Aula 3 - Usos da água e tecnologias de tratamento

PHA - 3525: Uso Racional e Reúso de Água

A Água para o Desenvolvimento das Atividades Humanas

- Á água é um dos principais recursos naturais utilizados pelos seres humanos;
- Seu uso depende de características físicas, químicas e biológicas;
- Em grandes centros urbanos o uso da água é muito intenso.

Principais Usos da Água

- Usos urbanos;
- Uso industrial;
- Irrigação;
- Aquicultura;
- Geração de energia elétrica;
- Transporte;
- Recreação e paisagismo;
- Preservação da Fauna e Flora;
- Assimilação e transporte de poluentes.

Requisitos de qualidade

- Os requisitos de qualidade da água depende dos perigos associados à sua composição;
- Requisitos de qualidade são estabelecidos de forma a minimizar os riscos associados à cada perigo identificado.

Perigos associados à água

- Em relação a qualidade da água, pode-se considerar a existência de dois perigos principais:
 - Presença de microrganismos patogênicos;
 - Presença de substâncias ou compostos químicos e radioativos na sua composição.
- À estes perigos estão associados riscos potenciais, que devem ser avaliados e gerenciados;
- Estabelecimento de padrões de qualidade.

Riscos associados ao uso da água

- Contaminação microbiológica:
 - Do Homem e outros organismos vivos;
 - Dos cursos d'água e do solo.
- Contaminação química:
 - Do Homem e outros organismos vivos;
 - Dos cursos d'água e do solo;
- Degradação de materiais e equipamentos;
 - Nas atividades nas quais a água é utilizada.

Necessidade de Água para a Indústria

- A quantidade e qualidade da água para uso industrial dependem:
 - Ramo de atividade da indústria:
 - Determina o grau de qualidade da água a ser utilizada nos vários processos;
 - Capacidade de produção:
 - O porte da empresa define a quantidade de água necessária para cada tipo de aplicação.

Categorias de Água para Uso Industrial

Categoria	Parâmetro (mg/L)			
	SDT	DQO	SST	Dureza
Tipo I – Água ultra pura	< 10	< 1	0	0
Tipo II – Água de processo de alta qualidade	10 - 60	0 - 10	0	< 30
Tipo III – Água Tratada	20 - 60	0 - 10	0 - 10	30 - 75
Tipo IV — Água bruta ou reciclada	60 - 800	10 - 150	10 - 100	X

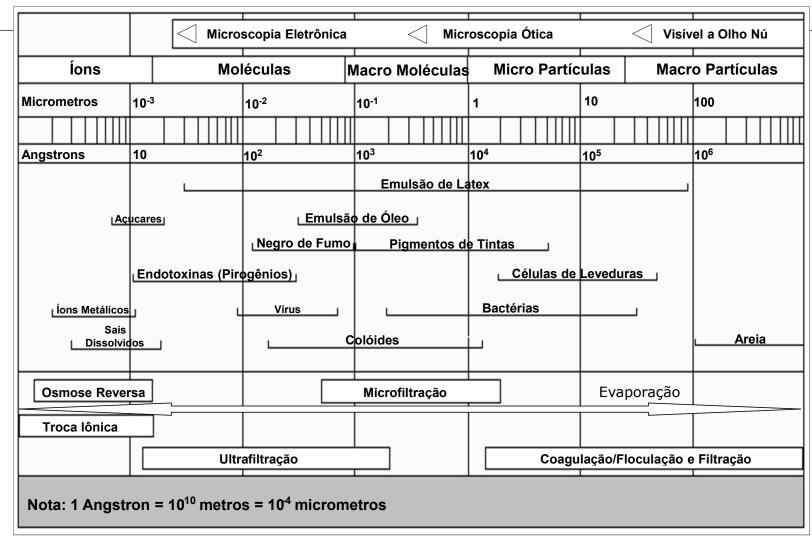
Dados de Qualidade para a Indústria Farmacêutica

