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Preface xvii

Preface

This text covers the basic topics in experimental design andanalysis and
is intended for graduate students and advanced undergraduates. Students
should have had an introductory statistical methods courseat about the level
of Moore and McCabe’sIntroduction to the Practice of Statistics(Moore and
McCabe 1999) and be familiar witht-tests,p-values, confidence intervals,
and the basics of regression and ANOVA. Most of the text soft-pedals theory
and mathematics, but Chapter 19 on response surfaces is a little tougher sled-
ding (eigenvectors and eigenvalues creep in through canonical analysis), and
Appendix A is an introduction to the theory of linear models.I use the text
in a service course for non-statisticians and in a course forfirst-year Masters
students in statistics. The non-statisticians come from departments scattered
all around the university including agronomy, ecology, educational psychol-
ogy, engineering, food science, pharmacy, sociology, and wildlife.

I wrote this book for the same reason that many textbooks get written:
there was no existing book that did things the way I thought was best. I start
with single-factor, fixed-effects, completely randomizeddesigns and cover
them thoroughly, including analysis, checking assumptions, and power. I
then add factorial treatment structure and random effects to the mix. At this
stage, we have a single randomization scheme, a lot of different models for
data, and essentially all the analysis techniques we need. Inext add block-
ing designs for reducing variability, covering complete blocks, incomplete
blocks, and confounding in factorials. After this I introduce split plots, which
can be considered incomplete block designs but really introduce the broader
subject of unit structures. Covariate models round out the discussion of vari-
ance reduction. I finish with special treatment structures,including fractional
factorials and response surface/mixture designs.

This outline is similar in content to a dozen other design texts; how is this
book different?

• I include many exercises where the student is required tochoosean
appropriate experimental design for a given situation, orrecognizethe
design that was used. Many of the designs in question are fromearlier
chapters, not the chapter where the question is given. Theseare impor-
tant skills that often receive short shrift. See examples onpages 500
and 502.
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• I use Hasse diagrams to illustrate models, find test denominators, and
compute expected mean squares. I feel that the diagrams provide a
much easier and more understandable approach to these problems than
the classic approach with tables of subscripts and live and dead indices.
I believe that Hasse diagrams should see wider application.

• I spend time trying to sort out the issues with multiple comparisons
procedures. These confuse many students, and most texts seem to just
present a laundry list of methods and no guidance.

• I try to get students to look beyond saying main effects and/or interac-
tions are significant and to understand the relationships inthe data. I
want them to learn that understanding what the data have to say is the
goal. ANOVA is a tool we use at the beginning of an analysis; itis not
the end.

• I describe the difference in philosophy between hierarchical model
building and parameter testing in factorials, and discuss how this be-
comes crucial for unbalanced data. This is important because the dif-
ferent philosophies can lead to different conclusions, andmany texts
avoid the issue entirely.

• There are three kinds of “problems” in this text, which I havedenoted
exercises, problems, and questions. Exercises are intended to be sim-
pler than problems, with exercises being more drill on mechanics and
problems being more integrative. Not everyone will agree with my
classification. Questions are not necessarily more difficult than prob-
lems, but they cover more theoretical or mathematical material.

Data files for the examples and problems can be downloaded from the
Freeman web site athttp://www.whfreeman.com/ . A second re-
source is Appendix B, which documents the notation used in the text.

This text contains many formulae, but I try to use formulae only when I
think that they will increase a reader’s understanding of the ideas. In several
settings where closed-form expressions for sums of squaresor estimates ex-
ist, I do not present them because I do not believe that they help (for example,
the Analysis of Covariance). Similarly, presentations of normal equations do
not appear. Instead, I approach ANOVA as a comparison of models fit by
least squares, and let the computing software take care of the details of fit-
ting. Future statisticians will need to learn the process inmore detail, and
Appendix A gets them started with the theory behind fixed effects.

Speaking of computing, examples in this text use one of four packages:
MacAnova, Minitab, SAS, and S-Plus. MacAnova is a homegrownpackage
that we use here at Minnesota because we can distribute it freely; it runs
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on Macintosh, Windows, and Unix; and it does everything we need. You can
download MacAnova (any version and documentation, even thesource) from
http://www.stat.umn.edu/˜gary/macanova . Minitab and SAS
are widely used commercial packages. I hadn’t used Minitab in twelve years
when I started using it for examples; I found it incredibly easy to use. The
menu/dialog/spreadsheet interface was very intuitive. Infact, I only opened
the manual once, and that was when I was trying to figure out howto do
general contrasts (which I was never able to figure out). SAS is far and away
the market leader in statistical software. You can do practically every kind of
analysis in SAS, but as a novice I spent many hours with the manuals trying
to get SAS to do any kind of analysis. In summary, many people swear by
SAS, but I found I mostly swore at SAS. I use S-Plus extensively in research;
here I’ve just used it for a couple of graphics.

I need to acknowledge many people who helped me get this job done.
First are the students and TA’s in the courses where I used preliminary ver-
sions. Many of you made suggestions and pointed out mistakes; in particular
I thank John Corbett, Alexandre Varbanov, and Jorge de la Vega Gongora.
Many others of you contributed data; your footprints are scattered throughout
the examples and exercises. Next I have benefited from helpful discussions
with my colleagues here in Minnesota, particularly Kit Bingham, Kathryn
Chaloner, Sandy Weisberg, and Frank Martin. I thank Sharon Lohr for in-
troducing me to Hasse diagrams, and I received much helpful criticism from
reviewers, including Larry Ringer (Texas A&M), Morris Southward (New
Mexico State), Robert Price (East Tennessee State), AndrewSchaffner (Cal
Poly—San Luis Obispo), Hiroshi Yamauchi (Hawaii—Manoa), and William
Notz (Ohio State). My editor Patrick Farace and others at Freeman were a
great help. Finally, I thank my family and parents, who supported me in this
for years (even if my father did say it looked like a foreign language!).

