Optimizing chemical

Processes

Although the methods originated in mathematics and
operations research, chemists and engineers are finding
these techniques invaluable for process design and
synthesis, planning and scheduling, and process control

and operation.
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quality, and minimize environmental risks provided the

motivation for development of optimization tools to
identify better solutions for the complex problems of plant
operation and design. Several factors have contributed to
these developments. First, the wide availability of comput-
ers and their impressive growth in computational power
have promoted the application of mathematical models.
Second, improved models have been developed for pre-
dicting the performance and economics of chemical pro-
cesses as well as for embedding many alternatives. Third,
recently developed software for optimization has provided
new tools for using these models to identify improved
solutions. In fact, many of the current decisions in indus-
try regarding process design and operation are being deter-
mined through optimization models and techniques, which
have relied on a combination of new developments in opti-
mization algorithms, modeling systems, and computer
architecture and software.

Although most mathematical techniques were devel-
oped by researchers in operations research, numerical
analysis, and computer science, chemical engineers played
a prominent role in some of these developments (in fact, a
significant percentage of operations researchers are chem-
ical engineers). Here we provide a general survey of opti-
mization in chemical engineering, emphasizing the most
significant developments over the past 10 years. We
review some classes of models and techniques and the
research work being conducted in this growing field. We
also highlight applications in the areas of process design
and synthesis, planning and scheduling, and process con-
trol and operation. Finally, we discuss emerging research
trends in optimization.

Increased pressure to reduce costs, improve product

What type of problem is it?
If one assumes no special structure for the problem
stated in the model (see box) or to its various particular
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cases (e.g., only discrete or only continuous variables),
then direct-search techniques are often the easiest methods
to apply. They are also the most time consuming. Either
systematic or random selection of trial points is chosen to
evaluate and improve the objective function. Constraints
can also be satisfied, but often with some difficulty (e.g.,
using penalty functions in which a weighted violation of
constraints is added to the original objective function).
Perhaps the most popular direct-search method that has
emerged recently in chemical engineering is simulated
annealing. This method is based on analogies with free
energy minimization in statistical mechanics. In principle,
the method is easy to apply to problems with simple con-
straints and will probably find solutions that are close to
the global optimum. However, aside from the fact that it
often requires many thousands of function evaluations
before the likely optimum is found, its performance tends
to be highly dependent on the selection of parameters of
the algorithm.

The most prevalent approach that has been taken in
optimization is to consider particular problem classes of
the model depending on the form of the objective function
and constraints with which efficient solution methods can
be derived to exploit special structures.

The particular case of the model (i.e., best-known case)
is the linear programming (LP) problem. The objective
function and all the constraints are linear, and all the vari-
ables are continuous. The optimal solution to LP problems
lies at a vertex of the feasible space. Also, any local solu-
tion corresponds to the global optimum. These problems
have been successfully solved for many years with com-
puter codes based on the simplex algorithm rooted in lin-
ear algebraic methods.

A major change in solution methods is the development
of interior point algorithms that rely on nonlinear transfor-
mations and whose computational requirements are theo-
retically bounded by a polynomial expressed in terms of
the problem size. Interestingly, this property is not shared
by the simplex algorithm, which theoretically may require
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exponential time. Because that performance is rarely
observed in practice, further significant advances in solv-
ing large-scale problems have been made: The simplex
algorithm allows problems with up to 15,000-20,000 con-
straints to be solved quite efficiently. Interior point meth-
ods tend to perform better in problems with up to 50,000~
100,000 constraints. The mathematical structure of very
specialized cases of LP problems (e.g., network flows in
assignment or transportation problems) has been greatly
exploited, allowing the development of codes that can be
applied to problems involving millions of variables.

