triangle, its area, and the length of its perimeter, respectively. By Heron's

formula,

The use of the theorem of the means is strongly suggested: A should not be
too large, when p is given; the right hand side is a product. How should
we apply the theorem? There is a cue: if the triangle is equilateral,= b = c> or p # = p b = p c. Therefore, we proceed as follows:

c\*

That is, ^2 ^L4
/(2433)> and Acre is equality only in the case of the

equilateral triangle. Cf. ex. 16.

41* There is a plausible conjecture: the square.

Let a and b include the angle ^, c and d the angle y, and
<f> + y = e.

We obtain

2A = ab sin
<f> + cd sin y-

Expressing in two different ways the diagonal of the square that separates

<f>
and ip, we obtain

a2 + b* 2ab cos < = c2 + rf
2

We have now three relations to eliminate
<f>
and y. Adding

(fl 4.
2 <4 _ </2)2

^ 4fl22 CQS2 ^ _j_ 4^2 CQS2 ^ _ 3^^ cos ^ COS

16A2 = 4a?b2 sin2
<f> + 4^rf2 sin2 y + Babcd sin <^

sin y
we obtain

+ (a
2 + b2 ^ rf

2
)
2 = 4^2 + 4^^ Zabcdcos B

(cos e/2)
2
.
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Finally, noticing differences of squares and setting

a + b + c + d=2p = L,

we find

A*=*(p a)(p b)(p c) (# <l)
- abed (cos e/2)

2
.

In the probable case of equality (the square) the sides are equal, and so are

the quantities p 0, p b, p c, p d. With this cue, we obtain

< (p-a+p-t>+p-c+p-dY

In order that both inequalities encountered should become equalities, we
must have e = 180 and a==b = c=d.

42. The prism is much more accessible than the two other solids which
we shall tackle, after careful preparation, in ex. 46 and 47. Let L denote
the perimeter of the base and h the altitude of the prism. Any lateral face

is a parallelogram; its base is a side of the base of the solid, and its altitude

I> h. Therefore, the lateral surface of the prism is ^ Lh, and equality .is

attained if, and only if, all lateral faces are perpendicular to the base and so

the prism a right prism.

43. Let x^yf
be the coordinates of Pp for j = 0, 1, 2, . . . n, and put

forJ = 1, 2, . . . n. Then the left-hand side of the desired inequality is the

length of the broken line /W^ - - Pn ancl tne right-hand side the length
of the straight line P^Pn) which is the shortest distance between its endpoints.

44. In the case n = 2, we examine (the notation is slightly changed) the

assertion

(M
2 + ^)l/2 + (C/

2 + 72)l/2 ;> [(u + /)2 + ( + 7)
2
]
1/2

.

We transform it into equivalent forms by squaring and other algebraic

manipulations :

uU + vV)

In its last form, the assertion is obviously true. Equality is attained if,

and only if,

u : v = U : V.
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We handle the case n = 3, by applying repeatedly the case n = 2:

(? + *?)
1/2 + (5 + i)

1/2 + (5 + *!)
1/2

H2)
2 + ("I

And so on, for n = 4, 5, . . . , In fact, we use mathematical induction.

45. Let h be the altitude and let the base be divided by the foot of the

altitude into two segments, of lengths p and q, respectively. We have to

prove that

which is a case of ex. 43. For equality, we must have

or p = q, that is, an isosceles triangle.

46. Let A be the altitude of P, a^ a2> an the

and pi, pz,
. . . / n the perpendiculars from the foot of the altitude on the

respective sides. Let S denote a summation withj ranging from j = 1 to

j = n. Then

These expressions become simpler for the right pyramid P , since all per-

pendiculars from the foot of the altitude on the sides have a common value

PQ. Therefore,

P and P have the same altitude 37/^4 = 37 /^ = A. Using ex. 43 and

our assumptions, we obtain

)
2 +

+
= 2(S - A).
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Therefore, S I> S . For equality, both inequalities encountered must

become equalities and so two conditions must be satisfied. First,

Pi '- * = Pz : h = = Pn : h>

that is, P is a right pyramid. Second, L = L .

47. We take two steps: (1) We change the base of D into that of D
,

and both pyramids, of which D. consists, into right pyramids, leaving,

however, their altitudes unchanged. We obtain so a double pyramid D'

which is not necessarily a right double pyramid. (Its two constituent

pyramids are right pyramids, but perhaps of different altitudes.) (2) We
change Df

into Z) . Step (1) can only diminish the surface, by ex. 46.

The altitudes of the two constituent pyramids of D', of lengths h and A2,

fall in the same straight line. LetpQ denote the radius of the circle inscribed

in the base of Z> . Then the surface of D' is

by ex. 45.

48. Leaving the volume V unchanged all the time, we take three steps:

(1) Leaving the base unchanged, in shape and size, we transform the given

prism into a right prism. (2) Leaving its area A unchanged, we transform

the base into a square. (3) We transform the right prism with square base

into a cube. Steps (1) and (3) can only diminish the surface S, by exs.

42 and 34, respectively. Step (2) leaves the altitude h = VIA unchanged,
and can only diminish L, the perimeter of the base, by ex. 41 ; but

S = 2A + Lh. Unless the prism is a cube from the outset, at least one of

the three steps actually diminishes S. The weaker theorem 34 served as a

stepping stone.

49. It follows from ex. 47, 41, and 37 as the foregoing ex. 48 follows

from ex. 42, 41, and 34. Yet we can combine with advantage the two steps

corresponding to (1) and (2) of ex. 48 into one step, thanks to the sharp
formulation of ex. 47.

50* We start from any pyramid with triangular base (any tetrahedron,
not necessarily regular). We transform it into a right pyramid, leaving

unchanged the volume V and the area of the base A, but changing (if

necessary) the base into an equilateral triangle. This diminishes the peri-

meter of the base L, by ex. 40, and, therefore, the surface S, by ex. 46. The
lateral faces of the new pyramid are isosceles triangles. Unless they happen
to be equilateral, we take one of them as base, and repeat the process,

diminishing again S. By the principle of partial variation (ex. 22) ,
if there

is at all a tetrahedron with a given Vand minimum S, it must be the regular
tetrahedron.
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51. See ex. 53.

52. See ex. 53.

53. Let F, S, and^ denote the volume, the surface, and the altitude of
the pyramid, and let #, a, and I be connected with the base of the pyramid
in the same way as in the solution of ex. 36 with the base of the prism. Let
p stand for the radius of the circle inscribed in the base. Then

F =
ax* =
S = ax* +
= ax* + (40V +

Trying to introduce expressions which depend on the shape, but not on the
size, we are led to consider

1/2

(we introduced an abbreviation, setting [lyl(2ax)]* = t) and

$* P [1 -|_ (1 -)- j)l/2]3

(3F)
2 ^Ta t

*

As F is given, and S should be a minimum, the left-hand side should be a
minimum. Therefore, the right-hand side should be a minimum. Yet the

shape is given and so P/a is given. Therefore, all that remains to do is to
find the value of t that makes the right hand side a minimum: this value is

independent of the shape. It fits all special shapes equally, for example, the

shapes mentioned in ex. 51 and 52. Yet there is a special shape, for which
we know the result: if the base is an equilateral triangle, the best ratio

S : ax*, or total surface to base, is 4 : 1, by ex. 50. This remains true for

all shapes, since Sj(ax
2
) depends only on t, and yields

1 + (1 + *)
1/2 =4, t = 8.