Parâmetro	Água Purificada	Água para Injetáveis		
рН	5 a 7	5 a 7		
Condutividade	Estágio 1: ≤ 1,3 μS/cm			
Elétrica	Estágio 2: ≤ 2,1 μS/cm			
	Estágio 3: valor associado à medida do pH			
Carbono Orgânico Total	500 partes por bilhão (ppb)			
Bactérias	100 UFC/mL	10 UFC/mL		
Endotoxinas		< 0,25 UE		

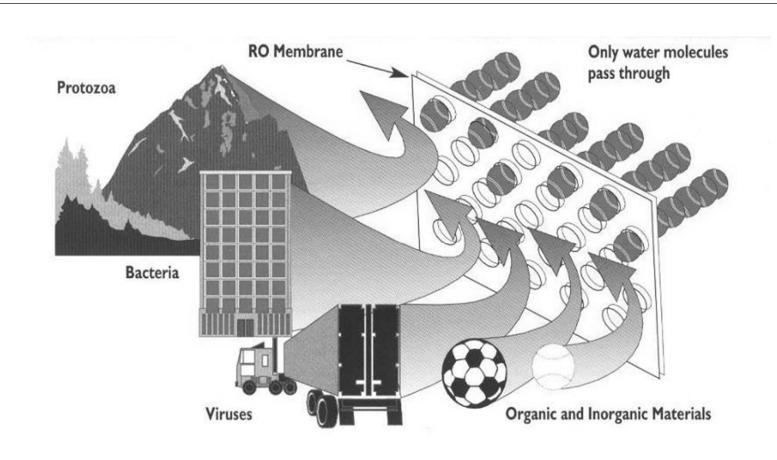
Exemplos de Demanda de Água em Processos Industriais

Indústria ou Atividade	Unidade de Produção	Demanda de Água (L/ton)
Processamento de peixes	Tonelada	16.000 a 300.000
Processamento de Aves	Tonelada	6.000 a 43.000
Leite e derivados	Tonelada / L	2.000 a 200.000
Açúcar	Tonelada	1.800 a 20.000
Bebidas	1.000 L	500 a 76.000
Celulose e Papel	Tonelada	30.000 a 1.000.000
Petróleo e combustíveis	1.000 L	4.000 a 40.000
Química	Tonelada	26.300 a 1.000.000

Atividade

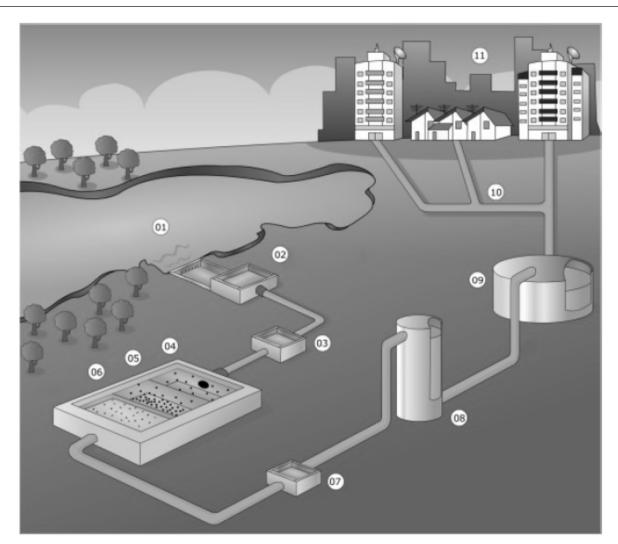

- Em grupos com no máximo 4 integrantes, proponha um procedimento para que seja possível estruturar o projeto de um sistema de tratamento de água.
- Indique as informações mais relevantes à serem consideradas e de que maneira é possível fazer as opções pelos processos de tratamento.
- As respostas devem ser inseridas no e-disciplinas.