A mixed-integer linear program (MILP) is the extension
of the LP model that involves discrete variables. This
model greatly expands the ability to formulate and solve
real-world problems, because logical decisions (those with
variables 0 or 1) can be included and discrete amounts can
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be accounted for. The most common method for solving
MILP problems is the branch-and-bound search, which
consists of solving a subset of LP subproblems while
searching within a decision tree of the discrete variables.
The other common approach involves the use of cutting
planes that attempt to make the MILP solvable as an LP
with the addition of special constraints. Because of the
combinatorial nature introduced by the discrete variables
in MILP problems, these problems have been very hard to
solve. Theoretically, one can show that this class of prob-
lems is NP complete; that is, there is no known algorithm
whose computational requirements do not exceed a poly-
nomial increase in terms of problem size. Nevertheless,
recent advances based on combining branch-and-bound
methods with cutting planes, and which have been coupled
with advances in LP technology, are providing rigorous
optimal solutions to problems that were considered
unsolvable 10 years ago.

For a case in which all or at least some of the functions
are nonlinear and only continuous variables are involved,
the model problem gives rise to nonlinear programming
(NLP) problems. For a case in which the objective and
constraint functions are differentiable, local optima can be
defined by the Kuhn-Tucker conditions, a generalization
of the zero-derivative optimality conditions. These are
probably the most common types of models in chemical
engineering.

Whereas problems involving 100 variables for NLP
were considered large 10 years ago, solving problems with
several thousand variables is quite common nowadays.
Reduced gradient and successive quadratic programming
(SQP) techniques, which can be derived by applying New-
ton’s method to the Kuhn-Tucker conditions, emerged as
the major algorithms for NLP. Reduced gradient is better
suited for problems with mostly linear constraints; SQP is
the method of choice for highly nonlinear problems.

One limitation of these methods is that they are only
guaranteed to converge to a local optimum. For problems
that involve a convex objective function and a convex fea-
sible region, this limitation does not exist, because they
exhibit only one local optimum (the global optimum). In
practice, proving convexity in a nonlinear problem often is
not possible, and therefore finding any local optimum is
often considered a satisfactory solution, especially if it
yields a significant improvement in the solution. On the
other hand, there are applications in which finding the
global optimum to nonconvex problems is a major issue.
Over the past few years significant progress has been
made in developing rigorous methods for globally opti-
mizing problems with special structures (e.g., bilinear
functions). Also, stochastic methods such as simulated
annealing have been successfully applied to problems
involving functions that are inexpensive to evaluate.

The extension of NLP for handling discrete variables
yields a mixed-integer nonlinear programming (MINLP)
problem, which, in its general form, is identical to the
model. MINLP problems were considered unsolvable 10
years ago. New algorithms such as the outer-approximation
method and extensions of the Generalized Benders decom-
position method emerged as the major methods to solve
these problems. These methods, which assume the func-
tions can be differentiated, consist of solving an alternat-
ing sequence of NLP subproblems and MILP master
problems. The former optimize the continuous variables,
and the latter optimize the discrete variables. As in the
NLP case, global optimum solutions can be guaranteed



only for convex problems. Solving problems with 100 to
200 0-1 variables and 1000 continuous variables and
constraints have been reported with these methods. Major
difficulties encountered in MINLP include those encoun-
tered in MILP (combinatorial nature requiring large com-
putations) and NLP (nonconvexities yielding local
solutions).

Finally, all the aforementioned methods assume that the
problem is expressed through algebraic equations. Very
often, however, these models involve differential equa-
tions as constraints, giving rise to problems known as opti-
mal control problems or the optimization of differential
algebraic systems. Major approaches to solving these is to
approximate the differential equations by algebraic equa-
tions, which then yields solvable NLP problems, or to
solve the differential model in a routine that is then treated
by the optimizer as a procedure (or implicit function).