They say you should never let the camel’s nose into the tent, because
once the nose is in, there’s no stopping the rest of the camel.In a similar
vein, student requests for copies of lecture notes lead to student requests for
typed lecture notes, which lead to student requests for morecomplete typed
lecture notes, which lead. . . well, in my case it leads to a textbook on de-
sign and analysis of experiments, which you are reading now.Over the years
my students have preferred various more primitive incarnations of this text to
other texts; I hope you find this text worthwhile too.

Gary W. Oehlert





Chapter 1

Introduction

Researchers use experiments to answer questions. Typical questions might Experiments
answer questionsbe:

• Is a drug a safe, effective cure for a disease? This could be a test of
how AZT affects the progress of AIDS.

• Which combination of protein and carbohydrate sources provides the
best nutrition for growing lambs?

• How will long-distance telephone usage change if our company offers
a different rate structure to our customers?

• Will an ice cream manufactured with a new kind of stabilizer be as
palatable as our current ice cream?

• Does short-term incarceration of spouse abusers deter future assaults?

• Under what conditions should I operate my chemical refinery,given
this month’s grade of raw material?

This book is meant to help decision makers and researchers design good
experiments, analyze them properly, and answer their questions.

1.1 Why Experiment?

Consider the spousal assault example mentioned above. Justice officials need
to know how they can reduce or delay the recurrence of spousalassault. They
are investigating three different actions in response to spousal assaults. The
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assailant could be warned, sent to counseling but not bookedon charges,
or arrested for assault. Which of these actions works best? How can they
compare the effects of the three actions?

This book deals withcomparative experiments. We wish to compare
sometreatments. For the spousal assault example, the treatments are the three
actions by the police. We compare treatments by using them and comparing
the outcomes. Specifically, we apply the treatments toexperimental unitsTreatments,

experimental
units, and
responses

and then measure one or moreresponses. In our example, individuals who
assault their spouses could be the experimental units, and the response could
be the length of time until recurrence of assault. We comparetreatments by
comparing the responses obtained from the experimental units in the different
treatment groups. This could tell us if there are any differences in responses
between the treatments, what the estimated sizes of those differences are,
which treatment has the greatest estimated delay until recurrence, and so on.

An experiment is characterized by the treatments and experimental units to
be used, the way treatments are assigned to units, and the responses that are
measured.

Experiments help us answer questions, but there are also nonexperimen-
tal techniques. What is so special about experiments? Consider that:Advantages of

experiments
1. Experiments allow us to set up a direct comparison betweenthe treat-

ments of interest.

2. We can design experiments to minimize any bias in the comparison.

3. We can design experiments so that the error in the comparison is small.

4. Most important, we are in control of experiments, and having that con-
trol allows us to make stronger inferences about the nature of differ-
ences that we see in the experiment. Specifically, we may makeinfer-
ences aboutcausation.

This last point distinguishes an experiment from anobservational study. AnControl versus
observation observational study also has treatments, units, and responses. However, in

the observational study we merely observe which units are inwhich treatment
groups; we don’t get to control that assignment.

Example 1.1 Does spanking hurt?
Let’s contrast an experiment with an observational study described in Straus,
Sugarman, and Giles-Sims (1997). A large survey of women aged 14 to 21
years was begun in 1979; by 1988 these same women had 1239 children
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between the ages of 6 and 9 years. The women and children were inter-
viewed and tested in 1988 and again in 1990. Two of the items measured
were the level of antisocial behavior in the children and thefrequency of
spanking. Results showed that children who were spanked more frequently
in 1988 showed larger increases in antisocial behavior in 1990 than those who
were spanked less frequently. Does spanking cause antisocial behavior? Per-
haps it does, but there are other possible explanations. Perhaps children who
were becoming more troublesome in 1988 may have been spankedmore fre-
quently, while children who were becoming less troublesomemay have been
spanked less frequently in 1988.

The drawback of observational studies is that the grouping into “treat-
ments” is not under the control of the experimenter and its mechanism is
usually unknown. Thus observed differences in responses between treatment
groups could very well be due to these other hidden mechanisms, rather than
the treatments themselves.

It is important to say that while experiments have some advantages, ob-
servational studies are also useful and can produce important results. For ex- Observational

studies are useful
too

ample, studies of smoking and human health are observational, but the link
that they have established is one of the most important public health issues
today. Similarly, observational studies established an association between
heart valve disease and the diet drug fen-phen that led to thewithdrawal
of the drugs fenfluramine and dexfenfluramine from the market(Connolloy
et al. 1997 and US FDA 1997).

Mosteller and Tukey (1977) list three concepts associated with causation
and state that two or three are needed to support a causal relationship: Causal

relationships
• Consistency

• Responsiveness

• Mechanism.

Consistency means that, all other things being equal, the relationship be-
tween two variables is consistent across populations in direction and maybe
in amount. Responsiveness means that we can go into a system,change the
causal variable, and watch the response variable change accordingly. Mech-
anism means that we have a step-by-step mechanism leading from cause to
effect.

In an experiment, we are in control, so we can achieve responsiveness. Experiments can
demonstrate

consistency and
responsiveness

Thus, if we see a consistent difference in observed responsebetween the
various treatments, we can infer that the treatments causedthe differences
in response. We don’t need to know the mechanism—we can demonstrate
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causation by experiment. (This is not to say that we shouldn’t try to learn
mechanisms—we should. It’s just that we don’t need mechanism to infer
causation.)

We should note that there are times when experiments are not feasible,
even when the knowledge gained would be extremely valuable.For example,Ethics constrain

experimentation we can’t perform an experiment proving once and for all that smoking causes
cancer in humans. We can observe that smoking is associated with cancer in
humans; we have mechanisms for this and can thus infer causation. But we
cannot demonstrate responsiveness, since that would involve making some
people smoke, and making others not smoke. It is simply unethical.

1.2 Components of an Experiment

An experiment has treatments, experimental units, responses, and a method
to assign treatments to units.

Treatments, units, and assignment method specify theexperimental design.

Some authors make a distinction between the selection of treatments to be
used, called “treatment design,” and the selection of unitsand assignment of
treatments, called “experiment design.”