Opções tecnológicas para tratamento de águas e esgotos


	Classe de contaminante				
Tecnologia	CID	GID	COD	SS	Bactérias e vírus
Evaporação	E/B	NE	В	Е	E
Troca iônica, eletrodeionização e eletrodiálise	E	Е	NA	NA	NA
Osmose reversa	В	NA	В	Е	E
Adsorção em carvão ativado	NA	NA	E/B	NA	NA
Radiação ultravioleta	NA	NA	NA	NA	B/E
Sistema convencional de tratamento de água	NA	NA	NA	E	E
Micro e ultrafiltração	NA	NA	В	Е	E
Oxidação química (ozônio / UV-Peróxido)	NA	NA	E/B	NA	E
Sistemas biológicos de tratamento	NA	NA	B/E	В	NA

E = Eficiente; B = Bom; NE = Não afeta o contaminante

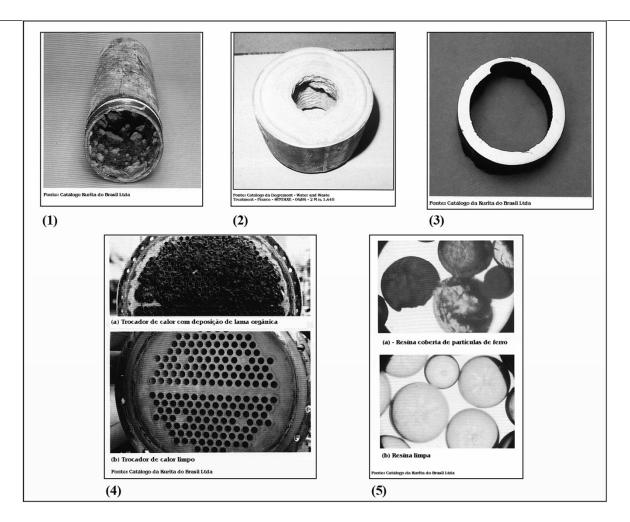
CID – Compostos Inorgânicos Dissolvidos; GID – Gases Ionizáveis Dissolvidos; COD – Compostos Orgânicos Dissolvidos; SS – Sólidos em suspensão.


Técnicas de Tratamento em Função do Contaminante a ser removido

Capacidade de Separação de Contaminantes do Sistema de Osmose Reversa

Sistemas de Tratamento

- ◆ O arranjo a ser utilizado irá depender do tipo de manancial selecionado;
- ◆ Água subterrânea:
 - baixa concentração de sólidos em suspensão;
 - presença de gases (H₂S e CO₂) e metais dissolvidos (ferro).
- ◆ Água superficial (rios e lagos)
 - maior concentração de sólidos em suspensão;
 - baixa concentração de gases dissolvidos.
- ◆ Água Salobra ou Salina
 - elevada concentração de sais dissolvidos



- 1 Represa;
- 2 Captação e bombeamento;
- 3 Pré-cloração;
- 4 Coagulação e Fluculação;
- 5 Sedimentação;
- 6 Filtração;
- 7 Desinfecção e fluoretação;
- 8 Reservatório;
- 9 Ditribuição;
- 10 Redes;
- 11 Cidade.

Sistema de produção e distribuição de água (Fonte: SABESP)

