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Preface

This text covers the basic topics in experimental designaaradysis and
is intended for graduate students and advanced undergeadu&tudents
should have had an introductory statistical methods caatrabout the level
of Moore and McCabe’mtroduction to the Practice of Statisti¢soore and
McCabe 1999) and be familiar withtests,p-values, confidence intervals,
and the basics of regression and ANOVA. Most of the text pettals theory
and mathematics, but Chapter 19 on response surfacestis tolitgher sled-
ding (eigenvectors and eigenvalues creep in through caalamalysis), and
Appendix A is an introduction to the theory of linear moddlsise the text
in a service course for non-statisticians and in a coursritryear Masters
students in statistics. The non-statisticians come fropadenents scattered
all around the university including agronomy, ecology, eational psychol-
ogy, engineering, food science, pharmacy, sociology, afdiife.

| wrote this book for the same reason that many textbooks gé&ew:

there was no existing book that did things the way | thouglt lest. | start
with single-factor, fixed-effects, completely randomiz#sbigns and cover
them thoroughly, including analysis, checking assumgtiand power. |
then add factorial treatment structure and random effediset mix. At this
stage, we have a single randomization scheme, a lot of éiffanodels for
data, and essentially all the analysis techniques we neeextladd block-
ing designs for reducing variability, covering completedis, incomplete
blocks, and confounding in factorials. After this | intraabusplit plots, which
can be considered incomplete block designs but reallydoire the broader
subject of unit structures. Covariate models round out ibeudsion of vari-
ance reduction. | finish with special treatment structuredyding fractional
factorials and response surface/mixture designs.

This outline is similar in content to a dozen other desigmstexow is this
book different?

¢ | include many exercises where the student is requirechtibsean
appropriate experimental design for a given situatiomgoognizehe
design that was used. Many of the designs in question aredeotier
chapters, not the chapter where the question is given. Taresmpor-
tant skills that often receive short shrift. See examplepages 500
and 502.
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| use Hasse diagrams to illustrate models, find test dendarsyand
compute expected mean squares. | feel that the diagram&erav
much easier and more understandable approach to thesemothlan
the classic approach with tables of subscripts and live aad thdices.
| believe that Hasse diagrams should see wider application.

e | spend time trying to sort out the issues with multiple congmns
procedures. These confuse many students, and most terRidGast
present a laundry list of methods and no guidance.

e | try to get students to look beyond saying main effects aridterac-
tions are significant and to understand the relationshipkéardata. |
want them to learn that understanding what the data haveytis she
goal. ANOVA is a tool we use at the beginning of an analysiss, itot
the end.

¢ | describe the difference in philosophy between hieraadhiodel
building and parameter testing in factorials, and discuss this be-
comes crucial for unbalanced data. This is important becthesdif-
ferent philosophies can lead to different conclusions, mady texts
avoid the issue entirely.

e There are three kinds of “problems” in this text, which | halemoted
exercises, problems, and questions. Exercises are ird¢ad® sim-
pler than problems, with exercises being more drill on ma@sand
problems being more integrative. Not everyone will agrethwy
classification. Questions are not necessarily more diffitxan prob-
lems, but they cover more theoretical or mathematical rizdter

Data files for the examples and problems can be downloaded the
Freeman web site dittp://www.whfreeman.com/ . A second re-
source is Appendix B, which documents the notation useddretki.

This text contains many formulae, but | try to use formulaty evhen |
think that they will increase a reader’s understanding efiteas. In several
settings where closed-form expressions for sums of squarestimates ex-
ist, | do not present them because | do not believe that thigy(foe example,
the Analysis of Covariance). Similarly, presentationsafmal equations do
not appear. Instead, | approach ANOVA as a comparison of fadiddoy
least squares, and let the computing software take careealdtails of fit-
ting. Future statisticians will need to learn the procesmare detail, and
Appendix A gets them started with the theory behind fixedatffe

Speaking of computing, examples in this text use one of fackages:
MacAnova, Minitab, SAS, and S-Plus. MacAnova is a homegrpackage
that we use here at Minnesota because we can distributeely fri¢ runs
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on Macintosh, Windows, and Unix; and it does everything wedhé/ou can
download MacAnova (any version and documentation, evesdhece) from
http://lwww.stat.umn.edu/"gary/macanova . Minitab and SAS
are widely used commercial packages. | hadn’t used Miniatvelve years
when | started using it for examples; | found it incrediblysgdo use. The
menu/dialog/spreadsheet interface was very intuitivdadn, | only opened
the manual once, and that was when | was trying to figure out toodo

general contrasts (which | was never able to figure out). $X&riand away
the market leader in statistical software. You can do peattyi every kind of

analysis in SAS, but as a novice | spent many hours with theuadanrying

to get SAS to do any kind of analysis. In summary, many peopksas by

SAS, but | found | mostly swore at SAS. | use S-Plus extengivelesearch;
here I've just used it for a couple of graphics.

| need to acknowledge many people who helped me get this jok.do

First are the students and TA's in the courses where | usduingmary ver-
sions. Many of you made suggestions and pointed out mistakparticular
| thank John Corbett, Alexandre Varbanov, and Jorge de la \G®&gngora.
Many others of you contributed data; your footprints ardtecad throughout
the examples and exercises. Next | have benefited from helisitussions
with my colleagues here in Minnesota, particularly Kit Biragn, Kathryn
Chaloner, Sandy Weisberg, and Frank Martin. | thank Shawr kor in-
troducing me to Hasse diagrams, and | received much helgfigigm from
reviewers, including Larry Ringer (Texas A&M), Morris Soumtard (New
Mexico State), Robert Price (East Tennessee State), An8obaffner (Cal
Poly—San Luis Obispo), Hiroshi Yamauchi (Hawaii—Manoajd &Villiam
Notz (Ohio State). My editor Patrick Farace and others ag¢fffgn were a
great help. Finally, | thank my family and parents, who supgmbme in this
for years (even if my father did say it looked like a foreigndaiage!).

They say you should never let the camel’s nose into the texdadse
once the nose is in, there’s no stopping the rest of the camed. similar
vein, student requests for copies of lecture notes leadittest requests for
typed lecture notes, which lead to student requests for carelete typed
lecture notes, which lead . well, in my case it leads to a textbook on de-
sign and analysis of experiments, which you are reading @er the years
my students have preferred various more primitive inca@onatof this text to
other texts; | hope you find this text worthwhile too.

Gary W. Oehlert






Chapter 1

Introduction

Researchers use experiments to answer questions. Typiesfions might
be:

e Is a drug a safe, effective cure for a disease? This could betat
how AZT affects the progress of AIDS.

e Which combination of protein and carbohydrate sourcesigesvthe
best nutrition for growing lambs?

e How will long-distance telephone usage change if our copudiiers
a different rate structure to our customers?

e Will an ice cream manufactured with a new kind of stabilizerds
palatable as our current ice cream?

e Does short-term incarceration of spouse abusers deteefatisaults?

e Under what conditions should | operate my chemical refingign
this month’s grade of raw material?

This book is meant to help decision makers and researcherigndgood
experiments, analyze them properly, and answer their iquesst

1.1 Why Experiment?

Consider the spousal assault example mentioned abovieloficials need
to know how they can reduce or delay the recurrence of spasgsabllt. They
are investigating three different actions in response twsal assaults. The

Experiments
answer questions
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assailant could be warned, sent to counseling but not bookecharges,
or arrested for assault. Which of these actions works besi® ¢an they
compare the effects of the three actions?

This book deals withcomparative experimentsWe wish to compare
sometreatmentsFor the spousal assault example, the treatments are #ee thr
actions by the police. We compare treatments by using thehtamparing

Treatments, the outcomes. Specifically, we apply the treatmentsxperimental units
experimental and then measure one or maesponsesin our example, individuals who
units, and assault their spouses could be the experimental units henesponse could
responses be the length of time until recurrence of assault. We compasgments by

comparing the responses obtained from the experimentsliarthe different
treatment groups. This could tell us if there are any difiess in responses
between the treatments, what the estimated sizes of thffeeedces are,
which treatment has the greatest estimated delay untitneace, and so on.

An experiment is characterized by the treatments and expatal units tq
be used, the way treatments are assigned to units, and frensss that ane
measured.

Experiments help us answer questions, but there are alsxperimen-
Advantages of tal techniques. What is so special about experiments? Gentiat:
experiments
1. Experiments allow us to set up a direct comparison betweetreat-
ments of interest.

2. We can design experiments to minimize any bias in the cosgpa
3. We can design experiments so that the error in the congpeissmall.

4. Most important, we are in control of experiments, and hgwhat con-
trol allows us to make stronger inferences about the natdifer-
ences that we see in the experiment. Specifically, we may iméde
ences aboutausation

Control versus This last point distinguishes an experiment fromodaservational studyAn

observation observational study also has treatments, units, and resporHowever, in
the observational study we merely observe which units amdninh treatment
groups; we don'’t get to control that assignment.

Example 1.1 Does spanking hurt?

Let's contrast an experiment with an observational studgdieed in Straus,
Sugarman, and Giles-Sims (1997). A large survey of womend ag€o 21
years was begun in 1979; by 1988 these same women had 128geahil
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between the ages of 6 and 9 years. The women and children ntere ji
viewed and tested in 1988 and again in 1990. Two of the itemessored
were the level of antisocial behavior in the children and fileguency of
spanking. Results showed that children who were spanked frequently
in 1988 showed larger increases in antisocial behavior@®1i8an those wh
were spanked less frequently. Does spanking cause aitibetiavior? Per
haps it does, but there are other possible explanationsapgchildren wh
were becoming more troublesome in 1988 may have been sparkedre-
guently, while children who were becoming less troublesomag have bee
spanked less frequently in 1988.

The drawback of observational studies is that the groupity ‘itreat-
ments” is not under the control of the experimenter and itshragism is
usually unknown. Thus observed differences in respondesla treatment
groups could very well be due to these other hidden mechanisitiner than
the treatments themselves.

It is important to say that while experiments have some aidwgas, ob-
servational studies are also useful and can produce imypagsults. For ex-
ample, studies of smoking and human health are observatlmrtahe link
that they have established is one of the most important piielalth issues
today. Similarly, observational studies established ao@ation between
heart valve disease and the diet drug fen-phen that led tovithelrawal
of the drugs fenfluramine and dexfenfluramine from the mai®ennolloy
et al. 1997 and US FDA 1997).

Mosteller and Tukey (1977) list three concepts associatddamusation
and state that two or three are needed to support a caugaimskap:

e Consistency
¢ Responsiveness
e Mechanism.

Consistency means that, all other things being equal, tlaiaceship be-

tween two variables is consistent across populations ectdon and maybe
in amount. Responsiveness means that we can go into a sydtange the
causal variable, and watch the response variable changedangly. Mech-

anism means that we have a step-by-step mechanism leadingchuse to
effect.

In an experiment, we are in control, so we can achieve respmess.
Thus, if we see a consistent difference in observed respoetseeen the
various treatments, we can infer that the treatments cathsedifferences
in response. We don't need to know the mechanism—we can dstrats

Observational
studies are useful
too

Causal
relationships

Experiments can
demonstrate
consistency and
responsiveness
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Ethics constrain
experimentation

Analysis not part
of design, but
consider it during
planning

causation by experiment. (This is not to say that we shouldn’to learn
mechanisms—we should. It's just that we don’'t need mechamdsinfer
causation.)

We should note that there are times when experiments aresasible,
even when the knowledge gained would be extremely valu&loleexample,
we can't perform an experiment proving once and for all thablsing causes
cancer in humans. We can observe that smoking is associ@tedamcer in
humans; we have mechanisms for this and can thus infer ¢ans&ut we
cannot demonstrate responsiveness, since that wouldrewehking some
people smoke, and making others not smoke. It is simply iredth

1.2 Components of an Experiment

An experiment has treatments, experimental units, regmmred a method
to assign treatments to units.

Treatments, units, and assignment method specifgxberimental desigrh

Some authors make a distinction between the selection atinients to be
used, called “treatment design,” and the selection of writsassignment of
treatments, called “experiment design.”

Note that there is no mention of a method for analyzing theltes
Strictly speaking, the analysis is not part of the desigoygh a wise exper-
imenter will consider the analysis when planning an expenim Whereas
the design determines the proper analysis to a great extentill see that
two experiments with similar designs may be analyzed difidy, and two
experiments with different designs may be analyzed sityil®roper analy-
sis depends on the design and the kinds of statistical megdahaptions we
believe are correct and are willing to assume.

Not all experimental designs are created equal. A good éxrpetal
design must

Avoid systematic error

Be precise
Allow estimation of error

Have broad validity.

We consider these in turn.
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Comparative experiments estimate differences in respogisesen treat-
ments. If our experiment has systematic error, then our esisgns will be
biased, no matter how precise our measurements are or how exaeri-
mental units we use. For example, if responses for unitdviegetreatment
one are measured with instrument A, and responses for tegattwo are
measured with instrument B, then we don’t know if any obseéiferences
are due to treatment effects or instrument miscalibrati®andomization, as
will be discussed in Chapter 2, is our main tool to combatesysttic error.

Even without systematic error, there will be random errgharesponses,
and this will lead to random error in the treatment compaiss@&xperiments
are precise when this random error in treatment comparis@mall. Preci-
sion depends on the size of the random errors in the respdaheasimber of
units used, and the experimental design used. Severalezkagtthis book
deal with designs to improve precision.

Experiments must be designed so that we have an estimate sizh
of random error. This permits statistical inference: foample, confidence
intervals or tests of significance. We cannot do inferen¢kawuit an estimate
of error. Sadly, experiments that cannot estimate errotiwo® to be run.

The conclusions we draw from an experiment are applicalilestexper-
imental units we used in the experiment. If the units areallta statistical
sample from some population of units, then the conclusisasaiso valid
for the population. Beyond this, we are extrapolating, draextrapolation
might or might not be successful. For example, suppose weamwo
different drugs for treating attention deficit disorder.rGubjects are pread-
olescent boys from our clinic. We might have a fair case thatresults
would hold for preadolescent boys elsewhere, but even thggttmot be true
if our clinic’s population of subjects is unusual in some walie results are
even less compelling for older boys or for girls. Thus if weskvito have
wide validity—for example, broad age range and both gend#éren our ex-
perimental units should reflect the population about whiehwish to draw
inference.

We need to realize that some compromise will probably be e de-
tween these goals. For example, broadening the scope dityddy using a
variety of experimental units may decrease the precisidghefesponses.

1.3 Terms and Concepts

Let's define some of the important terms and concepts in desfigxper-
iments. We have already seen the terms treatment, expddmenit, and
response, but we define them again here for completeness.

Design to avoid
systematic error

Design to
increase
precision

Design to
estimate error

Design to widen
validity

Compromise
often needed
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Treatments are the different procedures we want to compare. These could
be different kinds or amounts of fertilizer in agronomyjfeliént long-
distance rate structures in marketing, or different terapees in a re-
actor vessel in chemical engineering.

Experimental units are the things to which we apply the treatments. These
could be plots of land receiving fertilizer, groups of custrs receiv-
ing different rate structures, or batches of feedstockgssing at dif-
ferent temperatures.

Responsesare outcomes that we observe after applying a treatment to an
experimental unit. That is, the response is what we measytelge
what happened in the experiment; we often have more thanene r
sponse. Responses for the above examples might be nitrogésne
or biomass of corn plants, profit by customer group, or yield qual-
ity of the product per ton of raw material.

Randomization is the use of a known, understood probabilistic mechanism
for the assignment of treatments to units. Other aspecta efkper-
iment can also be randomized: for example, the order in whitdts
are evaluated for their responses.

Experimental Error is the random variation present in all experimental re-
sults. Different experimental units will give differentsy@onses to the
same treatment, and it is often true that applying the saeanent
over and over again to the same unit will result in differergponses
in different trials. Experimental error does not refer tmdocting the
wrong experiment or dropping test tubes.

Measurement units (or response units) are the actual objects on which the
response is measured. These may differ from the experiinamita.
For example, consider the effect of different fertilizerstbe nitrogen
content of corn plants. Different field plots are the expemtal units,
but the measurement units might be a subset of the corn marttse
field plot, or a sample of leaves, stalks, and roots from the fikot.

Blinding occurs when the evaluators of a response do not know whiat: tre
ment was given to which unit. Blinding helps prevent biaim ¢valu-
ation, even unconscious bias from well-intentioned euaksa Double
blinding occurs when both the evaluators of the responseren¢hu-
man subject) experimental units do not know the assignmiemeat-
ments to units. Blinding the subjects can also prevent liasause
subject responses can change when subjects have expextaticer-
tain treatments.
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Control has several different uses in design. First, an experinsecan-

trolled because we as experimenters assign treatments to expgimen
units. Otherwise, we would have an observational study.

Second, aontrol treatment is a “standard” treatment that is used as a

baseline or basis of comparison for the other treatmentis &dntrol
treatment might be the treatment in common use, or it migla bell
treatment (no treatment at all). For example, a study of reewigdlling
drugs could use a standard pain killer as a control treatreatstudy
on the efficacy of fertilizer could give some fields no fergl at all.
This would control for average soil fertility or weather etitions.

Placebo is a null treatment that is used when the act of applying artreat—
any treatment—has an effect. Placebos are often used wittamu
subjects, because people often respond to any treatmemxdmple,
reduction in headache pain when given a sugar pill. Blindsrigmpor-
tant when placebos are used with human subjects. Placebadsar
useful for nonhuman subjects. The apparatus for sprayirejcaviiith
a pesticide may compact the soil. Thus we drive the appaoairshe
field, without actually spraying, as a placebo treatment.

Factors combine to form treatments. For example, the baking treat o
a cake involves a given time at a given temperature. Thenteatis
the combination of time and temperature, but we can varyithe and
temperature separately. Thus we speak of a time factor agwhpet-
ature factor. Individual settings for each factor are chlévelsof the
factor.

Confounding occurs when the effect of one factor or treatment cannot be

distinguished from that of another factor or treatment. it factors
or treatments are said to be confounded. Except in very apeici

cumstances, confounding should be avoided. Consideriptaobrn
variety A in Minnesota and corn variety B in lowa. In this exipgent,

we cannot distinguish location effects from variety eféeethe variety
factor and the location factor are confounded.

1.4 Outline

Here is a road map for this book, so that you can see how it ianizgd.
The remainder of this chapter gives more detail on experiah@mits and
responses. Chapter 2 elaborates on the important concephdbmiza-
tion. Chapters 3 through 7 introduce the basic experimet#sign, called



Introduction

Experimental and
measurement
units
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could get any
treatment

the Completely Randomized Design (CRD), and describe #@#yais in con-

siderable detail. Chapters 8 through 10 add factorial rimeat structure to
the CRD, and Chapters 11 and 12 add random effects to the CRbid€a

is that we learn these different treatment structures aatys@es in the sim-
plest design setting, the CRD. These structures and asdagainiques can
then be used almost without change in the more complicatsidjte that

follow.

We begin learning new experimental designs in Chapter 13;hwin-
troduces complete block designs. Chapter 14 introducesrgkimcomplete
blocks, and Chapters 15 and 16 deal with incomplete blockdatments
with factorial structure. Chapter 17 introduces covasat€hapters 18 and
19 deal with special treatment structures, including fomal factorials and
response surfaces. Finally, Chapter 20 provides a frantefeoplanning an
experiment.

1.5 More About Experimental Units

Experimentation is so diverse that there are relativelydeweral statements
that can be made about experimental units. A common soudiéiotilty is
the distinction between experimental units and measureumgts. Consider
an educational study, where six classrooms of 25 first gsagach are as-
signed at random to two different reading programs, withhalfirst graders
evaluated via a common reading exam at the end of the schaolAme there
six experimental units (the classrooms) or 150 (the stigjent

One way to determine the experimental unit is via the comatd® that
an experimental unit should be able to receive any treatriénis if students
were the experimental units, we could see more than onergadbgram in
each classroom. However, the nature of the experiment nitailear that all
the students in the classroom receive the same programe stessroom as
a whole is the experimental unit. We don’t measure how a ass reads,
though; we measure how students read. Thus students areetimirement
units for this experiment.

There are many situations where a treatment is applied topgod ob-
jects, some of which are later measured for a response. Bone,

e Fertilizer is applied to a plot of land containing corn prdome of
which will be harvested and measured. The plot is the exeria
unit and the plants are the measurement units.

¢ Ingots of steel are given different heat treatments, anth @ayot is
punched in four locations to measure its hardness. Ingettharex-
perimental units and locations on the ingot are measureumitst
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¢ Mice are caged together, with different cages receivinight nutri-
tional supplements. The cage is the experimental unit, hadrtice
are the measurement units.

Treating measurement units as experimental usually leadsédropti-
mistic analysis more—we will reject null hypotheses mortefthan we
should, and our confidence intervals will be too short antivait have their
claimed coverage rates. The usual way around this is tordetera single
response for each experimental unit. This single respanggically the
average or total of the responses for the measurement uitfiis \&n exper-
imental unit, but the median, maximum, minimum, variances@me other
summary statistic could also be appropriate depending emgtals of the
experiment.

A second issue with units is determining their “size” or “ghd For
agricultural experiments, a unit is generally a plot of lagal size and shape
have an obvious meaning. For an animal feeding study, siakl de the
number of animals per cage. For an ice cream formulatiorysgize could
be the number of liters in a batch of ice cream. For a computerark
configuration study, size could be the length of time the pétvis observed
under load conditions.

Not all measurement units in an experimental unit will be iegjent.
For the ice cream, samples taken near the edge of a cartdh rfuay have
more ice crystals than samples taken near the center. Tmayitnake sense
to plan the units so that the ratio of edge to center is simdahat in the
product’s intended packaging. Similarly, in agricultutaéls, guard rows
are often planted to reduce the effect of being on the edgepidfta You
don’t want to construct plots that are all edge, and thus wdrd row. For
experiments that occur over time, such as the computer nestady, there
may be a transient period at the beginning before the netmoxles to steady
state. You don’t want units so small that all you measureaissient.

One common situation is that there is a fixed resource avajlabch as
a fixed area, a fixed amount of time, or a fixed number of measemenm
This fixed resource needs to be divided into units (and perheasurement
units). How should the split be made? In general, more ewparial units
with fewer measurement units per experimental unit work&ebésee, for
example, Fairfield Smith 1938). However, smaller experitaleuanits are
inclined to have greater edge effect problems than arerangis, so this
recommendation needs to be moderated by consideratior aftal units.

A third important issue is that the response of a given uratghnot de-
pend on or be influenced by the treatments given other uniteeaesponses
of other units. This is usually ensured through some kindeplasation of
the units, either in space or time. For example, a forestpeament would

Use a summary
of the
measurement unit
responses as
experimental unit
response

Size of units

Edge may be
different than
center

More
experimental
units, fewer
measurement
units usually
better

Independence of
units
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provide separation between units, so that a fast-growe®dioes not shade
trees in adjacent units and thus make them grow more slowtyaalrug trial
giving the same patient different drugs in sequence woullide a washout
period between treatments, so that a drug would be completglof a pa-
tient's system before the next drug is administered.

When the response of a unit is influenced by the treatmenhdasether
units, we get confounding between the treatments, becaassmnnot esti-
mate treatment response differences unambiguously. Wigeresponse of
a unit is influenced by the response of another unit, we getoa gstimate
of the precision of our experiment. In particular, we uspalNerestimate
the precision. Failure to achieve this independence caousty affect the
quality of any inferences we might make.

A final issue with units is determining how many units are gl We
consider this in detail in Chapter 7.

1.6 More About Responses

We have been discussing “the” response, but it is a rare Empetthat mea-
sures only a single response. Experiments often addresesasepestions,
and we may need a different response for each question. Respeuch as
these are often callgotimary responses, since they measure the quantity of
primary interest for a unit.

We cannot always measure the primary response. For examgleg
trial might be used to find drugs that increase life expegtafter initial
heart attack: thus the primary response is years of lifer &féart attack.
This response is not likely to be used, however, becauseyitbrealecades
before the patients in the study die, and thus decades bt#ferstudy is
completed. For this reason, experimenterssigeogateresponses. (It isn't
only impatience; it becomes more and more difficult to keepantact with
subjects as time goes on.)

Surrogate responses are responses that are supposed tatbe t@—
and predictive for—the primary response. For example, wghinineasure
the fraction of patients still alive after five years, ratltgan wait for their
actual lifespans. Or we might have an instrumental readimgeacrystals in
ice cream, rather than use a human panel and get their Subjassessment
of product graininess.

Surrogate responses are common, but not without risks.rticpkar, we
may find that the surrogate response turns out not to be a geoditfor of
the primary response.
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Cardiac arrhythmias Example 1.2

Acute cardiac arrhythmias can cause death. Encainide acahftie acetat
are two drugs that were known to suppress acute cardiactamigs an

stabilize the heartbeat. Chronic arrhythmias are alsocéetead with sud
den death, so perhaps these drugs could also work for n@neasés. Th
Cardiac Arrhythmia Suppression Trial (CAST) tested these drugs an

a placebo (CAST Investigators 1989). The real responsetefeist is sur
vival, but regularity of the heartbeat was used as a sureagsponse. Bot
of these drugs were shown to regularize the heartbeat llettiethe placeb
did. Unfortunately, the real response of interest (sutyivalicated that the
regularized pulse was too often 0. These drugs did improgesthrogate
response, but they were actually worse than placebo forthwapy responsé
of survival.

By the way, the investigators were originally criticized facluding a
placebo in this trial. After all, the drugs wekaownto work. It was only the
placebo that allowed them to discover that these drugs dhmmilbe used fol
chronic arrhythmias.

In addition to responses that relate directly to the quastiof interest,
some experiments colleptedictiveresponses. We use predictive responses
to model theprimary response. The modeling is done for twsars. First, Predictive
such modeling can be used to increase the precision of theriengnt and responses
the comparisons of interest. In this case, we call the ptiedicesponses
covariates(see Chapter 17). Second, the predictive responses mays$elp
understand the mechanism by which the treatment is affgthie primary
response. Note, however, that since we observed the pvediesponses
rather than setting them experimentally, the mechanistidets built using
predictive responses are observational.

A final class of responses @udit responses. We use audit responses to
ensure that treatments were applied as intended and to tihatcknviron- Audit responses
mental conditions have not changed. Thus in a study lookingteogen
fertilizers, we might measure soil nitrogen as a check opg@rdreatment
application, and we might monitor soil moisture to check lo@ ainiformity
of our irrigation system.
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Chapter 2

Randomization and Design

We characterize an experiment by the treatments and exgpetafrunits to be

used, the way we assign the treatments to units, and thenmespave mea-

sure. An experiment isandomizedf the method for assigning treatments Randomization to
to units involves a known, well-understood probabilistbeme. The prob-  assign treatment
abilistic scheme is called emndomization As we will see, an experiment to units
may have several randomized features in addition to thgm®s&nt of treat-

ments to units. Randomization is one of the most importaerehts of a

well-designed experiment.

Let's emphasize first the distinction between a random sehend a  Haphazard is not
“haphazard” scheme. Consider the following potential na@itms for as- randomized
signing treatments to experimental units. In all cases aspphat we have
four treatments that need to be assigned to 16 units.

e We use sixteen identical slips of paper, four marked withodyfwith
B, and so onto D. We put the slips of paper into a basket andheixt
thoroughly. For each unit, we draw a slip of paper from thekbaand
use the treatment marked on the slip.

e Treatment A is assigned to the first four units we happen to@nter,
treatment B to the next four units, and so on.

e Aseach unitis encountered, we assign treatments A, B, (Ddiased
on whether the “seconds” reading on the clock is between 1&n#l6
and 30, 31 and 45, or 46 and 60.

The first method clearly uses a precisely-defined prob#biisethod. We
understand how this method makes it assignments, and wesedhis method
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Two reasons for
randomizing

to obtain statistically equivalent randomizations in iegions of the exper-
iment.

The second two methods might be described as “haphazaey’atie not
predictable and deterministic, but they do not use a rangation. It is diffi-
cult to model and understand the mechanism that is being éssignment
here depends on the order in which units are encounteree)dapsed time
between encountering units, how the treatments were ldkeld&, C, and
D, and potentially other factors. | might not be able to regue your experi-
ment, simply because | tend to encounter units in a diffevedér, or | tend
to work a little more slowly. The second two methods are noticanization.

Haphazard is not randomized. ‘

Introducing more randomness into an experiment may seenaliger-
verse thing to do. After all, we are always battling agaimstdom exper-
imental error. However, random assignment of treatmentsiits has two
useful consequences:

1. Randomization protects against confounding.
2. Randomization can form the basis for inference.

Randomization is rarely used for inference in practicenprily due to com-
putational difficulties. Furthermore, some statisticiéBayesian statisticians
in particular) disagree about the usefulness of randoinizats a basis for
inferencet However, the success of randomization in the protectioinaga
confounding is so overwhelming that randomization is almasversally
recommended.

2.1 Randomization Against Confounding

We defined confounding as occurring when the effect of onfaw treat-
ment cannot be distinguished from that of another factoreatinent. How
does randomization help prevent confounding? Let’s statboking at the
trouble that can happen when we don’t randomize.

Consider a new drug treatment for coronary artery diseasewish to
compare this drug treatment with bypass surgery, which s$land inva-
sive. We have 100 patients in our pool of volunteers that lzgreed via

Istatisticians don't always agree on philosophy or methmgipl This is the first of several
ongoing little debates that we will encounter.
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informed consent to participate in our study; they need tadstgned to the
two treatments. We then measure five-year survival as amsspo

What sort of trouble can happen if we fail to randomize? Bgmasgery
iS @ major operation, and patients with severe disease mapenstrong
enough to survive the operation. It might thus be temptinggsign the
stronger patients to surgery and the weaker patients tortlgetderapy. This
confounds strength of the patient with treatment diffeeencThe drug ther-
apy would likely have a lower survival rate because it isiggtthe weakest
patients, even if the drug therapy is every bit as good asutyesy.

Alternatively, perhaps only small quantities of the drug available early
in the experiment, so that we assign more of the early patiensurgery,
and more of the later patients to drug therapy. There will peohlem if the
early patients are somehow different from the later padiefror example, the
earlier patients might be from your own practice, and therlpatients might
be recruited from other doctors and hospitals. The patiemtsd differ by
age, socioeconomic status, and other factors that are ktwtm associated
with survival.

There are several potential randomization schemes foreg#tpsriment;
here are two:

e Toss a coin for every patient; heads—the patient gets thg, thils—
the patient gets surgery.

e Make up a basket with 50 red balls and 50 white balls well mixed

together. Each patient gets a randomly drawn ball; red kedid to
surgery, white balls lead to drug therapy.

Note that for coin tossing the numbers of patients in the teattnent groups
are random, while the numbers are fixed for the colored baése.

Here is how randomization has helped us. No matter whiclufeatof
the population of experimental units are associated withresponse, our
randomizations put approximately half the patients witasth features in
each treatment group. Approximately half the men get the;dapproxi-
mately half the older patients get the drug; approximately the stronger
patients get the drug; and so on. These are not exactly 50I&§, Hut the
deviation from an even split follows rules of probabilityattwe can use when
making inference about the treatments.

This example is, of course, an oversimplification. A realaripental
design would include considerations for age, gender, hesdtus, and so
on. The beauty of randomization is that it helps prevent@ondling, even
for factors that we do not know are important.

Failure to
randomize can
cause trouble

Randomization
balances the
population on
average
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Different
randomizations
are different
designs

Here is another example of randomization. A company is exalg two
different word processing packages for use by its cleritaf.sPart of the
evaluation is how quickly a test document can be entere@ctiyrusing the
two programs. We have 20 test secretaries, and each sgondtanter the
document twice, using each program once.

As expected, there are potential pitfalls in nonrandomiesigns. Sup-
pose that all secretaries did the evaluation in the ordersAdind B second.
Does the second program have an advantage because theuseaiétbe
familiar with the document and thus enter it faster? Or majlegesecond
program will be at a disadvantage because the secretanpsitired and
thus slower.

Two randomized designs that could be considered are:

1. For each secretary, toss a coin: the secretary will uspritgrams in
the orders AB and BA according to whether the coin is a headait,a
respectively.

2. Choose 10 secretaries at random for the AB order, the e¢¢hg BA
order.

Both these designs are randomized and will help guard ageardounding,
but the designs are slightly different and we will see thatytshould be
analyzed differently.

Cochran and Cox (1957) draw the following analogy:

Randomization is somewhat analogous to insurance, in that i
is a precaution against disturbances that may or may notroccu
and that may or may not be serious if they do occur. It is gen-
erally advisable to take the trouble to randomize even whisn i
not expected that there will be any serious bias from faitore
randomize. The experimenter is thus protected againstuahus
events that upset his expectations.

Randomization generally costs little in time and troublet ib can save us
from disaster.

2.2 Randomizing Other Things

We have taken a very simplistic view of experiments; “assigatments to
units and then measure responses” hides a multitude of dtsteps and
choices that will need to be made. Many of these additioregisstan be
randomized, as they could also lead to confounding. For pl&m
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e If the experimental units are not used simultaneously, ywurandom-
ize the order in which they are used.

e If the experimental units are not used at the same location,can
randomize the locations at which they are used.

¢ If you use more than one measuring instrument for determginga
sponse, you can randomize which units are measured on wisti-
ments.

When we anticipate that one of these might cause a change ies$ponse,
we can often design that into the experiment (for exampleidyg blocking;
see Chapter 13). Thus I try to design for the known problems randomize
everything else.

One tale of woe

| once evaluated data from a study that was examining cadrananothe

metal concentrations in soils around a commercial inctoerdhe issue wa
whether the concentrations were higher in soils near thiaénator. The

had eight sites selected (matched for soil type) aroundrtbi@érator, and
took ten random soil samples at each site.

The samples were all sent to a commercial lab for analysis.afalysig
was long and expensive, so they could only do about ten saraplay. Yes
indeed, there was almost a perfect match of sites and asalgygis. Sev
eral elements, including cadmium, were only present iretc@ncentrationg
concentrations that were so low that instrument calibnatiehich was dong
daily, was crucial. When the data came back from the lab, vieahaery
good idea of the variability of their calibrations, and eg&dly no idea of
how the sites differed.

The lab was informed that all the trace analyses, includisgn@um,
would be redone, all on one day, in a random order that we tpeécFortu-
nately | was not a party to the question of who picked up the@Ibtab for

reanalysis.

2.3 Performing a Randomization

Once we decide to use randomization, there is still the pralbf actually
doing it. Randomizations usually consist of choosing a camarder for
a set of objects (for example, doing analyses in random paterhoosing
random subsets of a set of objects (for example, choosingsesaf units for
treatment A). Thus we need methods for putting objects iatolom orders

Example 2.1

Random orders
and random
subsets
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Physical
randomization

Physical random
order

Physical random
subsets from
random orders

Numerical
randomization

Numerical
random order

and choosing random subsets. When the sample sizes forltbetsare fixed
and known (as they usually are), we will be able to chooseaansubsets
by first choosing random orders.

Randomization methods can be either physical or numerieaysical
randomization is achieved via an actual physical act thaelgved to pro-
duce random results with known properties. Examples of ipai/eandom-
ization are coin tosses, card draws from shuffled deckss ofla die, and
tickets in a hat. | say “believed to produce random resultk Winown prop-
erties” because cards can be poorly shuffled, tickets indhedn be poorly
mixed, and skilled magicians can toss coins that come upsheasty time.
Large scale embarrassments due to faulty physical ran@iorizinclude
poor mixing of Selective Service draft induction numbersmiy World War
Il (see Mosteller, Rourke, and Thomas 1970). It is importarmake sure
that any physical randomization that you use is done well.

Physical generation of random orders is most easily done egtds or
tickets in a hat. We must ordé¥ objects. We takeV cards or tickets,
numbered throughN, and mix them well. The first object is then given the
number of the first card or ticket drawn, and so on. The obpet¢hen sorted
so that their assigned numbers are in increasing order. §uivkl mixing, all
orders of the objects are equally likely.

Once we have a random order, random subsets are easy. Supabse
the NV objects are to be broken inpsubsets with sizes,, ..., ng, with

ni +---+ny = N. For example, eight students are to be grouped into one

group of four and two groups of two. First arrange the objéttandom
order. Once the objects are in random order, assign thenfirsbjects to

group one, the next, objects to group two, and so on. If our eight students

were randomly ordered 3, 1, 6, 8, 5, 7, 2, 4, then our threepggawould be
(3,1,6,8), (5, 7),and (2, 4).

Numerical randomization uses numbers taken from a tableaofdom”
numbers or generated by a “random” number generator in ctanpoftware.
For example, Appendix Table D.1 contains random digits. &4 the table
or a generator to produce a random ordering for &upbjects, and then
proceed as for physical randomization if we need randometabs

We get the random order by obtaining a random number for ebjetin
and then sorting the objects so that the random numbers anereasing
order. Start arbitrarily in the table and read numbers ofrtpired size
sequentially from the table. If any number is a repeat of atieeaaumber,
replace the repeat by the next number in the list so that yowgdifferent
numbers. For example, suppose that we need 5 numbers artldgiahdom
numbers in the table are (4, 3, 7, 4, 6, 7, 2, 1,.9). Then our 5 selected
numbers would be (4, 3, 7, 6, 2), the duplicates of 4 and 7 bdiswarded.
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Now arrange the objects so that their selected numbers aseénding order.
For the sample numbers, the objects, A through E would belezed E, B,
A, D, C. Obviously, you need numbers with more digitshNaglets larger.

Getting rid of duplicates makes this procedure a littlededi You will
have fewer duplicates if you use numbers with more digits the abso-
lutely necessary. For example, for 9 objects, we could use dwthree-digit
numbers, and for 30 objects we could use three- or four-digihbers. The
probabilities of 9 random one-, two-, and three-digit numsheaving no du-
plicates are .004, .690, and .965; the probabilities of 8doan two-, three-,
and four-digit numbers having no duplicates are .008, .6Ad,.957 respec-
tively.

Many computer software packages (and even calculatorspaiuce
“random” numbers. Some produce random integers, otherdbersrbe-
tween 0 and 1. In either case, you use these numbers as yod maumbers
formed by a sequence of digits from a random number table p&spthat
we needed to put 6 units into random order, and that our ranuomber
generator produced the following numbers: .52983, .372#83,39, .48011,
.69382, .61181. Associate the 6 units with these random etsniIhe sec-
ond unit has the smallest random number, so the second un#tisn the
ordering; the fourth unit has the next smallest random nuinsiodt is second
in the ordering; and so on. Thus the random order of the unis D, A, F,
E,C.

Longer random
numbers have
fewer duplicates

The wordrandomis quoted above because these numbers are not truly

random. The numbers in the table are the same every time polittehey
don’t change unpredictably when you open the book. The nwreduced
by the software package are from an algorithm; if you knowalgmrithm
you can predict the numbers perfectly. They are technigafudorandom
numbers; that is, numbers that possess many of the atsibitandom num-
bers so that they appear to be random and can usually be ugpdatan of
random numbers.

2.4 Randomization for Inference

Nearly all the analysis that we will do in this book is basedtlo® normal
distribution and linear models and will usdests, F-tests, and the like. As
we will see in great detail later, these procedures makengsthons such as
“The responses in treatment group A are independent fromtaininit and
follow a normal distribution with meap and variance2.” Nowhere in the
design of our experiment did we do anything to make this dayaldid was
randomize treatments to units and observe responses.

Pseudorandom
numbers
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Randomization
inference makes
few assumptions

Table 2.1: Auxiliary manual times runstitching a collar for 30
workers under standard (S) and ergonomic (E) conditions.

# S E # S E # S B
1 490 3.87 11 470 4.25 21 5.06 5.54
2 450 454 12 477 5.57 22 444 552
3 4.86 4.60 13 4.75 4.36 23 4.46 5.03
4 557 5.27 14 4.60 4.35 24 543 4.33
5 4.62 5.59 15 5.06 4.88 25 4.83 4.56
6 4.65 461 16 551 4.56 26 5.05 5.50
7 462 5.19 17 4.66 4.84 27 578 5.16
8 6.39 4.64 18 4.95 4.24 28 5.10 4.89
9 436 4.35 19 475 4.33 29 4.68 4.89
10 4.91 4.49 20 4.67 4.24 30 6.06 5.P4

In fact, randomization itself can be used as a basis for énfez. The
advantage of this randomization approach is that it relidg on the ran-
domization that we performed. It does not need independarmenality,
and the other assumptions that go with linear models. Treddantage of
the randomization approach is that it can be difficult to iempént, even in
relatively small problems, though computers make it mudieza Further-
more, the inference that randomization provides is oftatistinguishable
from that of standard techniques such as ANOVA.

Now that computers are powerful and common, randomizatifarénce
procedures can be done with relatively little pain. Thesagof randomiza-
tion inference are best shown by example. Below we introdlneédeas of
randomization inference using two extended examples, omesponding to
a pairedi-test, and one corresponding to a two sanigiest.

2.4.1 The pairedt-test

Bezjak and Knez (1995) provide data on the length of timekésagarment
workers to runstitch a collar on a man'’s shirt, using a steshdarkplace and
a more ergonomic workplace. Table 2.1 gives the “auxiliagnomal time”
per collar in seconds for 30 workers using both systems.

One question of interest is whether the times are the sameenage
for the two workplaces. Formally, we test the null hypotkdhkat the aver-
age runstitching time for the standard workplace is the sasrthe average
runstitching time for the ergonomic workplace.
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Table 2.2: Differences in runstitching times (standardergonomic).

103 -04 26 .30 -97 .04 -57 175 .01 .42
45 -80 39 26 .18 95 -18 .71 42 43
-48 -1.08 -57 110 .27 -45 62 21 -21 .82

A pairedt-test is the standard procedure for testing this null hygsith
We use a paired-test because each worker was measured twice, once forpaired t-test for
each workplace, so the observations on the two workplacesependent. paired data
Fast workers are probably fast for both workplaces, and slorkers are
slow for both. Thus what we do is compute the difference @ath— er-
gonomic) for each worker, and test the null hypothesis thataverage of
these differences is zero using a one samyest on the differences.

Table 2.2 gives the differences between standard and emgjoriones.
Recall the setup for a one samplest. Letd,,ds,...,d, be then differ-
ences in the sample. We assume that these differences apeimient sam-
ples from a normal distribution with meanand variance 2, both unknown.
Our null hypothesis is that the meanequals prespecified valye = 0
(Hp : 1 = po = 0), and our alternative i&; : u > 0 because we expect the
workers to be faster in the ergonomic workplace.

The formula for a one sampletest is

_ d — po
s/yn

whered is the mean of the data (here the differendgsis, . . ., d,,), n is the The paired t-test
sample size, anslis the sample standard deviation (of the differences)

t

If our null hypothesis is correct and our assumptions are, tthen thet-
statistic follows &-distribution withn — 1 degrees of freedom.

Thep-value for a test is the probability, assuming that the nytidthesis
is true, of observing a test statistic as extreme or moremdrthan the one The p-value
we did observe. “Extreme” means away from the the null hygsithtowards
the alternative hypothesis. Our alternative here is thattthe average is
larger than the null hypothesis value, so larger valueseftdit statistic are
extreme. Thus thg-value is the area under thecurve withn — 1 degrees of
freedom from the observedvalue to the right. (If the alternative had been
uw < po, then thep-value is the area under the curve to the left of our test
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Randomization
null hypothesis

Differences have
random signs
under
randomization
null

Table 2.3: Pairedt-tests results for runstitching times (standard —
ergonomic) for the last 10 and all 30 workers

n df d s t P
Last 10 10 9 .023 .695 .10 .459
All 30 30 29 75 .645 1.49 .074

statistic. For a two sided alternative, thevalue is the area under the curve
at a distance from 0 as great or greater than our test statisti

To illustrate thet-test, let's use the data for the last 10 workers and all

30 workers. Table 2.3 shows the results. Looking at the Estorkers,
the p-value is .46, meaning that we would observiedatistic this larger or
larger in 46% of all tests when the null hypothesis is trueudthere is little
evidence against the null here. When all 30 workers are densil, thep-
value is .074; this is mild evidence against the null hypsiheThe fact that
these two differ probably indicates that the workers ardiatetd in random
order. In fact, Figure 2.1 shows box-plots for the differesiby groups of ten
workers; the lower numbered differences tend to be greater.

Now consider a randomization-based analysis. The randdioiznull
hypothesis is that the two workplaces are completely etprivand merely
act to label the responses that we observed. For exampléirshevorker
had responses of 4.90 and 3.87, which we have labeled asastiaad er-
gonomic. Under the randomization null, the responses wbald.90 and
3.87 no matter how the random assignment of treatmentsdwuoe The
only thing that could change is which of the two is labeledtasdard, and
which as ergonomic. Thus, under the randomization null thygsis, we
could, with equal probability, have observed 3.87 for staddand 4.90 for
ergonomic.

What does this mean in terms of the differences? We obserdétea
ence of 1.03 for worker 1. Under the randomization null, waldqust as
easily have observed the difference -1.03, and similamafiothe other dif-
ferences. Thus in the randomization analogue to a paitest, the absolute
values of the differences are taken to be fixed, and the sifttsediffer-
ences are random, with each sign independent of the otheésaaing equal
probability of positive and negative.

To construct a randomization test, we choose a descriptatestic for
the data and then get the distribution of that statistic utfteerandomization
null hypothesis. The randomizatigrvalue is the probability (under this
randomization distribution) of getting a descriptive it as extreme or
more extreme than the one we observed.
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Figure 2.1: Box-plots of differences in runstitching times by
groups of 10 workers, using MacAnova. Stars and diamonds
indicate potential outlier points.

For this problem, we take the sum of the differences as ouwriftise
statistic. (The average would lead to exactly the samalues, and we could
also form tests using the median or other measures of cerigurt with
the last 10 workers. The sum of the last 10 observed differeic.23. To
get the randomization distribution, we have to get the surrafiopossible
combinations of signs for the differences. There are twcsibdgies for
each difference, and 10 differences, so ther@Hte= 1024 different equally
likely values for the sum in the randomization distributidtle must look at
all of them to get the randomizatignvalue.

Figure 2.2 shows a histogram of the randomization distidoutor the
last 10 workers. The observed value of .23 is clearly in th@ereof this
distribution, so we expect a largevalue. In fact, 465 of the 1024 values are
.23 or larger, so the randomizatiprvalue is 465/1024 = .454, very close to
thet-testp-value.

We only wanted to do a test on a mean of 10 numbers, and we had to
compute 1024 different sums of 10 numbers; you can see osenaghy
randomization tests have not had a major following. For sdata sets, you
can compute the randomizatiprvalue by hand fairly simply. Consider the
last 10 differences in Table 2.2 (reading across rows, rditia@ columns).

Randomization
statistic and
distribution

Randomization
p-value
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Subsample the
randomization
distribution
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Figure 2.2: Histogram of randomization distribution of the sum
of the last 10 worker differences for runstitching, withtieal
line added at the observed sum.

These differences are
62 175 .71 .21 .01 .42 -21 .42 .43 .82

Only one of these values is negative (-.21), and seven ofdkéiye differ-
ences have absolute value greater than .21. Any changesef seeen values
can only make the sum less, so we don’t have to consider ahnguigeir
signs, only the signs of .21, .01, and -.21. This is a much lempioblem,
and it is fairly easy to work out that four of the 8 possiblensiggrangements
for testing three differences lead to sums as large or ldhger the observed
sum. Thus the randomizatignavalue is4,/1024 = .004, similar to the .007
p-value we would get if we used thetest.

Looking at the entire data set, we ha&# = 1,073,741, 824 different
sets of signs. That is too many to do comfortably, even on gocoen. What
is done instead is to have the computer choose a random s&mpighis
complete distribution by choosing random sets of signs, thed use this
sample for computing randomizatigrvalues as if it were the complete dis-
tribution. For a reasonably large sample, say 10,000, tipeoxjpmation is
usually good enough. | took a random sample of size 10,00Qand p-
value .069, reasonably close to théestp-value. Two additional samples
of 10,000 gavey-values of .073 and .068; the binomial distribution suggest
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Table 2.4: Log whole plant phosphorus
(In pg/plant) 15 and 28 days after first harvest.

15 Days 28 Days
43 46 48 5453 57 6.0 6.3

that these approximagevalues have a standard deviation of about

\/p % (1—p)/10000 ~ /.07 x .93/10000 = .0026 .

2.4.2 Two-samplet-test

Figure 2 of Hunt (1973) provides data from an experiment iloglat the
absorption of phosphorus Rumex acetosalable 2.4 is taken from Figure
2 of Hunt and gives the log phosphorus content of 8 whole pjahtach at
15 and 28 days after first harvest. These are 8 plants randdimdied into
two groups of 4, with each group getting a different treatmé&@me natural
question is whether the average phosphorus content is the aathe two
sampling times. Formally, we test the null hypothesis thatttvo sampling
times have the same average.

A two-samplet-test is the standard method for addressing this question.
Let 411, - .., y14 be the responses from the first sample, anddef. .., y24  Two-sample t-test
be the response from the second sample. The usual assumfatican two-
samplet-test are that the data, .. ., y14 are a sample from a normal dis-
tribution with meany; and variancer?, the datays1, . . ., y24 are a sample
from a normal distribution with meam, and variance2, and the two sam-
ples are independent. Note that while the means may difiervariances
are assumed to be the same. The null hypothedi)is 11 = po and our
alternative isH; : u; < pe (presumably growing plants will accumulate
phosphorus).

The two-sample-statistic is

yQo - ylo

spy/1/n1 + 1/ny

wherey,, andy,, are the means of the first and second samplesndns
are the sample sizes, alsﬁalis the pooled estimate of variance defined by

t =

ny+no — 2

. — \/Z?:H(yu — T1e)? + 22121 (Y20 — Tne)?
p = )
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Randomization
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Randomization
statistic and
distribution

Randomization
p-value

If our null hypothesis is correct and our assumptions are, tthen thet-
statistic follows at-distribution withn, + no — 2 degrees of freedom. The
p-value for our one-sided alternative is the area undet-ttistribution curve
with n; + ny — 2 degrees of freedom that is to the right of our observed
t-statistic.

For these datg;, = 4.775, ¥, = 5.825, s, = .446, andn; = ny = 4.
Thet-statistic is then

,_ 5825475
446.\/1/4+ 1/4

and thep-value is .008, the area undet-aurve with 6 degrees of freedom to
the right of 3.33. This is strong evidence against the nyfidtlgesis, and we
would probably conclude that the null is false.

Now consider a randomization analysis. The randomizatidhhypoth-
esis is that growing time treatments are completely egeitand serve only
as labels. In particular, the responses we observed for thet8 would be
the same no matter which treatments had been applied, arstibsgt of four
units is equally likely to be the 15-day treatment group. &ample, under
the randomization null wth the 15-day treatment, the respsi4.3, 4.6, 4.8,
5.4), (4.3,4.6,5.3,5.7),and (5.4, 5.7, 6.0, 6.3) are albdly likely.

To construct a randomization test, we choose a descriptatestic for
the data and then get the distribution of that statistic uttfteerandomization
null hypothesis. The randomizatigrvalue is the probability (under this
randomization distribution) of getting a descriptive st as extreme or
more extreme than the one we observed.

For this problem, we take the average response at 28 days thiaaver-
age response at 15 days as our statistic. The observed V¥ahie statistic is
1.05. There argC, = 70 different ways that the 8 plants can be split between
the two treatments. Only two of those 70 ways give a diffeespicaverages
as large as or larger than the one we observed. Thus the réatam p-
value is 2/70 = .029. Thig-value is a bit bigger than that computed from
the t-test, but both give evidence against the null hypothesiste khat the
smallest possible randomizatiprvalue for this experiment is 1/70 = .014.

= 3.33,

2.4.3 Randomization inference and standard inference

We have seen a couple of examples wherepvalues for randomization
tests were very close to those ®fests, and a couple where thevalues
differed somewhat. Generally speaking, randomizapimalues are close to
standardp-values. The two tend to be very close when the sample size is
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large and the assumptions of the standard methods are metmiBd sample
sizes, randomization inference is coarser, in the sensthitra are relatively
few obtainabley-values.

Randomizatiom-values are usually close to normal thepryalues.

We will only mention randomization testing in passing in teenainder
of this book. Normal theory methods such as ANOVA drdsts are much
easier to implement and generalize; furthermore, we gengisdly the same
inference as the randomization tests, provided we take s@mgeto ensure
that the assumptions made by the standard procedures araNaethould
consider randomization methods when the assumptions ofaidineory can-
not be met.

2.5 Further Reading and Extensions

Randomization tests, sometimes called permutation testse introduced
by Fisher (1935) and further developed by Pitman (1937, 1888 others.
Some of the theory behind these tests can be found in Kenelip®55) and
Lehmann (1959). Fisher’s book is undoubtedly a classic haditanddaddy
of all modern books on the design of experiments. It is, hasedifficult
for mere mortals to comprehend and has been debated angshscsince
it appeared (see, for example, Kempthorne 1966). WelchQjlpfesents a
fairly general method for constructing randomizationdest

The randomization distribution for our test statistic isatete, so there
is a nonzero lump of probability on the observed value. Westeomputed
thep-value by including all of this probability at the observeadue as being
in the tail area (as extreme or more extreme than that we wider One

potential variation on the-value is to split the probability at the observed

value in half, putting only half in the tail. This can somegisnmprove the
agreement between randomization and standard methods.

While randomization is traditional in experimental desagrd its use is
generally prescribed, it is only fair to point out that thésean alternative
model for statistical inference in which randomization & necessaryor
valid experimental design, and under which randomizatioaesdnot form
the basis for inference. This is the Bayesian model of siedisinference.
The drawback is that the Bayesian analysis must model athibeellaneous
factors which randomization is used to avoid.
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The key assumption in many Bayesian analyses is the assamgitx-
changeability which is like the assumption of independence in a classical
analysis. Many Bayesians will concede that randomizationassist in mak-
ing exchangeability a reasonable approximation to realitys, some would
do randomization to try to get exchangeability. Howevery@&aans do not
need to randomize and so are free to consider other critréh as ethical
criteria, much more strongly. Berry (1989) has expoundégitiew rather
forcefully.

Bayesians believe in the likelihood principle, which herglies basing
your inference on the data you have instead of the data yohtrhaye had.
Randomization inference compares the observed resuksdts that would
have been obtained under other randomizations. This isa elelation
of the likelihood principle. Of course, Bayesians don't gegily believe in
testing orp-values to begin with.

A fairly recent cousin of randomization inferencebigotstrapping(see
Efron 1979; Efron and Tibshirani 1993; and many others). tBwap infer-
ence in the present context does not rerandomize the assigrohtreat-
ments to units, rather it randomly reweights the obsermatio each treat-
ment group in an effort to determine the distribution ofistats of interest.

2.6 Problems

Exercise 2.1 We wish to evaluate a new textbook for a statistics classrelae seven
sections; four are chosen at random to receive the new bo@e teceive the
old book. At the end of the semester, student evaluations #following
percentages of students rate the textbook as “very good®areilent”:

Section 1 2 3 4 5 6 7
Book N O O N N O N
Rating 46 37 47 45 32 62 56

Find the one-sided randomizatiprvalue for testing the null hypothesis that
the two books are equivalent versus the alternative thatehebook is better
(receives higher scores).

Exercise 2.2 Dairy cows are bred by selected bulls, but not all cows becuragnant
at the first service. A drug is proposed that is hoped to irserdhe bulls
fertility. Each of seven bulls will be bred to 2 herds of 10Gmsoeach (a
total of 14 herds). For one herd (selected randomly) thestwill be given
the drug, while no drug will be given for the second herd. Assuhe drug
has no residual effect. The response we observe for eaclstthé number
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of impregnated cows under drug therapy minus the number pifdgnated
cows without the drug. The observed differences are -1,&, 24,-3, 5. Find
thep-value for the randomization test of the null hypothesis tha drug has
no effect versus a one-sided alternative (the drug impriaréisity).

Suppose we are studying the effect of diet on height of obildand we
have two diets to compare: diet A (a well balanced diet with & broccoli)
and diet B (a diet rich in potato chips and candy bars). We widind the
diet that helps children grow (in height) fastest. We havedkd to use 20
children in the experiment, and we are contemplating tHeviahg methods
for matching children with diets:

Let them choose.
Take the first 10 for A, the second 10 for B.
Alternate A, B, A, B.

Toss a coin for each child in the study: head4\, tails — B.
Get 20 children; choose 10 at random for A, the rest for B.

ok 0N BE

Describe the benefits and risks of using these five methods.

As part of a larger experiment, Dale (1992) looked at six dampf
a wetland soil undergoing a simulated snowmelt. Three wamdaomly se-
lected for treatment with a neutral pH snowmelt; the othegdlgot a reduced
pH snowmelt. The observed response was the number of Copepodved
from each microcosm during the first 14 days of snowmelt.

Reduced pH | Neutral pH
256 159 149‘ 54 123 248

Using randomization methods, test the null hypothesigtteiiwvo treatments
have equal average numbers of Copepoda versus a two-stdaethtilve.

Chu (1970) studied the effect of the insecticide chlordandhe ner-
vous systems of American cockroaches. The coxal musclesdree meso-
and one metathoracic leg on opposite sides were surgiceaiigated from
each of six roaches. The roaches were then treated with 5@gnams of
a-chlordane, and coxal muscles from the two remaining mestnaetatho-
racic legs were removed about two hours after treatmentNBfieK - ATPase
activity was measured in each muscle, and the percentaggehéor the six
roaches are given here:

153 -31.8 -356 -145 3.1 -245
Test the null hypothesis that the chlordane treatment hasffected the

Exercise 2.3

Exercise 2.4

Exercise 2.5
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Problem 2.1

Problem 2.2

Question 2.1

Nat-K*ATPas activity. What experimental technique (not mentibimethe
description above) must have been used to justify a randdioiztest?

McElhoe and Conner (1986) use an instrument called a “\isig” to
measure ultraviolet light. By comparing absorption in clai& and absorp-
tion in polluted air, the concentration of @ the polluted air can be es-
timated. The EPA has a standard method for measuring 8@l we wish
to compare the two methods across a range of air samples. eCheded
response is the ratio of the Visiplume reading to the EPAdstethreading.
There were six observations on coal plant number 2: .95@, .962, .733,
.823, and 1.011. If we make the null hypothesis be that thgpMisie and
standard measurements are equivalent (and the Visipludh&tandard labels
are just labels and nothing more), then the ratios couldh(edgjual probabil-
ity) have been observed as their reciprocals. That is, tie o&.950 could
with equal probability have been 1/.950 = 1.053, since thelkare equiva-
lent and assigned at random. Suppose we take as our sumntheydaita the
sum of the ratios. We observe .95 + ... + 1.011 = 5.257. Tebtquwandom-
ization methods) the null hypothesis of equivalent measare procedures
against the alternative that Visiplume reads higher tharstandard. Report
ap-value.

In this problem, a data set of size 5 consists of the numbdroiigh 5;
a data set of size 6 consists of the numbers 1 through 6; anal. so o

(a) For data sets of size 5 and 6, compute the complete ramdtiam distri-
bution for the mean of samples of size 3. (There will be 10 ahchembers
respectively in the two distributions.) How normal do thelstributions
look?

(b) For data sets of size 4 and 5, compute the complete raadtion distri-
bution for the mean of samples of any size (size 1, size 2,up to all the
data in the sample). Again, compare these to normal.

(c) Compare the size 5 distributions from parts a) and b). dowhey com-
pare for mean, median, variance, and so on.

Let X1, Xs,..., Xy be independent, uniformly distributed, randdm
digit integers (that is, less than®). Find the probability of having no dupli-
cates inNV draws.



Chapter 3

Completely Randomized
Designs

The simplest randomized experiment for comparing severatments is the
Completely Randomized Design, or CRD. We will study CRD’sl dineir
analysis in some detail, before considering any other dssigecause many
of the concepts and methods learned in the CRD context caahsf¢rred
with little or no modification to more complicated designserel, we define
completely randomized designs and describe the initidlarsaof results.

3.1 Structure of a CRD

We havey treatments to compare ard units to use in our experiment. For
a completely randomized design:

1. Select sample sizes, na, ..., ngWithny +ng +--- +ny = N.

2. Choosen; units at random to receive treatmentd, units at random
from the N — ny remaining to receive treatment 2, and so on.

This randomization produces a CRD; all possible arrangésneinthe NV
units into g groups with sizesy; thoughn, are equally likely. Note that
complete randomization only addresses the assignmemiafients to units;
selection of treatments, experimental units, and respoesEso required.
Completely randomized designs are the simplest, mosyaasierstood,

most easily analyzed designs. For these reasons, we cotfsd€RD first
when designing an experiment. The CRD may prove to be inadedar

All partitions of
units with sizes
ny through ng
equally likely in
CRD

First consider a
CRD
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Example 3.1

Example 3.2

some reason, but | always consider the CRD when developieg@erimen-
tal design before possibly moving on to a more sophisticdésign.

Acid rain and birch seedlings

Wood and Bormann (1974) studied the effect of acid rain oestréClean”
precipitation has a pH in the 5.0 to 5.5 range, but observedipitation pH
in northern New Hampshire is often in the 3.0 to 4.0 rangehiksdcid rain
harming trees, and if so, does the amount of harm depend quilwf the
rain?

One of their experiments used 240 six-week-old yellow b#ehdlings.
These seedlings were divided into five groups ofat&andom and the
seedlings within each group received an acid mist treat®érmiurs a week
for 17 weeks. The five treatments differed by mist pH: 4.7, 8.8, 3.0, and
2.3; otherwise, the seedlings were treated identicallferAhe 17 weeks, the
seedlings were weighed, and total plant (dry) weight wasriads response.
Thus we have a completely randomized design, with five treatrgroups
and each; fixed at 48. The seedlings were the experimental units, aard pl
dry weight was the response.

This is a nice, straightforward experiment, but let's loalepthe steps
in planning the experiment and see where some of the chontesampro-
mises were made. It was suspected that damage might vary lewpkiplant
developmental stage, and plant species, among other thiftgs particu-
lar experiment only addresses pH level (other experimeete wonducted
separately). Many factors affect tree growth. The expeamninspecifically
controlled for soil type, seed source, and amounts of liglater, and fer-
tilizer. The desired treatment was real acid rain, but theglable treatment
was a synthetic acid rain consisting of distilled water amifusic acid (rain
in northern New Hampshire is basically a weak mixture ofwidfand ni-
tric acids). There was no placeper se The experiment used yellow birch
seedlings; what about other species or more mature treeaPplant weight
is an important response, but other responses (possiballgduportant) are
also available. Thus we see that the investigators haveweadan enormous
question down to a workable experiment using artificial agid on seedlings
of a single species under controlled conditions. A consiblleramount of
nonstatistical background work and compromise goes irgoptanning of
even the simplest (from a statistical point of view) expexni

Resin lifetimes

Mechanical parts such as computer disk drives, light bwdbs, glue bonds
eventually fail. Buyers of these parts want to know how ldmgytare likely
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Table 3.1:1og;, times till failure of a resin under stress.

Temperature9C)
175 194 213 231 250

204 185 166 166|153 1.35 1.15 1.21|1.26 1.02
191 196|171 161|154 127|122 128 .83 1.09
200 1.88/ 142 1554138 1.26|1.17 117 1.08 1.06
192 190|176 166/ 1.31 1.38] 1.16

to last, so manufacturers perform tests to determine agdif@gjme, some
times expressed as mean time to failure, or mean time betfaderes for
repairable items. The last computer disk drive | bought hatkan time t

failure of 800,000 hours (over 90 years). Clearly the mactufzr did not
have disks on test for over 90 years; how do they make suanghai

One experimental method for reliability is called accelerated life tes
Parts under stress will usually fail sooner than parts thauastressed. B
modeling the lifetimes of parts under various stresses, ameestimate (ex
trapolate to) the lifetime of parts that are unstressed.t Wagy we get a
estimate of the unstressed lifetime without having to waét complete un
stressed lifetime.

Nelson (1990) gave an example where the goal was to estimatife-
time (in hours) of an encapsulating resin for gold-aluminbomds in inte-
grated circuits operating at 120. Since the lifetimes were expected to pe
rather long, an accelerated test was used. Thirty-seves were assignefl
at random to one of five different temperature stressesingrigpm 17% to
25(°. Table 3.1 gives thivg,, lifetimes in hours for the test units.

For this experiment, the choice of units was rather cleaegirated cir-
cuits with the resin bond of interest. Choice of treatmehtsyever, de-
pended on knowing that temperature stress reduced resghlifeimme. The
actual choice of temperatures probably benefited from kedge of the re
sults of previous similar experiments. Once again, expemial design is 8
combination of subject matter knowledge and statisticahods.

3.2 Preliminary Exploratory Analysis

It is generally advisable to conduct a preliminary explorator graphical
analysis of the data prior to any formal modeling, testingsiimation. Pre-
liminary analysis could include:

e Simple descriptive statistics such as means, mediansjaterrors,
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Graphical
analysis reveals
patterns in data

Example 3.3

interquartile ranges;
¢ Plots, such as stem and leaf diagrams, box-plots, and sp#its; and
e The above procedures applied separately to each treatmoent.g

See, for example, Moore and McCabe (1999) for a descriptidghese ex-
ploratory techniques.

This preliminary analysis presents several possibilitiesr example, a
set of box-plots with one box for each treatment group camvalmthe rel-
ative sizes of treatment mean differences and experimental This often
gives us as much understanding of the data as any formal asgyoce-
dure. Preliminary analysis can also be a great help in dextoy unusual
responses or problems in the data. For example, we mighivdisan outly-
ing value, perhaps due to data entry error, that was diffioudpot in a table
of numbers.

Resin lifetimes, continued

We illustrate preliminary analysis by using Minitab to mabex-plots of

the resin lifetime data of Example 3.2, with a separate Hok4or each

treatment; see Figure 3.1. The data in neighboring treasreerlap, but
there is a consistent change in the response from treatmeathrough five,
and the change is fairly large relative to the variation imithach treatment
group. Furthermore, the variation is roughly the same indifferent treat-

ment groups (achieving this was a major reason for usingfetinhes).

A second plot shows us something of the challenge we aredaéiiy-
ure 3.2 shows the average log lifetimes per treatment grtatfed against
the stress temperature, with a regression line superindpd¥e are trying to
extrapolate over to a temperature of 22@ell beyond the range of the data.
If the relationship is nonlinear (and it looks curved), tivehr fit will give
a poor prediction and the average log lifetime at%2ld be considerably
higher than that predicted by the line.

3.3 Models and Parameters

A modelfor data is a specification of the statistical distribution the data.
For example, the number of heads in ten tosses of a fair coiditave a
Binomial(10,.5) distribution, where .5 gives the prob#piof a success and
10 is the number of trials. In this instance, the distriboitiiepends on two
numbers, called parameters: the success probability @tmber of trials.
For ten tosses of a fair coin, we know both parameters. In tiadysis of
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Figure 3.1: Box-plots oflog;, times till failure of a resin under
five different temperature stresses, using Minitab.
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Figure 3.2: Averagelog;, time till failure versus temperature,
with linear regression line added, using MacAnova.

experimental data, we may posit several different modeaigHe data, all
with unknown parameters. The objectives of the experimantaften be
described as deciding which model is the best descriptichedata, and
making inferences about the parameters in the models.
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Model for the
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Model for the
errors

0_2

Normal
distribution of
errors needed for
inference

Standard analysis
explores means

Standard analysis
is not always
appropriate

Example 3.4

Our models for experimental data have two basic parts. Thegart
describes the average or expected values for the data. gkisnetimes
called a “model for the means” or “structure for the meanst &xample,
consider the birch tree weights from Example 3.1. We migBuae that
all the treatments have the same mean response, or thatreatthdnt has
its own mean, or that the means in the treatments are a dtiizmigtiunction
of the treatment pH. Each one of these models for the meangshasn
parameters, namely the common mean, the five separate émtatneans,
and the slope and intercept of the linear relationship,aetsygely.

The second basic part of our data models is a description wfthe
data vary around the treatment means. This is the “modelh®retrors”
or “structure for the errors”. We assume that deviationmftbe treatment
means are independent for different data values, have nezanand all the
deviations have the same variance, denoted%by

This description of the model for the errors is incompletecduse we
have not described the distribution of the errors. We canadigtgo a fair
way with descriptive statistics using our mean and erroreodithout ever
assuming a distribution for the deviations, but we will néedssume a dis-
tribution for the deviations in order to do tests, confideinéervals, and other
forms of inference. We assume, in addition to independezere,mean, and
constant variance, that the deviations follow a Normakitistion.

The standard analysis for completely randomized desigoeriserned
with the structure of the means. We are trying to learn whettihe means
are all the same, or if some differ from the others, and thareadf any
differences that might be present. The error structuresigragsd to be known,
except for the variance?, which must be estimated and dealt with but is
otherwise of lesser interest.

Let me emphasize that these models in the standard analgsisnot
be the only models of interest; for example, we may have detado not
follow a normal distribution, or we may be interested in gade differences
rather than mean differences (see Example 3.4). Howeeeuydhal analysis
looking at means is a reasonable place to start.

Luria, Delbriick, and variances

In the 1940s it was known that some strains of bacteria warsitbee to a
particular virus and would be killed if exposed. Noneths)s®me members
of those strains did not die when exposed to the virus andilygppceeded
to reproduce. What caused this phenomenon? Was it sponisnmagdation,
or was it an adaptation that occurred after exposure to ths¥iThese two
competing theories for the phenomenon led to the same avenagbers
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of resistant bacteria, but to different variances in the bers of resistan
bacteria—with the mutation theory leading to a much higterance. Ex
periments showed that the variances were high, as predigtdte mutatio
theory. This was an experiment where all the important mfation was in
the variance, not in the mean. It was also the beginning o$@areh collab
oration that eventually led to the 1969 Nobel Prize for L Delbriick.

There are many models for the means; we start with two basieiao
We haveg treatments andV units. Lety;; be thejth response in théth
treatment group. Thusruns between 1 angl and; runs between 1 and;,
in treatment group. The model of separate group means (the full model) as-Separate means
sumes that every treatment has its own mean respgn&ombined with the model
error structure, the separate means model implies thatelilata are inde-
pendent and normally distributed with constant varianaéglach treatment
group may have its own mean:

Yij ~ N(pi, o)

Alternatively, we may write this model as
Yij = Mi + €5

where thee;;’s are “errors” or “deviations” that are independent, noltgna
distributed with mean zero and varianeg

The second basic model for the means is the single mean mibel (
reduced model). The single mean model assumes that albthteritents have Single mean
the same mean. Combined with the error structure, the single mean model model
implies that the data are independent and normally digetbwith mearu
and constant variance,

Yij ~ N(MUQ) .

Alternatively, we may write this model as
Yij = B+ €5

where thee;;’s are independent, normally distributed errors with meam z
and variance>.

Note that the single mean model is a special case or restricti the  Compare reduced
group means model, namely the case when all ofitfeequal each other. model to full
Model comparison is easiest when one of the models is aceestror reduced model
form of the other.
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Overall mean p*
and treatment
effects a;

Too many
parameters

Restrictions make
treatment effects
well defined

Differences of
treatment effects
do not depend on
restrictions

Sum of treatment
effects is zero

We sometimes express the group mearessy; = p* + «;. The constant
w* is called theoverall meanandq; is called theith treatment effectin this
formulation, the single mean model is the situation wher¢halo; values
are equal to each other: for example, all zero. This intrédoof x* and
a; seems like a needless complication, and at this stage ofiine g really
is. However, the treatment effect formulation will be ertiedy useful later
when we look at factorial treatment structures.

Note that there is something a bit fishy here. There @meansy;,
one for each of they treatments, but we are using+ 1 parameters(*
and thea;’s) to describe theg means. This implies that* and thea;’s are
not uniquely determined. For example, if we add 15:toand subtract 15
from all theo;'s, we get the same treatment meansthe 15's just cancel.
However,o; — a; will always equaly; — pj, so the differences between
treatment effects will be the same no matter how we defifne

We got into this embarrassment by imposing an additionahemattical
structure (the overall meart) on the set ofy group means. We can get out of
this embarrassment by deciding what we meaptyonce we know:*, then
we can determine the treatment effeatsby o; = p; — p*. Alternatively,
we can decide what we mean by, then we can get* by u* = u; — o;.
These decisions typically take the form of some mathemlatsdriction on
the values fop* or o;. Restrictingu* or «; is really two sides of the same
coin.

Mathematically, all choices for defining* are equally good. In prac-
tice, some choices are more convenient than others. Diffstatistical soft-
ware packages use different choices, and different cortipngd formulae
use different choices; our major worry is keeping track ofckihparticular
choice is in use at any given time. Fortunatehg important things don't
depend on which set of restrictions we usmportant things are treatment
means, differences of treatment means (or equivalentfgrences ofy;’s),
and comparisons of models.

One classical choice is to defipg as the mean of the treatment means:
g
pr=pilg -
i=1

For this choice, the sum of the treatment effects is zero:

g9
ZO&Z‘ =0 .
=1
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An alternative that makes some hand work simpler assumeg:thia the
weighted average of the treatment means, with the sammasiaised as
weights:

g
Pt => nipi/N .
=1

For this choice, the weighted sum of the treatment effectsiig: Or weighted sum
of treatment
g
Z n;o; = 0.
i=1

effects is zero
When the sample sizes are equal, these two choices coirldigecomputa-
tional formulae we give in this book will use the restrictithrat the weighted
sum of thew;’s is zero, because it leads to somewhat simpler hand computa
tions. Some of the formulae in later chapters are only valiémthe sample
sizes are equal.

Our restriction that the treatment effectsadd to zero (either weighted
or not) implies that the treatment effects are not comptdtek to vary. We Degrees of
can sely — 1 of them however we wish, but the remaining treatment effect i freedom for
then determined because it must be whatever value makesrheuam true.  treatment effects
We express this by saying that the treatment effects pavel degrees of
freedom.

3.4 Estimating Parameters

Most data analysis these days is done using a computer. Fesvsif down
and crunch through the necessary calculations by hand.tNeless, know-
ing the basic formulae and ideas behind our analysis helpadesrstand and
interpret the quantities that come out of the software blawk If we don't
understand the quantities printed by the software, we dapossibly use
them to understand the data and answer our questions.

The parameters of our group means model are the treatmemismga

and the variance?, plus the derived parametess and theo;’s. We will Unbiased
be computing “unbiased” estimates of these parameters.iaseih means estimators correct
that when you average the values of the estimates acrosstalfital random on average

errorse;;, you get the true parameter values.

It is convenient to introduce a notation to indicate theraator of a pa-
rameter. The usual notation in statistics is to put a “ha&rdlie parameter to
indicate the estimator; thysis an estimator of;. Because we have parame-
ters that satisfy,; = p*+«;, we will use estimators that satisy = 1*+a;.
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Treatment means

Grand mean
i =T
1= Tee

Let's establish some notation for sample averages andkbeThe sum
of the observations in th#&h treatment group is

ni
Yie = Y Yij -
j=1
The mean of the observations in tik treatment group is
1 &
Tie = — 2 Yij = Yie/Mi -
n; =1

The overbar indicates averaging, and the dpir{dicates that we have aver-
aged (or summed) over the indicated subscript. The sum obakrvations

S g n; g9
Yoo = Zzyw = Zyio s
=1

i=1j=1
and the grand mean of all observations is

1 g n
Yoo = szym :yC./N .

i=1j=1

The sum of squared deviations of the data from the group means

g n,
SSE =Y (Wij — i) -

i=1j=1

The SSE measures total variability in the data around the group miean

Consider first the separate means model, with each treagmmaunp hav-
ing its own meary;. The natural estimator qi; is 7,,, the average of the
observations in that treatment group. We estimate the ¢sgpéor average)
response in théh treatment group by the observed average inthdreat-
ment group responses. Thus we have

//Zi = Yie -

The sample average is an unbiased estimator of the poputaterage, sg;
is an unbiased estimator gf.
In the single mean model, the only parameter in the modeh®nteans
is . The natural estimator of is 7,,, the grand mean of all the responses.
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That is, if we felt that all the data were responses from timeespopulation,
we would estimate the mean of that single population by thedmean of
the data. Thus we have

ZZ = g.. *
The grand mean is an unbiased estimate wfhen the data all come from a
single population.

We use the restriction that = >, n;u;/N; an unbiased estimate pf
is

ZZ* _ Z?:l nllal - Z?:l niyio _ Yoo

- N N N e
This is the same as the estimator we use/fdn the single mean model. w = p* for
Because: and i are both estimated by the same value, we will drop the weighted sum
notationu* and just use the single notatigrfor both roles. restriction
The treatment effects; are

A = b — [
these can be estimated by Qi =Tie — Tos

a; = i — [

= yio - yoo .

These treatment effects and estimates satisfy the rémtrict
g g
Zniai = anal =0.
=1 =1

The only parameter remaining to estimatefs Our estimator of? is

SSp X Y (Wi — Tie)?

~2
7 PT Ny N—g

We sometimes use the notatierin place ofz in analogy with the sample 52 is unbiased for
standard deviatios. This estimatof? is unbiased foe? in both the separate o’
means and single means models. (Note &igtnot unbiased for.)

The deviations from the group mea)) —7,, add to zero in any treatment
group, so that any; — 1 of them determine the remaining one. Put another
way, there arex; — 1 degrees of freedom for error in each group)\o¥- g = Error degrees of
> :(n; — 1) degrees of freedom for error for the experiment. There are th freedom
N — g degrees of freedom for our estimaté. This is analogous to the
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Example 3.5

Model Parameter Estimator
Single mean Voo

0.2 ?:1 %i(gy’ij_yi.)Q
Separate meansy Voo

lui yio

Q; yio - yoo

o2 i %l_(jij_yi.)Q

Display 3.1: Point estimators in the CRD.

formulan,+ny—2 for the degrees of freedom in a two-samptest. Another
way to think of N — g is the number of data values minus the number of mean
parameters estimated.

The formulae for these estimators are collected in Displdy Bhe next
example illustrates their use.

Resin lifetimes, continued

Most of the work for computing point estimates is done oncegefethe av-
erage responses overall and in each treatment group. We&ngsin lifetime
data from Table 3.1, we get the following means and counts:

o

Treatment{C) | 175 194 213 231 250 Alldat

Average 1933 1.629 1.378 1.194 1.057 1.465
Count 8 8 8 7 6 37

The estimateg; andj: can be read from the table:

1.933 iy
1.194 [

1.629 i
1.057 @

1.378

i
i 1.465

M4

Get theq; values by subtracting the grand mean from the group means:

a1 = 1.932 — 1.465
a3 = 1.378 — 1.465
a5 = 1.057 — 1.465

467 g = 1.629 — 1.465
—.088 a4 = 1.194 — 1.465
—.408

.164
—.271
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Notice thaty"?_, n;a; = 0 (except for roundoff error).
The computation fos? is a bit more work, because we need to com;l.;te
the SSg. For the resin data§ Sk is
SSp = (2.04—1.933)% 4+ (1.91 — 1.933)% 4+ --- + (1.90 — 1.933)? +
(1.66 — 1.629)? + (1.71 — 1.629) + - - - + (1.66 — 1.629)* +
(1.53 — 1.378)% + (1.54 — 1.378)* + - - + (1.38 — 1.378)% +
(1.15 — 1.194) + (1.22 — 1.194)* + - - - 4+ (1.17 — 1.194) +
(1.26 — 1.057)2 + (.83 — 1.057)% 4 - - - 4 (1.06 — 1.057)?

= .29369
Thus we have
= SSEp/(N —g) = .29369/(37 — 5) = .009178 .

A point estimate gives our best guess as to the value of a gheanA

confidence interval gives a plausible range for the paramtbi is, a set of Confidence
parameter values that are consistent with the data. Cowrfdatervals foy intervals for
and they;’s are useful and straightforward to compute. Confideneavals means and
for the o;'s are only slightly more trouble to compute, but are perhaps effects

useful because there are several potential ways to definéghBifferences
betweenu;’s, or equivalently, differences betweetis, are extremely useful;
these will be considered in depth in Chapter 4. Confideneavats for the
error variancer? will be considered in Chapter 11.

Confidence intervals for parameters in the mean structure thee gen-

eral form: Generic
confidence

unbiased estimaté& multiplier x (estimated) standard error of estimate  interval for mean
parameter

The standard errors for the averaggs andy,, ares/v/N ando/\/n; re-
spectively. We do not know, so we use& = s = /M S as an estimate
and obtains /v N ands/,/n; as estimated standard errors fgy andy,.

For an interval with coverage— &, we use the uppef/2 percent point

of the¢-distribution with N — g degrees of freedom as the multipler. This is
denoted¢ , v, We use theE /2 percent point because we are constructing  Use ¢ multiplier
a two-sided confidence interval, and we are allowing errtgsraf /2 on when error is
both the low and high ends. For example, we use the upper 2086 (or estimated
97.5% cumulative point) of for 95% coverage. The degrees of freedom for

the t-distribution come fron®2, our estimate of the error variance. For the

CRD, the degrees of freedom ake— g, the number of data points minus the

number of treatment groups.
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ANOVA
compares models

ANOVA partitions
variability

Parameter Estimator Standard Error

7 Tee s/VN
%% Yie 5/\/772

Q; yio - yoo S\/ 1/”2 - 1/N

Display 3.2: Standard errors of point estimators in the CRD.

The standard error of an estimated treatment effetgto/1/n; — 1/N.
Again, we must use an estimate ®fyielding s\/1/n; — 1/N for the esti-
mated standard error. Keep in mind that the treatment sffecare nega-
tively correlated, because they must add to zero.