Note that there is no mention of a method for analyzing the results.
Strictly speaking, the analysis is not part of the design, though a wise exper-Analysis not part

of design, but
consider it during
planning

imenter will consider the analysis when planning an experiment. Whereas
the design determines the proper analysis to a great extent,we will see that
two experiments with similar designs may be analyzed differently, and two
experiments with different designs may be analyzed similarly. Proper analy-
sis depends on the design and the kinds of statistical model assumptions we
believe are correct and are willing to assume.

Not all experimental designs are created equal. A good experimental
design must

• Avoid systematic error

• Be precise

• Allow estimation of error

• Have broad validity.

We consider these in turn.
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Comparative experiments estimate differences in responsebetween treat-
ments. If our experiment has systematic error, then our comparisons will be
biased, no matter how precise our measurements are or how many experi- Design to avoid

systematic errormental units we use. For example, if responses for units receiving treatment
one are measured with instrument A, and responses for treatment two are
measured with instrument B, then we don’t know if any observed differences
are due to treatment effects or instrument miscalibrations. Randomization, as
will be discussed in Chapter 2, is our main tool to combat systematic error.

Even without systematic error, there will be random error inthe responses,
and this will lead to random error in the treatment comparisons. Experiments Design to

increase
precision

are precise when this random error in treatment comparisonsis small. Preci-
sion depends on the size of the random errors in the responses, the number of
units used, and the experimental design used. Several chapters of this book
deal with designs to improve precision.

Experiments must be designed so that we have an estimate of the size
of random error. This permits statistical inference: for example, confidence Design to

estimate errorintervals or tests of significance. We cannot do inference without an estimate
of error. Sadly, experiments that cannot estimate error continue to be run.

The conclusions we draw from an experiment are applicable tothe exper-
imental units we used in the experiment. If the units are actually a statistical
sample from some population of units, then the conclusions are also valid Design to widen

validityfor the population. Beyond this, we are extrapolating, and the extrapolation
might or might not be successful. For example, suppose we compare two
different drugs for treating attention deficit disorder. Our subjects are pread-
olescent boys from our clinic. We might have a fair case that our results
would hold for preadolescent boys elsewhere, but even that might not be true
if our clinic’s population of subjects is unusual in some way. The results are
even less compelling for older boys or for girls. Thus if we wish to have
wide validity—for example, broad age range and both genders—then our ex-
perimental units should reflect the population about which we wish to draw
inference.

We need to realize that some compromise will probably be needed be- Compromise
often neededtween these goals. For example, broadening the scope of validity by using a

variety of experimental units may decrease the precision ofthe responses.

1.3 Terms and Concepts

Let’s define some of the important terms and concepts in design of exper-
iments. We have already seen the terms treatment, experimental unit, and
response, but we define them again here for completeness.
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Treatments are the different procedures we want to compare. These could
be different kinds or amounts of fertilizer in agronomy, different long-
distance rate structures in marketing, or different temperatures in a re-
actor vessel in chemical engineering.

Experimental units are the things to which we apply the treatments. These
could be plots of land receiving fertilizer, groups of customers receiv-
ing different rate structures, or batches of feedstock processing at dif-
ferent temperatures.

Responsesare outcomes that we observe after applying a treatment to an
experimental unit. That is, the response is what we measure to judge
what happened in the experiment; we often have more than one re-
sponse. Responses for the above examples might be nitrogen content
or biomass of corn plants, profit by customer group, or yield and qual-
ity of the product per ton of raw material.

Randomization is the use of a known, understood probabilistic mechanism
for the assignment of treatments to units. Other aspects of an exper-
iment can also be randomized: for example, the order in whichunits
are evaluated for their responses.

Experimental Error is the random variation present in all experimental re-
sults. Different experimental units will give different responses to the
same treatment, and it is often true that applying the same treatment
over and over again to the same unit will result in different responses
in different trials. Experimental error does not refer to conducting the
wrong experiment or dropping test tubes.

Measurement units (or response units) are the actual objects on which the
response is measured. These may differ from the experimental units.
For example, consider the effect of different fertilizers on the nitrogen
content of corn plants. Different field plots are the experimental units,
but the measurement units might be a subset of the corn plantson the
field plot, or a sample of leaves, stalks, and roots from the field plot.

Blinding occurs when the evaluators of a response do not know which treat-
ment was given to which unit. Blinding helps prevent bias in the evalu-
ation, even unconscious bias from well-intentioned evaluators. Double
blinding occurs when both the evaluators of the response andthe (hu-
man subject) experimental units do not know the assignment of treat-
ments to units. Blinding the subjects can also prevent bias,because
subject responses can change when subjects have expectations for cer-
tain treatments.



1.4 Outline 7

Control has several different uses in design. First, an experiment is con-
trolled because we as experimenters assign treatments to experimental
units. Otherwise, we would have an observational study.

Second, acontrol treatment is a “standard” treatment that is used as a
baseline or basis of comparison for the other treatments. This control
treatment might be the treatment in common use, or it might bea null
treatment (no treatment at all). For example, a study of new pain killing
drugs could use a standard pain killer as a control treatment, or a study
on the efficacy of fertilizer could give some fields no fertilizer at all.
This would control for average soil fertility or weather conditions.

Placebo is a null treatment that is used when the act of applying a treatment—
any treatment—has an effect. Placebos are often used with human
subjects, because people often respond to any treatment: for example,
reduction in headache pain when given a sugar pill. Blindingis impor-
tant when placebos are used with human subjects. Placebos are also
useful for nonhuman subjects. The apparatus for spraying a field with
a pesticide may compact the soil. Thus we drive the apparatusover the
field, without actually spraying, as a placebo treatment.

Factors combine to form treatments. For example, the baking treatment for
a cake involves a given time at a given temperature. The treatment is
the combination of time and temperature, but we can vary the time and
temperature separately. Thus we speak of a time factor and a temper-
ature factor. Individual settings for each factor are called levelsof the
factor.

Confounding occurs when the effect of one factor or treatment cannot be
distinguished from that of another factor or treatment. Thetwo factors
or treatments are said to be confounded. Except in very special cir-
cumstances, confounding should be avoided. Consider planting corn
variety A in Minnesota and corn variety B in Iowa. In this experiment,
we cannot distinguish location effects from variety effects—the variety
factor and the location factor are confounded.