Increased computational power and the advent of pow-
erful modeling systems have accelerated advances in opti-
mization techniques. The modeling systems have made an
enormous impact in practice with software systems to for-
mulate optimization problems easily in equation form,
readily accessible to many users of PCs, workstations, and
mainframes. By separating the declarative part of a prob-
lem from the solution algorithms and their computer
codes, these nonprocedural modeling systems allow users
to concentrate on the formulation of models. These sys-
tems have reduced the time required by users to formulate
optimization probiems by at least one order of magnitude.
For instance, in the past, the equations of a model and
analytical derivatives had to be supplied through subrou-
tines or clumsy data files. This process was not only time

consuming but also prone to many errors. Current model-
ing systems have virtually eliminated many of these prob-
lems and greatly facilitate the formulation and solution of
optimization problems. Some of the commercial optimiza-
tion packages for solving the various types of models dis-
cussed in this section, as well as equation-based modeling
packages and process simulators with optimization capa-
bilities, are shown in the box.

Process design

For three decades, chemical engineers have relied on
process simulators to predict the steady-state performance
of dedicated large-scale continuous processes (e.g., com-
modity and petrochemical processes). Traditionally these
simulators ran different case studies to select economically
attractive alternatives for design. The drawback of such an
approach is that the user has to identify the different pro-
cess configurations and design parameters for the cases to
be simulated. Because of time limitations, relatively few
cases are examined, which means that some potentially
improved designs are commonly overlooked. Furthermore,
design problems frequently require satisfying specifica-
tions on output streams (e.g., product purity), usually
requiring many iterative computations.

For the case of fixed-process configurations, the limita-
tions of the traditional methods have been overcome with
the incorporation of efficient NLP optimization strategies
using the SQP algorithm. The major challenge overcome
here was how to interface the ‘““black box” simulator with
the mathematical optimization algorithm that requires
derivatives. These developments with NLP optimization
allowed the automated manipulation of design parameters
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and satisfaction of constraints for optimizing process flow
sheets with simulators. Today most commercial simulators
have implemented an NLP optimization capability. Com-
putational requirements are only 10-20 times larger than
the time required for a single simulation. The process of
producing ammonia is one example (Figure 1) (3). The
parameters of the model were set as:

Max(before-tax profit at 15% over 5 years)
NH, in purge < 4.5 mol/h

No liquid in compressors

100,000 tons NH; product purity >99.9%
1.8 < Hy/N, in <3.5 combined feed

The results, which were obtained on a process simulator
with the SQP algorithm for NLP, are given in Table 1.
Another development in this area was the move from
traditional sequential modular simulators toward equation-
oriented systems. This change introduced considerable
flexibility in process modeling because the specifications
can be varied. On the other hand, as opposed to the case
of modular simulators, in which the dimensionality of the
NLP problem is kept relatively small (few tens of equa-
tions and variables), the NLP model in full equation form
resembles the form of the model shown earlier. Thus, it
commonly involves several hundreds or thousands of

subject to

equations and variables. The advantage, however, is that
analytical derivatives are readily available in these sys-
tems. The equation-oriented modeling framework has been
particularly successful in optimizing operating conditions
of distillation columns and steam and power systems.

Process synthesis

In addition to the optimization of fixed flow sheets, the
systematic selection of process configurations (commonly
known as process synthesis) has been the subject of con-
siderable research work over the past two decades. Many
different approaches have been explored that rely on heu-
ristics, physical insights, and optimization. The optimiza-
tion models aim at explicitly modeling discrete decisions
with 0~1 variables (exclude or include a unit) and continu-
ous variables for the state and design variables, which con-
ceptually gives rise to an MINLP problem, as described
earlier.

Significant progress has been made in the area of syn-
thesis of heat recovery networks, for which some power-
ful insights have been developed through the concept of
the pinch point, which defines the bottleneck for maxi-
mum heat integration that can be achieved in practics.
These heat integration techniques have been extensively
applied in industry. The role of optimization in this area
has been to automate and expand the scope of these tech-
niques. LP and MILP techniques have been used for tar-
geting energy levels and predicting required stream
matches accounting for constraints; MINLP techniques
have been used to synthesize network configurations auto-
matically. Figure 2 (p. 32) presents an example of a net-
work involving five hot and five cold streams that was
automatically synthesized with the MINLP code
DICOPT++ on an IBM RS-6000 (4). The model consisted
of 135 binary variables, 635 continuous variables, and 850
constraints. The network configuration was selected from
a superstructure of alternatives by minimizing the cost of the
exchangers and the cost of the steam and cooling water.
Optimization techniques are also being applied to the syn-
thesis of reactor and separation systems, although they
tend to be considerably more difficult to model as a result

