Chemical aspects of the cell

Chemical probes that trigger the cell environment and response for pH, reactive oxygen species

Compounds working as probes

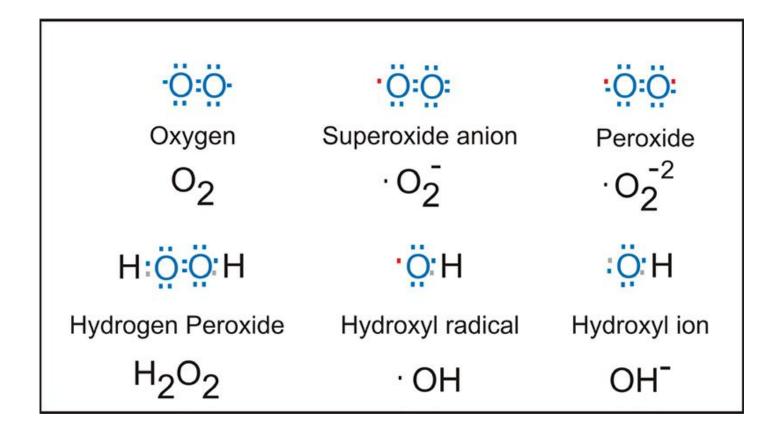
Many applications require the use of indirect detection techniques

In this respect, chemical probes have an increasing role to detect different cell processes, some of them will be shown here, just to give a brief idea about this topic.

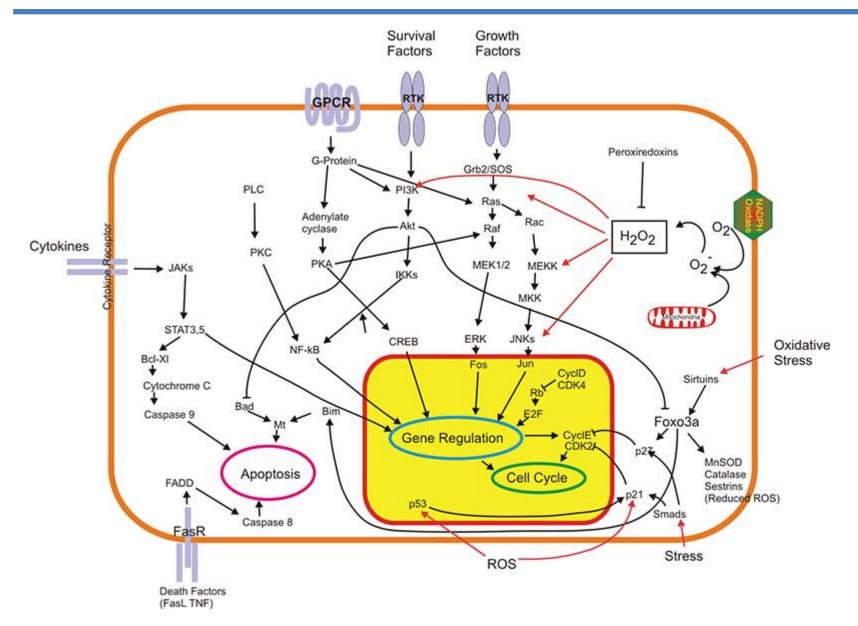
Examples of DNA staining dyes

PROPIDIUM IODIDE

CAS Registry Number 25535-16-4 Chemical Structure


$$H_2N$$
 NH_2
 CH_3
 H_2C
 CH_3
 H_2C
 CH_3
 H_2C
 CH_3
 CH_3

DAPI


CAS Registry Number 28718-90-3 Chemical Structure

Sabnis, R. W. Handbook of Biological Dyes and Stains-Synthesis and Industrial Applications, 2010, John Wiley & Sons Inc., 521 pp.

Production of reactive oxygen species (ROS)

Reactive oxygen species (ROS)

Mechanisms to reduce ROS level

Glutathione oxidase

Detection of proteins with thiols, including glutathione

X = Br: Monobromobimane X = CI: Monochlorobimane

Mechanisms to reduce ROS level

Peroxidation of lipids

peroxy radical

Detection tools

MDA-TBA adduct

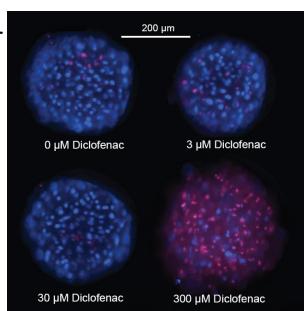
Colorimetric assay: 532 nm

OH

Fluorescence: 530 nm (excitation) and 550 nm (emmision)

