Testing Equality in Means for Two Populations
Box et al. (1978) presents alternatives for comparison of a quantitative variable measured in two groups.
Table 1 presents the measurements from 1 to 10 using method A and from 11 to 20 using a new method B. Descriptive results are also showed.
###reading the data

y<- c(89.7, 81.4, 84.5, 84.8, 87.3, 79.7, 85.1, 81.7, 83.7, 84.5, 

+ 
84.7, 86.1, 83.2, 91.9, 86.3, 79.3, 82.6, 89.1, 83.7, 88.5)

method<- c(rep("A", 10),rep("B", 10))

###Descriptive statistics
tapply(y, method, mean)

#    A     B 

#84.24 85.54 #means by method
tapply(y, method, sd)

#       A        B 

#2.901800 3.650327 #standard deviation by method
sd(y[1:10])/sqrt(10)

#[1] 0.9176298  #standard error for “A”
sd(y[11:20])/sqrt(10)

#[1] 1.154335   #standard error for “B”
### Graphic representation
plot(y)

lines(seq(1,10), rep(mean(y[1:10]), 10))

lines(seq(11,20), rep(mean(y[11:20]), 10))

text(1,84,"A")

text(11,85.1,"B")

mtext("A: obs. 1 to 10, mean=84.24, sd=2.90, se=0.92                B: obs 11 to 20, mean=85.54, sd=3.65, se=1.15", side=3, line=-3, outer=TRUE)
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Evaluating the Significance of the Empirical Difference of Means

dm<-diff(tapply(y,method,mean))  #difference of means 

names(dm)<-NULL  #eliminating letter B on the output 

dm

#[1] 1.3
Let us evaluating the significance of the sample difference in means (=1.3) of the two groups under different experimental designs.
1. Assuming the data consists of two independent samples, each with 10 independent and identically distributed variables
1.1. Classical approaches: a two-sample t-Student test (under independence, normality and homogeneous variance), or a more robust non-parametric Wilcoxon test (under independent observations), may be used:
var.test(y ~ method)

#        F test to compare two variances

#
#F = 0.63193, num df = 9, denom df = 9, p-value = 0.5049

t.test(y ~ method, alternative="less", var.equal=TRUE)

#        Two Sample t-test

#
#data:  y by method

#t = -0.88158, df = 18, p-value = 0.1948

#alternative hypothesis: true difference in means is less than 0

#95 percent confidence interval:

#     -Inf 1.257102

#sample estimates:

#mean in group A mean in group B 

#          84.24           85.54

wilcox.test(y~method, alternative="less")

#        Wilcoxon rank sum test with continuity correction

#
#data:  y by method
#W = 40.5, p-value = 0.248

#alternative hypothesis: true location shift is less than 0

Based on the results, the null hypothesis of equal means is not rejected.
1.2. Randomization approach for inference: assuming only that the methods (A and B) were randomized to units and then the response was observed. Randomization, itself, can be used as a basis for inference, not needing normality and the other assumptions that go with linear models. Under the randomization null hypothesis (the responses to treatments are completely equivalent, serving only as labels), a randomization test or permutation test can be constructed based on the distribution of all differences in means (or any other descriptive statistic) obtained from the possible ways that the 20 unities can be split between the two methods (20C10 = 184,756). In this case, the randomization p-value can be adopted being defined as the probability (under this randomization distribution) of getting a descriptive statistic as extreme or more extreme than the one observed. 
Table 2 shows results for inference based on randomization hypothesis considering t-Student and Wilcoxon statistics.
c2010<-combn(1:20,10) 
#generate all combinations of 20 elements taken 10 at a time
frand<-function(x)

+  {

+   p1<-y[-x]

+   p2<-y[x]

+   t1<-t.test(p2,p1,alternative="less",var.equal=TRUE)

+   vt1<-t1$sta

+   pv1<-t1$p.value

+   t2<-wilcox.test(p2,p1,alternative="less")

+   vt2<-t2$sta

+   pv2<-t2$p.value

+   round(c(vt1,"pv.t"=pv1,vt2,"pv.W"=pv2),c(4,4,1,4))

+  }

res<-apply(c2010,2,frand)

dim(res)
# [1]      4 184756

o<-order(t(res)[,2]) 

t(res)[o[1:4],]     
#            t  pv.t   W  pv.W

# [1,] -4.9700 0e+00 2.5 2e-04

# [2,] -5.1194 0e+00 0.0 1e-04

# [3,] -5.0189 0e+00 1.5 1e-04

# [4,] -4.9700 0e+00 2.5 2e-04
# t-test

length(t(res)[t(res)[,1]<=t(res)[1,1],1])  