Tratamento de Água para Uso Industrial

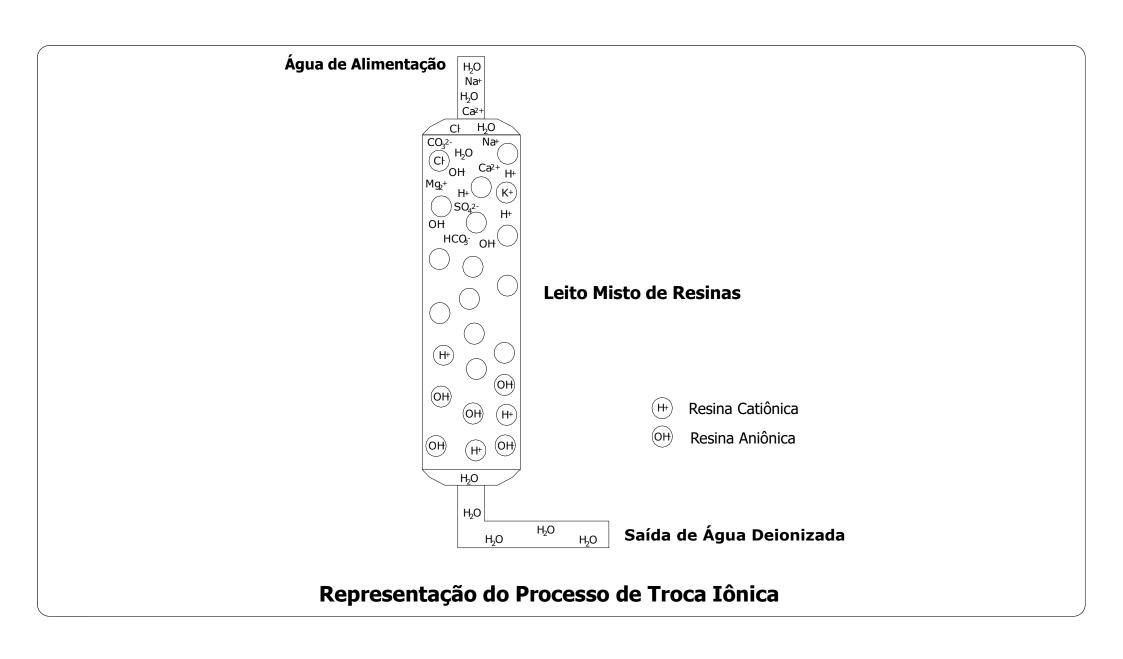
- Para adequar a água disponível aos requisitos de qualidade exigidos é necessário tratar a mesma;
- O procedimento geralmente utilizado consiste:
 - Identificar os principais tipos de água a serem produzidos;
 - Desenvolver um sistema principal para adequar as características da água disponível aos requisitos exigidos para a maior demanda;
 - Projetar e implantar sistemas complementares para a obtenção dos outros tipos de água necessários.

Inconvenientes da Utilização de Água fora dos Padrões Exigidos para Uso ou com Qualidade Inadequada

Considerações sobre as Técnicas de Tratamento de Água

- Na maioria dos casos é necessário combinar duas ou mais técnicas para a obtenção de água com a qualidade exigida;
- O arranjo a ser utilizado deve levar em consideração:
 - Máxima eficiência de produção;
 - Otimização dos recursos;
 - Facilidade de operação e manutenção;
 - Minimização de efluentes e resíduos.

Considerações sobre as Técnicas de Tratamento de Água


- O atual estágio de desenvolvimento tecnológico permite obter água com elevado grau de qualidade a partir de, praticamente, qualquer fonte;
- Embora isto seja tecnicamente viável o custo envolvido ainda é proibitivo;
- O custo de tratamento é proporcional à qualidade da água que se pretende obter.

