Chemical aspects of the cell

Biosynthesis of compounds responsible for biochemical pathways

Two types of intracellular signaling events

Fig. 15.7 – Molecular Biology of the Cell http://www.genome.jp/kegg/

Signal transduction

Fig. 15.1 & 15.27 – Molecular Biology of the Cell https://pt.slideshare.net/AngelVega24/chapter-11-cell-communication?ref=&smtNoRedir=1

Cyclic adenosine monophosphate (cAMP)

activated adenylyl cyclase signal molecule activated α subunit of stimulatory G plasma protein (G) membrane CYTOSOL GTP activated GPCR ATP cyclic AMP inactive PKA activated PKA CYTOSOL NUCLEUS nuclear póre activated PKA activated, phosphorylated CREB inactive CREB **CREB**-binding protein (CBP) activated target gene cyclic AMP response element (CRE) GENE TRANSCRIPTION Δ

Fig. 15.1 & 15.27 – Molecular Biology of the Cell https://www.youtube.com/watch?v=Y2er_Dfgg44

Cyclic adenosine monophosphate (cAMP)

1S6K: Crystal structure of the adenylyl cyclase domain of anthrax edema factor (EF)

Cyclic adenosine monophosphate (cAMP)

TABLE 15–1 Some Hormone-induced Cell Responses Mediated by Cyclic AMP		
Target tissue	Hormone	Major response
Thyroid gland	Thyroid-stimulating hormone (TSH)	Thyroid hormone synthesis and secretion
Adrenal cortex	Adrenocorticotrophic hormone (ACTH)	Cortisol secretion
Ovary	Luteinizing hormone (LH)	Progesterone secretion
Muscle	Adrenaline	Glycogen breakdown
Bone	Parathormone	Bone resorption
Heart	Adrenaline	Increase in heart rate and force of contraction
Liver	Glucagon	Glycogen breakdown
Kidney	Vasopressin	Water resorption
Fat	Adrenaline, ACTH, glucagon, TSH	Triglyceride breakdown

The use of phospholipids

Many GPCRs exert their effects through G proteins that activate the plasmamembrane-bound enzyme phospholipase C- β (PLC β).

The phospholipase acts on a phosphorylated inositol phospholipid (a *phosphoinositide*) called phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], which is present in small amounts in the inner half of the plasma membrane lipid bilayer.

IP₃ signaling then splits in two pathways...

Inositol 1,4,5-triphosphate (IP₃)

Calcium ion (Ca²⁺)

IP3-gated Ca²⁺-release channels (also called IP3 receptors) opening deliver calcium from the endoplasmatic reticulum.

Ca²⁺ can be transported intracellularly via plasma membrane proteins.

Calcium ion (Ca²⁺)

Ca²⁺ concentration in the cytosol is normally very low (~10–7 M), whereas its concentration in the extracellular fluid (~10–3 M) and in the lumen of the ER [and sarcoplasmic reticulum (SR) in muscle] is high.

There is a large gradient tending to drive Ca²⁺ into the cytosol across both the plasma membrane and the ER or SR membrane.

Several mechanisms rapidly terminate the Ca²⁺ signal and are also responsible for keeping the concentration of Ca²⁺ in the cytosol low in resting cells.

The fertilization of an egg by a sperm triggers a wave of cytosolic Ca²⁺

Calcium ion (Ca²⁺) receptors

There are many receptors, mainly characterized by voltage-gated and ligandgated.

Two ligand-gated receptors are shown below:

Inositol Triphosphate Receptor (InsP3R1) 1N4K & 3JAV

Ryanodine Receptor (RYR1) 5TA3

Calcium ion (Ca²⁺) receptors

Effects of the calcium ion (Ca²⁺)

One example is the vasopressin release in a liver cell:

Diacylglycerol

It also acts as a second messenger, but it remains embedded in the plasma membrane, where it has several potential signaling roles. One of its major functions is to activate a protein kinase called protein kinase C (PKC), so named because it is Ca²⁺-dependent.

PKC is activated by the combination of Ca2+, diacylglycerol, and the negatively charged membrane phospholipid phosphatidylserine.

Diacylglycerol can be further cleaved to release arachidonic acid, which can either act as a signal in its own right or be used in the synthesis of other small lipid signal molecules called *eicosanoids*.

Eicosanoids

Eicosanoids

http://circres.ahajournals.org/content/89/9/753