Figure 1. Ammonia process flow sheet.
The results of the optimization of this pro-
cess are shown in Table 2. T, temperature;
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of the complexity of the equations. Also, several proto-
types based on MINLP techniques have been developed
for synthesizing configurations of process flow sheets.

Although optimization-based tools for process synthesis
are still largely in the research phase, some of them are
being transferred to process simulators. One good example
is the simultaneous optimization and heat integration of
flow sheets. Raw materials are saved significantly through
increased recycles and efficient heat recovery.

MINLP techniques have been applied to the discrete
design optimization of distillation columns. MINLP opti-
mization models for both feed tray location and number of
trays for single and multiple feeds were developed
recently within equation-oriented systems using tray-by-
tray models with nonideal thermodynamics. Figure 3
(p- 32) shows the optimization of the number of trays as
well as the feed tray location in a distillation column with
three different feeds for separating methanol and water (5).
The column shown in this figure considers a maximum of
60 trays with the option of putting the feed in at each tray.
The return of the reflux is also considered in principle at
each tray to optimize the actual number of trays used. In
this case, the optimal number is 53, and the feed trays are
located at trays 4, 6, and 12. The full MINLP model,
which incorporates the virial and UNIQUAC equations for
predicting the thermodynamic properties, has embedded
400,000 alternative designs for the 115 binary variables,
1683 continuous variables, and 1919 constraints. The algo-
rithm in the program DICOPT++ (run on an HP 9000/
730), however, required the detailed analysis of only seven
designs to find the optimum,

Finally, two important capabilities have started to
emerge from academic research: methods for global opti-
mization and methods for design under uncertainty. In the
former, the initial trend was to rely on statistical tech-
niques such as simulated annealing. Although these tech-
niques have the advantage of not assuming special forms
for the functions, they can be very expensive computation-
ally because they often require many thousands of func-
tion evaluations. Therefore, another trend that has emerged
is to develop global optimization methods that exploit spe-
cific structures, such as the presence of bilinear equations,
which are quite prevalent in many process models. Signif-
icant progress is being made in this area.

The above examples deal with systems in which input
data and models are deterministic. For handling uncer-
tainty in design, deterministic quantitative measures for
flexibility have emerged that involve the solution of LP,
NLP, and mixed-integer problems. These flexibility mea-
sures can be incorporated within design models to ensure
feasibility of operation over a specified parameter range.
The other approach has been to rely on stochastic optimi-
zation methods by treating the uncertain parameters as

Table 1. Resulis of ammonia flow sheet optimization probiem

Starting Lower Upper
Item Optimum point bound bound
Objective function, $10%/year 26.9286  20.659
Design variables
Iniet temp of reactor, °F 400 400 400 600
Inlet temp of first flash, °F 65 65 65 100
Inlet temp of second flash, °F 35 35 35 60
Inlet temp of recycle compressor, °F 80.52 107 60 400
Purge fraction, % 0.0085 0.01 0.005 0.1
Inlet pressure of reactor, psia 2163.5 2000 1500 4000
Flow rate of feed 1, Ib-mol/h 2629.7 26320 24614 3000
Flow rate of feed 2, ib-mol/h 691.78 691.4 643 1000

Source: Reference 3.
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random variables. The computational expense, however, is
still rather high with these techniques.

Planning and scheduling

In the past, optimization techniques and models were
applied extensively to production planning and scheduling,
in which important plantwide problems such as delivering
raw materials, managing inventories, and satisfying prod-
uct demands are addressed. The models for this applica-
tion are often linear and quite large and usually were
solved using LP methods. The management of the model
information is frequently the most time-consuming task.
Planning problems are frequently solved for horizons of
several weeks to a year with scheduling subproblems for
time scales of a week or so.