Detection of superoxide

Oxidation of Dihydroethidium to 2-Hydroxyethidium by Superoxide


$$H_2N$$
 H_2N
 H_2N
 CH_2CH_3
 OH
 CH_2CH_3
 OH
 CH_2CH_3

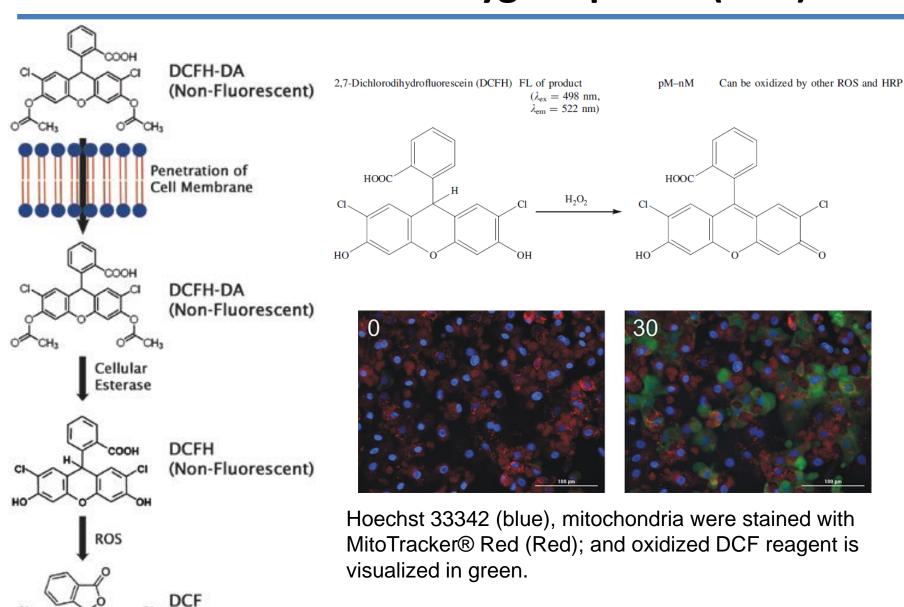
Oxidized MitoSox™ Red mitochondrial superoxide indicator

$$H_2N$$
 N^+
 $(CH_2)_6^{-+}P$
 $(510/590)$

Hoechst 33342 : blue

MitoSox: red

Detection of hydrogen peroxide


Conversion of Amplex Red to resorufin by HRP using H₂O₂

HRP: Horseradish peroxidase

Dimerization of homovanillic acid by the action of HRP and H₂O₂

(Ex 315 nm; Em 425 nm)

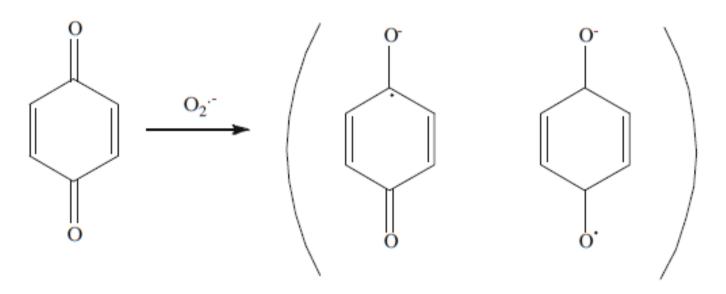
Detection of reactive oxygen species (ROS)

(Fluorescent)

Detection of singlet oxygen $(^{1}O_{2})$

Anthracene-9,10-bis(ethanesulphonate) (AES)

Absorbance of AES ($\lambda_{max} = 399$ nm, μM $\epsilon_{399} = 1.26 \times 10^4 \, M^{-1} \, cm^{-1}$) and endoperoxide product with HPLC–UV ($\lambda_{max} = 216$ nm)


It can detect -OH

... and many more.

Detection of singlet oxygen (¹O₂)

1,4-Benzoquinone

Absorbance of semiquinone($\lambda_{\text{max}} = 430 \text{ nm}$, $\varepsilon_{430} = 6{,}100 \text{ M}^{-1} \text{ cm}^{-1}$)

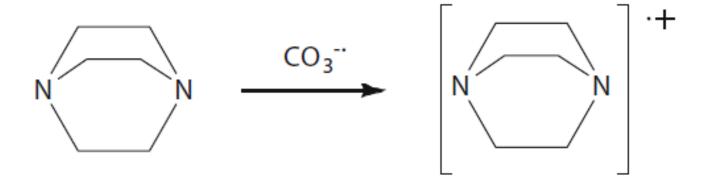
Interference from e_{aq} and CO₂

... and many more.