#[1] 36242

length(t(res)[t(res)[,1]<=t(res)[1,1],1])/length(t(res)[,1])  

#[1] 0.1961614 #randomization p-value for t-statistic
# Wilcoxon test

length(t(res)[t(res)[,3]<=t(res)[1,3],3]) 

#[1] 45537

length(t(res)[t(res)[,3]<=t(res)[1,3],3])/length(t(res)[,3])  

#[1] 0.246471 #randomization p-value for W-statistic

#Try: permtest(y[1:10],y[11:20]) available in library BHH2
#Randomization distribution of the descriptive statistics

par(mfrow=c(2,2))

hist(res[1,],main="",ylim=c(0,0.4),xlab="t statistic",ylab="density",freq=FALSE)

hist(res[2,],main="",ylim=c(0,12000),xlab="p-values (t)",ylab="frequency")

hist(res[3,],main="",ylim=c(0,0.04),xlab="W statistic",ylab="density",freq=FALSE)

hist(res[4,],main="",ylim=c(0,12000),xlab="p-values (W)",ylab="frequency")
[image: image2.emf]
The randomization p-values (0.1961614 and 0.246471)  are close to those computed from classical t-Student and Wilcoxon tests (0.1948 and 0.248, respectively), and there is no evidence for rejection of the null hypothesis. Generally, randomization p-values are close to standard p-values, mainly when the sample size is large and the assumptions of the classical methods are met (Oehlert,2010). 
2. Time series approach: assuming the data consists in a sequence of observations, i.e., method A is performed to the first 10 unities followed by method B to the next 10 unities. 
Maybe the series are autocorrelated, and neither classical or randomization tests are appropriated. The sample first autocorrelation, i.e., the sample correlation between y(t) and y(t-1), is -0.43 for method A and -0.17 for B, but these series are too short.
acf(y[1:10])$acf

Then, Box et al. (1978) presents extra 210 consecutive observations of the response using method A. These data is at BHH2 library of the R package.

library(BHH2)

par(mfrow=c(3,1))

plot(tab03B1$yield,xlab="time order",ylab="yield")

acf(tab03B1$yield)

Box.test(tab03B1$yield, 1) # Ljung-Box test
#
Box-Pierce test

#data:  tab03B1$yield

#X-squared = 17.479, df = 1, p-value = 2.904e-05

qqPlot(tab03B1$yield)
The first autocorrelation is 0.288 and is significant as seem in the correlogram. Also, the Ljung-Box test indicates that this first correlation is significant (p<0.001).
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2.1. Reference distribution based on external data
The last series information can provide a relevant reference set with which the observed difference of 1.30 may be compared. A reference distribution is obtained based on all the differences between averages of adjacent sets of 10 observations. The results are shown as follow: 
serie<-tab03B1[,1]

ma10<-matrix(0,10,201)   

j<-1

while(j<202){ma10[,j]<-serie[j:(j+9)];j<-j+1}  

require(fBasics)    

m.ma10<-colStats(ma10,mean)   
dm.ma10<-diff(m.ma10,10)  
length(dm6)

#[1] 191

sort(dm.ma10[dm.ma10>=1.3]) 

#[1] 1.33 1.33 1.35 1.37 1.39 1.46 1.47 1.87 2.48

length(c(dm.ma10[dm.ma10>=1.3]))/length(dm.ma10) 

# p-value based on reference distribution

#[1] 0.04712042
dotPlot(dm.ma10,main="Reference distribution",xlim=2.55*c(-1,+1),xlab="differences")

segments(1.30,0,1.30,max(dm.ma10)) #vertical line at x=1.3
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Thus, under the external reference distribution differences equal to 1.3 or greater are rare (with an evidence of 9/191=0.04712042), allowing the rejection of the null hypothesis, which state that the observed difference is a member of the reference set. The test using the external reference distribution has appeal because it does not assume normality or that the data are independent (and, in particular, not autocorrelated). It supposes only that whatever mechanisms gave rise to the past observations were operating during the current experiment.
Note that based solely on the internal evidence contained in the 20 observations and classical suppositions, the t-reference distribution (with 18 degree of freedom) the observed difference has a significance probability of 0.196. The large disagreement in the probability statements provided by these two methods of analysis may be due the reduction on the standard error as a consequence of the autocorrelation. 
2.2. Appropriate scale factor of the t-statistic
The last series can be used to properly calculate the standard error of the difference in means considering the sequence of 20 correlated observations. Consider the series data partitioned in adjacent sets of 20 observations, being omitted one to find independent sample of mean differences, i.e., set the first mean difference from 1 to 20 unities, the second from 22 to 42, the third from 44 to 64 unities, and so on. A sampling of 10 independent mean differences is obtained. Then, calculate the standard deviation of the mean differences, use it as scale factor of the t-statistic and evaluate the significance of the observed value of 1.3 under the t distribution with 10 degree of freedom. It is performed bellow:   
a10.1<-matrix(0,10,10) 