54. The reader should copy the following table, substituting for the

number of each problem a suitable figure.

(1) (2) (3) (4) (5) (6) (7)

(a) 34 35 36 42 u 48 x

(b) 51 52 53 46 50 v y

(c) 37 38 39 47 w 49 *

(d) 40 41 n

The rows: (a) prisms, (b) pyramids, (c) double pyramids, (d) polygons

(relevant only for the last three columns) .
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The columns: (1) right with square base, (2) right with circle as base,

(3) right with base of given shape, (4) transition from oblique to right,

(5) arbitrary triangular base, (6) arbitrary quadrilateral base, (7) arbitrary-

polygonal base with a given number n of sides.

Analogy may suggest the theorems which can be expected to fill the

gaps marked by the letters u, v, w, #, jy, z, and n. Here are some :

(u) The prism that, of all triangular prisms with a given volume, has the

minimum surface, has the following properties : its base is an equilateral

triangle, the area of its base is 1/6 of the total area of its surface, it is circum-

scribed about a sphere which touches each face at the center of the face.

(y) The pyramid that, of all pyramids with n-sided polygonal base and a

given volume, has the minimum surface, has the following properties: its

base is a regular polygon, the area of its base is 1/4 of the total area of its

surface, it is circumscribed about a sphere which touches each face at the

centroid of the face.

On the basis of the foregoing we can easily prove (u), (v) 9 and (a;), but

(x), (y), and (z) depend on (n), which we shall discuss later; see sect. 10.7 (1).

55* (1) Using the method and the notation of sect. 6, we have

F= abc, S5 = ab + 2ac + 2bc.

with equality if, and only if,

ab = 2ac = 2bc

or a = b = 2c: the box is one half of a cube.

(2) Using the result of sect. 6, we regard the plane of the face not counted
in S5 as a mirror. The box together with its mirror image forms a new
box of volume 2V the whole surface of which is given, = 2S5 . By sect. 6,

the new (double) box must be a cube when the maximum of the volume is

attained.

56. Following ex. 55, regard the plane of the missing face as a mirror.

Maximum for the triangular pyramid which is one half of a cube, halved

by a diagonal plane. Apply ex. 48, with an additional remark.

57. [Putnam 1950] Following ex. 55 and 56, regard the planes of both

missing faces as mirrors. Maximum for the triangular pyramid which is

one quarter of a cube; the cube is divided into four congruent fragments
by two planes of symmetry, one a diagonal plane, the other perpendicular
to the first and parallel to two faces.

58. Let A, L, r, and s stand for the area, the perimeter, the radius, and the
arc of the sector, respectively. Then

A = rs/2, L=2r + s
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we use the theorem of the means. Equality is attained when s = 2r and
the angle of the sector equals two radians.

59. Let M, v, and w denote the sides of the triangle, A the area, y the given

angle opposite w. Then
2A = uv sin y.

(1) [(u + v)l2]*^uv=2Afsin y)

by the theorem of the means. Equality is attained when u = z?, that is, the

triangle is isosceles.

(2) w2 = w2 -f-
2 2#y cos y

= H2 -f- z;
2 4-4 cot y

The equality is attained, and so w a minimum, when w2 = v* and the

triangle is isosceles.

(3) As both u + v and z0, also u -f- + w is a minimum, when the

triangle is isosceles.

60. Use the notation of ex. 59. The given point lies on the side w.

Draw from the given point parallels to u and v9 terminating on v and u, and

call them a and 6, respectively; a and b are given (they are, in fact, oblique

coordinates) . From similar triangles

v b b a b- . --- or __[,_._ i

a u a v

A 2> 2ab sin y.

There is equality if, and only if,

?=* = !, =2a, ,= 24
M V 2

and the given point is the midpoint of w.

i. Use the notation of sect. 6 and the theorem of the means.

(1) V=abc[(a + b+ c)/3]
3 = [E/12?

(2) S = 2ab + 2ac + 2bc

ac + be)

that is,
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In both cases, equality is attained only for a = b = , that is, for the cube.

6a. Use the notation of sect. 6 and the theorem of the means. The

length is ct
the girth 2(a + 4), and

7= (2 23 -

*)/4 <: [(2* + 26 + <r)/3]
3
/4 ^ P/108.

Equality is attained only for 2a = 2b = c s= //3.

63. Use the notation in the solution of ex. 35. Then

d* = (2*)
2 + 0>/2)

2 = 2(*
2 +

and, therefore, by the theorem of the means

with equality only if

For the historical background cf. O. Toeplitz, Die Entwicklung der

Infinitesimalrechmung, p. 78-79.

No solution: 23, 33.

SOLUTIONS, CHAPTER IX

i (1) Imagine two mirrors perpendicular to the plane of the drawing,
the one through I and the other through m. A person at P looks at m and
sees himself from the side: the light coming from P returns to P after a first

reflection in / and a second in m. The light, choosing the shortest path,
describes the desired &PYZ with minimum perimeter; the sides of /\PYZ
include equal angles with / and m at the points Y and Z, respectively.

(2) Let P' and P" be mirror images ofP with respect to I and m, respectively.
The straight line joining P' and P" intersects / and m in the required Y and

Z, respectively, and its length is that of the desired minimum perimeter.

(By the idea of fig. 9.3, applied twice.)

as. (1) Light, after three successive reflections on three circular mirrors,
returns to its source from the opposite direction. (2) A closed rubber
band connects three rigid rings. Both interpretations suggest that the two
sides of the required triangle that meet in a vertex on a given circle include

equal angles with the radius.

3. Roundtrip of light or closed rubber band, as in ex. 2 ;
XY and XZ are

equally inclined to BC, etc.

4. A polygon with n sides and minimum perimeter inscribed in a given

polygon with n sides has the foliowing 'property: those two sides of the

minimum polygon of which the common vertex lies on a certain side s of

the given polygon, are equally inclined to s. See, however, ex. 6 and 13.
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5. Call A the point of intersection of I and m. Take a point B on m and a

point C on / so that JBAC (less than 180) contains the point P in its interior.

Then, by reflection,

P"AB = /.BAP,
and hence

The solution fails when /JP*AP' I> 180 or, which is the same, when the

given /_BAC^ 90.