3.5 Comparing Models: The Analysis of Variance

In the standard analysis of a CRD, we are interested in ther mesgponses
of the treatment groups. One obvious place to begin is taldeghether the
means are all the same, or if some of them differ. Restatiisgqtiestion in
terms of models, we ask whether the data can be adequateljtasby the
model of a single mean, or if we need the model of separateiezd group
means. Recall that the single mean model is a special case gfdup means
model. That is, we can choose the parameters in the groupsmeadel so
that we actually get the same mean for all groups. The singlennmodel is
said to be a reduced or restricted version of the group meadsimAnalysis
of Variance, usually abbreviated ANOVA, is a method for camipg the fit
of two models, one a reduced version of the other.

Strictly speaking, ANOVA is an arithmetic procedure forftaoning the
variability in a data set into bits associated with diffdremean structures
plus a leftover bit. (It's really just the Pythagorean Thexar though we've
chosen our right triangles pretty carefullyM-dimensional space.) When in
addition the error structure for the data is independennabwith constant
variance, we can use the information provided by an ANOVAdastruct
statistical tests comparing the different mean structaresodels for means
that are represented in the ANOVA. The link between the ANQé&om-
position for the variability and tests for models is so tigidwever, that we
sometimes speak of testing via ANOVA even though the tesitisaally part
of the ANOVA.
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Our approach to model comparison is Occam’s Razor — we ussrthe
plest model that is consistent with the data. We only mové¢atore com- Use simplest
plicated model if the data indicate that the more complitatedel is needed. acceptable model

How is this need indicated? The residualsare the differences between
the datay;; and the fitted mean model.  For the single mean model, the Residuals and
fitted values are alj,,, so the residuals arg; = y;; — 7,,, for the separate SSR
means model, the fitted values are the group mggnso the residuals are
Tij = Yij — U;e- We measure the closeness of the data to a fitted model by
looking at the sum of squared residuagds$(R). The point estimators we have
chosen for the mean parameters in our modeldesrst squaregstimators,
which implies that they are the parameter estimates thaertrese sums of Least squares
squared residuals as small as possible.

The sum of squared residuals for the separate means modshadyu
smaller than that for the single mean model; it can never tgeta We will
conclude that the more complicated separate means modeéded if its
SSR is sufficiently less than that of the single mean model. Werstied
to construct a criterion for deciding when t& R has been reduced suffi-
ciently.

One way of constructing a criterion to compare models is \gtatstical
test, with the null hypothesis that the single mean modelis versus the
alternative that the separate means model is true. In conpramtice, the
null and alternative hypotheses are usually expressedrrstef parameters

rather than models. Using the = p + «; notation for group means, the Null and
null hypothesisH; of a single mean can be expressedgs: «; = 0 for alternative
all i, and the alternative can be expressedias: «; # 0 for somei. Note hypotheses

that since we have assumed thak;«; = 0, one nonzeray; implies that the
a;’s are not all equal to each other. The alternative hyposhdises not mean
that all thew;'s are different, just that they are not all the same.

The model comparison point of view opts for the separate spwauel if
that model has sufficiently less residual variation, while parameter testing
view opts for the separate means model if there is suffigigmdat variation
between the observed group means. These seem like difidesast, but we
will see in the ANOVA decomposition that they are really saythe same
thing, because less residual variation implies more varidietween group
means when the total variation is fixed.

3.6 Mechanics of ANOVA

ANOVA works by partitioning the total variability in the dainto parts that
mimic the model. The separate means model says that the ateiall
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ANOVA
decomposition
parallels model

SSr

S STrt

SSE

equal to the grand mean because of treatment effects andmeeor:
Yij — B = Qi + €5,

ANOVA decomposes the data similarly into a part that dealh vgroup
means, and a part that deals with deviations from group means

Yij — yoo = (yzo - yoo) + (yij - yzo)
= az + Tij .
The difference on the left is the deviation of a response fiteergrand mean.

If you square all such differences and add them up youSggt, the total
sum of square$

The first difference on the right is the estimated treatméeteq;. If
you squared all these (one for each of ffielata values) and added them up,
you would getS Sy, thetreatment sum of squares

g

g
SSTrt - Z Z yzo yoo = an@z. - ?..)2 = anaf
i=1

i=1j=1 i=1
| think of this as

1. Square the treatment effect,

2. Multiply by the number of units receiving that effect, and

3. Add over the levels of the effect.

This three-step pattern will appear again frequently.

The second difference on the right is thgh residual from the model,
which gives us some information abayt. If you squared and added the
ri;'S you would getSSg, theerror sum of squares

SSE = ZZ Yij — yzo

i=1j=1

This is the samé& S that we use in estimatingy’.

For pedants in the readership, this quantity is¢hgectedtotal sum of squares. There
is also anuncorrectectotal sum of squares. The uncorrected total is the sum ofghared
observations; the uncorrected total sum of squares efifalplus N7, , 2. In this book, total
sum of squares will mean corrected total sum of squares.
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SSm = Ly na;”
SSp = XY — Tie)?
SSr = SSm+ SSk

Display 3.3: Sums of squares in the CRD

Recall that
Yij — Voo = Qi + 14
so that
(Yij — Too)” = Qi” + 1 + 204735 -

Adding overi andj we get

g n;
SST = SSTrt +SSE + ZZZ&JU .

i=1 j=1

We can show (see Question 3.2) that the sum of the cross-@sidwzero, so
that

SSr =SSt + SSk - |

Now we can see the link between testing equality of group mead com-
paring models vigsSR. For a given data set (and thus a fix€8;), more
variation between the group means implies a la§j€f, which in turn im-
plies that theS.Sr must be smaller, which is th&S R for the separate means
model.

Display 3.3 summarizes the sums of squares formulae for B.C
should mention that there are numerous “calculator” or fgha” formulae
for computing sums of squares quantities. In my experiethese formulae
are more difficult to remember than the ones given here, geditile insight
into what the ANOVA is doing, and are in some circumstancesenpoone
to roundoff errors. |1 do not recommend them.

ANOVA computations are summarized in a table with colummséurce
of variation, degrees of freedom, sum of squares, mean eguand F-
statistics. There is a row in the table for every source oftan in the full
model. In the CRD, the sources of variation are treatmerdsatrs, some-
times called between- and within-groups variation. Sorbéetaare written

Total SS

Larger S St
implies smaller
SSE

ANOVA table
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with rows for either or both of the grand mean and the totakti@mn, though
these rows do not affect the usual model comparisons.

Generic ANOVA The following is a generic ANOVA table for a CRD.
table
Source DF SS MS F
Treatments g—1 SStx SSti/(g—1) MStt/MSk
Error N-g SSgp SSg/(N-g)

The degrees of freedom age— 1 for treatments and&v — ¢ for error. We
saw the rationale for these in Section 3.4. The formulaedorssof squares
were given above, and mean squares are always sums of sguades by
their degrees of freedom. The F-statistic is the ratio of twean squares, the
numerator mean square for a source of variation that we wigissess, and
a denominator (or error) mean square that estimates enmiance.

We use the F-statistic (or F-ratio) in the ANOVA table to mak&est of
the null hypothesis that all the treatment means are the &zlhtlee o; values
are zero) versus the alternative that some of the treatmeamsdiffer (some
of theq; values are nonzero). When the null hypothesis is true, thiaistic
is about 1, give or take some random variation; when thersdtae is true,

F-testto compare  the F-statistic tends to be bigger than 1. To complete thewesneed to be

models able to tell how big is too big for the F-statistic. If the nbifpothesis is true
and our model and distributional assumptions are corfieet the F-statistic
follows the F-distribution withy — 1 and N — g degrees of freedom. Note
that the F-distribution has two “degrees of freedom”, owefthe numerator
mean square and one from the denominator mean square.

To do the test, we compute the F-statistic and the degreesaxfdm, and
then we compute the probability of observing an F-statestitarge or larger
than the one we observed, assuming alktfis were zero. This probability is

p-value to assess called thep-valueor observed significance leved the test, and is computed

evidence as the area under an F-distribution from the observed s#tabn to the
right, when the F-distribution has degrees of freedom etjuthle degrees of
freedom for the numerator and denominator mean squares.pMalue is
usually obtained from a table of the F-distribution (for eyde, Appendix
Table D.5) or via the use of statistical software.

Small values of the-value are evidence that the null may be incorrect:
either we have seen a rare event (big F-statistics when tthésractually
true, leading to a smaji-value), or an assumption we used to compute the
p-value is wrong, namely the assumption that all th&s are zero. Given
the choice of unlucky or incorrect assumption, most peoptese incorrect
assumption.
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Table 3.2: Approximate Type | error probabilities for
differentp-values using the Sellket al. lower bound.

P .05 01 .001 .0001
P(p) 29 11 018 .0025

We have now changed the question from “How big is too big ant?”
“How small is too small gp-value?” By tradition,p-values less than .05
are termedtatistically significantand those less than .01 are ternméghly
statistically significant These values are reasonable (one chance in 20, one .05 and .01
chance in 100), but there is really no reason other thantimadio prefer significance levels
them over other similar values, say one chance in 30 and aecehin 200.
It should also be noted that a person using the traditionaégavould declare
one test withp-value of .049 to be significant and another test with-a
value of .051 not to be significant, but the two tests areyeging virtually
identical results. Thus | prefer to report thevalue itself rather than simply
report significance or lack thereof.

As with any test, remember that statistical significanceoisthe same
as real world importance. A tiny-value may be obtained with relatively Practical
smallo;’s if the sample size is large enoughcotis small enough. Likewise, significance
large important differences between means may not appegafisant if the
sample size is small or the error variance large.

It is also important not to overinterpret thevalue. Reporteg-values of
.05 or .01 carry the magnificent labels of statistically gfigant or highly sta-
tistically significant, but they actually are not terriblyang evidence against
the null. What we would really like to know is the probabilityat rejecting
the null is an errorthe p-value doesot give us that information.Sellke,
Bayarri, and Berger (1999) define an approximate lower baumithis prob-
ability. They call their bound aalibratedp-valueg but | do not like the name  Approximate error
because their quantity is not reallpavalue. Suppose that before seeing any probability
data you thought that the null and alternative each had pititya5 of being
true. Then forp-values less than—! ~ .37, the Sellkeet al. approximate
error probability is

~ —eplog(p)
Pl = 1= eplog(p)

The interpretation of the approximate error probabiltyp) is that having
seen gp-value ofp, the probability that rejecting the null hypothesis is an
error isat least’P(p). Sellkeet al. show that this lower bound is pretty
good in a wide variety of problems. Table 3.2 shows that tloba@bility that
rejection is a Type | error is more than .1, even forealue of .01.
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Listing 3.1: Minitab output for resin lifetimes.

One-way Analysis of Variance

Analysis of Variance for Lifetime

Source DF
Temp 4
Error 32
Total 36
Level N
1 8
2 8
3 8
4 7
5 6

Pooled StDev =

Example 3.6

sSs MS F P ]
3.53763  0.88441 96.36 0.000
0.29369  0.00918

3.83132
Individual 95% CIs For Mean O
Based on Pooled StDev
Mean StDev -------- - - -
1.9325 0.0634 (-*--)
1.6288 0.1048 (=*--)
1.3775 0.1071 -*-)
1.1943 0.0458 (--%*-)
1.0567 0.1384 (-*--)
———————— B et S e ettt
0.0958 1.20 1.50 1.80

Resin lifetimes, continued
For our resin data, the treatment sum of squares is

g
~ 2
SSmt = Z (7187
i=1

= 8x.467% +8 x .164% + 8 x (—.088)% +
7 x (=.271)% + 6 x (—.408)?
= 3.5376 .
We havey = 5 treatments so there age- 1 = 4 degrees of freedom between

treatments. We computed ti#5r in Example 3.5; it was .29369 with 32
degrees of freedom. The ANOVA table is

ANOVA
Source DF SS MS F
treatments 4 3.5376 .88441 96.4
error 32 .29369 .0091779
total 36 3.8313

The F-statistic is about 96 with 4 and 32 degrees of freedoherdis
essentially no probability under the F-curve with 4 and 3grdes of freedom
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Listing 3.2: SAS output for resin lifetimes

Analysis of Variance Procedure

Dependent Variable: LIFETIME

Sum of Mean
Source DF Squares Square F Value Pr > F L
Model 4 3.53763206 0.88440802 96.36 0.0001
Error 32 0.29369226 0.00917788
Corrected Total 36 3.83132432
R-Square C.V. Root MSE LIFETIME Mean
0.923344 6.538733 0.09580 1.46514
Level of ——————————- LIFETIME--——--———- 0
TEMPER N Mean SD
1 8 1.93250000 0.06341473
2 8 1.62875000 0.10480424
3 8 1.37750000 0.10713810
4 7 1.19428571 0.04577377
5 6 1.05666667 0.138371438

to the right of 96. (There is only .00001 probability to thgi of 11.) Thusl
thep-value for this test is essentially zero, and we would cotelihat not all

the treatments yield the same mean lifetime. From a prdgaiat of view,

the experimenters already knew this; the experiment wagaufetermine
the nature of the dependence of lifetime on temperaturewhether there
was any dependence.

Different statistics software packages give slightlyeli#int output for the
ANOVA of the resin lifetime data. For example, Listing 3.vg$ Minitab
ANOVA output. In addition to the ANOVA table], the standard Minita
output includes a table of treatment means and a plot of 958fidemce
intervals for those mears. Listing 3.2 gives SAS output (edited to sale
space) for these dafa. SAS does not automatically print group means, put
you can request them as shown hiére

There is a heuristic for the degrees-of-freedom formulaegrBes of
freedom for a model count the number of additional pararsetsed for the
mean structure when moving from the next simpler model ®rodel. For
example, the degrees of freedom for treatmentgarel. The next simpler



52

Completely Randomized Designs

Model df count
parameters

E(MSE) = o*

Expected mean
square for
treatments

model is the model of a single mean for all treatments; thienfioidel has a
different mean for each of thgtreatments. That ig — 1 more parameters.
Alternatively, look at then;’s. Under the null, they are all zero. Under the
alternative, they may be nonzero, but ogly- 1 of them can be set freely,
because the last one is then set by the restriction thattleéghted sum must
be zero. Degrees of freedom for error are the number of dsgate number
of (mean) parameters estimated.

3.7 Why ANOVA Works

The mean square for error is a random variable; it dependee@nandom
errors in the data. If we repeated the experiment, we wouldifferent ran-
dom errors and thus a different mean square for error. Howtheeexpected
value of the mean square for error, averaged over all thaldessutcomes
of the random errors, is the variance of the random eerdrd hus, the mean
square for error estimates the error variance, no mattet thbaalues of the
«;’S.

The mean square for treatments is also a random variablehdo St
has expectation:

g
E(MStr) = EM St = o+ Znia?/(g -1) .
i=1

The important things to get from this expression are

1. When all of then;'s are zero, the mean square for treatments also esti-
matess?.

2. When some of they;'s are nonzero, the mean square for treatments
tends to be bigger thas?.

When the null hypothesis is true, boff St and M Sk vary around
o2, so their ratio (the F-statistic) is about one, give or takme random
variation. When the null hypothesis is falgd,St; tends to be bigger than
o2, and the F-statistic tends to be bigger than one. We thustrije null
hypothesis for sufficiently large values of the F-statistic

3.8 Back to Model Comparison

The preceding section described Analysis of Variance astaofethe null
hypothesis that all the; values are zero. Another way to look at ANOVA is
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as a comparison of two models for the data. The reduced metted imodel

that all treatments have the same expected value (thatis, thalues are all

zero); the full model allows the treatments to have diffeexpected values. ANOVA
From this point of view, we are not testing whether a set ohpaaters is all compares models
zero; we are comparing the adequacy of two different modelghe mean

structure.

Analysis of Variance uses sums of squared deviations frorodeinjust
as sample standard deviations use squared deviations feample mean.
For the reduced model (null hypothesis), the estimated imede = 7,,-
For the data valug;;, the residual is

Tij = Yij — B = Yij — Yoo

The residual sum of squares for the reduced model is then

SSRy = ngj = Z(yly - yoo)z‘
]

]

For the full model (alternative hypothesis), the estimatextlel isji; = 7;,,
and the residuals are

Tij; = Yij — Wi = Yij — Yie-

The residual sum of squares for the full model is then Model SSR
SSRy = ZTZQJ = Z(y” — yi.)z.
i i

SSR4 can never be bigger tha$iS Ry and will almost always be smaller.
We would prefer the full model i SR 4 is sufficiently smaller thaty'S R,.

How does this terminology for ANOVA mesh with what we havesally
seen? The residual sum of squares from the full mosi€R 4, is the error
sum of squares'Sg in the usual formulation. The residual sum of squares
from the reduced modef S Ry, is the total sum of squaresSy in the usual
formulation. The differenc& SRy, — SSR 4 is equal to the treatment sum of
squaresS Stit. Thus the treatment sum of squares is the additional amdunt 0 Change in SSR
variation in the data that can be explained by using the mamgpticated full
model instead of the simpler reduced model.

This idea of comparing models instead of testing hypothabest pa-
rameters is a fairly subtle distinction, and here is why ts#irection is im-
portant: in our heart of hearts, we almost never believetti@hull hypoth-
esis could be true. We usually believe that at some level@figion, there
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Choose simplest
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Side-by-side plots
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Figure 3.3: Side-by-side plot for resin lifetime data, using
MacAnova.

is a difference between the mean responses of the treatm®ats/hy the
charade of testing the null hypothesis?

The answer is that we are choosing a model for the data front af se
potential models. We want a model that is as simple as pesgdtlstill con-
sistent with the data. A more realistic null hypothesis & the means are so
close to being equal that the differences are negligibleei\iae “reject the
null hypothesis” we are making the decision that the datadaereonstrably
inconsistent with the simpler model, the differences betwihe means are
not negligible, and the more complicated model is requifédis we use the
F-test to guide us in our choice of model. This distinctiomwmen testing
hypotheses on parameters and selecting models will becareimportant
later.

3.9 Side-by-Side Plots

Hoaglin, Mosteller, and Tukey (1991) introduce thide-by-sideplot as a
method for visualizing treatment effects and residualgufé 3.3 shows a
side-by-side plot for the resin lifetime data of Example. 3/ plot the es-
timated treatment effect; in one column and the residualg in a second
column. (There will be more columns in more complicated NM®de will

see later.) The vertical scale is in the same units as themssp In this
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plot, we have used a box-plot for the residuals rather thahthem indi-
vidually; this will usually be more understandable wherréhare relatively
many points to be putin a single column.

What we see from the side-by-side plot is that the treatmiéetts are
large compared to the size of the residuals. We were alsa@iskee this in
the parallel box-plots in the exploratory analysis, but $ide-by-side plots
will generalize better to more complicated models.

3.10 Dose-Response Modeling

In some experiments, the treatments are associated witleneahlevels
such as drug dose, baking time, or reaction temperature. Weefer to Numerical levels
such levels asloses,no matter what they actually are, and the numerical or doses
value of the dose for treatmentvill be denotedz;. When we have numer-
ical doses, we may reexpress the treatment means as a funttioe dose
Zit

p+ o = f(2;0)

whered is some unknown parameter of the function. For example, wiédco
express the mean weight of yellow birch seedlings as a fomcti the pH of
acid rain.
The most commonly used functiorisare polynomials in the dosg: Polynomial
models
n+ oy :90—|—91ZZ'+922i2+"'—|—99_1zig_1 .

We use the powey — 1 because the means @different doses determine

a polynomial of ordey — 1. Polynomials are used so often because they
are simple and easy to understand; they are not always theapopriate
choice.

If we know the polynomial coefficien®,, 6, . . .,0,_1, then we can de-
termine the treatment meaps+ «;, and vice versa. If we know the poly-
nomial coefficienteexcept for the constarfly, then we can determine the Polynomials are
treatment effects;, and vice versa. The — 1 parameter$, throughé,_, an alternative to
in this full polynomial model correspond to the— 1 degrees of freedom treatment effects
between the treatment groups. Thus polynomials in dosedriaimerently
better or worse than the treatment effects model, just @nethy to describe
the differences between means.

Polynomial modeling is useful in two contexts. First, if prd few of
the polynomial coefficients are needed (that is, the othamsbe set to zero
without significantly decreasing the quality of the fit), mhtais reduced poly-
nomial model represents a reduction in the complexity of model. For
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example, learning that the response is linear or quadmatitose is useful,
Polynomial whereas a polynomial of degree six or seven will be diffiaaicdmprehend
models can (or sell to anyone else). Second, if we wish to estimate thpaese at some
reduce numberof  dose other than one used in the experiment, the polynomidehprovides
parameters a mechanism for generating the estimates. Note that thésgaéss may be
;?:V‘?gs and poor if we are extrapolating beyond the range of the doseariexperiment

interpolation

Polynomial
improvement SS
for including an
additional term

Testing
parameters

Model selection

or if the degree of the polynomial is high. High-order polymals will fit
our observed treatment means exactly, but these high-pafgmomials can
have bizarre behavior away from our data points.

Consider a sequence of regression models for our data,sesggethe
responses on dose, dose squared, and so on. The first madekjudes
the constandy; that is, it fits a single value for all responses. The second
model includes the constafi§ and a linear tern#, z;; this model fits the
responses as a simple linear regression in dose. The thuldlrimzludes the
constant, a linear tern¥, z;, and the quadratic terr@ng; this model fits
the responses as a quadratic function (parabola) of dosditidwal models
include additional powers of dose upgo- 1.

Let.SS Ry, be the residual sum of squares for the model that includes pow
ersuptok, for k =0,...,g — 1. Each successive model will explain a little
more of the variability between treatments, so thatz, > SSRx.1. When
we arrive at the full polynomial model, we will have explaihall of the
between-treatment variability using polynomial termsattls, SSR,_; =
SSg. The “linear sum of squares” is the reduction in residualalzlity
going from the constant model to the model with the lineanter

Similarly, the “gquadratic sum of squares” is the reductioresidual variabil-
ity going from the linear model to the quadratic model,

SSquadratic= 952 = SSR1 =SSRy

and so on through the remaining orders.

Each of these polynomial sums of squares has 1 degree obfredzk-
cause each is the result of adding one more paranigtter the model for
the means. Thus their mean squares are equal to their sumsares. In
a model with terms up through ordér we can test the null hypothesis that
0 = 0 by forming the F-statisticSSy/M Sg, and comparing it to an F-
distribution with 1 andV — g degrees of freedom.

One method for choosing a polynomial model is to choose thallsm

est order such that no significant terms are excluded. (Mophisticated
model selection methods exist.) It is important to know tift estimated
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Listing 3.3: MacAnova output for resin lifetimes polynomial model.

DF SS MS F P-value L]
CONSTANT 1 79.425 79.425 8653.95365 0
{temperature} 1 3.4593 3.4593 376.91283 0
{(temperature)A2} 1 0.078343 0.078343 8.53610 0.0063378
{(temperature)A3} 1 1.8572e-05 1.8572e-05 0.00202 0.9644
{(temperature)Ad} 1 8.2568e-06 8.2568e-06 0.00090 0.97626
ERROR1 32 0.29369 0.0091779
CONSTANT 0
(@) 0.96995
{temperature}
(@D) 0.075733
{(temperature)A2}
(1) -0.00076488
{(temperature)A3}
(1) 2.6003e-06
{(temperature)Ard}
(1) -2.9879e-09

DF SS MS F P-value L]
CONSTANT 1 79.425 79.425 9193.98587 0
{temperature} 1 3.4593 3.4593 400.43330 0
{(temperature)A2} 1 0.078343 0.078343 9.06878 0.0048787
ERROR1 34 0.29372 0.0086388
CONSTANT 0
(@D} 7.418
{temperature}
(1) -0.045098
{(temperature)A2}

(@) 7.8604e-05

coefficients; depend on which terms are in the model when the model is es-
timated. Thus if we decide we only neégl 6;, andd, wheng is 4 or more,
we should refit using just those terms to get appropriatenpater estimates.

Resin lifetimes, continued Example 3.7

The treatments in the resin lifetime data are different terapres (175, 19
213, 231, and 250 degrees C), so we can use these tempeestdieEses; in

a dose-response relationship. Wjth= 5 treatments, we can use polynomigls
up to power 4.

Listing 3.3 shows output for a polynomial dose-responsegtiog of the
resin lifetime data. The first model fits up to temperaturd&fourth power
From the ANOVAL we can see that neither the third nor fourth powerslare
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Try transforming
dose

significant, but the second power is, so a quadratic modelse@propriate.
The ANOVA for the reduced model is at. The linear and quadratic sums
of squares are the same adinbut theSSg in O is increased by the cubic
and quartic sums of squareslih We can also see that the intercept, linear,
and quadratic coefficients change dramatically from thienfiddel O to the
reduced model using just those termsWe cannot simply take the intercept,
linear, and quadratic coefficients from the fourth power gi@hd use them
as if they were coefficients in a quadratic model.

One additional trick to remember when building a dose-raspanodel
is that we can transform or reexpress the dese That is, we can build
models using log of dose or square root of dose as simply asaweising
dose. For some data it is much simpler to build a model as aiumof a
transformation of the dose.

3.11 Further Reading and Extensions

There is a second randomization that is used occasionatlyyafortunately
it also is sometimes called completely randomized.

1. Choose probabilities; thoughp, with p; +ps +--- +py = 1.

2. Choose a treatment independently for each unit, chodstagment
with probability p;.

Now we wind up withn; units getting treatment i, with; +ns+-- - +n, =

N, but the sample sizes are random. This randomization is different than
the standard CRD randomization. ANOVA procedures do nadindjaish be-
tween the fixed and random sample size randomizations, twet\ere to do
randomization testing, we would use different proceduoestfe two differ-
ent randomizations. As a practical matter, we should naedien though
we may design for certain fixed sample sizes, we do not alwelyisee those
sample sizes when test tubes get dropped, subjects witlidvawstudies, or
drunken statistics graduate students drive through exeertal fields (you
know who you are!).

The estimates we have used for mean parameters are leastsgsa
timates, meaning that they minimize the sum of squared wafid Least
squares estimation goes back to Legendre (1806) and Ga8@8)(iwho
developed the procedure for working with astronomical d&tarmal tests
based on the-distribution were introduced by Gosset, who wrote under th
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pseudonym “Student” (Student 1908). Gosset worked at theeSs Brew-
ery, and he was allowed to publish only under a pseudonymeaddtth com-
petition would not be alerted to the usefulness of the prosd/NVhat Gosset
actually did was posit the-distribution; proof was supplied later by Fisher
(1925a).

The Analysis of Variance was introduced by Fisher in the exiaf pop-
ulation genetics (Fisher 1918); he quickly extended thes¢bisher 1925b).
The 1918 paper actually introduces the terms “variance” ‘@amalysis of
variance”. Scheffé (1956) describes how models for detargglly the same
as those used for ANOVA were in use decades earlier, thougllysis meth-
ods were different.

From a more theoretical perspective, 6y is distributed agr? times
a chi-square random variable wiffi — g degrees of freedon§ .Sty is dis-
tributed ass? times a possibly noncentral chi-square random variablle wit
g — 1 degrees of freedom; and these two sums of squares are ircleyen
When the null hypothesis is tru8,Sty is a multiple of an ordinary (central)
chi-square; noncentrality arises under the alternativenthe expected value
of M Sty is greater tham?. The ratio of two independent central chi-squares,
each divided by their degrees of freedom, is defined to ha¥edistribution.
Thus the null-hypothesis distribution of the F-statisicH Chapter 7 and
Appendix A discuss this distribution theory in more det&theffé (1959),
Hocking (1985), and others provide book-length expos#ioiiinear models
and their related theory.

We have described model selection via testing a null hysidheAn
alternative approach igredictiorny for example, we can choose the model
that we believe will give us the lowest average squared @frgrediction.
Mallows (1973) defined a quantity call€g,

_ SSR,

Cp = MSg

+2p—N |

where SSR, is the residual sum of squares for a means model wiga-
rameters (degrees of freedom including any overall cotstanSy is the
error mean square from the separate means modelNaisdhe number of
observations. We prefer models with sm@lj).

The separate means model (wjith= ¢ parameters) ha€), = ¢g. The
single mean model, dose-response models, and other matelsaweC;,
values greater or less than The criterion rewards models with smaller
SSR and penalizes models with largerWhen comparing two models, one
a reduced form of the othef;, will prefer the larger model if the F-statistic
comparing the models is 2 or greater. Thus we see that it giyneakes less
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Exercise 3.1

Exercise 3.2

Exercise 3.3

“evidence” to choose a larger model when using a predictiiter®n than
when doing testing at the traditional levels.

Quantitative dose-response models as described here amstance of
polynomial regression. Weisberg (1985) is a good genetaktsoon regres-
sion, including polynomial regression. We have used patyiats because
they are simple and traditional, but there are many othercfdtinctions we
could use instead. Some interesting alternatives inclutes sand cosines,
B-splines, and wavelets.

3.12 Problems

Rats were given one of four different diets at random, anddksponse
measure was liver weight as a percentage of body weight. @&&monses
were

Treatment
1 2 3 4

3.52 347 354 3.74
3.36 3.73 352 3.83
3.57 3.38 3.61 3.87
419 3.87 3.76 4.08
3.88 3.69 3.65 431
3.76 351 351 3.98
3.94 3.35 3.86

3.64 3.71

(&) Compute the overall mean and treatment effects.

(b) Compute the Analysis of Variance table for these data.aMWould
you conclude about the four diets?

An experimenter randomly allocated 125 male turkeys to figattment
groups: control and treatments A, B, C, and D. There were &slin each
group, and the mean results were 2.16, 2.45, 2.91, 3.00, ddd 2spec-
tively. The sum of squares for experimental error was 153ekt the null
hypothesis that the five group means are the same againstaireatve that
one or more of the treatments differs from the control.

Twelve orange pulp silage samples were divided at random fiour
groups of three. One of the groups was left as an untreatetotowhile
the other three groups were treated with formic acid, bek, gund sodium
chloride, respectively. One of the responses was the mieistantent of the
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silage. The observed moisture contents of the silage asershelow (data
from Caroet al. 1990):

NacCl Formic acid Beet pulp Control
80.5 89.1 77.8 76.7
79.3 75.7 79.5 77.2
79.0 81.2 77.0 78.6
Means 79.6 82.0 78.1 77.5

Grand mean 79.3

Compute an analysis of variance table for these data antheesull hypoth-
esis that all four treatments yield the same average meisamtents.

We have five groups and three observations per group. The gneans Exercise 3.4
are 6.5, 4.5,5.7,5.7, and 5.1, and the mean square for sr’th.i Compute
an ANOVA table for these data.

The leaves of certain plants in the gerAlbizziawill fold and unfold in Exercise 3.5
various light conditions. We have taken fifteen differeaies and subjected
them to red light for 3 minutes. The leaves were divided ihte¢ groups of
five at random. The leaflet angles were then measured 30, dB0aminutes
after light exposure in the three groups. Data from W. Hughes

Delay (minutes)| Angle (degrees)

30 140 138 140 138 142
45 140 150 120 128 130
60 118 130 128 118 118

Analyze these data to test the null hypothesis that delay akposure does
not affect leaflet angle.

Cardiac pacemakers contain electrical connections tegilatinum pins Problem 3.1
soldered onto a substrate. The question of interest is whelifferent op-
erators produce solder joints with the same strength. Tevelbstrates are
randomly assigned to four operators. Each operator sdidergins on each
substrate, and then these solder joints are assessed byringake shear
strength of the pins. Data from T. Kerkow.

Strength (Ib)
Operator Substrate 1 Substrate 2 Substrate 3

5.60 6.80 8.32 8.70 7.64 7.44 7.48 7.80 7.72 8.40 6.98 8.00
5.04 7.38 5.56 6.96 8.30 6.86 5.62 7.22 5.72 6.40 7.54 7.50
8.36 7.04 6.92 8.18 6.20 6.10 2.75 8.14 9.00 8.64 6.60 8.18
8.30 8.54 7.68 8.92 8.46 7.38 8.08 8.12 8.68 8.24 8.09 8.06

A OWN P
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Problem 3.2

Problem 3.3

Analyze these data to determine if there is any evidencetlif@abperators
produce different mean shear strengths. (Hint: what areefperimental
units?)

Scientists are interested in whether the energy costsiedah reproduc-
tion affect longevity. In this experiment, 125 male fruieiwere divided at
random into five sets of 25. In one group, the males were kefitdpselves.
In two groups, the males were supplied with one or eight riéeepirgin fe-
male fruit flies per day. In the final two groups, the males veengplied with
one or eight unreceptive (pregnant) female fruit flies per. d@ther than
the number and type of companions, the males were treatatiddlty. The
longevity of the flies was observed. Data from Hanley and 8bgp994).

Companiong Longevity (days)

None 35 37 49 46 63 39 46 56 63 65 56 65 70
63 65 70 77 81 86 70 70 77 77 81 77

lpregnant | 40 37 44 47 47 47 68 47 54 61 71 75 89
58 59 62 79 96 58 62 70 72 75 96 75

1 virgin 46 42 65 46 58 42 48 58 50 80 63 65 70
70 72 97 46 56 70 70 72 76 90 76 92

8pregnant | 21 40 44 54 36 40 56 60 48 53 60 60 65
68 60 81 81 48 48 56 68 75 81 48 68

8 virgin 16 19 19 32 33 33 30 42 42 33 26 30 40
54 34 34 47 47 42 47 54 54 56 60 44

Analyze these data to test the null hypothesis that reptoduactivity does
not affect longevity. Write a report on your analysis. Beestar describe the
experiment as well as your results.

Park managers need to know how resistant different vegetgipes are
to trampling so that the number of visitors can be contrdhesknsitive areas.
The experiment deals with alpine meadows in the White Maostaf New
Hampshire. Twenty lanes were established, each .5 m widd & long.
These twenty lanes were randomly assigned to five treatm@r2s, 75, 200,
or 500 walking passes. Each pass consists of a 70-kg indiMdearing lug-
soled boots walking in a natural gait down the lane. The nespaneasured
is the average height of the vegetation along the lane oneftea trampling.
Data based on Table 16 of Cole (1993).
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Number

of passeg Height (cm)

0 20.7 159 178 17.6
25 129 134 127 9.0
75 11.8 126 114 121
200 76 95 99 90
500 78 90 85 6.7

Analyze these data to determine if trampling has an effeéet ahe year, and
if so, describe that effect.

Caffeine is a common drug that affects the central nervosiesy. Among Problem 3.4
the issues involved with caffeine are how does it get fromitfoed to the
brain, and does the presence of caffeine alter the abilgjnoifar compounds
to move across the blood-brain barrier? In this experinhtab rats were
randomly assigned to one of eight treatments. Each treatowgrsisted of
an arterial injection of €'-labeled adenine together with a concentration of
caffeine (0 to 50 mM). Shortly after injection, the conceatitn of labeled
adenine in the rat brains is measured as the response (dataMcCall,
Millington, and Wurtman 1982).

Caffeine (mM) Adenine
0 574 690 3.86 6.94 6.49 1.87
0.1 291 414 6.29 440 3.77
0.5 580 5.84 3.18 3.18
1 349 216 7.36 198 551
5 592 3.66 462 347 1.33
10 305 194 123 345 161 432
25 127 69 85 .71 104 .84
50 93 147 127 113 125 55

The main issues in this experiment are whether the amouafigiice present
affects the amount of adenine that can move from the bloduetdtain, and
if so, what is the dose response relationship. Analyze tate

Engineers wish to know the effect of polypropylene fibers loag ¢com- Problem 3.5
pressive strength of concrete. Fifteen concrete cubesradeiped and ran-
domly assigned to five levels of fiber content (0, .25, .50, arfel 1%). Data
from Figure 2 of Paskova and Meyer (1997).
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Fiber

content (%)| Strength (ksi)
0 78 74 7.2
.25 79 75 73
.50 74 69 6.3
75 70 6.7 6.4
1 59 58 56

Analyze these data to determine if fiber content has an effieatoncrete
strength, and if so, describe that effect.

Question 3.1 Prove thap* = 39, p;/g is equivalent tdy7_; a; = 0.
Question 3.2 Prove that



Chapter 4

Looking for Specific
Differences—Contrasts

An Analysis of Variance can give us an indication that notladl treatment
groups have the same mean response, but an ANOVA does nedebytell
us which treatments are different or in what ways they differdo this, we
need to look at the treatment means, or equivalently, aréatrment effects.
One method to examine treatment effects is calledrarast

ANOVA is like background lighting that dimly illuminateslalf our data,

but not giving enough light to see details. Using a contradike using a Contrasts
spotlight; it enables us to focus in on a specific, narrowdieabf the data.  examine specific
But the contrast has such a narrow focus that it does not peeverall differences

picture. By using several contrasts, we can move our foomsnal and see
more features. Intelligent use of contrasts involves cimgpgur contrasts so
that they highlight interesting features in our data.

4.1 Contrast Basics

Contrasts take the form of a difference between means oagesiof means.
For example, here are two contrasts:

(1 +ae) — (1 + a3)

and
ptoast+ptay ptoaptptaztptas

2 3
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The first compares the means of treatments 6 and 3, while tumdeom-
pares the mean response in groups 2 and 4 with the mean resp@rsups
1,3,and5.

Contrasts Formally, acontrastis a linear combination of treatment means or effects

compare A witly = w({,uz}) or >-7_, wya; = w({a;}), where the coefficients;

averages of Sat|sfyz W =

means

Contrasts do not
depend on
a-restrictions

Pairwise
comparisons

\ Contrast coefficients add to zero. |

Less formally, we sometimes speak of the set of contrasficmefts{w; } as
being a contrast; we will try to avoid ambiguity. Notice th&cause the sum
of the coefficients is zero, we have that

g g g
w({a;}) = Zwiai = xZwi + Zwiai
i=1 i=1 i=1
g

= Y wilz+ o) =Y wilp+ o) = w({})
i=1

i=1

for any fixed constant x (say or ). We may also make contrasts in the
observed data:

{yzo Z WiYie = Zwl(yzo - yoo) = Z w0 = w({al}) :
=1 1=1

A contrast depends on the differences between the valuag bentrasted,
but not on the overall level of the values. In particular, atcast in treatment
means depends on the’s but not onu. A contrast in the treatment means
or effects will be the same regardless of whether we assuaterth= 0,

or > «; = 0, ory n;a; = 0. Recall that with respect to restrictions on
the treatment effects, we said that “the important things'tddepend on
which set of restrictions we use.” In particular, contrakia’'t depend on the
restrictions.

We may use several different kinds of contrasts in any ontysisaThe
trick is to find or construct contrasts that focus in on inséirg features of
the data.

Probably the most common contrasts pegrwise comparisonswhere
we contrast the mean response in one treatment with the rasparnrse in a
second treatment. For a pairwise comparison, one conwa#ficent is 1,
a second contrast coefficient is -1, and all other contrasfficaents are 0.
For example, in an experiment with= 4 treatments, the coefficients (0, 1,
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-1, 0) compare the means of treatments 2 and 3, and the ceeffiqt1, O,
1, 0) compare the means of treatments 1 and 3.gHRogatments, there are
g(g — 1)/2 different pairwise comparisons. We will consider simutans
inference for pairwise comparisons in Section 5.4.

A second classic example of contrasts occurs in an experimiém a
control and two or more new treatments. Suppose that treatinis a con-
trol, and treatments 2 and 3 are new treatments. We mighttwisbmpare
the average response in the new treatments to the averggmsesin the
control; that is, on average do the new treatments have the sssponse as
the control? Here we could use coefficients (-1, .5, .5), twhiould sub-
tract the average control response from the average ofriezds 2 and 3's
average responses. As discussed below, this contrasedpplihe observed
treatment meang¥,, + Js.)/2 — T1,) Would estimate the contrast in the
treatment effects(f2 + a3)/2 — ;). Note that we would get the same
kind of information from contrasts with coefficients (1,,--%) or (-6, 3, 3);
we've just rescaled the result with no essential loss ofrifion. We might
also be interested in the pairwise comparisons, includicmnaparison of the
new treatments to each other (0, 1, -1) and comparisons bf @abe new
treatments to control (1, -1, 0) and (1, O, -1).

Consider next an experiment with four treatments examittiegyrowth
rate of lambs. The treatments are four different food supplgs. Treat-
ment 1 is soy meal and ground corn, treatment 2 is soy mealranghd oats,
treatment 3 is fish meal and ground corn, and treatment 4 igrfestd and
ground oats. Again, there are many potential contrastsefdst. A contrast
with coefficients (.5, .5, -.5, -.5) would take the averaggpmnse for fish
meal treatments and subtract it from the average responseyaneal treat-
ments. This could tell us about how the protein source affdat response.
Similarly, a contrast with coefficients (.5, -.5, .5, -.5) uld take the average
response for ground oats and subtract it from the averagemss for ground
corn, telling us about the effect of the carbohydrate saurce

Finally, consider an experiment with three treatments énenm the ef-
fect of development time on the number of defects in compehgs pro-
duced using photolithography. The three treatments ard30and 60 sec-
onds of developing. If we think of the responses as lying otraght line
function of development time, then the contrast with cogfits (-1/30, 0,
1/30) will estimate the slope of the line relating responsetame. If instead
we think that the responses lie on a quadratic function oélibgment time,
then the contrast with coefficients (1/450, -2/450, 1/450) estimate the
guadratic term in the response function. Don’t worry for nagout where
these coefficients come from; they will be discussed in metaibin Sec-
tion 4.4. For now, consider that the first contrast comparegesponses at

Control versus
other treatments

Compare related
groups of
treatments

Polynomial
contrasts for
quantitative
doses
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w({7:})

estimates

w({pi})

Confidence
interval for

w({pi})

the ends to get a rate of change, and the second contrast @sipa ends
to the middle (which yields a O comparison for responses dragght line)
to assess curvature.

4.2 Inference for Contrasts

We use contrasts in observed treatment means or effectske imi@rence
about the corresponding contrasts in the true treatmems@eeffects. The
kinds of inference we work with here are point estimatesfidence inter-
vals, and tests of significance. The procedures we use farastg are similar
to the procedures we use when estimating or testing means.

The observed treatment megyg is an unbiased estimate of = i + «;,
so a sum or other linear combination of observed treatmeatsis an un-
biased estimate of the corresponding combination offse In particular,
a contrast in the observed treatment means is an unbiasethesof the
corresponding contrast in the true treatment means. Thusawes

Elw({7;e})] = Elw({ai})] = w({p}) = w{ai})

The variance ofj,, is 02/ni, and the treatment means are independent,
so the variance of a contrast in the observed means is

g 2

Varfw({7i})] = 023 ot

i=1 """

We will usually not knows2, so we estimate it by the mean square for error
from the ANOVA.

We compute a confidence interval for a mean parameter witgeheral
form: unbiased estimate ¢-multiplier x estimated standard error. Contrasts
are linear combinations of mean parameters, so we use theelsagit form.
We have already seen how to compute an estimate and stamdarce

({yzo} + tf)/?N gV MSg Z_
i=1

forms al — £ confidence interval forw({x;}). As usual, the degrees of
freedom for ourt-percent point come from the degrees of freedom for our
estimate of error variance, hele— g. We use the& /2 percent point because
we are forming a two-sided confidence interval, witf2 error on each side.
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The usuat-test statistic for a mean parameter takes the form

unbiased estimate null hypothesis value
estimated standard error of estimate

This form also works for contrasts. If we have the null hymsiks H, :
w({ui}) = 0, then we can do &test of that null hypothesis by computing
the test statistic

; w({Tie}) — 9

\/MSE \/ le%

Under Hy, this ¢-statistic will have at-distribution with N — ¢ degrees of  t-test for w({u:})
freedom. Again, the degrees of freedom come from our estiroherror

variance. Thep-value for thist-test is computed by getting the area under
thet-distribution with NV — ¢ degrees of freedom for the appropriate region:

either less or greater than the observextatistic for one-sided alternatives,

or twice the tail area for a two-sided alternative.

We may also compute a sum of squares for any contréy;, }):

SSw — (Z‘igzl wiyj.)z )

g wj

i=1 n;
This sum of squares has 1 degree of freedom, so its mean sgudre,, =
SSw/1 = 58,. We may usé\/ S,, to test the null hypothesis that{1; }) =
0 by forming the F-statistid/S,,/M Sg. If Hy is true, this F-statistic will
have an F-distribution with 1 anl — g degrees of freedonN — g fromthe  SS and F-test for
MSg). Itis not too hard to see that this F is exactly equal to theasg of w({pi})
the ¢-statistic computed for same null hypothesis- 0. Thus the F-test and
two-sidedi-tests are equivalent for the null hypothesis of zero cehtreean.
It is also not too hard to see that if you multiply the contremfficients by
a nonzero constant (for example, change from (-1, .5, .8} ,tel( -1)), then
the contrast sum of squares is unchanged. The squaredcocetaels from
the numerator and denominator of the formula.

Rat liver weights Example 4.1

Exercise 3.1 provided data on the weight of rat livers as egrgage of bod
weight for four different diets. Summary statistics fronogle data follow:
i 1 2 3 4

Yie 3.7/5 358 3.60 3.92
n; 7 8 6 8 MSE = .04138
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If diets 1, 2, and 3 are rations made by one manufacturer, g&tdids a
ration made by a second manufacturer, then it may be of sttesecompare
the responses from the diets of the two manufacturers tof skere is any
difference.

The contrast with coefficients (1/3, 1/3, 1/3, -1) will compghe mean
response in the first three diets with the mean response laghdiet. Note
that we intend “the mean response in the first three dietsetwte the av-
erage of the treatment averages, not the simple averagétbéalata from
those three treatments. The simple average will not be tine s& the aver-
age of the averages because the sample sizes are different.

Our point estimate of this contrast is

1 1 1
w({Tia}) = 375+ 5358 + 23.60 + (~1)3.92 = — 277

with standard error

P GE L G ER gsr

W=
Sl

SE(w({Fin})) = ¢.04138\/ (

The mean square for error h2&— 4 = 25 degrees of freedom. To construct
a 95% confidence interval fan({x;}), we need the upper 2.5% point of a
t-distribution with 25 degrees of freedom; this is 2.06, as ba found in
Appendix Table D.3 or using software. Thus our 95% confidémiesval is

—.277 £ 2.06 x .0847 = —.277 £+ .174 = (—.451,—.103) .

Suppose that we wish to test the null hypothésis w({u;}) = J. Here
we will use thet-test and F-test to tegf : w({x;}) = 6 = 0, but thet-test
can test other values of Ourt-test is

—-.277-0

=32
0847 327,

with 25 degrees of freedom. For a two-sided alternative, avepute thep-
value by finding the tail area under the&urve and doubling it. Here we get
twice .00156 or about .003. This is rather strong evideneénagthe null
hypothesis.

Because our null hypothesis value is zero with a two-sidedrative, we
can also test our null hypothesis by computing a mean sqaatied contrast
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Listing 4.1: SAS PROC GLM output for the rat liver contrast.

Source DF Type I SS Mean Square F Value
DIET 3 0.57820903 0.19273634 4.66
Contrast DF Contrast SS Mean Square F Value
1,2,3 vs 4 1 0.45617253 0.45617253 11.03

Listing 4.2: MacAnova output for the rat liver contrast.

component: estimate
(@) -0.28115
component: ss

(@) 0.45617
component: se

([@D) 0.084674

and forming an F-statistic. The sum of squares for our cehisa

(33.75 + 33.58 4+ 33.60 + (—1)3.92)?  (—.277)2
as3? | a3 | ape2 | 02 -
3 GRE L GF 4 C] 1733

The mean square is also .443, so the F-statistic is .44384110.7. We
compute ap-value by finding the area to the right of 10.7 under the
distribution with 1 and 25 degrees of freedom, getting .00®athet-test.

Listing 4.1 shows output from SAS for computing the sum ofaes for
this contrast; Listing 4.2 shows corresponding MacAnovigou The suq
t

of squares in these two listings differs from what we obtdiabove due
rounding at several steps.

4.3 Orthogonal Contrasts

Two contrastw} and{w*} are said to berthogonalif

9
Zwiwi*/ni =0 .
i=1

Pr > F

0.0102

Pr > F

0.0028
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g — 1 orthogonal
contrasts

Orthogonal
contrasts are
independent and
partition variation

Example 4.2

If there aregy treatments, you can find a setgpf 1 contrasts that are mutually
orthogonal, that is, each one is orthogonal to all of thersthdowever, there
are infinitely many sets af — 1 mutually orthogonal contrasts, and there are
no mutually orthogonal sets with more than 1 contrasts. There is an anal-
ogy from geometry. In a plane, you can have two lines that arpgndicular
(orthogonal), but yowwan't find a third line that is perpendicular to both of
the others. On the other hand, there are infinitely many papsrpendicular
lines.

The important feature of orthogonal contrasts applied seoked means
is that they are independent (as random variables). Theisatidom error of
one contrast is not correlated with the random error of dmogwnal contrast.
An additional useful fact about orthogonal contrasts i$ they partition the
between groups sum of squares. That is, if you compute the sfisguares
for a full set of orthogonal contrastg-{ 1 contrasts fog groups), then adding
up thosegy — 1 sums of squares will give you exactly the between groups sum
of squares (which also hgs— 1 degrees of freedom).

Orthogonal contrast inference

Suppose that we have an experiment with three treatmentsrteot and
two new treatments—uwith group sizes 10, 5, and 5, and tredgtmeans 6.3,
6.4, and 6.5. Thé/Sg is .0225 with 17 degrees of freedom. The contrast
w with coefficients (1, -.5, -.5) compares the mean responskeircontrol
treatment with the average of the mean responses in the aatnents. The
contrast with coefficients (0, 1, -1) compares the two neatinents. In our
example above, we had a control with 10 units, and two nevirtresats with

5 units each. These contrasts are orthogonal, because

O0x1 1x -5 —1x-.5
+ + =

10 ) ) 0

We have three groups so there are 2 degrees of freedom befgnwres,
and we have described above a set of orthogonal contrasts. sdin of
squares for the first contrast is

(6.3 —.5x 6.4 —.5 x 6.5)>
—.5)2 —.5)2
I G )

= 1125 ,

and the sum of squares for the second contrast is
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. 2
(0+64-65 _ 01 _

0 12, (=1)?
w+5+ss

The between groups sum of squares is

10(6.3 — 6.375)% + 5(6.4 — 6.375)% + 5(6.5 — 6.375)% = .1375

which equals .1125 + .025.

We can see from Example 4.2 one of the advantages of contwasts
the full between groups sum of squares. The control-vemsuseontrast has
a sum of squares which is 4.5 times larger than the sum of egdar the
difference of the new treatments. This indicates that tspaeses from the
new treatments are substantially farther from the con&sponses than they
are from each other. Such indications are not possible ubiadetween
groups sum of squares.

The actual contrasts one uses in an analysis arise from tiextof
the problem. Here we had new versus old and the differenceeeet the
two new treatments. In a study on the composition of ice craaemight
compare artificial flavorings with natural flavorings, or ergive flavorings
with inexpensive flavorings. It is often difficult to consttta complete set
of meaningful orthogonal contrasts, but that should nag¢idgbu from using
an incomplete set of orthogonal contrasts, or from usingrests that are
nonorthogonal.

‘ Use contrasts that address the questions you are tryingstaesn

4.4 Polynomial Contrasts

Section 3.10 introduced the idea of polynomial modeling afsponse when
the treatments had a quantitative dose structure. We sdl@acpolynomial
model by looking at the improvement sums of squares obtaiyeaidding
each polynomial term to the model in sequence. Each of thadiéianal
terms in the polynomial has a single degree of freedom,ikestl contrast. In
fact, each of these improvement sums of squares can be eth@sra contrast
sum of squares. We call the contrast that gives us the sunuafes for the
linear term the linear contrast, the contrast that giveh@ghprovement sum
of squares for the quadratic term the quadratic contradtsaron.

Contrasts isolate
differences

Contrasts yield
improvement S.S
in polynomial
dose-response
models
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Simple contrasts
for equally
spaced doses
with equal n;

Example 4.3

When the doses are equally spaeed the sample sizes are equal, then
the contrast coefficients for polynomial terms are fairljngie and can be
found, for example, in Appendix Table D.6; these contrastsaathogonal
and have been scaled to be simple integer values. Equalbedpdoses
means that the gaps between successive doses are the samé, 4s 7,
10. Using these tabulated contrast coefficients, we may atetpe linear,
quadratic, and higher order sums of squares as contrasisukfitting a sep-
arate polynomial model. Doses such as 1, 10, 100, 1000 a=dlegpaced
on a logarithmic scale, so we can again use the simple poligi@ontrast
coefficients, provided we interpret the polynomial as a polyial in the log-
arithm of dose.

When the doses are not equally spaced or the sample sizestagual,
then contrasts for polynomial terms exist, but are rathenglwated to de-
rive. In this situation, it is more trouble to derive the dazénts for the
polynomial contrasts than it is to fit a polynomial model.

Leaflet angles

Exercise 3.5 introduced the leaflet angles of plants at 30ad& 60 minutes
after exposure to red light. Summary information for thipestment is given
here:
Delay time (min)
30 45 60
e 139.6 133.6 1224
n; 5 5 5

MSE = 58.13

With three equally spaced groups, the linear and quadratitrasts are (-1,
0,1)and (1, -2, 1).
The sum of squares for linear is

((=1)139.6 + (0)133.6 + (1)122.4)?

=1, 0, 12
5o TsTE

= 7396 ,

and that for quadratic is

((1)139.6 + (—2)133.6 + (1)122.4)2

12 ( 2)2 12

Thus the F-tests for linear and quadratic &89.6/58.13 = 12.7 and
22.53/58.13 = .39, both with 1 and 12 degrees of freedom; there is a strong
linear trend in the means and almost no nonlinear trend.
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4.5 Further Reading and Extensions

Contrasts are a special caseestimable functionswhich are described in
some detail in Appendix Section A.6. Treatment means andages of
treatment means are other estimable functions. Estimabéibns are those
features of the data that do not depend on how we choose tiztése treat-
ment effects.

4.6 Problems

An experimenter randomly allocated 125 male turkeys to figatment
groups: 0 mg, 20 mg, 40 mg, 60 mg, and 80 mg of estradiol. There w
25 birds in each group, and the mean results were 2.16, 2.45, 3.00,
and 2.71 respectively. The sum of squares for experimental was 153.4.
Test the null hypothesis that the five group means are the agaiast the
alternative that they are not all the same. Find the lineaadeatic, cubic,
and quartic sums of squares (you may lump the cubic and quagether
into a “higher than quadratic” if you like). Test the null lotpesis that the
guadratic effect is zero. Be sure to repojt-galue.

Use the data from Exercise 3.3. Compute a 99% confidenceahter
the difference in response between the average of the tte@enent groups
(acid, pulp, and salt) and the control group.

Refer to the data in Problem 3.1. Workers 1 and 2 were expstn
whereas workers 3 and 4 were novices. Find a contrast to aartipaexpe-
rienced and novice workers and test the null hypothesistiagrienced and
novice works produce the same average shear strength.

Consider an experiment taste-testing six types of choealsip cookies:
1 (brand A, chewy, expensive), 2 (brand A, crispy, expens®gbrand B,
chewy, inexpensive), 4 (brand B, crispy, inexpensive), arfd C, chewy,
expensive), and 6 (brand D, crispy, inexpensive). We waltugenty different
raters randomly assigned to each type (120 total raters).

(a) Design contrasts to compare chewy with crispy, and esigemvith inex-
pensive.
(b) Are your contrasts in part (a) orthogonal? Why or why not?

A consumer testing agency obtains four cars from each of sikest
Ford, Chevrolet, Nissan, Lincoln, Cadillac, and Mercedelskes 3 and 6
are imported while the others are domestic; makes 4, 5, and éxpensive

Exercise 4.1

Exercise 4.2

Exercise 4.3

Exercise 4.4

Problem 4.1
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Problem 4.2

Problem 4.3

Question 4.1

while 1, 2, and 3 are less expensive; 1 and 4 are Ford produiiie, 2 and
5 are GM products. We wish to compare the six makes on theursailper
100,000 miles driven. The mean responses by make of car w&ré.3, 4.4,
4.7, 4.8, and 6.2, and the sum of squares for error was 2.25.

(&) Compute the Analysis of Variance table for this experimeWhat
would you conclude?

(b) Design a set of contrasts that seem meaningful. For eachast,
outline its purpose and compute a 95% confidence interval.

Consider the data in Problem 3.2. Design a set of contraatsséem
meaningful. For each contrast, outline its purpose andhestull hypothesis
that the contrast has expected value zero.

Consider the data in Problem 3.5. Use polynomial contrasthoose a
guantitative model to describe the effect of fiber proportm the response.

Show that orthogonal contrasts in the observed treatmeahsnare un-
correlated random variables.
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Multiple Comparisons

When we make several related tests or interval estimatdseaame time,
we need to makenultiple comparisongr do simultaneous inferencelhe
issue of multiple comparisons is one of error rates. Eachefindividual
tests or confidence intervals has a Type | error £atihat can be controlled
by the experimenter. If we consider the tests togetherfasdy, then we can
also compute a combined Type | error rate for the family aftesintervals.
When a family contains more and more true null hypothesesptbbabil-
ity that one or more of these true null hypotheses is rejectetases, and
the probability of any Type | errors in the family can becomute large.
Multiple comparisons procedures deal with Type | errorgdte families of
tests.

Carcinogenic mixtures

We are considering a new cleaning solvent that is a mixtui®0fchemicals
Suppose that regulations state that a mixture is safe iff aié @onstituents
are safe (pretending we can ignore chemical interactiong. t&&t the 10(
chemicals for causing cancer, running each test at the 5&t |&his is the
individual error rate that we can control.

What happens if all 100 chemicals are harmless and safe?uBeeae
are testing at the 5% level, we expect 5% of the nulls to bectejeeveny
when all the nulls are true. Thus, on average, 5 of the 100 idadswill be
declared to be carcinogenic, even when all are safe. Morgibube tests
are independent, then one or more of the chemicals will bt unsafe
in 99.4% of all sets of experiments we run, even if all the civais are safe
This 99.4% is a combined Type | error rate; clearly we haveoalpm.

Multiple
comparisons,
simultaneous

inference, families

of hypotheses

Example 5.1
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5.1 Error Rates

When we have more than one test or interval to consider, trerseveral
ways to define a combined Type | error rate for the family ofste$his vari-
ety of combined Type | error rates is the source of much caofLis the use
of multiple comparisons, as different error rates lead tiedint procedures.
People sometimes ask “Which procedure should | use?” wreeretl ques-
tion is “Which error rate do | want to control?”. As data arsd|yyou need
to decide which error rate is appropriate for your situatiol then choose
a method of analysis appropriate for that error rate. Thisaghof error rate
is not so much a statistical decision as a scientific decisidhe particular
area under consideration.

Data snoopings a practice related to having many tests. Data snooping

occurs when we first look over the data and then choose théyoditheses

to be tested based on “interesting” features in the data. t\Weatend to

do is consider many potential features of the data and disttenrse with
uninteresting or null behavior. When we data snoop and tleefopn a test,

we tend to see the smallgstalue from the ill-defined family of tests that we
considered when we were snooping; we have not really pegdrjost one
test. Some multiple comparisons procedures can actuatiyraldfor data
snhooping.

Simultaneous inferendg deciding which error rate we wish to control, gnd
then using a procedure that controls the desired error rate.

Let's set up some notation for our problem. We have a set afull
hypothese#{y,, Hoo, - .., Hox. We also have the “combined,” “overall,” or
“intersection” null hypotheseH| which is true ifall of the Hy; are true. In
formula,

Hoy=Hyp1 NHpaN---N Hyg.

The collectionHyy, Hoo, - .., Hox is sometimes called a family of null hy-
potheses. We rejedt if any of null hypothesediy; is rejected. In Exam-
ple 5.1, K = 100, Hy; is the null hypothesis that chemiciaik safe, and{
is the null hypothesis that all chemicals are safe so thamikeure is safe.

We now define five combined Type | error rates. The definitidribese
error rates depend on numbers or fractions of falsely rejbatll hypotheses
Hy;, which will never be known in practice. We set up the erroesdtere
and later give procedures that can be shown mathematicatiprtrol the
error rates.
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Theper comparison error rater comparisonwise error rates the prob-
ability of rejecting a particulaty; in a single test when thaly; is true.
Controlling the per comparison error rate€ameans that the expected frac- Comparisonwise
tion of individual tests that rejed,; when Hy is true is€. This is just the error rate
usual error rate for &test or F-test; it makes no correction for multiple com-
parisons. The tests in Example 5.1 controlled the per coisgraerror rate
at 5%.

Theper experiment error rater experimentwise error rater familywise
error rate is the probability of rejecting one or more of th#,; (and thus Experimentwise
rejecting Hy) in a series of tests when all of thé,; are true. Controlling error rate
the experimentwise error rate &imeans that the expected fraction of exper-
iments in which we would reject one or more of thk; when Hy is true
is £. In Example 5.1, the per experiment error rate is the fractibtimes
we would declare one or more of the chemicals unsafe whercirafewere
safe. Controlling the experimentwise error rate& atecessarily controls the
comparisonwise error rate at no more tifanthe experimentwise error rate
considers all individual null hypotheses that were rejggdfeany one of them
was correctly rejected, then there is no penalty for anyefaedgections that
may have occurred.

A statistical discovery is the rejection of diy;. The false discovery
fraction is O if there are no rejections; otherwise it is themter of false False discovery
discoveries (Type | errors) divided by the total number afcdiveries. The rate
false discovery ratéFDR) is the expected value of the false discovery frac-
tion. If Hy is true, then all discoveries are false and the FDR is just the
experimentwise error rate. Thus controlling the FDRE &tlso controls the
experimentwise error &. However, the FDR also controls &tthe average
fraction of rejections that are Type | errors when saifygare true and some
are false, a control that the experimentwise error rate doeprovide. With
the FDR, we are allowed more incorrect rejections as the rumbtrue re-
jections increases, but the ratio is limited. For exampl#) WDR at .05, we
are allowed just one incorrect rejection with 19 correctcépns.

The strong familywise error ratés the probability of making any false
discoveries, that is, the probability that the false disegyraction is greater
than zero. Controlling the strong familywise error rate&€aneans that the  Strong familywise
probability of making any false rejections & or less, regardless of how error rate
many correct rejections are made. Thus one true rejectionatanake any
false rejections more likely. Controlling the strong faymilse error rate at
£ controls the FDR at no more th&h In Example 5.1, a strong familywise
error rate of would imply that in a situation where 2 of the chemicals were
carcinogenic, the probability of declaring one of the ot®81to be carcino-
genic would be no more thah
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Finally, suppose that each null hypothesis relates to sarengeter (for
example, a mean), and we put confidence intervals on all {heseneters.
An error occurs when one of our confidence intervals failsaeec the true
parameter value. If this true parameter value is also thégpbthesis value,
then an error is a false rejection. Thienultaneous confidence intervals-
terion states that all of our confidence intervals must ctdver true param-
eters simultaneously with confidente- £. Simultaneoug — £ confidence
intervals also control the strong familywise error rate @tmore thar€. (In
effect, the strong familywise criterion only requires sltaneous intervals
for the null parameters.) In Example 5.1, we could constsiroultaneous
confidence intervals for the cancer rates of each of the 186hidals. Note
that a single confidence interval in a collection of inteswaith simultaneous
coveragd — & will have coverage greater than- £.

There is a trade-off between Type | error and Type Il erroilifiig to
reject a null when it is false). As we go to more and more semglype |
error rates, we become more confident in the rejections thatsamake, but
it also becomes more difficult to make rejections. Thus, wieing the more
stringent Type | error controls, we are more likely to failrggect some null
hypotheses that should be rejected than when using thetieggesat rates. In
simultaneous inference, controlling stronger error rgads to less powerful
tests.

Functional magnetic resonance imaging

Many functional Magnetic Resonance Imaging (fMRI) studiesinterested
in determining which areas of the brain are “activated” wiaesubject is
engaged in some task. Any one image slice of the brain mayaco&000
voxels (individual locations to be studied), and one analygthod produces
at-test for each of the 5000 voxels. Null hypotheHig is that voxeli is not
activated. Which error rate should we use?

If we are studying a small, narrowly defined brain region ameduancon-
cerned with other brain regions, then we would want to tedividually the
voxels in the brain regions of interest. The fact that thes= 4999 other
voxels is unimportant, so we would use a per comparison rdetho

Suppose instead that we are interested in determining iié thge any
activations in the image. We recognize that by making masiste/e are
likely to find one that is “significant”, even when all nullseatrue; we want
to protect ourselves against that possibility, but otheemeed no stronger
control. Here we would use a per experiment error rate.

Suppose that we believe that there will be many activatism¢hatH is
not true. We don’t want some correct discoveries to open tuelfyates for
many false discoveries, but we are willing to live with soralsé discoveries
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as long as they are a controlled fraction of the total madés iShacceptablé
because we are going to investigate several subjects;ulyedattivated re
jections should be rejections in most subjects, and the fejections will be
scattered. Here we would use the FDR.

Suppose that in addition to expecting true activations, weaéso only
looking at a single subject, so that we can’t use multiplgesttb to determing
which activations are real. Here we don’t want false adtivest to cloud our
picture, so we use the strong familywise error rate.

Finally, we might want to be able to estimate the amount dfation in

every voxel, with simultaneous accuracy for all voxels. ¢dee would use
simultaneous confidence intervals.

A multiple comparisons proceduiga method for controlling a Type | error
rate other than the per comparison error rate.

The literature on multiple comparisons is vast, and despédength of
this Chapter, we will only touch the highlights. | have seeiteja bit of
nonsense regarding these methods, so | will try to set oberatarefully
what the methods are doing. We begin with a discussion of &omfi-based
methods for combining generic tests. Next we consider theff proce-
dure, which is useful for contrasts suggested by data (aetepsng). Then
we turn our attention to pairwise comparisons, for whichétere dozens of
methods. Finally, we consider comparing treatments to @rcbar to the
best response.

5.2 Bonferroni-Based Methods

The Bonferroni technique is the simplest, most widely aggilie multiple

comparisons procedure. The Bonferroni procedure works fiored set of

K null hypotheses to test or parameters to estimate.plbe thep-value

for testing Hy;. The Bonferroni procedure says to obtain simultaneous Ordinary
& confidence intervals by constructing individual confidemgervals with Bonferroni
coveragd — £/ K, or rejectHy; (and thusH)) if

pi<5/K .

That is, simply run each test at lew@l K. The testing version controls the
strong familywise error rate, and the confidence intervedssamultaneous.
The tests and/or intervals need not be independent, of the §gpe, or re-
lated in any way.
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RejectH;) if Method Control
iy < E/K Bonferroni  Simultaneous confidence
intervals
) <E/(K —j+1) Holm Strong familywise error
forallj =1,...,i rate
Py < JE/K FDR False discovery rate;
for somej > i needs independent tests
Display 5.1: Summary of Bonferroni-style methods f&r comparisons.
The Holm procedure is a modification of Bonferroni that controls the
strong familywise error rate, but does not produce simelbars confidence
Holm intervals (Holm 1979). Lep(y),...,p(x) be thep-values for thek tests

FDR modification
of Bonferroni
requires
independent tests

sorted into increasing order, and kg ;) be the null hypotheses sorted along
with thep-values. Then rejedt ;) if

pG) SENK —j+1)foralj=1,... i

Thus we start with the smallegtvalue; if it is rejected we consider the next
smallest, and so on. We stop when we reach the first nonsigmifievalue.
This is a little more complicated, but we gain some poweresiogly the
smallesip-value is compared t6/ K.

The FDR method of Benjamini and Hochberg (1995) controlsihlse
Discovery Rate. Once again, sort thevalues and the hypotheses. For the
FDR, start with the largegt-value and work down. Rejedy; if

p(j) < jE€/K for somej > i.

This procedure is correct when the tests are statisticadlgpendent. It con-
trols the FDR, but not the strong familywise error rate.

The three Bonferroni methods are summarized in Display &Edam-
ple 5.3 illustrates their use.
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Sensory characteristics of cottage cheeses

Table 5.1 shows the results of an experiment comparing th&osg charac
teristics of nonfat, 2% fat, and 4% fat cottage cheese (Michi1995). Th
table shows the characteristics grouped by typeaudlues for testing th
null hypothesis that there was no difference between tleetbheeses in t
various sensory characteristics. There are 21 charaatsris three groups
of sizes 7, 6, and 8.

How do we do multiple comparisons here? First we need to know:

1. Which error rate is of interest?

2. If we do choose an error rate other than the per comparisonrate,
what is the appropriate “family” of tests? Is it all 21 chasatstics, or
separately within group of characteristic?

There is no automatic answer to either of these questions.ahbwers de
pend on the goals of the study, the tolerance of the investigaType | error,
how the results of the study will be used, whether the ingestir views the
three groups of characteristics as distinct, and so on.

The last two columns of Table 5.1 give the results of the Bonfs,
Holm, and FDR procedures applied at the 5% level to all 21 @epns
and within each group. Thg-values are compared to the criteria in Djs-
play 5.1 usingk’ = 21 for the overall family andx” of 7, 6, or 8 for by group
comparisons.

Consider the characteristic “cheesy flavor” with a @Btalue. If we use
the overall family, this is the tenth smallgsvalue out of 21p-values. The
results are

e BonferroniThe critical value is05/21 = .0024—not significant.
e HolmThe critical value is05/(21 — 10+ 1) = .0042—not significant.
e FDR The critical value isl0 x .05/21 = .024—significant.

If we use the flavor family, this is the fourth smallgstalue out of sixp-
values. Now the results are

e BonferroniThe critical value is05/6 = .008—not significant.

e Holm The critical value is05/(6 — 4 + 1) = .017 (and all smaller
p-values meet their critical values)—significant.

e FDR The critical value ist x .05/6 = .033—significant.

Example 5.3
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Table 5.1: Sensory attributes of three cottage cheegeslues and 5%
significant results overall and familywise by type of attitid using the
Bonferroni @), Holm (0), and FDR methodsj.

Characteristic p-value Overall By group
Appearance

White .004 * PYers

Yellow .002 00X eOox

Gray .13

Curd size .29

Size uniformity .73

Shape uniformity .08

Liquid/solid ratio .02 * *
Flavor

Sour 40

Sweet .24

Cheesy .01 * ox

Rancid .0001 °0% °0%

Cardboard .0001 00X °ox

Storage .001 e 0Ox
Texture

Breakdown rate .001 00K 00K

Firm .0001 [ Yo3'3 [ Yo3'S

Sticky 41

Slippery .07

Heavy 15

Particle size 42

Runny .002 [ Yo3'S [ Yo¥'S

Rubbery .006 * 00K

These results illustrate that more null hypotheses aretegjeconsidering
each group of characteristics to be a family of tests rathan bverall (the
K is smaller for the individual groups), and fewer rejectians made using
the more stringent error rates. Again, the choices of eata and family of
tests are not purely statistical, and controlling an erate within a group of
tests does not control that error rate for all tests.
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5.3 The Schefé Method for All Contrasts

The Scheffé method is a multiple comparisons techniquedatrasts that

produces simultaneous confidence intervalsafoyandall contrastsinclud-

ing contrasts suggested by the dafbhus Scheffé is the appropriate tech-

nique for assessing contrasts that result from data sngophis sounds like  Scheffé protects

the ultimate in error rate control—arbitrarily many compans, even ones against data
suggested from the data! The downside of this amazing fiotets low  snooping, but has
power. Thus we only use the Scheffé method in those situstichere we low power

have a contrast suggested by the data, or many, many caentnastcannot
be handled by other techniques. In addition, pairwise coisa contrasts
Uie — Uje» EVEN pairwise comparisons suggested by the data, are batte
dled by methods specifically designed for pairwise compass

We begin with the Scheffé test of the null hypotheRis: w({«;}) =0
against a two-sided alternative. The Scheffé test dtatssthe ratio

SSw/(g—=1)
MSg ’

we get gp-value as the area under an F-distribution with 1 andv degrees Scheffé F-test
of freedom to the right of the test statistic. The degreessd#donw are from

our denominatod/ Sg; v = N — g for the completely randomized designs

we have been considering so far. Reject the null hypoth&#issi p-value

is less than our Type | error raté In effect, the Scheffé procedure treats

the mean square for any single contrast as if it were theyfulll degrees of

freedom between groups mean square.

There is also a Scheffétest for contrasts. Suppose that we are testing
the null hypothesidd, : w({«;}) = ¢ against a two-sided alternative. The
Scheffét-test controls the Type | error rate &by rejecting the null hypoth- Scheffé t-test
esis when

lw({Zie}) — 9| T
> — 1D Feg-1. s

whereFg ,_1, is the uppe& percent point of an F-distribution with — 1
andv degrees of freedom. Again,is the degrees of freedom far Sg. For
the usual null hypothesis valde= 0, this is equivalent to the ratio-of-mean-
squares version given above.

We may also use the Scheffé approach to form simultaneonfdence Scheffé
intervals for anyw({a; }): confidence
interval

9 w?
w({Ti}) £ (9~ DFeg10 % || MSp Y —*.
i=1 "
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Example 5.4

These Scheffé intervals have simultaneadus £ coverage over any set of
contrasts, including contrasts suggested by the data.

Acid rain and birch seedlings, continued
Example 3.1 introduced an experiment in which birch segdliwere ex-
posed to various levels of artificial acid rain. The follogitable gives some
summaries for the data:

pH 47 40 33 30 23

weight | .337 .296 .320 .298 .177

n 48 48 48 48 48

The M SE was.0119 with 235 degrees of freedom.

Inspection of the means shows that most of the response raeaabout
.3, but the response for the pH 2.3 treatment is much lower. Jinggests
that a contrast comparing the pH 2.3 treatment with the méaimeoother
treatments would have a large value. The coefficients far ¢bintrast are
(.25, .25, .25, .25, -1). This contrast has value

337 +.296 + .320 + .298
4

—.177 = .1357

and standard error

0625  .0625 .0625 .0625 1
\/.0119( 13 + 13 + 13 + 13 —i-@)—.Ol?ﬁ.

We must use the Scheffé procedure to construct a confidatergal or
assess the significance of this contrast, because the sow#a suggested
by the data. For a 99% confidence interval, the Scheffé plieitiis

\/4 Fo1,,235 = 3.688 .

Thus the 99% confidence interval for this contrast#7—3.688 x .0176 up
to.1357 + 3.688 x .0176, or (.0708, .2006). Alternatively, theestatistic for
testing the null hypothesis that the mean response in thgrasp is equal to
the average of the mean responses in the other four groups/.0176 =
7.71. The Scheffé critical value for testing the null hypotisesitheS = .001
level is

\/(9 —1D)Fe g 1n—g= \/4 Floo1,4,235 = V4 X 4.782 = 437,

so we can reject the null at the .001 level.
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Remember, it is not fair to hunt around through the data fagacbntrast
test it, and think that you've only done one comparison.

5.4 Pairwise Comparisons

A pairwise comparisoris a contrast that examines the difference between
two treatment mearg, — 7;,. Forg treatment groups, there are

(9-1)
(§)=5—

different pairwise comparisons. Pairwise comparisonsgutares control a
Type | error rate af for all pairwise comparisons. If we data snoop, choose
the biggest and smalleg,’s and take the difference, we have not made just
one comparison; rather we have madeyédl — 1)/2 pairwise comparisons,
and selected the largest. Controlling a Type | error rateHisrgreatest dif-
ference is one way to control the error rate for all differesic

As with many other inference problems, pairwise compasgsoen be

approached using confidence intervals or tests. That is, &g compute Tests or
confidence intervals for the differences — 1; or o; — a; or test the null confidence
hypotheseddy;; : 1; = p; or Hy;j : o = ;. Confidence regions for the intervals

differences of means are generally more informative thsiste

A pairwise comparisons procedure can generally be viewedasical
value (or set of values) for thietests of the pairwise comparison contrasts.
Thus we would reject the null hypothesis that— o; = 0 if

’yio - yjo‘

\/M—SEW/l/’I’Li + 1/7’Lj

whereuw is a critical value. Various pairwise comparisons proceduliffer Critical values u
in how they define the critical valug, andu may depend on several things, for t-tests
including&, the degrees of freedom far Sz, the number of treatments, the

number of treatments with means betwegnandy;,, and the number of

treatment comparisons with largestatistics.

An equivalent form of the test will reject if

‘yio_yjo’ >u \/MSE\/ 1/”1"‘1/”] :Dij .

>,
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If all sample sizes are equal and the critical values constant, therD,;
Significant will be the same for all, j pairs and we would reject the null if any pair of
differences D;; treatments had mean responses that differe@ lmy more. This quantityD

is called asignificant differencgfor example, using a Bonferroni adjustment

to theg(g—1)/2 pairwise comparisons tests leads to a Bonferroni significan

difference (BSD).

Confidence intervals for pairwise differenqgs- 1; can be formed from
the pairwise tests via

(Tie — Ujo) TuvMSp\/1/n; +1/n; .

The remainder of this section presents methods for dispdetyie results
of pairwise comparisons, introduces the Studentized radigeusses sev-
eral pairwise comparisons methods, and then illustrategthods with an
example.

5.4.1 Displaying the results

Pairwise comparisons generate a lot of tests, so we neeéi@mi and com-

Underline pact ways to present the results. dmderline diagrams a graphical presen-
diagram tation of pairwise comparison results; construct the ulirteediagram in the
summarizes following steps.

pairwise

comparisons 1. Sort the treatment means into increasing order and wiitér@atment

labels (numbers or names) along a horizontal axis.7fhiealues may
be added if desired.

2. Draw a line segment under a group of treatments if no paireait-
ments in that group is significantly different. Do not inatughort lines
that are implied by long lines. That is, if treatments 4, 5 &rare not
significantly different, only use one line under all of themeta line
under 4 and 5, and a line under 5 and 6, and a line under 4, 5,.and 6

Here is a sample diagram for three treatments that we lab@] And C:

C A B

This diagram includes treatment labels, but not treatmeaxgtma. From this
summary we can see that C can be distinguished from B (thaceliaderline
that covers both B and C), but A cannot be distinguished fritheeB or C

(there are underlines under A and C, and under A and B).
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Note that there can be some confusion after pairwise cosgasi You
must not confuse “is not significantly different from” or ‘fwaot be distin- Insignificant
guished from” with “is equal to.” Treatment mean A cannot lopia to difference does
treatment means B and C and still have treatment means B ad €jnal  notimply equality
each other. Such a pattern can hold for results of significtasts.

There are also several nongraphical methods for displgangise com-
parisons results. In one method, we sort the treatment®idir of increas-
ing means and print the treatment labels. Each treatmesitimfollowed by Letter or number
one or more numbers (letters are sometimes used insteag)tréatments tags
sharing a number (or letter) are not significantly differefibus treatments
sharing common numbers or letters are analogous to tre&trbeimg con-
nected by an underline. The grouping letters are often ppamentheses or
set as sub- or superscripts. The results in our sample umeldibgram might
thus be presented as one of the following:

C(l) A(12) B(2) C(a) A(ab) B (b)
Cl A12 BZ Ce Aab Bb

There are several other variations on this theme.

A third way to present pairwise comparisons is as a tablé, tnéiatments Table of CI's or
labeling both rows and columns. Table elements can flagfgignt differ- significant
ences or contain confidence intervals for the differencesdy éntries above differences
or below the diagonal of the table are needed.

5.4.2 The Studentized range

The range of a set is the maximum value minus the minimum yalod

Studentizatiomeans dividing a statistic by an estimate of its standaxt.err Range,
Thus theStudentized rang®r a set of treatment means is Studentization,
and Studentized
max —Jie e Yje range

( \/MSE/’I’L J \/MSE/’I’L.

Note that we have implicitly assumed that all the samplessizeare the
same.

If all the treatments have the same mean, that i&]ifis true, then the
Studentized range statistic follows the Studentized ratigtebution. Large Studentized
values of the Studentized range are less likely undgrand more likely  range distribution
under the alternative when the means are not all equal, soayeuse the
Studentized range as a test statisticHfgr rejectingH, when the Studentized
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range statistic is sufficiently large. This Studentizedyetest is a legitimate
alternative to the ANOVA F-test.

The Studentized range distribution is important for pasexcomparisons
because it is the distribution of the biggest (scaled) diffiee between treat-
ment means when the null hypothesis is true. We will use it bsilding
block in several pairwise comparisons methods.

The Studentized range distribution depends only emdv, the number
of groups and the degrees of freedom for the error estidigie. The quan-
tity gs(g, v) is the uppe€ percent point of the Studentized range distribution
for g groups and error degrees of freedom; it is tabulated in Appendix Ta-
ble D.8.

5.4.3 Simultaneous confidence intervals

The Tukey honest significant difference (HSD) is a pairwisenparisons
technique that uses the Studentized range distributioartstauct simultane-
ous confidence intervals for differences of all pairs of nsediwe reject the
null hypothesigiy,;; when the (simultaneous) confidence interval/fpr- 1
does not include 0, then the HSD also controls the stronglyansie error
rate.

The HSD uses the critical value

(5 » g) qg(ga )

5

leading to

HSD_Q59’ VMSg +—

Form simultaneous$ — 5 confidence intervals via
_ _ QE 97 /
yio - y ° _ + -

The degrees of freedomare the degrees of freedom for the error estimate
MSg.

Strictly speaking, the HSD is only applicable to the equahgie size
situation. For the unequal sample size case, the approxirfab is

HSDZ_] = q¢ g» \/ SE\/

SE

2nm]/ n; +n;)
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Table 5.2: Total free amino acids in cheeses
after 168 days of ripening.