1.4 Outline

Here is a road map for this book, so that you can see how it is organized.
The remainder of this chapter gives more detail on experimental units and
responses. Chapter 2 elaborates on the important concept ofrandomiza-
tion. Chapters 3 through 7 introduce the basic experimentaldesign, called
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the Completely Randomized Design (CRD), and describe its analysis in con-
siderable detail. Chapters 8 through 10 add factorial treatment structure to
the CRD, and Chapters 11 and 12 add random effects to the CRD. The idea
is that we learn these different treatment structures and analyses in the sim-
plest design setting, the CRD. These structures and analysis techniques can
then be used almost without change in the more complicated designs that
follow.

We begin learning new experimental designs in Chapter 13, which in-
troduces complete block designs. Chapter 14 introduces general incomplete
blocks, and Chapters 15 and 16 deal with incomplete blocks for treatments
with factorial structure. Chapter 17 introduces covariates. Chapters 18 and
19 deal with special treatment structures, including fractional factorials and
response surfaces. Finally, Chapter 20 provides a framework for planning an
experiment.

1.5 More About Experimental Units

Experimentation is so diverse that there are relatively fewgeneral statements
that can be made about experimental units. A common source ofdifficulty is
the distinction between experimental units and measurement units. ConsiderExperimental and

measurement
units

an educational study, where six classrooms of 25 first graders each are as-
signed at random to two different reading programs, with allthe first graders
evaluated via a common reading exam at the end of the school year. Are there
six experimental units (the classrooms) or 150 (the students)?

One way to determine the experimental unit is via the consideration that
an experimental unit should be able to receive any treatment. Thus if students
were the experimental units, we could see more than one reading program inExperimental unit

could get any
treatment

each classroom. However, the nature of the experiment makesit clear that all
the students in the classroom receive the same program, so the classroom as
a whole is the experimental unit. We don’t measure how a classroom reads,
though; we measure how students read. Thus students are the measurement
units for this experiment.

There are many situations where a treatment is applied to group of ob-
jects, some of which are later measured for a response. For example,

• Fertilizer is applied to a plot of land containing corn plants, some of
which will be harvested and measured. The plot is the experimental
unit and the plants are the measurement units.

• Ingots of steel are given different heat treatments, and each ingot is
punched in four locations to measure its hardness. Ingots are the ex-
perimental units and locations on the ingot are measurementunits.
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• Mice are caged together, with different cages receiving different nutri-
tional supplements. The cage is the experimental unit, and the mice
are the measurement units.

Treating measurement units as experimental usually leads to overopti-
mistic analysis more—we will reject null hypotheses more often than we Use a summary

of the
measurement unit

responses as
experimental unit

response

should, and our confidence intervals will be too short and will not have their
claimed coverage rates. The usual way around this is to determine a single
response for each experimental unit. This single response is typically the
average or total of the responses for the measurement units within an exper-
imental unit, but the median, maximum, minimum, variance orsome other
summary statistic could also be appropriate depending on the goals of the
experiment.

A second issue with units is determining their “size” or “shape.” For
agricultural experiments, a unit is generally a plot of land, so size and shape
have an obvious meaning. For an animal feeding study, size could be the Size of units
number of animals per cage. For an ice cream formulation study, size could
be the number of liters in a batch of ice cream. For a computer network
configuration study, size could be the length of time the network is observed
under load conditions.

Not all measurement units in an experimental unit will be equivalent.
For the ice cream, samples taken near the edge of a carton (unit) may have
more ice crystals than samples taken near the center. Thus itmay make sense
to plan the units so that the ratio of edge to center is similarto that in the Edge may be

different than
center

product’s intended packaging. Similarly, in agriculturaltrials, guard rows
are often planted to reduce the effect of being on the edge of aplot. You
don’t want to construct plots that are all edge, and thus all guard row. For
experiments that occur over time, such as the computer network study, there
may be a transient period at the beginning before the networkmoves to steady
state. You don’t want units so small that all you measure is transient.

One common situation is that there is a fixed resource available, such as
a fixed area, a fixed amount of time, or a fixed number of measurements. More

experimental
units, fewer

measurement
units usually

better

This fixed resource needs to be divided into units (and perhaps measurement
units). How should the split be made? In general, more experimental units
with fewer measurement units per experimental unit works better (see, for
example, Fairfield Smith 1938). However, smaller experimental units are
inclined to have greater edge effect problems than are larger units, so this
recommendation needs to be moderated by consideration of the actual units.

A third important issue is that the response of a given unit should not de-
pend on or be influenced by the treatments given other units orthe responses
of other units. This is usually ensured through some kind of separation of Independence of

unitsthe units, either in space or time. For example, a forestry experiment would
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provide separation between units, so that a fast-growing tree does not shade
trees in adjacent units and thus make them grow more slowly; and a drug trial
giving the same patient different drugs in sequence would include a washout
period between treatments, so that a drug would be completely out of a pa-
tient’s system before the next drug is administered.

When the response of a unit is influenced by the treatment given to other
units, we get confounding between the treatments, because we cannot esti-
mate treatment response differences unambiguously. When the response of
a unit is influenced by the response of another unit, we get a poor estimate
of the precision of our experiment. In particular, we usually overestimate
the precision. Failure to achieve this independence can seriously affect the
quality of any inferences we might make.

A final issue with units is determining how many units are required. We
consider this in detail in Chapter 7.Sample size

1.6 More About Responses

We have been discussing “the” response, but it is a rare experiment that mea-
sures only a single response. Experiments often address several questions,
and we may need a different response for each question. Responses such as
these are often calledprimary responses, since they measure the quantity ofPrimary response
primary interest for a unit.

We cannot always measure the primary response. For example,a drug
trial might be used to find drugs that increase life expectancy after initial
heart attack: thus the primary response is years of life after heart attack.
This response is not likely to be used, however, because it may be decades
before the patients in the study die, and thus decades beforethe study isSurrogate

responses completed. For this reason, experimenters usesurrogateresponses. (It isn’t
only impatience; it becomes more and more difficult to keep incontact with
subjects as time goes on.)