6. The solution cannot apply when the given triangle has an angle ^ 90,
see ex. 5. The solution of ex. 4 is, of course, a fortiori liable to exception.

7. Fix for the moment X in the position P on the side BC. Then the

solution (2) of ex. 1 applies (since /_BAC is acute, see ex. 5) ; the minimum
perimeter is P'P". Now the length P'P" depends on P; it remains to find

the minimum of P'P". (As P'P" itself was obtained as a minimum, we seek

a minimum of the minima or a "minimum minimorum.") Now, by
reflection, P"A = PA = P'A. Therefore, &P"AP' is isosceles; its angle at

A is independent of P (see ex. 5) and so its shape is independent of P. There-

fore, P'P" becomes a minimum when P'A = PA becomes a minimum, and
this is visibly the case when PA BC; cf. sect. 8.3. The vertices of the triangle

with minimum perimeter inscribed in a given acute triangle are the feet of the three

altitudes of the given triangle. Comparing this with the solution of ex. 3, we
see that the altitudes of an acute triangle bisect the respective angles of the inscribed

triangle of which theirfeet are the vertices. The latter result is, of course, quite

elementary. The present solution is due to L. Fej6r. Cf. Courant-Robblns,

p. 346-353.

8. No. If l\ABC has an angle ^> 120, the vertex of that angle is the

traffic center. This is strongly suggested by the mechanical solution in

sect. 2 (2).

9. [Putnam 1949] This is closely analogous to the simpler plane problem
treated in sect. 1 (4) , sect. 2 (2) and ex. 8. Which method should we adopt?

(1) Mechanical interpretation, modelled on fig. 9.7. There are four pulleys,

one at each ofthe four given points A, B, C, and D. Four strings are attached

together at the point X; each string passes over one of the pulleys and

carries a weight of one pound at its other endpoint. As in sect. 2 (2} ?
a

first consideration (of the potential energy) shows that the equilibrium

position of this mechanical system corresponds to the proposed minimum

problem. A second consideration deals with the forces acting on the point

X. There are four such forces; they are equal ia magnitude and itt the

direction of the four taut strings, going to A, B, C, and Z>, respectively. The

resultant of the first two forces must counterbalance the resultant of t$&

last two forces. Therefore, these resultants are in the saaie line vA$$&

bisects both /_AXB and CXD. The equality of these ajpgio$
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from the congruence of the two parallelograms offerees (both are rhombi).

Similarly related pairs are: /_AXC and /_BXD, /_AXD and /_BXC.
(2) Partial variation and optical interpretation, modelled on fig. 9.4. Keep
constant (for a moment) CX + DX, the sum of two distances. Then the

point -SThas to vary on the surface of a prolate spheroid (ellipsoid of revolu-

tion) with foci at C and D. We conceive this surface as a mirror. The
light starting from A, reflected at our spheroidal mirror and arriving at B
renders AX + XB a minimum; along its path /^AXB is bisected by the

normal to the mirror at the point X. The same normal bisects /_CXD by
sect. 1 (3) or sect. 2(1). Yet the equality of /_AXB and /_CXD is not so

easily obtained by this method: although both methods work equally well

in the simpler analogous case, they do not equally well apply to the present
theorem.

10* Yes. Wherever the point X may be

AX+XC:>AC, BX + XD^BD
since the straight path is the shortest between two points, and both

inequalities become equations if, and only if, X is the point of intersection

of the diagonals AC and BD : this is the traffic center. The statement of

ex. 9 remains fully correct in view of the fact that the normal to the plane of

the quadrilateral is a common bisector of /_AXC and /_BXD} which are

both straight angles.

ii* Follows by partial variation from the result of sect. 1 (4). Gf.

Courant-Robbins, p. 354-361.

13. Drive the ball parallel to a diagonal of the table. Fig. 9.14 applies
ex. 12 four times in succession. Imagine fig. 9.14 drawn on transparent

paper and fold it along the reflecting lines; then the several segments of the

straight line PP just cover the rhombic path of the billiard ball. By the

way, we see here a case in which ex. 4 has an infinity of solutions.

14. By fig. 9.15 (which should be drawn on transparent paper)

180 < (n + l)2a,

Draw figures illustrating the cases n = 1, 2, 3. Consider the case n = oo.

15. The particular case treated in sect. 1 and ex. 12 yield? several

suggestions; see ex. 16, 17, and 18.

16. If A, B, and AX + XB are given, the locus of X is the surface of a

prolate spheroid (ellipsoid of revolution) with foci A and B; such spheroids
are the level surfaces. The spheroid to which the given line / is tangent
at the point X yields the solution. The normal to this spheroid at the

point X is perpendicular to /, and bisects /_AXB by a property of the ellipse

proved in sect. 1 (3) and sect. 2 (1).
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17. Place a. sheet of paper folded in two so that the crease coincides with
/ and one half of the sheet (a half-plane) passes through A and the other
half through B. The desired shortest line is certainly described on this
folded sheet. If the sheet is unfolded, the shortest line becomes straight.On the folded as on the unfolded sheet the lines XA and XB include the same
angle with L

18. Fasten one end of a rubber band of suitable length to A, pass the band
over the rigid rod / at X and fasten the other end to B so that the band is

stretched: it forms so the shortest line required by ex, 15 (if the friction is

negligible). Three forces act at the point X: two tensions equal in magni-
tude, one directed toward A and the other toward B, and the reaction of the
rod which is perpendicular to I (since the friction is negligible). The
parallelogram of forces is a rhombus and so a normal to / bisects /_AXB>
as found in ex. 16. The reaction of the rod has no component parallel to
the rod, and so the components of the tensions parallel to / must be equal in
amount (and opposite in direction). Therefore, XA and XB are equally
inclined to /, as found in ex. 17. By the way, the equivalence of the results

of ex. 16 and 17 can be shown by a,little solid geometry. (Trihedral angles
are congruent if they have three appropriate data in common.)

19. Closed rubber band around three knitting needles held rigidly.
Partial variation and ex. 16, or ex. 18; the bisectors of the three angles of a

triangle meet in the center of the inscribed circle. Ex. 3 is a limiting case.

20. Each vertex of the triangle is the midpoint of an edge of the cube.
The triangle is equilateral; its center is the center of the cube; its perimeter
is SV&z.

21. By partial variation, sect. 8.3, and sect. 1 (4) or 2 (2), TX> TY, and
TZ are perpendicular to #, b, and , respectively, and equally inclined to

each other (120). We could call T the "traffic center of three skew lines."

The problem of sect. 1 (4) is an extreme case: a, b, and c become parallel.

There is an obvious generalization and there are some obvious analogous

problems: the traffic center of three spheres, the traffic center of a point,
a straight line and a plane, and so on.

22. The traffic center of three skew edges of a cube is, of course> the

center of the cube. Represent clearly the rotation of the cube through 120

that interchanges the three given skew edges, and the situation ofthe triangle

found in ex. 20.