Strain added
None A B A&B
4.195 4.125 4.865 6.15p
4.175 4.735 5.745 6.488
or, equivalently, Tukey-Kramer
form for unequal
qg(g, 1/) 1 1 sample sizes
HSD;; = v M —+—) .
S j \/5 Sp (nl + nj)
This approximate HSD, often called the Tukey-Kramer foramds to be
slightly conservative (that is, the true error rate is dligless thart).
The Bonferroni significant difference (BSD) is simply thepfpation of Bonferroni
the Bonferroni technique to the pairwise comparisons gmoltb obtain significant

difference or BSD
u=u(&,v,K) = tgok)w »

BSD;; = tg/(QK)J,\/MSE\/l/TLZ'—|—1/’I’Lj,

whereK is the number of pairwise comparisons. We h&ve= g(g — 1)/2
for all pairwise comparisons betwegmroups. BSD produces simultaneous
confidence intervals and controls the strong familywiseramwte.

When making all pairwise comparisons, the HSD is less tharBthD. Use HSD when
Thus we prefer the HSD to the BSD for all pairwise comparistesause making all
the HSD will produce shorter confidence intervals that dliesghultaneous. pairwise
When only a preplanned subset of all the pairs is being censitj the BSD comparisons

may be less than and thus preferable to the HSD.

Free amino acids in cheese Example 5.5

Cheese is produced by bacterial fermentation of milk. Someédsia in
cheese are added by the cheese producer. Other bacteriaseatibut werg
not added deliberately; these are called nonstarter bactdonstarter bac
teria vary from facility to facility and are believed to inflnce the quality o
cheese.

Two strains (A and B) of nonstarter bacteria were isolateal @temium
cheese facility. These strains will be added experimgntalktheese to dete(l-
mine their effects. Eight cheeses are made. These cheéges alstandar
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starter bacteria. In addition, two cheeses will be randasalgcted for each
of the following four treatments: control, add strain A, atdain B, or add
both strains A and B. Table 5.2 gives the total free aminossicidhe cheeses
after 168 days of ripening. (Free amino acids are thoughoturibute to
flavor.)

Listing 5.1 gives Minitab output showing an Analysis of \érce for
these datal, as well as HSD comparisons (called Tukey’s pairwise compar
isons) usingg = .1 0; we use theV/ Sg from this ANOVA in constructing
the HSD. HSD is appropriate if we want simultaneous confidentervals
on the pairwise differences. The HSD is

qe(g,v) [1 1 q.1(4,4) 1
vVMS — 4+ — = ———=V.1572/=+
\/5 E n; nj \/5 2

= 4.586 x .3965/1.414 = 1.286 .

DO =

We form confidence intervals as the observed differencemtinent means,
plus or minus 1.286; so for A&B minus control, we have

6.322 — 4.185 + 1.286 or (.851, 3.423) .

In fact, only two confidence intervals for pairwise diffeoes do not include
zero (see Listing 5.10). The underline diagram is:

C A B Aé&B
419 443 531 6.32

Note in Listing 5.1 that Minitab displays pairwise comparisons as a table
of confidence intervals for differences.

5.4.4 Strong familywise error rate

A step-down methods a procedure for organizing pairwise comparisons
starting with the most extreme pair and then working in. Beldéhe groups
so that the sample means are in increasing ordergyjth smallest ang ),
largest. (The relabeled estimated effe@tg will also be in increasing or-
der, but the relabeled true effeetg; may or may not be in increasing order.)
With this orderingy;), t07(,), is a stretch ofy meansy ), to j,_1), is @
stretch ofg — 1 means, ang;), t0 7, is a stretch ofi —i + 1 means. In a
step-down procedure, all comparisons for stretchdsrokans use the same
critical value, but we may use different critical values éfferent k. This
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Listing 5.1: Minitab output for free amino acids in cheese.

Source DF SS MS F P 0
Trt 3 5.628 1.876 11.93 0.018
Error 4 0.629 0.157
Total 7 6.257

Individual 95% CIs For Mean

Based on Pooled StDev
Level N Mean StDev -----—- o o o +
A 2 4.4300 0.4313 (-————- e )
A+B 2 6.3215 0.2355 (---————- e )
B 2 5.3050 0.6223 (-————-- e )
control 2 4.1850 0.0141 (------- o ———— )

—————— o
Pooled StDev = 0.3965 4.0 5.0 6.0 7.0
Tukey’s pairwise comparisons []

Family error rate = 0.100
Individual error rate = 0.0315

Critical value = 4.59

Intervals for (column level mean) - (row level mean)
A A+B B

A+B -3.1784

-0.6046
B -2.1619 -0.2704

0.4119 2.3034
control -1.0419 0.8496 -0.1669

1.5319 3.4234 2.4069
Fisher’s pairwise comparisons []

Family error rate = 0.283
Individual error rate = 0.100

Critical value = 2.132

Intervals for (column level mean) - (row level mean)
A A+B B
A+B -2.7369
-1.0461
B -1.7204 0.1711
-0.0296 1.8619
control -0.6004 1.2911 0.2746

1.0904

N

.9819 1.9654
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(7) and (5) are
different if their
stretch and all
containing
stretches reject

REGWR is
step-down with
Studentized
range based
critical values

Example 5.6

has the advantage that we can use larger critical valuesrigrdtretches and
smaller critical values for short stretches.

Begin with the most extreme pait) and(g). Test the null hypothesis
that all the means fo(1) up through(g) are equal. If you fail to reject,
declare all means equal and stop. If you reject, de¢lgrdifferent from(g)
and go on to the next step. At the next step, we consider te&kas(1)
through(g — 1) and(2) through(g). If one of these rejects, we declare its
ends to be different and then look at shorter stretchesmithif we fail to
reject for a stretch, we do not consider any substretchdsnibe stretch.
We repeat this subdivision till there are no more rejectidnsother words,
we declare that mear{s) and(j) are different if the stretch fron) to (y)
rejects its null hypothesis and all stretches contairiingo (j) also reject
their null hypotheses.

The REGWR procedure is a step-down range method that cseritrel
strong familywise error rate without producing simultang@onfidence in-
tervals. The awkward name REGWR abbreviates the Ryan-Eabriel-
Welsch range test, named for the authors who worked on it. RE@WR
critical value for testing a stretch of lengthdepends ort, v, k, andg.
Specifically, we use

u=u(&,vk,g) ZQg(k?,I/)/\/i k=g,9—1,
and
u=u(&,v,k,g) :qu/g(k,u)/ﬂ k=g—2,g—3,...,2.

This critical value derives from a Studentized range viitgroups, and we
use percent points with smaller tail areas as we move in tdenséretches.

As with the HSD, REGWR error rate control is approximate wkiesn
sample sizes are not equal.

Free amino acids in cheese, continued

Suppose that we only wished to control the strong familyweiser rate in-
stead of producing simultaneous confidence intervals. Temrould use
REGWR instead of HSD and could potentially see additiorgaiificant dif-
ferences. Listing 5.21 gives SAS output for REGWR (called REGWQ in
SAS) for the amino acid data.

REGWR is a step-down method that begins like the HSD. ComgaZi
and A&B, we conclude as in the HSD that they are different. Vg mow
compare C with B and A with A&B. These are comparisons thaolve
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Listing 5.2: SAS output for free amino acids in cheese.

Student-Newman-Keuls test for variable: FAA
Alpha= 0.1 df= 4 MSE= 0.157224

Number of Means 2 3 4
Critical Range 0.84531 1.1146718 1.2859073

Means with the same letter are not significantly different.

SNK Grouping Mean N TRT
A 6.3215 2 4
B 5.3050 2 3
C 4.4300 2 2
C
C 4.1850 2 1

Ryan-Einot-Gabriel-Welsch Multiple Range Test for variable: FAA
Alpha= 0.1 df= 4 MSE= 0.157224

Number of Means 2 3 4
Critical Range 1.0908529 1.1146718 1.2859073

Means with the same letter are not significantly different.

REGWQ Grouping Mean N TRT

A 6.3215 2 4
A

B A 5.3050 2 8

B

B C 4.4300 2 2
C
C 4.1850 2 1

stretches ok = 3 means; sincé = g — 1, we still use€ as the error rat
The significant difference for these comparisons is

qgk” VM L (“34 V572 ,/1 %_1.115

n;
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SNK

Example 5.7

Both the B-C and A&B-A differences (1.12 and 1.89) exceed thitoff, so
REGWR concludes that B differs from C, and A differs from A&Recall
that the HSD did not distinguish C from B.

Having concluded that there are B-C and A&B-A differences, san
now compare stretches of means within them, namely C to A, B,tand
B to A&B. These are stretches &f= 2 means, so for REGWR we use the
error ratek€ /g = .05. The significant difference for these comparisons is

k 1/
qm M 1/ +— q°5 ) /1573 S —1101 .
J

None of the three differences exceeds this cutoff, so wadaibnclude that
those treatments differ and finish. The underline diagram is

C A B Aé&B
419 443 531 6.32

Note in Listing 5.20 that SAS displays pairwise comparisons using what
amounts to an underline diagram turned on its side, withoagiines formed
by letters.

5.4.5 False discovery rate

The Student-Newman-Keuls (SNK) procedure is a step-dowthaoaethat
uses the Studentized range test with critical value

u:u(577/7k7g) ZQ:E'(kJV)/\/i

for a stretch ofc means. This is similar to REGWR, except that we keep the
percent point of the Studentized range constant as we gmttesistretches.
The SNK controls the false discovery rate, but not the striamgilywise
error rate. As with the HSD, SNK error rate control is appnoxie when the
sample sizes are not equal.

Free amino acids in cheese, continued

Suppose that we only wished to control the false discovelsy, naow we
would use SNK instead of the more stringent HSD or REGWRrkgs5.2
O gives SAS output for SNK for the amino acid data.

SNK is identical to REGWR in the first two stages, so SNK wii@pet
to the point of making the comparisons of the three pairs C,t4 %o B, and
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B to A&B. However, the SNK significant difference for theserpas less
than that used in REGWR:

qe(k,v) 11 qi(2,4) T 1
2 MSE | — 4 — = T2V ABT2 /= 4 - = .845 .
V2 P\ g V2 22

Both the B-A and A&B-B differences (1.02 and .98) exceed thioff, but
the A-C difference (.14) does not. The underline diagranSiK is:

C A B A&B
419 443 531 6.32

5.4.6 Experimentwise error rate

The Analysis of Variance F-test for equality of means cdstthe experi-
mentwise error rate. Thus investigating pairwise diffeesonly when the Protected LSD

F-test has @-value less thai® will control the experimentwise error rate. uses F-test to
This is the basis for the Protected least significant diffeeg or Protected ~ control
LSD. If the F-test rejects at levé], then do simple-tests at leveE among experimentwise
the different treatments. error rate

The critical values are from#@distribution:

U(E, V) = t€/2,l/ )

leading to the significant difference

LSD = tg/QJ,\/MSE\/l/TLZ' + 1/’1’Lj .

As usualy is the degrees of freedom far S, andtg 2 ,, is the uppet /2
percent point of &-curve withv degrees of freedom.

Confidence intervals produced from the protected LSD do awk hhe
anticipatedl — £ coverage rate, either individually or simultaneously. See
Section 5.7.

Free amino acids in cheese, continued Example 5.8

Finally, suppose that we only wish to control the experimeésg error rate
Protected LSD will work here. Listing5.1 shows that the ANOVA F
test is significant at levef, so we may proceed with pairwise comparisons.
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Listing 5.10 shows Minitab output for the LSD (called Fisher’s pairwise
comparisons) as confidence intervals.

LSD uses the same significant difference for all pairs:

1 1 1 1
tej2 VMSE \ + = t.054 V.1572 3 + 5= 845 .
i j

This is the same as the SNK comparison for a stretch of lengihlldif-
ferences except A-C exceed the cutoff, so the underlineraliador LSD
is:

C A B Aé&B
419 443 531 6.32

5.4.7 Comparisonwise error rate

Ordinaryt-tests and confidence intervals without any adjustmentrabitfie
LSD comparisonwise error rate. In the context of pairwise camspas, this is
called the least significant difference (LSD) method.

The critical values are the same as for the protected LSD:

U(E, V) = t€/2,u7

LSD = tg/zl,\/ MSE\/ 1/774 + 1/7’LJ .

5.4.8 Pairwise testing reprise

and

It is easy to get overwhelmed by the abundance of methodsthend are

Choose your still more that we haven't discussed. Your anchor in all ihigour error rate.
error rate, not Once you have determined your error rate, the choice of desheasonably
your method automatic, as summarized in Display 5.2. Your choice ofrawate is deter-

mined by the needs of your study, bearing in mind that the msbiegent
error rates have fewer false rejections, and also feweecbrejections.

5.4.9 Pairwise comparisons methods that doot control combined
Type | error rates

There are many other pairwise comparisons methods beyasé tiready
mentioned. In this Section we discuss two methods that até/ated by
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Error rate Method
Simultaneous confidence BSD or HSD
intervals

Strong familywise REGWR

False discovery rate SNK
Experimentwise Protected LSD
Comparisonwise LSD

Display 5.2: Summary of pairwise comparison methods.

completely different criteria than controlling a combin®gpe | error rate.
These two techniques dmt control the experimentwise error rate or any of
the more stringent error rates, and you should not use thémthe expecta-
tion that they do. You should only use them when the situadiothassump-
tions under which they were developed are appropriate for ggperimental
analysis.

Suppose that you beliexaepriori that the overall null hypothesH), is
less and less likely to be true as the number of treatmentsases. Then the Duncan’s multiple
strength of evidence required to rejeé€g should decrease as the number of range if there is a
groups increases. Alternatively, suppose that there isaatdiable penalty  cost per error or
for each incorrect (pairwise comparison) decision we makd,that the total you believe Ho
loss for the overall test is the sum of the losses from theviddal decisions. less likely as g
Under either of these assumptions, the Duncan multipleerégigen below) Increases
or something like it is appropriate. Note by comparison thatprocedures
that control combined Type | error rates require more eddea reject, as
the number of groups increases, while Duncan’s method regjléss. Also,
a procedure that controls the experimentwise error ratalpenalty of 1 if
there are any rejections whéfy is true and a penalty of 0 otherwise; this is
very different from the summed loss that leads to Duncaniiphe range.

Duncan’s multiple range (sometimes called Duncan’s teddumcan’s
new multiple range) is a step-down Studentized range metkiod specify  Duncan’s Multiple
a “protection level’€ and proceed in step-down fashion using Range

u = u(57 v, k7g) = ql—(l—g)k*1 (k7 V)/\/§
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but their order is
uncertain

Can only make
an error in one
direction

for the critical values. Notice thaf is the comparisonwise error rate for
testing a stretch of length 2, and the experimentwise eatar will be1 —

(1 — £)9~1, which can be considerably more thén Thusfixing Duncan’s
protection level a€ doesnot control the experimentwise error rate or any
more stringent rate Do not use Duncan'’s procedure if you are interested in
controlling any of the combined Type | error rates.

As a second alternative to combined Type | error rates, st our
interest is in predicting future observations from the timent groups, and
that we would like to have a prediction method that makes theraage
squared prediction error small. One way to do this prediciato first par-
tition the g treatments intgp classes] < p < g; second, find the average
response in each of thegeclasses; and third, predict a future observation
from a treatment by the observed mean response of the clafiseforeat-
ment. We thus look for partitions that will lead to good preidins.

One way to choose among the partitions is to use Mallowsstatistic:

_ SSR,
 MSg

Cp +2p— N,
whereSSR, is the sum of squared errors for the Analysis of Variance, par

titioning the data intg groups. Partitions with low values of,Ghould give
better predictions.

This predictive approach makes no attempt to control anyeTygrror
rate; in fact, the Type | error rate is .15 or greater everyfer2 groups! This
approach is useful when prediction is the goal, but can bie guisleading if
interpreted as a test &{.

5.4.10 Confident directions

In our heart of hearts, we often believe that all treatmeramsaliffer when
examined sufficiently precisely. Thus our concern with hybothesesi;;
is misplaced. As an alternative, we can make statemertgaxtion After
having collected data, we consigerandy;; assume; < ;. We could de-
cide from the data that; < p;, or thatu; > p;, or that we don’t know—that
is, we don’t have enough information to decide. These datéscorrespond
in the testing paradigm to rejectinfd,; in favor of y; < 115, rejectingHy;;
in favor of ; < p;, and failing to reject;;. In the confident directions
framework, only the decisiop; > 1, is an error. See Tukey (1991).

Confident directionprocedures are pairwise comparisons testing proce-
dures, but with results interpreted in a directional cont€&onfident direc-
tions procedures bound error rates when making statemieots direction.
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If a testing procedure bounds an error raté€ @hen the corresponding confi-
dent directions procedure bounds a confident directioms gate atf /2, the
factor of 2 arising because we cannot falsely reject in threecbdirection.
Let us reinterpret our usual error rates in terms of direstioSuppose
that we use a pairwise comparisons procedure with errob@ieded at. Pairwise
In a confident directions setting, we have the following: comparisons can
be used for
Strong familywise The probability of making any incorre¢ats- confident
ments of direction is bounded I8y/2. directions

FDR Incorrect statements of direction will on average
be no more than a fractiafy 2 of the total number
of statements of direction.
Experimentwise The probability of making any incorrecttesta
ments of direction when all the means are very
nearly equal is bounded I8/ 2.
Comparisonwise  The probability of making an incorrectestagnt
of direction for a given comparison is bounded by
E/2.
There is no directional analog of simultaneous confident\vals, so pro-
cedures that produce simultaneous intervals should bed=syes procedures
that control the strong familywise error rate (which they.do

5.5 Comparison with Control or the Best

There are some situations where we do not do all pairwise agsgns, but
rather make comparisons between a control and the othémiats, or the
best responding treatment (highest or lowest average) lenather treat-
ments. For example, you may be producing new standardizéitematics
tests for elementary school children, and you need to coenparnew tests
with the current test to assure comparability of the resullitse procedures
for comparing to a control or the best are similar.

5.5.1 Comparison with a control

Suppose that there is a special treatment, say treatmesith which we
wish to compare the othgr— 1 treatments. Typically, treatmentis a con-
trol treatment. The Dunnett procedure allows us to conssmaeultaneous
1 — &€ confidence intervals op; — pg, fori =1,...,g — 1 when all sample
sizes are equal via

Comparison with
control does not
do all tests

Two-sided
Dunnett
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DSD, the Dunnett
significant
difference

One-sided
Dunnett

1 1
Ui — Yyt de(g—1,v) VMSE | —+—
g n;  ng

wherev is the degrees of freedom fad Sr. The valuedgs (g — 1,v) is tab-
ulated in Appendix Table D.9. These table values are exaehvali sample
sizes are equal and only approximate when the sizes are nak eq

For testing, we can use

u(8727]) :dg(g— 177/) 5

which controls the strong familywise error rate and leads to

DSD =dg(g—1,v)VMSEg ”ni —I—ni ,
i g

the Dunnett significant difference. There is also a steprdowdification
that still controls the strong familywise error rate andlighgly more pow-
erful. We havey — 1 ¢-statistics. Compare the largest (in absolute value) to
de(g — 1,v). If the test fails to reject the null, stop; otherwise congptire
second largest tds (g — 2, ) and so on.

There are also one-sided versions of the confidence andggstbce-
dures. For example, you might reject the null hypothesisqoldity only if
the noncontrol treatments provide a higher response thacdhtrol treat-
ments. For these, test using the critical value

u(&,i,7) =dg(g—1,v),

tabulated in Appendix Table D.9, or form simultaneous oidegconfidence
intervals onu; — pg With

1 1
Ui — Uy > de(g—1,v) VMSE (| — + —.
te n;  ng

For t-critical values, a one-sided cutoff is equal to a two-sidetbff with a
doubled£. The same is not true for Dunnett critical values, so that

de(g—1,v) # de(g — 1,v).
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Alfalfa meal and turkeys Example 5.9

An experiment is conducted to study the effect of alfalfa hieahe diet
of male turkey poults (chicks). There are nine treatmentsaffnent 1 is 3
control treatment; treatments 2 through 9 contain alfakéahof two different
types in differing proportions. Units consist of 72 pensigh¢birds each, sc
there are eight pens per treatment. One response of inteatrage dail

weight gains per bird for birds aged 7 to 14 days. We would ltkdmow]
which alfalfa treatments are significantly different fronetcontrol in weigh

gain, and which are not.

Here are the average weight gains (g/day) for the nine treatisn

22.668 21.542 20.001 19.964 20.893
21.946 19.965 20.062 21.450

find this degrees of freedom curious; more on this data sat)afwo-sided
95% confidence intervals for the differences between cbatid the othe
treatments are computed using

The M Sg is 2.487 with 55 degrees of freedom. (The observant stud'dzlnlw

1 1
de(9—1,v) VMSg | —+— = dos(8,55) v2.487

n; TLg

_|_

ol
ol

= 2.74 x 1.577/2
2.16 .

Any treatment with mean less than 2.16 from the control mé&#2®68 is
not significantly different from the control. These are treants 2, 5, 6, ani
9.

It is a good idea to give the control (treatmeiigreater replication than
the other treatments. The control is involved in every conspa, so it Give the control
makes sense to estimate its mean more precisely. More spdlgifif you more replication
had a fixed number of units to spread among the treatmenty,canelished
to minimize the average variance of the differenggs-7v,,, then you would

do best when the ratio, /n; is about equal tq/g — 1.

Personally, | rarely use the Dunnett procedure, becausarlynalways
get the itch to compare the noncontrol treatments with etioér@s well as
with the control.
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5.5.2 Comparison with the best

Suppose that the goal of our experiment is to screen a nuniradments
and determine those that give the best response—to pick itiheeww The

Use MCB to multiple comparisons with best (MCB) procedure producesrmsults:
choose best

subset of e It produces a subset of treatments that cannot be distimgadiffom
treatments the best; the treatment having the true largest mean respah$e in

this subset with probability — £.

e It produces simultaneous- £ confidence intervals om; —max;; 11,
the difference between a treatment mean and the best oftthetotat-
ment means.

The subset selection procedure is the more useful produate ®nly discuss
the selection procedure.

The best subset consists of all treatmergsch that

1 1
Tie > Tjo — de(g—1,v) \/MSEM;—F; forall j # i
i J

In words, treatment s in the best subset if its mean response is greater than
the largest treatment mean less a one-sided Dunnett ali@vakihen small
responses are good, a treatmeistin the best subset if its mean response is
less than the smallest treatment mean plus a one-sided Rafioeance.

Example 5.10 | Weed control in soybeans

Weeds reduce crop yields, so farmers are always lookingdtiebways to
control weeds. Fourteen weed control treatments were raizeaol to 56 ex-
perimental plots that were planted in soybeans. The plote lager visually
assessed for weed control, the fraction of the plot withoeas. The per-
centresponses are given in Table 5.3. We are interestedlindia subset of
treatments that contains the treatment giving the best wertiol (largest
response) with confidence 99%.

For reasons that will be explained in Chapter 6, we will analgs our
response the square root of percent weeds (that is, 100 rthieuysercent
weed control). Because we have subtracted weed controll, \&xhges of the
transformed response are good. On this scale, the fourteatmtent means
are

1.000 2.616 2.680 2.543 2.941 1413 1.618
2519 2.847 1.618 1.000 4.115 4.988 5.755
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Table 5.3: Percent weed control in soybeans under 14 treatments.

1 2 3 4 5 6 7
99 95 92 95 85 98 99
99 92 95 88 92 99 95
99 95 92 95 92 95 99
99 90 92 95 95 99 9%

8 9 10 11 12 13 14
95 92 99 99 88 65 79
85 90 95 99 88 65 5(
95 95 99 99 85 92 72
97 90 95 99 68 72 64

and theM Sg is .547 with 42 degrees of freedom. The smallest treatrhent
mean is 1.000, and the Dunnett allowance is

1 1 I
de(g—1,v) VMSp || —+ — = d(13,42) VI5IT |/ £ +

n; n;

| =

3.29 x .740 x .707
1.72.

So, any treatment with a mean bft- 1.72 = 2.72 or less is included in thI
99% grouping. These are treatments 1, 2, 3,4, 6, 7,8,10,hnd 1

5.6 Reality Check on Coverage Rates

We already pointed out that the error rate control for soméiphe com-

parisons procedures is only approximate if the sample sizesiot equal
or the tests are dependent. However, even in the “exactitgits, these
procedures depend on assumptions about the distributitreafata for the
coverage rates to hold: for example normality or constartrerariance.
These assumptions are often violated—data are frequeatipormal and
error variances are often nonconstant.

Violation of distributional assumptions usually leads foet error rates
that are not equal to the nomin&l The amount of discrepancy depends on
the nature of the violation. Unequal sample sizes or depenésts are just
another variable to consider.
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Requiring the
F-test to be
significant alters
the error rates of
pairwise
procedures

The point is that we need to get some idea of what the true esrand
not get worked up about the fact that it is matactlyequal tof.

‘ In the real world, coverage and error rates are always appat.

5.7 A Warning About Conditioning

Except for the protected LSD, the multiple comparisons @doces discussed
above do not require the ANOVA F-test to be significant fortgetion of the
experimentwise error rate. They stand apart from the F-eetecting the
experimentwise error rate by other means. In fact, requitiat the ANOVA
F-test be significant will alter their error rates.

Bernhardson (1975) reported on how conditioning on the AN®G\test
being significant affected the per comparison and per exygari error rates
of pairwise comparisons, including LSD, HSD, SNK, Duncasrscedure,
and Scheffé. Requiring the F to be significant lowered threcpenparison
error rate of the LSD from 5% to about 1% and lowered the peegxpgent
error rate for HSD from 5% to about 3%, both for 6 to 10 groupsoking
just at those null cases where the F-test rejected, the L8R Ipar compari-
son error rate of 20 to 30% and the HSD per experiment erreiwas about
65%—both for 6 to 10 groups. Again looking at just the nullesasvhere
the F was significant, even the Scheffé procedure’s perrarpat error rate
increased to 49% for 4 groups, 22% for 6 groups, and down tatad% for
10 groups.

The problem is that when the ANOVA F-test is significant in thel
case, one cause might be an unusually low estimate of the &ariance.
This unusually low variance estimate gets used in the nlelipmparisons
procedures leading to smaller than normal HSD's, and so on.

5.8 Some Controversy

Simultaneous inference is deciding which error rate tormbaind then using
an appropriate technique for that error rate. Controvenisgsbecause

e Users cannot always agree on the appropriate error ratearticyar,
some statisticians (including Bayesian statisticiangdiaistrongly that
the only relevant error rate is the per comparison errot rate
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e Users cannot always agree on what constitutes the appt®faiaily
of tests. Different groupings of the tests lead to differesults.

e Standard statistical practice seems to be inconsistets application
of multiple comparisons ideas. For example, multiple conspas are
fairly common when comparing treatment means, but almdseard
of when examining multiple factors in factorial designse(sehap-
ter 8).

You as experimenter and data analyst must decide what isrtpepap-
proach for inference. See Carmer and Walker (1982) for arsamgallegory
on this topic.

5.9 Further Reading and Extensions

There is much more to the subject of multiple comparisonsa thhat we

have discussed here. For example, many procedures foraststtan be
adapted to other linear combinations of parameters, ang ofahe pairwise

comparisons techniques can be adapted to contrasts. A deealtp start is
Miller (1981), an instant classic when it appeared and atilexcellent and
readable reference; much of the discussion here followteMiHochberg
and Tamhane (1987) contains some of the more recent devetdpm

The first multiple comparisons technique appears to be the &i%3-
gested by Fisher (1935). Curiously, the next proposal wastiK (though
not so labeled) by Newman (1939). Multiple comparisons thgrdormant
till around 1950, when there was an explosion of ideas: Dusaaultiple
range procedure (Duncan 1955), Tukey’s HSD (Tukey 195X)efe’s all
contrasts method (Scheffé 1953), Dunnett’s method (Duird®&5), and an-
other proposal for SNK (Keuls 1952). The pace of introductieen slowed
again. The REGW procedures appeared in 1960 and evolvedgthrine
1970’s (Ryan 1960; Einot and Gabriel 1975; Welsch 1977). rbw@ments
in the Bonferroni inequality lead to the modified Bonferrgmocedures in
the 1970’s and later (Holm 1979; Simes 1986; Hochberg 19&8ij&nini
and Hochberg 1995).

Curiously, procedures sometimes predate a careful urzshelisig of the
error rates they control. For example, SNK has often beepnaated as a
less conservative alternative to the HSD, but the falseodeny rate was
only defined recently (Benjamini and Hochberg 1995). Furttiee, many
textbook introductions to multiple comparisons procedul@not discuss the
different error rates, thus leading to considerable caafuever the choice
of procedure.
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Exercise 5.1

Exercise 5.2

Exercise 5.3

Exercise 5.4

One historical feature of multiple comparisons is the he@lance on
tables of critical values and the limitations imposed byihgwables only
for selected percent points or equal sample sizes. Congpatet software
remove many of these limitations. For example, the softvimieund and
Lund (1983) can be used to compute percent points of the Btizdd range
for £'s not usually tabulated, while the software in Dunnett (@9&n com-
pute critical values for the Dunnett test with unequal sangies. When no
software for exact computation is available (for examptedgntized range
for unequal sample sizes), percent points can be approsihtatough sim-
ulation (see, for example, Ripley 1987).

Hayter (1984) has shown that the Tukey-Kramer adjustmethtediSD
procedure is conservative when the sample sizes are ndt equa

5.10 Problems

We have five groups and three observations per group. Th@ gneans
are 6.5, 4.5, 5.7, 5.6, and 5.1, and the mean square for ert@bi Com-
pute simultaneous confidence intervals (95% level) for ifferénces of all
treatment pairs.

Consider a completely randomized design with five treats)datir units
per treatment, and treatment means

3.2892 10.256 8.1157 8.1825 7.5622

The MSE is 4.012.

(a) Construct an ANOVA table for this experiment and testrib# hy-
pothesis that all treatments have the same mean.

(b) Test the null hypothesis that the average responsedimtents 1 and
2 is the same as the average response in treatments 3, 4, and 5.

(c) Use the HSD procedure to compare the means of the fiveresas.

Refer to the data in Problem 3.1. Test the null hypothesisahapairs
of workers produce solder joints with the same average giineggainst the
alternative that some workers produce different averagmgths. Control
the strong familywise error rate at .05.

Refer to the data in Exercise 3.1. Test the null hypothesisath pairs of
diets produce the same average weight liver against thmatiee that some
diets produce different average weights. Control the FDR%t
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Use the data from Exercise 3.3. Compute 95% simultaneougleoce
intervals for the differences in response between the tiee theatment groups
(acid, pulp, and salt) and the control group.

Use the data from Problem 3.2. Use the Tukey procedure to mlhke
pairwise comparisons between the treatment groups. Sugewaur results
with an underline diagram.

In an experiment with four groups, each with five observatjoime group
means are 12, 16, 21, and 19, and the MSE is 20. A colleaguespihthat
the contrast with coefficients -4, -2, 3, 3 has a rather latge ef squares.
No one knows to begin with why this contrast has a large sungoaes,
but after some detective work, you discover that the cont@efficients are
roughly the same (except for the overall mean) as the timsdhgples had
to wait in the lab before being analyzed (3, 5, 10, and 10 daiiat is the
significance of this contrast?

Consider an experiment taste-testing six types of choealaip cookies:
1 (brand A, chewy, expensive), 2 (brand A, crispy, expensi¥€brand B,
chewy, inexpensive), 4 (brand B, crispy, inexpensive), farfd C, chewy,
expensive), 6 (brand D, crispy, inexpensive). We will userty different
raters randomly assigned to each type (120 total ratersjve bonstructed
five preplanned contrasts for these treatments, and | optaatues of .03,
.04, .23, .47, and .68 for these contrasts. Discuss how yaldnassess the
statistical significance of these contrasts, including twksues need to be
resolved.

In an experiment with five groups and 25 degrees of freedomrfor, for
what numbers of contrasts is the Bonferroni procedure moveegul than
the Scheffé procedure?

Exercise 5.5

Problem 5.1

Problem 5.2

Problem 5.3

Question 5.1
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Chapter 6

Checking Assumptions

We analyze experimental results by comparing the averaponses in dif-
ferent treatment groups using an overall test based on AN@M#&ore fo-
cussed procedures based on contrasts and pairwise coomzardl of these
procedures are based on tesumptionthat our data follow the model

Yij = P+ 06 + €5,

where then;’s are fixed but unknown numbers and #gs are independent
normals with constant variance. We have done nothing torenbat these
assumptions are reasonably accurate.

What we did was random assignment of treatments to unitsyfetl by
measurement of the response. As discussed briefly in Chiaptendomiza-
tion methods permit us to make inferences based solely gatigd®mization,
but these methods tend to be computationally tedious afidudifto extend.
Model-based methods with distributional assumptions lisyild good ap-
proximations to the randomization inferences, provideat the model as-
sumptions are themselves reasonably accurate. If we appiynbdel-based
methods in situations where the model assumptions do ndt tted infer-
ences we obtain may be misleading. We thus need to look tactheacy of
the model assumptions.

6.1 Assumptions

The three basic assumptions we need to check are that thrs arl) in-
dependent, 2) normally distributed, and 3) have constaidrvee. Indepen-
dence is the most important of these assumptions, and asudbt difficult

Accuracy of
inference
depends on
assumptions
being true
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Independence,

constant
variance,
normality

Robustness of
validity

Many other
methods exist

to accommodate when it fails. We will not discuss accomniadatepen-
dent errors in this book. For the kinds of models we have baargunor-
mality is the least important assumption, particularlylfoge sample sizes;
see Chapter 11 for a different kind of model that is extrentgielgendent on
normality. Constant variance is intermediate, in that mostant variance
can have a substantial effect on our inferences, but noteoingriance can
also be accommodated in many situations.

Note that the quality of our inference depends on how welktierse;;
conform to our assumptions, but that we do not observe tlogsast;. The
closest we can getto the errors ajg the residuals from the full model. Thus
we must make decisions about how well the errors meet oumngsfans
based not on the errors themselves, but instead on residaalities that
we can observe. This unobservable nature of the errors ckea diagnosis
difficult in some situations.

In any real-world data set, we are almost sure to have one o ofdhe
three assumptions be false. For example, real-world data&rer exactly
normally distributed. Thus there is no profit in formal tagtof our assump-
tions; we already know that they are not true. The good newvisasour
procedures can still give reasonable inferences when theralges from our
assumptions are not too large. This is calfebdustness of validitywhich
means that our inferences are reasonably valid across a cdrigpartures
from our assumptions. Thus the real question is whetherdkimtions from
our assumptions are sufficiently great to cause us to mistiusinference.
At a minimum, we would like to know in what way to mistrust thnddrence
(for example, our confidence intervals are shorter than sheyld be), and
ideally we would like to be able to correct any problems.

The remaining sections of this chapter consider diagnosticd reme-
dies for failed model assumptions. To some extent, we aladabrey to
the syndrome of “When all you have is a hammer, the whole wiodds
like a nail,” because we will go through a variety of maneswermake our
linear models with normally distributed errors applicatdemany kinds of
data. There are other models and methods that we could usadhnsn-
cluding generalized linear models, robust methods, rahiion methods,
and nonparametric rank-based methods. For certain kindataf some of
these alternative methods can be considerably more effiffianexample,
produce shorter confidence intervals with the same covithge the linear
models/normal distribution based methods used here, etien the normal
based methods are still reasonably valid. However, thésealtive methods
are each another book in themselves, so we just mention tieeenamd in
Section 6.7.
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6.2 Transformations

The primary tool for dealing with violations of assumptiaas transforma-
tion, or reexpression, of the response. For example, wetraighlyze the

logarithm of the response. The idea is that the responsdseanansformed
scale match our assumptions more closely, so that we canarsiasd meth-
ods on the transformed data. There are several schemesdfosing trans-

formations, some of which will be discussed below. For now,te that

transformations often help, and discuss the effect thastomations have
on inference. The alternative to transformations is to bigwvspecialized

methods that deal with the violated assumptions. Thesmatiee methods
exist, but we will discuss only some of them. There is a tengdor these

alternative methods to proliferate as various more corafgitt designs and
analyses are considered.

The null hypothesis tested by an F-test is that all the treatrmeans
are equal. Together with the other assumptions we have #imutsponses,
the null hypothesis implies that the distributions of thepenses in all the
treatment groups are exactly the same. Because theséulisins are the
same before transformation, they will be the same aftestcamation, pro-
vided that we used the same transformation for all the ddtas We may test
the null hypothesis of equal treatment means on any tramsfioon scale that
makes our assumptions tenable. By the same argument, weestgairwise
comparisons null hypotheses on any transformation scale.

Confidence intervals are more problematic. We construdidemce in-
tervals for means or linear combinations of means, such @sasis. How-
ever, the center described by a mean depends on the scal&tive mean
was computed. For example, the average of a data set is nal ®qgthe
square of the average of the square roots of the data set.impligs that
confidence intervals for means or contrasts of means comhmutea trans-
formed scale do not back-transform into confidence interf@ the analo-
gous means or contrasts of means on the original scale.

A confidence interval for an individual treatmanediancan be obtained
by back-transforming a confidence interval for the corresling mean from
the scale where the data satisfy our assumptions. This vb@tzuse medi-
ans are preserved through monotone transformations. Ifulereed con-
fidence intervals for differences of means on the originaleschen there is
little choice but to do the intervals on the original scaler{@aps using some
alternative procedure) and accept whatever inaccuracyjtsesom violated
assumptions. Large-sample, approximate confidence aiteon the origi-
nal scale can sometimes be constructed from data on thddrares! scale
by using the delta method (Oehlert 1992).

Transformed data
may meet
assumptions

Transformations
don't affect the
null

Transformations
affect means

Medians follow
transformations
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Special rules for
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Land’s method

Assess — don't
test

Assessments
based on
residuals

Internally
Studentized
residual

The logarithm is something of a special case. Exponengadiconfi-
dence interval for thalifferenceof two means on the log scale leads to a
confidence interval for theatio of the means on the original scale. We can
also construct an approximate confidence interval for a nogathe origi-
nal scale using data on the log scale. Land (1972) suggesteltbwing:
let 1 andé? be estimates of the mean and variance on the log scale, and let
7% = 62/n + 6*/[2(n + 1)] wheren is the sample size. Then formla- £
confidence interval for the mean on the original scale by aging

exp(fu+6%/2 %+ 22 1)

wherezg , is the uppe€ /2 percent point of the standard normal.

6.3 Assessing Violations of Assumptions

Our assumptions of independent, normally distributedrerath constant
variance are not true for real-world data. However, our pdoces may still
give us reasonably good inferences, provided that the teparfrom our
assumptions are not too great. Thereforeassesshe nature and degree to
which the assumptions are violated and take corrective uneasf they are
needed. The-value of a formal test of some assumption does not by itself
tell us the nature and degree of violations, so fortestingis of limited
utility. Graphical and numerical assessments are the wggto

Our assessments of assumptions about the errors are basesichrals.
The raw residuals;; are simply the differences between the dataand
the treatment meang,. In later chapters there will be more complicated
structures for the means, but the raw residuals are alwayslitferences
between the data and the fitted value.

We sometimes modify the raw residuals to make them morepireable
(see Cook and Weisberg 1982). For example, the varianceswf eessidual is
o?(1—H;;), so we might divide raw residuals by an estimate of theirdziaah
error to put all the residuals on an equal footing. (See bébow;;.) This is
theinternally Studentizedesiduals;;, defined by

Tz'j

MSp(1— Hyj)

Sij =

Internally Studentized residuals have a variance of apprately 1.

Alternatively, we might wish to get a sense of how far a dataeves from
what would be predicted for it from all the other data. Thithisexternally
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Studentizedesidualt;;, defined by
; N—-—g-—1 1/2
g
1) 1] N _ g _ SZQJ 9
wheres;; in this formula is the internally Studentized residual. TEhxer-
nally Studentized residual helps us determine whetheraplaint follows Externally
the pattern of the other data. When the data actually come éwar assumed Studentized
model, the externally Studentized residuglsfollow a ¢-distribution with residual
N — g — 1 degrees of freedom.
The quantityH;; used in computing;; (and thug;;) is called theever-
ageand depends on the model being fit to the data and sample $izes; Leverage
1/n; for the separate treatment means model we are using now. dtédist-
tical software will produce leverages and various kindsesiduals.
6.3.1 Assessing nonnormality
The normal probability plot (NPP), sometimes called a riaplkit, is a graph-
ical procedure for assessing normality. We plot the orddegd on the verti-
cal axis against the ordered normal scores on the horizaxisl For assess- Normal
ing the normality of residuals, we plot the ordered residua the vertical probability plot
axis. If you make an NPP of normally distributed data, youaetore or (NPP)

less straight line. It won't be perfectly straight due to gding variability. If
you make an NPP of nonnormal data, the plot will tend to beedirand the
shape of curvature tells you how the data depart from notynali

Normal scores are the expected values for the smallestmdexoallest,
and so on, up to the largest data point in a sample that reattyedrom
a normal distribution with mean 0 and variance 1. Thgekit is a simple
approximation to the normal score. Ttk rankit from a sample of size is
the (i — 3/8)/(n + 1/4) percent point of a standard normal.

In our diagnostic setting, we make a normal probability pliothe resid-
uals from fitting the full model; it generally matters litthehether we use raw
or Studentized residuals. We then examine this plot foresyatic deviation
from linearity, which would indicate nhonnormality. FiguBel shows proto-
type normal probability plots for long and short tailed datal data skewed
to the left and right. All sample sizes are 50.

It takes some practice to be able to look at an NPP and tellhehdhe
deviation from linearity is due to nonnormality or samplivayiability, and
even with practice there is considerable room for errorolf ave software
that can produce NPP’s for data from different distribusiand sample sizes,

Normal scores
and rankits

Practice!
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Outliers

Long tails Short tails
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Figure 6.1: Rankit plots of nonnormal data, using S-Plus.

it is well worth your time to look at a bunch of plots to get alffee how they
may vary.

Outliers are an extreme form of nonnormality. Roughly speaking, an
outlier is an observation “different” from the bulk of thetdawhere different
is usually taken to mean far away from or not following thetgat of the
bulk of the data. Outliers can show up on an NPP as isolatedtgwi the
corners that lie off the pattern shown by the rest of the data.

We can use externally Studentized residuals to construarnaal outlier
test. Each externally Studentized residual is a test stata@ the null hy-
pothesis that the corresponding data value follows thepatif the rest of
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Table 6.1: Rainfall in acre feet from 52 clouds.
Unseeded Seeded

1202.6 87.0 26.1 2745.6 274.7 1153
830.1 81.2 24.4 1697.8 2747 924
3724 685 21.7 1656.0 255.0 40.4
3455 473 17.3 978.0 2425 32.7
321.2 411 115 7034 200.7 314
2443 36.6 4.9 489.1 1986 1715
163.0 29.0 4.9 430.0 129.6 7.7
1478 286 1.0 334.1 119.0 4.1

95.0 26.3 302.8 118.3

the data, against an alternative that it has a different mearge absolute
values of the Studentized residual are compatible with feereative, so we
reject the null and declare a given point to be an outlier @t ghoint’s Stu-
dentized residual exceeds in absolute value the ugpempercent point of

a t-distribution with N — ¢ — 1 degrees of freedom. To test all data values

(or equivalently, to test the maximum Studentized residuahke a Bonfer-
roni correction and test the maximum Studentized residyaihet the upper
E/(2N) percent point of a-distribution with NV — g — 1 degrees of freedom.
This test can be fooled if there is more than one outlier.

Cloud seeding

Simpson, Olsen, and Eden (1975) provide data giving théaddin acre feet
of 52 clouds, 26 of which were chosen at random for seedinly silver
oxide. The problem is to determine if seeding has an effetirdrat size the
effect is (if present). Data are given in Table 6.1.

An analysis of variance yields an F of 3.99 with 1 and 50 degad
freedom.
Source DF SS MS F

Seeding 1 1.0003e+06 1.0003e+06 3.99
Error 50 1.2526e+07 2.5052e+05

This has ap-value of about .05, giving moderate evidence of a diffeeghc

between the treatments.

Figure 6.2 shows an NPP for the cloud seeding data residiiaés plot
is angled with the bend in the lower right corner, indicatingt the residual
are skewed to the right. This skewness is pretty evidentifiyake box-plotg
of the data, or simply look at the data in Table 6.1.

Example 6.1
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Figure 6.2: Normal probability plot for cloud seeding data,
using MacAnova.

Now compute the externally Studentized residuals. Theskr{corre-
sponding to 2745.6) is 6.21, and is well beyond any reaseralibff for be-
ing an outlier. The next largest studentized residual i&.2fAve remove the
outlier from the data set and reanalyze, we now find that g studen-
tized residual is 4.21, corresponding to 1697.5. This hasrddsronip-value
of about .003 for the outlier test. This is an examplerafsking where one
apparently outlying value can hide a second. If we remoseshcond outlier
and repeat the analysis, we now find that 1656 has a Studémésilual of
5.35, again an “outlier”. Still more data values will be iodied as outliers
as we pick them off one by one. The problem we have here is notusi
that the data are mostly normal with a few outliers, but thatdata do not
follow a normal distribution at all. The outlier test is bds®n normality, and
doesn’t work well for nonnormal data.

6.3.2 Assessing nonconstant variance

There are formal tests for equality of variancde-not use themThis is for

two reasons. Firsip-values from such tests do not tell us what we need to
know: the amount of nonconstant variance that is presenhandt affects
our inferences. Second, classical tests of constant vari@uch as Bartlett's
test or Hartley’s test) arso incredibly sensitivéo nonnormality that their
inferences are worthless in practice.
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We will look for nonconstant variance that occurs when thepomses
within a treatment group all have the same variang¢ebut the variances
differ between groups. We cannot distinguish nonconstarnarce within a
treatment group from nonnormality of the errors.

We assess nonconstant variance by making a plot of the edsigyi (or
si; Ort;;) on the vertical axis against the fitted valugs— r;; = 7,, on the
horizontal axis. This plot will look like several verticatipes of points, one
stripe for each treatment group. If the variance is congsthetvertical spread
in the stripes will be about the same. Nonconstant variamceviealed as a
pattern in the spread of the residuals. Note that groups laitier sample
sizes will tend to have some residuals with slightly largesadute values,
simply because the sample size is bigger. It is the overtitpathat we are
looking for.

The most common deviations from constant variance are thtbhsee the
residual variation depends on the mean. Usually we seengasaincreas-
ing as the mean increases, but other patterns can occur. iNaemriance
increases with the mean, the residual plot has what is calkight-opening
megaphone shape; it's wider on the right than on the left. Wthe variance
decreases with the mean, the megaphone opens to the leftirdApthssi-
ble shape arises when the responses are proportions; pomsasround .5
tend to have more variability than proportions near O or heDshapes are
possible, but these are the most common.

If you absolutely must test equality of variances—for exémijpchange
of variance is the treatment effect of interest—Conovemndon, and John-
son (1981) suggest a modified Levene test.jkgbe the data. First compute
7;, the median of the data in grodpthen computel;; = |y;; — 7|, the ab-
solute deviations from the group medians. Now treatdhes data, and use
the ANOVA F-test to test the null hypothesis that the grougeehthe same
average value af;;. This test for means of thé; is equivalent to a test for
the equality of standard deviations of the original dafaThe Levene test as
described here is a general test and is not tuned to look &mifepkinds of
nonconstant variance, such as right-opening megaphonssag contrasts
and polynomial models are more focused than ANOVA, corredj vari-
ants of ANOVA in the Levene test may be more sensitive to $jpegays in
which constant variance can be violated.

Resin lifetimes, continued

In Example 3.2 we analyzed tHeg lifetimes of an encapsulating resjn
under different temperature stresses. What happens ifakedlithe lifetime
on the original scale rather than the log scale? Figure @®#sla residua
plot for these data on the original scale. A right-openingapmhone shape

Does variance
differ by
treatment?

Residual plots
reveal
nonconstant
variance

Right-opening
megaphone is
most common
nonconstant
variance

Levene test

Example 6.2
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Figure 6.3: Residuals versus predicted plot for resin lifetime datagis
Minitab.

clear, showing that the variability of the residuals inaeswith the response
mean. The Levene test for the null hypothesis of constananvee has a
p-value of about .07.

6.3.3 Assessing dependence

Serial dependenoar autocorrelationis one of the more common ways that
independence can fail. Serial dependence arises whensrefde in time
tend to be too similarpositivedependence) or too dissimilandgativede-
pendence). Positive dependence is far more common. Seyandence
could result from a “drift” in the measuring instruments tange in skill of
the experimenter, changing environmental conditions,ssndn. If there is
no idea of time order for the units, then there can be no séejpéndence.

A graphical method for detecting serial dependence is tothkresid-
uals on the vertical axis versus time sequence on the haakaxris. The
plot is sometimes called @ndex plot(that is, residuals-against-time index).
Index plots give a visual impression of whether neighboestao close to-
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Table 6.2: Temperature differences in degrees Celsius between
two thermocouples for 64 consecutive readings, time order
along rows.

319 315 313 314 314 313 313 31
316 317 317 314 314 314 315 3.5
314 315 312 305 312 316 3.15 3.7
315 316 315 316 315 315 314 3.4
314 315 313 312 315 317 316 3.5
313 313 315 315 3.05 316 3.15 3.8
315 315 317 317 314 313 310 3.4
3.07 313 313 312 314 315 314 3.4

gether (positive dependence), or too far apart (negatipergence). Positive
dependence appears as drifting patterns across the plits, velgatively de-

pendent data have residuals that center at zero and rapteifpate positive

and negative.

The Durbin-Watson statistic is a simple numerical methadcfeecking

serial dependence. Let be the residuals sorted into time order. Then the Durbin-Watson

Durbin-Watson statistic is:

ST (e = Thy)?
5
22:1 Tk

If there is no serial correlation, the DW should be about 2¢ gir take sam-
pling variation. Positive serial correlation will make DWsk than 2, and
negative serial correlation will make DW more than 2. As aglowule, se-

rial correlations corresponding to DW outside the rangetd 3.5 are large
enough to have a noticeable effect on our inference teckriduote that DW
itself is random and may be outside the range 1.5to 2.5, étled €rrors are
uncorrelated. For data sets with long runs of units from #maestreatment,
the variance of DW is a bit less than™M/

DW =

Temperature differences

Christensen and Blackwood (1993) provide data from fiventioeouple

that were inserted into a high-temperature furnace to tsoeaheir relative
bias. Sixty-four temperature readings were taken using #ssrmocouple
with the readings taken simultaneously from the five devigable 6.2 give

the differences between thermocouples 3 and 5.

We can estimate the relative bias by the average of the oideliffer-
ences. Figure 6.4 shows the residuals (deviations from #emnirplotted in

statistic to detect

serial
dependence

Example 6.3
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Figure 6.4: Deviations from the mean for paired differences of 64
readings from two thermocouples, using MacAnova.

time order. There is a tendency for positive and negatividuess to cluster
in time, indicating positive autocorrelation. The DurtWatson statistic for
these data is 1.5, indicating that the autocorrelation ngesttong enough to
affect our inferences.

Spatial associationanother common form of dependence, arises when
Spatial units are distributed in space and neighboring units haspamses more
association similar than distant units. For example, spatial assamatnight occur in
an agronomy experiment when neighboring plots tend to hiaviéas fertil-
ity, but distant plots could have differing fertilities.

One method for diagnosing spatial association iswhgogram We
make a plot with a point for every pair of units. The plottingocdinates

Variogram to for a pair are the distance between the pair (horizonta) axid the squared
detect spatial difference between their residuals (vertical axis). Ifréhes a pattern in this
association figure—for example, the points in the variogram tend to iaseewith in-

creasing distance—then we have spatial association.

This plot can look pretty messy, so we usually do some avegadiet
Plot binned Dinaz be the maximum distance between a pair of units. Choose same n
averages in ber of binsK, say 10 or 15, and then divide the distance values kito
variogram groups: those from 0 t®,,,4,./ K, Dyas/K Up t02D,,,,./K, and so on.
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8 0 1 0 0 0
7 0 1 1 0 0 0 0
6 0 1 1 1 0 0 0 0 0
5 1 1 1 1 0 0 1 1 0
g 4 0 0 0 0 0 1 1 0 0
3 0 0 0 1 1 1 0
2 0 0 1 1 1
1 0 0 0
1 2 3 4 5 6 7 8 9
X
Figure 6.5: Horizontal (x) and vertical (y) locations of good (1)
and bad (0) integrated circuits on a wafer
Now plot the average of the squared difference in residwaledch group of
pairs. This plot should be roughly flat for data with no sga&sociation; it
will usually have small average squared differences forlaligtances when
there is spatial association.
Defective integrated circuits on a wafer Example 6.4

Taam and Hamada (1993) provide an example from the manuéaatinte-
grated circuit chips. Many IC chips are made on a singleailiwafer, from
which the individual ICs are cut after manufacture. Figure @aam ang
Hamada’s Figure 1) shows the location of good (1) and badkipscon a
single wafer.

Describe the location of each chip by itq1 to 9) andy (1 to 8) coor-
dinates, and compute distances between pairs of chips trgngsual Euj
clidean distance. Bin the pairs into those with distancesfi to 2, 2 to 3,

and so on. Figure 6.6 shows the variogram with this binning sa€ tha
chips close together, and also chips far apart, tend to be similar than
those at intermediate distances. The similarity closettmyearises becau
the good chips are clustered together on the wafer. Thessityilat large
distances arises because almost all the edge chips arenbitheaonly wa

to get a pair with a large distance is for them to cross the cbippletely.
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Figure 6.6: Variogram for chips on a wafer.

6.4 Fixing Problems

When our assessments indicate that our data do not meet unpsons,
we must either modify the data so that they do meet the assmsptor
modify our methods so that the assumptions are less imgoki&nwill give
examples of both strategies.

6.4.1 Accommodating nhonnormality

Nonnormality, particularly asymmetry, can sometimes Issdeed by trans-
forming the response to a different scale. Skewness to ¢ is lessened
by a square root, logarithm, or other transformation to aqrdess than one,
while skewness to the left is lessened by a square, cubeher tvansforma-
tion to a power greater than one. Symmetric long tails do aseiieyield to
a transformation. Robust and rank-based methods can alsseokin cases
of nonnormality.

Individual outliers can affect our analysis. It is often fude¢o perform
the analysis both with the full data set and with outlierslesed. If your
conclusions change when the outliers are excluded, themmymst be fairly
careful in interpreting the results, because the resufieigérather delicately
on a few outlier data values. Some oultliers are truly “badadand their
extremity draws our attention to them. For example, we ma maiscopied
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Figure 6.7: Normal probability plot for log-transformed cloud
seeding data, using MacAnova.

the data sothat 17.4 becomes 71.4, an outlier; or perhagndeeed in a test

tube, and the yield on that run was less than satisfactoryeier, outliers
need not be bad data points; in fact, they may be the mosestieg and
informative data points in the whole data set. They just tifinthe model,
which probably means that the model is wrong.

Cloud seeding, continued

The cloud seeding data introduced in Example 6.1 showeddenable skew
ness to the right. Thus a square root or logarithm should imglke things
look more normal. Here is an Analysis of Variance for the datahe loga-|
rithmic scale.

Source DF SS MS F

Seeding 1 17.007 17.007 6.47382
Error 50 131.35 2.6271

Figure 6.7 shows an NPP for the logged cloudseeding datduadsi This
plotis much straighter than the NPP for the natural scalduwets, indicating
that the error distribution is more nearly normal. Thealue for the test o
the log scale is .014; the change is due more to stabilizimvee (se
Section 6.5.2) than improved normality.

Outliers can be
interesting data

Example 6.5
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Variance-
stabilizing
transformations

Since the cloud seeding data arose from a randomized exgrinve
could use a randomization test on the difference of the meatie seeded
and unseeded cloud rainfalls. There are alnfost 10'* different possi-
ble randomizations, so it is necessary to take a random syideaf them
when computing the randomizatignvalue. The two-sided randomization
p-values using data on the original and log scales are .0470dddrespec-
tively. Comparing these with the correspondjitigalues from the ANOVAs
(.051 and .014), we see that they agree pretty well, but aecibn the log
scale. We also note that the randomization inferences deperscale as
well. We used the same test statistic (difference of meambpth scales, but
the difference of means on the log scale is the ratio of gedomekans on
the original scale.

We also wish to estimate the effect of seeding. On the logesead5%
confidence interval for the difference between seeded asdaded is (.24,
2.05). This converts to a confidence interval on the ratiohefmeans of
(1.27, 7.76) by back-exponentiating. A 95% confidence Viatidor the mean
of the seeded cloud rainfalls, based on the original dataiaimg) a-interval,
is (179.1, 704.8); this interval is symmetric around the gl@nmean 442.0.
Using Land’s method for log-normal data, we get (247.2, 18}t 2his inter-
val is not symmetric around the sample mean and reflects gmerastry in
log-normal data.

6.4.2 Accommodating nonconstant variance

The usual way to fix nonconstant error variances is by tramsdtion of the

response. For some distributions, there are standardfdraregions that

equalize or stabilize the variance. In other distributjone use a more ad
hoc approach. We can also use some alternative methodadradtéhe usual
ANOVA.

Transformations of the response

There is a general theory of variance-stabilizing trama#tions that applies
to distributions where the variance depends on the mearexXamnple, Bino-
mial(1, p) data have a mean pfand a variance gf(1 —p). This method uses
the relationship between the mean and the variance to cehstitransfor-
mation such that the variance of the data after transfoomadi constant and
no longer depends on the mean. (See Bishop, Fienberg, atahHdl975.)
These transformations generally work better when the sausipk is large
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Table 6.3: Variance-stabilizing transformations.

Distribution Transformation New variange
Binomi_al proportions
g(:N)?/IZ(n’ 2 arcsin(y/p) 1/(4n)
Var(p) = p(1 —p)/n
Poisson
X ~ Poissoif)) VX 1

Var(X) = E(X) =\

Correlation coefficient

(uj,v;),a=1,...,nare A
independent, bivariate normal % log (1%2) 1
pairs with correlatiorp and

sample correlatiop

(or the mean is large relative to the standard deviation)lifitations may
be needed otherwise.

Table 6.3 lists a few distributions with their varianceksliaing transfor-
mations. Binomial proportions model the fraction of susdiasome number
of trials. If all proportions are between about .2 and .8nttie variance is
fairly constant and the transformation gives little impeawvent. The Poisson
distribution is often used to model counts; for example rthmber of bacte-
ria in a volume of solution or the number of asbestos paHiitie volume of
air.

Artificial insemination in chickens Example 6.6

Tajima (1987) describes an experiment examining the efflezfreeze-tha
cycle on the potency of semen used for artificial insemimatiochickens,
Four semen mixtures are prepared. Each mixture consistyual @olume
of semen from Rhode Island Red and White Leghorn roosterstukéi 1
has both varieties fresh, mixture 4 has both varieties frpaad mixtures
and 3 each have one variety fresh and the other frozen. Siktaehes o
Rhode Island Red hens are inseminated with the mixturesg asbalance
completely randomized design. The response is the fracofi@hicks from
each batch that have white feathers (white feathers irelc@Vhite Leghor
father).

It is natural to model these fractions as binomial propogideach chic
in a given treatment group has the same probability of haailghite Leg-
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Box-Cox
transformations

horn father, though this probability may vary between gsodpe to the
freeze-thaw treatments. Thus the total number of chickk white feath-
ers in a given batch should have a binomial distribution, thedfraction of
chicks is a binomial proportion. The observed proportiargged from .19
to .95, so the arcsine square root transformation is a goot Iséabilize the
variability.

When we don’t have a distribution with a known variance-itdbg
transformation (and we generally don't), then we usuallyapower fam-
ily transformation. The power family of transformations irtzs

y — sign(A\)y*

and
y — log(y) ,

where signf) is +1 for positive and —1 for negative.. Thelog function
corresponds ta equal to zero. We multiply by the sign afso that the order
of the responses is preserved wheis negative.

Power family transformations are not likely to have mucleetffunless
the ratio of the largest to smallest value is bigger than dofsirthermore,
power family transformations only make sense when the datalbpositive.
When we have data with both signs, we can add a constant teeadldta to
make them positive before transforming. Different contstamded lead to
different transformations.

Here is a simple method for finding an approximate varianabiizing
transformation poweh. Compute the mean and standard deviation for the
data in each treatment group. Regress the logarithms oftdinelard devi-
ations on the logarithms of the group means;ddte the estimated regres-
sion slope. Then the estimated variance stabilizing povamstormation is

A =1 — 3. If there is no relationship between mean and standard tit@via
(3 = 0), then the estimated transformation is the power 1, whioksdt
change the data. If the standard deviation increases propaity to the
mean (3 = 1), then the log transformation (power 0) is appropriate fai-v
ance stabilization.

The Box-Cox method for determining a transformation powgesame-
what more complicated than the simple regression-basétiaget but it
tends to find a better power and also yields a confidence adtéow ). Fur-
thermore, Box-Cox can be used on more complicated desigasithe sim-
ple method is difficult to adapt. Box-Cox transformationscae the power
family transformation to make the different powers eagiesampare. Ley
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denote the geometric mean of all the responses, where timeageo mean is
the product of all the responses raised to the 1/N power:

g n 1/N
y= (H II yz‘j) :
i=1j=1

The Box-Cox transformations are then

A
yr—1

L N£D
1

ylog(y) A=0

In the Box-Cox technique, we transform the data using a rangeval-
ues from, say, -2 to 3, and do the ANOVA for each of these tanshtions.
From these we can gétSg (), the sum of squared errors as a function of the
transformation powek. The best transformation powgt is the power that Use best
minimizesSSg(A). We generally use a convenient transformation polWer convenient power
close toA*, where by convenient | mean a “pretty” power, like .5 or Oheait
than the actual minimizing power which might be somethikg li427.

The Box-Cox minimizing powek* will rarely be exactly 1; when should
you actually use a transformation? A graphical answer iginbt by making
the suggested transformation and seeing if the residutllgué&s better. If
there was little change in the variances or the group vagsmere not that
different to start with, then there is little to be gained bgkimg the transfor-
mation. A more formal answer can be obtained by computingpproximate Confidence
1 — &€ confidence interval for the transformation power This confidence interval for
interval consists of all powers such that

Feav
SSE(N) < SSp(\)(1+ =)

wherev is the degrees of freedom for error. Very crudely, if the $farma-

tion doesn’t decrease the error sum of squares by a factotesdst /(v +4),
then\ = 1 is in the confidence interval, and a transformation may not be
needed. When | decide whether a transformation is indicatieeshd to rely
mostly on a visual judgement of whether the residuals imprafter trans-
formation, and secondarily on the confidence interval.
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Figure 6.8: Box-Cox error SS versus transformation power for resin
lifetime data.

Resin lifetimes, continued
The resin lifetime data on the original scale show constileraonconstant
variance. The treatment means and variances are

| 1 2 3 4 5

Mean 86.42 43.56 24.52 15.72 11.87
Variance| 169.75 91.45 41.07 3.00 13.69

If we regress the log standard deviations on the log meanggiva slope of
.86 for an estimated transformation power of .14; we woultbpbly use a
log (power 0) or quarter power since they are near the estinatwer.

We can use Box-Cox to suggest an appropriate transformatiig-
ure 6.8 showsSSg(\) plotted against transformation power for powers be-
tween—1 and 1.5; the minimum appears to be about 1270 near a power
of .25. The logarithm does nearly as well as the quarter p@®i6§;(0) is
nearly as small aS'Sg(.25)), and the log is easier to work with, so we will
use the log transformation. As a check, the 95% confideneeviitfor the
transformation power includes all powers with Box-Cox ei®& less than
1270(14 Fo5,1,32/32) = 1436. The horizontal line on the plot is at this level;
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Residuals versus the fitted values

(response is log life)
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Figure 6.9: Residuals versus predicted plot for resin log lifetime data
using Minitab.

the log has arb'Sr well below the line, and the original scale has.&fir

well above the line, suggesting that the logarithm is the teayo. Figure 6.

shows the improvement in residuals versus fitted valuestadiesformation
There is no longer as strong a tendency for the residuals targer when
the mean is larger.

Alternative methods

Dealing with nonconstant variance has provided gainfullegmpent to statis-
ticians for many years, so there are a number of alternatethads to con-
sider. The simplest situation may be when the ratio of théawuaes in the
different groups is known. For example, suppose that theorese for each
unit in treatments 1 and 2 is the average from five measureuets, and
the response for each unit in treatments 3 and 4 is the avéi@geseven
measurement units. If the variance among measurementisirifis same,
then the variance between experimental units in treatniematsd 4 would
be 5/7 the size of the variance between experimental unitiseatments 1

Weighted ANOVA
when ratio of
variances is
known
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and 2 (assuming no other sources of variation), simply dwffierent num-
bers of values in each average. Situations such as this caarfaded using
weighted ANOVAwhere each unit receives a weight proportional to the num-
ber of measurement units used in its average. Most stafigiickages can
handle weighted ANOVA.

For pairwise comparisons, the Welch procedure is quitaatite. This
procedure is sometimes called the “unpooleddst. Lets? denote the sam-
ple variance in treatmerit Then the Welch test statistic for testipg = 1
is

yio - yjo

ti; = .
,/s?/nﬁ—s?/nj

This test statistic is compared to a Studenthstribution with

4 4
1 s 1 s

v = (s3/mi + 53 /nj)?/ (n — T+ — 1;)
? % J 7

degrees of freedom. For a confidence interval, we compute

tij = Yie — Yje + tg/zvu\/m ’

with v computed in the same way. More generally, for a contrast we us

Zf Wy yio
2.2
\ Z? w; s7 /ni

with approximate degrees of freedom

S a9, v, s~ 1 wis]
V:(Zwisi/ni)/<z 1 Z21>'
i=1 =1 "

t =

Confidence intervals are computed in an analogous way.

The Welch procedure generally gives observed error ratesedb the
nominal error rates. Furthermore, the accuracy improvekiyuas the sam-
ple sizes increase, something that cannot be said far @imel F-tests under
nonconstant variance. Better still, there is almost no ilogower for using
the Welch procedure, even when the variances are equal.irRplescom-
parisons, the Welch procedure can be used routinely. THaegroarises in
generalizing it to more complicated situations.
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The next most complicated procedure is an ANOVA alterndtivenon-
constant variance. The Brown-Forsythe method is much lessits/e to
nonconstant variance than is the usual ANOVA F test. Agairielenote
the sample variance in treatmepand letd; = s?(1 — n;/N). The Brown-
Forsythe modified F-test is

Z?:l 2 (yzo - yoo)2
) 312(1 —ni/N)

BF =

Under the null hypothesis of equal treatment means, BF iscxppately
distributed as F witly — 1 andv degrees of freedom, where

_ & d;)”
Yidi/(ni—1) "

14

Resin lifetimes, continued

Suppose that we needed confidence intervals for the differenmeans be
tween the pairs of temperatures on the original scale fordkim lifetime
data. If we use the usual method and ignore the nonconstdanee, the
pairwise differences have an estimated standard deviation

\/68.82(1/n; +1/n;) ;

these range from 4.14 to 4.61, depending on sample sizesalanauld
use 35 degrees of freedom. Using the Welch procedure, wetayedasd
deviations for pairwise differences ranging from 5.714tneents 1 and 2) t¢
1.65 (treatments 4 and 5), with degrees of freedom rangorg 6.8 to 12.8
Thus the comparisons using the usual method are much tobfshqrairs
such as 1 and 2, and much too long for pairs such as 4 and 5.

Consider now testing the null hypothesis that all groupsetthe same
mean on the original scale. The F ratio from ANOVA is 101.8hwi and 32
degrees of freedom. The Brown-Forsythe Fis 111.7, with 41818 degree
of freedom. Both clearly reject the null hypothesis.

6.4.3 Accommodating dependence

There are no simple methods for dealing with dependencetin dame se-
ries analysis and spatial statistics can be used to modeWhdtit dependence,
but these methods are considerably beyond the scope oftbis b

Brown-Forsythe
modified F

Example 6.8
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6.5 Effects of Incorrect Assumptions

Our methods work as advertised when the data meet our assasipgbome
violations of the assumptions have little effect on the gyalf our infer-
ence, but others can cause almost catastrophic failure. SEaition gives an
overview of how failed assumptions affect inference.

6.5.1 Effects of nonnormality

Before describing the effects of nonnormality, we need swag to quan-
tify the degree to which a distribution is nonnormal. Foisthie will use
the skewnesandkurtosis which measure asymmetry and tail length respec-
tively. The skewness; and kurtosisy, deal with third and fourth powers of
the data:

E[(X — p)? E[(X —p)t
= [( 3#)] and vy — [( 4#)]_3'
g g

For a normal distribution, both the skewness and kurtosi®abistributions
with a longer right tail have positive skewness, while dlisttions with a
longer left tail have negative skewness. Symmetric distidims, like the
normal, have zero skewness. Distributions with longes tdian the normal
(more outlier prone) have positive kurtosis, and those wslitbrter tails than
the normal (less outlier prone) have negative kurtosis. “F8ikin the defi-
nition of kurtosis is there to make the normal distributi@vé zero kurtosis.
Note that neither skewness nor kurtosis depends on locatiscale.

Table 6.4 lists the skewness and kurtosis for several biigions, giving
you an idea of some plausible values. We could estimate thsredss and
kurtosis for the residuals in our analysis, but these vatwef limited di-
agnostic value, as sample estimates of skewness and leatesnotoriously
variable.

For our discussion of nonnormal data, we will assume thatisigibu-
tion of responses in each treatment group is the same apartdifferent
means, but we will allow this common distribution to be nommal instead
of requiring it to be normal. Our usual point estimates ofugroneans and
the common variancgjf, andM S respectively) are still unbiased.

The nominalp-values for F-tests are only slightly affected by moder-
ate nonnormality of the errors. For balanced data sets evalétreatment
groups have the same sample size), long tails tend to makettists conser-
vative; that is, the nominal-value is usually a bit larger than it should be; so
we reject the null too rarely. Again for balanced data, steils will tend to
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Table 6.4: Skewness and kurtosis for
selected distributions.

Distribution " Y2
Normal 0 0
Uniform 0 —1.2
Normal truncated at

+1 0 —1.06
+2 0 —0.63
Student’s t (df)

5 0 6

6 0 3

8 0 1.5
20 0 .38
Chi-square (df)

1 2.83 12

2 2 6

4 1.41 3

8 1 1.5

make the F-tests liberal; that is, the nomipalalue is usually a bit smaller

than it should be, so that we reject the null too frequentlsyrmetry gener-  Short tails liberal
ally has a smaller effect than tail length pivalues. Unbalanced data sets are for balanced data
less predictable and can be less affected by nonnormadityttalanced data

sets, or even affected in the opposite direction. The efieabnnormality

decreases quickly with sample size. Table 6.5 gives thelype | error rate

of a nominal 5% F-test for various combinations of sample,stkewness,

and kurtosis.

The situation is not quite so good for confidence intervait) skewness
generally having a larger effect than kurtosis. When the @aé normal, Skewness affects
two-sided¢-confidence intervals have the correct coverage, and tloeserr confidence
are evenly split high and low. When the data are from a distion with intervals
nonzero skewness, two-sidedonfidence intervals still have approximately
the correct coverage, but the errors tend to be to one sideeather, rather
than split evenly high and low. One-sided confidence interf@ a mean
can be seriously in error. The skewness for a contrast igtessthat for a
single mean, so the errors will be more evenly split. In fémt,a pairwise
comparison when the sample sizes are equal, skewnessiathg@aincels
out, and confidence intervals behave much as for normal data.
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Table 6.5: Actual Type | error rates for ANOVA F-test with nominal 5%
error rate for various sample sizes and values;aind~, using the
methods of Gayen (1950).

Four Samples of Size 5

2
Y1 -1 -5 0 5 1 1.5 2
0 .0527 .0514 .0500 .0486 .0473 .0459 .0446
.5 .0530 .0516 .0503 .0489 .0476 .0462 .0448

1 .0538 .0524 .0511 .0497 .0484 .0470 .0457
15| .0552 .0538 .0525 .0511 .0497 .0484 .0470

1 =0 andw =1.5
4 groups ofk k groups of 5 (ky, kq, ke, k2)
k Error k Error ki,ko  Error

2 .0427 4 .0459 10,10 .0480
10 .0480 8 .0474 8,12 .0483
20 .0490 16 .0485 5,15 .0500
40 .0495 32 .0492 2,18 .0588

Individual outliers can so influence both treatment meamktha mean
square for error that the entire inference can change ifatepeexcluding the

Outliers, outlier. It may be useful here to distinguish between rabess (of validity)
robustness, and resistance (to outliers). Robustness of validity m#@atsour procedures
resistance

give us inferences that are still approximately correatpavhen some of our
assumptions (such as normality) are incorrect. Thus welsdyhe ANOVA
F-test is robust, because a nominal 5% F-test still rejéesull in about
5% of all samples when the null is true, even when the data@rewhat
nonnormal. A procedure is resistant when it is not overwleeliny one or a
few individual data values. Our linear models methods aneeshat robust,
but they are not resistant to outliers.

6.5.2 Effects of nonconstant variance

When there arg = 2 groups and the sample sizes are equal, the Type | error

Nonconstant rate of the F-test is very insensitive to nonconstant vaganWhen there are
variance affects more than two groups or the sample sizes are not equal, thatidevfrom
F-test p-values nominal Type | error rate is noticeable and can in fact beeglaitge. The

basic facts are as follows:
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Table 6.6: Approximate Type | error raté for nominal 5%
ANOVA F-test when the error variance is not constant.

g o2 n; £

3 1,1,1 55,5 .05
1,2,3 5,55 .0579
1,2,5 55,5 .0685
1,2,10 55,5 .0864
1,1,10 55,5 .0954
1,1,10 50, 50, 50 .0748

3 1,2,5 2,5,8 .0202
1,2,5 8,52 .1833
1,2,10 2,5,8 .017¢
1,2,10 8,5,2 .2831
1,2,10 20, 50, 80 .0116
1,2,10 80, 50, 20 .2384

5 1,2,2,2,5 555,55 .0682
1,2,2,2,5 2,2,5,8,8 .029p
1,2,2,2,5 8,8,52,2 .1453
1,1,1,1,5 55,55,5 .0908
1,1,1,1,5 2,2,5,8,8 .034y7
1,1,1,1,5 8,8,5,2,2 .2029

1. If all the n;'s are equal, then the effect of unequal variances on the
p-value of the F-test is relatively small.

2. If big n;'s go with big variances, then the nomingvalue will be
bigger than the trug-value (we overestimate the variance and get a
conservative test).

3. If big n;’s go with small variances, then the nominaVvalue will be
less than the trug-value (we underestimate the variance and get a
liberal test).

We can be more quantitative by using an approximation gineBadx
(1954). Table 6.6 gives the approximate Type | error rateshfe usual F
test when error variance is not constant. Clearly, nonesnstariance can
dramatically affect our inference. These examples shopr(eqimate) true
type | error rates ranging from under .02 to almost .3; thesadaviations
from the nominal .05 that cannot be ignored.

Our usual form of confidence intervals uses &S as an estimate of
error. When the error variance is not constant, A&z will overestimate
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the error for contrasts between groups with small errorsiartbrestimate
the error for contrasts between groups with large errorsisur confidence
intervals will be too long when comparing groups with smatbes and too
short when comparing groups with large errors. The intsriadt are too
long will have coverage greater than the nomihat £, and vice versa for
the intervals that are too short. The degree to which thesevils are too
long or short can be arbitrarily large depending on samplessithe number
of groups, and the group error variances.

6.5.3 Effects of dependence

When the errors are dependent but otherwise meet our assas)iur esti-
mates of treatment effects are still unbiased, anditt®; is nearly unbiased
for 02 when the sample size is large. The big change is that thenariaf

an average is no longer just divided by the sample size. This means that
our estimates of standard errors for treatment means arichstsare biased
(whether too large or small depends on the pattern of depeesdleso that
confidence intervals and tests will not have their claimadrerates. The
usual ANOVA F-test will be affected for similar reasons.

Let’s be a little more careful. The ANOVA F-test is robust tepen-
dence when considered as a randomization test. This meahawbraged
across all possible randomizations, the F-test will refeetnull hypothesis
about the correct fraction of times when the null is true. ldegr, when the
original data arise with a dependence structure, certaitomes of the ran-
domization will tend to have too many rejections, while etbatcomes of
the randomization will have too few.

More severe problems can arise when there was no randoamzatioss
the dependence. For example, treatments may have beenexbsigunits
at random; but when responses were measured, all treatmaritslwere
measured, followed by all treatment 2 units, and so on. Raragsignment
of treatment to units will not help us, even on average, ifehs a strong
correlation across time in the measurement errors.

Correlated errors

Consider a situation with two treatments and large, equapsasizes. Sup-
pose that the units have a time order, and that there is alatore of p
between the errorg; for time-adjacent units and a correlation of 0 between
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Table 6.7: Error ratesx 100 of nominal 95% confidence intervals
for u1 — pe, when neighboring data values have correlap@and
data patterns are consecutive or alternate.

P
-3 -2 -1 0 A 2 3 A4

Con. 19 11 2.8 5 74 98 12 14
Alt. 12 98 74 5 28 1.1 19 .00L

the errors of other pairs. As a basis for comparison, Duvatson value
of 1.5 and 2.5 correspond wof +.125. For two treatments, the F-test
equivalent to &-test. Thet-test assumes that the difference of the treat
means has varian@? /n. The actual variance of the difference depend
the correlatiorp and the temporal pattern of the two treatments.

Consider first two temporal patterns for the treatmentd;tbaim con-
secutive and alternate. In the consecutive pattern, alheftceatment oc
curs, followed by all of the second treatment. In the altermattern, th
treatments alternate every other unit. For the consecpétern, the actu
variance of the difference of treatment meansg(is + 2p)o?/n, while for
the alternate pattern the varianceig — 2p)o?/n. For the usual situatio
of p > 0, the alternate pattern gives a more precise comparisorthiesson-
secutive pattern, but the estimated variance intitest o2 /n) is the sam
for both patterns and correct for neither. Sogar 0, confidence intervals i
the consecutive case are too short by a factdr/@f1 + 2p, and the interval
will not cover the difference of means as often as they clamgreas con
fidence intervals in the alternate case are too long by arfafto/\/1 — 2p
and will cover the difference of means more often than thejnel

Table 6.7 gives the true error rates for a nominal 95% confidémter-
val under the type of serial correlation described abovethedonsecutiv
and alternate treatment patterns. These will also be tleeemor rates fo
the two-group F-test, and the consecutive results will leetthe error rate
for a confidence interval for a single treatment mean wherdéta for tha
treatment are consecutive.

In contrast, consider randomized assignment of treatnfenthe sam
kind of units. We could get consecutive or alternate pastégnchance, bu
that is very unlikely. Under the randomization, each ung ba average on
neighbor with the same treatment and one neighbor with ther dteatment
tending to make the effects of serial correlation cancel dable 6.8 show
median, upper, and lower quartiles of error ratessfer .4 and sample sizel
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Positive serial
correlation has a
smaller effective
sample size

Use balanced
designs

Table 6.8: Median, upper and lower quartiles of error rates
100 of nominal 95% confidence intervals for — p2 when
neighboring data values have correlation .4 and treatnazats
assigned randomly, based on 10,000 simulations.

n

10 20 30 50 100

Lower quartile 3.7 3.9 4.0 4.2 45
Median 4.5 4.8 4.8 4.9 5.0
Upper quartile 6.5 5.7 5.8 5.5 54

from 10 to 100 based on 10,000 simulations. The best and wasst error
rates are those from Table 6.7; but we can see in Table 6.&bsttrandom-
izations lead to reasonable error rates, and the deviation fhe nominal
error rate gets smaller as the sample size increases.

Here is another way of thinking about the effect of seriatelation when
treatments are in a consecutive pattern. Positive seriatletion leads to
variances for treatment means that are larger tam, sayo?/(En), for
E < 1. The effective sample sizEn is less than our actual sample size
n, because an additional measurement correlated with otbasunements
doesn't give us a full unit's worth of new information. Thusaie use the
nominal sample size, we are being overly optimistic abowt hrauch preci-
sion we have for estimation and testing.

The effects of spatial association are similar to those dkeorrelation,
because the effects are due to correlation itself, not a@pedtirrelation as
opposed to temporal correlation.

6.6 Implications for Design

The major implication for design is that balanced data setsisually a good
idea. Balanced data are less susceptible to the effectsnofonmality and
nonconstant variance. Furthermore, when there is normoingriance, we
can usually determine the direction in which we err for ba&hdata.

When we know that our measurements will be subject to tenhpora
spatial correlation, we should take care to block and ranzemarefully.
We can, in principle, use the correlation in our design aradyesis to increase
precision, but these methods are beyond this text.
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6.7 Further Reading and Extensions

Statisticians started worrying about what would happerngir t-tests and

F-tests on real data almostimmediately after they stadedyuhe tests. See,
for example, Pearson (1931). Scheffé (1959) provides & mathematical

introduction to the effects of violated assumptions tharhaee given here.
Ito (1980) also reviews the subject.

Transformations have long been used in Analysis of Varianbgkey
(1957a) puts the power transformations together as a faamilg Box and
Cox (1964) introduce the scaling required to make $#8;'s comparable.
Atkinson (1985) and Hoaglin, Mosteller, and Tukey (1983)kginore exten-
sive treatments of transformations for several goalsutiog symmetry and
equalization of spread.