Surrogate responses are responses that are supposed to be related to—
and predictive for—the primary response. For example, we might measure
the fraction of patients still alive after five years, ratherthan wait for their
actual lifespans. Or we might have an instrumental reading of ice crystals in
ice cream, rather than use a human panel and get their subjective assessment
of product graininess.

Surrogate responses are common, but not without risks. In particular, we
may find that the surrogate response turns out not to be a good predictor of
the primary response.
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Cardiac arrhythmias Example 1.2
Acute cardiac arrhythmias can cause death. Encainide and flecanide acetate
are two drugs that were known to suppress acute cardiac arrhythmias and
stabilize the heartbeat. Chronic arrhythmias are also associated with sud-
den death, so perhaps these drugs could also work for nonacute cases. The
Cardiac Arrhythmia Suppression Trial (CAST) tested these two drugs and
a placebo (CAST Investigators 1989). The real response of interest is sur-
vival, but regularity of the heartbeat was used as a surrogate response. Both
of these drugs were shown to regularize the heartbeat betterthan the placebo
did. Unfortunately, the real response of interest (survival) indicated that the
regularized pulse was too often 0. These drugs did improve the surrogate
response, but they were actually worse than placebo for the primary response
of survival.

By the way, the investigators were originally criticized for including a
placebo in this trial. After all, the drugs wereknownto work. It was only the
placebo that allowed them to discover that these drugs should not be used for
chronic arrhythmias.

In addition to responses that relate directly to the questions of interest,
some experiments collectpredictiveresponses. We use predictive responses
to model theprimary response. The modeling is done for two reasons. First, Predictive

responsessuch modeling can be used to increase the precision of the experiment and
the comparisons of interest. In this case, we call the predictive responses
covariates(see Chapter 17). Second, the predictive responses may helpus
understand the mechanism by which the treatment is affecting the primary
response. Note, however, that since we observed the predictive responses
rather than setting them experimentally, the mechanistic models built using
predictive responses are observational.

A final class of responses isaudit responses. We use audit responses to
ensure that treatments were applied as intended and to checkthat environ- Audit responses
mental conditions have not changed. Thus in a study looking at nitrogen
fertilizers, we might measure soil nitrogen as a check on proper treatment
application, and we might monitor soil moisture to check on the uniformity
of our irrigation system.
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Chapter 2

Randomization and Design

We characterize an experiment by the treatments and experimental units to be
used, the way we assign the treatments to units, and the responses we mea-
sure. An experiment israndomizedif the method for assigning treatments Randomization to

assign treatment
to units

to units involves a known, well-understood probabilistic scheme. The prob-
abilistic scheme is called arandomization. As we will see, an experiment
may have several randomized features in addition to the assignment of treat-
ments to units. Randomization is one of the most important elements of a
well-designed experiment.

Let’s emphasize first the distinction between a random scheme and a Haphazard is not
randomized“haphazard” scheme. Consider the following potential mechanisms for as-

signing treatments to experimental units. In all cases suppose that we have
four treatments that need to be assigned to 16 units.

• We use sixteen identical slips of paper, four marked with A, four with
B, and so on to D. We put the slips of paper into a basket and mix them
thoroughly. For each unit, we draw a slip of paper from the basket and
use the treatment marked on the slip.

• Treatment A is assigned to the first four units we happen to encounter,
treatment B to the next four units, and so on.

• As each unit is encountered, we assign treatments A, B, C, andD based
on whether the “seconds” reading on the clock is between 1 and15, 16
and 30, 31 and 45, or 46 and 60.

The first method clearly uses a precisely-defined probabilistic method. We
understand how this method makes it assignments, and we can use this method
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to obtain statistically equivalent randomizations in replications of the exper-
iment.

The second two methods might be described as “haphazard”; they are not
predictable and deterministic, but they do not use a randomization. It is diffi-
cult to model and understand the mechanism that is being used. Assignment
here depends on the order in which units are encountered, theelapsed time
between encountering units, how the treatments were labeled A, B, C, and
D, and potentially other factors. I might not be able to replicate your experi-
ment, simply because I tend to encounter units in a differentorder, or I tend
to work a little more slowly. The second two methods are not randomization.

Haphazard is not randomized.

Introducing more randomness into an experiment may seem like a per-
verse thing to do. After all, we are always battling against random exper-
imental error. However, random assignment of treatments tounits has twoTwo reasons for

randomizing useful consequences:

1. Randomization protects against confounding.

2. Randomization can form the basis for inference.

Randomization is rarely used for inference in practice, primarily due to com-
putational difficulties. Furthermore, some statisticians(Bayesian statisticians
in particular) disagree about the usefulness of randomization as a basis for
inference.1 However, the success of randomization in the protection against
confounding is so overwhelming that randomization is almost universally
recommended.

2.1 Randomization Against Confounding

We defined confounding as occurring when the effect of one factor or treat-
ment cannot be distinguished from that of another factor or treatment. How
does randomization help prevent confounding? Let’s start by looking at the
trouble that can happen when we don’t randomize.

Consider a new drug treatment for coronary artery disease. We wish to
compare this drug treatment with bypass surgery, which is costly and inva-
sive. We have 100 patients in our pool of volunteers that haveagreed via

1Statisticians don’t always agree on philosophy or methodology. This is the first of several
ongoing little debates that we will encounter.
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informed consent to participate in our study; they need to beassigned to the
two treatments. We then measure five-year survival as a response.

What sort of trouble can happen if we fail to randomize? Bypass surgery
is a major operation, and patients with severe disease may not be strong
enough to survive the operation. It might thus be tempting toassign the Failure to

randomize can
cause trouble

stronger patients to surgery and the weaker patients to the drug therapy. This
confounds strength of the patient with treatment differences. The drug ther-
apy would likely have a lower survival rate because it is getting the weakest
patients, even if the drug therapy is every bit as good as the surgery.

Alternatively, perhaps only small quantities of the drug are available early
in the experiment, so that we assign more of the early patients to surgery,
and more of the later patients to drug therapy. There will be aproblem if the
early patients are somehow different from the later patients. For example, the
earlier patients might be from your own practice, and the later patients might
be recruited from other doctors and hospitals. The patientscould differ by
age, socioeconomic status, and other factors that are knownto be associated
with survival.