23. In order to find the shortest line between two given points A and B
on the surface of a polyhedron, imagine the polyhedral surface made of

cardboard, of plane polygons hinged together and folded up suitably.

Unfold the polyhedral surface in one plane (lay the cardboard flat on the

desk): the shortest line required becomes the straight line from A fe> B.

Before unfolding it, however, we have to cut the polyhedral surface
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suitable edges which the shortest line does not cross. As we do not know in

advance which faces and which edges the shortest line will cross, we have to

examine all admissible combinations. We turn now to the proposed problem,
list the essential sequences of faces, and note after each sequence the square
of the rectilinear distance from the spider to the fly along that sequence.

(1) End wall, ceiling, end wall:

(1 + 20 + 7)
2 =*= 784;

(2) End wall, ceiling, side wall, end wall :

(1 4. 20 + 4)
2 + (4 + 7)

2 = 746;

(3) End wall, ceiling, side wall, floor, end wall:

(1 4. 20 + I)
2 + (4 + 8 + 4)

2 = 740.

24. An arc of a great circle is a geodesic on the sphere. A great circle is

a plane curve; the plane in which the great circle lies is its osculating plane
at all its points. This plane passes through the center of the sphere, and
therefore it contains all the normals to the sphere (all the radii) that pass

through points of the great circle. A small circle is not a geodesic; in fact,

the plane of the small circle contains none of the normals to the sphere that

pass through the points of the small circle.

25. By the conservation of energy, the magnitude of the velocity of the

point is constant although, of course, the direction of the velocity varies.

The difference of the velocity vectors at the two endpoints of a short arc of
the trajectory is due to the normal reactions of the surface and is, therefore,
almost normal to the surface. This is the characteristic property of a

geodesic ; see ex. 24 (2) . Another version ofthe same argument : reinterpret
the tensions along the rubber band of ex. 24 (2) as velocities along the

trajectory; all vectors are of the same magnitude and the variation in the
direction is due to normal reactions in both cases.

26. Push the n free edges gently against a plane (your desk) > forming a

pyramid with n isosceles lateral faces the base ofwhich is the desired polygon.
In fact, the base is inscribed in a circle the center of which is the foot of the
altitude of the pyramid. The radius of the circle is the third side of a right
triangle of which the hypotenuse is the radius of the great circle described
on the cardboard and the second side the altitude of the pyramid.

27. If the center of gravity is as close to the floor as possible, there is

equilibrium. As little mechanics as this is enough to suggest the desired
solution: take a point D on the surface of P such that the distance CD is a
minimum. An easy discussion shows that D can neither be a vertex of P
nor lie on an edge of P, and that CD is perpendicular to the face F of P on
which D lies. See P61ya-Szego, Analysis, vol. 2, p. 162, problem 1.
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28. (a) Imagine the globe completely dried up, so that all peaks, passes,

and deeps are exposed. Now cover just one deep with some water. The
remaining part ofthe globe has F peaks, S passes, and D 1 deeps, and can

be regarded as an island. By the result proven in the text,

(b) The level lines and the lines of steepest descent subdivide the globe
into F "countries"; this is the terminology of ex. 3.2. Take so many lines

that each remarkable point, peak, deep, or pass becomes a vertex, as on

figs. 9.16 and 9.17, and that no country has more than one remarkable

point on its boundary.
We "distribute" each edge, or boundary line, equally between the two

countries that it separates, giving 1/2 ofthe edge to each country. Similarly,

we distribute each vertex equally among the countries ofwhich it is a vertex.

In return, each country will contribute to the left-hand side of Euler's

equation

it will contribute one unit to F and a suitable fraction to V and to E. Let

us compute this contribution for the various kinds of countries.

I. If there is no remarkable point on its boundary, the country is a

quadrilateral, contained between two level lines and two lines of steepest

descent. Its contribution to V E + F is

4x^-4x^+1 = 0.

II. If there is a peak or a deep on its boundary, the country is a triangle;

see fig. 9.16. If the peak, or the deep, is a common vertex to n countries,

the contribution of each country to V E + F is

and the joint contribution of all n countries is n -

1/n = 1.

III. If there is a pass on its boundary, the country is a quadrilateral;

see fig. 9.17. Its contribution to V E + F is

and the joint contribution of the 8 countries of which the pass is the common

vertex is 8- (1/8)= -1.

The grand total of all contributions is, by Euler's theorem,
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(c) The proof using the idea of the "Deluge" is not properly an example
of "physical mathematics" : it uses ideas in touch with everyday experience,

but not with any specific physical theory. The hint in part (b) of the

question was misleading: it appeared to suggest that P, D, and S are

somehow analogous to F, F, and E, which is by no means the case. Still,

it was a useful hint: it directed our attention to Euler's theorem. This is,

however, quite natural: the ideas that guide us in the solution of problems
are quite often mistaken but still useful.

29. (a) Let t be the time ofdescent of the stone and t% the time of ascent

of the sound. Then

Eliminating ^ and t% and solving a quadratic equation, we find

Since t = should give d = 0, we have to choose the sign+. Then

rf= *Y-i + ct -

(b) d = gt*I2

Neglecting the terms not written here, we can use the two terms retained as

a suitable approximate formula.

(c) It is typical that we can foresee the principal term of the expansion
and even the sign of the correction on the basis of physical considerations.

Also the mathematical procedure used to obtain a suitable approximate
formula is typical : we expanded (the expression for d} in powers of a small

quantity (the time t). Cf. sect. 5.2.

30. The elliptic mirror becomes a parabolic mirror which collects all

rays of light that fall on it parallel to its axis into its focus. Such a parabolic
mirror is the most essential part of a reflecting telescope.

31. The equation is separable. We obtain

\cy
by obvious transformations. We set

U/2

introducing the auxiliary variable 9?, and obtain

y = c sin2 <p, x = c(q> (1/2) sin 29?).

We find x by integration and have to choose the constant of integration so

that the curve passes through the origin: <p
= implies x = y = 0. Setting

2^7 ==
*, c = 20, we obtain the usual equations of the cycloid:

x = a(t sin /), y = a(\
- cos t).
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The cycloid passes through the point A, which is the origin. There is just
one value of a that makes the first branch of the cycloid (corresponding to

< t < 277-) pass through the given point J5. In order to see this, let a

vary from to oo; this "inflates" the cycloid which, sweeping over a

quadrant of the plane, hits B when inflated to the right size.

33. Let a be the radius of the sphere (as in sect. 5), h the height of the

segment, V its volume, and C the volume of the cone with the same base as

the segment and the same height h. The origin (the point in fig. 9.13)
is the common vertex of the segment and the cone. From elementary

geometry and the equation of the circle given in sect. 5

7r(20A-A2
)AC ~

3
'

Use fig. 9.13 but consider now only the cross-sections at the distance x

from with < x < A. Passing from the equilibrium of the cross-sections

expressed by equation (A) to the equilibrium of the solids (segment, cone

but not that with volume C and cylinder) we find

(B) 2a(V + TrA2 -

A/3) = (A/2)7r(2fl)
2A.