The Type | error rates for nonnormal data were computed ubmgeth-
ods of Gayen (1950). Gayen assumed that the data followedigevorth
distribution, which is specified by its first four momentsdahen computed
the distribution of the F-ratio (after several pages of amgpiring calculus).
Our Table 6.5 is computed with his formula (2.30), thouglertbat there are
typos in his paper.

Box and Andersen (1955) approached the same problem frotifiea di
ent tack. They computed the mean and expectation of a tranafon of
the F-ratio under the permutation distribution when the@datme from non-
normal distributions. From these moments they computestetjudegrees
of freedom for the F-ratio. They concluded that multiplyithge numerator
and denominator degrees of freedom(lby+- v, /N) gavep-values that more
closely matched the permutation distribution.

There are two enormous, parallel areas of literature thakwih out-
liers. One direction is outlier identification, which deal#h finding out-
liers, and to some extent with estimating and testing afidifess are found
and removed. Major references include Hawkins (1980), Beskand Cook
(1983), and Barnett and Lewis (1994). The second direc8amlustness,
which deals with procedures that are valid and efficient fummormal data
(particularly outlier-prone data). Major references ird# Andrewset al.
(1972), Huber (1981), and Hampet al. (1986). Hoaglin, Mosteller, and
Tukey (1983) and Rey (1983) provide gentler introductions.

Rank-based, nonparametric methods are a classical diterta linear
methods for nonnormal data. In the simplest situation, timaerical values
of the responses are replaced by their ranks, and we themdomazation
analysis on the ranks. This is feasible because the randtionalistribution
of a rank test can often be computed analytically. Ranktasethods have
sometimes been advertised as assumption-free; this isueotRank methods



142

Checking Assumptions

have their own strengths and weakness. For example, therpweo-
sample rank tests for equality of medians can be very low wthentwo
samples have different spreads. Conover (1980) is a stnttesduction to
nonparametric statistics.

We have been modifying the data to make them fit the assungptibn
our linear analysis. Where possible, a better approachusecan analysis
that is appropriate for the data. Generalized Linear Mo@8lsM’s) per-
mit the kinds of mean structures we have been using to be cmdhiith
a variety of error structures, including Poisson, binorrgaimma, and other
distributions. GLM's allow direct modeling of many forms nénnormality
and nonconstant variance. On the down side, GLM’s are mdfieuti to
compute, and most of their inference is asymptotic. Mc@hlland Nelder
(1989) is the standard reference for GLM’s.

We computed approximate test sizes for F under nonconstdatee us-
ing a method given in Box (1954). When our distributionalesptions and
the null hypothesis are true, then our observed F-statifjgis distributed
as F withg — 1 and N — g degrees of freedom, and

If the null is true but we have different variances in theetiént groups, then
Fypg/b is distributed approximately as(vy, v2), where

N-—g Zz‘(N—ni)UiQ

’ N(g—1) Xi(ni — 1)o7
v [Zz(N - ni)O'ZZ]Z

1 i nio?]? + N Y, (N — 2n)0}
y [>i(ni — 1)o?)?

’ Si(ni —1)o

Thus the actual Type | error rate of the usual F test underomstant vari-
ance is approximately the probability that an F withand v, degrees of
freedom is greater thaFg ;1 ny—4/b.

The Durbin-Watson statistic was developed in a series oésafurbin
and Watson 1950, Durbin and Watson 1951, and Durbin and Wai3a1).
The distribution of DW is complicated in even simple sitoas. Ali (1984)
gives a (relatively) simple approximation to the distribatof DW.

There are many more methods to test for serial correlatienei@l fairly
simple related tests are called runs tests. These testased bn the idea that
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if the residuals are arranged in time order, then positivalseorrelation will
lead to “runs” in the residuals. Different procedures measuns differently.
For example, Geary's test is the total number of consecptirs of residuals
that have the same sign (Geary 1970). Other runs includermeinumber
of consecutive residuals of the same sign, the number ofupr(sesiduals
increasing) and down (residuals decreasing), and so on.

In some instances we might believe that we know the coroslattruc-
ture of the errors. For example, in some genetics studies ightrbelieve
that correlation can be deduced from pedigree informatidhe correlation
is known, it can be handled simply and directly by using galiszd least
squares (Weisberg 1985).

We usually have to use advanced methods from times serigsatials
statistics to deal with correlation. Anderson (1954), Dnir{d 960), Pierce
(1971), and Tsay (1984) all deal with the problem of reg@ssihen the
residuals are temporally correlated. Kriging is a class efhads for dealing
with spatially correlated data that has become widely upadjcularly in
geology and environmental sciences. Cressie (1991) isndatd reference
for spatial statistics. Grondona and Cressie (1991) dasarsing spatial
statistics in the analysis of designed experiments.

6.8 Problems

As part of a larger experiment, 32 male hamsters were assign@ur
treatments in a completely randomized fashion, eight hammgier treatment.
The treatments were 0, 1, 10, and 100 nmole of melatonin,dalipur prior
to lights out for 12 weeks. The response was paired testaghtvéh mg).
Below are the means and standard deviations for each treagraip (data
from Rollag 1982). What is the problem with these data andtwbads to
be done to fix it?

Melatonin Mean SD

Onmole 3296 90
1nmole 2574 153
10 nmole 1466 207
100 nmole 692 332

Bacteria in solution are often counted by a method known asl silu-
tion plating. Petri dishes with a nutrient agar are inoadawith a measured
amount of solution. After 3 days of growth, an individual E@m will
have grown into a small colony that can be seen with the naked@ount-
ing original bacteria in the inoculum is then done by coumtime colonies on

Exercise 6.1

Exercise 6.2
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Exercise 6.3

Exercise 6.4

the plate. Trouble arises because we don’'t know how muchisplto add.
If we get too many bacteria in the inoculum, the petri dish # covered
with a lawn of bacterial growth and we won't be able to idgntife colonies.
If we get too few bacteria in the inoculum, there may be nomi@l®to count.
The resolution is to make several dilutions of the origirdlison (1:1, 10:1,
100:1, and so on) and make a plate for each of these dilutiOne. of the
dilutions should produce a plate with 10 to 100 colonies paritl that is the
one we use. The count in the original sample is obtained byiphyihg by
the dilution factor.

Suppose that we are trying to compare three different Pazt¢ion treat-
ments for milk. Fifteen samples of milk are randomly assijteethe three
treatments, and we determine the bacterial load in eachleaaftpr treat-
ment via serial dilution plating. The following table givibe counts.

Treatment 1| 26 x 102 29 x 102 20 x 102 22 x 102 32 x 102
Treatment 2| 35 x 103 23 x 10® 20 x 10° 30 x 10> 27 x 103
Treatment 3| 29 x 10> 23 x 10° 17 x 10° 29 x 10° 20 x 10°

Test the null hypothesis that the three treatments haveaine £ffect on
bacterial concentration.

In order to determine the efficacy and lethal dosage of cardiaxants,
anesthetized guinea pigs are infused with a drug (the texadnill death
occurs. The total dosage required for death is the resp@nsaljer lethal
doses are considered more effective. There are four drugistem guinea
pigs are chosen at random for each drug. Lethal dosagew/follo

1]18.2 164 100 135 135 6.7 122 182 135 164
2| 55 122 110 6.7 164 82 74 122 6.7 110
3| 55 50 82 90 100 60 74 55 122 8.2
4| 60 74 122 110 50 74 74 55 6.7 55

Determine which drugs are equivalent, which are more @ffecand which
less effective.

Four overnight delivery services are tested for “gentlsihbg shipping
fragile items. The breakage rates observed are given below:

Al|l7 20 15 21 28
B| 7 11 15 10 10
ci11 9 5 12 6
D| 5 4 3 7 6
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You immediately realize that the variance is not stabledfin approximate
95% confidence interval for the transformation power usimg Box-Cox
method.

Consider the following four plots. Describe what each pélistyou Exercise 6.5
about the assumptions of normality, independence, andtaangariance.
(Some plots may tell you nothing about assumptions.)
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Exercise 6.6 An instrument called a “Visiplume” measures ultraviolgfif. By com-

paring absorption in clear air and absorption in pollutegdthé concentration

of SO, in the polluted air can be estimated. The EPA has a standditbohe

for measuring S@ and we wish to compare the two methods across a range
of air samples. The recorded response is the ratio of thpisie reading to

the EPA standard reading. The four experimental conditiors measure-
ments of SQ in an inflated bag (n = 9), measurements of a smoke generator
with SO, injected (n = 11), measurements at two coal-fired plants (rardb

6). We are interested in whether the Visiplume instrumerfopas the same
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relative to the standard method across all experimentalitions, between
the coal-fired plants, and between the generated smoke eneihcoal-fired
smoke. The data follow (McEIhoe and Conner 1986):

Bag 1.055 1.272 .824 1.019 1.069 .983 1.025
1.076 1.100

Smoke 1.131 1236 1.161 1.219 1.169 1.238 1.197
1.252 1435 .827 3.188

Plantno. 1| .798 .971 .923 1.079 1.065

Plantno. 2| .950 978 .762 .733 .823 1.011

We wish to study the competition of grass species: in pdaicuig Problem 6.1
bluestem (from the tall grass prairie) versus quack grasge@d). We set
up an experimental garden with 24 plots. These plots werdoraly al-
located to the six treatments: nitrogen level 1 (200 mg N/#id) &nd no
irrigation; nitrogen level 1 and 1cm/week irrigation; oigen level 2 (400
mg N/kg soil) and no irrigation; nitrogen level 3 (600 mg N/&gil) no ir-
rigation; nitrogen level 4 (800 mg N/kg soil) and no irrigatj and nitrogen
level 4 and 1 cm/week irrigation. Big bluestem was seedethésé plots
and allowed to establish itself. After one year, we added asmed amount
of quack grass seed to each plot. After another year, we $fatlve grass
and measure the fraction of living material in each plot thdig bluestem.
We wish to determine the effects (if any) of nitrogen andfogation on the
ability of quack grass to invade big bluestem. (Based on W&€PB0.)

N level 1 1 2 3 4 4
Irrigaton | N Y N N N Y

97 83 85 64 52 48
96 87 84 72 56 58
92 78 78 63 44 49
95 81 79 74 50 53

(a) Do the data need a transformation? If so, which transdtion?

(b) Provide an Analysis of Variance for these data. Are altdeatments
equivalent?

(c) Are there significant quadratic effects of nitrogen ungenirrigated
conditions?

(d) Is there a significant effect of irrigation?

(e) Under which conditions is big bluestem best able to pretree inva-
sion by quack grass? Is the response at this set of condgign#i-
cantly different from the other conditions?
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Question 6.1

Question 6.2

What happens to thestatistic as one of the values becomes extremely
large? Look at the data set consisting of the five numbers @, @, K, and
compute the-test for testing the null hypothesis that these numbersecom
from a population with mean 0. What happens tottstatistic as K goes to
infinity?

Why would we expect the log transformation to be the variastedilizing
transformation for the data in Exercise 6.2?



Chapter 7

Power and Sample Size

The last four chapters have dealt with analyzing experiaieasults. In this
chapter we return to design and consider the issues of aigand assessing
sample sizes. As we know, an experimental design is detedrniy the
units, the treatments, and the assignment mechanism. Cabawe chosen
a pool of experimental units, decided which treatments & asd settled on
a completely randomized design, the major thing left to diecs the sample
sizes for the various treatments. Choice of sample sizepsitant because
we want our experiment to be as small as possible to save tichenaney,
but big enough to get the job done. What we need is a way to figureow
large an experiment needs to be to meet our goals; a biggerimygnt would
be wasteful, and a smaller experiment won’'t meet our needs.

7.1 Approaches to Sample Size Selection

There are two approaches to specifying our needs from arriengret, and
both require that we know something about the system undetdedo ef-
fective sample size planning. First, we can require thafidence intervals
for means or contrasts should be no wider than a specifietheRgr exam-
ple, we might require that a confidence interval for the déffece in average
weight loss under two diets should be no wider than 1 kg. Thdthwof a
confidence interval depends on the desired coverage, thevamiance, and
the sample size, so we must know the error variance at leaghlp before
we can compute the required sample size. If we have no idaa #imsize
of the error variance, then we cannot say how wide our intewdl be, and
we cannot plan an appropriate sample size.

Decide how large
an experiment is
needed

Specify maximum
Cl width
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Power is
probability of
rejecting a false
null hypothesis

Find minimum
sample size that
gives desired
power

Use prior
knowledge of
system

Example 7.1

The second approach to sample size selection involvesrates for the
fixed level ANOVA F-test. While we prefer to ugevalues for analysis, fixed
level testing turns out to be a convenient framework for dimgsample size.
In a fixed level test, we either reject the null hypothesis erfail to reject
the null hypothesis. If we reject a true null hypothesis, \weehmade a Type
| error, and if we fail to reject a false null hypothesis, wed@aade a Type I
error. The probability of making a Type | error§s; £; is under our control.

We choose a Type | error ratg (5%, 1%, etc.), and rejedt if the p-
value is less thagd;. The probability of making a Type Il error &;7; the
probability of rejectingH, when H is false isl — £;; and is callecbower.
The Type |l error rate;; depends on virtually everythingy, g, o2, and the
«;'s andn;’s. Most books use the symbaisandg for the Type | and Il error
rates. We usé€ for error rates, and use subscripts here to distinguiststgpe
errors.

It is more or less true that we can fix all but one of the interted pa-
rameters and solve for the missing one. For example, we mayseld;, g,
o2, and thea;’s andn; and then solve fot — £;7. This is called a power
analysis, because we are determining the power of the empetifor the al-
ternative specified by the particula's. We may also choosg&, g, 1 — &;5,
o2 and then;’s and then solve for the sample sizes. This, of course, lectal
a sample size analysis, because we have specified a reqoiked and now
find a sample size that achieves that power. For exampleidmressituation
with three diets, and; is .05. How large shoul&V be (assuming equa);'s)
to have a 90% chance of rejectiifyy wheno? is 9 and the treatment mean
responses are -7, -5, 3,(s are -4, -2, and 6)?

The use of power or sample size analysis begins by decidingterest-
ing values of the treatment effects and likely ranges foretrer variance.
“Interesting” values of treatment effects could be antbgal effects, or they
could be effects that are of a size to be scientifically sigaift; in either
case, we want to be able to detect interesting effects. Far eambina-
tion of treatment effects, error variance, sample sized, Tgmpe | error rate,
we may compute the power of the experiment. Sample size c@tpu
amounts to repeating this exercise again and again untilngetiie smallest
sample sizes that give us at least as much power as requined. What we
do is set up a set of circumstances that we would like to detitlsta given
probability, and then design for those circumstances.

VOR in ataxia patients

Spinocerebellar ataxias (SCA's) are inherited, degeiverateurological dis-
eases. Clinical evidence suggests that eye movements atargare af-
fected by SCA. There are several distinct types of SCAs,a@dvould like
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to determine if the types differ in observable ways that ddad used to clas
sify patients and measure the progress of the disease.

We have some preliminary data. One response is the “amelibfithe
vestibulo-ocular reflex for 20 ded/selocity ramps”; let’s just call it VOR
VOR deals with how your eyes move when trying to focus on a fbaeget
while you are seated on a chair on a turntable that is rotatiaigeasingly
quickly. We have preliminary observations on a total of s¢een patients
from SCA groups 1, 5, and 6, with sample sizes 5, 11, and 1. @$gonse
appears to have stable variance on the log scale, on whidh theagroup
means of VOR are 2.82, 3.89, and 3.04, and the variance is .0f6s it
looks like the average response (on the original scale) iA SGs about
three times that of SCA 1, while the average response of SGABly abou
25% higher than that of SCA 1.

We would like to know the required sample sizes for threesdst First,
95% confidence intervals for pairwise differences (on tlgedoale) shoul
be no wider than .5. Second, power should be .99 when testitigea0l
level for two null hypotheses: the null hypothesis that ikt SCAs hav
the same mean VOR, and the null hypothesis that SCA 1 and S@&ethe
same mean VOR. We must specify the means and error variacogtpute
power, so we use those from the preliminary data. Note tlesétis only on
subject in SCA 6, so our knowledge there is pretty slim andcaumputed
sample sizes involving SCA 6 will not have a very firm foundati

7.2 Sample Size for Confidence Intervals

We can compute confidence intervals for means of treatmenpgrand con-
trasts between treatment groups. One sample size critisrionchoose the
sample sizes so that confidence intervals of interest arader than a max-
imum allowable widthiV. For the mean of group, a1l — £; confidence
interval has width Width of

2t _ A/ MSEg/n; ; confidence
Er/2N =g E/ b interval

for a contrast, the confidence interval has width

2
ws

2 te, j2.N—gVMSE Zn—%.
i (]

In principle, the required sample size can be found by eqgatither of
these widths witiV and solving for the sample sizes. In practice, we don't
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know M Sk until the experiment has been performed, so we must ant&ipa
a reasonable value fdr/ S when planning the experiment.

Calculating Assuming that we use equal sample sizgs- n, we find that

sample size

If in doubt, design
for largest
plausible M Sg

Example 7.2

n= W2 .

This is an approximation becausenust be a whole number and the quantity
on the right can have a fractional part; what we want is thellssta. such
that the left-hand side is at least as big as the right-hated Jihe sample size

n appears in the degrees of freedom#an the right-hand side, so we don't
have a simple formula for. We can compute a reasonable lower bound for
n by substituting the uppef;/2 percent point of a normal fd{é;/lg(n—l)'

Then increase from the lower bound until the criterion is met.

Often the best we can do is provide a plausible range of vétued Sy.
Larger values of\/ Sg lead to larger sample sizes to meet maximum confi-
dence interval width requires. To play it safe, choose yauore size so that
you will meet your goals, even if you encounter the largestpible) Sg.

VOR in ataxia patients, continued

Example 7.1 gave a requirement that 95% confidence intefwafsgirwise
differences should be no wider than .5. The preliminary dathan)\/ S, of

.075, so that is a plausible value for future data. The sigudipproximation
is then

U Ax4x 075 x (124 (-1)?)
~ 52

so we round up to 10 and start there. With a sample size of &6g tre 27
degrees of freedom for error, so we now ugg; »7 = 2.052. Feeding in this
sample size, we get

L A 2.0522 x .075 x (1 +1)
~ 52

and we round up to 11. There are now 30 degrees of freedomrfor and
t.025,30 = 2.042, and

n

=96 ,

=10.1 ,

4 x 2.042% x .
o 2% 0 ><075><(1—|—1):10.01’
.52
son = 11 is the required sample size.
Taking a more conservative approach, we might feel thai\itte; in a
future experiment could be as large as .15 (we will see in @hndy. that this
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is not unlikely). Repeating our sample size calculatiorhwvifte new)M S
value we get
o Axdx A5 x (1+1)

.52
or 20 for the first approximation. Becausgs g0 = 2.0003, the first approx-
imation is the correct sample size.

On the other hand, we might be feeling extremely lucky andkthihat
the M Sk will only be .0375 in the experiment. Repeat the calculagigain,
and we get

n

=192 ,

4 x 4% .0375 x (14 1)
n =~
.52
or 5 for the first approximatiort; 25 12 = 2.18, so the second guess is

=48 ,

S 2.18% x .0375 x (1 +1)
- 52

andn = 6 works out to be the required sample size.

=57,

Note from the example that doubling the assuméfd does not quite Sample size
double the required sample size. This is because changinggatmple size affects df and
also changes the degrees of freedom and thus the percehbpoithat we t-percent point

use. This effect is strongest for small sample sizes.

7.3 Power and Sample Size for ANOVA

The ANOVA F-statistic is the ratio of the mean square fortimeents to the

mean square for error. When the null hypothesis is true, ttafistic follows

an F-distribution with degrees of freedom from the two megurases. We re-

ject the null when the observed F-statistic is larger thaubperE; percent  F-statistic follows

point of the F-distribution. When the null hypothesis istglthe F-statistic noncentral
follows anoncentral F-distribution Power, the probability of rejecting the F-distribution
null when the null is false, is the probability that the Ftistic (which fol- ~ whennullis false

lows a noncentral F-distribution when the alternativeug}rexceeds a cutoff
based on the usual (central) F distribution.

This is illustrated in Figure 7.1. The thin line gives a tygdiaull distri-
bution for the F-test. The vertical line is at the 5% cutoffrip5% of the Power computed
area under the null curve is to the right, and 95% is to the [Efftis 5% is  with noncentral F
the Type | error rate, of;. The thick curve is the distribution of the F-ratio
for one alternative. We would reject the null at the 5% le¥elr F-statistic
is greater than the cutoff. The probability of this happegrigithe area under
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Figure 7.1: Null distribution (thin line) and alternative
distribution (thick line) for an F test, with the 5% cutoff nkad.

the alternative distribution curve to the right of the ctigfie power); the
area under the alternative curve to the left of the cutofhies Type Il error
rate&y;.

The noncentral F-distribution has numerator and denomirthgrees of
freedom the same as the ordinary (central) F, and it also hasieentrality
parameter( defined by

_ 2 nia?
(==5— .
g
The noncentrality parameter measures how far the treatmeanms are from
being equal?) relative to the variation of;, (¢ /n;). The ordinary central
F-distribution hag, = 0, and the bigger the value qf the more likely we
are to rejectH,.

We must use the noncentral F-distribution when computingguoor
Err. This wouldn't be too bad, except that there is a differemasmtral
F-distribution for every noncentrality parameter. Thusréhis a different al-
ternative distribution for each value of the noncentrgtigrameter, and we
will only be able to tabulate power for a selection of paraenet

There are two methods available to compute power. The fitst isse
power tables—figures really—such as Appendix Table D.1A,gfavhich is
reproduced here as Figure 7.2. There is a separate figuradbmaimerator
degrees of freedom, with power on the vertical axis and nanakty param-
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Figure 7.2: Sample power curves for 2 numerator degrees of freedom,
.05 (thin) and .01 (thick) Type | error rates, and 8, 9, 10,18,20, 30,
and 60 denominator degrees of freedom (right to left witlsiahegroup).

eter on the horizontal axis. Within a figure, each curve shtbepower for a
particular denominator degrees of freedom (8, 9, 10, 1220530, 60) and
Type | error rate (5% or 1%). The power curves for level .01sdnifted to
the right by 40 units to prevent overlap with the .05 curves.

To compute power, you first get the correct figure (accordingumer-
ator degrees of freedom); then find the correct horizontaitipm on the
figure (according to the noncentrality parameter, shiftghtrfor .01 tests);
then move up to the curve corresponding to the correct darator degrees
of freedom (you may need to interpolate between the valumsish and then
read across to get power. Computing minimum sample sizes fequired
power is a trial-and-error procedure. We investigate aectithn of sample
sizes until we find the smallest sample size that yields aguired power.

VOR in ataxia patients, continued

We wish to compute the power for a test of the null hypothdgisthe mea
VOR of the three SCA's are all equal against the alternatiat the mean
are as observed in the preliminary data, when we have fojestsiper grou
and test at the .01 level. On the log scale, the group meariprelimi-

Find required
sample sizes
iteratively

Example 7.3



156

Power and Sample Size

Power curves are
difficult to use

Power software

Example 7.4

nary data were 2.82, 3.89, and 3.04; the variance was .076.e3timated
treatment effects (for equal sample sizes) are -.43, .64;.24, so the non-
centrality parameter we use4$.43% + .64% + .21%)/.075 = 34.06. There
are 2 and 9 degrees of freedom. Using Figure 7.2, the powepistad2.

Suppose that we wish to find the sample size required to havemn9.
Let's try six subjects per group. Then the noncentralityisl5with 2 and
15 degrees of freedom. The power is now above .99 and welhefthart
in Figure 7.2. We might be able to reduce the sample size,t'saig five
subjects per group. Now the noncentrality is 42.6, with 2 A2dlegrees of
freedom. The power is pretty close to .99, but it could be atmmbelow.

Again trying to be conservative, recompute the sample sigeraing that
the error variance is .15; because we are doubling the \e&jave’ll double
the sample size and use 10 as our first try. The noncentral#f.6, with 2
and 27 degrees of freedom. The power is well above .99, soyweducing
the sample size to 9. Now the noncentrality is 38.3, with 2 2&dlegrees
of freedom. The power is still above .99, so we try sample 8izBow the
noncentrality is 34.06 with 2 and 21 degrees of freedom. diffgcult to tell
from the graph, but the power seems to be less than .99; tlsuh required
sample size.

This example illustrates the major problems with using poweves.
Often there is not a curve for the denominator degrees ofifneethat we
need, and even when there is, reading power off the curves igeny accu-
rate. These power curves are usable, but tedious and somewha, and
certain to lead to eyestrain and frustration.

A better way to compute power or sample size is to use compgofer
ware designed for that task. Unfortunately, many statibtigystems don't
provide power or sample size computations. Thomas and K$y7) re-
view power analysis software available in late 1996. As ahswer 1999,
they also maintain a Web pagelisting power analysis caitiabibnd sources
for extensions for several dozen packa§ésinitab and MacAnova can both
compute power and minimum sample size for several situstimeluding
ANOVA problems with equal replication. The user interfat@mspower soft-
ware computations differ dramatically; for example, in lifhb one enters
the means, and in MacAnova one enters the noncentralityryeies

VOR in ataxia patients, continued

Let's redo the power and sample size computations usingainListing 7.1
shows Minitab output for the first two computations of Exaenpl3. First we

http://sustain.forestry.ubc.ca/cacb/power/review/po wrev.html
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Listing 7.1: Minitab output for power and sample size computation.

Power and Sample Size O]
One-way ANOVA

Sigma = 0.2739 Alpha = 0.01 Number of Levels = 3
Corrected Sum of Squares of Means = 0.6386
Means = 2.82, 3.89, 3.04

Sample
Size Power
4 0.9297

Power and Sample Size []
One-way ANOVA

Sigma = 0.2739 Alpha = 0.01 Number of Levels = 3
Corrected Sum of Squares of Means = 0.6386
Means = 2.82, 3.89, 3.04

Sample Target Actual
Size Power Power
5 0.9900 0.9903

find the power when we have four subjects per group; this ig/slie section

O of the listing. The computed power is almost .93; we read at8fifrom
the curves. Second, we can find minimum the sample size toogetm99;
this is shown in sectiofl of the listing. The minimum sample size for .49
power is 5, as we had guessed but were not sure about frombdes ta’he
exact power is .9903, so in this case we were actually préigeaising th
tables.

Here is a useful trick for choosing sample size. Sometimissdifficult
to specify an interesting alternative completely; thains,can’t specify all
the means or effects;, but we can say that any configuration of means that
has two means that differ by an amount D or more would be igtiei The  Specify minimum
smallest possible value for the noncentrality parametegnathis condition difference
is met isnD?/(20?), corresponding to two means D units apart and all the
other means in the middle (with zerg's). If we design for this alternative,
then we will have at least as much power for any other altematith two
treatments D units apart.
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contrast

Example 7.5

7.4 Power and Sample Size for a Contrast

The Analysis of Variance F-test is sensitive to all depagurom the null
hypothesis of equal treatment means. A contrast is se@sitiparticular de-
partures from the null. In some situations, we may be pdeibuinterested
in one or two contrasts, and less interested in other cdntrds that case,
we might wish to design our experiment so that the contrasgadicular

interest had adequate power.

Suppose that we have a contrast with coefficignts}. Test the null
hypothesis that the contrast has expected value zero by asifr-test (the
sum of squares for the contrast divided by the5r). The F-test has 1 and
N — g degrees of freedom and noncentrality parameter

(2?21 wiai)2
g 2 .
02 Y oi—g wi/ni
We now use power curves or software for 1 numerator degreeefldm to
compute power.

VOR in ataxia patients, continued

Suppose that we are particularly interested in compariay®R for SCA 1
to the average VOR for SCA 5 and 6 using a contrast with coefftsi(1, -.5,
-.5). On the basis of the observed means &hfly and equal sample sizes,
the noncentrality parameter is

(2.82 — .5(3.89 + 3.04))?

— 3.698n .
075(1/n + .25/n + .25/n) "

The noncentrality parameter far = 5 is 18.49; this would have 1 and 12
degrees of freedom. The power from the tables (testing atisGibout .86;
the exact power is .867.

7.5 More about Units and Measurement Units

Thinking about sample size, cost, and power brings us bashkrte issues
involved in choosing experimental units and measuremeité.umhe basic
problems are those of dividing fixed resources (there ismmveugh money,
time, material, etc.) and trying to get the most bang for tiekb

Consider first the situation where there is a fixed amount péemental
material that can be divided into experimental units. lroagmy, the limited
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resource might be an agricultural field of a fixed size. Inikegtthe limited
resource might be a bolt of cloth of fixed size. The problemheasing
into how many units the field or bolt should be divided. Largaits have Subdividing
the advantage that their responses tend to have smallanearisince these spatial units

responses are computed from more material. Their disaagari$ that you
end up with fewer units to average across. Smaller units trev®pposite
properties; there are more of them, but they have higheanee.

There is usually some positive spatial association betvmedghboring
areas of experimental material. Because of that, the vaiahthe average
of k£ adjacent spatial units is greater than the variance of teeage ofk
randomly chosen units. (How much greater is very experisgectific.) This
greater variance for contiguous blocks implies that randmg treatments
across more little units will lead to smaller variances featment averages
and comparisons than using fewer big units.

There are limits to this splitting, of course. For examphere may be an
expensive or time-consuming analytical measurement thiat be made on
each unit. An upper bound on time or cost thus limits the nurobenits that
can be considered. A second limit comes from edge guard gasi&hen
units are treated and analyziedsitu rather then being physically separated,
it is common to exclude from analysis the edge of each units Ehdone
because treatments may spill over and have effects on rarigigtunits; ex-
cluding the edge reduces this spillover. The limit arisesalbse as the units
become smaller and smaller, more and more of the unit becedgs and
we eventually we have little analyzable center left.

A second situation occurs when we have experimental uniisnaea-
surement units. Are we better off taking more measurementewer units
or fewer measurement on more units? In general, we have noarerand
shorter confidence intervals if we take fewer measuremantaare units.
However, this approach may have a higher cost per unit ofrimddion.

For example, consider an experiment where we wish to stuslpadssi-
ble effects of heated animal pens on winter weight gain. Badmal will be
a measurement unit, and each pen is an experimental unit.aVghreat-
ments withn pens per treatmeni\ = gn total pens) ana animals per pen.
The cost of the experiment might well be representathas gnCs + gnrCs.
That is, there is a fixed cost, a cost per pen, and a cost perhriline cost
per pen is no doubt very high. Lef be the variation from pen to pen, and let
o3 be the variation from animal to animal. Then the variance wéatment
average is

of | o3
n o nr

The question is now, “What values afandr give us minimal variance of a

More little units
generally better

More units or
measurement
units?

Costs may vary
by unit type
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treatment average for fixed total cost?” We need to know at giea about
the costs and sources of variation before we can compleextreise.

7.6 Allocation of Units for Two Special Cases

We have considered computing power and sample size for ¢edaalloca-
tions of units to treatments. Indeed, Chapter 6 gave som@elting reasons
for favoring balanced designs. However, there are somatgitis where un-
equal sample sizes could increase the power for altersadivmterest. We
examine two of these.

Suppose that one of thetreatments is a control treatment, say treatment
1, and we are only interested in determining whether therdtieatments
Comparison with differ from treatment 1. That is, we wish to compare treath®to control,
control treatment 3 to control,. ., treatmentg to control, but we don’'t compare
noncontrol treatments. This is the standard setup wheren&ltis test is
applied. For such an experiment, the control plays a spest&(it appears in
all contrasts), so it makes sense that we should estimatmtiteol response
more precisely by putting more units on the control. In faet,can show that
we should choose group sizes so that the noncontrol tretdraizes () are
equal and the control treatment size)is aboutn,. = ny/g — 1.

A second special case occurs when ghigeatments correspond to nu-
merical levels or doses. For example, the treatments cautdgpond to four

Allocation for different temperatures of a reaction vessel, and we can thiewdifferences

polynomial in responses at the four treatments as linear, quadratiGaric temperature

contrasts effects. If one of these effects is of particular interest, aan allocate units
to treatments in such a way to make the standard error fosthatted effect
small.

Suppose that we believe that the temperature effect, ifribiszero, is
essentially linear with only small nonlinearities. Thus weuld be most
interested in estimating the linear effect and less inteteim estimating the
quadratic and cubic effects. In such a situation, we coukdnpare units
at the lowest and highest temperatures, thereby decretsngariance for
the linear effect contrast. We would still need to keep sofmgeovations
in the intermediate groups to estimate quadratic and cuiects, though
we wouldn’'t need as many as in the high and low groups sinarméating
curvature is assumed to be of less importance than detergiingé presence
of a linear effect.

Note that we need to exercise some caution. If our assungpébout
shape of the response and importance of different contestacorrect, we
could wind up with an experiment that is much less infornethan the equal
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sample size design. For example, suppose we are near thefireqiadratic
response instead of on an essentially linear response.thadinear contrast
(on which we spent all our units to lower its variance) israsting zero, and
the quadratic contrast, which in this case is the one withhallinteresting
information, has a high variance.

7.7 Further Reading and Extensions

When the null hypothesis is true, the treatment and errorssoinsquares
are distributed as” times chi-square distributions. Mathematically, therati
of two independent chi-squares, each divided by their adegod freedom,
has an F-distribution; thus the F-ratio has an F-distrdsutvhen the null is
true. When the null hypothesis is false, the error sum of seguatill has
its chi-square distribution, but the treatment sum of sgsiias aoncentral
chi-squaredistribution. Here we briefly describe the noncentral cjuaze.

Sample sizes
based on
incorrect

assumptions can
lower power

If Z1, 2, ---, Z, are independent normal random variables with mean 0

and variance 1, thed? + Z2 + - - - + Z2 (a sum of squares) has a chi-square

distribution withn degrees of freedom, denoted §y. If the Z;’s have vari-
ancec?, then their sum of squares is distributedcgstimes ay2. Now
suppose that th&;'s are independent with meansand variancer=. Then
the sum of squares? + Z3 + - - - + Z2 has a distribution which is? times a
noncentrakhi-square distribution with n degrees of freedom and notraé

ity parameted ", 62/a2%. Let x2(¢) denote a noncentral chi-square with n
degrees of freedom and noncentrality paramételf the noncentrality pa-
rameter is zero, we just have an ordinary chi-square.

In Analysis of Variance, the treatment sum of squares hastahdition
that iso? times a noncentral chi-square distribution with- 1 degrees of
freedom and noncentrality parame}ef_, n;a?/o?. See Appendix A. The
mean square for treatments thus has a distribution

2 g 2
o Y nan
Mt ~ = Xg1 (550

The expected value of a noncentral chi-square is the suns afeigrees of
freedom and noncentrality parameter, so the expected dldiege mean
square for treatments is? + >°9_, n;a?/(g — 1). When the null is false,
the F-ratio is a noncentral chi-square divided by a centnabquare (each
divided by its degrees of freedom); this is a noncentral $tritiiution, with

the noncentrality of the F coming from the noncentrality loé numerator
chi-square.
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Exercise 7.1

Exercise 7.2

Exercise 7.3

Exercise 7.4

Exercise 7.5

Problem 7.1

7.8 Problems

Find the smallest sample size giving power of at least .7 whsting
equality of six groups at the .05 level when= 4n.

We are planning an experiment comparing three fertiliZéfs will have
six experimental units per fertilizer and will do our testlz 5% level. One
of the fertilizers is the standard and the other two are nbe/standard fer-
tilizer has an average yield of 10, and we would like to be &bldetect the
situation when the new fertilizers have average yield 1he¥ée expect the
error variance to be about 4. What sample size would we need ivant
power .97

What is the probability of rejecting the null hypothesis whbere are
four groups, the sum of the squared treatment effects i@ ttor variance
is 3, the group sample sizes are 4, &g .01?

I conduct an experiment doing fixed-level testing wétl+ .05; | know
that for a given set of alternatives my power will be .85. Toué-alse?

1. The probability of rejecting the null hypothesis when thél hypoth-
esis is false is .15.

2. The probability of failing to reject the null hypothesii@n the null
hypothesis is true is .05.

We are planning an experiment on the quality of video tape e
purchased 24 tapes, four tapes from each of six types. Thgss of tape
were 1) brand A high cost, 2) brand A low cost, 3) brand B hightcd)
brand B low cost, 5) brand C high cost, 6) brand D high cost. hEape
will be recorded with a series of standard test patterndayegd 10 times,
and then replayed an eleventh time into a device that meathgealistortion
on the tape. The distortion measure is the response, andpls will be
recorded and replayed in random order. Previous similas tesd an error
variance of about .25.

a) What is the power when testing at the .01 level if the higst tapes
have an average one unit different from the low cost tapes?

b) How large should the sample size have been to have a 95% Bran
versus brand B confidence interval of no wider than 2?

We are interested in the effects of soy additives to diethetood con-
centration of estradiol in premenopausal women. We haverigal data on
six subjects, each of whose estradiol concentration wasuned at the same
stage of the menstrual cycle over two consecutive cyclesth®mog scale,
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the error variance is about .109. In our experiment, we vélleha pretreat-
ment measurement, followed by a treatment, followed by dtm@gment

measurement. Our response is the difference (pogte), so the variance
of our response should be about .218. Half the women willivedfie soy

treatment, and the other half will receive a control treattne

How large should the sample size be if we want power .9 wheimntps
at the .05 level for the alternative that the soy treatmeisegathe estradiol
concentration 25% (about .22 log units)?

Nondigestible carbohydrates can be used in diet foodshkytrhay have
effects on colonic hydrogen production in humans. We wamgs$bto see if
inulin, fructooligosaccharide, and lactulose are eqeiwgin their hydrogen
production. Preliminary data suggest that the treatmeatimeould be about
45, 32, and 60 respectively, with the error variance corad®ely estimated
at 35. How many subjects do we need to have power .95 for ttuatsin
when testing at th€; = .01 level?

Consider the situation of Exercise 3.5. The data we haveaagpeade-
pend linearly on delay with no quadratic component. Supplosethe true
expected value for the contrast with coefficients (1,-21) (representing a
slight amount of curvature) and that the error variance is\&bat sample
size would be needed to have power .9 when testing at thevlIPle

Problem 7.2

Problem 7.3



164 Power and Sample Size




Chapter 8

Factorial Treatment Structure

We have been working with completely randomized designgrad treat-
ments are assigned at randomMainits. Up till now, the treatments have had
no structure; they were jugttreatments Factorial treatment structureex-
ists when thgy treatments are the combinations of the levels of two or more
factors. We call these combination treatmefaitor-level combinationsr

combine the
levels of two or

factorial combinationso emphasize that each treatment is a combination of more factors to

one level of each of the factors. We have not changed the nazdtion; we
still have a completely randomized design. It is just thanwee are con-
sidering treatments that have a factorial structure. Weleadrn that there
are compelling reasons for preferring a factorial expeninte a sequence of
experiments investigating the factors separately.

8.1 Factorial Structure

It is best to start with some examples of factorial treatnstnicture. Lynch
and Strain (1990) performed an experiment with six treatsistudying how
milk-based diets and copper supplements affect trace eleleeels in rat
livers. The six treatments were the combinations of thrdk-based diets
(skim milk protein, whey, or casein) and two copper suppleis¢low and
high levels). Whey itself was not a treatment, and low coppas not a
treatment, but a low copper/whey diet was a treatment. Melsaby, and
Johnson (1990) studied the effects of six dietary supplésn@mthe occur-
rence of leg abnormalities in young chickens. The six treats were the
combinations of two levels of phosphorus supplement aneetievels of
calcium supplement. Finally, Hunt and Larson (1990) stddiw effects of

create treatments
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Two-factor
designs

Multiple
subscripts denote
factor levels and
replication

Balanced data
have equal
replication

Table 8.1: Barley sprouting data.

Age of Seeds (weeks)

mHO| 1 3 6 9 12
11 7 9 13 20

4 9 16 19 35 37

6 17 35 28 45

8 1 ) 1 11

8 3 7 9 10 | 15

3 3 9 9 25

sixteen treatments on zinc retention in the bodies of rdis.tfleatments were
the combinations of two levels of zinc in the usual diet, teedls of zinc in
the final meal, and four levels of protein in the final meal. igét is the
combination of factor levels that makes a factorial treatine

We begin our study of factorial treatment structure by logkat two-
factor designs. We may present the responses of a two-wayitd@s a table
with rows corresponding to the levels of one factor (whichoa# factor A)
and columns corresponding to the levels of the second féfetctor B). For
example, Table 8.1 shows the results of an experiment oruspgobarley
(these data reappear in Problem 8.1). Barley seeds arediiritb 30 lots of
100 seeds each. The 30 lots are divided at random into tepg@iuthree
lots each, with each group receiving a different treatm&he ten treatments
are the factorial combinations of amount of water used fooing (factor
A) with two levels, and age of the seeds (factor B) with fiveelav The
response measured is the number of seeds sprouting.

We use the notatiop;;;, to indicate responses in the two-way factorial.
In this notationy; ;. is thekth response in the treatment formed from ttie
level of factor A and thgth level of factor B. Thus in Table 8.3 5 3 = 25.
For a four by three factorial design (factor A has four leyistor B has three
levels), we could tabulate the responses as in Table 8. tahle is just a
convenient representation that emphasizes the factongdtsre; treatments
were still assigned to units at random.

Notice in both Tables 8.1 and 8.2 that we have the same nunfilber o
sponses in every factor-level combination. This is cablathnce Balance
turns out to be important for the standard analysis of féaatoesponses. We
will assume for now that our data are balanced withesponses in every
factor-level combination. Chapter 10 will consider anaysf unbalanced
factorials.
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Table 8.2: A two-way factorial treatment structure.

Bl B2 B3
Y111 Y121 Y131

Al : : :
Yiin Yi2n Y13n
Y211 Y221 Y231

A2 : : :
Y21n Y22n Y23n
Y311 Y321 Y331

A3 : : :
Ysin Y3an Y33n
Ya11 Y421 Y431

A4 : : :
Yain Ya2n Y43n

8.2 Factorial Analysis: Main Effect and Interaction

When our treatments have a factorial structure, we may asaauactorial
analysis of the data. The major concepts of this factorialyais are main
effect and interaction.

Consider a two-way factorial where factor A has four leveld factor B
has three levels, as in Table 8.2. Theregse 12 treatments, with 11 degrees
of freedom between the treatments. We usad j to index the levels of
factors A and B. The expected values in the twelve treatmmeaisbe denoted
w5, coefficients for a contrast in the twelve means may be deinatgwhere
as usuab_,; w;; = 0), and the contrast sum [§,;; w;;ui;. Similarly, 7;;,
is the observed mean in thg treatment group, ang,,, andy,;, are the Treatment, row,
observed means for all responses having léw#lfactor A or level; of B, and column
respectively. It is often convenient to visualize the expdawalues, means, means
and contrast coefficients in matrix form, as in Table 8.3.

For the moment, forget about factor B and consider the enyzari to be
a completely randomized design just in factor Aigitompletely randomized
in factor A). Analyzing this design with four “treatmentsye may compute
a sum of squares with 3 degrees of freedom. The variation suined by  Factor A ignoring
this sum of squares is denot8d 4 and depends on just the level of factor A. factor B
The expected value for the mean of the responses in liswt + «;, where
we assume thgt, a; = 0.
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Factor B ignoring
factor A

A main effect
describes
variation due to a
single factor

Interaction is
variation not
described by
main effects

Table 8.3: Matrix arrangement of (a) expected values, (b) means, gnd (c
contrast coefficients in a four by three factorial.

@) (b) )
M1 | M2 | M3 Yite | Y12¢ | Y136 w1 | Wiz | w13
H21 | M22 | M23 Y21e | Y22e | Y23e wa1 | W2 | W3
M31 | p32 | P33 Yste | Y32e | Y33e W31 | W32 | W33
Ha1 | pa2 | P43 Yate | Ya2e | Ya3e Wq1 | Wa2 | W43

Now, reverse the roles of A and B. Ignore factor A and considerex-
periment to be a completely randomized design in factor Bhéiee an ex-
periment with three “treatments” and treatment sum of segisit 5 with 2
degrees of freedom. The expected value for the mean of tip@mess in
columnj is 1 + B;, where we assume that,; 3; = 0.

The effectsa; and 3; are called themain effectsof factors A and B,
respectively. The main effect of factor A describes vapiatiue solely to the
level of factor A (row of the response matrix), and the mafedfof factor B
describes variation due solely to the level of factor B (cuhuof the response
matrix). We have analogously th&tS4 and.SSp are main-effects sums of
squares.

The variation described by the main effects is variation tt@urs from
row to row or column to column of the data matrix. The examgls twelve

treatments and 11 degrees of freedom between treatmentshaVéede-

scribed 5 degrees of freedom using the A and B main effect$iese must
be 6 more degrees of freedom left to model. These 6 remairégeeds of

freedom describe variation that arises from changing raves@lumns si-

multaneously. We call such variatianteractionbetween factors A and B,
or between the rows and columns, and denote i¥BY 5.

Here is another way to think about main effect and interactidhe main
effect of rows tells us how the response changes when we nnoxedne
row to another, averaged across all columns. The main effecolumns

tells us how the response changes when we move from one cdtuam

other, averaged across all rows. The interaction tells usthe change in re-
sponse depends on columns when moving between rows, or lecsh#imge
in response depends on rows when moving between columesadtion be-

tween factors A and B means that the change in mean respoimgefgum

level i, of factor A to leveliy of factor A depends on the level of factor B
under consideration. We can’t simply say that changingekellof factor A
changes the response by a given amount; we may need a diffeneuint of
change for each level of factor B.
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Table 8.4: Sample main-effects and interaction contrast coefficifants
a four by three factorial design.

-3 -3 -3 1 1 1 -1 -1 1
A -1 -1 -1 -1 -1 1 3 3 3
1 1 1 -1 -1 -3 -3 -3
3 3 3 1 1 1 1 1 1
-1 0 1 1 -2 1
B -1 0 1 1 -2 1
-1 0 1 1 -2 1
-1 0 1 1 -2 1
3 0 -3 -1 0 1 1 0 -1
1 0 1 1 0 1 -3 0 3
-1 0 1 1 0 -1 3 0 -3
-3 0 3 -1 0 1 -1 0 1
AB
-3 6 -3 1 -2 1 -1 02 1
-1 2 1 -1 02 4 3 6 3
1 -2 1 102 -3 6 -3
3 6 3 1 -2 1 1 -2 1

We can make our description of main-effect and interactiariation
more precise by using contrasts. Any contrast in factor Aditng B) has
four coefficientsw} and observed value* ({7,., }). This is a contrast in the
four row means. We can make an equivalent contrast in thesétetatment
means by using the coefficients; = w} /3. This contrast just repeats;
across each row and then divides by the number of columns tohmsgp
with the division used when computing row means. Factor Afbaslevels,
so three orthogonal contrasts partitiSi¥ 4. There are three analogous or-
thogonakw;; contrasts that partition the same variation. (See QueStibi)
Table 8.4 shows one set of three orthogonal contrasts dasgthe factor A
variation; many other sets would do as well.

The variation inSSp can be described by two orthogonal contrasts be-
tween the three levels of factor B. Equivalently, we can dbscS.Sp with
orthogonal contrasts in the twelve treatment means, ugimatax of contrast
coefficients that is constant on columns (thatus; = wo; = w3; = wy;
for all columnsj). Table 8.4 also shows one set of orthogonal contrasts for
factor B.

Main-effects
contrasts
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A contrasts
orthogonal to B
contrasts for
balanced data

Interaction
contrasts

Contrast
coefficients
satisfy zero-sum
restrictions

Factorial structure
versus analysis

One-at-a-time
designs

Inspection of Table 8.4 shows that not only are the factor Atasts
orthogonal to each other, and the factor B contrasts orthalgo each other,
but the factor A contrasts are also orthogonal to the factoorasts. This
orthogonality depends on balanced data and is the key regspbalanced
data are easier to analyze.

There are 11 degrees of freedom between the twelve treatneard the
A and B contrasts describe 5 of those 11 degrees of freedora.6Tdddi-
tional degrees of freedom are interaction degrees of freedample inter-
action contrasts are also shown in Table 8.4. Again, ingpeshows that
the interaction contrasts are orthogonal to both sets afi+efiécts contrasts.
Thus the 11 degrees of freedom between-treatment sum ofesgqoan be
partitioned using contrasts infS 4, SSg, andSS 4.

Look once again at the form of the contrast coefficients inld&b4.
Row-main-effects contrast coefficients are constant aé@up row, and add
to zero down each column. Column-main-effects contrasts@anstant down
each column and add to zero along each row. Interactionasistadd to zero
down columns and along rows. This pattern of zero sums widboagain
when we look at parameters in factorial models.

8.3 Advantages of Factorials

Before discussing advantages, let us first recall the éiffee between facto-
rial treatment structure and factorial analysis. Faclamalysis is an option
we have when the treatments have factorial structure; welveays ignore

main effects and interaction and just analyzegheeatment groups.

It is easiest to see the advantages of factorial treatmerttste by com-
paring it to a design wherein we only vary the levels of a @rfgttor. This
second design is sometimes referred to as “one-at-a-tifhbeé sprouting
data in Table 8.1 were from a factorial experiment whereekiels of sprout-
ing water and seed age were varied. We might instead use tevaa-time
designs. In the first, we fix the sprouting water at the loweelland vary the
seed age across the five levels. In the second experiment tihe feed age
at the middle level, and vary the sprouting water across &wels.

Factorial treatment structure has two advantages:

1. When the factors interact, factorial experiments caimasé the inter-
action. One-at-at-time experiments cannot estimatedntem. Use
of one-at-a-time experiments in the presence of interad#m lead to
serious misunderstanding of how the response varies ascaduorof
the factors.
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2. When the factors do not interact, factorial experimemnésraore ef-
ficient than one-at-a-time experiments, in that the units lba used
to assess the (main) effects for both factors. Units in aaireetime
experiment can only be used to assess the effects of one.facto

There are thus two times when you should use factorial treattistructure—
when your factors interact, and when your factors do notatte Factorial
structure is a win, whether or not we have interaction.

The argument for factorial analysis is somewhat less coimpel We
usually wish to have a model for the data that is as simple ssilple. When
there is no interaction, then main effects alone are suffic® describe the
means of the responses. Such a model (or data) is said smldigve
An additive model is simpler (in particular, uses fewer eagrof freedom)
than a model with a mean for every treatment. When intenadsionoderate
compared to main effects, the factorial analysis is stidfus However, in
some experiments the interactions are so large that thefdeain effects as
the primary actors and interaction as fine tuning becomeshaible. For such
experiments it may be better to revert to an analysig téatment groups,
ignoring factorial structure.

Pure interactive response

Consider a chemistry experiment involving two catalystgrehunknown t

us, both catalysts must be present for the reaction to pdodée response i
one or zero depending on whether or not the reaction occliesfdur treat-
ments are the factorial combinations of Catalyst A preseralbsent, and
Catalyst B present or absent. We will have a response of anéidocom-
bination of both catalysts, but the other three responsikb&izero. While
it is possible to break this down as main effect and intesactit is clearly
more comprehensible to say that the response is one wherdatlysts ard
present and zero otherwise. Note here that the factoriainrent structurd
was still a good idea, just not the main-effects/interacdianalysis.

8.4 Visualizing Interaction

An interaction plot also called arofile plot, is a graphic for assessing the rel-

ative size of main effects and interaction; an example isvehia Figure 8.1.
Consider first a two-factor factorial design. We construrcirderaction plot
in a “connect-the-dots” fashion. Choose a factor, say A,ubgn the hori-
zontal axis. For each factor level combination, plot the paiy;;,). Then
“connect-the-dots” corresponding to the points with thesdevel of factor

Use factorials!

Additive model
has only main
effects

Example 8.1

Interaction plots
connect-the-dots

between

treatment means
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Interaction plot
shows relative
size of main
effects and
interaction

Example 8.2

Interpret “parallel”

in light of
variability

Example 8.3

Table 8.5:Iron levels in liver tissue, mg/g dry weight.

Diet Control Cu deficient
Skim milk protein .70 1.28
Whey .93 1.87
Casein 2.11 2.53

B; that is, connectl,¥;,4), (2,72js): UP 10 (a,T,j.)- In our four by three
prototype factorial, the level of factor A will be a numbertleen one and
four; there will be three points plotted above one, threasgblotted above
two, and so on; and there will be three “connect-the-dot&dj one for each
level of factor B.

For additive data, the change in response moving betweelsleffactor
A does not depend on the level of factor B. In an interactiat, gthat simi-
larity in change of level shows up as parallel line segmertisis interaction
is small compared to the main effects when the connect-titethes are
parallel, or nearly so. Even with visible interaction, thegdee of interaction
may be sufficiently small that the main-effects-plus-iatdion description
is still useful. It is worth noting that we sometimes get &ly different
impressions of the interaction by reversing the roles afoiecA and B.

Rat liver iron

Table 8.5 gives the treatment means for liver tissue irorhénltynch and
Strain (1990) experiment. Figure 8.1 shows an interactiotwvath milk diet
factor on the horizontal axis and the copper treatmentsated by different
lines. The lines seem fairly parallel, indicating littleénaction.

Figure 8.1 points out a deficiency in the interaction plot ashave de-
fined it. The observed means that we plot are subject to esoothe line
segments will not be exactly parallel—even if the true meamesadditive.
The degree to which the lines are not parallel must be irééegrin light of
the likely size of the variation in the observed means. Asdh& become
more variable, greater departures from parallel line segsigecome more
likely, even for truly additive data.

Rat liver iron, continued

The line segments are fairly parallel, so there is not muadthesmce of inter-
action, though it appears that the effect of copper may bewdrat larger for
milk diet 2. The mean square for error in the Lynch and Strajpeement
was approximately .26, and each treatment had replicatien5. Thus the
standard errors of a treatment mean, the difference of eairtrent means,
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Figure 8.1: Interaction plot of liver iron data with diet factor on
the horizontal axis, using MacAnova.

and the difference of two such differences are about .23a18@ .46 respe

tively. The slope of a line segment in the interaction plothis differenc

of two treatment means. The slopes from milk diet 1 to 2 areara8 .59,
and the slopes from milk diets 2 to 3 are 1.18 and .66; eachesktlslope
was calculated as the difference of two treatment means. diffegences
of the slopes (which have standard error .46 because thalifteeences o
differences of means) are .36 and .48. Neither of theserdiftas is larg
compared to its standard error, so there is still no evidémdateraction.

We finish this section with interaction plots for the otheotwutrition
experiments described in the first section.

Chick body weights Example 8.4

Figure 8.2 is an interaction plot of the chick body weightsrirthe Nelson
Kriby, and Johnson (1990) data with the calcium factor onhbgzontal
axis and a separate line for each level of phosphorus. Heteraction is
clear. At the upper level of phosphorus, chick weight dogsdepend o

calcium. At the lower level of phosphorus, weight decreagéisincreasing
calcium. Thus the effect of changing calcium levels depamdthe level of
phosphorus.
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Figure 8.2: Interaction plot of chick body weights data with
calcium on the horizontal axis, using Minitab.
Example 8.5 Zinc retention

Finally, let’s look at the zinc retention data of Hunt and $@m (1990). This
is a three-factor factorial design (four by two by two), somezd to modify
our approach a bit. Figure 8.3 is an interaction plot of petreéc retention
with final meal protein on the horizontal axis. The other féagtor-level

combinations are coded 1 (low meal zinc, low diet zinc), 2v(fneal zinc,

high diet zinc), 3 (high meal zinc, low diet zinc), and 4 (higleal zinc, high
diet zinc). Lines 1 and 2 are low meal zinc, and lines 3 and yle meal

zinc. The 1,2 pattern across protein is rather differeninftbe 3,4 pattern
across protein, so we conclude that meal zinc and meal priotteiract.

On the other hand, the 1,3 pair of lines (low diet zinc) hasstmae basic
pattern as the 2,4 pair of lines (high diet zinc), so the ayerd the 1,3 lines
should look like the average of the 2,4 lines. This meansdletzinc and
meal protein appear to be additive.
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Figure 8.3: Interaction plot of percent zinc retention data with
meal protein on the horizontal axis, using MacAnova.

8.5 Models with Parameters

Let us now look at the factorial analysis model for a two-wagtbrial treat-

ment structure. Factor A haslevels, factor B ha$ levels, and there are A hasa levels, B
n experimental units assigned to each factor-level comioinailhekth re- has b levels, n
sponse at théh level of A andjth level of B isy;;,. The model is replications

Yijk = M+ oG + B + afij + €

wherei runs from 1 taa, j runs from 1 tab, k runs from 1 ton, and thee;;;'s Factorial model
are independent and normally distributed with mean zerovamni@nceos?.

Thea, 3;, andaf;; parameters in this model are fixed, unknown constants.

There is a total ofV = nab experimental units.

Another way of viewing the model is that the table of resperisé&roken
down into a set of tables which, when summed element by elemgize the
response. Display 8.1 is an example of this breakdown foreetby two
factorial withn = 1.

The termy is called the overall mean; it is the expected value for the
responses averaged across all treatments. The derism called the main
effect of A at leveli. It is the average effect (averaged over levels of B) for Main effects
level i of factor A. Since the average of all the row averages mushbe t
overall average, these row effeetsmust sum to zero. The same is true for
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Interaction effects

Expected value

Zero-sum
restrictions on
parameters

responses overall mean row effects
Y1 Y121 wop ap o
Y211 Y221 = noop + Qg Q2 +
Y311 Y321 wop a3 Q3
column effects interaction effects
Br P afin afrz
Br B2 + | afr afn |+
Br P af3r  afs2

random errors

€111 €121
€211 €221
€311 €321

Display 8.1: Breakdown of a three by two table into factorial effects.

B;, which is the main effect of factor B at levgl The terma3;; is called the
interaction effect of A and B in théj treatment. Do not confuseg;; with

the product oky; andj;; they are different ideas. The interaction effect is a
measure of how far the treatment means differ from addjtiBecause the
average effect in thégh row must bev;, the sum of the interaction effects in
theith row must be zero. Similarly, the sum of the interactioreet§ in the
jth column must be zero.

The expected value of the response for treatmgis
E yiji = p+ i + B + afij

There aread different treatment means, but we have- a + b + ab pa-

rameters, so we have vastly overparameterized. Recaliti@tiapter 3 we
had to choose a set of restrictions to make treatment effesitslefined; we
must again choose some restrictions for factorial models. Wl use the
following set of restrictions on the parameters:

a b

a b
0= ai=) fi=) afij=) abj.
i=1 J=1

i=1 j=1

This set of restrictions is standard and matches the désceripf the param-
eters in the preceding paragraph. Tdevalues must sum to 0, so at most
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//Z Yoeo

al - yzoo - ,l/l\, = yzoo Yooo

ﬁj - yogo - //Z = yogo yooo
aﬁz] = yz]o //Z - al - ﬁ]

Display 8.2: Estimators for main effects and
interactions in a two-way factorial.

a — 1 of them can vary freely; there ate— 1 degrees of freedom for factor
A. Similarly, the; values must sum to 0, so at mést 1 of them can vary
freely, givingb — 1 degrees of freedom for factor B. For the interaction, we Main-effect and

haveab effects, but they must add to 0 when summed aver j. We can interaction
show that this leads t@: — 1)(b — 1) degrees of freedom for the interaction. degrees of
Note that the parameters obey the same restrictions asittesponding con- freedom

trasts: main-effects contrasts and effects add to zersadhe subscript, and
interaction contrasts and effects add to zero across roeslomns.

When we add the degrees of freedom for A, B, and AB, weaget1
+b—14+(a—1)(b—1) =ab—1=g—1. Thatis, theab — 1 degrees  Main effects and

of freedom between the means of ttiefactor level combinations have been interactions
partitioned into three sets: A, B, and the AB interactionthivi each factor-  partition between
level combination there are — 1 degrees of freedom about the treatment treatments
mean. The error degrees of freedom afe- g = N —ab = (n — 1)ab, variability

exactly as we would get ignoring factorial structure.

The Lynch and Strain data had a three by two factorial strectth
n = 5. Thus there are 2 degrees of freedom for factor A, 1 degreeeddbm
for factor B, 2 degrees of freedom for the AB interaction, @4ddegrees of
freedom for error.

Display 8.2 gives the formulae for estimating the effects itwo-way
factorial. Estimate: by the mean of all the dat,,,. Estimateu + «; by
the mean of all responses that had treatment A at levgl,,. To get an
estimate oty itself, subtract our estimate pffrom our estimate of: + «;. Estimating
Do similarly for factor B, usingj, ;, as an estimate gf + ;. We can extend factorial effects
this basic idea to estimate the interaction terpyis;. The expected value in
treatment; is u+a;+ 3 +aB;;, which we can estimate by, , the observed
treatment mean. To get an estimatexof;, simply subtract the estimates of
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Example 8.6

Table 8.6: Total free amino acids in cheddar cheese after
56 days of ripening.

Control R50#10 R21#2 blend
1.697 2.032 2.211 2.091
1.601 2.017 1.673 2.255
1.830 2.409 1.973 2.987

the lower order parameters (parameters that contain ndi@utli subscripts
beyond those found in this term) from the estimate of thermeat mean.

We examine the estimated effects to determine which tre#tiegels
lead to large or small responses, and where factors intétsatis, which
combinations of levels have large interaction effects).

Nonstarter bacteria in cheddar cheese

Cheese is made by bacterial fermentation of Pasteurizdd mibst of the
bacteria are purposefully added; these are the startereslt Some “wild”
bacteria are also present in cheese; these are nonstacteridba This ex-
periment explores how intentionally-added nonstartetdyacaffect cheese
quality. We use two strains of nonstarter bacteria: R50#tDR21#2. Our
four treatments will be control, addition of R50, additiohR21, and addi-
tion of a blend of R50 and R21. Twelve cheeses are made, tbreaéh of
the four treatments, with the treatments being randomiz#itkt cheeses. Af-
ter 56 days of ripening, each cheese is measured for totahfreno acids (a
measure of bacterial activity related to cheese qualitgsg®nses are given
in Table 8.6 (data from Peggy Swearingen).

Let's estimate the effects in these data. The four treatrmeains are

Tie = (1.697 4 1.601 + 1.830)/3 = 1.709 Control
Tore = (2.032+2.017 +2.409)/3 = 2.153 R50
Tioe = (22114 1.67341.973)/3 = 1.952 R21

Tose = (2.091 4 2.255 4 2.987)/3 = 2.444 Blend
The grand mean is the total of all the data divided by 12,
Teee = 24.776/12 = 2.065 ;
the R50 (row or first factor) means are

Tiee = (L709+1.952)/2 = 1.831
Toee = (2153 +2.444)/2 =2.299 ;
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and the R21 (column or second factor) means are

Teo2e = (1.95242.444)/2 =2.198 .

Using the formulae in Display 8.2 we have the estimates

B =Teoe = 2.065
d; —1.831—2065 = —.234
Gy =2.299 —2.065 = .234
B =1.931-2065 = —.134
By =2.198 2065 = .134

Finally, use the treatment means and the previously esiaffects to ge
the estimated interaction effects:

afyy = 1.709 — (2.065 + —.234 + —.134) = .012
afy =2.153—(2.065+ .234+—.134) = —.012
afy =1.952 — (2.065 + —.234 + .134) = —.012
0By =2444 — (2.065+ 234+ .134) 012 .

8.6 The Analysis of Variance for Balanced Factorials

We have described the Analysis of Variance as an algorithmpdditioning
variability in data, a method for testing null hypotheses] a method for
comparing models for data. The same roles hold in factonalyasis, but we
now have more null hypotheses to test and/or models to campar

We partition the variability in the data by using ANOVA. Tleeis a

source of variability for every term in our model; for a twacfor analy- ANOVA source
sis, these are factor A, factor B, the AB interaction, andrein a one-factor  for every termin
ANOVA, we obtained the sum of squares for treatments by fgqeasng an model

estimated effect (for exampl@;?), then multiplying by the number of units

receiving that effect:{;), and finally adding over the index of the effect (for Sum of squares
example, add over for «;). The total sum of squares was found by sum-

ming the squared deviations of the data from the overall maaah the error

sum of squares was found by summing the squared deviatiotie afata
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SS partitions

Two-factor
ANOVA table

Term Sum of Squares Degrees of Freedom
a
A > bn(a;)? a—1
=1
b o~
B Z an(f3;)? b—1
j=1
a,b .
AB > n(ahy)? (a—1)(b—1)
i=1,j=1
a,b,n
Error Z (Yijr — ?z’j.)2 ab(n —1)
i=1,j=1,k=1
a,b,n
Total Z (yljk - yooo)z abn —1
i=1,j=1k=1

Display 8.3: Sums of squares in a balanced two-way factorial.

from the treatment means. We follow exactly the same prodoatmalanced
factorials, obtaining the formulae in Display 8.3.

The sums of squares must add up in various ways. For example
SSr =554+ 85Sp+SSap+ SSE .

Also recall thatSS 4, SSg, andSS 4z must add up to the sum of squares
between treatments, when considering the experiment t® hav ab treat-
ments, so that

a,b

Z n(@zgo _yooo)2 = SSA + SSB + SSAB .
i=1,j=1

These identities can provide useful checks on ANOVA comnijoria.

We display the results of an ANOVA decomposition in an Aneslysf
Variance table. As before, the ANOVA table has columns farrse, degrees
of freedom, sum of squares, mean square, and F. For the twdawsorial,
the sources of variation are factor A, factor B, the AB intéien, and error,
so the table looks like this:
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Source DF SS MS F
A a-1 SSa SSa/(a—1) MSA/MSg
B b-1 SSp SSp/(b—1) MSp/MSE

AB (@1)(b-1) SSap SSap/lla—1)(b—1)] MSap/MSg
Error (n-1)ab  SSp  SSg/[(n — 1)ab]

Tests or model comparisons require assumptions on thesekd have
assumed that the erroeg;;, are independent and normally distributed with Normality needed
constant variance. When the assumptions are true, the susguares as for testing
random variables are independent of each other and thaltsstssed below
are valid.

To test the null hypothesifly : a1 = as = ... = o, = 0 against
the alternative that some’s are not zero, we use the F-statistieS 4 /M Sg
with a—1 andab(n—1) degrees of freedom. This is a test of the main effect of F-tests for
A. Thep-value is calculated as before. Totégf: 51 =G =... =, =0 factorial null
against the null hypothesis that at least ghis nonzero, use the F-statistic hypotheses

MSp/MSE, with b — 1 andab(n — 1) degrees of freedom. Similarly, the
test statistic for the null hypothesis that thg interaction terms are all zero
iS MSap/MSEg, with (a — 1)(b — 1) andab(n — 1) degrees of freedom.
Alternatively, these tests may be viewed as comparisomngdagt models that
include and exclude the terms under consideration.

Nonstarter bacteria, continued Example 8.7

We compute sums of squares using the effects of Example 8.&hanfor-
mulae of Display 8.3.

SSprso = 6 x ((—.234)% +.234%) = 656
SSpa1 = 6x ((—.134)% +.134%) = 214
SSprso.ro1 = 3 x (.012% 4 (—.012)% + (—.012)% +.012%) = .002

ComputingS Sk is more work:

SSp = (1.697 —1.709)% + (2.032 — 2.153)? + (2.211 — 1.952)?
+ (2.091 — 2.444)% + -+ + (2.987 — 2.444)? = .726 .

have 1 degree of freedom each; therel2re 4 = 8 error degrees of freedony.

We haves = 2 andb = 2, so the main effects and the two-factor interac:rn
Combining, we get the ANOVA table:
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Listing 8.1: SAS output for nonstarter bacteria.

General Linear Models Procedure

Dependent Variable: TFAA

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 0.87231400 0.29077133 3.21 0.0834
Error 8 0.72566267 0.09070783
Corrected Total 11 1.59797667

General Linear Models Procedure

Dependent Variable: TFAA

Source DF Type I SS Mean Square F Value Pr > F
R50 1 0.65613633 0.65613633 7.23 0.0275
R21 1 0.21440133 0.21440133 2.36 0.1627
R50*R21 1 0.00177633 0.00177633 0.02 0.8922

Source DF SS MS F p-value

R50 1 .656 .656 7.23 .028
R21 1 214 214 2.36 .16
R50.R21 1 .002 .002 .02 .89
Error 8 .726 .091

The largep-values indicate that we have no evidence that R21 inteveitis
R50 or causes a change in total free amino acids. pFvedue of .028 indi-
cates moderate evidence that R50 may affect total free aatinis.

Listing 8.1 shows SAS output for these data. Note that SA8gjie
ANOVA table in two parts. In the first, all model degrees ofefdem are
combined into a single 3 degree-of-freedom term. In the m&cthe main
effects and interactions are broken out individually.

8.7 General Factorial Models

The model and analysis of a multi-way factorial are simitarttiose of a
two-way factorial. Consider a four-way factorial with facs A, B, C and D,
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which match with the letters, 3, v, andd. The model is

Yijkim = P+ o+ B; + v + 0
+ afij + avip + ady + Bk + B+ Yo
+ aByijk + afdiji + aydixs + B0k
+ afBv0ijk
+ €ijkim -

The first line contains the overall mean and main effectsHerfour factors;

the second line has all six two-factor interactions; thedtline has three-

factor interactions; the fourth line has the four-factdenaction; and the last

line has the error. Just as a two-factor interaction dessfitow a main effect

changes depending on the level of a second factor, a theta-fateraction Multi-factor
like a3v;;, describes how a two-factor interaction changes depending o interactions
the level of a third factor. Similarly, four-factor inteittans describe how

three-factor interactions depend on a fourth factor, ammhsior higher order

interactions.

We still have the assumption that the are independent normals with

mean 0 and variance’. Analogous with the two-factor case, we restrict our Zero-sum
effects so that they will add to zero when summed over anycsigts For restrictions on
example, parameters

0= 6= _Bvr=> aBdj=> abysiju -
] %

Wi K3

These zero-sum restrictions make the model parameterseinifheabcd

— 1 degrees of freedom between ie:d treatments are assorted among the

terms as follows. Each term contains some number of factoree—two,

three, or four—and each factor has some number of leve]$¢, ord. To Degrees of
get the degrees of freedom for a term, subtract one from thbeuof levels freedom for
for each factor in the term and take the product. Thus, foAfRB term, we general factorials
have(a — 1)(b — 1)(d — 1) degrees of freedom.

Effects in the model are estimated analogously with how wenesed
effects for a two-way factorial, building up from overall arg to main ef-
fects, to two-factor interactions, to three-factor intgi@ens, and so on. The
estimate of the overall meanis= 3", .11, Vijkim/N = Teeses- Main-effect Main effects and

and two-factor interaction estimates are just like for faoctor factorials, ig- two-factor
noring all factors but the two of interest. For example, tbneste a main estimates as
effect, say thekth level of factor C, we take the mean of all responses that before

received thésth level of factor C, and subtract out the lower order estadat
effects, here jusi:

~

’AYk = yookoo — K.
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For a three-way interaction, say thgith level of factors A, B, and C, we
take the mean response at thé combination of factors A, B, and C, and
then subtract out the lower order terms—the overall meaim eféects of A,
B, and C; and two-factor interactions in A, B, and C:

aBYiik = Tijres — (B + Qi + B+ + afBi; + ¥ + Bvji) -

Simply continue this general rule for higher order intei@ats.

The rules for computing sums of squares follow the usuaépatisquare
each effect, multiply by the number of units that receive #ftect, and add
over the levels. Thus,

SSaBp = ch(ojﬂ\%z)z ,

il
and so on.

As with the two-factor factorial, the results of the Analysif Variance
are summarized in a table with the usual columns and a rowafc g&erm in
the model. We test the null hypothesis that the effects irvargierm are all
zeroes by taking the ratio of the mean square for that terimtontean square
for error and comparing this observed F to the F-distribbutigth the corre-
sponding numerator and denominator degrees of freedorarnaltively, we
can consider these F-tests to be tests of whether a giverigereeded in a
model for the data.

It is clear by now that the computations for a multi-way faigbare
tedious at best and should be performed on a computer usitigtisal soft-
ware. However, you might be stranded on a desert island (aniexam
room) and need to do a factorial analysis by hand. Here iskmigoe for
multi-way factorials that reorganizes the computatiomgiied for comput-
ing factorial effects; some find this easier for hand work.e Qeneral ap-
proach is to compute an effect, subtract it from the data,thed compute
the next effect on the differences from the preceding stéjs Way we only
need to subtract out lower order terms once, and it is easiadp track of
things.

First compute the overall meahand subtract it from all the data values.
Now, compute the mean of the differences at each level abfactBecause
we have already subtracted out the overall mean, these nagarbke esti-
mated effects for factor A. Now subtract these factor A @ffdoom their
corresponding entries in the differences. Proceed silyilgith the other
main effects, estimating and then sweeping the effectsfabedifferences.
To get a two-factor interaction, get the two-way table ofadénce means.
Because we have already subtracted out the grand mean anceffedts,



8.8 Assumptions and Transformations

185

these means are the two-factor interaction effects. Coatby computing
two-way means and sweeping the effects out of the diffeieneoceed up
through higher order interactions. As long as we proceedhiegarchical
fashion, we will obtain the desired estimated effects.

8.8 Assumptions and Transformations

The validity of our inference procedures still depends anabcuracy of our
assumptions. We still need to check for normality, constamiance, and
independence and take corrective action as required,jusealid in single-
factor models.

One new wrinkle that occurs for factorial data is that viwias of as-
sumptions may sometimes follow the factorial structurer &mample, we
may find that error variance is constant within a given levdhotor B, but
differs among levels of factor B.

A second wrinkle with factorials is that the appropriate milofbr the
mean structure depends on the scale in which we are analftzrndata.
Specifically, interaction terms may appear to be needed erscale but not
on another. This is easily seen in the following example. pdgp that the
means for the factor level combinations follow the model

pij = Mexpajexp 3; .

This model is multiplicative in the sense that changing leweé factor A or

B rescales the response by multiplying rather than addingdaesponse.

If we fit the usual factorial model to such data, we will need ihteraction
term, because an additive model won't fit multiplicativeadeell. For log-
transformed data the mean structure is

log (pij) = log (M) + o + B .

Multiplicative data look additive after log transformatiano interaction term
is needed. Serendipitously, log transformations often déimaonstant vari-
ance at the same time.

Some people find this confusing at first, and it begs the questiwhat
do we mean by interaction. How can the data have interactioone scale

but not on another? Data are interactivieen analyzed on a particular scale

if the main-effects-only model is inadequate and one or nioteraction

Check
assumptions

Transformation
affects mean
structure

Interaction

terms are required. Whether or not interaction terms arelewelepends depends on scale

on the scale of the response.
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8.9 Single Replicates

Some factorial experiments are run with only one unit at dactor-level
combination f = 1). Clearly, this will lead to trouble, because we have no
degrees of freedom for estimating error. What can we do?igpitint, anal-
ysis of factorials becomes art as well as science, becausenyst choose
among several approaches and variations on the approasbas.of these
approachesis guaranteed to work, because none providestimate of pure
experimental error that we can get from replication. If we ag approach
that has an error estimate that is biased upwards, then Wwhavié a conser-
vative procedure. Conservative in this context means ligat-value that we
compute is generally larger than the tpsealue; thus we reject null hypothe-
ses less often than we should and wind up with models withrféavens than
might be appropriate. On the other hand, if we use a procedlitinean er-
ror estimate that is biased downwards, then we will haveadilprocedure.
Liberal means that the computedvalue is generally smaller than the true
p-value; thus we reject null hypotheses too often and wind itp models
with too many terms.

The most common approach is to combine one or more high-ameler
teraction mean squares into an estimate of error; thatlsgtsene or more
interaction terms and add their sums of squares and dedgrgesdom to get
a surrogate error sum of squares and degrees of freedone unttherlying
true interactions are null (zero), then the surrogate emean square is an
unbiased estimate of error. If any of these interactionomsnnll, then the
surrogate error mean square tends on average to be a lgtderthan error.
Thus, if we use a surrogate error mean square as an estimateoofand
make tests on other effects, we will have tests that range fralid (when
interaction is absent) to conservative (when interactiqorésent).

This valid to conservative range for surrogate errors assutimat you
haven't peeked at the data. It is very tempting to look atradBon mean
squares, decide that the small ones must be error and tleedagg must be
genuine effects. However, this approach tends to give yoar esstimates
that are too small, leading to a liberal test. It is genersdifer to choose the
mean squares to use as error before looking at the data.

A second approach to single replicates is to use an extestialae of
error. That is, we may have run similar experiments befond, \ae know
what the size of the random errors was in those experimehtss We might
use anM Sg from a similar experiment in place of @i .Sy from this exper-
iment. Thismightwork, but it is a risky way of proceeding. The reason it
is risky is that we need to be sure that the external estinfaterar is really
estimating the error that we incurred during this experimHéithe size of the
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Table 8.7: Page faults for a CPU experiment.

Allocation

Algorithm Sequence Size 1 2 3
1 1 1 32 48 538
2 53 81 1901

3 142 197 5689

2 1 52 244 998

2 112 776 3621

3 262 2625 10017

3 1 59 536 1348

2 121 1879 4637

3 980 5698 1288(

2 1 1 49 67 789
2 100 134 3152

3 233 350 9100

2 1 79 390 1373

2 164 1255 4917

3 458 3688 13531

3 1 85 814 1693

2 206 3394 583§

3 1633 10022 17117

random errors is not stable, that is, if the size of the ranéaiors changes
from experiment to experiment or depends on the conditiodeuwhich the

experiment is run, then an external estimate of error Wil be estimating

something other than the error of this experiment.

A final approach is to use one of the models for interactiortidesd in
the next chapter. These interaction models often allow disttee bulk of an ~ Model interaction
interaction with relatively few degrees of freedom, leayihe other degrees
of freedom for interaction available as potential estiraateerror.

CPU page faults Example 8.8

Some computers divide memory into pages. When a program iuiss
allocated a certain number of pages of RAM. The prograntitsal require
more pages than were allocated. When this is the case, tyrterused
pages are stored on disk. From time to time, a page storedskrisdieeded
this is called gpage fault. When a page fault occurs, one of the currerftly
active pages must be moved to disk in order to make room fopaige tha
must be brought in from disk. The trick is to choose a “goodjg#o sen
out to disk, where “good” means a page that will not be used soo



188

Factorial Treatment Structure

Listing 8.2: SAS output for log page faults.

Dependent Variable:

Source

Model

Error

Corrected Total

Source

SEQ

SIZE

ALLOC

ALG

SEQ*SIZE
SEQ*ALLOC
SEQ*ALG
SIZE*ALLOC
SIZE*ALG
ALLOC*ALG
SEQ*SIZE*ALLOC
SEQ*ALLOC*ALG
SEQ*SIZE*ALG
SIZE*ALLOC*ALG

General Linear Models Procedure

LFAULTS
Sum of Mean

DF Squares Square F Value Pr > F
45 173.570364 3.857119 1353.60 0.0001
8 0.022796 0.002850

53 173.593160

DF Type I SS Mean Square F Value Pr > F
2 24.6392528 12.3196264 4323.41 0.0001
2 41.6916546 20.8458273 7315.56 0.0001
2 92.6972988 46.3486494 16265.43 0.0001
1 2.5018372 2.5018372 877.99 0.0001
4 0.8289576 0.2072394 72.73 0.0001
4 9.5104719 2.3776180 834.39 0.0001
2 0.0176369 0.0088184 3.09 0.1010
4 0.5043045 0.1260761 44 .24 0.0001
2 0.0222145 0.0111073 3.90 0.0658
2 0.0600396 0.0300198 10.54 0.0057
8 1.0521223 0.1315153 46.15 0.0001
4 0.0260076 0.0065019 2.28 0.1491
4 0.0145640 0.0036410 1.28 0.3548
4 0.0040015 0.0010004 0.35 0.8365

The experiment consists of running different programs ommapmuter
under different configurations and counting the number gedaults. There
were two paging algorithms to study, and this is the fact@rizhary interest.
A second factor with three levels was the sequence in whistesyroutines
were initialized. Factor three was the size of the programa({s medium,
or large memory requirements), and factor four was the amotURAM
memory allocated (large, medium, or small). Table 8.7 shitvsiumber of
page faults that occurred for each of the 54 combinations.

Before computing any ANOVA's, look at the data. There is nplica-
tion, so there is no estimate of error. We will need to use sofiike inter-
actions as experimental error. The obvious choice is thevay interaction
with 8 degrees of freedom. Eight is on the low end of acceptdl like
to have 15 or 20, but | don’t know which other interactions dsld use—
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Plot of LFSTDRES*LFPRED. Legend: A = 1 obs, B = 2 obs, etc.
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Figure 8.4: Studentized residuals versus predicted values for log fzade
data, using SAS.

all three- and four-way interactions, perhaps? | will stathwhe four-way
interaction as a proxy error term.

The second thing to notice is that the data range over sevetats of
magnitude and just look multiplicative. Increasing thegyeom size or chan
ing the allocation seems to double or triple the number okgaglts, rathe
than just adding a constant number. This suggests that adogform of
the response is advisable, and we begin by analyzing theuodpar of pag
faults.

Listing 8.2 gives the ANOVA for log page faults. All main effies are sig
nificant, and all interactions involving just allocatiompgram size, and loa
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Plot of LFSTDRES*NS. Legend: A = 1 obs, B = 2 obs, etc.
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Figure 8.5: Normal probability plot of studentized residuals for loggpa
fault data, using SAS.

sequence are significant. There is fairly strong evidencarallocation by
algorithm interaction-value .006), but interactions that include sequence
and algorithm or size and algorithm are not highly significan

The variance is fairly stable on this scale (see Figure &dd,normality
looks good too (Figure 8.5). Thus we believe that our infeesnare fairly
sound.