There are several potential randomization schemes for thisexperiment;
here are two:

• Toss a coin for every patient; heads—the patient gets the drug, tails—
the patient gets surgery.

• Make up a basket with 50 red balls and 50 white balls well mixed
together. Each patient gets a randomly drawn ball; red ballslead to
surgery, white balls lead to drug therapy.

Note that for coin tossing the numbers of patients in the two treatment groups
are random, while the numbers are fixed for the colored ball scheme.

Here is how randomization has helped us. No matter which features of
the population of experimental units are associated with our response, our
randomizations put approximately half the patients with these features in
each treatment group. Approximately half the men get the drug; approxi- Randomization

balances the
population on

average

mately half the older patients get the drug; approximately half the stronger
patients get the drug; and so on. These are not exactly 50/50 splits, but the
deviation from an even split follows rules of probability that we can use when
making inference about the treatments.

This example is, of course, an oversimplification. A real experimental
design would include considerations for age, gender, health status, and so
on. The beauty of randomization is that it helps prevent confounding, even
for factors that we do not know are important.
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Here is another example of randomization. A company is evaluating two
different word processing packages for use by its clerical staff. Part of the
evaluation is how quickly a test document can be entered correctly using the
two programs. We have 20 test secretaries, and each secretary will enter the
document twice, using each program once.

As expected, there are potential pitfalls in nonrandomizeddesigns. Sup-
pose that all secretaries did the evaluation in the order A first and B second.
Does the second program have an advantage because the secretary will be
familiar with the document and thus enter it faster? Or maybethe second
program will be at a disadvantage because the secretary willbe tired and
thus slower.

Two randomized designs that could be considered are:

1. For each secretary, toss a coin: the secretary will use theprograms in
the orders AB and BA according to whether the coin is a head or atail,
respectively.

2. Choose 10 secretaries at random for the AB order, the rest get the BA
order.

Both these designs are randomized and will help guard against confounding,Different
randomizations
are different
designs

but the designs are slightly different and we will see that they should be
analyzed differently.

Cochran and Cox (1957) draw the following analogy:

Randomization is somewhat analogous to insurance, in that it
is a precaution against disturbances that may or may not occur
and that may or may not be serious if they do occur. It is gen-
erally advisable to take the trouble to randomize even when it is
not expected that there will be any serious bias from failureto
randomize. The experimenter is thus protected against unusual
events that upset his expectations.

Randomization generally costs little in time and trouble, but it can save us
from disaster.

2.2 Randomizing Other Things

We have taken a very simplistic view of experiments; “assigntreatments to
units and then measure responses” hides a multitude of potential steps and
choices that will need to be made. Many of these additional steps can be
randomized, as they could also lead to confounding. For example:
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• If the experimental units are not used simultaneously, you can random-
ize the order in which they are used.

• If the experimental units are not used at the same location, you can
randomize the locations at which they are used.

• If you use more than one measuring instrument for determining re-
sponse, you can randomize which units are measured on which instru-
ments.

When we anticipate that one of these might cause a change in the response,
we can often design that into the experiment (for example, byusing blocking;
see Chapter 13). Thus I try to design for the known problems, and randomize
everything else.

One tale of woe Example 2.1
I once evaluated data from a study that was examining cadmiumand other
metal concentrations in soils around a commercial incinerator. The issue was
whether the concentrations were higher in soils near the incinerator. They
had eight sites selected (matched for soil type) around the incinerator, and
took ten random soil samples at each site.

The samples were all sent to a commercial lab for analysis. The analysis
was long and expensive, so they could only do about ten samples a day. Yes
indeed, there was almost a perfect match of sites and analysis days. Sev-
eral elements, including cadmium, were only present in trace concentrations,
concentrations that were so low that instrument calibration, which was done
daily, was crucial. When the data came back from the lab, we had a very
good idea of the variability of their calibrations, and essentially no idea of
how the sites differed.

The lab was informed that all the trace analyses, including cadmium,
would be redone, all on one day, in a random order that we specified. Fortu-
nately I was not a party to the question of who picked up the $75,000 tab for
reanalysis.

2.3 Performing a Randomization

Once we decide to use randomization, there is still the problem of actually
doing it. Randomizations usually consist of choosing a random order for
a set of objects (for example, doing analyses in random order) or choosing Random orders

and random
subsets

random subsets of a set of objects (for example, choosing a subset of units for
treatment A). Thus we need methods for putting objects into random orders
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and choosing random subsets. When the sample sizes for the subsets are fixed
and known (as they usually are), we will be able to choose random subsets
by first choosing random orders.

Randomization methods can be either physical or numerical.Physical
randomization is achieved via an actual physical act that isbelieved to pro-
duce random results with known properties. Examples of physical random-
ization are coin tosses, card draws from shuffled decks, rolls of a die, andPhysical

randomization tickets in a hat. I say “believed to produce random results with known prop-
erties” because cards can be poorly shuffled, tickets in the hat can be poorly
mixed, and skilled magicians can toss coins that come up heads every time.
Large scale embarrassments due to faulty physical randomization include
poor mixing of Selective Service draft induction numbers during World War
II (see Mosteller, Rourke, and Thomas 1970). It is importantto make sure
that any physical randomization that you use is done well.

Physical generation of random orders is most easily done with cards or
tickets in a hat. We must orderN objects. We takeN cards or tickets,
numbered1 throughN , and mix them well. The first object is then given thePhysical random

order number of the first card or ticket drawn, and so on. The objectsare then sorted
so that their assigned numbers are in increasing order. Withgood mixing, all
orders of the objects are equally likely.

Once we have a random order, random subsets are easy. Supposethat
the N objects are to be broken intog subsets with sizesn1, . . ., ng, with
n1 + · · · + ng = N . For example, eight students are to be grouped into onePhysical random

subsets from
random orders

group of four and two groups of two. First arrange the objectsin random
order. Once the objects are in random order, assign the firstn1 objects to
group one, the nextn2 objects to group two, and so on. If our eight students
were randomly ordered 3, 1, 6, 8, 5, 7, 2, 4, then our three groups would be
(3, 1, 6, 8), (5, 7), and (2, 4).