Hence

_ _
3

~
2a-h *

2a h is the height of the complementary segment.

34. Write the equation of the circle considered in sect. 5 in the form

(A) 207T*2 = x-nf + XTTX*.

Only -7T*
2

,
the cross-section of a cone, hangs now from the point H of fig.

9.13; the cross-section Try
2 of the sphere and the cross-section irxz of another

cone (congruent with the first) remain in their original position (with

abscissa *). Consider < x < a, pass to the equilibrium of the three

solids, introduce x, the abscissa of the center of gravity of the hemisphere,

and remember the position of the center of gravity of a cone (its distance

from the vertex is 3/4 of the altitude) :

(B) 2a 7T02 -

a/3 == x 27i/3 + (3<z/4)z
2 -

a/3,

x = 50/8.

35. Keep the notation of ex. 33, but change that of ex. 34 in one respect:

x denotes now the abscissa of the center of gravity of a segment with height

A. Considering < x < A, pass from (A) of ex. 34 to

(B) 2a TrA2 -

A/3 = xV + (3A/4)TrA
2 -

A/3

which yields in view of the value of V found in ex. 33

x _ A + 4(2a~A) >

h~&
~

A + 2(2* -A)*
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36. Let h denote the height and V the volume of the segment. Write

the usual equation of the parabola in the form

(A) 2J-i0> = *'ir(2*).

Notice the cross-section <ny
z of the paraboloid and the cross section 7r(2p)*

of a cylinder. Considering < x < h and passing from the equilibrium of

the cross-sections to that of the solids, we find

(B) 2J-F=
7= 7rph

z =
Notice that, by the equation of the parabola, 7r2ph is the base of the segment.

37. Keep the notation of ex. 36 and let x denote the abscissa of the center

of gravity of the segment. Now write the equation of the parabola in the

form

(A) x-7ry
2 =2p- <rrx

z
.

Notice Tr*2, the cross-section of a cone. Considering < x < h and passing
from the cross-sections to the solids, we find

and hence, by ex. 36,

x = 2/z/3.

38. n = 0: volume of prism, area of parallelogram; n= 1: area of

triangle, center of gravity of parallelogram or prism; n = 2: volume of

cone or pyramid, center of gravity of triangle, n = 3 : center of gravity
of cone or pyramid.

Observe that the method of Archimedes as presented here in sect. 5 and
ex. 33-38 would be suitable for a class of Analytic Geometry and could lend
a new interest to this subject, which may so easily become dry and boring
in the usual presentation. The propositions of the "Method" that we have
not discussed can be similarly treated and could be similarly used.

No solution: 12, 32.

SOLUTIONS, CHAPTER X

1. No. The gap is not too bad: the existence of the maximum can be
established with the help of the general theorem quoted in ch. VIII,
footnote 3.

2. The explicit formula given in the solution of ex. 8.41 shows that& ^ (p a) (p b)(p c) (p d), and equality is attained if, and only
if, s = 180 in which case the quadrilateral is inscribed in a circle.

3. Let Ay B, and C be consecutive vertices of the regular polygon with n

sides, and M the midpoint of the side BC. Replace &ABM by the isosceles
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triangle &AB'M (in which Aff = B'M
) that has the same base AM and the

same perimeter and, therefore, a larger area; see ex. 8.8.

4. If we express both areas in terms of r, the radius of the circle, and n,
the number of the sides of the polygon, it remains to prove the inequality:

n tan
-* 2

It is more elegant to observe that a regular polygon is circumscribable about
a circle: the desired result is a particular case of ex. 5.

5. A polygon with area A and perimeter L is circumscribed about a circle
with radius r. Then, obviously, trr2 < A. Lines drawn from the center
of the circle to the vertices of the polygon divide it into triangles with the
common altitude r\ hence A = Lr/2. Combining both results obtained,
we find

Now, L2
/ (ITT) is precisely the area of the circle that has the perimeter L.

6. Let A denote the area and L the perimeter of a given curve, and r the
radius of the circle with- the same perimeter So that L = 27rr. Let An
denote the area and Ln the perimeter of a polygon Pn that tends to the given
curve as n -> oo. Then An tends to A and Ln to L. Consider the polygon
P'n that is similar to Pn and has the perimeter L; the area ofP'n is An(L[LJ*.
Since P'n has the same perimeter as the circle with radius r, we conclude
from sect. 7 (4) that

Passing to the limitj we find that

Thisjustifies statement I ofsect. 8. Yet the text ofsect. 7 (5) is objectionable:
we definitely did not prove that A < Trr2, as that text appears to suggest.
In fact, the relation expressed by < can go over into that expressed by <1
as we pass to the limit.

7* Both statements are equivalent to the inequality

2167*

-53-^1,
V denotes the volume and S the area of the surface of the box. In sect.

8.6 we proved this inequality directly.

8. The equivalence of I', II', and III' is shown by the same method as

that of I, II, and III in sect. 8.
.
Yet I' is not equivalent to I. In fact* V

explicitly denies the possibility left unsettled by I that a curve which is

a circle could have the same perimeter and also the same area as
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The argument of sect. 7 (5) as amplified in ex. 6 proves I, but does not prove
I' : it proves ^ which is enough for I, but not < which would be needed
for I'.

9. The solution of the proposed problem would add to I of sect. 8 what
is still needed to obtain I' of ex. 8. So much for the importance; concerning
the other points see ex. 10-13.

10. Gall C" the smallest triangle containing C, L" its perimeter and A"
its area. Then, obviously, L" < L and A" > A. Take as C' the triangle
similar to C* with perimeter Z,; the area ofC" is A' = A"(LIL"}

2 > A" > A.

11. If C is any curve, but not convex, we consider first C", the least convex
curve containing C, and then C", similar to C", but having a perimeter

equal to that of C. The whole argument of ex. 10, down to the final

inequality, can be repeated in the more general situation.

12. Take two different points P and Q, on tne closed curve (7. There
must be on C a third point R that is not on the straight line through P and Q,,

since C cannot be wholly contained in a straight line. Consider the circle

through P, Q,, and R. If this circle does not coincide with C, there is a
fourth point S on C which is not on the circle: the problem of ex. 9 is

equivalent to that of ex. 18.