Detection of hydroxyl radical (·OH)

2-(2-Pyridyl)-3H-indol-3-one *N*-oxide

EPR spin trapping—signal increase due to adduct No interference from O₂


... and many more.

EPR: Electron Paramagnetic Resonance Spectroscopy

μM

Detection of carbonate radical (CO₃⁻⁻)

1,4-Diaza-bicyclo[2.2.2]octane (DABCO) Absorbance of radical cation ($\lambda = 465$ nm, $\epsilon_{465} = 2.1 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$)

Radical cation has a $t_{1/2} \le ms$

... and many more.

Detection of nitric oxide (NO·)

NO. has a very short life time and it is converted to nitrate than nitrile:

Indirect detection:

DAN
$$NH_2$$
 NH_2 $NH_$

Different types of ROS and RNS produced in the cell

Reactive Oxygen Species (ROS)

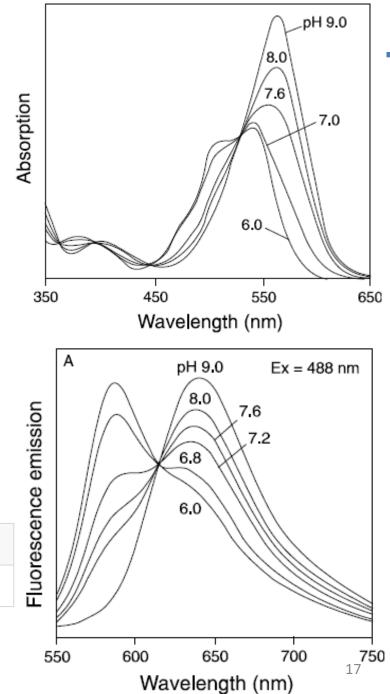
Radicals: O2. Superoxide OH. Hydroxyl RO2 Peroxyl RO Alkoxyl HO2 Hydroperoxyl

Non-Radicals:		
H_2O_2	Hydrogen peroxide	
HOCI ⁻	Hypochlorous acid	
O_3	Ozone	
¹ O ₂	Singlet oxygen	
ONOO-	Peroxynitrite	

Reactive Nitrogen Species (RNS)

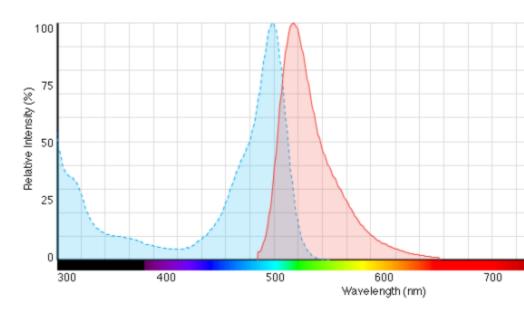
Radicals: NO Nitric Oxide NO Nitrogen dioxide

Non-Radicals:			
ONOO ⁻	Peroxynitrite		
ROONO	Alkyl peroxynitrites		
N_2O_3	Dinitrogen trioxide		
N_2O_4	Dinitrogen tetroxide		
HNO ₂	Nitrous acid		
NO_2^{+2}	Nitronium anion		
NO	Nitroxyl anion		
NO ⁺	Nitrosyl cation		
NO ₂ Cl	Nitryl chloride		


Enzymatic and nonenzymatic antioxidants

Enzymatic antioxidants	Nonenzymatic antioxidants
Thioredoxin (Trx)	Vitamins C, E, A
Peroxiredoxins (Prx)	Thiols
Glutaredoxin (Grx)	β-Carotene
Glutathione peroxidase (Gpx)	Polyphenols
Reduced glutathione (GSH)	NAC
Oxidized glutathione (GSSG)	Zinc, selenium
Glutathione reductase (GR)	Glutathione
Extracellular glutathione peroxidase (eGPx)	Uric acid
Catalase	Lycopene
Peroxidase	Allyl sulfide
Superoxide dismutase	Indoles
	Gallic acid
	Hesperitin
	Catechin
	Chrysin

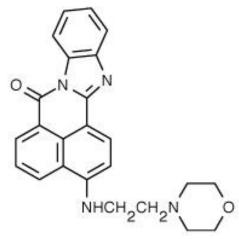
pH indicators

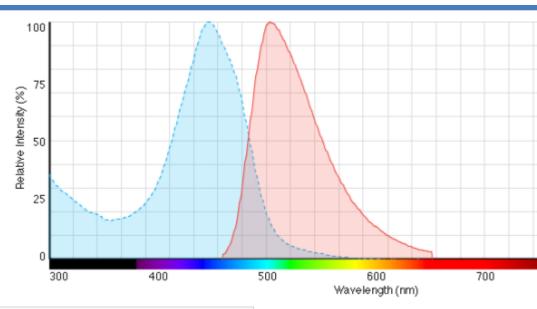

5-(and-6)-Carboxy SNARF™-1

Parent Fluorophore	pH Range	Typical Measurement
SNARF indicators	6.0–8.0	Emission ratio 580/640 nm