New NLP optimization models that can capture more
precisely the nonlinearities inherent in chemical processes
are gradually replacing these LP models. Not that LP mod-
els are no longer used: Their use has expanded for strate-
gic long-range planning applications for new investment
decisions and for corporate-wide production planning and
distribution. Furthermore, the usefulness of these models
has been augmented by the increasing power of MILP
techniques with which discrete decisions and discontinu-
ous functions can be modeled.

A growth area that has emerged for optimization over
the past few years is the scheduling of batch processes.
Traditionally these problems were addressed with heu-
ristcs and intuition because they represent a class of prob-
lems with a large number of possible combinations.
However, pressures for improving product deliveries and
reducing inventories and costs increased the need for sys-
tematic optimization techniques for scheduling. In addi-
tion, increased complexity in the flexible operation of
batch manufacturing facilities made development of these
techniques a priority.

Optimization models for batch scheduling tend to be
linear, highly structured, and very large. For example,
finding the best sequence of batches in a sequential multi-

32 CHEMTECH DECEMBER 1995

A

Fepd 3
085 015

Fead 2
0505

Fegd 1
(015,085

Figure 3. The optimal number of plates and feed locations in a
distillation column with multiple feeds can be determined. For
this example, a separation of methanol—water with three feeds was
optimized. Numbers in parentheses indicate percentages of metha-
no! and water, respectively.

product plant gives rise to an asymmetric traveling sales-
man problem. If you are dealing with the scheduling of 20
batches, 400 logical (0-1) variables are required; if you
are dealing with 100 batches, 10,000 variables are needed.
Successful implementation of a parallel branch-and-bound
method has been developed for solving these problems
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and applied in industry. These models have handled as
many as 49,000,000 binary variables. Again, an alternative
technique for solving these problems is simulated anneal-
ing. In addition to the highly structured optimization prob-
lems, MILP techniques are being used to handle more
general cases. Especially noteworthy is the state-task—net-
work model, which allows the modeling of more complex
plant configurations and operations as well as the handling
of resource constraints. A Gantt chart of a schedule that
was obtained with this approach is shown in Figure 4 (6).

Scheduling problems are usually easy to state but at the
same time very diverse. Thus, it is difficult to develop sin-
gle unified model representations. For example, the meth-
odologies described in the previous paragraph apply to
day-to-day operations with short-term scheduling in which
detailed decisions are required at each point in time within
the specified time frame. For long-term strategic studies,
the trend is to develop models that involve cyclical sched-
ules and integrate production planning considerations to
decide how much to produce in the first place. These opti-
mization problems often give rise to MILP and MINLP
models. Successful solution through decomposition tech-
niques has been reported for the case of continuous multi-
product plants with parallel production lines. Sahinidis and
Grossman (7) reported application to a real-world problem
with an MINLP model involving as many as 800 binary
variables and 23,000 continuous variables. That model

was solved as shown in Figure 5, in which the optimal
assignment and sequence of 26 polymer products, as well
as the length of cycle times, were determined for a plant
consisting of three parallel lines.

Process control and operation

Computer-based, integrated systems in process opera-
tions and control have supplanted classical control
approaches and hardware. As a result, general and power-
ful algorithms now can be applied without hardware limi-
tations. Thus, many process companies have developed a
hierarchy of tasks for process operations that applies opti-
mization tools at multiple levels leading to a general, sys-
tematic strategy for improved operation and control. These
levels include the overall logistics for process planning
and scheduling as well as steady-state optimization for
plant operation and process control.