13. If C is not convex, ex. 1 1 yields the desired construction. If C is

convex, P, Q, R, and S are, in some order, the vertices of a convex quadri-
lateral. The region surrounded by C consists of this quadrilateral and of
four segments. Each segment is bounded by a side of the quadrilateral
and by one of the four arcs into which P, Q,> R> and S divide C. Following
Steiner's idea (see sect. 5 (2), figs. 10.3 and 10.4) we consider the four

segments as rigid (of cardboard) and rigidly attached to the respective sides

of the quadrilateral which we consider as articulated (with flexible joints at

the four vertices). We adopt the notation of ex. 8.41. Then, by our
main condition, e = 180. Let a slight motion of the articulated quadri-
lateral change e into e. We choose e' so close to e that the four arcs

rigidly attached to the sides still form a not self-intersecting curve C". More-
over, we choose e' so that

|

e' - 180
| <| fi -180|.

This implies that the area ofC' is larger than that ofC, in virtue ofthe formula
for A2

given in the solution of ex. 8.41. Yet the C", consisting of the same
four arcs as C, has the same perimeter.

14. Both inferences have the same logical form. Yet the second inference,
that leads to an obviously false result, must be incorrect. Therefore, also
the first inference must be incorrect, although it aims at a result that might
be true. The second inference is, in fact, an ingenious parody of the first,

due to O. Perron.
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The difference between the two cases must be some outside circumstance
not mentioned in the proposed text. There is no greatest integer. Yet,

among all isoperimetric curves there is one with the greatest area. This,

however, we did not learn from ex. 10-13.

15. The curve C is not a circle, but it has the same perimeter as a certain

circle. The area ofC cannot be larger than that of the circle, by ex. 6. I

say that the area of C cannot be equal to that of the circle. Otherwise

there would be, as we know from ex. 10-13, another curve C' still with the

same perimeter as the circle, but with a larger area, which is impossible in

virtue of what we proved in ex. 6.

16. Given two points, A and B in fig. 10.13, joined by a straight line and a

variable curve which include a region together. We consider the length
of the curve and the area of the region. In the text we regarded the includ-

ing length as given and sought the maximum ofthe included area. Here we

regard the included area as given and seek the minimum of the including

length. In both cases, the solution is the same : an arc of a circle. Even

the proof is essentially the same. We may use fig. 10.14 here as there. Of
course, there are obvious differences; the (unshaded) segment of the circle

in fig. 10.14, 1 is constructed now from a given area, not from a given length,

and we use now theorem II' of ex. 8, not theorem I'.

17. Use ex. 16: identify the points ^and 7 of fig. 10.11 with the points

A and B of fig. 10.13, respectively, and add the invariable &XYC to fig.

10.13. There is maximum when the line of given length is an arc of circle.

18. In fig. 10.11 regard the line CY as a mirror, let X' be the mirror

image of X, and apply ex. 17 to _XCX' and the two given points X and X'

on its two sides. There is maximum when the line of given length is an

arc of circle perpendicular to CY at the point 7.

19. Use partial variation. Regard X as fixed: the solution is an arc of

circle perpendicular to C7, by ex. 18. Regard 7 as fixed: the arc of circle

is also perpendicular to CX. Finally, the solution is an arc of circle perpen-

dicular both to CX and to C7, and so its center is at C, as conjectured in

sect. 9.

20. There is maximum when the straight line is perpendicular to the

bisector of the angle. This would follow from symmetry, if we 'knew in

advance that there is just one solution. The result follows without any such

assumption from ex. 8.59 (2).

SKI. By the idea of fig. 10.14, there is maximum when the strings BC and

DA are arcs of the same circle of which the sticks AB and CD are chords.

22. A closed line consisting of 2n pieces, n sticks alternating with n strings,

surrounds a maximum area, when all the sticks are chords and all the

strings are arcs of the same circle.
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23. When all the strings of ex. 22 are of length 0, we obtain sect. 5 (2)

and figs. 10.3 and 10.4.

24. Analogous to ex. 16: the rigid disk, the variable surface with given
area and the circle that forms the rim of both correspond to the stick, the

string, and the pair of points A and B, respectively. The method of ex.

16 applies. (In fig. 10.14 rotate the circle I about its vertical diameter

and do the same to the segment at the base of fig. II, but change its upper

part in a more arbitrary manner.) Assuming the isoperimetric theorem in

space, we obtain: the included volume is a maximum, when the surface

with given area is a portion (a zone with one base) of a sphere.

25. Take the three planes perpendicular to each other and take for

granted the isoperimetric theorem in space. Then the trihedral angle
becomes an octant and you can use the analogue of fig. 10.12 in space.

By successive reflections on the three planes, the surface cutting the octant

becomes a closed surface; its area and the volume surrounded are eight
times the given area and the volume cut off by the original surface, respec-

tively. The closed surface with given area that surrounds the maximum
volume is the sphere. Therefore, in our special case ofthe proposed problem
there is maximum when the surface with given area is a portion (1/8) of a

sphere with center at the vertex of the trihedral angle.

26. The configuration considered in the solution of ex. 25 is the special
case n = 2 of the following general situation. There are n + 1 planes;
n planes pass through the same straight line and divide the space into 2n

equal wedges (dihedral angles) and the last plane is perpendicular to the n

foregoing. These n + 1 planes divide the space into 4/z equal trihedral

angles to any one of which the method of repeated reflections, used in ex.

25, applies and yields the same result: the volume cut off is a maximum when the

surface ofa given area is a portion ofa sphere with center at the vertex of the trihedral

angle.

(There are three more configurations containing trihedral angles to which
the method applies and yields the same result. These configurations are

connected with the regular solids, the first with the tetrahedron, the second
with the cube and the octahedron, and the third with the dodecahedron
and the icosahedron. Their study requires more effort or more preliminary
knowledge and so we just list them in the following table which starts with
the simple configuration described above.

Planes Parts of space Angles

n + 1 4n 90 90 180/n
6 24 90 60 60

9 48 90 60 45

15 120 90 60 36
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The "planes" are planes of symmetry, the "parts of space'
5
trihedral angles,

and the "angles" are included by the three planes bounding the trihedral

angle.)
It is natural to conjecture that the result remains valid for any trihedral

angle. This conjecture is supported inductively by the cases listed and also

by analogy; the similarly obtained similar conjecture about angles in a

plane (sect. 9) has been proved (ex. 19).
It is even natural to extend the conjecture to polyhedral angles and there

we can find at least a limiting case accessible to verification. We call here
"cone" the infinite part of space described by an acute plane angle rotating
about one of its sides. We seek the surface with given area that cuts off

the maximum volume from the cone. It can be proved that this surface

is (1) a surface of revolution, (2) a portion bfa sphere, and (3) that the center

of this sphere is the vertex of the cone. We cannot go into detail here, but
it should be observed that part (2) of the proof results in the same way
from ex. 24 as the solution of ex. 17 results from ex. 16. The problem of ex.

25, raised by Steiner, still awaits a complete solution.

27, If a region with area A had two bisectors without any common point,

it would be divided by them into three sub-regions, two with area AJ2 and
a third with a non-vanishing area, which is obviously impossible.

28. The straight line is shorter: 1 < (?r/2)
1/2

.