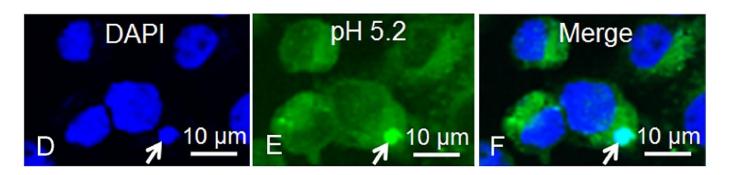
pH indicators

Fluorescein diacetate

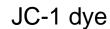


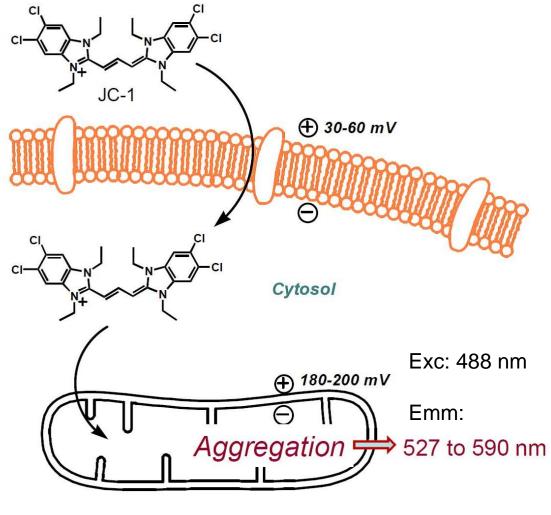

Parent Fluorophore	pH Range	Typical Measurement
Fluoresceins and carboxyfluoresceins	6.0-7.2	Excitation ratio 490/450 nm

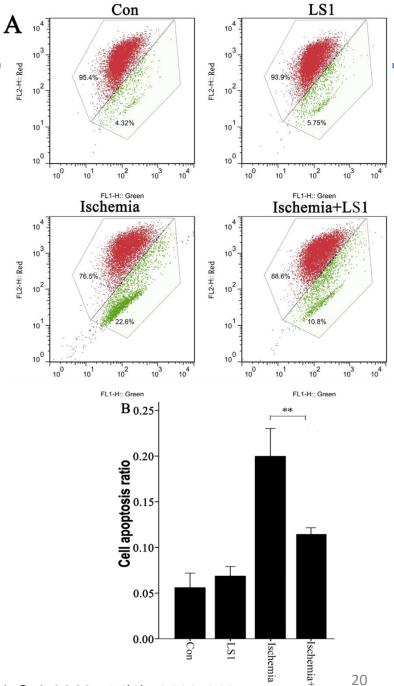
Also used for cell viability assays.


pH indicators

LysoSensor Green DND-189

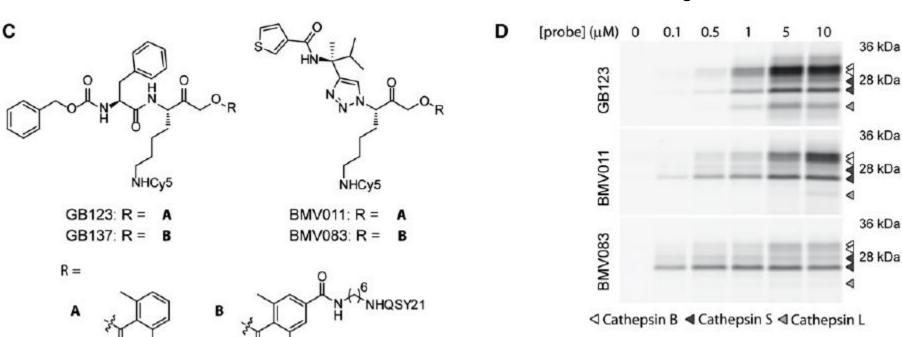





Parent Fluorophore	pH Range	Typical Measurement	
LysoSensor Green DND-189	4.5–6.0	Single emission 520 nm	

Apoptosis indicator

http://lcbim.epfl.ch/research


Tian, S.; et al. Int. J. Mol. Sci. 2013, 14(1), 1412-1427

Example of indicator of enzyme activity

Living RAW cells

21