The full model explains 173.6 SS; of that, 170.9 is explaibgélloca-
tion, size, load sequence, and their interactions. Thusevabjorithm and
some of its interactions may be significant, their effecéstary compared to
the other effects. This is clear in the side-by-side plog(Fé 8.6).
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Figure 8.6: Side-by-side plot for log page fault data, using
MacAnova. Factor labels size-z, sequence-q, allocatjon-c
algorithm-g.

Since algorithm is the factor of interest, we examine it nwosely. Thel
effects for algorithm are -.215 and .215. Recalling thattaia are on the lo
scale, the difference from algorithm 1 to 2 is about a factexp(2x.215) =
1.54, so algorithm 2 produces about 1.54 times as many page titlses
algorithm 1. This is worth knowing, since page faults taketaof time on
a computer. Looking at the algorithm by allocation intei@tt we find the
effects

0249 .0249
0223 .0223
0471 -.0471

Thus while algorithm 1 is considerably better overall, ignparative advanl
tage over algorithm 2 is a few percent less on small allonatio
8.10 Pooling Terms into Error

Pooling is the practice of adding sums of squares and degfefesedom
for nonsignificant model terms with those of error to form avr(@ooled
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together) error term for further testing. In statisticaftaare, this is usually
done by computing the ANOVA for a model that does not includeterms
to be pooled into error. | doot recommend pooling as standard practice,
because pooling may lead to biased estimates of the error.

Pooling may be advantageous if there are very few error dsgrtfree-
dom. In that case, the loss of power from possible overetittmaf the error
may be offset by the increase in error degrees of freedomy CGuonisider
pooling a term into error if

1. There are 10 or fewer error degrees of freedom, and
2. The term under consideration for pooling has an F-ratie than 2.

Otherwise, do not pool.

For unbalanced factorials, refitting with a model that omlgludes re-
quired terms has other uses. See Chapter 10.

8.11 Hierarchy

A factorial model for data is calledierarchicalif the presence of any term
in the model implies the presence of all lower order termg. éxample, a
hierarchical model including the AB interaction must iraduthe A and B
main effects, and a hierarchical model including the BC2riattion must
include the B, C, and D main effects and the BC, BD, and CD autions.
One potential source of confusion is that lower-order teoowur earlier in a
model and thus appear above higher-order terms in the AN@blket lower-
order terms are above.

One view of data analysis for factorial treatment strucisrthe selec-
tion of an appropriate model for the data; that is, detemginivhich terms
are needed, and which terms can be eliminated without losgm&natory
ability. Use hierarchical models when modeling factoriatad Do not au-
tomatically test terms above (that is, lower-order to) adeekinteraction. If
factors A and B interact, conclude that A and B act jointlynéiience the
response; there is no need to test the A and B main effects.

The F-test allows us to test whether any term is needed, &eemain
effect of A when the AB interaction is needed. Why should wetast these
lower-order terms, and possibly break hierarchy, when we kize ability to
do so? The distinction is one between generic modeling ofthewesponse
depends on factors and interactions, and testing specifiothgses about
the treatment means. Tests of main effects are tests thatrceery specific
contrasts are zero. If those specific contrasts are gegudhdhterest, then
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Table 8.8: Number of rats that died after exposure to three strains of
bacteria and treatment with one of two antibiotics, andofiaat
decompositions using equal weighting and 1,2,1 weightingws.

Means Equal Weights Row Weighteg
120 168 24 24| -8 21 21| -9
144 168 -12 12 4 -9 9 3
192 120 36 -36 4 39 -39 3

0 0| 152 -3 3| 153

testing main effects is appropriate, even if interactioxiste Thus | only
consider nonhierarchical models when | know that the méaets contrasts,
and thus the nonhierarchical model, make sense in the exgetal context.

The problem with breaking hierarchy is that we have chosetefine
main effects and interactions using equally weighted ayegaf treatment
means, but we could instead define main effects and interactising un-
equally weighted averages. This new set of main effects @tedactions is
just as valid mathematically as our usual set, but one setaag zero main
effects and the other set have nonzero main effects. Whiockedwant to
test? We need to know the appropriate set of weights, or aluitly, the
appropriate contrast coefficients, for the problem at hand.

Unequal weights

Suppose that we have a three by two factorial design testingntibiotics
against three strains of bacteria. The response is the nuhibats (out of
500) that die from the given infection when treated with theeg antibiotic.
Our goal is to find the antibiotic with the lower death rate bl€&8.8 gives
hypothetical data and two ways to decompose the means iatagnean

row effects, column effects, and interaction effects.

The first decomposition in Table 8.8 (labeled equal weigistsur usual
factorial decomposition. The row effects and column effemdld to zero
and the interaction effects add to zero across any row omnaoluVith this
standard factorial decomposition, the column (antib)atitects are zero, s
there is no average difference between the antibiotics.

On the other hand, suppose that we knew that strain 2 of liaetes
twice as prevalent as the other two strains. Then we wouldagiiy want to
weight row 2 twice as heavily as the other rows in all averadlyaswe make
The second decomposition uses 1,2,1 row weights; all treeterfal effects

are different from the equally weighted effects. In patacuthe antibiotic

Are equally
weighted
averages

appropriate?

Example 8.9
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Table 8.9: Amylase specific activity (IU), for two varieties of sprodte
maize under different growth and analysis temperaturegrégs C).

Analysis Temperature
GT Var. 40 35 30 25 20 15 13 10

25 B73 3918 427.7 486.6 469.2 383.1 3389 283.7 269.3
311.8 388.1 426.6 436.8 408.8 3555 3094 278.7
367.4 468.1 499.8 4440 429.0 3045 3099 313.0

043 301.3 3529 376.3 373.6 3775 3088 2343 1971
271.4 296.4 393.0 364.8 364.3 279.0 2554 1983
300.3 346.7 334.7 386.6 329.2 2613 2394 216.7

13 B73 292.7 422.6 4435 4385 350.6 3059 3199 286.7
283.3 359.5 4312 398.9 3839 3428 2832 266.5
348.1 3819 388.3 413.7 4084 3322 2879 259.8

043 269.7 3809 389.4 4003 3405 288.6 2609 2219
284.0 357.1 420.2 412.8 309.5 271.8 253.6 2544
2353 339.0 4534 3719 313.0 333.7 2895 246.7

effects change, and with this weighting antibiotic 1 has amesponse 6
units lower on average than antibiotic 2 and is thus prefeimeantibiotic 2.

Analogous examples have zero column effects for weightedages and
nonzero column effects in the usual decomposition. Noténénvteighted
decomposition that column effects add to zero and the ictierss add to
zero across columns, but row effects and interaction effdotvn columns
only add to zero with 1,2,1 weights.

If factors A and B do not interact, then the A and B main effeats
the same regardless of how we weight the means. In the abe&A&in-
teraction, testing the main effects of A and B computed usingequally
weighted averages gives the same results as for any othghtivej. Simi-
larly, if there is no ABC interaction, then testing AB, AC, BC using the
standard ANOVA gives the same results as for any weighting.

Factorial effects are only defined in the context of a paldicweighting
scheme for averages. As long as we are comparing hierarchicels, we
know that the parameter tests make sense for any weightigen\We test
lower-order terms in the presence of an including intecagtive must use
the correct weighting.
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Residuals Versus the Fitted Values
(response is y)
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Figure 8.7: Residuals versus predicted values for amylase
activity data, using Minitab.
Amylase activity Example 8.10

Orman (1986) studied germinating maize. One of his expearigeoked a
the amylase specific activity of sprouted maize under 32udfit treatmen
conditions. These treatment conditions were the factaoahbinations o
analysis temperature (eight levels, 40, 35, 30, 25, 20, 35aidd 10 degre
C), growth temperature of the sprouts (25 or 13 degrees @)yvariety of
maize (B73 or Oh43). There were 96 units assigned at randahese 3
treatments. Table 8.9 gives the amylase specific activitidaternational
Units.

This is an eight by two by two factorial with replication, se@ it the
full factorial model. Figure 8.7 shows that the variabildy the residualg
increases slightly with mean. The best Box-Cox transfoionais the log

(power 0), and power 1 is slightly outside a 95% confidenceria for the
transformation power. After transformation to the log s¢tte constant vari
ance assumption is somewhat more plausible (Figure 8.8jhbumprove-
ment is fairly small. The normal probability plot shows tliae residuals ar
slightly short-tailed.

We will analyze on the log scale. Listing 8.3 shows an ANOVA Jo

the log scale dataaf is analysis temperaturgt is growth temperatur
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Figure 8.8: Residuals versus predicted values for log amylase
activity data, using Minitab.

andyv is variety). Analysis temperature, variety, and the grotgthperature
by variety interaction are all highly significant; the argfytemperature by
growth temperature interaction is marginally significdritclude in any fi-
nal model the main effect of growth temperature (even thaughs a fairly
largep-value), because growth temperature interacts with waieid | wish
to maintain hierarchy.

Note that the analysis is not finished. We should look morsetjoat
the actual effects and interactions to describe them in rdetail. We will
continue this example in Chapter 9, but for now we examineithe-by-side
plot of all the effects and residuals, shown in Figure 8.9 alixsis temper-
ature and variety have the largest effects. Some of the sisaymperature
by growth temperature and analysis temperature by variétyaction effects
(neither terribly significant) are as large or larger thamghowth temperature
by variety interactions. Occasional large effects in ngnigicant terms can
occur because the F-test averages across all the degreesddiin in a term,
and many small effects can mask one large one.
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Listing 8.3: ANOVA for log amylase activity, using Minitab.

Analysis of Variance for 1ly

Source DF SS MS F P
at 7 3.01613 0.43088 78.86 0.000
gt 1 0.00438 0.00438 0.80 0.374
v 1 0.58957 0.58957 107.91 0.000
at*gt 7 0.08106 0.01158 2.12 0.054
at*v 7 0.02758 0.00394 0.72 0.654
gt*v 1 0.08599 0.08599 15.74 0.000
at*gt*v 7 0.04764 0.00681 1.25 0.292
Error 64 0.34967 0.00546
Total 95 4.20202
3
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Figure 8.9: Side-by-side plot for effects in analysis of log
amylase activity data.

8.12 Problems

Diet affects weight gain. We wish to compare nine diets; ¢haists are
the factor-level combinations of protein source (beefkpand grain) and
number of calories (low, medium, and high). There are emgitest animals
that were randomly assigned to the nine diets, two animaiglige. The

mean responses (weight gain) are:

Exercise 8.1
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Exercise 8.2

Problem 8.1

Problem 8.2

Calories
Low  Medium High
Beef 76.0 86.8 101.8
Source Pork 83.3 89.5 98.2
Grain 83.8 83.5 86.2

The mean square for error was 8.75. Analyze these data tomdetean
appropriate model.

An experiment was conducted to determine the effect of gatitn time
(in days) and temperature (degrees C) on the free alpha antiingen (FAN)
content of rice malt. The values shown in the following are treatment
means of FAN withn = 2 (data from Aniche and Okafor 1989).

Temperature
Days 22 24 26 28 Row Means
1 394 499 55.1  59.5 50.98
2 56.4 68.0 764 888 72.40
3 70.2 815  95.6  99.6 86.72

Column Means 55.33 66.47 75.70 82.63
Grand Mean 70.03

The total sum of squares was 8097. Draw an interaction ptahfese data.
Compute an ANOVA table and determine which terms are needeeldcribe
the means.

Brewer's malt is produced from germinating barley, so brswike to
know under what conditions they should germinate theirdyariThe fol-
lowing is part of an experiment on barley germination. Badeeds were
divided into 30 lots of 100 seeds, and each lot of 100 seedgyesmsinated
under one of ten conditions chosen at random. The condidomghe ten
combinations of weeks after harvest (1, 3, 6, 9, or 12 weekd)amount
of water used in germination (4 ml or 8 ml). The response istimaber of
seeds germinating. We are interested in whether timingoaadiount of wa-
ter affect germination. The data for this problem are in &bl (Hareland
and Madson 1989). Analyze these data to determine how theimggtion
rate depends on the treatments.

Particleboard is made from wood chips and resins. An exparins
conducted to study the effect of using slash chips (wastedvehips) along
with standard chips. The researchers make eighteen bogngsrying the
target density (42 or 48 Ib/j, the amount of resin (6, 9, or 12%), and the
fraction of slash (0, 25, or 50%). The response is the acteas$ity of the
boards produced (IbAt data from Boehner 1975). Analyze these data to
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determine the effects of the factors on particleboard deresid how the
density differs from target.

42 Target 48 Target
0% 25% 50% 0% 25% 50%

6 |409 419 420 444 46.2 484
9 428 439 448 48.2 486 50.7
12| 454 46.0 46.2 499 508 50.3

We have data from a four by three factorial with 24 units. Behlre
ANOVA tables and residual versus predicted plots for the @deid the log-
transformed data. What would you conclude about interadticthe data?

Original data:

DF SS MS
r 3 7.8416e+06 2.6139e+06
c 2 2.7756e+06 1.3878e+06
r.c 6 4.7148e+06 7.858e+05
Error 12 1.7453e+06 1.4544e+05
S i
t 2 i
u ;
d H *
e :
n 1= * b
t - .
i : *,
. 01’{ - L 1
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R Al * 1
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Log data:
DF SS MS
r 3 27.185 9.0617
c 2 17.803 8.9015
r.c 6 7.5461 1.2577

Error 12 20.77

1.7308

Problem 8.3
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Problem 8.4 Implantable heart pacemakers contain small circuit boeatled sub-

strates. These substrates are assembled, cut to shapereahdSome of
the substrates will separate, or delaminate, making thevless. The pur-
pose of this experiment was to study the effects of thremfaain the rate
of delamination. The factors were A: firing profile time, 8 st 13 hours
with the theory suggesting 13 hours is better; B: furnacioair low versus
high, with theory suggesting high is better; and C: laservelrsus new, with
theory suggesting new cutting lasers are better.

A large number of raw, assembled substrates are dividedsinteen
groups. These sixteen groups are assigned at random toghiefattor-
level combinations of the three factors, two groups per doation. The
substrates are then processed, and the response is thenfraicsubstrates
that delaminate. Data from Todd Kerkow.

8 hrs 13 hrs
Low High Low High

Old | .83 .68 A8 .25
.78 .90 16 .20

New | .86 .72 30 .10
.67 .81 23 14

Analyze these data to determine how the treatments affésntni@ation.

Problem 8.5 Pine oleoresin is obtained by tapping the trunks of pinestrél@pping
is done by cutting a hole in the bark and collecting the resat bozes out.
This experiment compares four shapes for the holes and ficaaf of acid
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treating the holes. Twenty-four pine trees are selecteahatom from a plan-
tation, and the 24 trees are assigned at random to the eigfiiications of
whole shape (circular, diagonal slash, check, rectanpaitat acid treatment
(yes or no). The response is total grams of resin collectad the hole (data
from Low and Bin Mohd. Ali 1985).

Circular Diagonal Check Rect.

Control 9 43 60 77
13 48 65 70
12 57 70 91
Acid 15 66 75 97
13 58 78 108
20 73 90 99

Analyze these data to determine how the treatments affsict yesld.

A study looked into the management of various tropical gragsr im- Problem 8.6

proved production, measured as dry matter yield in hundoégsunds per

acre over a 54-week study period. The management varialeiestveight of

cut (1, 3, or 6 inches), the cutting interval (1, 3, 6, or 9 weelnd amount

of nitrogen fertilizer (0, 8, 16, or 32 hundred pounds of aminm sulfate

per acre per year). Forty-eight plots were assigned in cetalylrandomized

fashion to the 48 factor-level combinations. Dry matteddsefor the plots

are shown in the table below (data from Richards 1965). Areatiiese data

and write your conclusions in a report of at most two pages.

Cutting Interval
1wks. 3wks. 6wks. 9wks.

Htl1 FO 74.1 65.4 96.7 1471
F8 874 117.7 190.2 188.6
F 16 96.5 1222 1979 2320
F32| 107.6 1405 2413 192.0

Ht3 FO 61.7 83.7 88.8 155.6
F8 1125 1294 1450 208.1
F16| 102.3 137.8 173.6 203.2
F32| 1153 154.3 2112 2452

Ht6 FO 49.9 727 1139 1434
F8 929 1264 1755 2075
F16| 100.8 1535 1845 194.2
F32| 1158 160.0 2248 1975
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Problem 8.7

Question 8.1

Question 8.2

Big sagebrush is often planted in range restoration prajekh exper-
iment is performed to determine the effects of storage lemgitd relative
humidity on the viability of seeds. Sixty-three batches @ 3eeds each are
randomly divided into 21 groups of three. These 21 groups eaceive a
different treatment, namely the combinations of storaggtle (0, 60, 120,
180, 240, 300, or 360 days) and storage relative humidity320,0r 45%).
After the storage time, the seeds are planted, and the resjwthe percent-
age of seeds that sprout (data from Welch 1996). Analyzetiata for the
effects of the factors on viability.

Days
0 60 120 180 240 300 360

0% | 821 78.6 79.8 823 81.7 850 827
79.0 80.8 79.1 755 80.1 879 846
819 805 782 79.1 811 821 81.7
32% | 83.1 78.1 804 778 838 820 810
80.5 83.6 818 804 837 77.6 789
824 783 838 788 815 803 831
45% | 83.1 66.5 529 529 522 386 252
789 614 589 543 519 379 258
81.0 61.2 59.3 48.7 48.8 406 21.0

Consider a balanced four by three factorial. Show that gihal con-
trasts in row means (ignoring factor B) are also orthogooatmsts for all
twelve treatments when the contrast coefficients have begmeated across
rows (w;; = w;). Show that a contrast in the row means and the analogous
contrast in all twelve treatment means have the same sunigiafes.

In a two-way factorial, we have defingdas the grand mean of the data,
[+ a; as the mean of the responses fordiheevel of factor A,zi + 3; as the
mean of the responses for tligh level of factor B, andi + a; + Bj +af;
as the mean of thgjth factor-level combination. Show that this implies our
zero-sum restrictions on the estimated effects.

Suppose that we use the same idea, but instead of ordinarygmsewe
use weighted averages withy as the weight for thejth factor-level combi-
nation. Derive the new zero-sum restrictions for these hteigjaverages.



Chapter 9

A Closer Look at Factorial
Data

Analysis of factorially structured data should be more thest an enumer-
ation of which main effects and interactions are significa should look
closely at the data to try to determine what the data are¢ellis by under-
standing the main effects and interactions in the data. Xamele, reporting
that factor B only affects the response at the high level cfdiaA is more

informative than reporting that factors A and B have sigaificmain effects
and interactions. One of my pet peeves is an analysis thiatgpsrts sig-
nificant terms. This chapter explores a few techniques fploging factorial

data more closely.

9.1 Contrasts for Factorial Data

Contrasts allow us to examine particular ways in which tremits differ.
With factorial data, we can use contrasts to look at how $igetiain ef-
fects differ and to see patterns in interactions. Indeedhawe seen that the
usual factorial ANOVA can be built from sets of contrastsa@ters 4 and 5
discussed contrasts and multiple comparisons in the cootesingle factor
analysis. These procedures carry over to factorial treattisteuctures with
little or no modification.

In this section we will discuss contrasts in the context ohree-way
factorial, generalization to other numbers of factors faightforward. The
factors in our example experiment are drug (one standaiglaind two new

Look at more than
just significance
of main effects
and interactions

Use contrasts to
explore the
response
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Inference for
contrasts remains
the same

Pairwise
comparisons

Expected value > wijn pijn
ijk
2
2 Wik

ik ik

Variance o

(i Wijk s ike)?
j J
2
Zijk wijk/nijk’

Sum of squares

Confidence interval >~ w;j, Tijre & te/2,N—abe
ijk

X \/MSE 2ijk w?jk/nijk’

(Zijk Wik ?ijk.)z

F-test
MSEg Zijkz w?jk/nijk’

Display 9.1: Contrast formulae for a three-way factorial.

drugs), dose (four levels, equally spaced), and admitistréime (morning
or evening). We will usually assume balanced data, becausgasts for
balanced factorial data have simpler orthogonality refeghips.

We saw in one-way analysis that the arithmetic of contrastsoi too
hard; the big issue was finding contrast coefficients thatesdan interest-
ing question. The same is true for factorials. Suppose tlahave a set
of contrast coefficients;;;,. We can work with this contrast for a factorial
just as we did with contrasts in the one-way case using thedlae in Dis-
play 9.1. These formulae are nothing new, merely the apmicaf our usual
contrast formulae to the design wigh= abc treatments. We still need to find
meaningful contrast coefficients.

Pairwise comparisons are differences between two treasmigmoring
the factorial structure. We might compare the standard dtupe lowest
dose with morning administration to the first new drug at thedst dose
with evening administration. As we have seen previoush wiirwise com-
parisons, there may be a multiple testing issue to consaerour pairwise
multiple comparisons procedures (for example, HSD) caver directly to
the factorial setting.
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A simple effecis a particular kind of pairwise comparison. A simple Simple effects are

effect is a difference between two treatments that haveahedevels of all pairwise
factors but one. A comparison between the standard drugdbwest dose  differences that
with morning administration and the standard drug at theekivdose with vary just one
evening administration is a simple effect. Differences @linmeffects are factor

averages of simple effects.

The structure of a factorial design suggests that we shdsiddcansider
contrasts that reflect the design, namely main-effect astdrand interaction
contrasts. In general, we use contrasts with coefficieriepsat that mimic
those of factorial effects. Main-effect contrass one where the coefficients  Main-effect and

w;ji, depend only on a single index; for examplefor a factor C contrast. interaction
That is, two contrast coefficients are equal if they have #raesk index. contrasts
These coefficients will add to zero acrdsfor anyi and;j. Forinteraction examine factorial
contrasts, the coefficients depend only on the indices abfadn the inter- components

action in question and satisfy the same zero-sum restne@s their corre-
sponding model terms. Thus a BC interaction contrast hafficieats w; ;.
that depend only ori andk and add to zero acrogsor k£ when the other
subscript is kept constant. For an ABC contrast, the coefftsiw;;;, must
add to zero across any subscript.

We can use pairwise multiple comparisons procedures suktsBsfor
marginal means. Thus to compare all levels of factor B usiB@pHwe treat
the meangy, ,, asb treatment means each with sample size and do mul-

tiple comparisons wittubc(n — 1) degrees of freedom for error. The same Pairwise multiple

approach works for two-way and higher marginal tables ofrnse&or exam- comparisons
ple, treat, ., asbc treatment means each with sample siz&ndabc(n—1) work for marginal
degrees of freedom for error. Pairwise multiple compasgmocedures also means

work when applied to main effects—for examp@,—but most do not work
for interaction effects due to the additional zero sum ret&tns. (Bonferroni
does work.)

Please note: simple-effects, main-effects, and interaatbntrasts are
examples of contrasts that are frequently useful in anabyfsfactorial data;
there are many other kinds of contrasts. Use contrastsdda¢ss your ques-
tions. Don't be put off if a contrast that makes sense to yasdwt fit into
one of these neat categories.

Factorial contrasts Example 9.1

Let's look at some factorial contrasts for our three-waygdieist example
Coefficientsw; j;, for these contrasts are shown in Table 9.1. Suppose thgt we
want to compare morning and evening administration timesaged acros
all drugs and doses. The first contrast in Table 9.1 has ciseffic-1 for



206 A Closer Look at Factorial Data

Table 9.1: Example contrasts.

Morning versus Evening
Dose Dose
Drug| 1 2 3 4 Drug| 1 2 3 4
11 1 1 1 1/-1 -1 -1 -1
211 1 1 1 2/-1 -1 -1 -1
3|1 1 1 1 3.1 -1 -1 -1
Linear in Dose
Dose Dose
Drug| 1 2 3 4 Drug| 1. 2 3 4
1/-3 -1 1 3 113 -1 1 3
2/-3 -1 1 3 2/1-3 -1 1 3
3|3 -1 1 3 3|-3 -1 1 3
Linear in Dose by Morning versus Evening
Dose Dose
Drug| 1 2 3 4 Drugl 1 2 3 4
13 -1 1 3 113 1 -1 -3
213 -1 1 3 213 1 -1 -3
3/-3 -1 1 3 3] 3 1 -1 -3
Linear in Dose by Morning versus Evening
by Drug 2 versus Drug 3
Dose Dose
Drug| 1 2 3 4 Drugl 1 2 3 4
10 0 O O 11 0 0 O O
213 -1 1 3 213 1 -1 -3
3/ 3 1 -1 -3 3|]-3 -1 1 3
Linear in Dose for Drug 1
Dose Dose
Drug| 1 2 3 4 Drug| 1. 2 3 4
1/-3 -1 1 3 113 -1 1 3
2/ 0 0 0 O 2/ 0 0 0 O
3]0 0 0 O 2/ 0 0 0 O
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evening and 1 for morning and thus makes the desired conopariis is a
main-effect contrast (coefficients only depend on admiaiistn time, facto
C). We can get the same information by using a contrast wigffficeents (1,
-1) and the mearg,, ., or effectsyy.

The response presumably changes with drug dose (factoo B)nskes
sense to examine dose as a quantitative effect. To deteth@nimear effec
of dose, use a main-effect contrast with coefficients -31;and 3 for dose
1 through 4 (Appendix Table D.6); this is the second contra3able 9.1.
As with the first example, we could again get the same infdondtom a

contrast in the mear, ,, or effectsg; using the same coefficients. Thie
simple coefficients -3, -1, 1, and 3 are applicable here lscthe doses ang
equally spaced and balance gives equal sample sizes.

A somewhat more complex question is whether the linear edfiedose is
the same for the two administration times. To determing tiscompute the
linear effect of dose from the morning data, and then subtinedinear effecty
of dose from the evening data. This is the third contrast inld8.1. This
is a two-factor interaction contrast; the coefficients anldéro across dosge
or administration time. Note that this contrast is liteyale elementwisg
product of the two corresponding main-effects contrasts.

A still more complex question is whether the dependence @fitiear
effect of dose on administration times is the same for drugs®3. To de-
termine this, we compute the linear in dose by administndtiae interactio
contrast for drug 2, and then subtract the correspondingastrfor drug 3]
This three-factor interaction contrast is the fourth castrin Table 9.1. |
is formed as the elementwise product of the linear in dosedbyirgistration
time two-way contrast and a main-effect contrast betweagsi2 and 3.

Finally, the last contrast in Table 9.1 is an example of aulsaintrast
that is not a simple effect, main effect, or interaction casit. This contras
examines the linear effect of dose for drug one, averagexsatime.

The interaction contrasts in Example 9.1 illustrate an irtgpd special Products of
case of interaction contrasts, namely, products of mdacefontrasts. These main-effect
products allow us to determine if an interesting contrasine main effect contrasts

varies systematically according to an interesting cohiraa second main
effect.

We can reexpress a main-effect contrast in the individeatinent means
Tijke IN terms of a contrast in the factor main effects or the faotarginal
means. For example, a contrast in factor C can be reexprassed
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Contrasts for
treatment means
or marginal
means

Interaction
contrasts of
means or effects

Simplied formulae
for main-effect
and interaction
contrasts

Zwijkyijko = Z wllkZ?ijk.
tj

ijk k

= Zwkyooko
k

= Zwkak’v
k

wherew;, = abwi1;. Because scale is somewhat arbitrary for contrast coef-
ficients, we could also use, = w1 and still get the same kind of informa-
tion. For balanced data, two main-effect contrasts for Hraesfactor with
coefficientsw;, andwj; are orthogonal if

Zwkw,: =0 .
k

We can also express an interaction contrast in the indivicteatment
means as a contrast in marginal means or interaction efféctsexample,
supposew;;i; is a set of contrast coefficients for a BC interaction coftras
Then we can rewrite the contrast in terms of marginal meamsteraction
effects:

sz‘jk?zjk. = ijk?.jk-
ijk ik
= D wik B
IT

whereaw j;, = wj. Two interaction contrasts for the same interaction with
coefficientsw;; andw?, are orthogonal if

*
ijkwjk =0 .
Jk

For balanced data, the formulae in Display 9.1 can be siraglifiy re-
placing the sample sizg;;, by the common sample size The formulae can
be simplified even further for main-effect and interactiemtrasts, because
they can be rewritten in terms of the effects or marginal mediinterest in-
stead of using all treatment means. Consider a main-eftettast in factor
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C with coefficientawy; the number of observations at thth level of factor
C isabn. We have for the contraSt;, wi Teere:

Expected value Dok Wk Yk
Variance S, wio?/(abn)

(Zk Wi yookzo)2
2k wl%/ (abn)

Confidence interval >, Wi Yeere L
t8/2,N—abc\/MSE > wi/ (abn)

Sum of squares

(Zk Wi yooko)z

F-test
s MSEg Y wz/(abn)

The simplification is similar for interaction contrasts.rfexample, the BC
interaction contrast_ ;;, w;x U ;e has sum of squares

(32K Wik @.jk.)z
>k wjzk’/(an)

(an is the “sample size” at eacfk combination).

9.2 Modeling Interaction

Aninteraction is a deviation from additivity. If the effeaftgoing from dose 1

to dose 2 changes from drug 2 to drug 3, then there is an ititemadzetween

drug and dose. Similarly, if the interaction of drug and dasséifferent

in morning and evening applications, then there is a thaef interaction Models for
between drug, dose, and time. Try to understand and modehtemaction interaction help to
that may be present in your data. This is not always easy, heniit can understand data
be done it leads to much greater insight into what the date tasay. This

section discusses three specific models for interacti@metare many others.

9.2.1 Interaction plots

We introduced interaction plots in Section 8.4 as a method/iualizing
interaction. These plots continue to be important tools there are a few
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Interaction plots
of marginal
means

Interaction plots
of interaction
effects

A single unusual
treatment can
make all
interactions
significant

variations on interaction plots that can make them moreuligemulti-way
factorials. The first variation is to plot marginal means.fdéf example, we
are exploring the AB interaction, then we can make an intemalot using
the meang,;,,. Thus we do not plot every treatment mean individually but
instead average across any other factors. This makes feaaal picture of
the AB interaction, because it hides all other interactions

A second variation is to plot interaction effects rathenth@arginal means.
Marginal means such ag,, satisfy

Yijeo = U+ Qi + B + By
so they contain main effects as well as interaction. By makae interaction

plot usingaf;; instead ofy,,,,, we eliminate the main effects information
and concentrate on the interaction. This is good for undedibg the nature
of the interaction once we are reasonably certain thatdotem is there, but
it works poorly for diagnosing the presence of interacti@eduse interac-
tion plots of interaction effects will always show interiact So first decide
whether interaction is present by looking at means or bygu8iNOVA. If
interaction is present, a plot of interaction effects cangeful in understand-
ing the interaction.

9.2.2 One-cell interaction

A one-cell interactioris a common type of interaction where most of the ex-
periment is additive, but one treatment deviates from thutiad structure.
The name “cell” comes from the idea that one cell in the talbleeatment
means does not follow the additive model. More generallgrahmay be
one or a few cells that deviate from a relatively simple modfethe devia-
tion from the simple model in these few cells is great enoadjithe usual
factorial interaction effects can be large and statidficzignificant.

Understanding one-cell interaction is easy: the dataioigimple model
except for a single cell or a few cells. Finding a one-celiattion is harder.
It requires a careful study of the interaction effects otplr a more sophis-
ticated estimation technique than the least squares welfemre using (see
Daniel 1976 or Oehlert 1994). Be warned, large one-celtamiions can be
masked or hidden by other large one-cell interactions.

One-cell interactions can sometimes be detected by ex#éonnaf in-
teraction effects. A table of interaction effects adds tmzecross rows or
columns. A one-cell interaction shows up in the effects asrny with a
large absolute value. The other entries in the same row dochocare mod-
erate and of the opposite sign, and the remaining entriesraadl and of
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Table 9.2: Data from a replicated four-factor experiment.
All factors have two levels, labeled low and high.

A B C D
Low High

low low low | 26.1 27.5 23.5 21.1
low low high | 22.8 23.8 30.6 32.5
low high low | 22.0 20.2 28.1 29.9
low high high | 30.0 29.3 38.3 38.5
high low low | 11.4 11.0 20.4 22.(
high low high | 22.3 20.2 28.7 28.§
high high low | 18.9 16.4 26.6 26.5
high high high| 29.6 29.8 34.5 34.9

the same sign as the interacting cell. For example, a thrdeuryfactorial
with all responses 0 except for 12 in the (2,2) cell has imtiva effects as
follows:

1 -3 1 1
2 6 -2 -2
1 3 1 1

Rearranging the rows and columns to put the one-cell iniera a corner
emphasizes the pattern:

6 -2 -2 -2
83 1 1 1
31 1 1

One-cell interaction

Consider the data in Table 9.2 (Table 1 of Oehlert 1994). @luzga ar
responses from an experiment with four factors, each at éwels labele
low and high, and replicated twice. A standard factorial ABDf these
data shows that all main effects and interactions are higigigificant, an
analysis of the residuals reveals no problems. In factetlesa follow a
additive model, except for one unusual treatment. Thusnaédiraction in
these data is one-cell interaction.

The interacting cell is the treatment combination with atitbrs low (it
is about 12.5 units higher than the additive model predicegual inspectio
of the data would probably suggest the treatment with mea? blit that is
incorrect. We can see the one-cell interaction in Figurewtiich shows a

Characteristic
pattern of effects
for a one-cell
interaction

Example 9.2
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Polynomial
models for

quantitative
factors

350 R

i 15 2 25 3 35 4
A/B combinations

Figure 9.1: Interaction plot for data in Table 9.2, using
MacAnova. Horizontal locations 1 through 4 correspond to (A
low, B low), (A high, B low), (A low, B high), and (A high, B
high). Curves 1 through 4 correspond to (C low, D low), (C high
D low), (C low, D high), and (C high, D high).

interaction plot of the treatment means. The first mean ifitieelabeled 1
is too high, but the other segments are basically parallel.

9.2.3 Quantitative factors

A second type of interaction that can be easily modeled scalren one

or more of the factors have quantitative levels (doses). st€Eonsider the

situation when the interacting factors are all quantigatiuppose that the
doses for factor A are,;, and those for factor B areg;. We can build a

polynomial regression model for cell means as

a—1 b—1 a—1b—1
pij =00+ Oz + > Ops2h; + > 0arBs2ai%B;
r—1 s=1 r=1s=1

Polynomial terms it 4; model the main effects of factor A, polynomial terms
in zp; model the main effects of factor B, and cross product termdetihe
AB interaction. Models of this sort are most useful whentreddy few of
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the polynomial terms are needed to provide an adequateipigscrof the
response.

A polynomial termz’;z7;. is characterized by its exponerits s). A
term with exponentsér, s) is “above” a term with exponents, v) if » < u
and s < v; we also say thatu, v) is below(r, s). The mnemonic here is Lower powers are
thatin an ANOVA table, simpler terms (such as main effeats)dove more above higher
complicated terms (such as interactions). This is a littlefasing, because powers
we also use the phrasegher orderfor the more complicated terms, but
higher order terms appear below the simpler terms.

A term in this polynomial model is needed if its own sum of sgsas
large, or if it is above a term with a large sum of squares. Phiserves a  Use hierarchical
polynomial hierarchy. We compute the sum of squares forra tarlooking polynomial
at the difference in error sums of squares for two modelstraabthe error models
sum of squares for the model that contains the term of irnteaad all terms
that are above it from the error sum of squares for the modeldbntains

only the terms above the term of interest. Thus, the sum cdregufor the Computing
term 22,21 is the error sum of squares for the model with terms 2%, polynomial sums
zpi andz4;zp;, less the error sum of squares for the model with terms of squares

2%, ZBis Z4i2Bi, aNd23; 2k,
Computation of the polynomial sums of squares can usuallgdoem-

plished in statistical software with one command. Recailyéver, that the
polynomial coefficient®¥ depend on what other polynomial terms are in a

given regression model. Thus if we determine that only lireea quadratic Compute
terms are needed, we must refit the model with just those teriinsd their polynomial
coefficients when the higher order terms are omitted. Iniqaar, you coefficients for
should not use coefficients from the full model when predgtvith a model ~ final model
with fewer terms. Use the full modéll Sg for determining which terms to including only

include, but use coefficients computed for a model includirsg your se- selected terms

lected terms.

For single-factor models, we were able to compute polynbsuims of
squares using polynomial contrasts when the sample sieesgaial and the
doses are equally spaced. The same is true for balancedidteith
equally spaced doses. Polynomial main-effect contradficieats are the Polynomial
same as the polynomial contrast coefficients for singlésfamodels, and contrasts
polynomial interaction contrast coefficients are the eletwése products of
the polynomial main-effect contrasts.

Amylase activity, continued Example 9.3

Recall the amylase specific activity data of Example 8.1Ce thinee factor
are analysis temperature, growth temperature, and vafatythe log scalel
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Listing 9.1: MacAnova output for polynomial effects in the log amylasévity data.

DF SS MS P-value
atAl 1 0.87537 0.87537 0
atA2 1 2.0897 2.0897 0
atA3 1 0.041993 0.041993 0.0072804
atAd 1 0.0028388 0.0028388 0.47364
atAS 1 1.3373e-06 1.3373e-06 0.98757
atA6 1 0.0034234 0.0034234 0.43154
atA7 1 0.002784 0.002784 0.47792
gt 1 0.0043795 0.0043795 0.37398
gt*atAl 1 0.035429 0.035429 0.013298
gt*atA2 1 8.9037e-05 8.9037e-05 0.89882
gt*atA3 1 0.029112 0.029112 0.024224
gt*atAd 1 0.0062113 0.0062113 0.29033
gt*atAs 1 0.0068862 0.0068862 0.26577
gt*atAb6 1 0.0009846 0.0009846 0.67262
gt*atA7 1 0.0023474 0.0023474 0.51452

the analysis temperature by growth temperature interadiioth quantitative
variables) was marginally significant. Let us explore theémedfects and
interactions using quantitative variables. We cannothségbulated contrast
coefficients here because the levels of analysis temperaternot equally
spaced.

Listing 9.1 gives the ANOVA for the polynomial main effectadain-
teractions of analysis temperatuia | and growth temperaturgt(). The
M S, for this experiment was .00546 with 64 degrees of freedom.séée
that linear, quadratic, and cubic terms in analysis tentpezare significant,
but no higher order terms. Also the cross products of linearowth tem-
perature and linear and cubic analysis temperature ardisggr. Thus a
succinct model would include the three lowest order termafalysis tem-
perature, growth temperature, and their cross productsié#d to refit with
just those terms to get coefficients.

This example also illustrates a bothersome phenomenonavtraging
involved in multi-degree-of-freedom mean squares canuiessome inter-
esting effects in a cloud of uninteresting effects. The 7relegf-freedom
growth temperature by analysis temperature interactiomaigginally signif-
icant with ap-value of .054, but some individual degrees of freedom i tha
7 degree-of-freedom bundle are rather more significant.

There can also be interaction between a quantitative factdra non-
guantitative factor. Here are a couple of ways to proceeiht,Rive can use
interaction contrasts that are products of a polynomiatreshin the quanti-
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tative factor and an interesting contrast in the qualieefactor. For example,

we might have three drugs at four doses, with one control dnejtwo new

drugs. An interesting contrast with coefficients (1, -.5) eompares the con- Interaction of
trol drug to the mean of the new drugs. The interaction cehfiamed by quantitative and
the product of this contrast and linear in dose would comphardéinear effect ~ qualitative factors
of dose in the new drugs with the linear effect of dose in thamwd drug.

Second, we can make polynomial models of the response (axtdi
of the quantitative factor) separately for each level of qoelitative factor.

Let 11;; be the expected response at leivef a quantitative factor with dose Separate
za; and levelj of a qualitative factor. We have a choice of several equirale polynomial
models, including: models
a—1
pij = 0j+ ) Oarjz
r=1
and
a—1 a—1
pij = B0+ Bi+ > OaroZhi+ Y 0Barizh;
r=1 r=1

wheref; = 0y + 3;, 0 4r; = 0ar0 + 034, and the parameters have the zero
sum restriction$; 3; = 0 and3_; 084,; = 0.
In both forms there is a separate polynomial of degreel in z4; for
each level of factor B. The only difference between theseatmid how the
regression coefficients are expressed. In the first verBi®rdnstant terms  Alternate forms
of the model are expressed @s in the second version the constant terms  for regression
are expressed as an overall constanplus deviations3; that depend on coefficients
the qualitative factor. In the first version the coefficiefus powerr are
expressed ad,,;; in the second version the coefficients for poweare
expressed as an overall coefficiéht.o plus deviationg3,,; that depend
on the qualitative factor. These are analogous to haviradrnrent meang;
written asu + «;, an overall mean plus treatment effects.

Suppose again that we have three drugs at four doses; do Weepe-

rate cubic coefficients for the different drugs, or will oneetall coefficient Overall plus
suffice? To answer this we can test the null hypothesis thidiest 43,’s equal deviation form
each other, or equivalently, that all tdg43;'s are zero. In many statistics ~can be easier for
packages it is easier to do the tests using the overallggugation form of testing
the model.

Seed viability Example 9.4

Let's examine the interaction in the data from Problem 8.he Thterac-
tion plot in Figure 9.2 shows the interaction very clearlyere is almos



216 A Closer Look at Factorial Data

Interaction Plot - Data Means for y
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Figure 9.2: Interaction plot for seed viability data, using
Minitab.

no dependence on storage time at the two lowest humiditrescansider-
able dependence on storage time at the highest humiditys &ben though
humidity is a quantitative variable, it is descriptive tedt it as qualitative.

Listing 9.2 shows MacAnova output for the viability data. i§model
begins with an overall constant and polynomial terms inagger and then
adds the deviations from the overall terms that allow sepgvalynomial
coefficients for each level of humidity. Terms up to cubic forage time
are significant. There is modest evidence for some termshigtder than
cubic, but their effects are small compared to the incluéech$ and so will
be ignored. To get the coefficients for the needed termsusifig only those
terms; the estimated values for the coefficients will chadrgenatically.

The overall storage by humidity interaction has 12 degrédseedom
and 4154.2 sum of squares. It appears from the interactadrtht most of
the interaction is a difference in slope (coefficient of the&r term) between
the highest level of humidity and the lower two levels. We address that
observation with an interaction contrast with coefficients
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Listing 9.2: MacAnova output for polynomial effects in the viability adty data.

DF SS MS P-value
CONSTANT 1 3.2226e+05 3.2226e+05 0
{s} 1 1562 1562 0
{(s)A2} 1 5.3842 5.3842 0.29892
{(s)A3} 1 191.16 191.16 1.6402e-07
{(s)A4} 1 0.001039 0.001039 0.98841
{(s)A5} 1 0.22354 0.22354 0.83134
{(s)A6} 1 29.942 29.942 0.017221
h 2 11476 5738.2 0
{s}.h 2 3900.5 1950.2 0
{(s)A2}.h 2 17.672 8.8359 0.17532
{(s)A3}.h 2 185.81 92.906 1.2687e-06
{(s)A4}.h 2 25.719 12.86 0.083028
{(s)A5}.h 2 5.6293 2.8147 0.56527
{(s)A6}.h 2 18.881 9.4405 0.15643

ERROR1 42 204 .43 4.8673

3 2 -1 0 1 2 3

3 2 -1 0 1 2 3

6 4 2 0 -2 4 -6

This contrast has sum of squares 3878.9, which is over 93%eadtfotal in-
teraction sum of squares.

9.2.4 Tukey one-degree-of-freedom for nonadditivity

The Tukey one-degree-of-freedomodel for interaction is also callédans-
formable nonadditivitybecause interaction of this kind can usually be re-
duced or even eliminated by transforming the response byparopriate
power. (Some care needs to be taken when using this kindrefftnamation,
because the transformation to reduce interaction coulddnte nonconstant
variance.) The form of a Tukey interaction is similar to tbia linear by lin-
ear interaction, but the Tukey model can be used with nortgatve factors.

The Tukey model can be particularly useful in single repésawhere
we have no estimate of pure error and generally must usedridgr-interac-
tions as surrogate error. If we can transform to a scale émbves much of
the interaction, then using high-order interactions asogiate error is much
more palatable.

In a two-factor model, Tukey interaction has the fotuth;; = no;3;/ 1,
for some multipliern. If interaction is of this form, then transforming the

Transformable
nonadditivity is
reduced on the

correct scale
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Tukey interaction
is a scaled
product of main
effects

Algorithm to fit a
Tukey
one-degree-of-
freedom
interaction

Example 9.5

responses with a powdr — n will approximately remove the interaction.
You may recall our earlier admonition that an interactiofeetfa3;; was
not the product of the main effects; well, the Tukey modelndéiaction for
the two-factor model is a multiple of just that product. Thekéy model
adds one additional parametgrso it is a one-degree-of-freedom model for
nonadditivity. The form of the Tukey interaction for morengeal models
is discussed in Section 9.3, but it is always a single degiréeedom scale
factor times a combination of other model parameters.

There are several algorithms for fitting a Tukey interactmm testing
its significance. The following algorithm is fairly generéiough somewhat
obscure.

1. Fit a preliminary model; this will usually be an additivedel.

2. Get the predicted values from the preliminary model; sgtleem and
divide their squares by twice the mean of the data.

3. Fit the data with a model that includes the preliminary ei@hd the
rescaled squared predicted values as explanatory vagiable

4. The improvement sum of squares going from the preliminaogel to
the model including the rescaled squared predicted vadubgisingle
degree of freedom sum of squares for the Tukey model.

5. Test for significance of a Tukey type interaction by diaglthe Tukey
sum of squares by the error mean square from the model imgjudi
squared predicted terms.

6. The coefficient for the rescaled squared predicted vatugsan es-
timate ofn. If Tukey interaction is present, transform the data to the
powerl — 7 to remove the Tukey interaction.

The transforming power—» found in this way is approximate and can often
be improved slightly.

CPU page faults, continued

Recall the CPU page fault data from Example 8.8. We originatialyzed
those data on the log scale because they simply looked nicdtipe. Would
we have reached the same conclusion via a Tukey interaati@ysis?

Listing 9.30 shows the ANOVA for the four main effects and rescaled,
squared predicted values from the additive model on the eda d he Tukey
interaction is highly significant, with an F-statistic of24The coefficient for
the rescaled, squared predicted value899 with a standard error of about
.06 O, so the estimated power transformation is- .899 = .101 with the
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Listing 9.3: SAS output for Tukey one-degree-of-freedom interactiothénpage faults data.

Dependent Variable
Source
Model
Error

Corrected Total

Dependent Variable:

Source

SEQ
SIZE
ALLOC
ALG
RSPV

Dependent Variable:

Parameter

Tukey eta

General Linear Models Procedure

: FAULTS
Sum of
DF Squares
8 764997314
45 40074226
53 805071540
R-Square C.V.
0.950223 37.42933

General Linear Models Procedure

FAULTS
DF Type I SS
2 59565822
2 216880816
2 261546317
1 11671500
1 215332859

Mean
Square F Value Pr > F
95624664 107.38 0.0001

890538
Root MSE FAULTS Mean
943.683 2521.24
Mean Square F Value Pr > F
29782911 33.44 0.0001
108440408 121.77 0.0001
130773159 146.85 0.0001
11671500 13.11 0.0007
215332859 241.80 0.0001

General Linear Models Procedure

FAULTS
T for HO: Pr > |T| Std Error of
Estimate Parameter=0 Estimate
0.89877776 15.55 0.0001 0.05779942

same standard error, or approximately a log transformatidrus a Tuke
interaction analysis confirms our choice of the log transgtion.

The main effects account for about 68% of the total sum of sepibe-
fore transformation, and about 93% after transformatios.w& saw, som
interactions are still significant, but they are smaller paned to the mai
effects after transformation.
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9.3 Further Reading and Extensions

One way of understanding Tukey models is to suppose that weednaimple
structure for valueg;; = 1+ «; + 3;. Let's divide through by: and assume
that row and column effects are relatively small comparetthéomean. We
now havey;; = (1 + a5/ + 5;/p). Butinstead of working with data on
this scale, suppose that we have these data raised tg Xigower. Then the
observed mean structure looks like

(1+%+%)1“ ~ 1+M+%+ 2)\2(0422+204i5j+52')
- %+12A);Z+%+ 2)@52 o 0‘253
~ 1+%+1;;; Z+%+ Wﬁ?
(=N + 5 + 37 )
T;Ci 1
= (u+n+6j+(1—/\)7”);,

where the first approximation is via a Taylor series and

o= 2M2A2 “i
53 2
¢ = 2 ,U2 2 6 .

Thus when we see mean structure of the farm r; + ¢; + (1 — X)ric; /1,
we should be able to recover an additive structure by takiegiata to the
power\. That is, the transformation power is one minus the coeffioid
the cross product term. The cross produgts/ . are called the comparison
values, because we can compare the residuals from thevadditdel to
these comparison values to see if Tukey style interactipnesent.

Here is why our algorithm works for assessing Tukey intéoact We
are computing the improvement sum of squares for addinggtesitegree of
freedom termX to a modelM. In any ANOVA or regression, the improve-
ment sum of squares obtained by addingkhéo M is the same as the sum
of squares for the single degree of freedom model consisfitige residuals
of X fitto M. For the Tukey interaction procedure in a two-way factottad

predicted values have the forin+ a; + Bj, so the rescaled squared predicted
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values equal
~ ~ 9 =2 ~ D
B+ 9y 134 By Yl
If we fit the additive model to these rescaled squared predicalues, the
residuals will bex; 3; /. These residuals are exactly the comparison values,
so the sum of squares for the squared predicted values éréstewill be
equal to the sum of squares for the comparison values.

What do we do for comparison values in more complicated nspdet
example, three factors instead of two? For two factors, timeparison values
are the product of the row and column effects divided by thameThe
comparison values for other models are the sums of the crogsigts of all
the terms in the simple model divided by the mean. For example

Simple Model Tukey Interaction
(Oézﬂj L %% 51"}%)
% % %

p+ ai + Bi+ e 7

n(azﬂz Al a;d; . Bivk
7 7 7 7
) 1)
Bidy L Ly
woop

_|_

pA o+ By + i + 9

(Oézﬁi I a; By i 5ﬂk+
% % % %
BiaBi; . ’Vk:aﬁij)
% %
Once we have the comparison values, we can get their coeffiaie the
Tukey sum of squares by adding the comparison values to o@\#Nmodel.

In all cases, using the rescaled squared predicted valedifre base model
accomplishes the same task.

There are several further models of interaction that candeduly par-
ticularly for designs with only one data value per treatmé8ee Cook and
Weisberg 1982, section 2.5, for a fuller discussion.) Mardi@61) intro-
duced thaow-model, column-modendslopes-modelThese are general-
izations of the Tukey model of interaction, and take the form

B+ i + B + afi +

Row-model: Wij = 1+ o5 + B + (o
Column-model: p;; = p+ o + Bj + &5;
Slopes-model:  p;; = p+ o; + B; + (o + B
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Problem 9.1

Clearly, the slopes-model is just the union of the row- androm-models.
These models have the restrictions that

i 7

so they represemt— 1, a — 1, anda + b — 2 degrees of freedom respectively
inthe (a — 1)(b — 1) degree of freedom interaction. The Tukey model is the
special case wherg; = n3; or & = noy. It is not difficult to verify that
the row- and column-models of interaction are orthogon#iéomain effects
and each other (though not to the Tukey model, which thewdwe| or the
slopes-model, which includes both of them).

The interpretation of these models is not too hard. The rawdehstates
that mean value of each treatment is a linear function of the effects,
but the slopeX + ¢;) and intercepty + (;) differ from column to column.
Similarly, the column-model states that the mean value of ¢égeatment is
a linear function of the column effects, but the slopeH ;) and intercept
(1 + «;) differ from row to row.

Johnson and Graybill (1972) proposed a model of interachan does
not depend on the main effects:

aﬁij = (52}in s

with the restrictions thal_, v; = >_; u; = 0, andy_, v} = 3_; u3 = 1. This
more general structure can model several forms of nonaigitincluding
one cell interactions and breakdown of the table into sepadditive parts.
The components, v;, andu; are computed from the singular value decom-
position of the residuals from the additive model. See Cauk \/eisberg
for a detailed discussion of this procedure.

9.4 Problems

Fat acidity is a measure of flour quality that depends on thd &f flour,
how the flour has been treated, and how long the flour is stémetis exper-
iment there are two types of flour (Patent or First Clear);fibngr treatment
factor (extraction) has eleven levels, and the flour has be®erd for one of
six periods (0, 3, 6, 9, 15, or 21 weeks). We observe only olitfameach
factor-level combination. The response is fat acidity inK@H/100 g flour
(data from Nelson 1961). Analyze these data. Of particultarest are the
effect of storage time and how that might depend on the otatofs.
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Extraction
T W 1 2 3 4 5 6 7 8 9 10 11
P 0| 12.7 12.3 154 13.3 139 30.3 1239 534 294 114 19.0
3 | 113 164 181 146 105 275 1123 489 314 116 291
6 | 165 243 272 109 116 341 1175 529 383 158 17.1
9 109 30.8 245 135 132 332 1074 496 429 178 159
15125 306 26,5 158 133 36.2 1095 510 152 18.2 135
21| 152 363 368 144 131 432 986 482 586 222 176
FC 0365 385 384 271 350 383 2746 2414 218 342 342
3 134 685 636 414 345 76.8 2828 2318 479 339 332
6 | 35.7 932 76.7 50.2 340 964 2708 223.2 652 389 352
9 | 338 950 113.0 449 36.1 945 2716 200.1 750 39.0 34.7
15| 43.0 156.7 160.0 30.2 33.0 758 2695 2136 889 379 33.0
21| 53.0 189.3 199.3 41.0 455 1439 136.1 1989 104.0 39.2 37.1
Artificial insemination is an important tool in agricultyteut freezing se- Problem 9.2
men for later use can reduce its potency (ability to proddtspoing). Here
we are trying to understand the effect of freezing on therpotef chicken
semen. Four semen mixtures are prepared, consisting off gayts of either
fresh or frozen Rhode Island Red semen, and either frestoperfr White
Leghorn semen. Sixteen batches of Rhode Island Red henssigned at
random, four to each of the four treatments. Each batch o ilemsemi-
nated with the appropriate mixture, and the response mea#ithe fraction
of the hatching eggs that have white feathers and thus Whitdhadrn fa-
thers (data from Tajima 1987). Analyze these data to deterimbw freezing
affects potency of chicken semen.
RIR WL |
Fresh  Fresh | .435 .625 .643 .615
Frozen Frozen .500 .600 .750 .750
Fresh  Frozen .250 .267 .188 .200
Frozen Fresh| .867 .850 .846 .950
Explore the interaction in the pacemaker delamination iskitaduced in Problem 9.3
Problem 8.4.
Explore the interaction in the tropical grass productiotadatroduced Problem 9.4
in Problem 8.6.
One measure of the effectiveness of cancer drugs is thdityabireduce Problem 9.5

the number of viable cancer cells in laboratory settingshis experiment,
the A549 line of malignant cells is plated onto petri dishéhwarious con-
centrations of the drug cisplatin. After 7 days of incubatibalf the petri
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Problem 9.6

Question 9.1

Question 9.2

Question 9.3

dishes at each dose are treated with a dye, and the numbealdé \dell
colonies per 500 mtis determined as a response for all petri dishes (after
Figure 1 of Alley, Uhl, and Lieber 1982). The dye is supposethake the
counting machinery more specific to the cancer cells.

Cisplatin (ng/ml)
| 0 15 15 15 150 1500

Conventionall 200 178 158 132 63 40
Dye added 56 50 45 63 18 14

Analyze these data for the effects of concentration and dlykat can you
say about interaction?

An experiment studied the effects of starch source, stawobentration,
and temperature on the strength of gels. This experimentcoagpletely
randomized with sixteen units. There are four starch sauf@ézuki bean,
corn, wheat, and potato), two starch percentages (5% andarfb}wo tem-
peratures (22 and #C). The response is gel strength in grams (data from
Tjahjadi 1983).

Temperature Percent Bean Corn Wheat Potato

22 5 629 440 43.8 34.4
7 110.3 1156 1234 53.6

4 5 601 579 58.2 63.0
7 147.6 180.7 163.8 92.0

Analyze these data to determine the effects of the factogebstrength.

Show how to construct simultaneous confidence intervalalfgairwise

differences of interaction eﬁec@ﬁij using Bonferroni. Hint: first find the
variances of the differences.

Determine the condition for orthogonality of two main-effe contrasts
for the same factor when the data are unbalanced.

Show that an interaction contrast; in the meang;,, equals the corre-
sponding contrast in the interaction effeafgfsij.



Chapter 10

Further Topics in Factorials

There are many more things to learn about factorials; thagtdr covers just
a few, including dealing with unbalanced data, power andparsize for
factorials, and special methods for two-series designs.

10.1 Unbalanced Data

Our discussion of factorials to this point has assuiveddnce;that is, that all
factor-level combinations have the same amount of rejticatVhen this is  Balanced versus
not true, the data are said to bebalanced The analysis of unbalanced data unbalanced data
is more complicated, in part because there are no simpleulasrior the
guantities of interest. Thus we will need to rely on statatsoftware for all
of our computation, and we will need to know just exactly wiat software
is computing, because there are several variations on #ie t@mputations.

The root cause of these complications has to do with orthalignor
rather the lack of it. When the data are balanced, a contoasirfe main

effect or interaction is orthogonal to a contrast for anyeotmain effect or Imbalance
interaction. One consequence of this orthogonality is Watan estimate destroys
effects and compute sums of squares one term at a time, amelsthies for orthogonality

that term do not depend on what other terms are in the modelen\itie
data are unbalanced, the results we get for one term depewnthamnother
terms are in the model, so we must to some extent do all the atatigns
simultaneously.

The questions we want to answer do not change because thardata
unbalanced. We still want to determine which terms are redguio model
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SS(BJ|1,A)is SS
of B adjusted for
land A

Example 10.1

the response adequately, and we may wish to test specifihiypditheses
about model parameters. We made this distinction for belddata in Sec-
tion 8.11, even though the test statistics for comparingetsdr testing hy-
potheses are the same. For unbalanced data, this distiratioally leads to
different tests.

Our discussion will be divided into two parts: building mésland test-
ing hypotheses about parameters. We will consider onlyteqagroaches
for computing sums of squares and doing tests. There arexipmte meth-
ods for unbalanced factorials that were popular before H#sy availability
of computers for doing all the hard computations. But wheua lgave the
computational horsepower, you might as well use it to getesesults.

10.1.1 Sums of squares in unbalanced data

We have formulated the sum of squares for a term in a balan®&@OVA
model as the difference in error sum of squares for a reducmtehthat
excludes the term of interest, and that same model with tine ¢¢ interest
included. The term of interest is said to have been “adjuktédhe terms
in the reduced model. We also presented simple formuladnéset sums of
squares. When the data are unbalanced, we still computethefssquares
for a term as a difference in error sums of squares for two fspbtat there
are no simple formulae to accomplish that task. Furtherpprezisely which
two models are used doesn’t matter in balanced data so lotigegonly
differ by the term of interest, but which models are usle@smatter for
unbalanced data.

Models are usually specified as a sequence of terms. For éxamp
a three-factor design we might specify (1, A, B, C) for maifeefs, or (1,
A, B, AB, C) for main effects and the AB interaction. The “1"m#es the
overall grand meap that is included in all models. The sum of squares for
a term is the difference in error sums of squares for two nwtlelt differ
only by that term. For example, if we look at the the two modg|sA, C)
and (1, A, B, C), then the difference in error sums of squatiéde/the sum
of squares for B adjusted for 1, A, and C. We write thisSa§ B|1, A, C).

Unbalanced amylase data

Recall the amylase data of Example 8.10, where we exploredmwase
activity depends on analysis temperature (A), variety @8 growth tem-
perature (C). Suppose that the first observation in growtipérature 25,
analysis temperature 40, and variety B73 were missing, mgakie data un-
balanced. The sum of squares for factor C is computed as tfezetice
in error sums of squares for a pair of models differing onlyhia term C.
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Here are five such model pairs: (1), (1, C); (1, A), (1, A, C);B)}, (1, B,

C); (1, A, B), (1, A, B, C); (1, A, B, AB), (1, A, B, AB, C). The susof
squares for C computed using these five model pairs are dbA6HE|1),

SS(C|1,A), SS(C|1,B), SS(C|1,A,B) andSS(C|1, A, B, AB), and are
shown in following table (sum of squaresl 0%, data on log scale):

SS(C|1) 2444.1
SS(C|1, A) 1396.0
SS(C|1, B) 3303.0
SS(C|1, A, B) 2107.4
SS(C|1,A, B,AB) 2069.4

All five of these sums of squares differ, some rather subistbntThere is
no single sum of squares for C, so we must explicitly statectvbine we arg
using at any give time.

The simplest choice for a sum of squareségjuentiasums of squares.
This is called Type | in SAS. For sequential sums of squaresspecify Type 1SS is
a model and the sum of squares for any term is adjusted foe tteyss sequential
that precede it in the model. If the model is (1, A, B, AB, C)etththe
sequential sums of squares &i€(A|1), SS(B|1,A), SS(AB|1, A, B), and

SS(C|1, A, B, AB). Notice that if you specify the terms in a different order, Type | SS
you get different sums of squares; the sequential sums afsgtor (1, A, B,  depends on order
C,AB)areSS(A|1), SS(B|1,A), SS(C|1, A, B),andSS(AB|1, A, B, C). of terms

Two models that include the same terms in different ordelrhvail’e the
same estimated treatment effects and interactions. Howmweelels that in-  Estimated effects
clude different terms may have different estimated effémtshe terms they  don’t depend on
have in common. Thus (1, A, B, AB, C) and (1, A, B, C, AB) will leathe order of terms
samen;’s, but (1, A, B, AB, C) and (1, A, B, C) may have differeqf’s.

10.1.2 Building models

Building modelsmeans deciding which main effects and interactions are
needed to describe the data adequately. | build hieradcimodels. In a

hierarchical model, the inclusion of any interaction in admlbimplies the Compare
inclusion of any term that is “above” it, where we say that@daal term U hierarchical
is above a factorial term V if every factor in term U is alsoemh V. The goal models

is to find the hierarchical model that includes all terms thast be included,
but does not include any unnecessary terms.

Our approach to computing sums of squares when model-bgildito
use as the reduced model for term U the largest hierarchiodeirM that
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including term

Use M Sk from
full model

Example 10.2

Get Type Il SS
from Type | SS

does not contain U. This is called Type Il in the SAS stat@tfrogram. In
two-factor models, this might be called “Yates’ fitting ctanrsts” or “each
adjusted for the other.”

Consider computing Type Il sums of squares for all the termesthree-
factor model. The largest hierarchical models not inclgdhBC, BC, and
Care (1, A, B, C, AB, AC, BC), (1, A, B, C, AC, AB), and (1, A, B, AB
respectively. Thus for Type Il sums of squares, the threwfdnteraction is
adjusted for all main effects and two-factor interacticas$wo-factor inter-
action is adjusted for all main effects and the other twdeamteractions,
and a main effect is adjusted for the other main effects agid ithteractions,
or SS(ABCI|1,A,B,C,AB, AC, BC), SS(BC|1,A,B,C,AB, AC), and
SS(C|1, A, B, AB). In Example 10.1, the Type Il sum of squares for growth
temperature (factor C) 2069 x 1076,

It is important to point out that the denominator mean squesed for
testing isM S from the full model. We do not pool “unused” terms into
error. Thus, the Type Il SS for C 8S(C|1, A, B, AB), but the error mean
square is from the model (1, A, B, C, AB, AC, BC, ABC).

Unbalanced amylase data, continued

Listing 10.10 shows SAS output giving the Type Il analysis for the un-
balanced amylase data of Example 10.1. Choose the hiecatchodel by
starting at the three-factor interaction. The three-faictiraction is not sig-
nificant (p-value .21) and so will not be retained in the model. Becalise i
not needed, we can now test to see if any of the two-factordntions are
needed. Growth temperature by variety is highly significttrgrefore, that
interaction and the main effects of growth temperature aartety will be
in our final model. Neither the analysis temperature by gnawtnperature
interaction nor the analysis temperature by variety imdioa is significant,
so they will not be retained. We may now test analysis tentpezawhich
is significant. We do not test the other main effects becaheedre implied
by the significant two-factor interaction. The final modehlsthree main
effects and the growth temperature by variety interaction.

If your software does not compute Type Il sums of squaretijteyou
can determine them from Type | sums of squares for a sequémmedels
with the terms arranged in different orders. For examplppsge we have
the Type | sums of squares for the model (1, A, B, AB, C, AC, BB@.
Then the Type | sums of squares for ABC, BC, and C are also Tygpahs
of squares. Type | sums of squares for (1, B, C, BC, A, AB, ACGARIlow
us to get Type Il sums of squares for A, AC, ABC, and so on.
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Listing 10.1: SAS output for unbalanced amylase data.
General Linear Models Procedure
Dependent Variable:
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 31 3.83918760 0.12384476 23.26 0.0001
Error 63 0.33537806 0.00532346
Source DF Type II SS Mean Square F Value Pr > F
ATEMP 7 3.03750534 0.43392933 81.51 0.0001
GTEMP 1 0.00206944 0.00206944 0.39 0.5352
ATEMP*GTEMP 7 0.06715614 0.00959373 1.80 0.1024
VAR 1 0.55989306 0.55989306 105.17 0.0001
ATEMP*VAR 7 0.02602887 0.00371841 0.70 0.6731
GTEMP*VAR 1 0.07863197 0.07863197 14.77 0.0003
ATEMP*GTEMP*VAR 7 0.05355441 0.00765063 1.44 0.2065 L
Source DF Type III SS Mean Square F Value Pr > F
ATEMP 7 3.03041604 0.43291658 81.32 0.0001
GTEMP 1 0.00258454 0.00258454 0.49 0.4885
ATEMP*GTEMP 7 0.06351586 0.00907369 1.70 0.1241
VAR 1 0.55812333 0.55812333 104.84 0.0001
ATEMP*VAR 7 0.02589103 0.00369872 0.69 0.6761
GTEMP*VAR 1 0.07625999 0.07625999 14.33 0.0003
ATEMP*GTEMP*VAR 7 0.05355441 0.00765063 1.44 0.2065 [
Contrast DF Contrast SS Mean Square F Value Pr > F
gtemp low vs high 1 0.00258454 0.00258454 0.49 0.4885 [

Type | sums of squares for the terms in a model will sum to theral/
model sum of squares withh — 1 degrees of freedom. This is not true for
Type Il sums of squares, as can be seen in Listing 10.1; theehsoan of
squares is 3.8392, but the Type Il sums of squares add to&.824

The Type Il approach to model building is not foolproof. Tiodldwing
example shows that in some situations the overall model edmdhly sig-
nificant, even though none of the individual terms in the nhigsignificant.
Unbalanced data puzzle Example 10.3

Consider the data in Table 10.1. These data are highly undada List-
ing 10.2 gives SAS output for these data, including Type | Brsims of
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Table 10.1: A highly unbalanced two by two factorial.

A B
1 2
1127 79 263 -19 306 21.5
3.8 272 209 206 146
2 26.1 411 46.7 57.8 38 39.3

squares afl andd. Note that the Type | and Il sums of squares for B and
AB are the same, because B enters the model after A and saistedfor A

in Type I; similarly, AB enters after A and B and is adjustedtittem in the
Type | analysis. A enters first, so its Type | sum of squatS$A|1) is not
Type Il.

Also shown at] is the sum of squares with 3 degrees of freedom for the
overall model, ignoring the factorial structure. The oVlareodel is signifi-
cant with ap-value of about .002. However, neither the interaction ritiee
main effect has a Type p-value less than .058. Thus the overall model is
highly significant, but none of the individual terms is skigant.

What has actually happened in these data is that either A doiea
explains a large amount of variation (see the sum of squarea in ),
but they are in some sense explaining the same variation.s Bhis not
needed if A is already present, A is not needed if B is alreagggnt, and
the interaction is never needed.

10.1.3 Testing hypotheses

In some situations we may wish to test specific hypothesegtateatment
means rather than building a model to describe the meansy bfathese

Standard tests hypotheses can be expressed in terms of the factorial ptagesnédut recall
are for equally that the parameters we use in our factorial decompositiory @ certain
weighted factorial  amount of arbitrariness in that they assume equally weitgnterages. When
parameters the hypotheses of interest correspond to our usual, equalbyhted factorial

parameters, testing is reasonably straightforward; atise; special purpose
contrasts must be used.

Let’s review how means and parameters correspond in théawtor sit-
uation. Lety;; be the mean of thegjth treatment:

pij = B+ o6 + B + af;
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Listing 10.2: SAS output for data in Table 10.1.

General Linear Models Procedure
Dependent Variable: Y

Sum of Mean

Source DF Squares Square F Value Pr > F
Model 3 2876.88041 958.96014 8.53 0.0022 [
Error 13 1460.78900 112.36838
Corrected Total 16 4337.66941
Source DF Type I SS Mean Square F Value Pr > F
A 1 2557.00396 2557.00396 22.76 0.0004 [
B 1 254.63189 254.63189 2.27 0.1561
A*B 1 65.24457 65.24457 0.58 0.4597
Source DF Type II SS Mean Square F Value Pr > F
A 1 485.287041 485.287041 4.32 0.0581 [
B 1 254.631889 254.631889 2.27 0.1561
A*B 1 65.244565 65.244565 0.58 0.4597
Source DF Type III SS Mean Square F Value Pr > F
A 1 499.951348 499.951348 4.45 0.0549 [
B 1 265.4713438 265.4713438 2.36 0.1483
A*B 1 65.244565 65.244565 0.58 0.4597
with

0=> ai=) fj=> off=
7 i 7

Let n;; be the number of observations in tigh treatment. Form row and
column averages of treatment means using equal weighttdatréatment
means:

Hie

Hej

b
= Zﬂz‘j/b
j=1
= pto,
a
= Zuij/a
i=1

= utp

j{:(lﬁ%j.

J

Row and column
averages of
treatment
expected values
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The null hypothesis that the main effects of factor A are alioziy; = 0)
is the same as the null hypothesis that all the row averagdsedfeatment
means are equali(e = f12¢ = ‘- = [ige). This is also the same as the null
hypothesis that all factor A main-effects contrasts evalt@azero.
Testing the null hypothesis that the main effects of factara all zero
(a; = 0) is accomplished with an F-test. We compute the sum of square
Test equally for this hypothesis by taking the difference in error sumaiiares for two
weighted models: the full model with all factors and interactionsg dimat model with
hypotheses using  the main effect of factor A deleted, ¢tS(A|l, B,C, AB, AC, BC, ABC)
Type Il SS or in a three-factor model. This reduced model is not hieraadhit includes
standard interactions with A but not the main effect of A. Similarly,encompute a
parametric sum of squares for any other hypothesis that a set of fatefficts is all
zero by comparing the sum of squares for the full model with gom of
squares for the model with that effect removed. This may beagtandard
parametric,” “Yates’ weighted squares of means,” or “fatjjusted”; in SAS
it is called Type Ill.
Example 10.4 | Unbalanced data puzzle, continued

Contrast SS are
Type 1l

Let us continue Example 10.3. If we wish to test the null hjesis that

a; = 0or3; = 0, we need to use Type Ill sums of squares. This is shown
at O of Listing 10.2. None of the null hypotheses about main éffexr
interaction is anywhere near as significant as the overallehall havep-
values greater than .05.

How can this be so when we know that there are large diffeebee
tween treatment means in the data? Consider for a momergdtit factor
A main effects. The null hypothesis is that the factor A mdiaas are zero,
but no constraint is placed on factor B main effects or irtoas. We can fit
the data fairly well with they;’s equal to zero, so long as we can manipulate
the 5;'s and a3;;'s to take up the slack. Similarly, when testing factor B,
no constraint is placed on factor A main effects or AB intéiats. These
three tests of A, B, and AB do not test that all three null hjpeses are true
simultaneously. For that we need to test the overall modil @/idegrees of
freedom.

When we test the null hypothesis that a contrast in treatreffatts is
zero, we are testing the null hypothesis that a particutegai combination
of treatment means is zero with no other restrictions on #flenteans. This
is equivalent to testing that the single degree of freedgmesented by the
contrast can be removed from the full model, so the contrastbdeen ad-
justed for all other effects in the model. Thus the sum of semidor any
contrast is a Type Ill sum of squares.
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Unbalanced amylase data, continued Example 10.5

Continuing Example 10.1, the Type Il ANOVA can be foundin List-
ing 10.1. The Type Il sum of squares for growth temperatar®025845
different from both Types | and Il. If you compute the mairfieef contrast in
growth temperature with coefficients 1 and -1, you get thelteshown at]
in Listing 10.1, including the same sum of squares as the Typmalysis.
This equivalence of the effect sum of squares and the caswasof square
is due to the fact that the effect has only a single degree=efiiom, and thu
the contrast describes the entire effect.

The only factorial null hypotheses that would be rejectedtiose for the
main effects of analysis temperature and variety and tieedntion of growt
temperature and variety. Thus while growth temperaturevanigty jointly
act to influence the response, there is no evidence that drage/respons
for the two growth temperatures differ (equally weightedrages across ajl
analysis temperatures and varieties).

10.1.4 Empty cells

The problems of unbalanced data are increased when one erafithie cells

are empty, that is, when there are no data for some factet-t®mbinations.

The model-building/Type Il approach to analysis doesrdllyechange. We

can just keep comparing hierarchical models. The hypathesiing ap- Empty cells make
proach becomes very problematic, however, because thenptaes about factorial effects
which we are making hypotheses are no longer uniquely defavesh when ambiguous
we are sure we want to work with equal weighting.

When there are empty cells, there are infinitely many diffesets of
factorial effects that fit the observed treatment meanstlxalcese different

sets of effects disagree on what they fit for the empty celtgitier the fol- Multiple sets of
lowing three by two table of means with one empty value, armdifferent parameters with
factorial decompositions of the means into grand mean, colymn, and different fits for
interaction effects. empty cells
156.0] -23.0 23.0 133.0] .0 .0
196 124 40| 59.0 -59.0 27.0| 36.0 -36.0
156 309 76.5| -53.5 535 99.5| -76.5 76.5
a7 -80.5| -55 55 -126.5| 40.5 -40.5

Both of these factorial decompositions meet the usual gam-require-
ments, and both add together to match the table of meandyex@ke first
is what would be obtained if the empty cell had mean 104, aadétond if
the empty cell had mean -34.
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Be wary of
isolated
significant
interactions

Because the factorial effects are ambiguous, it makes rsederiest hy-
potheses about the factorial model parameters. For exaarngl¢he column
effects above zero or nonzero? What does make sense is tatiikple
effects and to set up contrasts that make factorial-like pameons where
possible. For example, levels 1 and 2 of factor A are compbaieve can
compare those two levels with a contrast. Note that the reiffee of row
means is 72.5, andy — «; is 72.5 in both decompositions. We might also
want to compare level 1 of factor B with level 2 of factor B faettwo lev-
els of factor A that are complete. There are many potentigiswa choose
interesting contrasts for designs with empty cells.

10.2 Multiple Comparisons

The perceptive reader may have noticed that we can do a IotedtE in the
analysis of a factorial, but we haven't been talking aboulttiple compar-

isons adjustments. Why this resounding silence, when we s@careful to
describe and account for multiple testing for pairwise cargons? | have
no good answer; common statistical practice seems indensis this re-

gard. What common practice does is treat each main effecind@ichction

as a separate “family” of hypotheses and make multiple coisqas adjust-
ments within a family (Section 9.1) but not between families

We sometimes use an informal multiple comparisons cooerotthen
building hierarchical models. Suppose that we have a tiwaefactorial,
and only the three-way interaction is significant, withp-galue of .04; the
main-effects and two-factor interactions are not neariigmce. | would
probably conclude that the lop+value for the three-way interaction is due
to chance rather than interaction effects. | conclude thisabse | usually
expect main effects to be bigger than two-factor interastj@nd two-factor
interactions to be bigger than three-factor interactiohshus interpret an
isolated, marginally significant three-way interactioraasull result. | know
that isolated three-way interaction can occur, but it seless likely to me
than chance occurrence of a moderately jevalue.

We could also adopt a predictive approach to model sele@®m Sec-
tion 5.4.9) and choose that hierarchical model that hasdowllows’ C,.
Models chosen by predictive criteria can include more tdims those cho-
sen via tests, because thg @iterion corresponds to including terms with
F-tests greater than 2.
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10.3 Power and Sample Size

Chapter 7 described the computation of power and samplefeizeom-
pletely randomized designs. If we ignore the factorial cttiee and con-
sider our treatments simply gstreatments, then we can use the methods of
Chapter 7 to compute power and sample size for the overdlhgpbthesis

of no model effects. Power depends on the Type | error&at@umerator
and denominator degrees of freedom, and the effects, saizple and error
variance through the noncentrality parameter.

For factorial data, we usually test null hypotheses abouh reffects or
interactions in addition to the overall null hypothesis of model effects. Compute power
Power for these tests again depends on the Type | erro€fateumerator for main effects
and denominator degrees of freedom, and the effects, sampke and error ~ and interactions
variance through the noncentrality parameter, so we cam@same kinds separately
of power and sample size computations for factorial effentse we identify
the degrees of freedom and noncentrality parameters.

We will address power and sample size only for balanced tetzgause
most factorial experiments are designed to be balancedsiample formulae Power for
for noncentrality parameters exist only for balanced d&ta.concreteness, balanced data
we present the formulae in terms of a three-factor designgéneralization
to more factors is straightforward. In a factorial, maireeft and interactions
are tested separately, so we can perform a separate powgsiariar each
main effect and interaction. The numerator degrees of &eedre simply
the degrees of freedom for the factorial effect: for examle 1)(c—1) for
the BC interaction. Error degrees of freedoM — abc) are the denominator
degrees of freedom.

The noncentrality parameter depends on the factorial patens) sample
size, and error variance. The algorithm for a noncentrgigyameter in a
balanced design is

1. Square the factorial effects and sum them,

2. Multiply this sum by the total number of data in the desigrndcid by Noncentrality
the number of levels in the effect, and parameter

3. Divide that product by the error variance.

For the AB interaction, this noncentrality parameter is

N 2 2
ab 2ij Oy ned; af;

o2 o2

The factor in step 2 equals the number of data values obsatezdth level of
the given effect. For the AB interaction, there arealues in each treatment,
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andc treatments with the sanig levels, for a total ofi.c observations in each
17 combination.

As in Chapter 7, minimum sample sizes to achieve a given paner
found iteratively, literally by trying different samplezsis and finding the
smallest one that does the job.

10.4 Two-Series Factorials

A two-seriesfactorial design is one in which all the factors have just two
levels. Fork factors, we call this &% design, because there aedifferent
factor-level combinations. Similarly, a design witHactors, each with three
levels, is a three-series design and denoted'by Two-series designs are
somewhat special, because they are the smallest desidns faittors. They
are often used when screening many factors.

Because two-series designs are so common, there are spetzitibns
and techniques associated with them. The two levels for fzetbr are gen-
erally calledlow andhigh. These terms have clear meanings if the factors are
guantitative, but they are often used as labels even whefathers are not
gquantitative. Note that “off” and “on” would work just as viebut low and
high are the usual terms.

There are two methods for denoting a factor-level combamaith a two-
series design. The first uses letters and is probably the coonenon. Denote
a factor-level combination by a string of lower-case lettdor examplebcd.
We have been using these lower-case letters to denote thieemwhlevels
in different factors, but all factors in a two-series dedigive two levels, so
there should be no confusion. Letters that are presentsuonel to factors
at their high levels, and letters that are absent corresfmfattors at their
low levels. Thusac is the combination where factors A and C are at their
high levels and all other factors are at their low levels. theesymbol(1)
to denote the combination where all factors are at their lvels. Denote
the mean response at a given factor-level combination With a subscript,
for exampley,,. Do not confuse the factor-level combinatibn with the
interaction BC; the former is a single treatment, and thiedds a contrast
among treatments.

The second method uses numbers and generalizes to thieg-ard
higher-order factorials as well. A factor-level combiwatis denoted by:
binary digits, with one digit giving the level of each facta@ zero denotes
a factor at its low level, and a one denotes a factor at its f@gél. Thus
000 is all factors at low level, the same @5, and011 is factors B and C at
high level, the same dg. This generalizes to other factorials by using more



10.4 Two-Series Factorials 237

Table 10.2: Pluses and minuses for24 design.

A B C
@) - - -
a + - -
b — +
ab + + —
c — — +
ac + - +
bc - + +
abc + + +

digits. For example, we use the digits 0, 1, and 2 to denotthtiee levels of
a three-series.

It is customary to arrange the factor-level combinationa ofvo-series
factorial instandard order Standard order will help us keep track of factor-

level combinations when we later modify two-series desigdistorically, Standard order
standard order was useful for Yates’ algorithm (see nexim®c Standard prescribes a
order for a two-series design begins with). Then proceed through the pattern for listing
remainder of the factor-level combinations with factor Ayiag fastest, then factor-level
factor B, and so on. In standard order, factor A will repeat plattern low, combinations

high; factor B will repeat the pattern low, low, high, highartor C will repeat
the pattern low, low, low, low, high, high, high, high; and@othough other
factors. In general, thgth factor will repeat a pattern @& ! lows followed
by 27~1 highs. For &*, standard order il), a, b, ab, c, ac, be, abe, d, ad,
bd, abd, cd, acd, bed, andabcd.