39. See ex. 30.

30. Assume that the endpoints of a given bisector lie on two different

sides which meet in the vertex 0, but none of the endpoints coincides with

0. By suitable reflections (idea of fig. 10.12) we obtain six equal triangles

one of which is the original triangle and six equal arcs one of which is the

given bisector. The six triangles form a regular hexagon with center 0.

The six arcs form a closed curve which surrounds one-half of the area of the

hexagon and especially the point in which three axes of symmetry of the

curve meet. If the length of the bisector is a minimum, the closed curve

must be a circle or a regular hexagon, according as all bisectors are admitted

(the present ex. 30) or only straight bisectors are admitted (ex, 29) ; we

have to use theorem II' of ex. 8 or the theorem conjugate to that of sect.

7(1), respectively. The solution of ex, 30 is the sixth part of a circle with

center in one of the vertices, the solution of ex. 29 is a line parallel to one of

the sides; in each case there are three solutions. The given bisector may
have some other situation (both endpoints on the same side, or at the same

vertex, and so on) but the discussion of these situations corroborates the

result obtained.

31 . [Gf. Putnam 1946] Let be the center of the circle. If the straight

line segment PP
f
is bisected by 0, we call the points P and P' opposite to

^ch
other. We call two curves opposite to each other if one of them
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of the points opposite to the points of the other. Let now A and B be the

endpoints of bisector which we call shortly AB. Let the points A', Br and

the arc A'B' be opposite to A, B, and AB, respectively. Then A'B' is a

bisector. Let P be a common point ofAB and A'B' (ex. 27) and P' opposite

to P. Then also P' is a common point of AB and A'B'. Let A, P, P', and

B follow each other in this order on AB and let PB' be the shorter (not longer)

of the two arcs PA and PB'. (This choice is possible; it is, in fact, just a

matter of notation.) Consider the curve consisting of two pieces : the arc

B'P (of A'B') and the arc PB (ofAB) . This curve is (1) shorter (not longer)

than AB, and (2) longer (not shorter) than the diameter BB' which is the

straight path from B to B'. It follows from (1) and (2) that AB is longer

(not shorter) than the diameter BB' ,
and this is the theorem.

32. The minor axis. See ex. 33.

33. The shortest bisector of any region is either a straight line or an arc of a circle.

See ex. 16. If the region has a center ofsymmetry (as the square, the circle and

the ellipse have, but not the equilateral triangle) the shortest bisector is a

straight line. The proof is almost the same as for the circle (ex. 31).

34. Practically the same as ex. 27.

35. Ex. 16.

36. In all five cases, the plane of the shortest bisector passes through the

center of the circumscribed sphere.
Tetrahedron : square in a plane parallel to two opposite edges ; 3 solutions.

Cube: square parallel to one of the faces; 3 solutions.

Octahedron: hexagon in a plane parallel to one of the faces; 4 solutions.

Dodecahedron : decagon in a plane parallel to one ofthe faces ; 6 solutions.

Icosahedron: decagon in a plane perpendicular to an axis that joins two

opposite vertices; 6 solutions.

The proof is greatly facilitated in the last four cases by a general remark;
see ex. 38.

37. Let O be the center of the sphere. Define opposite points and curves

as in ex. 31. Let b be a bisector. Then also b'
3 the curve opposite to b,

is a bisector and b and b' have a common point P (ex. 34). Also P'} the

point opposite to P, is a common point. The points P and P' divide b

into two arcs none of which can be; shorter than the shortest line joining
P and P' which is one half of a great circle.

38. Four of the five regular solids (all except the tetrahedron) have a
center of symmetry. A closed surface which has a center of symmetry has a

bisector which is a geodesic. The proof is almost the same as for the sphere
(ex. 37).

39. (See Elemente der Mathematik, vol. 4 (1949), p. 93 and vol. 5 (1950),

p. 65, problem 65.) Call d the distance of the rim of the diaphragm from
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its vertex. The area of the diaphragm is W2
; this proposition is due to

Archimedes. Cf. ex. 11.4.

(1) If the center of S is the vertex of the diaphragm, d = a, ird2 = -rnz
2

.

(2) Let I be the straight line that joins the center C of the sphere S and
the center C' of the other sphere of which the diaphragm is a portion. Let

A be the intersection of / with S that lies on the same side of C as <?', and D
and B the intersections of / with the diaphragm and with the plane that

passes through the rim of the diaphragm, respectively. If the diaphragm
bisects the volume of S, the points A, B, C, and D follow each other in this

order along Z. The point of I nearest to the rim of the diaphragm is B, and

D is farther from this rim than C. Therefore, d > a, W8 > Tra2.

(3) Conjecture : No surface bisecting the volume of the sphere with radius

a has an area less than Tra2. The proof may be difficult.

41. (1) Maximumf= n2
,
attained when

x = # = . . . = x = 1 or 1.n

Minimum f= 0, attained for infinitely many different systems #13 . . . xn

when n ^ 3.

(2) Maximum same as before and unique. Minimum/= n, attained

when

*1 = *1/2
> ** = - = *n =

and in n 1 similar cases.

42. The conjecture is correct for the regular solids with three-edged

vertices, but it is incorrect if a vertex has more than three edges. See

M. Goldberg; Tohoku Mathematical Journal, vol. 40 (1935) p. 226-236.

No solution: 40, 43.

SOLUTIONS, CHAPTER XI

1, (a) yes (b) no: a is unnecessary, the area is oA/2.

2, (a) yes (b) no: a and ft
are unnecessary, the area is mk.

3, link, independent of d. Solution by the method of Archimedes or by

integral calculus: from *2 +jp = r2,
follows

d+h

4. Let h be the altitude of the zone of which the area is required. From

similar right triangles A : a = a : 24, and so the area required is 2irM = wo2,

independent of *. The zone becomes a full sphere when b = a/2 and a circle

when i = oo. Gf. ex. 10.39.
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5. Have you observed the analogy with ex. 1-4? The volume of the

perforated sphere can be obtained elementarily, or by the use of analytic

geometry and integral calculus as

A/2

-A/2

*2 +y2 = r* and^ is the ordinate corresponding to x = A/2.

6. 7rh?/l2, independent of a and . Solution similar to that of ex. 5,

connected with that of ex. 7. In the extreme case a = b = the segment
becomes a full sphere with diameter h. If A is small, the difference between

Mh and V is intuitively seen to be very small.

7. 77^/6, independent of r. If c = A, the cone degenerates into a cylinder
and we have the case ofsect. 2 and ex. 5. Solution similar to that of ex. 8.

8. With as origin and OX as #-axis, the equations of the circle and the

parabola in fig. 11.3 are

respectively. Let x and x2 denote the abscissas of the points of intersection

of the two curves, x^ < *2. Then x2 x = h and the volume required is

7T f [r
2

(x d}* 2px] dx = TT f (*2 *)(* xj dx = 77^/6,

*i i

independent ofr and d; substitute x x^ = t. We used the decomposition in

factors of a polynomial of the second degree when the two roots and the

coefficient of x2 are known.