After planning and scheduling decisions are made over
a longer time frame, the day-to-day task of determining an
operating policy is required. For the batch processes dis-
cussed earlier, operations are determined by a fixed, often
inflexible, recipe. In continuous processes, there is much
more flexibility for operation and adjustment; therefore,
detailed, nonlinear steady-state process models are con-
structed, and a quantitative objective (e.g., minimize utili-
ties, maximize production, maximize profit) can be
optimized. Although on-line operations modeling and opti-
mization have been applied in some companies for over a
decade, it is relatively new and has found widespread use
only in the past five years.

Because the purpose of process operations modeling is
different from process design, less-detailed models are fre-
quently used, and there is still a tendency to “tailor make”
these models for each plant. Moreover, unlike process
design models, operations models often are represented in
equation-based or “open’” form. This open-form approach
has been extended even to reactor models described by
differential equations; these equations have been dis-
cretized to algebraic equations, resulting in increased
problem size. Characteristics of these operating models
include sparse linear and nonlinear equations that consist
of tens of thousands of equations and variables and rela-
tively few degrees of freedom (typically <100), which
include process adjustments in flow rates, temperatures,
and pressures. Moreover, in contrast to design calcula-
tions, there is less reliance on detailed physical property
models (e.g., for vapor-liquid equilibrium) and more
emphasis on tuning parameters that update the model with
changes in process conditions. Large-scale adaptations of
the SQP algorithm have been used to solve these models
in most applications, but successful applications of
reduced gradient algorithms have also been reported. The
small real-time optimization problem shown in Figure 6
(p- 34) has about 3000 variables and equations (8). It is up
to two orders of magnitude smaller than many plantwide
applications, but it shares many characteristics and func-
tional forms with these applications.

The straightforward application of NLP strategies has led
to significant performance improvements in many processes,
without additional capital expenditures and very short pay-
out times. In Table 2 (p. 35) we list several applications of
real-time optimization reported in the recent literature (9).
The problem size, location, company where it was applied,
and reported operating benefits are reported when available.

A suitable objective for process control is the minimiza-
tion of the output deviation from a desired setpoint over a
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predicted time frame, and this function is often stabilized
with a quadratic penalty of the input moves. Furthermore,
constraints on inputs and outputs that arise from process
considerations can be easily added to the problem formu-
lation. Such a formulation yields a linear or quadratic pro-
gramming problem, and efficient finite-step algorithms are
often used to solve these problems on-line. In this way,
a general optimization-based strategy can be applied to
a variety of different process units, and the problem of
controller design is greatly simplified. This approach is
referred to as model predictive control (MPC), and a
number of variations have been derived in industry and
academia.

Accurate representations

Both the steady-state optimization and model predictive
control tasks are crucially dependent on an accurate model
representation of the plant. These tasks of parameter and
state estimation involve questions of the efficiency of
computation (based on problem structure), statistical infer-
ence of the model parameters, the detection of data outli-
ers, and robust and stable implementation and behavior of
these algorithms.

In experimental chemistry, parameter estimation is an
essential tool in determining underlying reaction rate con-
stants as well as transport and thermodynamic parameters
from data obtained in well-planned experiments. More-
over, this task is necessary in the elucidation of fundamen-
tal models and discrimination among competing models.
Finally, parameter and state estimation is essential to pro-
vide a predictive capability to any fundamental or empiri-
cal model. Applications of these approaches range from
determining the performance of a small bench-scale reac-
tor to the large-scale partial differential equation models
used in weather forecasting. Linear parameter estimation
problems are solved directly by linear least squares algo-
rithms. Nonlinear (and constrained) parameter estimation
problems are frequently solved using the same NLP tools
used for the on-line optimization; these are solved with
SQP. More efficient SQP strategies tailored to parameter
estimation can also be applied by taking advantage of the
*“least squares” structure of these problems. In this way,

34 CHEMTECH DECEMBER 1995

parameter estimation problems can often be solved with
only a small fraction of the effort required for the more
general nonlinear optimization problems. Similar issues on
parameter and state estimation problems arise in process
operations and control.