j<-i<-1            

while(j<192){a10.1[,i]<-serie[j:(j+9)];j<-j+21; i<-i+1} > 

a10.2<-matrix(0,10,10) 

j<-11;i<-1            

while(j<202){a10.2[,i]<-serie[j:(j+9)];j<-j+21; i<-i+1}  

ma10.1<-colStats(a10.1,mean) 

ma10.2<-colStats(a10.2,mean) 

da10<-ma10.1-ma10.2  

da10
# [1] -0.43  0.43 -0.17 -0.90  0.80 -0.43 -0.51 -0.82  0.49  0.64

se.da10<-sd(da10)   

t.sf<-1.3/se.da10         # t-statistic, page 52, Box et al. (1978)
pt(t.sf,10,lower=FALSE)   # p-value using appropriate scale factor
#[1] 0.03240458
As before, taking in account the autocorrelation structure present in the observed data, it is find evidence for rejection of the null hypothesis.
2.3. ARIMA model

Finally, a time series model is proposed and fitted using the auto.arima command at the forecast library of the R package. It chooses the model with the best Akaike Criterion. After a residual analysis, this model seems to be appropriate to the measures for method A, as seen in the next figure. Also, the Ljung-Box test concludes that all the autocorrelations until lag 10 are non-significant (p=0.7521). Note that under this approach no external information is used to analyze the observed data. 
library(forecast)

auto.arima(tab03B1$yield)

#Series: tab03B1$yield 

#ARIMA(2,0,2) with non-zero mean 

#Coefficients:

#         ar1      ar2      ma1     ma2     mean

#      0.8769  -0.4040  -1.2904  0.6004  84.1279

#s.e.  0.2347   0.1269   0.2255  0.1692   0.1061

#sigma^2 estimated as 6.979:  log likelihood=-499.66

#AIC=1011.32   AICc=1011.73   BIC=1031.4

f<- Arima(tab03B1$yield, order=c(2,0,2))

par(mfrow=c(3,1))

acf(f$residuals)

ts.plot(f$residuals)

abline(h=0)

library(car)

qqPlot(f$residuals)
Box.test(f$residuals, 10)

#
Box-Pierce test

#data:  f$residuals

#X-squared = 6.7145, df = 10, p-value = 0.7521
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Then, we may estimate the response mean for the method A as the intercept of the ARIMA(2,0,2) fitted model, as [image: image7.png]Boa =



84.1279 with standard error [image: image9.png]se(Boa)



= 0.1061. Noting that the correspondent maximum likelihood estimator is asymptotically Gaussian.
f

#Series: tab03B1$yield 

#ARIMA(2,0,2) with non-zero mean 

#Coefficients:

#         ar1      ar2      ma1     ma2     mean

#      0.8769  -0.4040  -1.2904  0.6004  84.1279
#s.e.  0.2347   0.1269   0.2255  0.1692   0.1061

#sigma^2 estimated as 6.979:  log likelihood=-499.66

#AIC=1011.32   AICc=1011.73   BIC=1031.4
Comparing with the mean estimator for method B, with estimated mean=85.54 and se=1.15, the difference is 1.4121= 85.54-84.1279 and the test statistics is
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that is asymptotically distributed as a standardized Gaussian distribution. The observed value is: 
(dif<-f$coef[5]-mean(y[11:20]))

#intercept 

#-1.412055 

(sd<-sqrt(0.1061^2+(sd(y[11:20])/sqrt(10))^2)   )

#[1] 1.159201

(est<-dif/sd)

#intercept 

#-1.218128 

(1-pnorm(abs(est)))*2       # p-value

intercept 

0.2231753 
Thus, under this approach, there is no significant difference between the response means for both treatments.
Authors: Júlia Maria Pavan Soler, pavan@ime.usp.br, IME/USP 
                Airlane Pereira Alencar, lanealencar@usp.br , IME/USP

Reference:

Box, GEP; Hunter, WG; Hunter, JS. Statistics for Experimenters. John Wiley & Sons, 1978.

Oehlert, GW. A first course in Design and Analysis of Experiments. Univ. of Minnesota, Licensed by Creative Commons, 2010.