9. (a) yes; the volume is trh\a + 2b)/3. (b) no.

10. Yes. As HI and u2 can be arbitrarily given, there are an infinity
of possible systems t^, u2, ... MIO satisfying the recursive relation

un ^ un-\ + Mn-2- ^e examine two special systems:

i> i> U3> Mio with "i
= 0, i4

== 1

i3 *4 wa? - - "10 wth ^ = 1, 14 = L

We find

14 + . . . + ulQ = 143.
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With a little luck, we may observe that

(*) "i + "2 + + io
= Ilw7> I

and then guess, and finally prove, that

(**) 1 + H2 + . ..+

The proof is so: we verify directly that

(***) n= ("2
- *iK

holds for n = 1 and n = 2 and we conclude hence, using the recursive

relation, that it holds also for n = 3, 4, 5, ... 10. Adding the two observed

equations (*) after having multiplied the first by u2
-

x and the second by
ul9 we conclude from (***) the desired (**). Main idea of the proof:
the general solution un of our recursive relation (more aptly called a linear

homogeneous difference equation of the second order) is a linear combina-

tion of two independent particular solutions un and un (as the general

integral of a linear homogeneous differential equation of the second order

is a linear combination of two particular integrals).

f
l **

f
*"* 1 &

I 1 4- va 1 -L- * I *.~a _U 1 *"* -4- x x
/ I -p * I. T- * /^ -pi^ -J~**^

oo

_ r * dx-
Jr+?r+i?

1 r i _L * ^r TT

2jl+^al +^2 4
o

independent of a. In passing from the second form to the third we introduced

x-1 as new variable of integration. For a = 0, oo, oo the given integral

reduces to

00
"

1 dx

o o 'i

respectively. These cases could suggest the above solution.
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12. The most obvious fact of this kind is :

00

/ f(u)du = if /(-) = -/().

Set
'

a = log*, f(logx)=F(x):
3

F(x)x-
1dx =0 if F(x~

1
)
= - F(x).I

This suggests the following generalization:

co - GO

J *(*)[! + h(x)]x-*dx = J g(x)^dx if (**) = *(*), A^1
)
- -

*(*).

Ex. 11 is the particular case:

x
*(*) =

2(1+**)'

13. Ox = 0, or *2 4 = (x 2) (* + 2), etc.

14. A; = y == 8; it is enough to try * = 8, 9, 10, 1 1.

15. x =y = ^ = zx; = 4, by trials.

17. [Cf. Stanford 1948] The planes of symmetry of a regular solid pass

through its center and divide a sphere with the same center into spherical

triangles. The three radii through the three vertices of this spherical

triangle pass through a vertex, the center of a face and the midpoint of an

edge, respectively. The corresponding angles of the spherical triangle are

'""M W/j and w/2. Let us call c the side (hypotenuse) of the spherical

triangle opposite the angle Tr/2. The ratio of the radius of the inscribed

sphere to that of the circumscribed sphere is cos c and, by spherical

trigonometry,
cos c = cot (TT//*) cot (irjv).

The numbers/and v, and the resulting value of cos c, are displayed in the

following table for the Tetrahedron, Hexahedron (cube), Octahedron,
Dodecahedron, and Icosahedron.
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H. Weyl, Symmetry, Princeton, 1952, reproduces Kepler's original figure;
see p. 76, fig. 46.

18. See ex. 10.42.

. (a) We call a determinant withn rows central -symmetric ifits elements

&jtk satisfy the condition

/,*
=

+i-j.,H-lHb for j> * = I, 2, 3, . . . n.

A central-symmetric determinant with n rows is the product of two determinants.

Either both factors have n/2 rows, or one factor has (n + l)/2 rows and the other

(n l)/2 rows, according as n is even or odd. Examples:

c b
(a-c),

f-g e-h
b c a d

Proof: Put n = 2m orn = 2m + 1
, according as n is even or odd. Add the

last column to the first, then the column preceding the last to the second, and
so on, till the first m columns are changed. After that, subtract the first row
from the last, then the second row from the row preceding the last, and so on,

till the last m rows are changed. These operations introduce either a rect-

angle m X (m + 1), or a square m X m, consisting of vanishing elements in

the south-west corner.

(b) The determinant with four rows could be divisible by both determin-

ants with two rows, without being their product, namely, if these determinants

with two rows had a common factor. Optimistically, we assumed that there

is no such common factor: we tried the simplest assumption and succeeded.

22* Most optimistic : the coefficient ofany power ofA on the left-hand side

is less than, or equal to, the coefficient of the same power on the right-hand

side. This is really the case: after division by 4A1/4,
the constant term is 1

on both sides and, for n ^ 1, the coefficients of kn are

37U 4n~-l 1 159 4n - 3

4812"' 4n 4n + 1
? 484*"* 4n

on the respective sides. Obviously

3 7 11 (4n 1) < 5 9 (4
-

3) (4n + 1).



278 SOLUTIONS TO PROBLEMS [ ll ^3

23, (a) Call Pn the proximate value obtained with the method in question
when the square is subdivided into n2 smaller squares. Assume that Pn can

be expanded in powers of rr1
:

("In general, a function can be expanded in a power series." Cf. ex. 20.)

As n -> oo, Pn -> (i 05 and we infer that Q, = Q,. Now, the four points in

fig. 11.6 are closer to a straight line than those in fig. 1 1 .5. This circumstance

suggests that Q^ = and the terms rrz
,
w4

, ... are negligible even for small

n. This leads to

which represents, if we take n"2 as abscissa and Pn as ordinate, a straight
line (approximately). In some more or less similar cases it has been proved
that the error of approximation is of the order 1/n

2
, and in the light of such

analogy the guess appears less wild.

(b) The columns of the following table contain: (1) values of n, (2) ordi-

nates, (3) differences of ordinates, (4) abscissas, (5) differences of abscissas,

(6) slopes computed as the ratio of (3) to (5), except that in (5) and (6) the

sign is omitted.

(1) (2) (3) (4) (5) (6)

2 0.0937 0.2500

0.0248 0.1389 0.1785

3 0.1185 0.1111

0.0094 0.0486 0.1934

4 0.1279 0.0625

0.0045 0.0225 0.2000

5 0.1324 0.0400

(c) It is natural to regard n = 5 as the most reliable computation and
n = 4 as the next best. If the points (xv y^ and (#2, j;2) lie on the straight
line with equation^ = mx + b, we easily find (from a system oftwo equations
for m and V) that

which, in the present case yields

_ 25 X 0.1324 - 16 X 0.1279O r^* _^ 25-16 0.1404.

If you have expected anything better than that, you are too sanguine.

No solution: 16, 199 20.
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