Two-series factorials form the basis of several designs Weuwonsider
later, and one of the tools we will use is a table of pluses amilises. For Table of + and —
a2* design, build a table witB* rows andk columns. The rows are labeled
with factor-level combinations in standard order, and thlemmns are labeled
with the k factors. In principle, the body of the table containss and—1's,
with +1 indicating a factor at a high level, andl indicating a factor at a
low level. In practice, we use just plus and minus signs totkethe factor
levels. Table 10.2 shows this table fo2adesign.

10.4.1 Contrasts

One nice thing about a two-series design is that every méactednd inter-
action is just a single degree of freedom, so we may represgmnhain effect
or interaction by a single contrast. For example, the mdcebf factor A
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in a23 can be expressed as

a9 = —&1
yZ.o_yooo
. _ _ _ _
= g(ya+yab+yac+yabc_y(1)_yb_yc_ybc)
1, _ _ _ _
= 5T T = U+ Yab = Ve + Yac ~ Toe + Fave)

which is a contrast in the eight treatment means with plusssighere A is
high and minus signs where A is low. Similarly, the sum of gsgador A can
be written

SS4 = 4nd? + 4ndy?
n,_ — — — — — N2
= 5 Wa+Yab + Tac + Fave = T1) = ¥s ~ T~ Te)
n, _ — — — — — 2
= 5T + Y0 =T+ Tab — Te + Yac — Toe + Yabe)”

which is the sum of squares for the contrast with coefficients+1 where

A is high and—1 where A is low (or.25 and—.25, or —17.321 and17.321,

as the sum of squares is unaffected by a nonzero multipliethé&contrast
coefficients). Note that this contras}, has exactly the same pattern of pluses
and minuses as the column for factor A in Table 10.2.

The difference
yZooo - ylooo - a2 - 621 = 2@2

is thetotal effectof factor A. The total effect is the average response where
A is high, minus the average response where A is low, so we Isaroatain
the total effect of factor A by rescaling the contrast

_ _ 1 _
Y2eee — Ylees — Z Z WAijk Yijke >
ijk

where the divisor of 4 is replaced By~ for a2* design.

The columns of Table 10.2 give us contrasts for the main effdater-
actions in the two-series are also single degrees of freggothmere must be
contrasts for them as well. We obtain these interactionrasts by taking el-
ementwise products of main-effects contrasts. For exartptecoefficients
in the contrast for the BC interaction are the products ofcibefficients for
the B and C contrasts. A three-way interaction contrastdgtioduct of the
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Table 10.3:All contrasts for &3 design.

A B C AB AC BC ABC
(1) — — - + + + -
a + - - - - + +
b - + - - + - +
ab + + - + - - -
c - - + + - - +
ac + - + — + - -
bc - + + - - + —
abc| + + + + + + +

three main-effects contrasts, and so on. This is most edwilg by referring
to the columns of Table 10.2, with and— interpreted as+-1 and—1. We
show these contrasts for24 design in Table 10.3.

Yates’ algorithm is a method for efficient computation of #ifects in a
two-series factorial. It can be modified to work in threelsgand general
factorials, but we will only discuss it for the two-seriesat¥s’ algorithm
begins with the treatment means in standard order and pesdhe grand
mean and factorial effects in standard order with a minimdrooonputa-
tion. Looking at Table 10.3, we see that there 2lreffect columns (adding
a column of all ones for the overall mean) each involvi¥igadditions, sub-
tractions, or multiplications for a total &* operations. Yates’ algorithm

allows us to get the same results with* operations, a substantial savings

for hand computation and worth consideration in computéinsoe as well.

Arrange the treatment means at’ain standard order in a column; call it
column 0. Yates’ algorithm computes the effect& ipasses through the data,

each pass producing a new column. We perform an operatiomlama O
to get column 1; then we perform the same operation on colurtinget
column 2; and so on. The operation is sums and differencesaniessive
pairs. To make a new column, the first half of the elementsaned as sums
of successive pairs in the preceding column. The last halfeoélements are
found as differences of successive pairs in the precedilugoo

For example, in &3, the elements of column O (the data) 8, Yar Yo
yalﬂ ya gac' gbm yabc' The elements in column 1 a@él) + ya! gb + yab' gc
* Yacr Ybe T y(_zbc' Ya _y(l)' Yab —Ybr Yac — Yer andyabc ~ Ype- We repeat the
same operation on column 1 to get colummyg) + 7, + 7y, + Yaps Yo + Yae
+ Yve ¥ Yaber Ya ~Y(1) ¥ Yab =Y Yac ~Ye t Yabe ~Yoer Yo T Yab —Y(1) ~Yar
Yve * Yabe — Ye - Yacr Yab —Yb —Ya * y(1)1 _andyabc ~Ybe = Yac ¥ Ye- This
procedure continues through the remaining columns.

Yates’ algorithm
efficiently
computes effects
in two-series

Each column is
sums and
differences of
preceding column
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Table 10.4:Yates’ algorithm for the pacemaker substrate data.

Data 1 2 3 Effects
1) 4.388 7.219 14686 29.090 3.636 Mean
a 2.831 7.467 14.404 -5.735 =717 A
b 4.360 7.598 -2.809 -.544 -068 B
ab 3.107 6.806 -2.926 -.500 -.062 AB
c 4330 -1.556 .248 -.282 -035 C
ac 3.268 -1.252 -.791 -.117 -015 AC
bc 4336 -1.061 .304 -1.039 -130 BC
abc 2471 -1.865 -.804 -1.108 -138 ABC

After k passes, théth column contains the total of the treatment means
and the effect contrasts with1 coefficients applied to the treatment means.
These results are in standard order (total, A effect, B &ffeB effect, and
so on). To get the grand mean and effects, divide colkrp 2~.

Pacemaker substrates

We use the data of Problem 8.4. This wa®*aexperiment with two repli-
cations; factors A—profile time, B—airflow, and C—laser; aadponse the
fraction of substrates delaminating. The column lab&eth in Table 10.4
shows the treatment means for the log scale data. Columeketih 2,and

3 are the three steps of Yates’ algorithm, and the final colusrthé grand
mean followed by the seven factorial effects in standar@or@rofile time

(A) clearly has the largest effect (in absolute value).

10.4.2 Single replicates

As with all factorials, a single replication in a two-serissign means that
we have no degrees of freedom for error. We can apply any otiso@l
methods for single replicates to a two-series design, rethre also meth-
ods developed especially for single replicate two-seiés.describe two of
these methods. The first is graphically based and is subgedtidoes not
providep-values. The second is just slightly more complicated, bdbés
allow at least approximate testing.

Both methods are based on the idea that if our original datindepen-
dent and normally distributed with constant variance, thes of the effects
contrasts in Table 10.3 gives us results that are also imdkgreé and nor-
mally distributed with constant variance. The expectedealf any of these
contrasts is zero if the corresponding null hypothesis ofraon effect or
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interaction is correct. If that null hypothesis is not catreéhen the expected

value of the contrast is not zero. So, when we look at the testbntrasts

corresponding to null effects should look like a sample framormal dis-

tribution with mean zero and fixed variance, and contrastesponding to  Significant effects
non-null effects will have different means and should lo&k loutliers. We are outliers
now need a technique to identify outliers.

We implicitly make an assumption here. We assume that wehaille
mostly null results, with a few non-null results that sholaldk like outliers.
This is calledeffect sparsity These techniques will work poorly if there are we assume effect
many non-null effects, because we won't have a good basdeftiding what sparsity
null behavior is.

The first method is graphical and is usually attributed to iBlaf1959).
Simply make a normal probability plot of the contrasts arakléor outliers.
Alternatively, we can use half-normalprobability plot, because we don’t  Half-normal plot
care about the signs of the effects when determining whiels ane outliers. of effects
A half-normal probability plot plots the sorted absolutéues on the vertical
axis against the sorted expected scores from a half-noristaibdtion (that
is, the expected value ath smallest absolute value from a sample of size
2% — 1 from a normal distribution). | usually find the half-normabs easier
to interpret.

The second method computegseudo-standard errdiPSE) for the con-
trasts, allowing us to dotests. Lenth (1989) computes the PSE in two steps.

First, letsy be 1.5 times the median of the absolute values of the com&ast Lenth's
sults. Second, delete any contrasts results whose absalutes are greater pseudo-standard
than2.5sy, and let the PSE be 1.5 times the median of the remaining abso- error

lute contrast results. Treat the PSE as a standard errdrdarantrasts with
(2% —1)/3 degrees of freedom, and ddests. These can be individual tests,
or you can do simultaneous tests using a Bonferroni comecti

Pacemaker substrates, continued Example 10.7

We illustrate both methods using the pacemaker substrdte foam Ta-
ble 10.4. The column labeldeffectsgives the grand mean and effects. He-
moving the grand mean, we make a half-normal plot of the reimgiseve
effects, as shown in Figure 10.1. Effect 1, the main effe& cdppears as
clear outlier, and the rest appear to follow a nice line. ThWaswould con-
clude subjectively that A is significant, but no other eféeate significant.

To use Lenth’s method, we first need the median of the absalcterial
effects, .068 for these data. We next delete any absolwetsffjreater tha
2.5 x.068 = .17; only the the main effect of A meets this cutoff. The medjan
of the remaining absolute effects is .065, so the PSE5is< .065 = .098.
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A single nonzero
response yields
effects equal in
absolute value

Flat spots in half
normal plot may
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Figure 10.1: Half-normal plot of factorial effects for the log
pacemaker substrate data, using MacAnova. Numbers irdicat
standard order: 1is A, 7 is ABC, and so on.

We treat this PSE as having 7/3 degrees of freedom. With thexion, the
main effect of A has a two-sidegvalue of about .01, in agreement with our
subjective conclusion.

An interesting feature of two-series factorials can be ségou look
at a data set consisting of all zeroes except for a singlearonzlue. All
factorial effects for such a data set are equal in absoldteyhut some will
be positive and some negative, depending on which data V&lnenzero
and the pattern of pluses and minuses. For example, suppaisehas a
positive value and all other responses are zero. Lookinlgeatdw forc in
Table 10.3, the effects for C, AB, and ABC should be positare] the effects
for A, B, AC, and BC should be negative. Similarlypif had a negative value
and all other responses were zero, then the rowsd@hows us that A, AB,
AC, and ABC would be positive, and B, C, and BC would be negatithe
patterns of positive and negative effects are unique foc@ihbinations of
which response is nonzero and whether the response isveasithegative.

When a two-series design contains a large one-cell inieraanany of
what should be null effects will have about the same absetltee, and we
will see an approximate horizontal line in the half-normiattpBy matching
the signs of the seemingly constant effects (or their ire®rt rows of tables
of pluses and minuses, we can determine which cell is intiegac
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Figure 10.2: Half-normal plot of factorial effects for seed
maturation data, using MacAnova.

Seed maturation on cut stems

Sixteen heliopsis (sunflower) blooms were cut with 15 cm stemd the
stems were randomly placed in eight water solutions withctirabinations
of the following three factors: preservative at one-quat@ne-half strength
MG or MS preservative, 1% or 2% sucrose. After the blooms hatidthe
total number of seeds for the two blooms was determined asnsg (data
from David Zlesak). In standard order, the responses were:

1) a b ab «c¢ ac bc abc
12 10 60 8 89 87 52 49

Figure 10.2 shows a half-normal plot of the factorial eféediffects 1, 2, 3
5,and 7 (A, B, AB, AC, and ABC) seem roughly constant. Exaridmeof

the effects (not shown) reveals that A, B, and AB have negatffects, ang
AC and ABC have positive effects. Looking at Table 10.3, we sae tha
the only factor-level combination where the A, B, and AB ¢asts have th
same sign—and the AC and ABC contrasts have the same signpged

site that of A, B, and AB—is theb combination. Examining the data, tije

response of 8 fosb indeed looks like a one-cell interaction.

Example 10.8
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10.5 Further Reading and Extensions

A good expository discussion of unbalance can be found irr K86);
more advanced treatments can be found in texts on linear Is)aslech as
Hocking (1985).

The computational woes of unbalance are lespfoportional balance.

In a two-factor design, we have proportional balance;j/ N = n;/N x
nej/N. For example, treatments at level 1 of factor A might havéicapion
4, and all other treatments have replication 2. Under pitopaal balance,
contrasts in one main effect or interaction are orthogamabitrasts in any
other main effect or interaction. Thus the order in whiclhngenter a model
does not matter, and ordinary, Type Il, and Type Il sums obsgs all agree.
Balanced data are obviously a special case of proporti@ahbe. For more
than two factors, the rule for proportional balance is thatfraction of the
data in one cell should be the product of the fractions in tfierent margins.

When we have specific hypotheses that we would like to testihiay
do not correspond to standard factorial terms, then we nudteas them
with special-purpose contrasts. This is reasonably easy &ingle degree
of freedom. For hypotheses with several degrees of freedangan form
multidegree of freedom sums of squares for a set of contuastg methods
described in Hocking (1985) and implemented in many sofwsackages.
Alternatively, we may use Bonferroni to combine the testgdividual de-
grees of freedom.

It is somewhat instructive to see the hypotheses tested pyoaphes
other than Type Ill. Form row and column averages of treatnma&ans using
weights proportional to cell counts:

b
Hix = Z Nijfij/Mie
j=1

a
Mg = Znijﬂz’j/n.j;
i=1

and form averages for each row of the column weighted averaged
weighted averages for each column of the row weighted aesrag

b
(,u*j)i* = Z nijﬂ*j/nio
Jj=1

a
(,Ui*)*j = Znijﬂi*/noj-
i=1
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Thus there is dy,;):. value for each row, formed by taking a weighted

average of the column weighted averages The values may differ between
rows because the counts; may differ between rows, leading to different
weighted averages.

Consider two methods for computing a sum of squares for rfactdVe
can calculate the sum of squares for factor A ignoring aleofactors; this
is SAS Type | for factor A first in the model, and is also calledeighted
means.” This sum of squares is the change in error sum of agjiragoing
from a model with just a grand mean to a model with row effectd &
appropriate for testing the null hypothesis

Hix = U2+« = =+ = HUax -

Alternatively, calculate the sum of squares for factor Austid for factor B;
this is a Type Il sum of squares for a two-way model and is gmate for
testing the null hypothesis

Hix = (,U*j)l*§ H2x = (N*j)%; ceey Hax = (N*j)a* .

That is, the Type Il null hypothesis for factor A allows thenreveighted
means to differ, but only because they are different weidjateerages of the
column weighted means.

Daniel (1976) is an excellent source for the analysis of $&oes de-
signs, including unreplicated two-series designs. Muda-daalytic wisdom
can be found there.

10.6 Problems

Three ANOVA tables are given for the results of a single eixpent. Exercise 10.1
These tables give sequential (Type I) sums of squares. @ehst Type Il
ANOVA table. What would you conclude about which effects ameérac-
tions are needed?

DF SS MS
a 1 1.9242 1.9242
b 2 1584.2 792.1
a.b 2 19.519 9.7595
c 1 1476.7 1476.7
a.c 1 17.527 17.527
b.c 2 191.84 95.92
a.b.c 2 28.567 14.284
Error 11 166.71 15.155
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DF ss MS
b 2 1573 786.49
c 1 1428.7 1428.7
b.c 2 153.62 76.809
a 1 39.777 39.777
b.a 2 69.132 34.566
c.a 1 27.51 27.51
b.c.a 2 28.567 14.284
Error 11 166.71 15.155
DF ss MS
c 1 1259.3 1259.3
a 1 9.0198 9.0198
c.a 1 0.93504 0.93504
b 2 1776.1 888.04
c.b 2 169.92 84.961
a.b 2 76.449 38.224
c.a.b 2 28.567 14.284
Error 11 166.71 15.155
Exercise 10.2 A single replicate of &* factorial is run. The results in standard order are

1.106, 2.295, 7.074, 6.931, 4.132, 2.148, 10.2, 10.12,73.3827, 8.698,
6.255, 3.755, 2.789, 10.99, and 11.85. Analyze the data terrdane the
important factors and find which factor-level combinatitvosld be used to
maximize the response.

Exercise 10.3 Here are two sequential (Type I) ANOVA tables for the samadabm-
plete the second table. What do you conclude about the signide of row
effects, column effects, and interactions?

DF ss MS
r 3 3.3255 1.1085
c 3 112.95 37.65
r.c 9 0.48787 0.054207
ERROR 14 0.8223 0.058736
DF ss MS
c 3 116.25 38.749
r 3
c.r 9
ERROR 14
Exercise 10.4 Consider the following two plots, which show normal and frafmal

plots of the effects from an unreplicatetl factorial design. The effects are
numbered starting with A as 1 and are in standard order. Wbatdwou
conclude?
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An experiment investigated the release of the hormone AQhh frat Problem 10.1

pituitary glands under eight treatments: the factorial borations of CRF (0
or 100 nM; CRF is believed to increase ACTH release), caldi@ar 2 mM
of CaCl), and Verapamil (O or 5@M; Verapamil is thought to block the
effect of calcium). Thirty-six rat pituitary cell culturese assigned at ran-
dom to the factor-level combinations, with control (all&mments 0) getting
8 units, and other combinations getting 4. The data followg(@re, Lefevre,
and Labrie 1982). Analyze these data and report your coioclsis
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Control 1.73 157 153 2.1
131 145 155 175
V (Merapamil) | 2.14 224 215 1.87
CRF 472 282 276 4.44
CRF+V 436 405 6.08 458
Ca(Calcium) | 3.53 3.13 347 299
Ca+V 322 289 332 356
CRF + Ca 13.18 14.26 15.24 11.18
CRF+Ca+V| 1953 16.46 17.89 14.69
Problem 10.2 Consumers who are not regular yogurt eaters are polled &ed &srate
on alto 9scale the likelihood that they would buy a certaguybproduct at
least once a month; 1 means very unlikely, 9 means very likegdg product
is hypothetical and described by three factors: cost (“Gdwsimedium, and
high), sensory quality (“S"—low, medium, and high), andnitignal value
(“N"—low and high). The plan was to poll three consumers faclke product
type, but it became clear early in the experiment that peaple unlikely
to buy a high-cost, low-nutrition, low-quality product, soly one consumer
was polled for that combination. Each consumer receiveabtie eighteen
product descriptions chosen at random. The data follow:
CSN Scores CSN Scores
HHH 26 25 29 HHL 15 16 15
HMH 23 21 23 HML 14 15 14
HLH 1.05 1.06 1.05 HLL 1.01
MHH 33 35 33 MHL 22 20 21
MMH 26 26 23 MML 18 17 1.8
MLH 12 11 12 MLL 1.07 108 1.07
LHH 79 7.8 75 LHL 55 57 57
LMH 45 46 40 LML 38 33 31
LLH 1.7 18 18 LLL 15 16 15
Analyze these data for the effects of cost, quality, anditiarron likeli-
hood of purchase.
Problem 10.3 Modern ice creams are not simple recipes. Many use some typgroto

enhance texture, and a non-cream protein source (for egampey protein
solids). A food scientist is trying to determine how typesgaim and pro-
tein added change a sensory rating of the ice cream. She fiveshky five
factorial with two replications using five gum types and fivetgin sources.
Unfortunately, six of the units did not freeze properly, dhese units were
not rated. Ratings for the other units are given below (highenbers are
better).
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Protein
Gum 1 2 3 4 5
1 35 36 21 40 31
3.0 29 45
2 72 6.8 67 75 6.8
48 6.9 93
3 41 58 45 53 4.1
56 48 46 7.3 53
4 53 48 50 6.7 52
32 72 6.7 4.2
5 45 51 50 49 45
27 3.7 45 47
Analyze these data to determine if protein and/or gum haye#eact on
the sensory rating. Determine which, if any, proteins andlons differ in
their sensory ratings.
Gums are used to alter the texture and other properties difao part Problem 10.4

by binding water. An experiment studied the water-bindifigarious car-
rageenan gums in gel systems under various conditions. Xgeziment had
factorial treatment structure with four factors. Factordswhe type of gum
(kappa, mostly kappa with some lambda, and iota). Factorkeconcen-
tration of the gum in the gel in g/100gq-8 (level 1 is .1; level 2 is .5; and
level 3 is 2 for gums 1 and 2, and 1 for gum 3). The third factos type of
solute (NaCl, NaSQy, sucrose). The fourth factor was solute concentration
(ku/kg H,0). For sucrose, the three levels were .05, .1, and .25; f@i Had
Na, SOy, the levels were .1, .25, and 1. The response is the watdirgin
for the gel in mOsm (data from Rey 1981). This experiment veaspletely
randomized. There were two units at each factor-level coatlin except
solute concentration 3, where all but one combination had dits.

Analyze these data to determine the effects and interaotibifie factors.
Summarize your analysis and conclusions in a report.
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G.conc. 1 G. conc. 2 G. conc. 3

S. S.conc.| G.1 G.2 G. 3 G.1 G.2 G. 3] G.1 G.2 G.3
1 1 99.7 97.6 99.0f 100.0 104.7 107.3 123.0 125.7 117.3
98.3 103.7 98.0 104.3 105.7 106.7 116.3 121.7 117.3

1 21 239.0 239.7 237.0 249.7 244.7 243.7 277.0 266.3 268.0
236.0 246.7 237.1 255.7 245.7 247.7 262.3 276.3 266.7

1 31 928.7 940.0 899.3 937.0 942.7 953.3 968.0 992.7 1183.7
930.0 961.3 941.0 938.7 988.0 991.0 975.7 1019.0 1242.0

929.0 939.7 944.3 939.7 945.7 988.7 972.7 1018.7 1133.0

930.0 931.3 919.0 924.3 933.0 965.7 968.0 1021.0 1157.0

2 1| 87.3 80.0 88.00 92.3 94.5 86.7| 104.3 115.7 101.0
89.0 89.3 89.00 97.7 94.3 95.3 104.0 118.0 104.3

2 2| 203.7 204.0 203.0 209.0 210.7 203.7 218.0 241.0 214.7
204.0 206.3 201.7 209.3 210.0 209.0 221.5 232.7 222.7

2 3| 695.0 653.0 668.1 688.7 697.7 726.7 726.0 731.0 747.7
679.7 642.7 686.1 701.3 701.7 744.7 747.7 790.3 897.0

692.7 686.0 665.0 698.0 698.0 741.0 736.7 799.7 812.7

688.0 646.0 688.3 711.7 698.7 708.1 743.7 806.0 885.0

3 1 55.0 56.7 54,7 61.7 62.7 63.7, 90.7 99.0 72.7
55.3 56.0 56.3 62.0 64.0 65.00 99.3 102.3 75.0

2| 123.7 109.7 105.0 113.3 115.0 114.3 229.3 213.4 123.7

106.0 111.0 105.7 115.0 115.7 116.7 193.7 196.3 132.7

3 3| 283.3 2717 2583 277.3 279.3 282.0 426.5 399.7 291.7
276.0 275.3 268.0 277.0 283.0 279.3 389.3 410.3 308.0

266.0 267.3 273.3 281.3 282.7| 420.0 360.0 310.0

263.0 268.7 272.1 279.0 281.0| 421.7 409.3 303.3

Problem 10.5 Expanded/extruded wheat flours have air cells that varyzia, €ind the

size may depend on the variety of wheat used to make the flaulptation
where the wheat was grown, and the temperature at which theviias ex-
truded. An experiment has been conducted to assess théses fathe first
factor is the variety of wheat used (Butte 86, 2371, or Gnandihe second
factor is the growth location (MN or ND). The third factor fsettemperature
of the extrusion (128C or 18°C). The response is the area in fof the
air cells (data from Sutheerawattananonda 1994).

Analyze these data and report your conclusions; varietytamgerature
effects are of particular interest.
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Temp. Loc. Var. Response
1 1 1| 463 10.37 7.53
1 1 2| 6.83 7.43 299
1 1 3| 11.02 13.87 2.47
1 2 1| 344 588
1 2 2| 260 4.48
1 2 3| 429 2.67
2 1 1| 280 3.32
2 1 2| 3.01 451
2 1 3| 530 3.58
2 2 1| 312 258 297
2 2 2| 215 262 3.00
2 2 3| 224 280 3.18

Anticonvulsant drugs may be effective because they engeutize ef-
fect of the neurotransmitter GABA/{aminobutyric acid). Calcium transport
may also be involved. The present experiment randomly asdig8 rats
to eight experimental conditions. These eight conditimastle factor-level
combinations of three factors, each at two levels. The fachme the an-
ticonvulsant Trifluoperazine (brand name Stelazine) prese absent, the
anticonvulsant Diazepam (brand name Valium) present oerdgbsind the
calcium-binding protein calmodulin present or absent. fésponse is the
amount of GABA released when brain tissues are treated v@tmBl K+
(data based on Table | of de Belleroche, Dick, and WyrleiBit982).

Tri Dia Cal
A A A 1.19 133 134 123 124 1.23 1.28 1.32
P 1.07 144 114 87 135 1.19 117 .89
P A 58 54 63 81
P 61 .60 51 .88
P A A 89 40 89 80 65 .8 45 .37
P 1.21 120 140 .70 1.10 1.09 .90 1.28
P A 19 34 61 .30
P 34 41 29 B2

Analyze these data and report your findings. We are inteté@st@hether the
drugs affect the GABA release, by how much, and if the calrfindtnanges
the drug effects.

In a study of patient confidentiality, a large number of paidi@ans was
surveyed. Each pediatrician was given a “fable” about a ferpatient less
than 18 years old. There were sixteen different fables, tmebinations of
the factors complaint (C: 1—drug problem, 2—venereal disgaage (A:

Problem 10.6

Problem 10.7
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1—14 years, 2—17 years), the length of time the pediatritiadh known

the family (L: 1—less than 1 year, 2—more than 5 years), aedihaturity

of patient (M: 1—immature for age, 2—mature for age). Thepoese at
each combination of factor levels is the fraction of docteh® would keep
confidentiality and not inform the patient’s parents (datadeled on Moses
1987). Analyze these data to determine which factors inflae¢he pediatri-
cian’s decision.

C AL M Response C A L M Response
1 1 1 1 .445 2 1 1 1 578
1 1 1 2 .624 2 1 1 2 .786
1 1 2 1 .360 2 1 2 1 .622
1 1 2 2 .493 2 1 2 2 .755
1 2 1 1 513 2 2 1 1 .814
1 2 1 2 .693 2 2 1 2 .902
1 2 2 1 534 2 2 2 1 .869
1 2 2 2 675 2 2 2 2 .902
Problem 10.8 An animal nutrition experiment was conducted to study tHeot$ of

protein in the diet on the level of leucine in the plasma ofspi®igs were
randomly assigned to one of twelve treatments. These terdfimare the
combinations of protein source (fish meal, soybean meal,dsied skim
milk) and protein concentration in the diet (9, 12, 15, or B8gent). The
response is the free plasma leucine level in mcg/ml (data ¥héndels 1964)

Meal 9% 12% 15% 18%

Fish 278 315 34.0 30.6
23.7 285 28.7 327

328 28.3 33.7

Soy 39.3 398 385 429
34.8 40.0 39.2 490

29.8 39.1 40.0 444

Milk 40.6 429 595 721
31.0 50.1 48.9 59.8

346 374 414 67.6

Analyze these data to determine the effects of the factotsuaine level.
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Random Effects

Random effectare another approach to designing experiments and model-
ing data. Random effects are appropriate when the treasnaeatrandom
samples from a population of potential treatments. Theya&e useful for Random effects

random subsampling from populations. Random-effects tsaueke the for randomly
same kinds of decompositions into overall mean, treatmféextte, and ran- chosen
dom error that we have been using, but random-effects medsisme that treatments and
the treatment effects are random variables. Also, the fotirgerence is on subsamples

the population, not the individual treatment effects. Tdhiapter introduces
random-effects models.

11.1 Models for Random Effects

A company has 50 machines that make cardboard cartons foedajoods,

and they want to understand the variation in strength of #réons. They Carton
choose ten machines at random from the 50 and make 40 cart@ash ma- experiment one, a
chine, assigning 400 lots of feedstock cardboard at randdhetten chosen single random
machines. The resulting cartons are tested for strengtis.idh completely factor
randomized design, with ten treatments and 400 units; weefdr to this as

carton experiment one.

We have been using models for data that take the form
Yij = i + €5 = po+ Q; + €5

The parameters of the mean structurg, (+, and«;) have been treated as
fixed, unknown numbers with the treatment effects summinget@, and
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Random Effects

Fixed effects

Random-effects
designs study
populations of
treatments

Treatment effects
are random in
random-effects
models

Variance
components

Intraclass
correlation

Random effects
can be specified
by correlation
structure

the primary thrust of our inference has been learning ablmgd mean pa-
rameters. These sorts of models are cdfiegld-effectsnodels, because the
treatment effects are fixed numbers.

These fixed-effects models are not appropriate for our oastength
data. It still makes sense to decompose the data into anloveran, treat-
ment effects, and random error, but the fixed-effects asangdon’t make
much sense here for a couple of reasons. First, we are tryiteatn about
and make inferences about the whole population of machirzegust these
ten machines that we tested in the experiment, so we needhtioidbéo make
statements for the whole population, not just the randonpsathat we used
in the experiment. Second, we can learn all we want abouettess ma-
chines, but a replication of the experiment will give us atirely different
set of machines. Learning abawt in the first experiment tells us nothing
abouta; in the second experiment—they are probably different nreshi
We need a new kind of model.

The basic random effects model begins with the usual decsitiqr
Yij = B+ o + €5

We assume that the; are independent normal with mean 0 and variance
o2, as we did in fixed effects. For random effects, we also asghatehe
treatment effectsy; are independent normal with mean 0 and variange
and that they;’s and thee;;'s are independent of each other. Random effects
models do not require that the sum of thgs be zero.

The variance ofy;; is 02 + o2. The termss2 ando? are calledcompo-
nents of variancer variance componentsThus the random-effects model is
sometimes called a components of variance model. The atioelbetween
yi; andyy is

0 ik
Cor(yij, yw) = § 02/(0% +02) for i=kandj#1
1 i=kandj =1

The correlation is nonzero when= k because the two responses share a
common value of the random variabige. The correlation between two re-
sponses in the same treatment group is calledhtingclasscorrelation. An-
other way of thinking about responses in a random-effectsaiio that they

all have mearn, varianceri + 02, and a correlation structure determined by
the variance components. The additive random-effects haodkthe corre-
lation structure approach are nearly equivalent (the mgdiandom-effects
model can only induce positive correlations, but the gdmeraelation struc-
ture model allows negative correlations).
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The parameters of the random effects model are the overalhmehe
error variancer2, and the variance of the treatment effefjs the treatment

effectso; are random variables, not parameters. We want to make infer- Tests and
ences about these parameters; we are not so interested imgnivaflerences confidence
about then;’s ande;;'s, which will be different in the next experiment any- intervals for
way. Typical inferences would be point estimates or configentervals for parameters

the variance components, or a test of the null hypothesidltieatreatment
variances? is 0.

Now extend carton experiment one. Suppose that machinatopemay
also influence the strength of the cartons. In addition totéimemachines
chosen at random, the manufacturer also chooses ten ageaat@andom.

Each operator will produce four cartons on each machiné, tvé cardboard Carton
feedstock assigned at random to the machine-operator ocatidns. We experiment two,
now have a two-way factorial treatment structure with beatttdérs random two random
effects and completely randomized assignment of treasneninits. This is factors

carton experiment two.
The model for two-way random effects is

Yijk = B+ o + B + aBij + €k

whereq; is a main effect for factor Ag; is a main effect for factor Ba.3;;

is an AB interaction, and;;;, is random error. The model assumptions are

that all the random effects;, 3;, a3;;, ande;j;, are independent, normally  Two-factor model
distributed, with mean 0. Each effect has its own variancan(Vy) = ag,

Var(3;) = o3, Var(af;) = o5, and Varg;;,) = o°. The variance o

is 02 + a% + agﬁ + o2, and the correlation of two responses is the sum

of the variances of the random components that they shasdediby their

common variance;, + o3 + o2 + o°.

This brings us to another way that random effects differ fifiorad ef-

fects. In fixed effects, we have a table of means onto whichmmEose a

structure of equally weighted main effects and interagtiofhere are other

plausible structures based on unequal weightings thataandifferent main

effects and interactions, so testing main effects whemant®ns are present

in fixed effects makes sense only when we are truly interdsttgk specific,
equally-weighted null hypothesis corresponding to themedfiect. Random

effects set up a correlation structure among the respowitbsautonomous

contributions from the different variance componentss lgasonable to ask Hierarchy less

if a main-effect contribution to correlation is absent evVfanteraction con- important in
tribution to correlation is present. Similarly, equal weligg is about the random-effects
only weighting that makes sense in random effects; aftettadl row effects models

and column effects are chosen randomly and exchangeablyw#fight one
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row or column more than any other? So for random effects, weropless
automatically test for main effects, even if interactions present.

We can, of course, have random effects models with more thaurfac-

Carton tors. Suppose that there are many batches of glue, and weetwo of them

experiment three,
three random
factors

Three-factor
model

Random effects
study variances in
populations

Use random
effects when
subsampling

atrandom. Now each operator makes two cartons on each neagtimeach
batch of glue. We now have 200 factor-level combinationgyassl at ran-
dom to the 400 units. This is carton experiment three.

The model for three-way random effects is

Yijkl = b+ 0 + B + abij + vk + avik + Bk + abvijk + €k

whereo;, 3;, and~y;, are main effectsp3;;, avi, Byik, andafBy;;, are
interactions; and;;;; is random error. The model assumptions remain that
all the random effects are independent and normally diggibwith mean O.
Each effect has its own variance: M) = o7, Var(3;) = 3, Var(y,) = o2,

Var(as;;) = 035, Var(ay;i) = O'i,y, Var(B;i) = 0'%7, Var(a3viji) = ng,
and Varg;;;) = 0. Generalization to more factors is straightforward, and

Chapter 12 describes some additional variations that ceur dor factorials
with random effects.

11.2 Why Use Random Effects?

The carton experiments described above are all complaeelyomized de-
signs: the units are assigned at random to the treatments.difflerence
from what we have seen before is that the treatments haverbadomly
sampled from a population. Why should anyone design an erpat that
uses randomly chosen treatments?

The answer is that we are trying to draw inferences about tpeilp-
tion from which the treatments were sampled. Specificalgyane trying to
learn about variation in the treatment effects. Thus we w@design an ex-
periment that looks at variation in a population by lookiridghee variability
that arises when we sample from the population. When you teastudy
variances and variability, think random effects.

Random-effects models are also used in subsampling sisatRevise
carton experiment one. The manufacturer still chooses smrhines at ran-
dom, but instead of making new cartons, she simply goes twérehouse
and collects 40 cartons at random from those made by eachimeadhstill
makes sense to model the carton strengths with a random &dfebe ran-
domly chosen machine and a random error for the randomlyechoartons
from each machine’s stock; that is precisely the randonceffimodel.
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Source DF EMS

Treatments g-1 o? +no?
Error N-g o?

Display 11.1:Generic skeleton ANOVA for a
one-factor model.

In the subsampling version of the carton example, we have dorex-
perimentation in the sense of applying randomly assigreadrtrents to units.
Instead, the stochastic nature of the data arises becausawgesampled
from a population. The items we have sampled are not exalitly, &0 the
responses differ. Furthermore, the sampling was done inuatsted way
(in the example, first choose machines, then cartons for eeaihine) that
produces some correlation between the responses. For Examgexpect
cartons from the same machine to be a bit similar, but caftons different
machines should be unrelated. The pattern of correlatioaudbsampling is
the same as the pattern of correlation for randomly choseattrtrents applied
to units, so we can use the same models for both.

11.3 ANOVA for Random Effects

An analysis of variance for random effects is compugsdctlythe same
as for fixed effects. (And yes, this implies that unbalancathdjive us
difficulties in random effects factorials too; see Secti@mBl) The ANOVA
table has rows for every term in the model and columns forcgsums of
squares, degrees of freedom, mean squares, and F-s$atistic

A random-effects ANOVA table usually includes an additibo@umn
for expected mean squares (EMS’s). The EMS for a term isll{ethe ex-
pected value of its mean square. We saw EMS'’s briefly for fixstts, but
their utility there was limited to their relationship witloncentrality parame-
ters and power. The EMS is much more useful for random eff€@tapter 12
will give general rules for computing EMS’s in balanced @a@ls. For now,
we will produce them magically and see how they are used.

The EMS for error iso?, exactly the same as in fixed effects. For bal-

anced single-factor data, the EMS for treatments’is- no2. Display 11.1

gives the general form for a one-factor skeleton ANOVA (jsstirces, de-
grees of freedom, and EMS). For carton experiment one, th& Evma-

chines iso? + 4002.

Subsampling
induces random
variation

No changes in SS
or df

ANOVA table
includes column
for EMS

One-factor EMS
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Construct tests by
examining EMS

Two-factor EMS

Source DF EMS

A a—1 o? +na§5+nbai
B b—1 o2 —|—na§5—|—naa%
AB (a—1)(b—1) o’ +nolg

Error N —ab=ab(n —1) o?

Display 11.2:Generic skeleton ANOVA for a two-factor model.

To test the null hypothesis thag = 0, we use the F-ratid/ St/M Sg
and compare it to an F-distribution with— 1 andN — g degrees of freedom
to get ap-value. Let'’s start looking for the pattern now. To test thdl n
hypothesis that? = 0, we try to find two expected mean squares that would
be the same if the null hypothesis were true and would diffeeavise. Put
the mean square with the larger EMS in the numerator. If thiehgpothesis
is true, then the ratio of these mean squares should be al{givelor take
some random variation). If the null hypothesis is falsenttie ratio tends
to be larger than 1, and we reject the null for large valuesefratio. In a
one-factor ANOVA such as carton experiment one, there alsetar® mean
squares to choose from, and we ud&:/M Sg to test the null hypothesis
of no treatment variation.

It's a bit puzzling at first that fixed- and random-effects raisgd which
have such different assumptions about parameters, shautdthe same test
for the standard null hypothesis. However, think about fifeces when the
null hypotheses are true. For fixed effects, theare fixed and all zero; for
random effects, the; are random and all zero. Either way, they're all zero.
It is this commonality under the null hypothesis that makesttvo tests the
same.

Now look at a two-factor experiment such as carton experitvem The
sources in a two-factor ANOVA are A, B, the AB interactiongaerror; Dis-
play 11.2 gives the general two-factor skeleton ANOVA. Fartan experi-
ment 2, this table is

Source DF EMS
Machine 9 0% +4025+ 4007
Operator 9 0 +4do2s + 4003

Machine.operator 81 o2 + 402
Error 300 o2
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Source EMS

A o2 + nagm + ncogﬁ + nbo'gw + nbco?
B o + nagm + ncogﬁ + nao%v + naco%
C 0® +nals, + nboy, + nack, + nabo?
AB 0% +nols, +neolg

AC o? + naim + nbagm

BC o + nagm + naa%,y

ABC o + nagm

Error o?

Display 11.3:Expected mean squares for a three-factor model.

Suppose that we want to test the null hypothesisd@gt: 0. The EMS

for the AB interaction iss? + naiﬁ, and the EMS for error ig2. These
differ only by the variance component of interest, so we @t this null
hypothesis using the ratit/ S45/M Sg, with (a — 1)(b — 1) andab(n — 1)
degrees of freedom.

That was pretty familiar; how about testing the null hypsisehatr? =
0? The only two lines that have EMS'’s that differ by a multipferd are A
and the AB interaction. Thus we use the F-ratibS4/M S5 with a — 1
and(a — 1)(b — 1) degrees of freedom to tesf = 0. Similarly, the test for
a% =0isMSp/MSap withb — 1 and(a — 1)(b — 1) degrees of freedom.
Not havingM Sk in the denominator is a major change from fixed effects,
and figuring out appropriate denominators is one of the msés of EMS.

The denominator mean square for F-tests in random effeatelnwill not
always beM Sg!

Let's press on to three random factors. The sources in a-facter
ANOVA are A, B, and C; the AB, AC, BC, and ABC interactions; asor. Three-factor
Display 11.3 gives the generic expected mean squares. fon@xperiment model
3, with m, 0, and g indicating machine, operator, and gluis,tdble is
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No exact F-tests
for some
hypotheses

Mean squares
are multiples of
chi-squares
divided by their
degrees of
freedom

Source DF EMS

m 9 o+ 20’357 + 40% + 200%7 + 4002

0 9 0 +202,, 4402, + 2003, + 4007

g 1 o?+202, + 2007, + 200%V + 200072
m.o 81 0% +202, +402,

m.g 9 o> +202, 42003,

0.9 9 0° 42025, + 2003,

mo.g 81 o?+202,
Error 200 o2

Testing for interactions is straightforward using our ridefinding two
terms with EMS’s that differ only by the variance componehinterest.
Thus error is the denominator for ABC, and ABC is the denomoint@r AB,
AC, and BC. What do we do about main effects? Suppose we wasgttthe
main effect of A, that is, test whethef = 0. If we sets? to 0 in the EMS

for A, then we gev” + 2075, + 4025 + 2005, A quick scan of the table

of EMS’s shows thanoterm hass® + 207 5. + 4075 + 2007, for its EMS.
What we have seen is that there is no exact F-test for the gpththesis
that a main effect is zero in a three-way random-effects modee lack of
an exact F-test turns out to be not so unusual in models withymendom
effects. The next section describes how we handle this.

11.4 Approximate Tests

Some null hypotheses have no exact F-tests in models wittorareffects.
For example, there is no exact F-test for a main effect in aghwith three
random factors. This Section describes how to construatappate tests
for such hypotheses.

An exact F-test is the ratio of two positive, independeniggributed ran-
dom quantities (mean squares). The denominator is digtdoas a multiple
T4 Of @ chi-square random variable divided by its degrees @doen (the
denominator degrees of freedom), and the numerator istuistd as a mul-
tiple 7,, of a chi-square random variable divided by its degrees @fdioen
(the numerator degrees of freedom). The multiplierandr, are the ex-
pected mean squares, = 75 when the null hypothesis is true, ang > 7,
when the null hypothesis is false. Putting these togethsgis a test statis-
tic that has an F-distribution when the null hypothesisug nd tends to be
bigger when the null is false.
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1. Find a mean square to start the numerator. This mean sqLare
should have an EMS that includes the variance comporjent
of interest.

2. Find the EMS of the numerator when the variance compo-
nent of interest is zero, that is, under the null hypothesis|

3. Find a sum of mean squares for the denominator. The qum
of the EMS for these mean squares must include every vhri-
ance component in the null hypothesis EMS of the numeya-
tor, include only those variance components in the null Hy-
pothesis EMS of the numerator, and be at least as big aqthe
null hypothesis EMS of the numerator. The mean squafes
in the denominator should not appear in the numerator.

4. Add mean squares to the numerator as needed to makg its
expectation at least as big as that of the denominator butjnot
larger than necessary. The mean squares added to thq nu-
merator should not appear in the denominator and shquld
contain no variance components that have not already fap-
peared.

5. If the numerator and denominator expectations are notfthe
same, repeat the last two steps until they are.

Display 11.4:Steps to find mean squares for approximate F-tests.

We want the approximate test to mimic the exact test as mugploss-
ble. The approximate F-test should be the ratio of two pasithdependently
distributed random quantities. When the null hypothestsus, both quan-
tities should have the same expected value. For exact thstslumerator
and denominator are each a single mean square. For apptexmsts, the
numerator and denominator are sums of mean squares. Babausgmer-
ator and denominator should be independent, we need to fiseedt mean
squares for the two sums.

The key to the approximate test is to find sums for the numesaid
denominator that have the same expectation when the nutithgpis is true.
We do this by inspection of the table of EMS’s using the stdpsrgin Dis-
play 11.4; there is also a graphical technique we will discusthe next
chapter. One helpful comment: you always have the same nuoifilpeean
squares in the numerator and denominator.

Approximate tests
mimic exact tests
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Example 11.1

Get approximate
p-value using
F-distribution

Finding mean squares for an approximate test

Consider testing for no factor A effectlf : 02 = 0) in a three-way model
with all random factors. Referring to the expected mean um Dis-

play 11.3 and the steps in Display 11.4, we construct thecxopate test as
follows:

1. The only mean square with an EMS that involeésis M S4, so it
must be in the numerator.

2. The EMS for A under the null hypothesi§ = 0 is 0 + no’s, +
nco? 5t nbagw.

3. We need to find a term or terms that will includes? ; andnboy.,
without extraneous variance components. We cann@eﬁﬁ from
MS 45, and we can getbo—fw from M S 4. Our provisional denomi-
nator is nowM S g + M S 4c; its expected value 802 + 2no2, +

aBy
ncal; + nbog.,, which meets our criteria.

4. The denominator now has an expected value that is naim larger
than that of the numerator. We can make them equal in expactat
addingM S o to the numerator.

5. The numeraton/ S4 + M S 4pc and denominatoM Sap + M Sac
have the same expectations under the null hypothesis, samvetop
and use them in our test.

Now that we have the numerator and denominator, the testgtdd their
ratio. To compute pa-value, we have to know the distribution of the ratio, and
this is where the approximation comes in. We don’t know tisgritiution of
the ratio exactly; we approximate it. Exact F-tests folldve F-distribution,
and we are going to computevalues assuming that our approximate F-test
also follows an F-distribution, even though it doesn't lgalThe degrees
of freedom for our approximating F-distribution come froratt®rthwaite
formula (Satterthwaite 1946) shown below. These degreézetom will
almost never be integers, but that is not a problem for mdswace. If you
only have a table, rounding the degrees of freedom down gicesservative
result.

The simplest situation is when we have the sum of several isgaares,
say M Sy, MS,, and M S5, with degrees of freedom,, 15, andvs. The
approximate degrees of freedom are calculated as

*

(MSy + MSs + MSs3)?
v = .
MS3? /vy + MS3/ve + MS3 /v
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In more complicated situations, we may have a general lioeabination of Satterthwaite

mean squares, ;. g, M Si. This linear combination has approximate degrees  approximate

of freedom degrees of
o ChgeMS)? freedom

ok QI%M SI%/ Vi

Unbalanced data will lead to these more complicated forrhs. approxima-

tion tends to work better when all the coefficientsare positive.

Carton experiment three (F-tests) Example 11.2

Suppose that we obtain the following ANOVA table for cartoperiment 3
(data not shown):

DF  SS MS EMS

m 9 2706 300.7 0°+ 2075, + 4025 + 2005, + 4007
0 9 8887 987.5 0+ 202, + 40’5+ 2005, + 4003

g 1 2376 2376 0+ 2074, + 2005, + 200%h + 20002
mo 81 1683 20.78 0+ 202, + 402,

m.g 9 4204 46.71 0+ 202, + 200,

0.9 9 1453 16.14 0° + 2075 + 2003,

mo.g 81 1650 20.37 0%+ 202,

error 200 4646 23.23 o2

The test for the three-way interaction uses error as therdarador; the F
is 20.368/23.231 = .88 with 81 and 200 degrees of freedom gmdalue
.75. The tests for the two-way interactions use the thregini@raction ag
denominator. Of these, only the machine by glue interadiaman F much
larger than 1. Its F is 2.29 with 9 and 81 degrees of freedonmaandalue of
.024, moderately significant.

We illustrate approximate tests with a test for machine. Aieehalready
discovered that the numerator should be the sum of the masaresgfor
machine and the three-way interaction; these are 300.7 ar&¥ 2vith 9
and 81 degrees of freedom. Our numerator is 321.07, and fhreximate
degrees of freedom are:

. 321.072

_ ~10.3 .
“n = 300.72/9 + 20.372/81

The denominator is the sum of the mean squares for the malchiogerator]
and the machine by glue interactions; these are 20.78 aiid %6th 81 and 9
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ANOVA estimates
of variance
components are
unbiased but may
be negative

degrees of freedom. The denominator is 67.49, and the ajppaitxdegrees
of freedom are

67.492

~ 184 .
20.782 /81 + 46.712/9

vy =

The F testig$21.07/67.49 = 4.76 with 10.3 and 18.4 approximate degrees of
freedom and an approximagtevalue of .0018; this is strong evidence against
the null hypothesis of no machine to machine variation.

11.5 Point Estimates of Variance Components

The parameters of a random-effects model are the variamopawents, and
we would like to get estimates of them. Specifically, we wolité both
point estimates and confidence intervals. There are mamy pstimators
for variance components; we will describe only the easiethod. There is
anM S andEM S for each term in the model. Choose estimates of the vari-
ance components so that the observed mean squares equeakfrestations
when we use the estimated variance components in the EMSulaemOp-
erationally, we get the estimates by equating the obsenesthraquares with
their expectations and solving the resulting set of equatfor the variance
components. These are called the ANOVA estimates of thawegi compo-
nents. ANOVA estimates are unbiased, but they can take inegaiues.

In a one-factor design, the mean squares\dre, andM Sy with expec-
tationso? + no?2 ando?, so we get the equations:
MS, = &%+ n&i
MSg = &2

with solutions

MS4— MSE
n

2 = MSg.

=2
a

It is clear that2 will be negative wheneveV/ S, < M Sg.

We follow the same pattern in bigger designs, but things areernom-
plicated. For a three-way random-effects model, we getguaions:

MSs = G°+4ndls, +ncoly+nboy., + nbea,
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MSp = &2+ n&im + ncﬁgﬁ + na?f%ﬁ/ + naca’%
MSc = &2+ n&im + nb?fgm + TL(I/U\%,Y + nab?f%
MSsp = &2 +n3§m —I-nca'gﬁ
MSsc = 62+ n&im + nbo?,
MSpc = &2+ n&im + na&%7
MSipc = &2 +n8§6,y
MSg = &%.

It's usually easiest to solve these from the bottom up. Thatisos are

72 = MSg
o _ MSapo—MSg
apy n
o MSpc— MSapc
g =
By na
o MSsc— MSapc
g =
atl nb
o MSap—MSapc
o =
B nc
52 _ MSc — MSac — MSpe + MSapc
v nab
52 _ MSp — MSap — MSpc + MSapc
N nac
52 _ MSy— MSap — MSac + MSapc
o nbc

You can see a relationship between the formulae for vari@eoeponent
estimates and test numerators and denominators: mearesgoahe test
numerator are added in estimates, and mean squares in tilemesninator
are subtracted. Thus a variance component with an exaovig$tave an
estimate that is just a difference of two mean squares.

Each ANOVA estimate of a variance component is a linear caathon
of mean squares, so we can again use the Satterthwaite fotmabmpute
an approximate degrees of freedom for each estimated car@mponent.

Numerator MS'’s
are added,
denominator MS’s
are subtracted in
estimates
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Negative
estimates of
variance
components can
cause problems
and may indicate
model
inadequacy

Carton experiment three (estimates of variareecomponents)

Let's compute ANOVA estimates of variance components aeit #pproxi-
mate degrees of freedom for the data from carton experiment 3

Effect Estimate Calculation DF
52 23.231 200
G2, —1.43 (20.368 — 23.231)/2 1.05
53, —.21 (16.15 —20.368)/20 52
G 1.317 (46.71 — 20.368)/20 2.80
G 10 (20.775 — 20.368) /20 2.80
52 11.67 (2375.8 — 46.71 — 16.15 + 20.368) /200 .96
a% 24.27 (987.47 — 20.775 — 16.15 + 20.368) /40 8.70
G2 6.34 (300.71 — 20.775 — 46.71 + 20.368) /40 6.24

We can see several things from this example. First, negastienates for
variance components are not just a theoretical anomaly; iappen regu-
larly in practice. Second, the four terms that were signifi¢the three main
effects and the machine by glue interaction) have estimatgdnce compo-
nents that are positive and reasonably far from zero in sasesc Third,
the approximate degrees of freedom for a variance comp@stimate can
be much less than the degrees of freedom for the corresgptetim. For
example, AB is an 81 degree of freedom term, but its estimaée@dnce
component has fewer than 3 degrees of freedom.

We know that variance components are nonnegative, but AN&&th
mates of variance components can be negative. What shoudd vieve get
negative estimates? The three possibilities are to igr@eassue, to get a
new estimator, or to get a new model for the data. Ignoringgbee is cer-
tainly easiest, but this may lead to problems in a subse@unmaysis that uses
estimated variance components. The simplest new estinsatoreplace the
negative estimate by zero, though this revised estimatoo ibnger unbi-
ased. Section 11.9 mentions some other estimation ap@sdieht do not
give negative results. Finally, negative variance estsatay indicate that
our variance component model is inadequate. For examphsjader an an-
imal feeding study where each pen gets a fixed amount of fobdorhe
animals get more food so that others get less food, then tightvgains of
these animals will be negatively correlated. Our variarmmmonent mod-
els handle positive correlations nicely but are more likel\give negative
estimates of variance when there is negative correlation.
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11.6 Confidence Intervals for Variance Components

Degrees of freedom tell us something about how precisely mesvka pos-
itive quantity—the larger the degrees of freedom, the sndlie standard
deviation is as a fraction of the mean. Variances are diffiguantities to
estimate, in the sense that you need lots of data to get a finaidvan a vari-
ance. The standard deviation of a mean square withgrees of freedom is
\/2/v times the expected value, so if you want the standard dewiati be
about 10% of the mean, you need 200 degrees of freedom! W gatethat
kind of precision.

We can compute a standard error for estimates of variancepaoemts,
but it is of limited use unless the degrees of freedom ardyfaigh. The
usual interpretation for a standard error is something‘ljkas or minus 2
standard errors is approximately a 95% confidence intérvEhat works
for normally distributed estimates, but it only works forrieace estimates
with many degrees of freedom. Estimates with few or modatatgees of
freedom have so much asymmetry that the symmetric-plustous idea is
more misleading than helpful. Nevertheless, we can estirtieg standard
error of a linear combination of mean squa}ésg gx M S, via

\/Z (G2MS2/vi)

Precise estimates
of variances need
lots of data

SE of a variance
estimate only
useful with many
degrees of
freedom

where M S}, hasy, degrees of freedom. This looks like the approximate

degrees-of-freedom formula because the variance is useshiputing ap-
proximate degrees of freedom.

Carton experiment three (standard errors)

Let's compute standard errors for the estimates of the, armachine by glue
and machine variance components in carton experiment. thveeestimat

Example 11.4

the error variance by/Sr with 200 degrees of freedom, so its standprd

deviation is estimated to be

\/2 % 23.2312/200 = 2.3231 .

The machine by glue variance component estin@g is (MSac —
MSapc)/20, so the coefficientg,% = 1/400, and the standard deviation i

2 46.712/9 + 20.3682/81) = 1.11 .
400
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Confidence
interval for o2

Example 11.5

”2MS < EMS < QVMS
Xe/2,m X1—g/2,v

Display 11.5:1 — £ confidence interval for an EMS
based on its MS witly degrees of freedom.

Finally, the machine variance component estinagtes (M .S4—M S p—
MSac + MSapc)/40, so the coefficientg? = 1/1600, and the standard
deviation is

2
Taog (300-712/9 4+ 20.7752 /81 + 46.712/9 + 20.3682/81) = 3.588 .

Recall from Examples 11.2 and 11.3 that thealues for testing the null
hypotheses of no machine variation and no machine by gluatiar were
.0018 and .024, and that the corresponding variance comp@stimates
were 6.34 and 1.32. We have just estimated their standastsea be 3.588
and 1.11, so the estimates are only 1.8 and 1.2 standard déroon their
null hypothesis values of zero, even though the individaais are rather
significant. The usual plus or minus two standard errorspnégation simply
doesn't work for variance components with few degrees afdicen.

We can construct confidence intervals that account for tgenaeetry
of variance estimates, but these intervals are exact in @y situations.
One easy situation is a confidence interval for the expeakd\of a mean
square. If we Iekgy be the uppe€ percent point of a chi-square distribution
with v degrees of freedom, thenla— £ confidence interval for the EMS of
an MS can be formed as shown in Display 11.5. The typical usthi®is an
interval estimate fos? based on\/ Sg:

g

2 N :
Xe /2.0 X1-g/2,v

Carton experiment three (confidence intervaldr o2)

Use the method of Display 11.5 to compute a confidence intéovas?.
The error mean square was 23.231 with 200 degrees of freeldona 95%
interval, we need the upper and lower 2.5% pointgofvith 200 degrees of
freedom; these are 162.73 and 241.06. Our interval is
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F < EMS,; < F
Fg/2,l/17l/2 n EMS2 n F1—€/27V17I/2

Display 11.6:1 — £ confidence interval for the ratio
EMS,/EMS, based orF' = M Sy /M S, with v and
v, degrees of freedom.

200 x 23.231 ) 200 x 23.231
S X209 1997 < o2 < 98.55 = - L 290
241.06 92T < 0" < 28.55 162.73

Even with 200 degrees of freedom, this interval is not symimatound the
estimated component. The length of the interval is abouaddstrd errors

however.

We can also construct confidence intervals for ratios of EM®m ra-
tios of the corresponding mean squares. Le$; and M S, have EM Sy
and EM S, as their expectations. Thenla— £ confidence interval for

EMS,/EMSs is shown in Display 11.6. This confidence interval is rarely

used as is; instead, it is used as a building block for othefidence inter-
vals. Consider a one-way random effects model; the EMS’shosvn in
Display 11.1. Using the confidence interval in Display 1Ww6,get

M St/MSE < o+ no?

- 2
F8/27V17V2 o

M Sti/MSg

<
F1—€/2,1/1 Va2

Subtracting 1 and dividing by, we get a confidence interval fef /o

1 ( MSt/M 2 1 ([ MSt/M
Lo 1 (MS5/MSe SJ—‘;S— St/MSg U
n F5/2,V17V2 o n F1—€/2,111,1/2

Continuing, we can get a confidence interval for the intsgleorrelation
via
L o U

< < :
1+L =~ o2+02 14U

This same approach works for any pair of mean squares MithS, =
andEMS) = 7 + no}, to get confidence intervals fof; /7 and7 /(7 + 07).

Confidence

intervals for ratios

of EMS’s

Confidence
interval for
intraclass
correlation
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Example 11.6 | Carton experiment three (confidence interval dr ai,y/(aZ
The machine by glue interaction was moderately significaBxiample 11.2,
so we would like to look more closely at the machine by gluerattion
variance component. The mean square for machine by glue &va8@twith
9 degrees of freedom and EMS + 20367 + 20037. The mean square for

the three-way interaction was 20.368 with 81 degrees ofiseeand EMS
o?+ 2a§m. For a 90% confidence interval, we need the upper and lower 5%

points of F with 9 and 81 degrees of freedom; these are .361 £98.
The confidence interval is
i (46.706/20.368 _ > < agw < 1 <46.706/20.368 _ )

20 1,098 S P22, o 2 361
2
0074 < —J0v < 968 .
o2+ 20357

Example 11.6 illustrates that even for a significant teprrdlue = .024)
Confidence with reasonably large degrees of freedom (9, 81), a confalerierval for
intervals for ratios  a ratio of variances with a reasonable coverage rate carr eoverder of
of variances often  magnitude. Here we saw the upper endpoint of a 90% confidatewal for

cover more than a variance ratio to be 36 times as large as the lower endpbir@.problem
one order of gets worse with higher coverage and lower degrees of freeddamiance
magnitude ratios are even harder to estimate than variances.

There are no simple, exact confidence intervals for any negiadom-
ponents other than?, but a couple of approximate methods are available.
In one, Williams (1962) provided a conservative confidenterival for vari-
ance components that have exact F-tests. Suppose that lveowisnstruct a

Williams’ confidence interval for a componef@, and that we have two mean squares
approximate with expectations EMS= 7 + k:a% and EMS = 7 and degrees of freedom
fncg'\(/j;r}gfa v1 andysy. The test fora?7 has an observed F-ratio 65 = M S, /M S,. We
variance construct a confidence interval f@ﬁ with coverage at least— £ as follows:
component with
an exact test V1M51(1 - F5/4,V1,V2/FO) < 02 < V1M51(1 - F1—5/4,u1,u2/FO)

<o, <

2 2
kX€/4,V1 7”61—5/4,1/1

The use of /4 arises because we are combining two exad /2 confidence
intervals (onr + k‘ag andag/r) to get al — £ interval ono;. In fact, we
can useFe, /2., vy1 Fi_gp /2,00 000 ng/zw andxf_gx/zy1 for any £ and
&, that add tcf.
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The other method is simple and works for any variance compioes
timated with the ANOVA method, but it is also very approximatEach Approximate Cl

estimated variance component has an approximate degréeeddm from by treating as a
Satterthwaite; use the formula in Display 11.5, treating @stimate and its single mean
approximate degrees of freedom as if they were a mean squodra &ue square

degrees of freedom.

Carton experiment three (confidence interval foro2 ) L Example 11.7
a

ConS|deb—2 in carton experiment three. Example 11.3 gave a point et#i
of 1.32 with 2.8 approximate degrees of freedom. For a 95%idemce
interval the approximate method gives us:

28x1.32 _ , _ 28x132
174 — %= T go7
412 <o < 212 .

This more than an order of magnitude from top to bottom idyfaypical for
estimates with few degrees of freedom.

We can also use the Williams’ method. The mean squares werade a
M S ¢ (46.706 with expectation? + 2cram + 2002 -, and 9 degrees of fre
dom) andM S 45c (20.368 with expectation? + 2aam and 81 degree
of freedom); the observed F i%, = 2.29. The required percent points dre
Flo125,9.81 = 2.55, Flogrs,9,81 = .240, X.0125,9 = 21.0, andy gs75,9 = 2.22.
Computing, we get

9 x 46.71(1 — 2.55/2.29)
20 x 21.0 =
—114 <o

9 x 46.71(1 — .240/2.293)
= 20 x 2.22
< 848

(%)

I[N I

This interval is considerably shorter than the interval pated via the othe
approximation, but it does include zero. If we use = .0495 and¢&, =

.0005, then we get the interval (.0031, 22.32), which is much moréar to

the approximate interval.

11.7 Assumptions

We have discussed tests of null hypotheses that varianceaments are
zero, point estimates for variance components, and iftestianates for vari-
ance components. Nonnormality and nonconstant variafieet #iie tests in
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Random effects
tests affected
similarly to fixed
effects tests

Confidence
intervals depend
strongly on
normality

Power for random
effects uses
central F

random-effects models in much the same way as they do tefstedkeffects.
This is because the fixed and random tests are essentiaiathe under the
null hypothesis, though the notion of “error” changes frasttto test when
we have different denominators. Transformation of the@asp can improve
the quality of inference for random effects, just as it dawdiked effects.

Point estimates of variance components remain unbiased thkealistri-
butions of the random effects are nonnormal.

But now the bad news: the validity of the confidence intervatshave
constructed for variance components is horribly, horrii#pendent on nor-
mality. Only a little bit of nonnormality is needed beforeethoverage rate
diverges greatly froml — £. Furthermore, not just the errotg;, need to be
normal; other random effects must be normal as well, depgnaoih which
confidence intervals we are computing. While we often hawigh data to
make a reasonable check on the normality of the residualsamedy have
enough levels of treatments to make any kind of check on thealdty of
treatment effects. Only the most blatant outliers seeniiteebe identified.

To give you some idea of how bad things are, suppose that wedag
degree of freedom estimate for error, and we want a 95% cord@iaterval
for o2. If one in 20 of the data values has a standard deviation 3stiimat
of the other 24, then a 95% confidence interval will have ofigut 80%
coverage.

1%

Confidence intervals for variance components of real-wddth are quit
likely to miss their stated coverage rather badly, and waikhoconsider
them approximate at best.

11.8 Power

Power is one of the few places where random effects are sirtide fixed
effects, because there are no noncentrality parameteeatavith in random
effects. Suppose that we wish to compute the power for ge#ti@ null hy-
pothesis thatr?7 = 0, and that we have two mean squares with expectations
EMS, =7+ ]{70,27 and EMS = 7 and degrees of freedom andwv». The test
for o2 is the F-ratioM S1 /M Ss.

When the null hypothesis is true, the F-ratio has an F-8istion withz
andy, degrees of freedom. We reject the null when the observedtistit
is greater tharfg ,, ,,. When the null hypothesis is false, the observed F-
statistic is distributed agr + ko7)/7 times an F withv; andv, degrees of
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Numerator df = 3

99 /e aAw,

.95

P s v/ A
v, V454
C T 77777

6 WA S S

5 /8 1aV4

4 /4 /

3 /////{//// /

/
3 - 10 30 100 300 1000 3000
Ratio of EMS (times 10 for .01 level)

Figure 11.1: Power for random effects F-tests with 3 numerator
degrees of freedom, testing at the .05 and .01 levels, and4263

8, 16, 32, or 256 denominator degrees of freedom. Curve®ior .
have been shifted right by a factor of 10.

freedom. Thus the power is the probability than an F witlandr, degrees
of freedom exceeds/(7 + ka,%)ngVWz. This probability can be computed
with any software that can compugevalues and critical points for the F-
distribution.

Alternatively, power curves are available in the Appendibl€s for ran-
dom effects tests with small numerator degrees of freedome. clirves for
three numerator degrees of freedom are reproduced in Figufe Look-
ing at these curves, we see that the ratio of expected meamnesonust be
greater than 10 before power is .9 or above.

Changing the sample sizeor the number of levels, b, or ¢ can affect
7, k, v1, Or 1o, depending on the mean squares in use. However, there is ¥u may need to
major difference between fixed-effects power and randdecesf power that change number
must be stressed. In fixed effects, power can be made as hidgsaed by of levels a instead
increasing the replication. That isnot necessarily true for random effects; of replications n
in random effects, you may need to increasg, or c instead.

Carton experiment three (power) Example 11.8

Consider the power for testing the null hypothesis Mﬂ@ is zero whe

o, =10+ 203m = 20, and&; = .01. The F-ratio isM Sac/MSapc.
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This F-ratio is distributed a&r* + noy ;. + nboy,)/(0” + nal s, ) times
an F-distribution with(a — 1)(c¢ — 1) and(a — 1)(b — 1)(c — 1) degrees of
freedom, here 2 times an F with 9 and 81 degrees of freedomeFowthis
test is the probability that an F with 9 and 81 degrees of freeéxceeds

F01,9,81/2 = 1.32, or about 24%.

Suppose that we want 95% power. Increasingoes not change the
degrees of freedom, but it does change the multiplier. Hewéle multiplier
can get no bigger thah+ bo,, /025, = 14 1003, /025, = 1+10/0,
no matter how much you increase If agm = 2, then the largest multiplier
is1+ 10/2 = 6, and the power will be the probability that an F with 9 and

81 degrees of freedom excedts; 9 s1/6, which is only 91%.

To make this test more powerful, you have to increlaséor example,
b = 62 andn = 2 has the F-test distributed as 7.2 times an F with 9 and 549
degrees of freedom (assuming still tbﬁ;y =1 andaim = 2). This gives
the required power.

11.9 Further Reading and Extensions

We have only scratched the surface of the subject of randteuntsf Searle
(1971) provides a review, and Searle, Casella, and McCu([©892) provide
book-length coverage.

In the single-factor situation, there is a simple formulatfee EMS for
treatments when the data are unbalane€dt n'c2, where

, 1

1 a
— N - — 2
n a—l[ N;nl]

The formula forn’ reduces to: for balanced data.

Expected mean squares do not depend on normality, thoughhihe
square distribution for mean square and F-distributiontdést statistics do
depend on normality. Tukey (1956) and Tukey (1957b) workvautances
for variance components, though the notation and algeleraaginer heavy
going.

The Satterthwaite formula is based on matching the meanamahee of
an unknown distribution to that of an approximating disition. There are
quite a few other possibilities; Johnson and Kotz (1970xdes the major
ones.
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We have discussed the ANOVA method for estimating variamrepo-
nents. There are several others, including maximum likelthestimates,
restricted maximum likelihood estimates (REML), and minimnorm quad-
ratic unbiased estimates (MINQUE). All of these have theaatlvge of pro-
viding estimates that will be nonnegative, but they are alclmmore com-
plicated to compute. See Searle, Casella, and McCulloc®2(1& Hocking
(1985).

11.10 Problems

The following ANOVA table is from an experiment where foueitti- Exercise 11.1
cally equipped cars were chosen at random from a car degdeesid each
car was tested 3 times for gas mileage on a dynamometer.

Source DF SS MS

Cars 3 15 5
Error 8 16 2

Find estimates of the variance components and a 95% conédietecval for
the intraclass correlation of the mileage measurements.

We wish to examine the average daily weight gain by calvesisiy four Exercise 11.2
bulls selected at random from a population of bulls. Bullsated A through
D were mated with randomly selected cows. Average daily ateggin by
the calves is given below.

A B C D

146 117 .98 .95
123 1.08 1.06 1.10
112 120 1.15 1.07
123 108 111 1.11
1.02 101 .83 .89
115 86 .86 1.12

a) Test the null hypothesis that there is no sire to sire kit in the re-
sponse.

b) Find 90% confidence intervals for the error variance amdsite to sire
variance.
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Exercise 11.3

Exercise 11.4

Exercise 11.5

Five tire types (brand/model combinations like Goodyeraia) in the
size 175/80R-13 are chosen at random from those availablen@tropolitan
area, and six tires of each type are taken at random from wasels. The
tires are placed (in random order) on a machine that willttesid durability
and report a response in thousands of miles. The data follow:

Brand Miles

1 55 56 59 55 60 57
2 39 42 43 41 41 42
3 39 41 43 40 43 43
4 44 44 42 39 40 43
5 46 42 45 42 42 44

Compute a 99% confidence interval for the ratio of type to tygéabil-
ity to tire within type variability ¢2 /o2). Do you believe that this interval
actually has 99% coverage? Explain.

A 24-head machine fills bottles with vegetable oil. Five of theads
are chosen at random, and several consecutive bottles fiese heads were
taken from the line. The net weight of oil in these bottlesiieg in the
following table (data from Swallow and Searle 1978):

Group
1 2 3 4 5

15.70 15.69 15.75 15.68 15.65
15.68 15.71 15.82 15.66 15.60

15.64 15.75 15.59
15.60 15.71
15.84

Is there any evidence for head to head variability? Estintegdnead to head
and error variabilities.

The burrowing mayflyHexageniacan be used as an indicator of water
quality (it likes clean water). Before starting a monitgriprogram using
Hexageniave take three samples from each of ten randomly chosendosati
along the upper Mississippi between Lake Peppin and the i@hohy Lock
and Dam. We use these data to estimate the within locatiorbatwdeen
location variability inHexageniaabundance. An ANOVA follows; the data
are in hundreds of insects per square meter.

DF SS MS
Location 9 11.59 1.288
Error 20 1.842 0.0921
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a) Give a point estimate for the between location varian¢teixageniaabun-
dance.

b) Give a 95% confidence interval for the within location eace inHexa-
geniaabundance.

Anecdotal evidence suggests that some individuals caratelalcohol
better than others. As part of a traffic safety study, you &erpng an exper-
iment to test for the presence of individual to individualiadon. Volunteers
will be recruited who have given their informed consent fartjzipation
after having been informed of the risks of the study. Eaclividdal will
participate in two sessions one week apart. In each sedbierndividual
will arrive not having eaten for at least 4 hours. They wikdaa hand-eye
coordination test, drink 12 ounces of beer, wait 15 minutes, then take a
second hand-eye coordination test. The score for a sesstbe change in
hand-eye coordination. There are two sessions, s®. We believe that the
individual to individual variationo2 will be about the same size as the error
o2. If we are testing at the 1% level, how many individuals stde tested
to have power .9 for this setup?

Suppose that you are interested in estimating the variatiserum choles-
terol in a student population; in particular, you are ins¢éed in the ratio
o2 /0. Resources limit you to 100 cholesterol measurements. Auebgt-
ter off taking ten measurements on each of ten studentspaneasurements
on each of 50 students? (Hint: which one should give you ashioterval?)

Milk is tested after Pasteurization to assure that Pagiation was effec-
tive. This experiment was conducted to determine varighifi test results
between laboratories, and to determine if the interlalooyadifferences de-
pend on the concentration of bacteria.

Five contract laboratories are selected at random frometheailable in
a large metropolitan area. Four levels of contaminatiorchosen at random
by choosing four samples of milk from a collection of sampi¢wvarious
stages of spoilage. A batch of fresh milk from a dairy was iolehand split
into 40 units. These 40 units are assigned at random to thetyveembi-
nations of laboratory and contamination sample. Each ardbhtaminated
with 5 ml from its selected sample, marked with a numeric ¢cadeé sent to
the selected laboratory. The laboratories count the hiadteeach sample
by serial dilution plate counts without knowing that thege®ed four pairs,
rather than eight separate samples. Data follow (colonyifuy units per

ul):

Exercise 11.6

Problem 11.1

Problem 11.2
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Sample
Lab | 1 2 3 4

1 2200 3000 210 270
2200 2900 200 260

2 2600 3600 290 360
2500 3500 240 380

3 1900 2500 160 230
2100 2200 200 230

4 2600 2800 330 350
4300 1800 340 290

5 4000 4800 370 500
3900 4800 340 480

Analyze these data to determine if the effects of interestipaesent. If
so, estimate them.

Problem 11.3 Composite materials used in the manufacture of aircrafigmrants must
be tested to determine tensile strength. A manufacturés fee random
specimens from five randomly selected batches, obtainafpttowing coded
strengths (data from Vangel 1992).

Batch

1 379 357 390 376 376
2 363 367 382 381 359
3 401 402 407 402 396
4 402 387 392 395 394
5 415 405 396 390 395

Compute point estimates for the between batch and withiohbedriance
components, and compute a 95% confidence intervatfge->.

Question 11.1 Why do you always wind up with the same number of numerator and
denominator terms in approximate tests?

Question 11.2 Derive the confidence interval formula given in Display 11.5

Question 11.3 Derive the Satterthwaite approximate degrees of freedana feum of

mean squares by matching the first two moments of the sum af swares
to a multiple of a chi-square.



Chapter 12

Nesting, Mixed Effects, and
Expected Mean Sguares

We have seen fixed effects and random effects in the factooiadext of

forming treatments by combining levels of factors, and weehseen how
sampling from a population can introduce structure for Wwhiandom effects
are appropriate. This chapter introduces new ways in wtactofs can be
combined, discusses models that contain both fixed and nauedffects, and
describes the rules for deriving expected mean squares.

12.1 Nesting Versus Crossing

The vitamin A content of baby food carrots may not be constst€&o eval-
uate this possibility, we go to the grocery store and setaatjfrs of carrots
at random from each of the three brands of baby food that ddeis@ur
region. We then take two samples from each jar and measurétémain A
in every sample for a total of 24 responses.

It makes sense to consider decomposing the variation inAlnesponses
into various sources. There is variation between the bravatsation be-
tween individual jars for each brand, and variation betwssanples for every
jar.

It doesnot make sense to consider jar main effects and brand by jar in-

teraction. Jar one for brand A has absolutely nothing to db jar one for
brand B. They might both have lots of vitamin A by chance, buiduld just
be chance. They are not linked, so there should be no jar rifatt across

Multiple sources
of variation

No jar effect
across brands
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Crossed factors
form treatments
with their
combinations

Factor B nested
in A has different
levels for every
level of A

Errors are nested

Nested factors
are usually
random

Fully nested
design

the brands. If the main effect of jar doesn’t make sense, tigdher does
a jar by brand interaction, because that two-factor intesacan be inter-
preted as how the main effect of jar must be altered at eaehdébrand to
obtain treatment means.

Main effects and interaction are appropriate when thenreat factors
arecrossed Two factors are crossed when treatments are formed as the
combinations of levels of the two factors, and we use the dausds of the
first factor for every level of the second factor, and vices@elAll factors we
have considered until the baby carrots have been crossiedga¢he jar and
brand factors are not crossed, because we have differsr{tgaels of the jar
factor) for every brand.

The alternative to crossed factorsisstedfactors. Factor B is nested in
factor A if there is a completely different set of levels of & fevery level
of A. Thus the jars are nested in the brands and not crossadtvétbrands,
because we have a completely new set of jars for every brangel.wkite
nested models using parentheses in the subscripts to tedi@mnesting. If
brand is factor A and jar (nested in brand) is factor B, thes niodel is
written

Yijk = b+ i + By + €y -

The j(7) indicates that the factor correspondingjt¢factor B) is nested in
the factor corresponding to(factor A). Thus there is a differemt; for each
leveli of A.

Note that we wrotey,;;), nesting the random errors in the brand-jar com-
binations. This means that we get a different, unrelatedfsg@ndom errors
for each brand-jar combination. In the crossed factoriashave used until
now, the random error is nested in the all-way interactiorthat for a three-
way factorial the errok;;;; could more properly have been writtep,; ;).
Random errors are always nested in some model term; wevaguseeded
to deal with it before now.

Nested factors can be random or fixed, though they are us@aitjom
and often arise from some kind of subsampling. As an exanipdefactor
that is fixed and nested, consider a company with work creash erew
consisting of four members. Members are nested in crewsyanget the
same four crew members whenever we look at a given crew, makember
a fixed effect.

When we have a chain of factors, each nested in its predecesseay
that the design is fully nested. The baby carrots examplelig hested,
with jars nested in brand, and sample nested in jar. Anotkeemple comes
from genetics. There are three subspecies. We randomlyselfo@ males
from each subspecies (a total of fifteen males); each malatedwith four
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Source DF EMS

A a—1 o?+no}+ ndJ?Y + ncda% + nbedo?
B(A) a(b—1) o* +noj +ndo? + nedo

C(AB) ab(c—1) % +no? + ndo:?y

D(ABC)  abc(d—1) o*+no?

Error abed(n — 1) o2

Display 12.1:Skeleton ANOVA and EMS for a generic fully-nested
four-factor design.

females (of the same subspecies, a total of 60 females); wenab three
offspring per mating (a total of 180 offspring); and we make tmeasure-
ments on each offspring (a total of 360 measurements). @ffgjare nested
in females, which are nested in males, which are nested spsauies.

The expected mean squares for a balanced, fully-nestegidegh ran-
dom terms are simple; Display 12.1 shows a skeleton ANOVAEN& for
a four-factor fully-nested design. Note that in parallethe subscript nota-
tion, factor B nested in A can be denoted B(A). Rules for degithe EMS
will be given in Section 12.6. The degrees of freedom for amyntare the
total number of effects for that term minus the number of degiof freedom
above the term, counting 1 for the constant. For example) Bé&ab effects
(b for each of the levels of A), soab — (a — 1) — 1 = a(b — 1) degrees
of freedom for B(A). The denominator for any term is the temmiediately
below it.

For the fully-nested genetics example we have:

Source DF EMS

s 2 0%+ 20} + 602 + 240 + 12007,
m(s) 12 0° + 205 + 602 + 2405

flms) 45 0%+ 203 + 602

o(fms) 120 o2 + 202

Error 180 o2

where s, m, f, and o indicate subspecies, males, femalegftspting. To

test the null hypothesis% = 0, that is, no male to male variation, we would

use the F-statistid/ S, /M Sy with 12 and 45 degrees of freedom.

EMS for
fully-nested
model
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Component Estimate

o? (MSy — MSg)/(nbed)
U% (MSB—MSC)/(TL )
o2 (MSc — MSp)/(nd)

Ug (MSD MSE)/’I’L

o? MSg

Display 12.2: ANOVA estimates for variance components
in a fully-nested four-factor design.

One potential problem with fully-nested designs is that diegrees of
freedom tend to pile up at the bottom. That is, the effects$ @na nested
more and more deeply tend to have more degrees of freedors.c@hibe

Most df at bottom a problem if we are as interested in the variance componénkeaop of
the hierarchy as we are those at the bottom. We return toghigiin Sec-
tion 12.9.

The ANOVA estimates of variance components are again foyratjoat-
ing observed mean squares with their expectations andngpfer the pa-
ANOVA estimates ~ rameters. Display 12.2 shows that each variance compasestimated by
of variance a rescaled difference of two mean squares. As before, tivapéesestimates
components of variance components can be negative. Confidence ingsfimathese vari-
ance components can be found using the methods of Sectién 11.

Here are two approaches to computing sums of squares forletatyp

nested designs. In the first, obtain the sum of squares ftorfacas usual.

Sums of squares There arenb different j(i) combinations for B(A). Get the sum of squares

for fully nested treating thesed different (i) combinations asb different treatments. Note

designs that the sum of squares for factor A is included in what we gadtulated for
thej(i) groups. Therefore, subtract the sum of squares for factoow that
for the j(7) groups to get the improvement from adding B(A) to the model.
For C(AB), there areibc different k(ij) combinations. Again, get the sum
of squares between these different groups, but subtrantths the sums of
squares of the terms that are above C, namely A and B(A). Tine sadone
for later terms in the model.

The second method begins with a fully-crossed factoriabdgaosition
with main effects and interactions and then combines thesterial pieces
(some of which do not make sense by themselves in a nesteghfiésiget
the results we need. The sum of squares, degrees of freeddrestimated
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effects for A can be taken straight from this factorial depaosition. The sum
of squares and degrees of freedom for B(A) are the totalsosktiguantities
for B and AB from the factorial. Similarly, the estimatedexffs are found
by addition:

Biy = Bj + By
In general, the sum of squares, degrees of freedom, andagstraffects for
aterm X nested in a term Y are the sums of the correspondingtitjea for
term X and term X crossed with any subset of factors from teriim ¥he
full factorial. Thus for D nested in ABC, the sums will be o\2rAD, BD,
ABD, CD, ACD, BCD, and ABCD; and for CD nested in AB, the sumdl wi
be over CD, ACD, BCD, and ABCD.