Future research

The scope of these optimization techniques is increasing
greatly as a result of a combination of theoretical and algo-
rithmic advances, which are complemented by the rapid
progress in computer hardware and software. Optimization
is a very active area of research in academia and in indus-
try. Here are some of the major trends that we foresee in
the area of optimization and ideas about how they will
help the designer of chemical products and processes.

Large-scale models. As the power of computer hard-
ware and optimization algorithms increases, there is an
increasing demand for solving larger and more complex
problems. During the past 15 years the solvable optimiza-
tion problem has increased in size by two to three orders
of magnitude. It is expected that this trend will continue
(and even perhaps accelerate) during the next few years
and that advanced computer architectures (e.g., parallel
compuiing) will play a major role. In addition, in a num-
ber of applications, the bottleneck is no longer the solution
of large problems but the handling of massive amounts of
data needed to formulate these problems.

Model-building tools. As the capability of solving large-
scale problems becomes more widely available, the need for
powerful and easy-to-use modeling tools becomes more
important. This is currently an active area. Systems are being
developed that can automatically generate large algebraic
models from high-level representations, perform differentia-
tion, and run on multiple platforms ranging from PCs to
supercomputers.

Global optimization. Nonlinear optimization tech-
niques have long relied on finding local solutions. This
capability will continue to be important in a number of
applications. However, there is also an increasing trend to
develop global optimization techniques that are both sto-
chastic and deterministic in nature. Because of their large
computing requirements, these methods will benefit from




Table 2. Case studies for real-time optimization

Company Application Results
Amoco Gas plant $4.0 million/year
British Petroleum  Refinery $2.5 million/year
Chevron USA Ethylene plant 5-10%
Lyondell Ethylene plant 9-month payout
OMV Deutschland Ethylene plant 1-3%

Star Enterprise Crude unit $3.0 million/year
Shell Qil Ethyiene plant $4.0 million/year
Shell Oil refinery 9% in gasoline production
Texaco Refinery $4.0 million/year
Wilton Power station 2-6%

Problem characteristics: 8000-20,000 equations; <40 degrees of freedom.
Source: Reference 9.

advances in high-performance computing. Global optimi-
zation methods are expected to have a large impact in
applications such as molecular design and process synthe-
sis because these problems often have local solutions that
are not meaningful.

Design under uncertainty. The treatment of uncertain-
ties in optimization, especially through stochastic meth-
ods, has been computationally very time consuming, often
too costly to solve. Advances in computing and new algo-
rithms hold promise for anticipating the effect of uncer-
tainties in optimization problems for design, planning, and
operation. This area will also be driven by needs to
increase quality in chemical processes.

Product design. Aside from applications in process
control and process operations, most of the work in the
area of optimization has concentrated on process design.
Very little has been done to apply optimization to the
design of products. One of the trends beginning to emerge
is the application of optimization techniques to molecular
design problems.

Integration of models. There will probably be major
developments in the area of integration of planning, sched-
uling, and control in operational problems. In the design
area, a major challenge that remains is the integration of
process synthesis with process simulation, in which com-
plex models are used at the stage of selecting process
alternatives. Another area is the integration of operational
considerations, such as scheduling and control, at the
design stage.

Integration of methods. Synergy and integration of
methodologies are required to increase the scope and
power of problem-solving techniques. One trend is to
combine quantitative based mixed-integer programming
techniques with symbolic techniques based on proposi-
tional logic. Another trend is toward ‘‘cooperative prob-

s

lem-solving schemes,” in which various methods are
applied simultaneously to the solution of a given problem.

An exciting future

We hope to have conveyed both the excitement of this
growing field and an understanding and appreciation for
some of its research and development issues. The com-
puter programs that are an integral part of the chemical
processing industry today are growing increasingly more
powerful, and their growth is a result of the research and
mathematical methods we presented. The examples given
here have shown that significant progress has been made,
especially in view of the fact that many of the methods
were nonexistent 15 years ago. Clearly, optimization is a
useful and practical methodology in the chemical industry
with a long and promising future ahead.
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