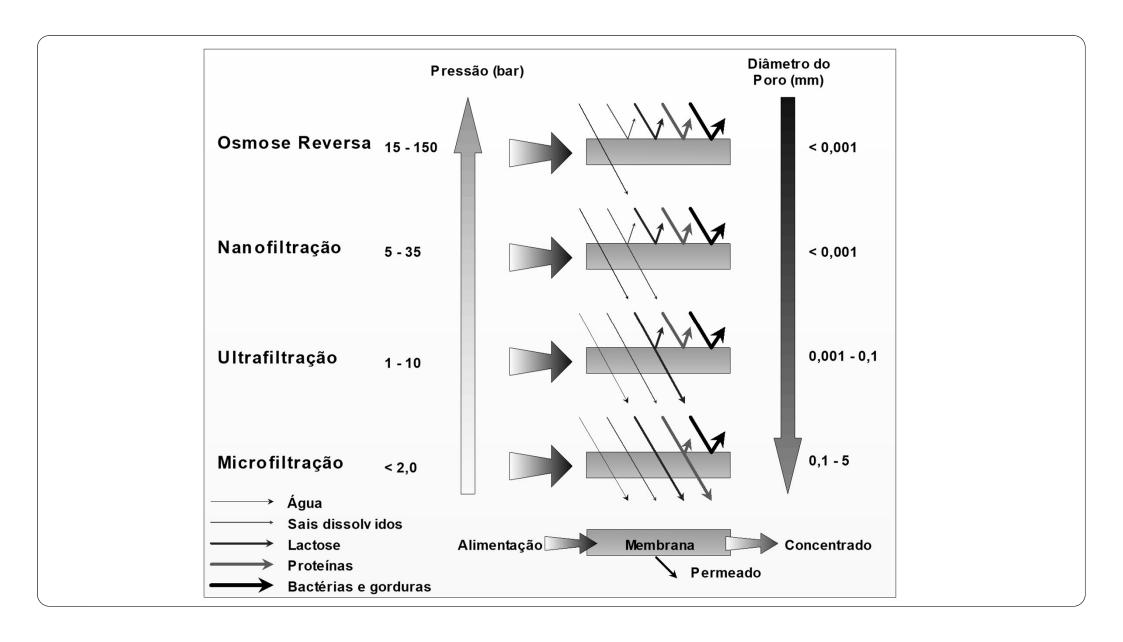
Técnicas de Tratamento de Água

- Processo convencional de tratamento:
 - É o mesmo que o utilizado para a produção de água potável;
 - Normalmente é o processo inicialmente utilizado para o tratamento de água para uso industrial;
 - Consiste na utilização de processos e operações unitárias em uma sequência adequada.

Processo de Troca Iônica

- Visa remover da água os compostos dissolvidos, predominantemente iônicos;
- Possibilita a obtenção de uma água com elevado grau de qualidade;
- Como existem íons positivos e negativos é necessário utilizar dois tipos de resinas:
 - Resinas catiônicas → remoção de íons positivos;
 - Resinas aniônicas → remoção de íons negativos.
- Conforme já mencionado as resinas apresentam capacidade limita de troca.

Capacidade de Troca das Resinas


Tipo de Resina	Capacidade de Troca (eq / L de resina)		
Catiônica Fortemente Ácida	1,6 a 2,0		
Catiônica Fracamente Ácida	3,8		
Aniônica Fortemente Básica	1,0 a 1,3		
Aniônica Fracamente Básica	1,3 a 1,7		
Leito Misto	2,8 (50% H ⁺ e OH ⁻)		

Processos de Separação por Membranas

- Envolvem a utilização de membranas sintéticas, porosas ou semipermeáveis;
- Possibilitam separar partículas sólidas de pequenos diâmetros, bactérias, vírus, compostos orgânicos e até sólidos dissolvidos;

Principais processos de separação por membranas

- Microfiltração (MF);
- ◆ Ultrafiltração (UF);
- ◆ Nanofiltração (NF);
- ◆ Osmose Reversa (OR);
- ◆ Eletrodiálise e Eletrodiálise Reversa(ED/EDR);
- ◆ Pervaporação (PV).

Principais características dos processos de separação por membranas

Processo	Força motriz	Concentrado	Permeado ou Purificado
Microfiltração	Pressão	Partículas.	Solutos dissolvidos.
Ultrafiltração	Pressão	Moléculas de alto peso molecular.	Moléculas com pequena massa molar e sais dissolvidos.
Nanofiltração	Pressão	Moléculas de baixo peso molecular e íons bivalentes.	Íons monovalentes.
Osmose Reversa	Pressão	Todos os solutos	Praticamente água.
Eletrodiálise	Corrente elétrica	Solutos iônicos	Solutos não iônicos.

Projetos de MF, UF, NF e OR

 Valores típicos do fluxo de água através das membranas são:

• Osmose reversa → 15 a 25 L/h.m²;

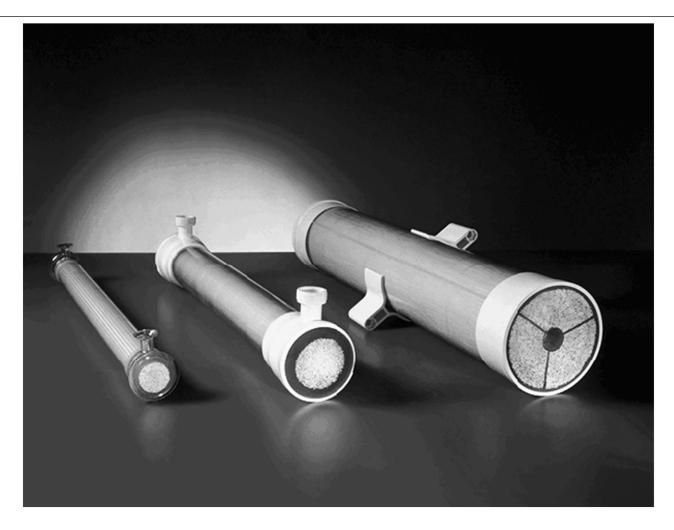
Nanofiltração
→
20 a 30 L/h.m²;