12.2 Why Nesting?

We may design an experiment with nested treatment struftiuseveral rea-
sons. Subsampling produces small units by one or more layesslection

from larger bundles of units. For the baby carrots we wenhftwands to

jars to samples, with each layer being a group of units froeldyer be-

neath it. Subsampling can be used to select treatments haswehits. In

some experiments crossing is theoretically possible,dmistically imprac-

tical. There may be two or three clinics scattered arounddhmtry that can
perform a new diagnostic technique. We could in principledseur patients
to all three clinics to cross clinics with patients, but itisre realistic to send
each patient to just one clinic. In other experiments, éngssimply cannot
be done. For example, consider a genetics experiment witlhlés nested
in males. We need to be able to identify the father of the oifigp so we

can only breed each female to one male at a time. Howevemidlies of the

species under study only live through one breeding, we mast Hifferent

females for every male.

We do not simply choose to use a nested model for an expeririént
use a nested model because the treatment structure of teeregpt was
nested, and we must build our models to match our treatmertste.

12.3 Crossed and Nested Factors

Designs can have both crossed and nested factors. One costume of
this situation is that “units” are produced in some senseutjin a nesting
structure. In addition to the nesting structure, there i@ ment factors, the
combinations of which are assigned at random to the unitaiéh @ way

SS and effects by
recombination of
factorial terms

Unit generation,
logistics, and
constraints may
lead to nesting

Models must
match designs

Units with nesting
crossed with
treatments
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that all the combinations of nesting factors and treatmactofs get an equal
number of units.

Example 12.1 | Gum arabic

Treatments and
units not always
clear

Example 12.2

Gum arabic is used to lengthen the shelf life of emulsionslutting soft
drinks, and we wish to see how different gums and gum preijpasaaffect
emulsion shelf life. Raw gums are ground, dissolved, teegtessible treat-
ments include Pasteurization, demineralization, andifegation), and then
dried; the resulting dry powder is used as an emulsifier il fpmducts.

Gum arabic comes from acacia trees; we obtain four raw gunplesm
from each of two varieties of acacia tree (a total of eight @as). Each
sample is split into two subsamples. One of the subsamptesén at ran-
dom) will be demineralized during treatment, the other wit. The sixteen
subsamples are now dried, and we make five emulsions fromseaslample
and measure as the response the time until the ingredietiie iemulsion
begin to separate.

This design includes both crossed and nested factors. Tinglasof raw
gum are nested in variety of acacia tree; we have completfiyreht sam-
ples for each variety. The subsamples are nested in the sanfplibsample
is now a unit to which we apply one of the two levels of the desrdttization
factor. Because one subsample from each sample will be @eatied and
the other won'’t be, each sample occurs with both levels ofltmineraliza-
tion treatment factor. Thus sample and treatment factociresed. Simi-
larly, each variety of acacia occurs with both levels of demilization so
that variety and treatment factor are crossed. The five icdal emulsions
from a single subsample are nested in that subsample, oradepily, in the
variety-sample-treatment combinations. They are measemeunits.

If we let variety, sample, and demineralization be factor8Aand C,
then an appropriate model for the responses is

Yijkl = p+ o + Biy + e+ avik + BVjke) + €igr) -

Not all designs with crossed and nested factors have suckaa idea
of unit. For some designs, we can identify the sources oftiari among
responses as factors crossed or nested, but identifyiegtttrents” randomly
assigned to “units” takes some mental gymnastics.

Cheese tasting

Food scientists wish to study how urban and rural consunagesaheddar
cheeses for bitterness. Four 50-pound blocks of cheddasehsf different
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types are obtained. Each block of cheese represents one ségiments o
the market (for example, a sharp New York style cheese). aters ar
students from a large introductory food science class. Tedesits from
rural backgrounds and ten students from urban backgrouedsetected
random from the pool of possible raters. Each rater willgasght bites o
cheese presented in random order. The eight bites are twdreat the four
different cheeses, but the raters don’t know that. Each rates each bit
for bitterness.

The factors in this experiment are background, rater, ape of cheese
The raters are nested in the backgrounds, but both backgjemuohrater are
crossed with cheese type, because all background-chgmsedynbinationg
and all rater/cheese type combinations occur. This is aerergnt with bothj
crossed and nested factors. Perhaps the most sensiblddaonuwof this as
treatments and units is to say that bites of cheese are unei$e(d in type o
cheese) and that raters nested in background are treatapmitsd to bites
of cheese.

If we let background, rater, and type be factors A, B, and €nthn
appropriate model for the responses is

Yijkt = B+ i + By + Yk + @Yik + BYjke) + k) -

This is the same model as Example 12.1, even though thewteust units
and treatments is very different!

These two examples illustrate some of the issues of workitigdesigns
having both crossed and nested factors. You need to Steps to build a

. " model
1. Determine the sources of variation,

2. Decide which cross and which nest,
3. Decide which factors are fixed and which are random, and
4. Decide which interactions should be in the model.

Identifying the appropriate model is the hard part of wogkinith fixed-
random-crossed-nested designs; it takes a lot of pradiiewill return to
model choice in Section 12.5.

12.4 Mixed Effects

In addition to having both crossed and nested factors, Elafr#1 has both
fixed (variety and demineralization) and random (samplejofs; Exam-
ple 12.2 also has fixed (background and cheese type) and ma(rdter)
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Mixed effects
models have fixed
and random
factors

Two standards for
analysis of mixed
effects

Two mechanisms
to generate mixed
data

Mechanism 1:
sampling columns
from a table

Restricted model
has interaction
effects that add to
zero across the
fixed levels

Mechanism 2:
independent
sampling from
effects
populations

factors. An experiment with both fixed and random effectsaisl $0 have
mixedeffects. The interaction of a fixed effect and a random effeast be
random, because a new random sample of factor levels willedsl to a new
sample of interactions.

Analysis of mixed-effects models reminds me of the joke endbmputer
business about standards: “The wonderful thing about atalsds that there
are so many to choose from.” For mixed effects, there are et® af as-
sumptions that have a reasonable claim to being standafdrtumately, the
two sets of assumptions lead to different analyses, andhpally different
answers.

Before stating the mathematical assumptions, let’s visedlvo mecha-
nisms for producing the data in a mixed-effects model; eagthanism leads
to a different set of assumptions. By thinking about the re&@ms behind
the assumptions, we should be able to choose the approgsstienptions in
any particular experiment. Let's consider a two-factor elpdith factor A
fixed and factor B random, and a very small error variance abttte data
are really just the sums of the row, column, and interactiteces.

Here is one way to get the data. Imagine a table witbws and a very
large number of columns. Our random factor B correspondslécsngb of
the columns from the table at random, and the data we obserihaitems
in the table for the columns that we select.

This construction implies that if we repeated the experiraex we hap-
pened to get the same column twice, then the column totaleafata for the
repeated column would be the same in the two experimentaratiier way,
once we know the column we choose, we know the total for thlaiheo; we
don’t need to wait and see what particular interaction ¢ffece chosen be-
fore we see the column total. Thus column differences arerchéied by
the main effects of column; we can assume that the interaetiiects in a
given column add to zero. This approach leads taéiserictedmodel, since
it restricts the interaction effects to add to zero when seghacross a fixed
effect.

The second approach treats the main effects and interadtolepen-
dently. Now we have two populations of effects; one popatatontains
random column main effect§;, and the other population contains ran-
dom interaction effects3;;. In this second approach, we have fixed row
effects, we choose column effects randomly and indepehdeoin the col-
umn main effects population, and we choose interactiorcesffeandomly
and independently from the interaction effects populatibe column and
interaction effects are also independent.

When we look at column totals in these data, the column tdtahe
interaction effects can change the column total of the datether sample
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with the same column will have a different column total, hesmwe will No zero sums
have a different set of interaction effects. This second@ggh leads to the when unrestricted
unrestrictedmodel, because it has no zero-sum restrictions.

Choose between these models by answering the followingtignesf
you reran the experiment and got a column twice, would yoehlag same  Restricted model

interaction effects or an independent set of interactidaces for that re- if repeated main
peated column? If you have the same set of interaction efferde the effect implies
restricted model. If you have new interaction effects, use unrestricted _ repeated
model. | tend to use the restricted model by default and $wigcdhe unre- interaction

stricted model when appropriate.

Cheese tasting, continued Example 12.3

In the cheese tasting example, one of our raters is Mary; NMieeg sharp
cheddar cheese and dislikes mild cheese. Any time we hapgt Mary in
our sample, she will rate the sharp cheese higher and thechilelse lowe
We get the same rater by cheese interaction effects evegywienchoos
Mary, so the restricted model is appropriate.

Particle sampling Example 12.4

To monitor air pollution, a fixed volume of air is drawn thrdudisk-shapec
filters, and particulates deposit on the filters. Unfortehatthe particulate
deposition is not uniform across the filter. Cadmium paléitas on a filter
are measured by X-ray fluorescence. The filter is placed imstnument
that chooses a random location on the filter, irradiates Ittion twice,
measures the resulting fluorescence spectra, and corventstd cadmiun
concentrations. We compare three instruments by choosimfijlters at ran-
dom and running each filter through all three instrumentsaftotal of 60
cadmium measurements.

In this experiment we believe that the primary interactietween filter
and instrument arises because of the randomly chosendasain that filter
that are scanned and the nonuniformity of the particulattherfilter. Each
time the filter is run through an instrument, we get a diffélenation and
thus a different “interaction” effect, so the unrestrictaddel is appropriate.

Unfortunately, the choice between restricted and unettimodels is
not always clear.

Gum arabic, continued Example 12.5

Gum sample is random (nested in variety) and crosses withixbd de-
mineralization factor. Should we use the restricted or stnicted model? |



288

Nesting, Mixed Effects, and Expected Mean Squares

Unrestricted
model
assumptions
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Scale factors in
restricted model
variances

Analysis depends
on model

a gum sample is fairly heterogeneous, then at least someydhtaraction
that we observe is probably due to the random split of the & two

subsamples. The next time we do the experiment, we will drdint sub-
samples and probably different responses. In this caselegimineralization
by sample interaction should be treated as unrestrictezhuse we would
get a new set of effects every time we redid a sample.

On the other hand, how a sample reacts to demineralizatighbaaa
shared property of the complete sample. In this case, wedngmtlthe same
interaction effects each time we redid a sample, so thdee=strmodel would
be appropriate.

We need to know more about the gum samples before we can make a
reasoned decision on the appropriate model.

Here are the technical assumptions for mixed effects. Fouthestricted
model, all random effects are independent and have norrstilditions
with mean 0. Random effects corresponding to the same tevetha same
variance:ag, aiﬁ, and so on. Any purely fixed effect or interaction must add
to zero across any subscript.

The assumptions for the restricted model are the same, efaem-
teractions that include both fixed and random factors. Rameffects in a
mixed-interaction term have the same variance, which itemias a fac-
tor times the usual variance component: for exampllleqiﬁ. These effects
must sum to zero across any subscript corresponding to a fivatak, but
are independent if the random subscripts are not the same.zdio sum
requirement induces negative correlation among the rarefteunts with the
same random subscripts.

The scaling factors like,;, are found as follows. Get the number of levels
for all fixed factors involved in the interaction. Let be the product of these
levels, and let, be the product of the levels each reduced by 1. Then the
multiplier is o /r1. For an AB interaction with A fixed and B random, this
is (a — 1)/a; for an ABC interaction with A and B fixed and C random, the
multiplieris (a — 1)(b — 1) /(ab).

12.5 Choosing a Model

A table of data alone does not tell us the correct model. EBefee can
analyze data, we have to have a model on which to build the/sisalThis
model reflects both the structure of the experiment (nestnugor crossing of
effects), how broadly we are trying to make inference (jusse treatments
or a whole population of treatments), and whether mixedceffehould be
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restricted or unrestricted. Once we have answered thestigu®g we can
build a model. Parameters are only defined within a model, soeed the
model to make tests, compute confidence intervals, and so on.

We must decide whether each factor is fixed or random. Thisideds
usually straightforward but can actually vary dependingrutine goals of an
experiment. Suppose that we have an animal breeding exgetrinith four
sires. Now we know that the four sires we used are the fous ¢ivat were
available; we did no random sampling from a population. Ifaxe trying to
make inferences about just these four sires, we treat sadizsd effect. On
the other hand, if we are trying to make inferences about tpaijation of
potential sires, we would treat sires as a random effects iBhieasonable,
provided that we can consider the four sires at hand to bedormarsample
from the population, even though we did no actual samplifighdse four
sires are systematically different from the populatioyinig to use them to
make inferences about the population will not work well.

We must decide whether each factor is nested in some other fac
interaction. The answer is determined by examining the tcoctson of an
experiment. Do all the levels of the factor appear with allgvels of another
effect (crossing), or do some levels of the factor appear adtme levels of
the effect and other levels of the factor appear with othezlteof the effect?
For the cheese raters example, we see a different set of farerural and
urban backgrounds, so rater must be nested in backgrountie@Gely, all
the raters taste all the different kinds of cheese, so mt@pssed with cheese
type.

My model generally includes interactions for all effectattbould inter-
act, but we will see in some designs later on (for examplét lats) that
not all possible interactions are always included in madétssome degree
the decision as to which interactions to include is basedmwedge of the
treatments and experimental materials in use, but therksdsaadegree of
tradition in the choice of certain models.

Finally, we must decide between restricted and unrestrintedel as-
sumptions. | generally use the restricted model as a defawtitwe must
think carefully in any given situation about whether theazeum restrictions
are appropriate.

12.6 Hasse Diagrams and Expected Mean Squares

One of the major issues in random and mixed effects is findikppeted
mean squares and appropriate denominators for tests. ®hthé&d we use
to address these issues for balanced data is the Hassendigigrar 1995).

Fixed or random
factors?

Nesting or
crossing?

Which
interactions?

Restricted or
unrestricted?
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Figure 12.1: Hasse diagrams: (a) two-way factorial with A fixed and B
random, A and B crossed; (b) three-way factorial with A anciBdom, C
fixed, all factors crossed; (c) fully nested, with B fixed, AdaD random. In
all cases, A has 5 levels, B has 4 levels, and C has 2 levels.

A Hasse diagram is a graphical representation of a modeliglgaie nest-
ing/crossing and random/fixed structure. We can go back antld hetween
models and Hasse diagrams. | find Hasse diagrams to be udednl bam
trying to build my model, as | find the graphic easier to workhsand com-
prehend than a cryptic set of parameters and subscripts.

Figure 12.1 shows three Hasse diagrams that we will uselfistrihtion.

Nodes for terms, First, every term in a model haswdeon the Hasse diagram. A node con-
joined by lines for sists of a label to identify the term (for example, AB), a strijg giving the
above/below degrees of freedom for the term, and a superscript givingntimeber of dif-

ferent effects in a given term (for examplé, for 3;;)). Some nodes are
joined by line segments. Term U is above term V (or term V i9beterm
U) if you can go from U to V by movinglownline segments. For example,
Random terms in in Figure 12.1(b), AC is below A, but BC is not. The label foramdom fac-
parentheses tor or any term below a random factor is enclosed in paresth&sindicate
that it is random.

12.6.1 Test denominators

Hasse diagrams look the same whether you use the restriciddl ror the
unrestricted model, but the models are different and we nimasefore use
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1. The denominator for testing a term U is the leading el@ib,
random term below U in the Hasse diagram.

2. An eligible random term V below U is leading if there is n¢
eligible random term that is above V and below U.

3. Ifthere are two or more leading eligible random termsnthg
we must use an approximate test.

4. In the unrestricted model, all random terms below U afe
eligible.

5. In the restricted model, all random terms below U are eli-
gible except those that contain a fixed factor not found In
U.

Display 12.3:Rules for finding test denominators in balanced factorials

using the Hasse diagram.

the Hasse diagram slightly differently for restricted amdastricted models.
Display 12.3 gives the steps for finding test denominatonsguthe Hasse
diagram. In general, you find the leading random term bel@téhm to be
tested, but only random terms without additional fixed fexctre eligible in
the restricted model. If there is more than one leading ramgom, we have
an approximate test.

Test denominators in the restricted model

Consider the Hasse diagram in Figure 12.1(a). The next rartdom below
A is the AB interaction. The only fixed factor in AB is A, so AB the
denominator for A. The next random term below B is also the AtBriaction.
However, AB contains A, an additional fixed factor not foundsd, so AB
is ineligible to be the denominator for B. Proceeding dowa,get to error
which is random and does not contain any additional fixeafactTherefore
error is the denominator for B. Similarly, error is the deriaator for AB.

Figure 12.1(b) is a Hasse diagram for a three-way factotiithl factors A
and B random, and factor C fixed. The denominator for ABC isrefmme-
diately below AB is the random interaction ABC. However, ABhot an
eligible denominator for AB because it includes the addaidixed factor C.
Therefore, the denominator for AB is error. For AC and BC,dbaominato]

will be ABC, because it is random, immediately below, andtaos no ad
ditional fixed factor. Next consider main effects. We see tarmdom term

Finding test
denominators

Example 12.6
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Example 12.7

immediately below A, the AB and AC interactions. However, B&hot an

eligible denominator for A, because it includes the addaidixed factor C.
Therefore, the denominator for A is AB. Similarly, the derinator for B is

AB. Finally consider C. There are two random terms immetijabelow C

(AC and BC), and both of these are eligible to be denomindtoiS because
neither includes an additional fixed factor. Thus we havepgmaximate test
for C (C and ABC in the numerator, AC and BC in the denominaismyve

will see when we get to expected mean squares).

Figure 12.1(c) is a Hasse diagram for a three-factor, fnégted model,
with A and C random and B fixed. Nesting structure appears astxal
chain, with one factor below another. Note that the B nesietl iermis a
random term, even though B is a fixed factor. This seems odd;dnsider
that there is a different set of B effects for every level of¥g have a random
set of A levels, so we must have a random set of B levels, so &dés A
is a random term. The denominator for C is E, and the denoovifiait B is
C. The next random term below A is B, but B contains the fixetbiaB not
found in A, so B is not an eligible denominator. The closeigfilele random
term below A is C, which is the denominator for A.

When all the nested effects are random, the denominatonfoteaim is
simply the term below it. A fixed factor nested in a randomdad$ some-
thing of an oddity—it is a random term consisting only of a éiXactor. It
will never be an eligible denominator in the restricted mode

Test denominators in the unrestricted model

Figure 12.1(a) shows a two-factor mixed-effects designingshe unre-
stricted model, error is the denominator for AB, and AB is demominator
for both A and B. This is a change from the restricted modeictvhad error
as the denominator for B.

Using the unrestricted model in the three-way mixed effdetsgn shown
in Figure 12.1(b), we find that error is the denominator for&ABnd ABC is
the denominator for AB, BC, and AC; error was the denomin&inAB in
the restricted model. All three main effects have approxénests, because
there are two leading eligible random two-factor inter@cs$i below every
main effect.

In the three-way nested design shown in Figure 12.1(c), éin@wchinator
for every term is the term immediately below it. This is agdiffierent from
the restricted model, which used C as the denominator for A.

One side effect of using the unrestricted model is that tlaeeemore
approximate tests, because there are more eligible deatonén
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1. The representative element for a random term is its vegiar
component.

2. The representative element for a fixed term is a function]Q
equal to the sum of the squared effects for the term divid
by the degrees of freedom.

3%
o

“—

3. The contribution of a term is the number of data values
divided by the number of effects for that term (the supey-
script for the term in the Hasse diagram), times the repie-
sentative element for the term.

4. The expected mean square for a term U is the sum of fhe
contributions for U and all eligible random terms below U
in the Hasse diagram.

5. In the unrestricted model, all random terms below U afe
eligible.

6. In the restricted model, all random terms below U are €|
gible except those that contains a fixed factor not found jn
U.

Display 12.4:Rules for computing expected mean squares in balanced
factorials using the Hasse diagram.

12.6.2 Expected mean squares

The rules for computing expected mean squares are givensipldyi 12.4.

The description of the representative element for a fixet Fems a little Representative
arcane, but we have seen this Q before in expected mean sqbare fixed  elements appear
main effect A, the representative elemenisa?/(a — 1) = Q(«). For a in noncentrality
fixed interaction AB, the representative elemenrftjs (a3;;)?/[(a — 1)(b — parameters
1)] = Q(«p). These are the same forms we saw in Chapters 3 and 10 when

discussing EMS, noncentrality parameters, and power.

Expected mean squares in the restricted model Example 12.8

Consider the term A in Figure 12.1(b). In the restricted nhotthe eligible
random terms below A are AB and E; AC and ABC are ineligible tiuthe
inclusion of the additional fixed factor C. Thus the expecteghn square fo
Ais
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Example 12.9

80 80
o + —Uiﬁ + Eai =%+ 40§ﬁ + 1602 .
For term C in Figure 12.1(b), all random terms below C areildkg so the
EMSfor Cis

80 , 80 ,

80 80
10787 T g %8y T g

2 —
o+ Eo-ory 2 Q(’V) -

o? + 20357 + 100’%7 + 80’27 +40Q(~) .
For term A in Figure 12.1(c), the eligible random terms aren@ B; B is
ineligible. Thus the expected mean square for A is

80 80
0%+ 5%+ 5 0 =0 + 205 +160;

Expected mean squares in the unrestricted moble

We now recompute two of the expected mean squares from Erah2p8
using the unrestricted model. There are four random terrm\vb& in Fig-
ure 12.1(b); all of these are eligible in the unrestrictedigipso the expected
mean square for A is

, 80, 80 , 80 , 80 ,
o +4—00a57+2—00aﬁ+maa7+30a:

o? + 203&/ + 40’35 + 8037 + 1602 .

This includes two additional contributions that were naggant in the re-
stricted model.

For term A in Figure 12.1(c), B, C, and E are all eligible randterms.
Thus the expected mean square for A is

80 80 80
ol + 50 T 505+ 500 = 0% 4205 + doj + 1605
Term B contributes to the expected mean square of A in thestnoted
model.

We can figure out approximate tests by using the rules foreaggaenean
squares and the Hasse diagram. Consider testing C in Figutéb)l. AC
and BC are both eligible random terms below C, so both of thgirected
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Figure 12.2: Hasse diagram for a four-way factorial with all random
effects.

mean squares will appear in the EMS for C; thus both AC and Bt nebe
in the denominator for C. However, putting both AC and BC ie tenom-
inator double-counts the terms below AC and BC, namely AB@ amor.
Therefore, we add ABC to the numerator to match the doubleiag.

Here is a more complicated example: testing a main effectoniafactor
model with all factors random. Figure 12.2 shows the Hasagrdim. Sup- Use Hasse
pose that we wanted to test A. Terms AB, AC, and AD are allleligiandom diagrams to find
terms below A, so all would appear in the EMS for A, and all majgtear in  approximate tests
the denominator for A. If we put AB, AC, and AD in the denomiorathen
the expectations of ABC, ABD, and ACD will be double-countieere. Thus
we must add them to the numerator to compensate. With A, AED fand
ACD in the numerator, ABCD and error are quadruple-coumeide numer-
ator but only triple-counted in the denominator, so we mdetABCD to the
denominator. We now have a numerator (A + ABC + ABD + ACD) and a
denominator (AB + AC + AD + ABCD) with expectations that diffenly by
a multiple ofo?.
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Build from top
down

Nested factors
include implicit
factors

=

. Start row 0 with node M for the grand mean.

2. Put a node on row 1 for each factor that is not nested in gny
term. Add lines from the node M to each of the nodes qn
row 1. Put parentheses around random factors.

3. Onrow 2, add a node for any factor nested in a row 1 noge,
and draw a line between the two. Add nodes for terms with
two explicit or implied factors and draw lines to the termL
above them. Put parentheses around nodes that are bglow
random nodes.

4. On each successive row, say rvadd a node for any factor
nested into a row — 1 node, and draw a line between th¢
two. Add nodes for terms with explicit or implied factors
and draw lines to the terms above them. Put parenthepes
around nodes that are below random nodes.

5. When all interactions have been exhausted, add a node]for
error on the bottom line, and draw a line from error to the
dangling node above it.

6. For each node, add a superscript that indicates the nunber
of effects in the term.

7. For each node, add a subscript that indicates the degreds o
freedom for the term. Degrees of freedom for a term U afe
found by starting with the superscript for U and subtractirjg
out the degrees of freedom for all terms above U.

Display 12.5: Steps for constructing a Hasse diagram.

12.6.3 Constructing a Hasse diagram

A Hasse diagram always has a node M at the top for the grand,naean
node (E) at the bottom for random error, and nodes for eadbrfatterm

in between. | build Hasse diagrams from the top down, but tthdbl need

to know which terms go above other terms. Hasse diagramsthav&me
above/below relationships as ANOVA tables.

Aterm U is above aterm V in an ANOVA table if all of the factorsterm
U are in term V. Sometimes these factors are explicit; fongxa, factors A,
B, and C are in the ABC interaction. When nesting is preseamesof the
factors may be implicit or implied in a term. For example tfas A, B, and
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@ (b) (c)

M M M
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B C B C B C

I I
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(R) BC (R)*  BcS (R)i  BCj
(RC) (RC)® (RC)5}
| | |
(E) (E)'° (E) 5"

Figure 12.3: Stages in the construction of Hasse diagram for the cheese
rating example.

C are all in the term C nested in the AB interaction. When weenttie term
as C, A and B are there implicitly. We will say that term U is abderm V
if all of the factors in term U are present or implied in term V.

Before we start the Hasse diagram, we must determine theréaotthe
model, which are random and which are fixed, and which nestwandh
cross. Once these have been determined, we can constraliaginem using
the steps in Display 12.5.
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Example 12.10] Cheese tasting Hasse diagram

The cheese tasting experiment of Example 12.2 had thregr§adhe fixed
factor for background (two levels, labeled B), the fixed daatheese type
(four levels, labeled C), and the random factor for ratem (&xels, random,
nested in background, labeled R). Cheese type crossesatittbhckground
and rater.

Figure 12.3(a) shows the first stage of the diagram, with theollle for
the mean and nodes for each factor that is not nested.

Figure 12.3(b) shows the next step. We have added raterchiesback-
ground. It is in parentheses to denote that it is random, amtiave a line
up to background to show the nesting. Also in this row is thetBG-factor
interaction, with lines up to B and C.

Figure 12.3(c) shows the third stage, with the rater by ah&4S inter-
action. This is random (in parentheses) because it is bedtev.rlt is also
below BC; B is present implicitly in any term containing Rcbhese R nests
in B.

Figure 12.3(d) adds the node for random error. You can déterthe
appropriate denominators for tests at this stage withoufpdeting the Hasse
diagram.

Figure 12.3(e) adds the superscripts for each term. Thestn# is the

number of different effects in the term and equals the prodithe number
of levels of all the implied or explicit factors in a term.

Finally, Figure 12.3(f) adds the subscripts, which givedbgrees of free-
dom. Compute the degrees of freedom by starting with thersappt and
subtracting out the degrees of freedom for all terms abogegthen term.
It is easiest to get degrees of freedom by starting with teatitee top and
working down.

12.7 Variances of Means and Contrasts

Variances of treatment means are easy to calculate in aéiffedts models—
simply divide? by the number of responses in the average. Furthermore,
distinct means are independent. Things are more complidatemixed-

Distinct means effects models, because there are multiple random termscémaall con-
can be correlated tribute to the variance of a mean, and some of these randons &an cause
in mixed effects nonzero covariances as well. In this section we give a satlesrfor cal-

models culating the variance and covariance of treatment means.caffeuse the
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Figure 12.4: Hasse diagrams for three three-way factorials. (a) C random
(b) B and C random; (c) C random and nested in A.

covariance to determine the variance of pairwise compasisnd other con-
trasts.

Treatment means make sense for combinations of fixed fadiotsare
generally less interesting for random effects. ConsiderHasse diagrams
in Figure 12.4. All are three-way factorials with= 3, b = 4, ¢ = 5, and  Look at treatment
n = 2. In panels (a) and (c), factors A and B are fixed. Thus it makese means for fixed
to consider means for levels of factor &,(,,), for levels of factor B, ..), factors
and for AB combinationsy;,,)- In panel (b), only factor A is fixed, so only
meangj,,,, are usually of interest.

It is tempting to use the denominator mean square for A asdhiance
for meangj;,... This does not workWe must go through the steps given in

Display 12.6 to compute variances for means. We can use thenteator Do not use
mean square for A when computing the variance faoatrastin factor A denominator
means; simply substitute the denominator mean square @sianate of vari-  mean squares as
ance into the usual formula for the variance of a contrashil&ily, we can variances for
use the denominator mean square for the AB interaction wheenampute means

the variance of an AB interaction contrast, but this will mairk for means
Tijee OF paired differences or other combinations that are netattion con-
trasts.

Display 12.6 gives the steps required to compute the vagiaha mean.
For a meary,,,,, the base term is A and the base factor is A; for a mean

Tijeer the base term is AB and the base factors are A and B.
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Example 12.11

1. Make a Hasse diagram for the model.

2. ldentify the base term and base factors for the mean of |n-
terest.

3. The variance of the mean of interest will be the sum over §ll
contributing terms T of

5 product of superscripts of all base factors above T
g T
r superscriptof term T

4. In the unrestricted model, all random terms contributbéo
variance of the mean of interest.

5. In the restricted model, all random terms contribute t® th
variance of the mean of interest except those that contaih a
fixed factor not found in the base term.

Display 12.6: Steps for determining the variance of a marginal mean.

Variances of means

Let's compute variances for some means in the models of iy using

restricted model assumptions. Consider first the mpeg. The base term

is A, and the base factor is A. In panel (a), there will be dbations from

C, AC, and E (but not BC or ABC because they contain the addititixed

factor B). The variance is
1

2= 2 < v

ARG TRRA T

In panel (b), there will be contributions from all randonmter (A is the only

fixed term). Thus the variance is

g,

il 3 e 3 1 3, 3
By T 0rp T TeBg T ey T g T el 120
Finally, in panel (c), there will be contributions from C aBdbut not BC).
The variance is
2 3 2 3

o,—+o0"—— .

715 120

Now consider a meag, ;,, in model (c). The contributing terms will be
C, BC, and E, and the variance is
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[EnY

. Identify the base term and base factors for the means ofjn-
terest.

2. Determine whether the subscripts agree or disagree ¢br ep
base factor.

3. The covariance of the means will be the sum over all con-
tributing terms T of

o product of superscripts of all base factors above T
g n
T superscript of term T

4. Inthe unrestricted model, all random terms contributb¢o
covarianceexceptthose that are below a base factor with
disagreeing subscripts.

5. In the restricted model, all random terms contribute ® ti
covarianceexcepthose that contain a fixed factor not foung
in the base term and those that are below a base factor V|
disagreeing subscripts.

th

Display 12.7:Steps for determining the covariance between two
marginal means.

5760 120 °

21

715

Finally, consider the variance of ,,; this mean does not make sensgi

panel (b). In panel (a), all random terms contribute to thiéavae, which is

021+02 3_1_0_2 i_i_O_Q 3><4+023><4
LR TR B )| 120

In panel (c), all random terms contribute, but the variarere lis

9 3 g 3><4+ 93 x4
O~ (o3 (o .

715 T UPT60 120
The variance of a difference is the sum of the individualasacies minus
twice the covariance. We thus need to compute covarianceseahs in
order to get variances of differences of means. Display @®é&s the steps
for computing the covariance between two means, which anridesito those

Need covariances
to get variance of
a difference
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Example 12.12

for variances, with the additional twist that we need to knekich of the
subscripts in the means agree and which disagree. For egatinglfactor A
SUDSCIIPLS i1 000 — Vireee disagree, but iry, ., — Uijree:J # 4, the factor
A subscripts agree while the factor B subscripts disagree.

Covariances of means

Now compute covariances for some means in the models oféiju4 using
restricted model assumptions. Consider the mggns andy; ....- The base
term is A, the base factor is A, and the factor A subscriptagtise. In model
(a), only term C contributes to the covariance, which is

1
2
O',Yg

Using the variance fog,,,, cOmputed in Example 12.11, we find

Var(yiooo - yi’ooo) = Var(yiooo) + Var(yi’ooo) —2X Cov(yioonyi’ooo)

1 1 1

= 2X(U§5+0375+O’24—0)—2XO’75
1 1

= 2 (0'3754-0'2@)

1 1
= EMSAC(KL_O + 4—0) .

The last line is what we would get by using the denominato¥@nd ap-
plying the usual contrast formulae with a sample size of 48sich mean.

In model (b), B, C, and BC contribute to the covariance, wligch

a%i + 03% + agy%
and leads to
Val(Vises — Viress) = Val(Tiees) + Val(Jjgae) = 2 X COVYjeae; Uirane)
= 2x (Jgﬁi + ngé + 0'2572—10 + 02%)

In panel (c), all the random terms are below A, so none carribome to
the covariance, which is thus 0.

Consider NOWJq 00 — Vajee in model (c). Only the term C contributes to
the covariance, which is



12.7 Variances of Means and Contrasts

303

Table 12.1: Covariances and variances of differences of two-factor
meanyj,;,, for models (a) and (c) of Figure 12.4 as a function of which
subscripts disagree.

Covariance Variance of difference
@) A %O’?Y + %Uév 2 % (%ai7 + %aim + %002)
(@) B %ng + %Ugw 2 x (%U%’Y + %Ugcﬁv + 1_1002)
(@ AandB %O‘?Y 2 % (%037 + %U%,Y + %aim + +o?)
(©) A 0 2 % (%03 + %O‘%,y + 1502
(c) B %O‘?Y 2 x (%O‘%W + +0?)
(c) AandB 0 2 x ($02 + 203, + 1507)
1
2_
AT
and leads to
Var(yojoo - yoj’oo) = Var(gojoo) + Var(yoj’oo) —-2x Cov(yojowyoj’oo)
1 1
— 9% (02 2 4
(55 7 39
2
= —FEMS ;
30 BC

which is what would be obtained by using the denominator for e stan-
dard contrast formulae for means with sample size 30.

Things get a little more interesting with two-factor meabscause wg
can have the first, the second, or both subscripts disagyesid we can ge
different covariances for each. Of course there are evem mossibilities
with three-factor means. Consider covariances for AB m@apanel (a) of
Figure 12.4. If the A subscripts differ, then only C and BC camtribute
to the covariance; if the B subscripts differ, then C and A@tdbute to
the covariance; if both differ, then only C contributes te ttovariance. Ir
panel (c), if the A subscripts differ, then no terms contrébto covariance
if the B subscripts differ, then only C contributes to cosae. Table 12.]
summarizes the covariances and variances of difference®ahs for thesl
cases.
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Listing 12.1: MacAnova output for restricted Type Ill EMS.

EMS(a)
EMS (b)

EMS(c) = V(ERROR1l) +
EMS(a.c) = V(ERROR1)

V(ERROR1) + 1

V(ERROR1) + 5

EMS(a.b) = V(ERROR1) + 1.9758V(a.b.c) + 9.8469V(a.b)
5
+

.9753V(a.b.c) + 7.8752V(a.c) + 9.8424V(a.b) + 39.516Q(a)
.9048V(b.c) + 29.524V(b)

.9062V(b.c) + 23.625V(c)
1.976V(a.b.c) + 7.8803V(a.c)

EMS(b.c) = V(ERROR1) + 5.9167V(b.c)
EMS(a.b.c) = V(ERROR1) + 1.9774V(a.b.c)
EMS (ERROR1) = V(ERROR1)

EMS for Types |,
Il, and IIl, and
restricted or
unrestricted
models by
computer

Do not use Hasse
diagram with
unbalanced data

Example 12.13

12.8 Unbalanced Data and Random Effects

Unbalanced data or random effects make data analysis marplicated:;
life gets very interesting with unbalanced data and randfietts. Mean
squares change depending on how they are computed (Typeok, lll),
so there are also Type |, I, and Ill expected mean squares &ang with
them. Type lll mean squares are generally more usable inamded mixed-
effects models than those of Types | or ll, because they himm@er expected
mean squares. As with balanced data, expected mean sqoiauedélanced
data depend on whether we are using the restricted or uctedtmodel as-
sumptions. Expected mean squares cannot usually be deéstioy hand; in
particular, the Hasse diagram method for finding denomisatod expected
mean squares is for balanced data and does not work for undealaata.

Many statistical software packages can compute expected sguares
for unbalanced data, but most do not compute all the posbil For exam-
ple, SAS PROC GLM can compute Type |, Il, or Il expected megueses,
but only for the unrestricted model. Similarly, Minitab cpates sequential
(Type ) and “adjusted” (Type IIl) expected mean squarestferunrestricted
model. MacAnova can compute sequential and “marginal” €THp ex-
pected mean squares for both restricted and unrestricsedngsions.

Unbalanced expected mean squares

Suppose we make the three-way factorial of Figure 12.4(bplamced by
having only one response when all factors are at their loweléev List-

ings 12.1, 12.2, and 12.3 show the EMS’s for Type Il restdctType Il un-
restricted, and Type Il unrestricted, computed respdgtiveing MacAnova,
Minitab, and SAS. All three tables of expected mean squaffes,dndicat-

ing that the different sums of squares and assumptions ¢edifférent tests
and possibly different inferences.
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Listing 12.2: Minitab output for unrestricted Type Ill EMS.

Expected Mean Squares, using Adjusted SS

Source Expected Mean Square for Each Term

1A (8) + 1.9677(7) + 7.8710(5) + 9.8387(4) + Q[1]

2 B (8) + 1.9683(7) + 5.9048(6) + 9.8413(4) + 29.5238(2)
3 C (8) + 1.9688(7) + 5.9063(6) + 7.8750(5) + 23.6250(3)
4 A*B (8) + 1.9697(7) + 9.8485(4)

5 A*C (8) + 1.9706(7) + 7.8824(5)

6 B*C (8) + 1.9722(7) + 5.9167(6)

7 A*B*C (8) + 1.9762(7)

8 Error (8)

Listing 12.3: SAS output for unrestricted Type Il EMS.

Source Type II Expected Mean Square

A Var(Error) + 1.9878 Var(A*B*C) + 7.9265 Var(A*C)
+ 9.9061 Var(A*B) + QCA)

B Var(Error) + 1.9888 Var(A*B*C) + 5.9496 Var(B*C)
+ 9.9104 Var(A*B) + 29.714 Var(B)

A*B Var(Error) + 1.9841 Var(A*B*C) + 9.8889 Var(A*B)

C Var(Error) + 1.9893 Var(A*B*C) + 5.9509 Var(B*C)
+ 7.9316 Var(A*C) + 23.778 Var(C)

A*C Var(Error) + 1.9845 Var(A*B*C) + 7.913 Var(A*C)

B*C Var(Error) + 1.9851 Var(A*B*C) + 5.9375 Var(B*C)

A*B*C Var(Error) + 1.9762 Var(A*B*C)

For unbalanced data, almost all tests are approximate tEstsexam-
ple, consider testingi = 0 using the Type Il unrestricted analysis in List-
ing 12.2. The expected mean square for C is

0”4 1.968807 5, + 5.90630%,, + 7.8750075,, + 23.62507 |,

so we need to find a linear combination of mean squares witbaapon

0” +1.9688073, + 5.906303, + 7.87500%,

to use as a denominator. The combination

Use general
linear
combinations of
MS to get
denominators



306

Nesting, Mixed Effects, and Expected Mean Squares

Rearrange so that
all MS’s are
added

ANOVA estimates
of variance
components

Ordinary nesting
has more
degrees of
freedom for
nested terms

Staggered nested
designs nest in an
unbalanced way

9991M Sac + 9982M Spo — .9962M Sapc — .0011M Sg

has the correct expectation, so we could use this as our deaton for
M S with approximate degrees of freedom computed with Satieite’s
formula.

Alternatively, we could us@/S¢c + .9962M S 4pc + .0011M Sg as the
numerator andI991M S 4 + .9982M Spc as the denominator, computing
approximate degrees of freedom for both the numerator andrdimator.
This second form avoids subtracting mean squares and digniesds to
larger approximate degrees of freedom. It does move thdi¢-t@vards
one, however.

We can compute point estimates and confidence intervalsdioance
components in unbalanced problems using exactly the sanigodsewe
used in the balanced case. To get point estimates, equatbsbeved mean
squares with their expectations and solve for the varianoeponents (the
ANOVA method). Confidence intervals are approximate, basethe Sat-
terthwaite degrees of freedom for the point estimate, artubfous cover-
age.

12.9 Staggered Nested Designs

One feature of standard fully-nested designs is that we feavalegrees of
freedom for the top-level mean squares and many for the éo@timean
squares. For example, in Figure 12.1(c), we have a fullyegedesign with

4, 15, 20, and 40 degrees of freedom for A, B, C, and error. diffisrence

in degrees of freedom implies that our estimates for thel¢apl variance
components will be more variable than those for the loweelleomponents.
If we are equally interested in all the variance compongh&x some other
experimental design might be preferred.

Staggered nested desigren be used to distribute the degrees of freedom
more evenly (Smith and Beverly 1981). There are severahmtgion these
designs; we will only discuss the simplest. Factor A héevels, where we'd
like a as large as feasible. A h&s—1) degrees of freedom. Factor B has two
levels and is nested in factor A; B appears at two levels ferelevel of A.

B hasa(2—1) = a degrees of freedom. Factor C has two levels and is nested
in B, but in an unbalanced way. Only level 2 of factor B will leawo levels
of factor C; level 1 of factor B will have just one level of factC. Factor D is
nested in factor C, but in the same unbalanced way. Only Reéffactor C

will have two levels of factor D; level 1 of factor C will havagt one level of
factor D. Any subsequent factors are nested in the sameamdxad fashion.
Figure 12.5 illustrates the idea for a four-factor model.



12.10 Problems 307

— N/

Al Tt Aa
. .
Bl B2 Bl B2
| N | N
C1 C1 Cc2 C1 C1 (09
| AN | VAN
D1 D1 D1 D2 D1 D1 D1 D2

Figure 12.5: Example of staggered nested design.

Listing 12.4: SAS output for Type | EMS in a staggered nested design.

Source Type I Expected Mean Square

A Var(Error) + 1.5 Var(C(A*B)) + 2.5 Var(B(A)) + 4 Var(A)
B(A) Var(Error) + 1.1667 Var(C(A*B)) + 1.5 Var(B(A))

C(A*B) Var(Error) + 1.3333 Var(C(A*B))

For a staggered nested design witliactors (counting error), there are
ha units. There is 1 degree of freedom for the overall mean,1 degrees
of freedom for A, and: degrees of freedom for each nested factor below Astaggered nested
The expected mean squares will generally be determined seftware. For designs spread
example, Listing 12.4 gives the Type | expected mean sqfarastaggered degrees of
nested design with = 4 factors counting error and = 10 levels for factor freedom evenly
A; the degrees of freedom are 9 for A and 10 for B, C, and error.

12.10 Problems

Many of the problems in this Chapter will atthe standard five questions

(a) Draw the Hasse diagram for this model.

(b) Determine the appropriate denominators for testindréaam using
the restricted model assumptions.
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Exercise 12.1

Exercise 12.2

Exercise 12.3

Exercise 12.4

(c) Determine the expected mean squares for each term hmgdtricted
model assumptions.

(d) Determine the appropriate denominators for testindy¢éaom using
the unrestricted model assumptions.

(e) Determine the expected mean squares for each term usngnte-
stricted model assumptions.

Consider a four-factor model with A and D fixed, each with élevels.
Factors B and C are random with two levels each. There is & abta2
observations. All factors are crossed. Standard five curesti

Consider a four-factor model with A and D fixed, each with éhievels.
Factors B and C are random with two levels each. B nests in Adtsnin B,
and D crosses with the others. There is a total of 72 obsenatiStandard
five questions.

Consider a four-factor model with A and D fixed, each with éhievels.
Factors B and C are random with two levels each. B nests in Ae€isn
in D, and all other combinations cross. There is a total of @&eovations.
Standard five questions.

Briefly describe the treatment structure you would choosesfch of
the following situations. Describe the factors, the nundfdevels for each,
whether they are fixed or random, and which are crossed.

(&) One of the expenses in animal experiments is feedingrtimeads. A
company salesperson has made the claim that their new nat(8586
less expensive) is equivalent to the two standard chowsemtrket.
You wish to test this claim by measuring weight gain of ratpap the
three chows. You have a population of 30 inbred, basicalbharge-
able female rat pups to work with, each with her own cage.

(b) Different gallons of premixed house paints with the sdate| color
do not always turn out the same. A manufacturer of paint betie
that color variability is due to three sources: supplieiif materials,
miscalibration of the devices that add the tint to the bagst pand un-
controllable random variation between gallon cans. Theufsaturer
wishes to assess the sizes of these sources of variatios wiiltirig to
use 60 gallons of paint in the process. There are three supolf tint
and 100 tint-mixing machines at the plant.

(c) Insect infestations in croplands are not uniform; tisatthe number
of insects present in meter-square plots can vary condiyer®ur
interest is in determining the variability at different ggaphic scales.
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(d)

That is, how much do insect counts vary from meter square terme
square within a hectare field, from hectare to hectare wihiounty,
and from county to county? We have resources for at most 10tiesu
in southwestern Minnesota, and at most 100 total meterregnaect
counts.

The disposable diaper business is very competitivdy alltmanufac-
turers trying to get a leg up, as it were. You are a consuméntes
agency comparing the absorbency of two brands of “newbadr® s
diapers. The test is to put a diaper on a female doll and purdg-bo
temperature water through the doll into the diaper at a fiz¢el until
the diaper leaks. The response is the amount of liquid purbpéute
leakage. We are primarily interested in brand differenbeswe are
also interested in variability between individual diapar&l between
batches of diapers (which we can only measure as betweers lobxe
diapers, since we do not know the actual manufacturing tim@aze
of the diapers). We can afford to buy 32 boxes of diapers astdbie
diapers.

Answer the standard five questions for each of the followkppeiments. Problem 12.1

(a) We are interested in the relationship between atmogphigfate aero-

(b)

()

sol concentration and visibility. As a preliminary to thitudy, we
examine how we will measure sulfate aerosol. Sulfate ati®wsoea-
sured by drawing a fixed volume of air through a filter and thieena-
ically analyzing the filter for sulfate. There are four braraf filter
available and two methods to analyze the filters chemicallg. ran-
domly select eight filters for each brand-method combimatibhese
64 filters are then used (by drawing a volume of air with a kncom-
centration of sulfate through the filter), splitin half, dsath halves are
chemically analyzed with whatever method was assignedetdilter,
for a total of 128 responses.

A research group often uses six contract analyticalritiooies to de-
termine total nitrogen in plant tissues. However, there ossibility

that some labs are biased with respect to the others. Reatyissue
samples are taken at random from the freezer and split abnaimto

six groups of seven, one group for each lab. Each lab thensiale
measurements on each of the seven samples they receiveofal of

84 measurements.

A research group often uses six contract analyticalriiooes to de-
termine total nitrogen in plant tissues. However, there p@ssibility
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Problem 12.2

Problem 12.3

that some labs are biased with respect to the others. Seger ttam-
ples are taken at random from the freezer and each is splisixparts,
one part for each lab. We expect some variation among thesylles
of a given sample. Each lab then makes two measurements brokac
the seven samples they receive, for a total of 84 measurement

Dental fillings made with gold can vary in hardness dependimigow the
metal is treated prior to its placement in the tooth. Twodextre thought
to influence the hardness: the gold alloy and the condemsat&thod. In
addition, some dentists doing the work are better at somestyp fillings
than others.

Five dentists were selected at random. Each dentist pregdréllings
(in random order), one for each of the combinations of me(ttuge levels)
and alloy (eight levels). The fillings were then measurechfndness using
the Diamond Pyramid Hardness Number (big scores are heffén® data
follow (from Xhonga 1971 via Brown 1975):

Alloy
Dentist Method 1 2 3 4 5 6 7 8

1 792 824 813 792 792 907 792 835
772 772 782 698 665 1115 835 870
782 803 752 620 835 847 560 585
803 803 715 803 813 858 907 882
752 772 772 782 743 933 792 824
715 707 835 715 673 698 734 681
715 724 743 627 752 858 762 724
792 715 813 743 613 824 847 782
762 606 743 681 743 715 824 681
673 946 792 743 762 894 792 649
657 743 690 882 772 813 870 858
690 245 493 707 289 715 813 312
634 715 707 698 715 772 1048 870
649 724 803 665 752 824 933 835
724 627 421 483 405 536 405 312

WNEFRPWNRFRPWNRERPWNREEWN R

Analyze these data to determine which factors influence éspanse and
how they influence the response. (Hint: the dentist by methtataction
can use close inspection.)

An investigative group at a television station wishes teedatne if doc-
tors treat patients on public assistance differently frinose with private
insurance. They measure this by how long the doctor sperttistiag¢ pa-
tient. There are four large clinics in the city, and the statthooses three
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pediatricians at random from each of the four clinics. Nyprgik families on
public assistance are located and divided into four grodifZlat random.
All 96 families have a one-year-old child and a child justezimg school.
Half the families will request a one-year checkup, and thers will request
a preschool checkup. Half the families will be given temppnarivate in-
surance for the study, and the others will use public assista The four
groupings of families are the factorial combinations ofahe type and in-
surance type. Each group of 24 is now divided at random in&vievsets
of two, with each set of two assigned to one of the twelve setedoctors.
Thus each doctor will see eight patients from the investigatRecap: 96
units (families); the response is how long the doctor speritiseach family;
and treatments are clinic, doctor, checkup type, and imeertype. Standard
five questions.

Eurasian water milfoil is an exotic water plant that is irtiieg North
American waters. Some weevils will eat milfoil, so we condac exper-
iment to see what may influence weevils’ preferences for &anamilfoil
over the native northern milfoil. We may obtain weevils thare raised
on Eurasian milfoil or northern milfoil. From each sources t@ke ten ran-
domly chosen males (a total of twenty males). Each male idnafith
three randomly chosen females raised on the same kind odih{#f total
of 60 females). Each female produces many eggs. Eight eggshasen at
random from the eggs of each female (a total of 480 eggs). e eggs
for each female are split at random into four groups of twahwach set
of two assigned to one of the factor-level combinations d€lhiag species
and growth species (an egg may be hatched on either northétarasian
milfoil, and after hatching grows to maturity on either rentn or Eurasian
milfoil). After the hatched weevils have grown to maturityey are given ten
opportunities to swim to a plant. The response is the numbgémes they
swim to Eurasian. Standard five questions.

City hall wishes to learn about the rate of parking meter uSbey
choose eight downtown blocks at random (thesecayeblocks, notstatisti-
cal blocks!), and on each block they choose five meters at ran8onweeks
are chosen randomly from the year, and the usage (moneytsuon each
meter is measured every day (Monday through Sunday) fonalhteters on
those weeks. Standard five questions.

Eight 1-gallon containers of raw milk are obtained from aryglaind are
assigned at random to four abuse treatments, two contgieerseatment.
Abuse consists of keeping the milk at%5for a period of time; the four
abuse treatments are four randomly selected durationsebetd and 18
hours. After abuse, each gallon is split into five equal pogiand frozen.

Problem 12.4

Problem 12.5

Problem 12.6



312

Nesting, Mixed Effects, and Expected Mean Squares

Problem 12.7

We have selected five contract laboratories at random frasettavail-
able in the state. For each gallon, the five portions are rahdassigned
to the five laboratories. The eight portions for a given labany are then
placed in an insulated shipping container cooled with deydad shipped.
Each laboratory is asked to provide duplicate counts ofdsicin each milk
portion. Data follow (bacteria counts pel).

Abuse
Lab 1 2 3 4

1 7800 7000 870 490 1300 1000 31000 36000
7500 7200 690 530 1200 980 35000 34000

2 8300 9700 900 930 2500 2300 27000 28000
8200 10000 940 840 1900 2300 34000 32000

3 7300 7300 760 840 2100 2300 34000 34000
7600 7900 790 780 2000 2200 34000 33000

4 5400 5500 520 750 1400 1100 16000 16000
5700 5600 770 620 1300 1400 16000 15000

5 15000 12000 1200 800 4600 3500 41000 39000
14000 12000 1100 600 4000 3600 40000 39000

Analyze these data. The main issues are the sources andEizsa-
tion, with an eye toward reliability of future measurements

Cheese is made by bacterial fermentation of Pasteurizdd miibst of
the bacteria are purposefully added to do the fermentatioese are the
starter cultures. Some “wild” bacteria are also presenthigese; these are
the nonstarter bacteria. One hypothesis is that nonstzatgeria may affect
the quality of a cheese, so that otherwise identical cheedenig facilities
produce different cheeses due to their different indigenmanstarter bacte-
ria.

Two strains of nonstarter bacteria were isolated at a pnencineese fa-
cility: R50#10 and R21#2. We will add these nonstarter biécte cheese to
see if they affect quality. Our four treatments will be coftaddition of R50,
addition of R21, and addition of a blend of R50 and R21. Twelveeses are
made, three for each of the four treatments, with the treatsnieeing ran-
domized to the cheeses. Each cheese is then divided intpéotions, and
the four portions for each cheese are randomly assignecetofdiour aging
times: 1 day, 28 days, 56 days, and 84 days. Each portion isureghfor
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total free amino acids (a measure of bacterial activitygrdfthas aged for its
specified number of days (data from Peggy Swearingen).

Days
Treatment Cheese 1 28 56 84
Control 1 .637 1.250 1.697 2.892
2 549 794 1.601 2.922
3 .604 871 1.830 3.198
R50 1 .678 1.062 2.032 2.567
2 .736 .817 2.017 3.000
3 .659 .968 2.409 3.022
R21 1 607 1.228 2.211 3.705
2 661 .944 1.673 2.905
3 .755 924 1.973 2.478
R50+R21 1 .643 1.100 2.091 3.757
2 581 1.245 2.255 3.891
3 .754 968 2.987 3.322

We are particularly interested in the bacterial treatméfeces and interac-
tions, and less interested in the main effect of time.

As part of a larger experiment, researchers are lookingeafithount of
beer that remains in the mouth after expectoration. Terestbjwill repeat
the experiment on two separate days. Each subject will di@eal or 20 ml
of beer in his or her mouth for five seconds, and then expdetdina beer.
The beer has a dye, so the amount of expectorated beer canebmited,
and thus the amount of beer retained in the mouth (in ml, adata Bréfort,
Guinard, and Lewis 1989)

10 ml 20 ml
Subject Dayl Day2 Dayl Day?2
1 186 218 249 375
2 208 219 315 267
3 1.76 1.68 1.76 2.57
4 202 387 299 451
5 260 185 325 242
6 226 271 286 3.60
7 203 263 237 412
8 239 258 219 284
9 240 191 325 252
10 1.63 243 200 270

Compute confidence intervals for the amount of beer retaiméide mouth
for both volumes.

Problem 12.8
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Problem 12.9 An experiment is performed to determine the effects of dsifé Pasteur-
ization methods on bacterial survival. We work with wholdkn2% milk,
and skim milk. We obtain four gallons of each kind of milk frargrocery
store. These gallons are assumed to be a random sample frpoteitial
gallons. Each gallon is then dosed with an equal number débac (We as-
sume that this dosing is really equal so that dosing is nattarfaf interest in
the model.) Each gallon is then subdivided into two partsh wie two Pas-
teurization methods assigned at random to the two parts.oBservations
are 24 bacterial concentrations after Pasteurizatiomdata five questions.

Question 12.1 Start with a four by three table of independent normals widamO and
variance 1. Compute the row means and then subtract out thsmeans.
Find the distribution of the resulting differences and telthis to the re-
stricted model for mixed effects.

Question 12.2 Consider a three-factor model with A and B fixed and C randohaws
that the variance for the differengg;, — 7 je — Uij.e + ¥irj7e CaN be com-
puted using the usual formula for contrast variance Witﬁ“dmnominator”
expected mean square as error variance.



Chapter 13

Complete Block Designs

We now begin the study ofariance reduction designExperimental error
makes inference difficult. As the variance of experimentabre(s?) in-
creases, confidence intervals get longer and test poweeatas. All other
things being equal, we would thus prefer to conduct our éxpents with
units that are homogeneous so thatwill be small. Unfortunately, all other
things are rarely equal. For example, there may be few unésadle, and
we must simply take what we can get. Or we might be able to fimddye-
neous units, but using the homogeneous units would restridnference to
a subset of the population of interest. Variance reductesighs can give us

many of the benefits of smatf, without necessarily restricting us to a subset

of the population of units.

13.1 Blocking

Variance reduction design deals almost exclusively witeannique called

Variance
reduction design

blocking A block of units is a set of units that are homogeneous in soma block is a set of

sense. Perhaps they are field plots located in the same ganemaor are
samples analyzed at about the same time, or are units thatfcam a single
supplier. These similarities in the units themselves leatblanticipate that
units within a block may also have similar responses. So vdoastructing
blocks, we try to achieve homogeneity of the units withindidg but units in
different blocks may be dissimilar.

Blocking designs are not completely randomized designs.Réndom-
ized Complete Block design described in the next sectiohdditst design
we study that uses some kind of restricted randomizationeite design

homogeneous
units

Blocking restricts
randomization
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Complete blocks
include every
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RCB has r blocks
of g units each

Block for
homogeneity

Example 13.1

an experiment, we know the design we choose to use and thuaritdem-
ization that is used. When we look at an experiment desiggesbmeone
else, we can determine the design from the way the randomizats done,
that is, from the kinds of restrictions that were placed anrdndomization,
not on the actual outcome of which units got which treatments

There are many, many blocking designs, and we will only ceaene
of the more widely used designs. This chapter deals wdtmplete block
designsn which every treatment is used in every block; later chespteal
with incomplete block desigr(®ot every treatment is used in every block)
and some special block designs for treatments with fadtstriacture.

13.2 The Randomized Complete Block Design

The Randomized Complete Block design (RCB) is the basidimgaesign.
There argy treatments, and each treatment will be assignedunits for a
total of N = gr units. We partition theéV units intor groups ofg units each;
theser groups are our blocks. We make this partition into blocksuohs

a way that the units within a block are somehow alike; we #rdie that
these alike units will have similar responses. In the fireatk) we randomly
assign thegy treatments to the units; we do an independent randomization,
assigning treatments to units in each of the other blockss iEhthe RCB
design.

Blocks exist at the time of the randomization of treatmeatsriits. We
cannot impose blocking structure on a completely randothdssign after
the fact; either the randomization was blocked or it was not.

Mealybugs on cycads

Modern zoos try to reproduce natural habitats in their exhidis much as
possible. They therefore use appropriate plants, but thiesgs can be in-
fested with inappropriate insects. Zoos need to take gt with pesti-
cides, because the variety of species in a zoo makes it maly ihat a
sensitive species is present.

Cycads (plants that look vaguely like palms) can be infesii#iul mealy-
bug, and the zoo wishes to test three treatments: water (@otorhorti-
cultural oil (a standard no-mammalian-toxicity pestigidend fungal spores
in water Beauveria bassianaa fungus that grows exclusively on insects).
Five infested cycads are removed to a testing area. Threelea are ran-
domly chosen on each cycad, and two 3 cm by 3 cm patches aredank
each branch; the number of mealybugs in these patches id.nbte three
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Table 13.1:Changes in mealybug counts on cycads after treatment.
Treatments are watdBeauveria bassianapores, and horticultural oil.

Plant

1 2 3 4 5

Water -9 18 10 9 -6
-6 5 9 0 13

Spores -4 29 4 -2 11
7 10 -1 6 -1

Oil 4 29 14 14 7
11 36 16 18 15

branches on each cycad are randomly assigned to the tha¢meémts. Afte
three days, the patches are counted again, and the respdhsechange i
the number of mealybugs (beforeafter). Data for this experiment are giv
in Table 13.1 (data from Scott Smith).

How can we decode the experimental design from the desmmifist
given?Follow the randomizationLooking at the randomization, we see t
the treatments were applied to the branches (or pairs ohes}c Thus th
branches (or pairs) must be experimental units. Furthexntioe randomiz
tion was done so that each treatment was applied once on geath. cTher
was no possibility of two branches from the same plant récgithe sam
treatment. This is a restriction on the randomization, witbads acting a
blocks. The patches are measurement units. When we anbbsedata, w
can take the average or sum of the two patches on each bratiehraspons
for the branch. To recap, there weye= 3 treatments applied t&" = 15
units arranged im = 5 blocks of size3 according to an RCB design; the
were two measurement units per experimental unit.

Why did the experimenter block? Experience and intuiticadléhe ex-
perimenter to believe that branches on the same cycad wil te be moreg
alike than branches on different cycads—genetically, rermnentally, ang

perhaps in other ways. Thus blocking by plant may be advaotag

Itis important to realize that tables like Table 13.1 hidelindomization
that has occurred. The table makes it appear as though therfitén every

block received the water treatment, the second unit theespand so on.

This is not true. The table ignores the randomization forctvevenience of
a readable display. The water treatment may have been dpplany of the
three units in the block, chosen at random.

You cannot determine the design used in an experiment jusolyng at
a table of results, you have to know the randomization. Theag be many

at
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Follow the
randomization to
determine design

General
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structure

Example 13.2

Block when you
can identify a
source of
variation

different designs that could produce the same data, and ylbanat know
the correct analysis for those data without knowing thegteskollow the
randomization to determine the design.

An important feature to note about the RCB is that we havegolam
restrictions on the treatments. The treatments could gilpgl treatments,
or they could be the factor-level combinations of two or mfators. These
factors could be fixed or random, crossed or nested. All ddlteeatment
structures can be incorporated when we use blocking desigthieve vari-
ance reduction.

Protein/amino acid effects on growing rats

Male albino laboratory rats (Sprague-Dawley strain) aredusutinely in
many kinds of experiments. Proper nutrition for the ratsripértant. This
experiment was conducted to determine the requiremengdtein and the
amino acid threonine. Specifically, this experiment wilhexne the factorial
combinations of the amount of protein in diet and the amofitiireonine in
diet. The general protein in the diet is threonine deficiéifiere are eight
levels of threonine (.2 through .9% of diet) and five levelgpuaitein (8.68,
12,15, 18, and 21% of diet), for a total of 40 treatments.

Two-hundred weanling rats were acclimated to cages. Ondhensl
day after arrival, all rats were weighed, and the rats weparsged into five
groups of 40 to provide groupings of approximately uniforright. The
40 rats in each group were randomly assigned to the 40 treédm&ody
weight and food consumption were measured twice weeklyttatesponse
we consider is average daily weight gain over 21 days.

This is a randomized complete block design. Initial bodygheiis a
good predictor of body weight in 3 weeks, so the rats werekaddy initial
weight in an attempt to find homogeneous groups of units. &lage 40
treatments, which have an eight by five factorial structure.

13.2.1 Why and when to use the RCB

We use an RCB to increase the power and precision of an expetiby

decreasing the error variance. This decrease in errornaiss achieved
by finding groups of units that are homogeneous (blocks) aneffect,

repeating the experiment independently in the differentké. The RCB
is an effective design when there is a single source of extras variation
in the responses that we can identify ahead of time and usartitign the

units into blocks. Blocking is done at the time of randonizat you can't

construct blocks after the experiment has been run.
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There is an almost infinite number of ways in which units cagioeiped
into blocks, but a few examples may suffice to get the ideassacie would
like to group into blocks on the basis of homogeneity of trepomses, but
that is not possible. Instead, we must group into blocks erb#sis of other
similarities that we think may be associated with responses

Some blocking is fairly obvious. For example, you need milkrtake
cheese, and you get a new milk supply every day. Each batclilohmakes Block on batch
slightly different cheese. If your batches are such thatganumake several
types of cheese per batch, then blocking on batch of raw rabi®a natural.

Units may be grouped spatially. For example, some units nedgdated
in one city, and other units in a second city. Or, some unitg b&in cages
on the top shelf, and others in cages on the bottom shelf.clbiismon for Block spatially
units close in space to have more similar responses, sabkp#icking is
also common.

Units may be grouped temporally. That is, some units maydsged or
measured at one time, and other units at another time. Farggayou may
only be able to make four measurements a day, and the ingttunss need  Block temporally
to be recalibrated every day. As with spatial grouping, ainlbse in time
may tend to have similar responses, so temporal blockingrismon.

Age and gender blocking are common for animal subjects. Sores
units have a “history.” The number of previous pregnanciesabe a block-  Age, gender, and
ing factor. In general, any source of variation that youkhiray influence the history blocks
response and which can be identified prior to the experingeatdandidate
for blocking.

13.2.2 Analysis for the RCB

Now all the hard work in the earlier chapters studying analysethods pays

off. The design of an RCB is new, but there is nothing new inathalysis of Nothing new in
an RCB. Once we have the correct model, we do point estimzdefidence analysis of RCB
intervals, multiple comparisons, testing, residual asialyand so on, in the

same way as for the CRD.

Lety;; be the response for thith treatment in thgth block. The standard
model for an RCB has a grand mean, a treatment effect, a bftatt,eand
experimental error, asin Blocks usually
assumed additive

Yij =kt o + B+ €5

This standard model says that treatments and blocks arévaddio that
treatments have the same effect in every block and blockssamie to shift
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Figure 13.1: Models for a Randomized Complete Block.

the mean response up or down. Hasse diagrams (a) or (c) imeFigul
correspond to this standard model.

To complete the model, we must decide which terms are randam a
which are fixed; we must also decide whether to use the stdrathtitive
model given above or to allow for the possibility that treatrts and blocks
interact. Fortunately, all variations lead to the same ajp@nal analysis pro-
cedure for the RCB design. Figure 13.1 shows Hasse diag@nfieur dif-
ferent sets of assumptions for the RCB. Panels (a) and (bjresthe blocks
are fixed, and panels (c) and (d) assume the blocks are ranBanels (a)
and (c) assume that blocks do not interact with treatmestm(tne standard
model above), and panels (b) and (d) include an interacttwden blocks
and treatments. In all four cases, we will use the- 1)(¢ — 1) degree of
freedom term below treatments as the denominator for treatsn This is
true whether we think that the treatments are fixed or randdmaj differs is
how this denominator term is interpreted.
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In panels (a) and (c), where we assume that blocks and tratdraees
additive, the(r — 1)(¢g — 1) degree of freedom term is the usual error and
the only random term below treatments. In panel (d), thimitisrthe block Denominator for

by treatment interaction and is again the natural denowiiriat treatments. treatments is
In panel (b), the correct denominator for treatments isdigrbut “error” (r=1(g—-1)
cannot be estimated because we have 0 degrees of freedomdofanly degree of
one observation for each treatment in each block). Insteadnust use the freedom

interaction or

block by treatment interaction as a surrogate for error andgnize that this error

surrogate error may be too large if interaction is indeedgmé Thus we will
arrive at the same inferences regardless of our assummioreandomness
of blocks and interaction between treatments and blocks.

The computation of estimated effects, sums of squaresrasiat and so
on is done exactly as for a two-way factorial. In this thedelwe are using
to analyze an RCB is just the same as a two-way factorial veifiiagation
n = 1, even though thdesignof an RCB is not the same.

One difference between an RCB and a factorial is that we ddrgot
to make inferences about blocks, even though the machifesyramodel

allows us to do so. The reason for this goes back to thinking-désts as Do not test
approximations to randomization tests. Under the RCB ranigation, units blocks—they
are assigned at random to treatments, but units alwaysrstag same block. were not
Thus the block effects and sums of squares are not randontharelis no randomized

test for blocks; blocks simply exist. More pragmatically tlocked because
we believed that the units within blocks were more similarfisding a block
effect is not a major revelation.

Mealybugs, continued Example 13.3

We take as our response the mean of the two measurementsfobmanch
from Table 13.1. The ANOVA table follows:

DF SS MS F-stat p-value
Blocks 4 686.4 171.60
Treatments 2 432.03 216.02 12.2 .0037
Error 8 141.8 17.725

There is fairly strong evidence for differences in mealybligtween the
treatments, and there is no evidence that assumptions vodated.

Looking more closely, we can use pairwise comparisons ton@athe
differences. We compute the pairwise comparisons (HSD'EQID’'s or
whatever) exactly as for ordinary factorial data. The ulidediagram below
shows the HSD at the 5% level:
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Water
-4.57

Spores  Oil
-2.97 7.53

Here we see that spores treatment cannot be distinguisbiedtfre control
(water) treatment, but both can be distinguished from thizeatment.

The usual assumption made for an RCB model is that blocksraat t
ments do not interact. To some degree this assumption isdaro us, be-
cause as we saw from the Hasse diagrams, there is little wdaesides
assume additivity. When the treatments have a factoriatttre, we could
have a model with blocks random and interacting with theotegrifactors. In
such a model, the error for factor A would be the A by blockiiattion, the
error for factor B would be the B by block interaction, and so blowever,
the standard model allows treatment factors to interacereds blocks are
still additive.

Assuming that blocks and treatments are additive does nkeé rireem
so. One thing we can do with potential interaction in the RGBnvesti-
gate transformable nonadditivity using Tukey one-degregeedom proce-
dures. When there is transformable nonadditivity, reesging the data on
the appropriate scale can make the data more additive. Wigedata are
more additive, the term that we use as error contains lesgiion and is a
better surrogate for error.

13.2.3 How well did the blocking work?

The gain from using an RCB instead of a CRD is a decrease in@&riance,
and the loss is a decrease in error degrees of freedam-by ). This loss is
only severe for small experiments. How can we quantify oim galoss from
an RCB? As discussed above, the “F-test” for blocks doesaroeéspond to
a valid randomization test for blocks. Even if it did, knogisimply that the
blocks are not all the same does not tell us what we need to:kmowmuch
have we saved by using blocks? We need something other thdrtist to
measure that gain.

Suppose that we have an RCB and a CRD to test the same trestment

both designs have the same total size N, and both use the sgmulkaton of
units. The efficiency of the RCB relative to the CRD is the dadty which
the sample size of the CRD would need to be increased to hasathe in-
formation as the RCB. (Information is a technical term; kharfi two designs
with the same information as having approximately the saoneep or yield-
ing approximately the same length of confidence interval®} example,
if an RCB with fifteen units has relative efficiency 2, then alC&sing the
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same population of units would need 30 units to obtain theedaformation.
Units almost always translate to time or money, so redudinigy blocking
is one good way to save money.

Efficiency is denoted by E with a subscript to identify theigas be-
ing compared. The relative efficiency of an RCB to a CRD is giiethe

following formula: Relative
efficiency is the
5 (Wb + 1) (Vera +3) 024 ratio of variances
RCB:CRD (Vrcb T 3)(%”[ T 1) Ugd) ) tlmesoaflgzgaeoerz

wherec? ; anda?,, are the error variances for the CRD and RGB,, = adjustment

(r — 1)(g — 1) is the error degrees of freedom for the RCB design, and

verqa = (r — 1)g is the error degrees of freedom for the CRD of the same

size. The first part is a degrees of freedom adjustment; neggmust be

estimated and we get better estimates with more degreeserdldm. The

second part is the ratio of the error variances for the twiediht designs.

The efficiency is determined primarily by this ratio of vart&s; the degrees

of freedom adjustment is usually a smaller effect.

We will never know the actual variances,, or o2,,; we must estimate
them. Suppose that we have conducted an RCB experiment. Véstmate
o2, usingM S for the RCB design. We estimaté, , via Estimate o2,
with a weighted
9 (r—1)MSgjocks + ((9 — 1)+ (r —1)(g — 1)) M Sg average of M Sg
Ocrd = and M S,

=D+ -0+ =01 Blocks

This is the weighted average &f Sgjocks and M Si with M Sgiocks having

weight equal to the degrees of freedom for blocks ah8x having weight

equal to the sum of the degrees of freedom for treatment aond érhis is

notthe result of simply pooling sums of squares and degreegetlom for

blocks and error in the RCB.

Mealybugs, continued Example 13.4

For the mealybug experiment, we haye- 3,7 =5, v, = (r—1)(g—1) =
8, Verq = g(r — 1) = 12, M Sgjocks = 171.6, andM Sg = 17.725, so we get

. 4x171.6 + (24 8) x 17.725
2

= = 61.
Ocrd 41+2+8 61.69 s
(Vrcb + 1)(Vc7-d + 3) o 9 X 15 . 944
(Ve +3)(Verg +1) 11 x 13 777

(Vrcb + 1)(VCT’d + 3) a-\grd
(Vrcb + 3)(Vcrd + 1) MSE ’

ERrcB:cRD =



324

Complete Block Designs

Balance makes
inference easier

Treatments
adjusted for
blocks

Example 13.5

We had five units for each treatment, so an equivalent CRD dvbake
needed x 3.29 = 16.45, call it seventeen units per treatment. This blocking
was rather successful. Observe that even in this fairly lsewgleriment, the
loss from degrees of freedom was rather minor.

13.2.4 Balance and missing data

The standard RCB is balanced, in the sense that each treaiooems once in
each block. Balance was helpful in factorials, and it is hglip randomized
complete blocks for the same reason: it makes the calcokéind inference
easier. When the data are balanced, simple formulae candak esactly
as for balanced factorials. When the data are balancedn@ddmillion
to all the responses in a given block does not change anyasiritetween
treatment means.

Missing data in an RCB destroy balance. The approach toenéeris to
look at treatment effects adjusted for blocks. If the tresita are themselves
factorial, we can compute whatever type of sum of squareeelds appro-
priate, but we always adjust for blocks prior to treatmemtse reason is that
we believed, before any experimentation, that blocks tdfibthe response.
We thus allow blocks to account for any variability they cafdre exam-
ining any additional variability that can be explained bgatments. This
“ordering” for sums of squares and testing does not affexfitial estimated
effects for either treatments or blocks.

13.3 Latin Squares and Related Row/Column Designs

Randomized Complete Block designs allow us to block on deisgurce of
variation in the responses. There are experimental sitstvith more than
one source of extraneous variation, and we need designsdee situations.

Addled goose eggs

The Canada goos®(anta canadens)ss a magnificent bird, but it can be
a nuisance in urban areas when present in large numbers. @podapon
control method is to addle eggs in nests to prevent them fratching. This
method may be harmful to the adult females, because the ésrfedt while
incubating and tend to incubate as long as they can if theaggsnhatched.
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Would the removal of addled eggs at the usual hatch date mrévese po-
tential side effects?

An experiment is proposed to compare egg removal and no egoved
treatments. The birds in the study will be banded and obdenvthe future
so that survival can be estimated for the two treatments. duspected that
geese nesting together at a site may be similar due to boiloamental
and interbreeding effects. Furthermore, we know older femtend to nes
earlier, and they may be more fit.

We need to block on both site and age. We would like each tesatto
be used equally often at all sites (to block on populaticas)l, we would like
each treatment to be used equally often with young and ol t{io block
on age).

A Latin Square (LS) is a design that blocks for two sourcesamiation.
A Latin Square design fog treatments useg® units and is thus a little re-
strictive on experiment size. Latin Squares are usuallggreed pictorially.
Here are examples of LS designs fo 2,3, and4 treatments:

A|B|C|D
Bl A ggi B|/A|D|C
A|B clalB C|D|A|B
D|C|BJ|A

The ¢2 units are represented as a square (what a surprise!). Byotom,
the letters A, B, and so on represent theifferent treatments. There are two
blocking factors in a Latin Square, and these are repredéytthe rows and
columns of the square. Each treatment occurs once in eaclamdvonce
in each column. Thus in the goose egg example, we might have coe
and two be different nesting sites, with column one beingngphirds and
column two being older birds. This square uses four unitg, ywung and
one old bird from each of two sites. Using the two by two squatyeve,
treatment A is given to the site 1 old female and the site 2 gdamale, and
treatment B is given to the site 1 young female and the sitel 2ephale.

Look a little closer at what the LS design is accomplishirfigiol ignore
the row blocking factor, the LS design is an RCB for the coluphocking
factor (each treatment appears once in each column). Ifgrore the col-
umn blocking factor, the LS design is an RCB for the row blagkfactor
(each treatment appears once in each row). The rows and eslare also
balanced because of the square arrangement of units. A&qtiare blocks
on both rows and columrgmultaneously

LS has g2 units
for g treatments
and blocks two

ways

Each treatment
once in each row
and column

Rows and
columns of LS
form RCBs
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Crossover design
has subject and
time period blocks

Example 13.6

We use Latin Squares because they allow blocking on two ssust
variation, but Latin Squares do have drawbacks. First, glesibatin Square
has exactly? units. This may be too few or even too many units. Second,
Latin Squares generally have relatively few degrees ofiiveefor estimating
error; this problem is particularly serious for small desigThird, it may be
difficult to obtain units that block nicely on both sourcesvafiation. For
example, we may have two sources of variation, but one safreariation
may only havey — 1 units per block.

13.3.1 The crossover design

One of the more common uses for a Latin Square arises wheruarsesof
treatments is given to a subject over several time periodsn&éd to block

on subjects, because each subject tends to respond diljeeamd we need to
block on time period, because there may consistent difteeover time due

to growth, aging, disease progression, or other factorsroAsoverdesign
has each treatment given once to each subject, and has eairhdnt occur-
ring an equal number of times in each time period. Witineatments given

to g subjects ovey time periods, the crossover design is a Latin Square. (We
will also consider a more sophisticated view of and analgsithe crossover
design in Chapter 16.)

Bioequivalence of drug delivery

Consider the blood concentration of a drug after the drugoeas adminis-

tered. The concentration will typically start at zero, E&se to some maxi-
mum level as the drug gets into the bloodstream, and therdseback to
zero as the drug is metabolized or excreted. These timeeotiation curves
may differ if the drug is delivered in a different form, sayablet versus a
capsule. Bioequivalence studies seek to determine ifrdiftedrug delivery

systems have similar biological effects. One variable tmgare is the area
under the time-concentration curve. This area is propuaatito the average
concentration of the drug.

We wish to compare three methods for delivering a drug: atisolua
tablet, and a capsule. Our response will be the area undémbeoncentra-
tion curve. We anticipate large subject to subject diffee=n so we block on
subject. There are three subjects, and each subject wilives ¢ghe drug
three times, once with each of the three methods. Becaudeotiye may
adapt to the drug in some way, each drug will be used once ffirgh@eriod,
once in the second period, and once in the third period. TaBl2 gives
the assignment of treatments and the responses (data friewrnSznd Hall
1984). This Latin Square is a crossover design.
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Table 13.2: Area under the curve for administering a drug via
A—solution, B—tablet, and C—capsule. Table entries are
treatments and responses.

Subject
1 2 3

1 A 1799 C 2075 B 1396
Period 2 C 1846 B 1156 868
3 B 2147 A 1777 C 2291

>

13.3.2 Randomizing the LS design

Itis trivial to produce an LS for any number of treatmegpt#\ssign the treat-

ments in the first row in order. In the remaining rows, shift &l the treat-

ments in the row above, bringing the first element of the roawataround to One LS is easy,
the end of this row. The three by three square on page 325 wdsiged in random LS is
this fashion. Itis much less trivial to choose a square rargoln principle, harder
you assign treatments to units randomly, subject to theicgshs that each

treatment occurs once in each row and once in each columrefieating

that randomization is harder than it sounds.

The recommended randomization is described in Fisher ates {896 3).
This randomization starts witstandard squaresvhich are squares with the Standard squares
letters in the first row and first column in order. The threelngé and four
by four squares on page 325 are standard squareg. ¢fd2, 3, 4, 5, and 6,
there are 1, 1, 4, 56, and 9408 standard squares. Appendinta@ine several
standard Latin Square plans.

The Fisher and Yates randomization goes as follows. grair 3, 4, or
5, first choose a standard square at random. Then randomiyupemll
rows except the first, randomly permute all columns, and oang assign Fisher-Yates
the treatments to the letters. Fpof 6, select a standard square at random, randomization
randomly permute all rows and columns, and randomly ashigtréatments
to the letters. Foy of 7 or greater, choose any square, randomly permute the
rows and columns, and randomly assign treatments to tleedett

13.3.3 Analysis for the LS design

The standard model for a Latin Square has a grand mean, sftactow Additive
and column blocks and treatments, and experimental ertry;l;, be the treatment, row,
response from the unit given thith treatment in thgth row block andkth and column

column block. The standard model is effects
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Usual formulae
still work for LS

Yijk = b+ i + B + e + €k

whereq; is the effect of theéth treatment; is the effect of thg row block,
and~; is the effect of théith column block. As with the RCB, block effects
are assumed to be additive.

Here is something new: we do not observegdlbf thei, j, k combina-
tions in an LS; we only obserwg# of them. However, the LS is constructed
so that we have balance when we look at rows and columns, nosvEeat-
ments, or columns and treatments. This balance impliescthvatasts be-
tween rows, contrasts between columns, and contrasts &etiveatments
are all orthogonal, and the standard calculations for &ffetims of squares,
contrasts, and so on work for the LS. Thus, for example,

ai = Yieo — Yoo
g
SSt = > ga;°

i=1

Note thatg,,, andy,,, are means ovey> andg units respectively. The sum
of squares for error is usually found by subtracting the safrequares for
treatments, rows, and columns from the total sum of squares.

The Analysis of Variance table for a Latin Square design lasces
for rows, columns, treatments, and error. We test the nylbthesis of no
treatment effects via the F-ratio formed by mean squareréatinents over
mean square for error. As in the RCB, we do not test row or colblocking.
Here is a schematic ANOVA table for a Latin Square:

Source SS DF MS F

ROWS SSROWS g - 1 SSROWS/(Q - 1)

Columns  SScois g—1 SScos/(g—1)

Treatments SStn g—1 SSm/(g—1) M St /MSE
Error SSg (9g—=2)(g—1) SSe/llg—2)(g—1)]

Few degrees of
freedom for error

There is no intuitive rule for the degrees of freedom for efgo— 2)(g — 1);
we just have to do our sums. Start with the total degrees efitysg? and
subtract one for the constant and all the degrees of freedaimei model,
3(g — 1). The difference igg — 2)(¢g — 1). Latin Squares can have few
degrees of freedom for error.
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Listing 13.1: SAS output for bioequivalence Latin Square.