Numerical randomization uses numbers taken from a table of “random”
numbers or generated by a “random” number generator in computer software.Numerical

randomization For example, Appendix Table D.1 contains random digits. We use the table
or a generator to produce a random ordering for ourN objects, and then
proceed as for physical randomization if we need random subsets.

We get the random order by obtaining a random number for each object,
and then sorting the objects so that the random numbers are inincreasing
order. Start arbitrarily in the table and read numbers of therequired size
sequentially from the table. If any number is a repeat of an earlier number,
replace the repeat by the next number in the list so that you get N different
numbers. For example, suppose that we need 5 numbers and thatthe randomNumerical

random order numbers in the table are (4, 3, 7, 4, 6, 7, 2, 1, 9,. . .). Then our 5 selected
numbers would be (4, 3, 7, 6, 2), the duplicates of 4 and 7 beingdiscarded.
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Now arrange the objects so that their selected numbers are inascending order.
For the sample numbers, the objects, A through E would be reordered E, B,
A, D, C. Obviously, you need numbers with more digits asN gets larger.

Getting rid of duplicates makes this procedure a little tedious. You will
have fewer duplicates if you use numbers with more digits than are abso-
lutely necessary. For example, for 9 objects, we could use two- or three-digit Longer random

numbers have
fewer duplicates

numbers, and for 30 objects we could use three- or four-digitnumbers. The
probabilities of 9 random one-, two-, and three-digit numbers having no du-
plicates are .004, .690, and .965; the probabilities of 30 random two-, three-,
and four-digit numbers having no duplicates are .008, .644,and .957 respec-
tively.

Many computer software packages (and even calculators) canproduce
“random” numbers. Some produce random integers, others numbers be-
tween 0 and 1. In either case, you use these numbers as you would numbers
formed by a sequence of digits from a random number table. Suppose that
we needed to put 6 units into random order, and that our randomnumber
generator produced the following numbers: .52983, .37225,.99139, .48011,
.69382, .61181. Associate the 6 units with these random numbers. The sec-
ond unit has the smallest random number, so the second unit isfirst in the
ordering; the fourth unit has the next smallest random number, so it is second
in the ordering; and so on. Thus the random order of the units is B, D, A, F,
E, C.

The wordrandomis quoted above because these numbers are not truly
random. The numbers in the table are the same every time you read it; they
don’t change unpredictably when you open the book. The numbers produced
by the software package are from an algorithm; if you know thealgorithm
you can predict the numbers perfectly. They are technicallypseudorandom
numbers; that is, numbers that possess many of the attributes of random num- Pseudorandom

numbersbers so that they appear to be random and can usually be used inplace of
random numbers.

2.4 Randomization for Inference

Nearly all the analysis that we will do in this book is based onthe normal
distribution and linear models and will uset-tests, F-tests, and the like. As
we will see in great detail later, these procedures make assumptions such as
“The responses in treatment group A are independent from unit to unit and
follow a normal distribution with meanµ and varianceσ2.” Nowhere in the
design of our experiment did we do anything to make this so; all we did was
randomize treatments to units and observe responses.



20 Randomization and Design

Table 2.1: Auxiliary manual times runstitching a collar for 30
workers under standard (S) and ergonomic (E) conditions.

# S E # S E # S E

1 4.90 3.87 11 4.70 4.25 21 5.06 5.54
2 4.50 4.54 12 4.77 5.57 22 4.44 5.52
3 4.86 4.60 13 4.75 4.36 23 4.46 5.03
4 5.57 5.27 14 4.60 4.35 24 5.43 4.33
5 4.62 5.59 15 5.06 4.88 25 4.83 4.56
6 4.65 4.61 16 5.51 4.56 26 5.05 5.50
7 4.62 5.19 17 4.66 4.84 27 5.78 5.16
8 6.39 4.64 18 4.95 4.24 28 5.10 4.89
9 4.36 4.35 19 4.75 4.33 29 4.68 4.89

10 4.91 4.49 20 4.67 4.24 30 6.06 5.24

In fact, randomization itself can be used as a basis for inference. The
advantage of this randomization approach is that it relies only on the ran-Randomization

inference makes
few assumptions

domization that we performed. It does not need independence, normality,
and the other assumptions that go with linear models. The disadvantage of
the randomization approach is that it can be difficult to implement, even in
relatively small problems, though computers make it much easier. Further-
more, the inference that randomization provides is often indistinguishable
from that of standard techniques such as ANOVA.

Now that computers are powerful and common, randomization inference
procedures can be done with relatively little pain. These ideas of randomiza-
tion inference are best shown by example. Below we introducethe ideas of
randomization inference using two extended examples, one corresponding to
a pairedt-test, and one corresponding to a two samplet-test.

2.4.1 The pairedt-test

Bezjak and Knez (1995) provide data on the length of time it takes garment
workers to runstitch a collar on a man’s shirt, using a standard workplace and
a more ergonomic workplace. Table 2.1 gives the “auxiliary manual time”
per collar in seconds for 30 workers using both systems.

One question of interest is whether the times are the same on average
for the two workplaces. Formally, we test the null hypothesis that the aver-
age runstitching time for the standard workplace is the sameas the average
runstitching time for the ergonomic workplace.
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Table 2.2: Differences in runstitching times (standard− ergonomic).

1.03 -.04 .26 .30 -.97 .04 -.57 1.75 .01 .42
.45 -.80 .39 .25 .18 .95 -.18 .71 .42 .43

-.48 -1.08 -.57 1.10 .27 -.45 .62 .21 -.21 .82

A pairedt-test is the standard procedure for testing this null hypothesis.
We use a pairedt-test because each worker was measured twice, once forPaired t-test for

paired dataeach workplace, so the observations on the two workplaces are dependent.
Fast workers are probably fast for both workplaces, and slowworkers are
slow for both. Thus what we do is compute the difference (standard− er-
gonomic) for each worker, and test the null hypothesis that the average of
these differences is zero using a one samplet-test on the differences.