• Ultrafiltração → 25 a 50 L/h.m²;

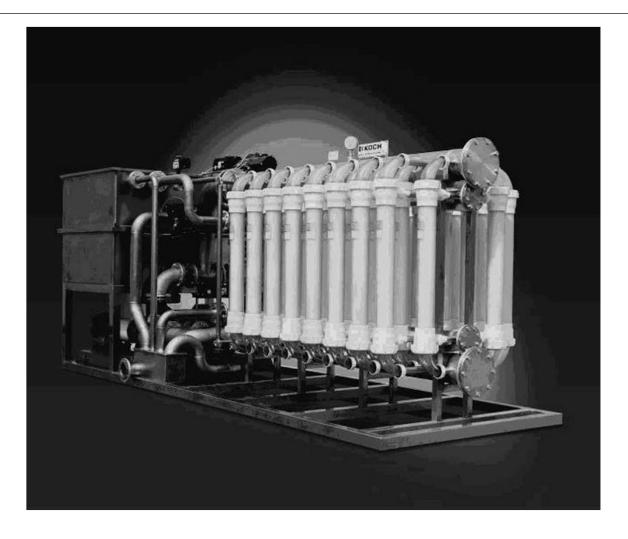
Microfiltração
mão há uma regra.

- No caso de sistemas de microfiltração os valores máximos situam-se na faixa de 50 a 70 L/h.m².
- ◆ Para sistemas MBR, os fluxos são menores, 10 a 15 L/h.m²

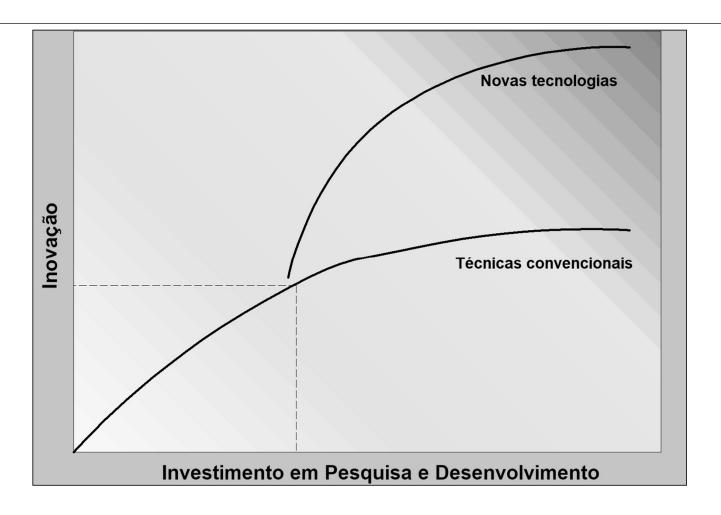
Categorias de aplicação


- → Os processos de separação por membranas podem ser enquadrados em uma das seguintes categorias:
 - Separação sólido-líquido;
 - Desinfecção;
 - ► Separação de substâncias inorgânicas dissolvidas;
 - ► Separação de compostos orgânicos, dissolvidos ou não;
 - Combinação com processos biológicos para tratamento de esgotos.

Exemplo do desempenho dos bioreatores com membranas submersas


Afl	uente (mg/	/L)	Efluente (mg/L)		Mombrono		
SS	DQO*	DBO	SS	DQO	DBO	Membrana	
80 - 460	100 - 365	200 - 1000	< 5	< 40	< 10	UF	
96	89	349	< 5	12	3,7	UF	
280	620	230	< 5	11	< 5	MF	
153	79	176	< 5	6	1,5	MF	
110 – 164	292 – 411	X	< 5	15 – 19	X	UF	
1315	X	1130	5	X	5	UF	

^{*} DQO baseada no método com permanganato.


Fonte: Water Treatment Membrane Processes - AWWA

Membranas na Configuração de Fibra Oca

Unidade de Ultrafiltração

Relação entre inovação e investimento em P&D na atualidade