General Linear Models Procedure

Dependent Variable: AREA

Source DF
Model 6
Error 2
Source DF
PERIOD 2
SUBJECT 2
TRT 2

Sum of
Squares

1798011.33

8989.56
Type I SS
928005.556

261114.889
608890.889

29

Mean

464
130
304

Mean
Square F Value Pr > F
9668.56 66.67 0.0149
4494.78
Square F Value Pr > F
002.778 103.23 0.0096
557.444 29.05 0.0333
445.444 67.73 0.0145 [

Tukey’s Studentized Range (HSD) Test for variable: AREA

Alpha= 0.05 df= 2
Critical Value of Studentized Range= 8.331
Minimum Significant Difference= 322.46

MSE= 44

94.778

Means with the same letter are not significantly different.

Tukey Grouping

Bioequivalence, continued

A

W W w

Mean

2070.67

1566.33

1481.33

N TRT

Example 13.7

Listing 13.1 shows the ANOVA for the bioequivalence datarfréable 13.2.
There is reasonable evidence against the null hypothestislithree meth
ods have the same area under the cupvealue .01451. Looking at the
Tukey HSD outputl, it appears that treatment 3, the capsule, gives a higher

area under the curve than the other two treatments.
Note that this three by three Latin Square has only 2 degfidfesemiom

for error.

The output in Listing 13.1 shows F-tests for both period argjexct. We
should ignore these, because period and subject are umnietbblocking
factors. The software does not know this and simply comperiests for all

model terms.
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and error
estimates
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Reusability
depends on
experiment and
logistics

Example 13.8

13.3.4 Replicating Latin Squares

Increased replication gives us better estimates of errdrirmsreased power
through averaging. We often need better estimates of emraSi designs,
because a single Latin Square has relatively few degreeseddm for error
(for example, Listing 13.1). Thus using multiple Latin Scggin a single
experiment is common practice.

When we replicate a Latin Square, we may be able to “reuse”aow
column blocks. For example, we may believe that the peridects in a
crossover design will be the same in all squares; this rahegseriod blocks
across the squares. Replicated Latin Squares can reusmtodimd column
blocks, reuse neither row nor column blocks, or reuse ond®frow or
column blocks. Whether we reuse any or all of the blocks wheligating an
LS depends on the experimental and logistical constra@ume blocks may
represent small batches of material or time periods wherthgeds fairly
constant; these blocks may be unavailable or have been m@usprior to
the second replication. Other blocks may represent equipthat could be
reused in principle, but we might want to use several pie€egipment at
once to conclude the experiment sooner rather than later.

From an analysis point of view, the advantage of reusing akbfac-
tor is that we will have more degrees of freedom for error. Tikke when
reusing a block factor is that the block effects will actyalhange, so that
the assumption of constant block effects across the sqisaraslid.

Carbon monoxide emissions

Carbon monoxide (CO) emissions from automobiles can besnfled by the
formulation of the gasoline that is used. In Minnesota, we ‘exygenated
fuels” in the winter to decrease CO emissions. We have foswlgee blends,
the combinations of factors A and B, each at two levels, anavish to test
the effects of these blends on CO emissions in nonlaboratorgtitions, that
is, in real cars driven over city streets. We know that theeecar to car
differences in CO emissions, and we suspect that there ate to route
differences in the city (stop and go versus freeway, for gdajn With two
blocking factors, a Latin Square seems appropriate. Weugdlthree squares
to get enough replication.

If we have only four cars and four routes, and these will bediseall
three replications, then we are reusing the row and columckirlg factors
across squares. Alternatively, we might be using only faus cbut we have
twelve different routes. Then we are reusing the row blockss), but not
the column blocks (routes). Finally, we could have twelves@nd twelve
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routes, which we divide into three sets of four each to creqtmres. For thi
design, neither rows nor columns is reused.

The analysis of a replicated Latin Square varies slightlgeseling on
which blocks are reused. L@}, be the response for treatmeni row j
and columnk of squard. There arg treatments (and rows and columns in  Models depend

each block) anan squares. Consider the provisional model on which blocks
are reused

Yijki = 1+ i + B0y + Yy + 00+ €ijrar -

This model has an overall meanthe treatment effects;, square effects;,
and row and column block effectt ;) and~; ;). As usual in block designs,
block effects are additive.

This model has row and column effects nested in square, $cHth
square will have its own set of row and column effects. Thiglatas ap-
propriate when neither row nor column blocks are reused. degrees of Df when neither
freedom for this model are one for the grand mean; 1 between treat- rows nor columns
ments,n — 1 between squares;(g — 1) for each of rows and columns, and reused
(mg —m —1)(g — 1) for error.

The model terms and degrees of freedom for the row and collauk b
effects depend on whether we are reusing the row and/or ecohiotks.
Suppose that we reuse row blocks, but not column blocksjnmguslumns
but not rows can be handled similarly. The model is now

Yijkl = 1+ o + B + k) + 0+ €k
and the degrees of freedom are one for the grand mean, between treat- Df when rows
ments,m — 1 between squareg, — 1 between rowsm(g — 1) between reused

columns, andmg — 2)(g — 1) for error. Finally, consider reusing both row
and column blocks. Then the model is

Yijkl = P+ + B + vk + 0 + €ijrt

and the degrees of freedom are one for the grand mean, between treat- Df when rows and

ments, rows and columns, — 1 between squares, aohg +m —3)(g — 1) columns reused
for error.
CO emissions, continued Example 13.9

Consider again the three versions of the CO emissions exagiy@n above
The degrees of freedom for the sources of variation are
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Estimated effects
and sums of
squares follow the
usual patterns

Can combine
between squares
with columns

4 cars, 4 routes 4 cars, 12 routes 12 cars, 12 routes

Source DF DF DF
Squares (m—1)= (m—1)= (m—1)=2
Cars (9—1)= (9-1)= m(g—1)=9
Routes (g—1)= m(g—1) = m(g—1)=9
Fuels (g—1)=3 (g—1)=3 (9g—1)=3
orA 1 1 1
B 1 1 1
AB 1 1 1
Error  (mg+m-=3)(g—1) (mg-2)(g—1) (mg—m—1)(g—1)
=12x3=36 =10x3=30 =8x3=24
or
Error 47 - 11 =36 47 - 17 =30 47 -23 =24

Note that we have computed error degrees of freedom twice by apply-
ing the formulae, and once by subtracting model degreeseefibm from
total degrees of freedom. | usually obtain error degreesaafdfom by sub-
traction.

Estimated effects follow the usual patterns, because dénargh we do
not see all thé;jkl combinations, the combinations we do see are such that
treatment, row, and column effects are orthogonal. So,Xamgple,

ai = yiooo ~ Yeeoo
5l = Yesel — Yoose -

If row blocks are reused, we have

ﬁ] = gojoo — Voooe

and if row blocks are not reused we have

Bit) = Yejer — 01 — [k
= yojol_yoool :

The rules for column block effects are analogous. In all sae sum of
squares for a source of variation is found by squaring arcgffeultiplying
that by the number of responses that received that effedtadding across
all levels of the effect.

When only one of the blocking factors (rows, for examplegissed, it is
fairly common to combine the terms for “between squares™(1 degrees of
freedom) and “between columns within squares{§ — 1) degrees of free-
dom) into an overall between columns factor wjth — 1 degrees of freedom.
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Table 13.3: Area under the curve for administering a drug via
A—solution, B—tablet, and C—capsule. Table entries are
treatments and responses.

Period

Subject 1 2 3

1 A 1799 C 1846 B 2147
2 C 2075 B 1156 A 1777
3 B 1396 A 868 C 2291
4 B 3100 A 3065 C 4077
5 C 1451 B 1217 A 1288
6 A 3174 C 1714 B 2919
7 C 1430 A 836 B 1063
8 A 1186 B 642 C 1183
9 B 1135 C 1305 A 984
10 C 873 A 1426 B 1540
11 A 2061 B 2433 C 1337
12 B 1053 C 1534 A 1583

This is not necessary, but it sometimes makes the softwamenamds easier.
Note that when neither rows nor columns is reused, you cajetaombined

m(g — 1) degrees of freedom terms for both rows and columns at the same
time. The “between squares” sums of squares and degreeedbim comes
from contrasts between the means of the different squatsambe con-
sidered as either a row or column difference, but it cannatdmebined into
bothrows and columns in the same analysis.

Bioequivalence (continued) Example 13.10

Example 13.6 introduced a three by three Latin Square forpeosimg deliv-

ery of a drug via solution, tablet, and capsule. In fact, thassover desig
includedm = 4 Latin Squares. These squares involve twelve different §ub-
jects, but the same three time periods. Data are given ireTeB.

Listing 13.20 gives an Analysis of Variance for the complete bioeqyiv-
alence data. The residuals show some signs of nonconstéaraeg, but th
power 1 is reasonably within a confidence interval for the Bk transfor-
mation and the residuals do not look much better on the logiartgr powe
scale, so we will stick with the original data.
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Listing 13.2: SAS output for bioequivalence replicated Latin Square.

Dependent Variable: AREA
Sum of Mean
Source DF Squares Square F Value Pr > F
Error 20 4106499.6 205325.0
SQ 3 8636113.56 2878704.52 14.02 0.0001
PERIOD 2 737750.72 368875.36 1.80 0.1916
SUBJECT 8 7748946.67 968618.33 4.72 0.0023
TRT 2 81458.39 40729.19 0.20 0.8217 [
Sum of Mean
Source DF Squares Square F Value Pr > F
Error 14 2957837.9 211274.1
SQ 3 8636113.56 2878704.52 13.63 0.0002
PERIOD 2 737750.72 368875.36 1.75 0.2104
SUBJECT 8 7748946.67 968618.33 4.58 0.0065
TRT 2 81458.39 40729.19 0.19 0.8268
SQ*TRT 6 1148661.61 191443.60 0.91 0.5179 [
Level of Level of = = -——---————- AREA----———————- ]
SQ TRT N Mean SD
1 1 3 1481.33333 531.27614
1 2 3 1566.33333 516.99162
1 3 3 2070.66667 222.53165
2 1 3 2509.00000 1058.82057
2 2 3 2412.00000 1038.84984
2 3 3 2414.00000 1446.19120
3 1 3 1002.00000 175.69291
3 2 3 946.66667 266.29370
3 3 3 1306.00000 123.50304
4 1 3 1690.00000 330.74613
4 2 3 1675.33333 699.88309
4 3 3 1248.00000 339.36853
Sum of Mean
Source DF Squares Square F Value Pr > F [
——————————————————————————————————— SQ=1 - -\ - - —— -
Error 2 8989.56 4494.78
TRT 2 608890.889 304445 .444 67.73 0.0145
——————————————————————————————————— SQ=2 - --—— - -
Error 2 937992.67 468996.33
TRT 2 18438.00 9219.00 0.02 0.9807
——————————————————————————————————— SQ=3 -—-————-——— - ————————
Error 2 46400.889 23200.444
TRT 2 224598.222 112299.111 4.84 0.1712
——————————————————————————————————— SQ=4 ——-—m -
Error 2 327956.22 163978.11
TRT 2 378192.889 189096.444 1.15 0.4644
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Note that the complete data set is compatible with the nylofiyesi
of no treatment effects. Those of you keeping score mayIrioat Exam-
ple 13.7 that the data from just the first square seemed todtalthat ther
were differences between the treatments. Alsaithey in the complete dat
is about 45 times bigger than for the first square. What hapdragal?

Here are three possibilities. First, the subjects may ne¢ lheen num
bered in a random order, so the early subjects could be sgfitaity dif-
ferent from the later subjects. This can lead to some drandifferences
between analysis of subsets and complete sets of data,ltiveaidnave no
real evidence of that here.

Second, there could be subject by treatment interactioimgyirise to
different treatment effects for different subsets of thead®ur Latin Squa:j
blocking model is based on the assumption of additivity,ibigraction coul
be present. The error term in our ANOVA contains any effeotsaxplicitly
modeled, so it would be inflated in the presence of subjectdatnent in-
teraction, and interaction could obviously lead to diffearreatment effect
being estimated in different squares.

We explore this somewhat at of Listing 13.2, which shows a secorfd
ANOVA that includes a square by treatment interaction. Taim explain
a reasonable sum of squares, but is not significant as a 6edetyfreeedom
mean square. Listing 13[2 shows the response means separately by sduare
and treatment. Means by square for treatments 1 and 2 areadjgmst too
far apart. The mean for treatment 3 is higher than the otheritvequares
1 and 3, about the same in square 2, and lower in square 4. Tdradtion
contrast making this comparison has a large sum of squang¢st is not
significant after making a Scheffé adjustment for havingadaooped. This
is suggestive that the effect of treatment 3 depends on clubjet certainly|
not conclusive; a follow up experiment may be in order.

Third, we may simply have been unlucky. Listing 1312shows error
and treatment sums of squares for each square separately/%h in the
first square is unusually low, and tiié St; is somewhat high. It seems mgst
likely that the results in the first square appear significastto an unusuall
small error mean square.

13.3.5 Efficiency of Latin Squares

We approach the efficiency of Latin Squares much as we didftloeeacy
of RCB designs. That is, we try to estimate by what factor grae sizes
would need to be increased in order for a simpler design te laavmuch



336

Complete Block Designs

Efficiency of LS
relative to RCB or
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Error degrees of
freedom

E1s:rcB

Eis:crp

information as the LS design. We can compare an LS design ®RGB
by considering the elimination of either row or column blsckr we can
compare an LS design to a CRD by considering the eliminatidooth row
and column blocks.

As with RCB’s, our estimate of efficiency is the product of tfaators,
the first a correction for degrees of freedom for error andstwond an esti-
mate of the ratio of the error variances for the two designigh W units in a
Latin Square, there arg, = (¢ — 1)(¢g — 2) degrees of freedom for error; if
either row or column blocks are eliminated, thereig = (¢ — 1)(g — 1)
degrees of freedom for error; and if both row and column kdoate elimi-
nated, there are..; = (¢ — 1)g degrees of freedom for error.

The efficiency of a Latin Square relative to an RCB is

(vis + 1) (Vpep +3) Ugcb
(Vis + 3)(Vrep + 1) Ulzs

E| s:rcB=

9

and the efficiency of a Latin Square relative to a CRD is

(V15 + 1) (Vera + 3) Ugrd
(Vs +3)(Vera + 1) 0,

E\ s:crp=

We have already computed the degrees of freedom, so allehstins is the
estimates of variance for the three designs.

The estimated variance for the LS design is simpl\sz from the LS
design. For the RCB and CRD we estimate the error variancleeirsim-
pler design with a weighted average of theSy from the LS and the mean
squares from the blocking factors to be eliminated. The Wty M Sg is
(g— 1)2, the sum of treatment and error degrees of freedom, and tighise
for blocking factors are their degrees of freedgm- 1). In formulae:

52 _ (0= DMSrowst ((9—1) + (9~ 1)(g —2))MSk
reb 209 -1+ (g—1)(g—2)
_ MSrows+ ;g — M5 (row blocks eliminated),
or
52 _ (g—DMScas+ ((9—1) + (9~ 1)(g — 2))MSE
reb 209 -1+ (g-1)(g—2)

_ MScos+ (9~ 1)MSp (column blocks eliminated),

g
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or

52 _ (9 - 1)(MSR0WS‘|‘ MSeo + MSE) + (9 - 1)(9 — 2)MSE
erd 3g—1)+(—-1)(g—2)
M Srows+ M Scois+ (9 — 1) M Sg

= both eliminated
] (both eliminated)

The two versions o2, are for eliminating row and column blocking, re-

spectively.

Bioequivalence, continued

Example 13.7 gave the ANOVA table for the first square of thaegiiva-
lence data. The mean squares for subject, period, and eemar 180,557
464,003; and 4494.8 respectively. All three of these anatriments had ?
degrees of freedom each. Thus we haye= 2, v,.., = 4, andv,,.; = 6. The
estimated variances are

Blocking removed

Neither &7 = 4494.8
. 130,557 + 2 x 4494.8

Subjects 52, = - +3 . — 46516
. 464,003 + 2 x 4494.8

Periods 52, — - +3 X — 157664

1 464 2 x 4494.
30557 4 464,003 4 2 x 449 8:150887.

BOth 83,“1 -

4
The estimated efficiencies are
N
Periods E = g 1 ;;Ej j: i’; ZZ)T? = 29.46
S

Both subject and period blocking were effective, partidyltne period block

ing.

Example 13.11
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13.3.6 Designs balanced for residual effects

Crossover designs give all treatments to all subjects amdsubjects and
periods as blocking factors. The standard analysis insltetens for subject,
period, and treatment. There is an implicit assumptiontt&atesponse in a
given time period depends on the treatment for that period @t at all on

treatments from prior periods. This is not always true. B@meple, a drug

that is toxic and has terrible side effects may alter thearses for a subject,
even after the drug is no longer being given. These effeeislithger after

treatment are calleksidual effect®r carryover effects.

There are experimental considerations when treatmentshianag/ resid-
ual effects. Awashout periods a time delay inserted between successive
treatments for a subject. The idea is that residual effeititsl@crease or per-
haps even disappear given some time, so that if we can désgtinhe into
the experiment between treatments, we won't need to womutahe resid-
ual effects. Washout periods are not always practical omdetaly effective,
so alternative designs and models have been developed.

In an experiment with no residual effects, only the treatrfrem the cur-
rent period affects the response. The simplest form of vasiefffect occurs
when only the current treatment and the immediately precgttieatment
affect the response. A design balanced for residual effectsarryover de-
sign, is a crossover design with the additional constraiat €ach treatment
follows every other treatment an equal number of times.

Look at these two Latin Squares with rows as periods and auuas
subjects.

A|B|C|D A|B|C|D
B|/A|D|C B|D A|C
C|D|A|B C/A|D|B
D|IC|BJ|A D|C|BJ|A

In the first square, A occurs first once, follows B twice, anitbfes D once.
Other treatments have a similar pattern. The first squarersssover design,
but it is not balanced for residual effects. In the seconéeglA occurs first
once, and follows B, C, and D once each. A similar pattern ectar the
other treatments, so the second square is balanced fouatgifiects. When

g is even, we can find a design balanced for residual effeatgysubjects;
wheng is odd, we nee@g subjects (two squares) to balance for residuals
effects. A design that includes all possible orders for thatments an equal
number of times will be balanced for residual effects.
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Table 13.4:Milk production (pounds per 6 weeks) for eighteen cows
fed A—roughage, B—limited grain, and C—full grain.
Cow
Period 1 2 3 4 5 6
1 A 1376 | B2088| C2238| A1863| B1748| C 2012

2 B 1246| C 1864| A1724 | C1755| A 1353 | B 1626
3 C1151| A1392| B1272| B 1462| C 1339| A 1010

Period 7 8 9 10 11 12

1 A 1655 | B1938| C1855| A 1384 | B1640| C 1677
2 B 1517 | C 1804| A 1298 | C 1535| A 1284 | B 1497
3 C1366| A 969 | B1233| B 1289| C 1370| A 1059

Period 13 14 15 16 17 18

1 A 1342 | B 1344 | C1627| A1180| B 1287 | C 1547
2 B 1294 | C 1312| A 1186 | C1245| A1000| B 1297
3 C1371| A 903 | B1066| B 1082| C 1078| A 887

The model for a residual-effects design has terms for subjexiod,
direct effect of a treatment, residual effect of a treatmand error. Specif-
ically, lety;;1; be the response for thigh subject in théth time period; the
subject received treatmenin period] and treatmenj in period! — 1. The Residual-effects

indicesi and! run from 1 tog, andk runs across the number of subjects. Use model has
j = 0to indicate that there was no earlier treatment (that is,n¥he 1 and subject, period,
we are in the first period); then runs from 0 tg. Our model is direct téeatnﬁfntvl

and residua

treatment effects
Yijkl = b+ 06 + B + e + 01 + €kl

whereq; is called the direct effect of treatmeit/3; is called the residual
effect of treatmeny, and~; andd; are subject and period effects as usual.
We make the usual zero-sum assumptions for the block anct dieatment
effects. For thes;'s we assume thaty = 0 and}>%_, 3; = 0. Thatis, we

assume that there is a zero residual effect when in the fatrirent period.

Direct treatment effects are orthogonal to block effects fiave a cross-
over design), but residual effects are not orthogonal ectiireatment effects
or subjects. Formulae for estimated effects and sums ofreguae thus
rather opaque, and it seems best just to let your statigmflvare do its
work.
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Example 13.12

Residuals Versus the Fitted Values

(response is milk)

Standardized Residual

\ \ \
1000 1500 2000
Fitted Value

Figure 13.2: Residuals versus predicted values for the milk
production data on the original scale, using Minitab.

Milk yield

Milk production in cows may depend on their feed. There igéazow to cow
variation in production, so blocking on cow and giving ak ttneatments to
each cow seems appropriate. Milk production for a given clsw tends to
decrease during any given lactation, so blocking on pedaahportant. This
leads us to a crossover design. The treatments of inteegt-arroughage,
B—limited grain, and C—full grain. The response will be thdknpro-
duction during the six week period the cow is on a given feeler@ was
insufficient time for washout periods, so the design wasrizzd for residual
effects. Table 13.4 gives the data from Cochran, Autrey,@aughon (1941)
via Bellavance and Tardif (1995).

A plot of residuals versus predicted values on the origicalesin Fig-
ure 13.2 shows problems (I call this shape the flopping fishg dlot seems
wider on the right than the left, suggesting a lower powetdbitize the vari-
ability. Furthermore, the plot seems bent—Ilow in the midxhe high on the
ends. This probably means that we are analyzing on the wrcalg,sbut it
can indicate that we have left out important terms. Box-Qaygests a log
transformation, and the new residual plot looks much béE&ure 13.3).
There is one potential outlier that should be investigated.
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Listing 13.3: Minitab output for milk yield data.

Analysis of Variance for 1lmilk, using Sequential SS for Tests

Source DF Seq SS Adj SS Seq MS F P
period 2 0.99807 0.99807 0.49903 123.25 0.000
cow 17 0.90727 0.88620 0.05337 13.18 0.000
trt 2 0.40999 0.42744 0.20500 50.63 0.000
rl 1 0.03374 0.02425 0.03374 8.33 0.007
r2 1 0.00004 0.00004 0.00004 0.01 0.917
Error 30 0.12147 0.12147 0.00405

Total 53 2.47058

Term Coef StDev T P

Constant 7.23885 0.00866 835.99 0.000

trt

1 -0.12926 0.01369 -9.44 0.000

2 0.01657 0.01369 1.21 0.236

rl -0.04496 0.01837 -2.45 0.020

r2 -0.00193 0.01837 -0.10 0.917

Listing 13.3 gives an ANOVA for the milk production data oretlog
scale. There is overwhelming evidence of a treatment effEleere is als
reasonably strong evidence that residual effects exist.

The direct effects for treatments 1 and 2 are estimated to.b29 and
.017; the third must be .113 by the zero sum criterion. These &fiae on th
log scale, so roughage and full grain correspond to aboutd@®eases an
increases from the partial grain treatment. The residdetts for treatment
1 and 2 are estimated to be045 and—.002; the third must be .047 by th
zero sum criterion. Thus the period after the roughagertreat tends to b
about 5% lower than might be expected otherwise, and thegafier the
full-grain treatment tends to be about 5% higher.

Most statistical software packages are not set up to haedidual ef-
fects directly. | implemented residual effects in the lastraple by including
two single-degree-of-freedom terms calledandr2. The termsr1 andr2
appear in the model as regression variables. The regresséificients for
r1 andr2 are the residual effects of treatments 1 and 2; the residfieak ®f
treatment 3 is found by the zero-sum constraint to be minestim of the
first two residual effects.

To implement residual effects fgrtreatments, we neegd— 1 termsri,

for ¢ running from 1 tog — 1. Their regression coefficients are the residual
effects of the firsyy — 1 treatments, and the last residual effect is found by

the zero-sum constraint. Begin the construction of tetmwith a column

Implementing
residual effects
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Repeat last
treatment

Residuals Versus the Fitted Values

(response is Imilk)

Standardized Residual
-
|

T T T T T T T T T T
6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7

Fitted Value

Figure 13.3: Residuals versus predicted values for the milk
production data on the log scale, using Minitab.

of all zeroes of lengthV, one for each experimental unit. Set to +1 those
elements inri corresponding to units that immediately follow treatmént
and set to —1 those elementsrin corresponding to units that immediately
follow treatmenyy. In all these t” terms, an observation has a —1 if it follows
treatmeniy; in termri, an observation has a +1 if it follows treatmenall
other entries in ther” terms have zeroes. For example, consider just the first
two cows in Table 13.4, with treatments A, B, C, and B, C, A. Thderm
would be (0, 1, 0, 0O, 0, -1), antb term would be (0, O, 1, 0, 1, -1). Itis
the temporal order in which subjects experience treatméatsdetermines
which treatments follow others, not the order in which thésuare listed

in some display. There are other constructions that givetnect sum of
squares in the ANOVA, but their coefficients may be interpdedifferently.

When resources permit an additional test period for eacjesylzconsid-
erable gain can be achieved by repeating the last treatmeatth subject.
For example, if cow 13 received the treatments A, B, and ) the treat-
ment in the fourth period should also be C. With this struetavery treat-
ment follows every treatment (including itself) an equahtber of times,
and every residual effect occurs with every subject. Thesditions permit
more precise estimation of direct and residual treatmdatsf
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13.4 Graeco-Latin Squares

Randomized Complete Blocks allow us to control one extraaesource of
variability in our units, and Latin Squares allow us to cohtivo sources.

The Latin Square design can be extended to control for ttmeess of extra- Graeco-Latin
neous variability; this is the Graeco-Latin Square. For fmumore sources Squares block
of variability, we use Latin Hyper-Squares. Graeco-Latju&es allow us to three ways

testg treatments using? units blocked three different ways. Graeco-Latin
Squares don't get used very often, because they requirdyarisétricted set
of circumstances to be applicable.

The Graeco-Latin Square is represented a$g g table or square. En-
tries in the table correspond to th& units. Rows and columns of the square
correspond to blocks, as in a Latin Square. Each entry inable thas one  Treatments occur
Latin letter and one Greek letter. Latin letters correspordeatments, as in once in each
a Latin Square, and Greek letters correspond to the thiickbrig factor. The blocking factor
Latin letters occur once in each row and column (they form nL8quare),
and the Greek letters occur once in each row and column (tkeyfarm a
Latin Square). In addition, each Latin letter occurs oncenwiach Greek
letter. Here is a four by four Graeco-Latin Square:

Aa|By | Cé |Dg
BB |Ad | Dy | Ca
Cy|Da|AB|BS
Do |CB | Ba | Ay

Each treatment occurs once in each row block, once in eacimeoblock,
and once in each Greek letter block. Similarly, each kindlo€tk occurs
once in each other kind of block.

If two Latin Squares are superimposed andjalcombinations of letters
from the two squares once, the Latin Squares are caltdtbgonal A Orthogonal Latin
Graeco-Latin Square is the superposition of two orthogbatih Squares. Squares

Graeco-Latin Squares do not exist for all valueg.ofFor example, there
are Graeco-Latin Squares fgrof 3, 4, 5, 7, 8, 9, and 10, buiot for ¢ of 6. No GLSforg =6
Appendix C lists orthogonal Latin Squares fpe 3, 4, 5, 7, from which a
Graeco-Latin Square can be built.

The usual model for a Graeco-Latin Square has terms fontesss and
row, column, and Greek letter blocks and assumes that adetterms are Additive blocks
additive. The balance built into these designs allows ustaur standard  plus treatments
methods for estimating effects and computing sums of sgueoatrasts, and
S0 on, just as for a Latin Square.
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Hyper Squares

The Latin Square/Graeco-Latin Square family of designdesextended
to have more blocking factors. These designs, called Hyp&n Squares,
are rare in practice.

13.5 Further Reading and Extensions

Our discussion of the RCB has focused on its standard forrarewve have

g treatments and blocks of size There are several other possibilities. For
example, we may be able to block our units, but there may nanoeigh
units in each block for each treatment. This leads us to ipdera block
designs, which we will consider in Chapter 14.

Alternatively, we may have more thgrunits in each block. What should
we do now? This depends on several issues. If units are verpé@nsive,
one possibility is to use only units from each block. This preserves the
simplicity of the RCB, without costing too much. If units aepensive, such
waste is not tolerable. If there is some multiplesafnits per block, sagg or
3¢, then we can randomly assign each treatment to two or thriéeinreach
block. This design, sometimes called a Generalized RarmEhComplete
Block, still has a simple structure and analysis. The stahdaodel has
treatments fixed, blocks random, and the treatment by blimt&saction as
the denominator for treatments. Figure 13.4 shows a Hasggash for a
GRCB with g treatmentsy blocks of sizekg units, and» measurement units
per unit.

A third possibility is that units are expensive, but the llszes are not
a nice multiple of the number of treatments. Here, we can ¢oendn RCB
(or GRCB) with one of the incomplete block designs from Ceag#. For
example, with three treatments (A, B, and C) and three blotlsize 5, we
coulduse (A, B, C, A,B)inblock 1, (A, B, C, A, C)inblock 2, af4, B, C,
B, C) in block 3. So each block has one full complement of tkatments,
plus two more according to an incomplete block design.

The final possibility that we mention is that we can have béoekh dif-
ferent numbers of units; that is, some blocks have more tnmts others.
Standard designs assume that all blocks have the same nomigts, so
we must do something special. The most promising approgioisblyop-
timal desigrvia special design software. Optimal design allocatedrireats
to units in such a way as to optimize some criterion; for examwe may
wish to minimize the average variance of the estimatedrtreat effects. See
Silvey (1980). The algorithms that do the optimization avenplicated, but
software exists that will do what is needed (though mosissicdl analy-
sis packages do not). See Cook and Nachtsheim (1989). Ofinyease
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M1

(B) 7{7‘—1) Tg

(g-1)

BT ¢-1e-n

(units)

rgkn
(E) rgk(n—l)

rgk
rg(k—1)

Figure 13.4: Hasse diagram for a Generalized Randomized
Complete Block withy treatmentsy blocks of sizekg units, and
n measurement units per unit; blocks are assumed random.

you were worried, most standard designs such as RCB’s aveé@smal”
designs; we just don't need the fancy software in the stahsitrations.

13.6 Problems

Winter road treatments to clear snow and ice can lead to itrguik the Exercise 13.1
pavement. An experiment was conducted comparing foumresats: sodium
chloride, calcium chloride, a proprietary organic compauemd sand. Traf-
fic level was used as a blocking factor and a randomized cdepleck ex-
periment was conducted. One observation is missing, bedaasspreader

in that district was not operating properly. The responseeis cracks per
mile of treated roadway.

A B C D
Block 1 32 27 36
Block2 38 40 43 33
Block3 40 63 14 27

Our interest is in the following comparisons: chemical usrghysical
(A,B,C versus D), inorganic versus organic (A,B versus @j sodium ver-
sus calcium (A versus B). Which of these comparisons seaja?®ar



346

Complete Block Designs

Exercise 13.2

Exercise 13.3

Exercise 13.4

Exercise 13.5

Grains or crystals adversely affect the sensory qualitfedeads using
dried fruit pulp. A factorial experiment was conducted taedmine which
factors affect graininess. The factors were drying tentpeggthree levels),
acidity (pH) of pulp (two levels), and sugar content (twodks). The exper-
iment has two replications, with each replication usingféedént batch of
pulp. Response is a measure of graininess.

Sugar low Sugar high

Temp. Rep. pHlow pHhigh pHlow pH high
1 1 21 12 13 1

2 21 18 14 8
2 1 23 14 13 1

2 23 17 16 11
3 1 17 20 16 14

2 23 17 17 5

Analyze these data to determine which factors effect gneis, and which
combination of factors leads to the least graininess.

The data below are from a replicated Latin Square with foemtinents;
row blocks were reused, but column blocks were not. Tesréatinent dif-
ferences and use Tukey HSD with level .01 to analyze the psertkeatment
differences.

D44 B26 C67 A77 B51 D62 A71 C49
C39 A45 D71 B74 C63 A74 D67 B47
B52 D49 A81 C88 A74 C75 B60 D58
A73 C58 B76 D100 D8 B79 C74 AG8

Consider replicating a six by six Latin Square three timebemns we
use the same row blocks but different column blocks in thegheplicates.
The six treatments are the factorial combinations of faétat three levels
and factor B at two levels. Give the sources and degrees eddm for the
Analysis of Variance of this design.

Disk drive substrates may affect the amplitude of the sigimained
during readback. A manufacturer compares four substrataminum (A),
nickel-plated aluminum (B), and two types of glass (C and$teen disk
drives will be made, four using each of the substrates. klisthat operator,
machine, and day of production may have an effect on the girs@ these
three effects were blocked. The design and responses (novoits x 10~2)
are given in the following table (data from Nelson 1993, Gristers indi-
cate day):
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Operator
Machine 1 2 3 4
1 Ao 8 Cy 11 D5 2 Bs 8
2 G 7 AB 5 Ba 2 Dy 4
3 D 3 Bd 9 Ay 7 Ca 9
4 By 4 Do 5 C5 9 A 3

Analyze these data and report your findings, including arijgan of the
design.

Ruminant animals, such as sheep, may not be able to quidlkizeugro- Problem 13.1
tein in their diets, because the bacteria in their stomabkera the protein
before it reaches the ruminant’s intestine. Eventuallybtéheteria will die and
the protein will be available for the ruminant, but we aremasted in dietary
changes that will help the protein get past the bacteria atitetintestine of
the ruminant sooner.

We can vary the cereal source (oats or hay) and the proteines¢aoy or
fish meal) in the diets. There are twelve lambs availabletferexperiment,
and we expect fairly large animal to animal differences. FE@diet must be
fed to a lamb for at least 1 week before the protein uptake umeaent is
made. The measurement technique is safe and benign, so waesaaach
lamb more than once. We do not expect any carryover (regidtfatts from
one diet to the next, but there may be effects due to the agitigedambs.

Describe an appropriate designed experiment and its ramdton. Give
a skeleton ANOVA (source and degrees of freedom only).

Briefly describe the experimental design you would choose&zh of Problem 13.2
the following situations.

(&) We wish to study the effects of three factors on corn gieldtrogen
added, planting depth, and planting date. The nitrogen apthdac-
tors have two levels, and the date factor has three leveksteTdre 24
plots available: twelve are in St. Paul, MN, and twelve ar®ase-
mount, MN.

(b) You manage a french fry booth at the state fair and wistotopare
four brands of french fry cutters for amount of potato wast&du
sell a lot of fries and keep four fry cutters and their opensagoing
constantly. Each day you get a new load of potatoes, and ypeicéx
some day to day variation in waste due to size and shape odayat
load. Different operators may also produce different antahwaste.
A full day’s usage is needed to get a reasonable measure t# veasl
you would like to finish in under a week.
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Problem 13.3

Problem 13.4

()

A Health Maintenance Organization wishes to test thecefdf sub-
stituting generic drugs for name brand drugs on patiensfsation.
Satisfaction will be measured by questionnaire after thdyst They
decide to start small, using only one drug (a decongestamwlifiich
they have an analogous generic) and twenty patients at dableio
five clinics. The patients at the different clinics are fromther differ-
ent socioeconomic backgrounds, so some clinic to clini¢atian is
expected. Drugs may be assigned on an individual basis.

For each of the following, describe the design that was usied a skele-
ton ANOVA, and indicate how you would test the various termthie model.

(a) Birds will often respond to other birds that invade theiritory. We

(b)

are interested in the time it takes nesting red-shouldeagds to re-
spond to invading calls, and want to know if that time variesaad-
ing to the type of intruder. We have two state forests thaehad-
shouldered hawks nesting. In each forest, we choose tes @igisn-

dom from the known nesting sites. At each nest, we play twe pre

recorded calls over a loudspeaker (several days apart).c@lhis a
red-shouldered hawk call; the other call is a great horndatallv The
response we measure is the time until the nesting hawks thaveest
to drive off the intruder.

The food science department conducts an experimenttéondime if
the level of fiber in a muffin affects how hungry subjects paethem-
selves to be. There are twenty subjects—ten randomly selecales
and ten randomly selected females—from a large food scielass.
Each subject attends four sessions lasting 15 minutes. eAbdigin-
ning of the session, they rate their hunger on a 1 to 100 sddley
then eat the muffin. Fifteen minutes later they again rati thanger.
The response for a given session is the decrease in hungie Adur
sessions they receive two low-fiber muffins and two high-fibaffins
in random order.

Many professions have board certification exams. Part afe¢htification
process for bank examiners involves a “work basket” of téis&sthe exami-
nee must complete in a satisfactory fashion in a fixed tim@geNew work
baskets must be constructed for each round of examinatdadsnuch effort
is expended to make the workbaskets comparable (in termseodge score)
from exam to exam. This year, two new work baskets (A and Bbairg
evaluated. We have three old work baskets (C, D, and E) to fobasis for
comparison. We have ten paid examinees (1 through 6 aréied¢iiank ex-
aminers, 7 through 9 are noncertified bank examiners netimingnd of their
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training, and 10 is a public accountant with no bank exangir@rperience
or training) who will each take all five tests. There are fivadgrs who will
each grade ten exams. We anticipate differences betweex#meinees and
the graders; our interest is in the exams, which were rarzergo that each
examinee took each exam and each grader grades two of eanh exa
The data follow. The letter indicates exam. Scores are ol®0f and 60

is passing. We want to know if either or both of the new exaragguivalent
to the old exams.

Student Grader

1 2 3 4 5

1 68D 65A T76E 74C 76B

2 68A 77E 84B 65D 75C

3 73C 85B 72D 68E 62A

4 74E 76C 57A 79B 64D

5 80B 71D 76C 59A 68E

6 69D 75E 81B 68A 68C

7 60C 62D 62E 66B 40A

8 70B 55A 62C 57E 40D

9 61E 67C 53A 63D 69B

10 37A 53B 31D 48C 33E

An experiment was conducted to see how variety of soybearce Problem 13.5

rotation practices affect soybean productivity. Thereteue varieties used,
Hodgson 78 and BSR191. These varieties are each used iniffanedt 5-

year rotation patterns with corn. The rotation patterns(hydour years of
corn and then soybeans (C-C-C-C-S), (2) three years of amirtteen two
years of soybeans (C-C-C-S-S), (3) soybean and corn ali@nn&-C-S-C-
S), and (4) five years of soybeans (S-S-S-S-S). Here we omllyza data
from the fifth year.

This experiment was conducted twice in Waseca, MN, and timicam-
berton, MN. Two groups of eight plots were chosen at eachitmeaT he first
group of eight plots at each location was randomly assigoeghd variety-
rotation treatments in 1983. The second group was thenressig 1984.
Responses were measured in 1987 and 1988 (the fifth yearf)ddwo
groups.

The response of interest is the weight (g) of 100 random deeahssoy-
bean plants (data from Whiting 1990). Analyze these datarapdrt your
findings.
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Rotation pattern
Location-Year Variety] 1 2 3 4

W87 1]155 151 147 146

2153 156 159 155

W88 1| 170 159 157 168
2164 170 162 169

L87 1142 135 139 136

2146 138 135 133

L88 1170 155 159 173

2167 162 153 162

Problem 13.6 An experiment was conducted to determine how different sagbvari-

eties compete against weeds. There were sixteen variétggs/beans and
three weed treatments: no herbicide, apply herbicide 2 svatikr planting
the soybeans, and apply herbicide 4 weeks after plantingdjleeans. The
measured response is weed biomass in kg/ha. There were phcat®ns
of the experiment—one in St. Paul, MN, and one in Rosemouhk-Nbr a
total of 96 observations (data from Bussan 1995):

Herb. 2 weeks Herb. 4 weeks No herb.

Variety R StP R StP R StP

Parker 750 1440 1630 890 3590 740
Lambert 870 550 3430 2520 6850 1620
M89-792 | 1090 130 2930 570 3710 3600
Sturdy 1110 400 1310 2060 2680 1510
Ozzie 1150 370 1730 2420 4870 1700
M89-1743| 1210 430 6070 2790 4480 5070
M89-794 | 1330 190 1700 1370 3740 610
M90-1682| 1630 200 2000 880 3330 3030
M89-1946 | 1660 230 2290 2210 3180 2640
Archer 2210 1110 3070 2120 6980 2210
M89-642 | 2290 220 1530 390 3750 2590
M90-317 | 2320 330 1760 680 2320 2700
M90-610 | 2480 350 1360 1680 5240 1510
M88-250 | 2480 350 1810 1020 6230 2420
M89-1006 | 2430 280 2420 2350 5990 1590
M89-1926 | 3120 260 1360 1840 5980 1560

Analyze these data for the effects of herbicide and variety.

Problem 13.7 Plant shoots can be encouraged in tissue culture by exptisngptyle-
dons of plant embryos to cytokinin, a plant growth hormonewklver, some
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shoots become watery, soft, and unviable; this is vitriiizat An experi-
ment was performed to study how the orientation of the embuying expo-
sure to cytokinin and the type of growth medium after expesarcytokinin
affect the rate of vitrification. There are six treatmentbjok are the fac-
torial combinations of orientation (standard and expenita@ and medium
(three kinds). On a given day, the experimenters extractgostirom white
pine seeds and randomize them to the six treatments. Theyesare ex-
posed using the selected orientation for 1 week, and themigatloe selected
medium. The experiment was repeated 22 times on differartirgj days.
The response is the fraction of shoots that are normal (data David Zle-
sak):
Medium 1 Medium 2 Medium 3
Exp. Std. Exp. Std. Exp. Std.
1 .67 34 .46 .26 .63 40
2 .70 42 .69 42 74 A7
3 .86 42 .89 .33 .80 A7
4 .76 53 .74 .60 .78 .53
5 .63 71 .50 29 .63 .29
6 .65 .60 95 1.00 .90 40
7 .73 50 .83 .88 .93 .88
8 .94 75 .94 .75 .80 1.00
9 .93 70 .77 50 .90 .80
10 .71 30 .48 40 .65 .30
11 .83 20 .74 .00 .69 .30
12 .82 50 .72 .00 .63 .30
13 .67 .67 .67 25 .90 42
14 .83 50 .94 40 .83 .33
15 1.00 1.00 .80 33 .90 1.00
16 .95 75 .76 25 .96 .63
17 .47 50 .71 .67 .67 .50
18 .83 50 .94 .67 .83 .83
19 .90 33 .83 .67 .97 .50
20 1.00 50 .69 25 .92 1.00
21 .80 .63 .63 .00 .70 .50
22 .82 .60 .57 40 1.00 .50
Analyze these data and report your conclusions on how @atientand medium
affect vitrification.
An army rocket development program was investigating ttfieces of Problem 13.8

slant range and propellant temperature on the accuracgkét®. The over-
all objective of this phase of the program was to determine these vari-
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ables affect azimuth error (that is, side to side as oppasdistance) in the
rocket impacts.

Three levels were chosen for each of slant range and temperathe
following procedure was repeated on 3 days. Twenty-sevekets are grouped
into nine sets of three, which are then assigned to the natertéevel com-
binations in random order. The three rockets in a group azd fifl at once
in a single volley, and the azimuth error recorded. (Note theteorologi-
cal conditions may change from volley to volley.) The datiofe (Bicking
1958):

Slant range
1 2 3
Days Days Days

1 2 3 1 2 3 1 2 3

-10 22 9 -5 -17 -4 11 -10 1
Temp1l -13 0 7 -9 6 13 -5 10 20
14 -5 12 21 0 20 22 6 24

-15 -25 -15 -14 -3 14 -9 8 14

Temp2 -17 -5 2 15 -1 5 -3 -2 18
7 -11 5 -11 -20 -10 20 -15 -2

-21 -26 -15 -18 -8 0O 13 -5 -8

Temp3 -23 -8 -5 5 5 -13 -9 -18 3
0 -10 0 -10 -10 3 13 -3 12

Analyze these data and determine how slant range and tempeadfect
azimuth error. (Hint: how many experimental units per bdck

Problem 13.9 An experiment is conducted to study the effect of alfalfa hirethe diet

of male turkey poults (chicks). There are nine treatmentsaffment 1 is a
control treatment; treatments 2 through 9 contain alfaléainTreatments 2
through 5 contain alfalfa meal type 22; treatments 6 thrdugbntain alfalfa
meal type 27. Treatments 2 and 6 are 2.5% alfalfa, treatn3eantdl 7 are 5%
alfalfa, treatments 4 and 8 are 7.5% alfalfa. Treatmentsi®are also 7.5%
alfalfa, but they have been modified to have the same calasi¢ise control
treatment.

The randomization is conducted as follows. Seventy-twcspgreight
birds each are set out. Treatments are separately randbtoipens grouped
1-9,10-18, 19-27, and so on. We do not have the responserf@cpd he
response is average daily weight gain per bird for birds &ged14 days in
g/day (data from Turgay Ergul):
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Trt 1-9 10-18 19-27 28-36 37-45 46-54 55-63 64-72
1 2363 19.86 24.00 2211 2538 24.18 23.43 18.75
2 20.70 20.02 2395 19.13 21.21 20.89 2355 22.89
3 1995 18.29 17.61 19.89 2396 2046 2255 17.30
4 2116 19.02 19.38 1946 2048 1954 1996 20.71
5 2371 16.44 20.71 20.16 21.70 21.47 2044 2251
6 20.38 18.68 2091 23.07 2254 21.73 25.04 2322
7 2157 17.38 1955 19.79 20.77 1836 20.32 21.98
8 18.52 18.84 2254 1995 21.27 20.09 19.27 20.02
9 2314 2046 18.14 21.70 2293 21.29 2249

Analyze these data to determine the effects of the treasmemiveight gain.

Implantable pacemakers contain a small circuit board dallsubstrate.

Multiple substrates are made as part of a single “laminate this experi-
ment, seven laminates are chosen at random. We choose @igiitege loca-
tions and measure the length of the substrates at thosel@igitibns on the
seven substrates. Here we give coded respom8ed)() x [response—1.45],
data from Todd Kerkow).

Laminate
Location 1 2 3 4 5 6 7

28 20 23 29 44 45 43
11 20 27 31 33 38 36
26 26 14 17 41 36 36
23 26 18 21 36 36 39
20 21 30 28 45 31 33
16 19 24 23 33 32 39
37 43 49 33 53 49 32
04 09 13 17 39 29 32

O~NOUTAWN P

Analyze these data to determine the effect of location. t{Hivink carefully
about the design.)

The oleoresin of trees is obtained by cutting a tapping gaghe bark
and removing the resin that collects there. Acid treatmeats also im-
prove collection. In this experiment, four tred3igterocarpus kerrij will
be tapped seven times each. Each of the tappings will beettedth a dif-
ferent strength of sulfuric acid (0, 2.5, 5, 10, 15, 25, an#5@rength), and
the resin collected from each tapping is the response (imgyraata from
Bin Jantan, Bin Ahmad, and Bin Ahmad 1987):

Problem 13.10

Problem 13.11
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Problem 13.12

Problem 13.13

Acid strength (%)
Tree 0 25 5 10 15 25 50

1 3 108 219 276 197 171 166
2 2 100 198 319 202 173 304
3 1 43 79 182 123 172 194
4 S5 17 33 78 51 41 70

Determine the effect of acid treatments on resin outputgidl aakes a dif-
ference, which treatments are best?

Hormones can alter the sexual development of animals. Kipisrgnent
studies the effects of growth hormone (GH) and folliclevstiating hormone
(FSH) on the length of the seminiferous tubules in pigs. Thatments are
control, daily injection of GH, daily injection of FSH, anaitl injection of
GH and FSH. Twenty-four weanling boars are used, four froohed six
litters. The four boars in each litter are randomized to the treatments.
The boars are castrated at 100 days of age, and the lengtrefarst) of
the seminiferous tubules determined as response (dataSweenlundet al.
1995).

Litter
1 2 3 4 5 6

Control 1641 1290 2411 2527 1930 2158
GH 1829 1811 1897 1506 2060 1207
FSH 3395 3113 2219 2667 2210 2625
GH+FSH 1537 1991 3639 2246 1840 2217

Analyze these data to determine the effects of the hormamasbaile length.

Shade trees in coffee plantations may increase or decreasageid of
coffee, depending on several environmental and ecolofficidrs. Robusta
coffee was planted at three locations in Ghana. Each lotatss divided
into four plots, and trees were planted at densities of 18570, and 0 trees
per hectare. Data are the yields of coffee (kg of fresh bepér hectare) for
the 1994-95 cropping season (data from Amoah, Osei-Bomsli(Ogppong
1997):

Location 185 90 70 0

1 3107 2092 2329 2017
2 1531 2101 1519 1766
3 2167 2428 2160 1967

Analyze these data to determine the effect of tree densigoffiee produc-
tion.
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A sensory experiment was conducted to determine if conssitmave
a preference between regular potato chips (A) and redwatgabtato chips
(B). Twenty-four judges will rate both types of chips; tweljudges will
rate the chips in the order regular fat, then reduced fatta@dther twelve
will have the order reduced fat, then regular fat. We anditdgudge to judge

differences and possible differences between the firsteewisl chips tasted.

The response is a liking scale, with higher scores indigagireater liking
(data from Monica Coulter):
1 2 3 4 5 6 7 8 9 10 11 12

Afrst 8 5 7 8 7 7 4 9 8 7 717 7
Bsecond 6 6 8 8 4 7 8 9 9 7 5 3

13 14 15 16 17 18 19 20 21 22 23 24

B first 4 6 6 7 6 4 8 6 7 6 8 7
Asecond 7 8 7 8 4 8 7 7 7 8 8 8

Analyze these data to determine if there is a differencekindi between the
two kinds of potato chips.

Find conditions under which the estimated variance for a GRBed
on RCB data is less than the naive estimate pooling sums @freguand
degrees of freedom for error and blocks. Give a heuristioragnt, based on
randomization, suggesting why your relationship is true.

The inspector general is coming, and an officer wishes tongea@aome
soldiers for inspection. In the officer's command are menvamahen of three
different ranks, who come from six different states. Theceffiis trying to
arrange 36 soldiers for inspection in a six by six square wiith soldier from
each state-rank-gender combination. Furthermore, treigd® arrange the
soldiers so that no matter which rank or file (row or columnjnispected
by the general, the general will see someone from each ofixhstates,
one woman of each rank, and one man of each rank. Why is thiep#bd
frustrated?

Problem 13.14

Question 13.1

Question 13.2
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Chapter 14

Incomplete Block Designs

Block designs group similar units into blocks so that vasiatamong units

within the blocks is reduced. Complete block designs, sicR@B and  Not all treatments
LS, have each treatment occurring once in each block. Intetmblock appear in an
designs also group units into blocks, but the blocks do ne¢ leaough units  incomplete block
to accommodate all the treatments.

Incomplete block designs share with complete block dedigasdvan-
tage of variance reduction due to blocking. The drawbacknobinplete
block designs is that they do not provide as much informatienexperi-  Incomplete blocks
mental unit as a complete block design with the same erroanvee. Thus less efficient than
complete blocks are preferred over incomplete blocks wiodéim&an be con-  complete blocks
structed with the same error variance.

Eyedrops Example 14.1

Eye irritation can be reduced with eyedrops, and we wish togare thre

brands of eyedrops for their ability to reduce eye irritati¢There are prob
lems here related to measuring eye irritation, but we senthgde for now.

We expect considerable subject to subject variation, sckirlg on subjec
seems appropriate. If each subject can only be used duriagreatmen
period, then we must use one brand of drop in the left eye aothanbran

in the right eye. We are forced into incomplete blocks of $ize, because
our subjects have only two eyes.

Suppose that we have three subjects that receive brandsi@)aA and
C), and (B and C) respectively. How can we estimate the ergeatifference
in responses between two treatments, say A and B? We canrgetistor-
mation from subject 1 by taking the difference of the A and oenses; thd




358 Incomplete Block Designs

subject effect will cancel in this difference. This firstfdifence has variance
202. We can also get an estimate of A-B by subtracting the B-@ufice in
subject three from the A-C difference in subject two. Agaimbject effects
cancel out, and this difference has variadeé. Similar approaches yield
estimates of A-C and B-C using data from all subjects.

If we had had two complete blocks (three-eyed subjects?) thi# same
unit variance, then we would have had two independent etdsnal A-B
each with varianc@c?. Thus the incomplete block design has more variance
in its estimates of treatment differences than does the timplock design
with the same variance and number of units.

There are many kinds of incomplete block designs. This arapiil
cover only some of the more common types. Several of the iptatablock
designs given in this chapter have “balanced” in their nahis. important
to realize that these designs are not balanced in the seaisalltblock and
factor-level combinations occur equally often. Ratheythie balanced using
somewhat looser criteria that will be described later.

Two general classes of incomplete block designseselvabledesigns

Resolvable andconnectedlesigns. Suppose that each treatment is usi@des in the
designs split into design. A resolvable design is one in which the blocks canrtamged into
replications r groups, with each group representing a complete set ofterds. Resolv-

able designs can make management of experiments simptayu$e each
replication can be run at a different time or a different i or entire
replications can be dropped if the need arises. The eyedw@pm@e is not

resolvable.
A design isdisconnectedf you can separate the treatments into two
Connected groups, with no treatment from the first group ever appearnipe same
designs can block with a treatment from the second group.cénnecteddesign is one
estimate all that is not disconnected. In a connected design you canastil treatment
treatment differences. You cannot estimate all treatment differerinea disconnected
differences design; in particular, you cannot estimate differencesben treatments in

different groups. Connectedness is obviously a very dalsigroperty.

14.1 Balanced Incomplete Block Designs

The Balanced Incomplete Block Design (BIBD) is the simplasbmplete
BIBD block design. We have treatments, and each block Hagnits, withk < g.
Each treatment will be given tounits, and we will usé blocks. The total
number of unitsV must satisfyN = kb = rg. The final requirement for a
BIBD is that all pairs of treatments must occur together sgame number of
blocks. The BIBD is called “balanced” because the variariteeestimated
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Table 14.1:Plates washed before foam disappears. Letters indicate
treatments.

Session
1 2 3 4 5 6 7 8 9 10 11 12

A19 D 6 G21 A20 B17 C15 A20 B16 C13 A20 B17 C14
B17 E26 H19 D 7 E26 F23 E26 F23 D 7 F24 D 6 E?4
Cl1l1 F23 J 28 G20 H19 J31 J 31 G21 H20 H19 J 29 G21

difference of treatment effects, — &; is the same for all pairs of treatments
2, 7.

Example 14.1 is the simplest possible BIBD. Theregte 3 treatments,
with blocks of sizek = 2. Each treatment occurs= 2 times in theb = 3
blocks. There aréV = 6 total units, and each pair of treatments occurs
together in one block.

We may use the BIBD design for treatments with factorialcttice. For
example, suppose that we have three factors each with twetslér a total
of g = 8 treatments. If we have = 8 blocks of sizek = 7, then we can use
a BIBD with r = 7, with each treatment left out of one block and each pair
of treatments occurring together six times.

Dish detergent Example 14.2

John (1961) gives an example of a BIBD. Nine different disélwag solu-
tions are to be compared. The first four consist of base dateigand 3, 2,
1, and 0 parts of an additive; solutions five through eighsisirof base de
tergent Il and 3, 2, 1, and 0 parts of an additive; the lasttgwius a control.
There are three washing basins and one operator for eaah Basé three
operators wash at the same speed during each test, and plomsess the
number of plates washed when the foam disappears. The speedioing
is the same for all three detergents used at any one sessioepudd differ
from session to session.

Table 14.1 gives the design and the results. Therg are9 treatmentg
arranged irb = 12 incomplete blocks of sizé = 3. Each treatment appeals
r = 4 times, and each pair of treatments appears together in onk.bl

The requirement that all pairs of treatments occur togethan equal
number of blocks is a real stickler. Any given treatment @sénr blocks,

and there aré — 1 other units in each of these blocks for a totat0f — 1) Treatment pairs
units. These must be divided evenly betweenjhd other treatments. Thus  occur together A
A=r(k—1)/(g — 1) must be a whole number for a BIBD to exist. For the times

eyedrop example)l = 2(2 — 1)/(3 — 1) = 1, and for the dishes example,
A=43-1)/9-1)=1.
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Unreduced BIBD
has all
combinations

BIBD tables

Design
complement

Symmetric BIBD

BIBD
randomization

BIBD model

A major impediment to the use of the BIBD is that no BIBD mays¢for
your combination okb = rg. For example, you may have= 5 treatments
andb = 5 blocks of sizek = 3. Thenr = 3, butA =3(3—1)/(5—1) = 3/2
is not a whole number, so there can be no BIBD for this comlmnatf r, &,
andg. Unfortunately,\ being a whole number is not sufficient to guarantee
that a BIBD exists, though one usually does.

A BIBD always exists for every combination 6f< g. For example, you
can always generate a BIBD by using all combinations of¢heeatments
takenk at a time. Such a BIBD is callegnreduced The problem with this
approach is that you may need a lot of blocks for the desigm.ekample,
the unreduced design fgr= 8 treatments in blocks of size = 4 requires
b = 70 blocks. Appendix C contains a list of some BIBD plans oK 9.
Fisher and Yates (1963) and Cochran and Cox (1957) contagh rmore
extensive lists.

If you have a plan for a BIBD withy, k, andb blocks, then you can
construct a plan fog treatments irb blocks ofg — & units per block simply
by using in each block of the second design the treatmeuitsised in the
corresponding block of the first design. The second desigalied thecom-
plementof the first design. Wheh = g andr = k, a BIBD is said to be
symmetric The eyedrop example above is symmetric; the detergentmram
is not symmetric.

Randomization of a BIBD occurs in three steps. First, randerthe
assignment of physical blocks to subgroups of treatmetetrefor numbers)
given in the design. Second, randomize the assignment sé ttreatment
letters to physical units within blocks. Third, randomibe assignment of
treatment letters to treatments.

14.1.1 Intrablock analysis of the BIBD

Intrablock analysis sounds exotic, but it is just the staddaalysis that you
would probably have guessed was appropriate. yiebe the response for
treatment; in block j; we do not observe all, ; combinations. Use the
model

Yij = b+ o + B+ €5 -

If treatments are fixed, we assume that the treatment efsetsto zero;
otherwise we assume that they are a random sample frditDas2) distri-
bution. Block effects may be fixed or random.

Our usual methods for estimating treatment effettignotwork for the
BIBD. In this way, this “balanced” design is more like an ul#reced facto-
rial or an RCB with missing data. For those situations, wiedsbn statistical
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Listing 14.1: SAS output for intrablock analysis of detergent data.

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 19 1499.56481 78.92446 95.77 0.0001
Error 16 13.18519 0.82407 l
Source DF Type III SS Mean Square F Value Pr > F
BLOCK 11 10.06481 0.91498 1.11 0.4127
DETERG 8 1086.81481 135.85185 164.85 0.0001 [
Contrast DF Contrast SS Mean Square F Value Pr > F
control vs test 1 345.041667 345.041667 418.70 0.0001 [
base I vs base II 1 381.337963 381.337963 462.75 0.0001
linear in additive 1 306.134259 306.134259 371.49 0.0001
T for HO: Pr > |T| Std Error of

Parameter Estimate Parameter=0 Estimate

base I vs base II -7.97222222 -21.51 0.0001 0.37060178 ]

software to fit the model, and we do so here as well. Similatly,usual con-  Usual estimates

trast methods do not work either. An RCB with missing datag®ad way of treatment
to think about the analysis of the BIBD, even though in the BlBe data effects do not
were planned to be missing in a very systematic way. work for BIBD
For the RCB with missing data, we computed the sum of squares f
treatments adjusted for blocks. That is, we let blocks actfmr as much Intrablock
variation in the data as they could, and then we determinadrhoch addi- analysis is
tional variation could be explained by adding treatmentdéomodel. Be- treatments
cause we had already removed the variation between bldiksadditional adjusted for
variation explained by treatments must be variation witiiotks: hencén- blocks

trablock analysis. Intrablock analysis of a BIBD is analysishwireatments
adjusted for blocks.

Dish detergent, continued Example 14.3

The basic intrablock ANOVA consists of treatments adjustetlocks. List-
ing 14.10 shows SAS output for this model; the Type Ill sum of squareqfo
detergent is adjusted for blocks. Residual plots show thatvariance is
fairly stable, but the residuals have somewhat short tallsere is strong
evidence against the null hypothegisvalue .0001).
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-10 —

Detergent

Figure 14.1: Treatment effects for intrablock analysis of dish
detergent data, using Minitab.

We can examine the treatment effects more closely by comgptre two
detergent bases with each other and the control, and byrigaitithe effects
of the additive. Figure 14.1 shows the nine treatment effaClearly there is
a mostly linear effect due to the amount of additive, with exadditive giving
a higher response. We also see that detergent base | gives legponses
than detergent base Il, and both are lower than the contoole¥ample, the
contrast between base | and base Il has sum of squares 38ile3*hntrast
between the control and the other treatments has sum ofesxjgd5.04; and
the linear in additive contrast has sum of squares 306.18illgi 14.1[1).
These 3 degrees of freedom account for 1032.5 of the tote8.8G&im of
squares between treatments.

There is in fact a fairly simple hand-calculation for treatrts adjusted
for blocks in the BIBD; the availability of this simple caletion helped
make the BIBD attractive before computers. We discuss thoalledion not

Efficiency of BIBD  because you will ever be doing the calculations that wayidiher because it
to RCB helps give some insight intBg|gp-rcB, the efficiency of the BIBD relative
to the RCB. DefineEBBD:RCB to be

5 _gk-1)
BIBD:RCB — m )
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whereg is the number of treatments akds the number of units per block.
Observe thatiggp:rce < 1, becausé < ¢ in the BIBD. For the detergent
exampIeEB|BD;RCB =9 x 2/(8 X 3) = 3/4.

The valueEggp:-rca is the relative efficiency of the BIBD to an RCB
with the same variance. One way to think abBHigp-rcp IS that every unit
in a BIBD is only worth Egjgp-rcg Units worth of information in an RCB  Effective sample
with the same variance. Thus while each treatment is nietes in a BIBD, size r EgIgD:RCB
the effective sample size is ontWEg|gp-RCB-

The hand-calculation formulae for the BIBD use the effectiample size
in place of the actual sample size. gt be the mean response in tliih
block; letv;; = y;; — 7,,; be the data with block means removed; and)jgt  Hand formulae for

be the sum of the;; va'iues for treatment (there arer of them). Then we BIBD use
have effective sample
~ _ Vie size

rERIBD:RCB |

g
SStt =Y (rEgigp:RCB)A:” |

i=1

and

Var( szaz = g2 Z

We can also use pairwise comparison procedures with thetefesample
size.

TEBIBD RCB

In practice, we can often find incomplete blocks with a snmalgiance
o2, than can be attained using complete bloeks. We prefer the BIBD

design over the RCB if BIBD beats RCB
if variance
2 2 reduction great

rEBIBD:RCB T

or

bbd
>* < EBIBD:RCB ;

rcb

in words, we prefer the BIBD if the reduction in variance mtran com-
pensates for the loss of efficiency. This comparison ignadpgstments for
error degrees of freedom.
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14.1.2 Interblock information

The first thing we did in the intrablock analysis of the BIBDsma subtract
block means from the data to get deviations from the blocknmae&Vhen

Recovery of the block effects in a BIBD are random effects, then thesekbineans also
interblock contain information about treatment differences. We canhleck means
information when or block totals to produce a second set of estimates fornterat effects,
block effects are called thenterblockestimates, independent of the usual intrablock estimates.
random Combining the interblock and intrablock estimates is chllecovery of in-

terblock information.”

Suppose that we want to estimate a conttast >, w;«o;. Recovery
of interblock information takes place in three steps. Ficesmpute thén-
trablock estimate of the contrast and its variance. Secondpuatarthein-
terblock estimate of the contrast and its variance. Third, domlkhe two

First get estimates. The intrablock estimate is simply the standstithate of the last
intrablock section:
estimate

9
(=D wid
i=1

with variance

2
w;

Var@) =07y
— rEBiBD:RCB

M=

usingM Sg to estimater?.

For step 2, start by letting,; be 1 if treatment occurs in blockj, and 0
otherwise. Then the block totgl,; can be expressed

9 g
Yoj = kp+ Z nijQ + {k‘ﬁj + Z nz’jeij}
i=1 =1

g
= ku—i—ZnZ—jai +n; .
i=1

Interblock This has the form of a multiple regression witlpredicting variables and an
estimates from independent and normally distributed errgrhaving variancek%% + ko?.
block totals Some tedious algebra shows that the interblock estimages ar

l&’ = y..

- Y01 Mijyes — ki
a; = )

r—A
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and the variance of the contrafst: > widy is

M
£

Var(C) = (koh + ko®) Y —1 .
- A

We estimater? using theM Sx from the intrablock analysis. Estimat-
ing o—% involves something highly unusual. The expected value ®ftiean

square foblocks adjusted for treatmeniso? + (N — g)a%/(b —1). Thus Use blocks

an unbiased estimate @g is adjusted for
treatments to get

b_1 block variance
~2 -

98T N __g(MSbIocks adjusted” MSg) .

This interblock recovery is the only place we will considéwdiks adjusted
for treatments.

At this stage, we have the intrablock estimatand its varianc& ar (¢),

and we have the interblock estimatend its variancé ar(¢). If the vari-

ances were equal, we would just average the two estimatesd toagmbined
estimate. However, the variance of the intrablock estinmt@ways less
than the interblock estimate, so we want to give the intrelolstimate more

weight in the average. The best weight is “inversely praposl to the vari- Use weighted
ance”, so the combined estimate for contiast average to
combine inter-
1 Z+ 1 g and intrablock
B VCLT(C) VCLT(C) estimates

¢= 1 1

=N ~

Var(¢) Var(Q)

This combined estimate has variance

Var(() = . N

=N ~

Var(¢) Var(¢)

Dish detergent, continued Example 14.4

Suppose that we wish to examine the difference betweengggiebases
and Il. We can do that with a contragt with coefficients (.25, .25, .2
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25, -.25, -.25, -.25, -.25, 0). Listing 14[1 shows that this contrast has an
estimated value of -7.972 with a standard error of .37064uae .1373); this
is the intrablock estimate.

We begin the interblock analysis by getting the block totidls incidence
matrix {n;;} (shown here with treatments indexing columns), and the sums
of the cross products:

Block Treatment incidence

total 1 2 3 4 5 6 7 8 9
47 1 1 1 0 0 0 0 0 0
55 0 0 0 1 1 1 0 0 0
68 0 0 0 0 0 0 1 1 1
47 1 0 0 1 0 0 1 0 0
62 0 1 0 0 1 0 0 1 0
69 0 0 1 0 0 1 0 0 1
77 1 0 0 0 1 0 0 0 1
60 0 1 0 0 0 1 1 0 0
40 0 0 1 1 0 0 0 1 0
63 1 0 0 0 0 1 0 1 0
52 0 1 0 1 0 0 0 0 1
59 0 0 1 0 1 0 1 0 0

Zj nijle; | 234 221 215 194 253 247 234 233 266

Applying the formula, we get that the interblock estimates @33, -4, -6,
-13, 6.667, 4.667, .333, 0, and 11. The interblock estimhagahus

(= (.333—4—6—13)/4 — (6.667 + 4.667 + .333 + 0)/4 = —8.583 .

The variance of is

s 2 2 2 ! 1
VCZT‘(C) = (k O'ﬁ‘FkO' );m
8 x .25

3

w?

= (90’%4—30’2)
= (30’%4—02)/2

The intrablockM S of .82407 estimates? (Listing 14.10). The mean
square for blocks adjusted for treatments is .91498 fronirlgsl4.10. (We
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show Type Il sums of squares, so blocks are also adjustetidatments.
The estimate for is thus

. b—1
% = §= 5 MSblocks adjusted” M5z)

11
= =(.91498 — .82407

5 (:91498 — .82407)
= .0370

Substituting in, we get

Var(¢() = (30% +0%)/2
= (3 x .0370 + .82407)/2
4675

Note that even with an estimated block variance of nearlp,ztre intra-
block estimate of the contrast is still much more precise tihe interblocki
estimate.

The intrablock estimate and variance are -7.972 and .13t in-
terblock estimate and variance are -8.583 and .4675. Théioeih estimate
is

—7.972 —8.583
- 1374 + 4675
¢ 1 1
1374 T 1675

= —8.111

with variance

Var(Q) = ————

1374 + 4675
= .1062

That was a lot of work. Unfortunately, this effort often pid&s minimal
improvement over the intrablock estimates. When there iblook vari-

ance (that is, Wheﬁ% = 0), then the interblock variance for a contrast is
g(k—1)/(g — k) times as large as the intrablock variance. When blocking is

Interblock
recovery often
provides little
improvement
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successful, the variation between blocks will be large camag to the vari-

ation within blocks. Then the variance of intrablock esti@sawill be much

smaller than those of interblock estimates, and the condbéséimates are
very close to the intrablock estimates.

Another fact to bear in mind is that the weights used in theghteid
average to combine intra- and interblock information atleeavariable when
Weights are bis small. This variation comes from the rafié Spiocks adjusted M S, Which
variable appears in the formula for the weights. As we saw when tryingstimate
ratios of variance components, we need quite a few degreearfom in
both the numerator and denominator before the ratio, arglttieiweights,
are stable.

14.2 Row and Column Incomplete Blocks

We use Latin Squares and their variants when we need to blockvo
sources of variation in complete blocks. We can ¥eaden Squareshen
we need to block on two sources of variation, but cannot se¢hapcom-
plete blocks for LS designs. I've always been amused by #ise) because
Youden Squares are not square.

The simplest example of a Youden Square starts with a Latirafeqg
Youden Squares and deletes one of the rows (or columns). The resulting gerd@ent has
are incomplete g columns andy — 1 rows. Each row is a complete block for the treatments,
Latin Squares and the columns form an unreduced BIBD for the treatmentse i4ea sim-
ple Youden Square formed from a four by four Latin Square:

A|B|C|D
B|A|D|C
C|D|A|B

A more general definition of a Youden Square is a rectangufange-
Youden Squareis  ment of treatments, with the columns forming a BIBD and alatments
BIBD on columns occurring an equal number of times in each row. In particaay symmet-
and RCBonrows  ric BIBD (b = g) can be rearranged into a Youden Square. For example, here
is a symmetric BIBD withy = b = 7 andr = k = 3 arranged as a Youden

Square:
A|/B|C|D|E|F|G
B|C|D|E|F|G|A
D E|F|G|A|B|C
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Table 14.2:Serum levels of lithiumgEq/l) 12 hours after
administration. Treatments are 300 mg and 250 mg capsules,
450 mg time delay capsule, and 300 mg solution.

Week Subject

1 A 200 | D267 | C156| B280| D333 | D233
2 B160| C178| A200| C178| A167 | B 200
1 B320| B320| C111| A333| A233| C244
2 A200| D200| D133| D200| C178| B 160

In Appendix C, thoses BIBD’s that can be arranged as Youderai®g are
S0 arranged.

The analysis of a Youden Square is a combination of the Lajumag&
and BIBD, as might be expected. Because both treatmentscdinchics ap-
pear once in each row, row contrasts are orthogonal to tesatand column Row orthogonal

contrasts, and this makes computation a little easier. ¥o@&fjuares are also designs

calledrow orthogonalfor this reason. The intrablock ANOVA has terms for

rows, columns, treatments (adjusted for columns), and.draw effects and Intrablock

sums of squares are computed via the standard formulaegjngnmlumns analysis adjusts

and treatments. Column sums of squares (unadjusted) aneutednignor- for rows and

ing rows and treatments. Intrablock treatment effects amdssof squares columns

are computed as for a BIBD with columns as blocks. Error suihsgjoares Interblock

are found by subtraction. Interblock analysis of the YouBenare and the analysis similar to

combination of inter- and intrablock information are exatike the BIBD. BIBD

Lithium in blood Example 14.5

We wish to compare the blood concentrations of lithium 12rhaifter ad-
ministering lithium carbonate, using either a 300 mg caps2b0 mg cap
sule, 450 mg time delay capsule, or 300 mg solution. Therénselre sub-
jects, each of whom will be used twice, 1 week apart. We grdtei that the
responses will be different in the second week, so we blockuliject ang
week. The response is the serum lithium level as shown ineTabl2 (dat

from Westlake 1974).

There argy = 4 treatments irb = 12 blocks of sizek = 2, so that = 6.
We have\ = 2, E = 2/3, and each treatment appears three times in ¢ach
week for a Youden Square.

The intrablock ANOVA for these data is shown in Listing 14.Zhe

residual plots (not shown) are passable. There is no evidena differenc
between the treatments 12 hours after administration. Mexvaote that th
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Listing 14.2: Minitab output for intrablock analysis of lithium data.

Source DF
week 1
subject 11
treatmen 3
Error 8

BIBD’s are too big
for some g and k

PBIBD has

N = gr = bk;
some treatment
pairs more
frequent

Sample PBIBD

Seqg SS Adj SS Seqg MS F P
.031974 0.031974 .031974 15.79 0.004
.039344 0.029946 .003577 1.77 0.215
.005603 0.005603 .001868 0.92 0.473
.016203 0.016203 .002025

(el eNeoNe]
[eNoNoNe]

mean square for the week blocking factor is fairly large. & aad ignored
the week effect, we could anticipate an error mean square of

11 x .0020253 + .031974
12

= .00452 |

more than doubling the error mean square in the Youden Sqliesign.

14.3 Partially Balanced Incomplete Blocks

BIBD's are great, but their balancing requirements may intpéat the small-
est possible BIBD for a giveg and & is too big to be practical. For ex-
ample, let's look for a BIBD forg = 12 treatments in incomplete blocks
of sizek = 7. To be a BIBD,A = r(k —1)/(g — 1) = 6r/11 must be

a whole number; this implies thatis some multiple of 11. In addition,
b=rg/k = (11 x m) x 12/7 must be a whole number, and that implies that
b is a multiple ofl1 x 12 = 132. So the smallest possible BIBD has-= 77,

b =132, andN = 924. This is a bigger experiment that we are likely to run.

Partially Balanced Incomplete Block Designs (PBIBD) allag/to run
incomplete block designs with fewer blocks than may be regifor a BIBD.
The PBIBD hagy treatments anél blocks ofk units each; each treatment is
usedr times, and there is a total 8f = gr = bk units. The PBIBD does not
have the requirement that each pair of treatments occueghtegin the same
number of blocks. This in turn implies that not all differesé;; — a; have
the same variance in a PBIBD.

Here is a sample PBIBD with = 12, k. = 7, r = 7, andb = 12. In
this representation, each row is a block, and the numbeleinow indicate
which treatments occur in that block.
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Block Treatments
111 2 3 4 5 8 10
21 2 3 4 5 6 9 11
3/ 3 4 5 6 7 10 12
41 1 4 5 6 7 8 11
51 2 5 6 7 8 9 12
6/ 1 3 6 7 8 9 10
712 4 7 8 9 10 11
8 3 5 8 9 10 11 12
9| 1 4 6 9 10 11 12
0, 1 2 5 7 10 11 12
111 1 2 3 6 8 11 12
121 1 2 3 4 7 9 12
We see, for example, that treatment 1 occurs three timestmigtments 5
and 9, and four times with all other treatments.
The design rules for a PBIBD are fairly complicated: Requirements for
PBIBD

1. There argy treatments, each usedimes. There aré blocks of size
k < g. Of coursepk = gr. No treatment occurs more than once in a

block.

2. There aren associate classesAny pair of treatments that arih
associates appears togetherninblocks. We usually arrange the  Associate classes
values in decreasing order, so that first associates apggher most

frequently.

3. All treatments have the same numbeitbfassociates, namely. p: ith associates

4. Let A and B be two treatments that atle associates, and Iﬁ}k be the

number of treatments that ajéh associates of A ankith associates
of B. This numberp;, does not depend on the pair @h associates

chosen. In particulap’, = pj,;.

The PBIBD is partially balanced, because the variance;of &; depends
upon whethet, 5 are first, second, anth associates. The randomization of Randomize

a PBIBD is just like that for a BIBD.

PBIBD like BIBD

Let's check the design given above and verify that it is a HBIBirst
note thaty = 12, k = 7, r = 7, b = 12, and no treatment appears twice in
a block. Next, there are two associate classes, with firscéses appearing
together four times and second associates appearing evgletae times. The
pairs (1,5), (1,9), (2,6), (2,10), (3,7), (3,11), (4,8)1@), (5,9), (6,10), (7,11),
and (8,12) are second associates; all other pairs are fgetiases. Each
treatment has nine first associates and two second assodtateany pair of
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Intrablock
analysis is
treatments
adjusted for
blocks

PBIBD less
efficient on
average than
BIBD

Cyclic designs
are simple

Cycles of
treatments

first associates, there are six other treatments that ara$geciates of both,
four other treatments that are first associates of one ar@mhdesssociates
of the other (two each way), and no treatments that are sexssutiates of
both. We thus have
1v_ |6 2
{pij} = { 2 0 ]
For any pair of second associates, there are nine treatrhextare first as-
sociates of both, and one treatment that is a second assotiadth, so that
2y _ 9 0
{pij} = { 01 ]

Thus all the design requirements are met, and the examptgdes PBIBD.

One historical advantage of the PBIBD was that the analysigdcbe
done by hand. That is, there are relatively simple expresdir the various
intra- and interblock analyses. With computers, that paldr advantage
is no longer very useful. The intrablock analysis of the PBIB simply
treatments adjusted for blocks, as with the BIBD.

The efficiency of a PBIBD is actually an average efficiencye Variance
of a; — &; depends on whether treatmentndj are first associates, second
associates, or whatever. So to compute efficietysgp-rce, We divide
the variance obtained in an RCB for a pairwise differerie€’ () by the
average of the variances of all pairwise differences in tB8B. There is
an algorithm to determin€pg gp-rce, but there is no simple formula. We
can say that the efficiency will be less th@k — 1) /[(g — 1)k], which is the
efficiency of a BIBD with the same block size and number oftiresnts.

There are several extensive catalogues of PBIBD’s, inolyBiose, Clat-
worthy, and Shrikhande (1954) (376 separate designs) atd@ihy (1973).

14.4 Cyclic Designs

Cyclic designsare easily constructed incomplete block designs that permi
the study ofg treatments in blocks of sizk. We will only examine the
simplest situation, where the replicatiefior each treatment is a multiple of
k, the block size. S@ = mk, andb = mg is the number of blocks. Cyclic
designs include some BIBD and PBIBD designs.

A cycle of treatments starts with an initial treatment anehtiproceeds
through the subsequent treatments in order. Once we geddtrtenty, we
go back down to treatment 1 and start increasing again. Fampbe, with
seven treatments we might have the cycle (4,5, 6, 7, 1, 2, 3).
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Cyclic construction starts with an initial block and builgds- 1 more
blocks from the initial block by replacing each treatmenthia initial block Proceed through
by its successor in the cycle. Additional setgdflocks are constructed from cycles from initial
new initial blocks. Thus all we need to know to build the desage the initial block
blocks.

Write the initial block in a column, and write the cycles faoh treatment
in the initial block in rows, obtaining & by g arrangement. The columns of
this arrangement are the blocks. For example, suppose veesesen treat-
ments and the initial block [1,4]. The cyclic design has kicolumns):

1/2|3|4|5|6]|7
4,/5|6 71123

Each row is a cycle started by a treatment in the initial blo€kcles are
easy, so cyclic designs are easy, once you have the initiekbl

But wait, there’s more! Not only do we have an incomplete kidesign Cyclic designs
with the columns as blocks, we have a complete block desitinttu rows as are row
blocks. Thus cyclic designs are row orthogonal designs faag be Youden orthogonal

Squares if the cyclic design is BIBD).

Appendix C.3 contains a table of initial blocks for cyclicsitgns fork
from 2 through 10 ang from 6 through 15. Several initial blocks are given
for the smaller designs, depending on how many replicataoasrequired.
For example, fo = 3 the table shows initial blocks for 3, 6, and 9 repli-
cations. Use the first initial block if = 3, use the first and second initial
blocks if» = 6, and use all three initial blocksif = 9. Forg = 10, k = 3,
andr = 6, the initial blocks are (1,2,5) and (1,3,8), and the plan is

1 2| 3| 4| 5| 6 7| 8| 9|10
2| 3| 4, 5, 6| 7] 8] 9/10| 1
5/ 6| 7] 8| 9|10, 1| 2| 3| 4
1| 2| 3| 4| 5| 6| 7| 8| 9|10
3| 4/ 5| 6| 7| 8] 9110 1| 2
8| 910 1| 2| 3| 4] 5| 6| 7

As with the PBIBD, there is an algorithm to compute the (agejaeffi-
ciency of a cyclic design, but there is no simple formula. Trigal blocks
given in Appendix C.3 were chosen to make the cyclic desigresfecient as
possible.
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Lattice designs
for special g, k
combinations

A simple lattice
has two
replications made
of rows and
columns of the
square

Triple lattice uses
Latin Square for
third replicate

Additional
replicates use
orthogonal Latin
Squares

14.5 Square, Cubic, and Rectangular Lattices

Lattice designs work when the number of treatmenend the size of the
blocksk follow special patterns. Specifically,

e A Square Lattice can be used wher= k2.
e A Cubic Lattice can be used when= k3.

¢ A Rectangular Lattice can be used whe#a: k(k + 1).

These lattice designs are resolvable and are most usefalwdbave a large
number of treatments to be run in small blocks.

We 