Table 2.2 gives the differences between standard and ergonomic times.
Recall the setup for a one samplet-test. Letd1, d2, . . ., dn be then differ-
ences in the sample. We assume that these differences are independent sam-
ples from a normal distribution with meanµ and varianceσ2, both unknown.
Our null hypothesis is that the meanµ equals prespecified valueµ0 = 0
(H0 : µ = µ0 = 0), and our alternative isH1 : µ > 0 because we expect the
workers to be faster in the ergonomic workplace.

The formula for a one samplet-test is

t =
d̄ − µ0

s/
√

n
,

whered̄ is the mean of the data (here the differencesd1, d2, . . ., dn), n is the The paired t-test
sample size, ands is the sample standard deviation (of the differences)

s =

√√√√ 1

n − 1

n∑

i=1

(di − d̄ )2 .

If our null hypothesis is correct and our assumptions are true, then thet-
statistic follows at-distribution withn − 1 degrees of freedom.

Thep-value for a test is the probability, assuming that the null hypothesis
is true, of observing a test statistic as extreme or more extreme than the one The p-value
we did observe. “Extreme” means away from the the null hypothesis towards
the alternative hypothesis. Our alternative here is that the true average is
larger than the null hypothesis value, so larger values of the test statistic are
extreme. Thus thep-value is the area under thet-curve withn− 1 degrees of
freedom from the observedt-value to the right. (If the alternative had been
µ < µ0, then thep-value is the area under the curve to the left of our test
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Table 2.3: Pairedt-tests results for runstitching times (standard –
ergonomic) for the last 10 and all 30 workers

n df d̄ s t p

Last 10 10 9 .023 .695 .10 .459
All 30 30 29 .175 .645 1.49 .074

statistic. For a two sided alternative, thep-value is the area under the curve
at a distance from 0 as great or greater than our test statistic.)

To illustrate thet-test, let’s use the data for the last 10 workers and all
30 workers. Table 2.3 shows the results. Looking at the last ten workers,
thep-value is .46, meaning that we would observe at-statistic this larger or
larger in 46% of all tests when the null hypothesis is true. Thus there is little
evidence against the null here. When all 30 workers are considered, thep-
value is .074; this is mild evidence against the null hypothesis. The fact that
these two differ probably indicates that the workers are notlisted in random
order. In fact, Figure 2.1 shows box-plots for the differences by groups of ten
workers; the lower numbered differences tend to be greater.

Now consider a randomization-based analysis. The randomization null
hypothesis is that the two workplaces are completely equivalent and merely
act to label the responses that we observed. For example, thefirst workerRandomization

null hypothesis had responses of 4.90 and 3.87, which we have labeled as standard and er-
gonomic. Under the randomization null, the responses wouldbe 4.90 and
3.87 no matter how the random assignment of treatments turned out. The
only thing that could change is which of the two is labeled as standard, and
which as ergonomic. Thus, under the randomization null hypothesis, we
could, with equal probability, have observed 3.87 for standard and 4.90 for
ergonomic.

What does this mean in terms of the differences? We observed adiffer-
ence of 1.03 for worker 1. Under the randomization null, we could just asDifferences have

random signs
under
randomization
null

easily have observed the difference -1.03, and similarly for all the other dif-
ferences. Thus in the randomization analogue to a pairedt-test, the absolute
values of the differences are taken to be fixed, and the signs of the differ-
ences are random, with each sign independent of the others and having equal
probability of positive and negative.

To construct a randomization test, we choose a descriptive statistic for
the data and then get the distribution of that statistic under the randomization
null hypothesis. The randomizationp-value is the probability (under this
randomization distribution) of getting a descriptive statistic as extreme or
more extreme than the one we observed.
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Figure 2.1: Box-plots of differences in runstitching times by
groups of 10 workers, using MacAnova. Stars and diamonds
indicate potential outlier points.

For this problem, we take the sum of the differences as our descriptive
statistic. (The average would lead to exactly the samep-values, and we could
also form tests using the median or other measures of center.) Start with Randomization

statistic and
distribution

the last 10 workers. The sum of the last 10 observed differences is .23. To
get the randomization distribution, we have to get the sum for all possible
combinations of signs for the differences. There are two possibilities for
each difference, and 10 differences, so there are210 = 1024 different equally
likely values for the sum in the randomization distribution. We must look at
all of them to get the randomizationp-value.

Figure 2.2 shows a histogram of the randomization distribution for the
last 10 workers. The observed value of .23 is clearly in the center of this
distribution, so we expect a largep-value. In fact, 465 of the 1024 values are Randomization

p-value.23 or larger, so the randomizationp-value is 465/1024 = .454, very close to
thet-testp-value.

We only wanted to do a test on a mean of 10 numbers, and we had to
compute 1024 different sums of 10 numbers; you can see one reason why
randomization tests have not had a major following. For somedata sets, you
can compute the randomizationp-value by hand fairly simply. Consider the
last 10 differences in Table 2.2 (reading across rows, rather than columns).
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Figure 2.2: Histogram of randomization distribution of the sum
of the last 10 worker differences for runstitching, with vertical
line added at the observed sum.

These differences are

.62 1.75 .71 .21 .01 .42 -.21 .42 .43 .82

Only one of these values is negative (-.21), and seven of the positive differ-
ences have absolute value greater than .21. Any change of these seven values
can only make the sum less, so we don’t have to consider changing their
signs, only the signs of .21, .01, and -.21. This is a much smaller problem,
and it is fairly easy to work out that four of the 8 possible sign arrangements
for testing three differences lead to sums as large or largerthan the observed
sum. Thus the randomizationp-value is4/1024 = .004, similar to the .007
p-value we would get if we used thet-test.

Looking at the entire data set, we have230 = 1, 073, 741, 824 different
sets of signs. That is too many to do comfortably, even on a computer. WhatSubsample the

randomization
distribution

is done instead is to have the computer choose a random samplefrom this
complete distribution by choosing random sets of signs, andthen use this
sample for computing randomizationp-values as if it were the complete dis-
tribution. For a reasonably large sample, say 10,000, the approximation is
usually good enough. I took a random sample of size 10,000 andgot ap-
value .069, reasonably close to thet-testp-value. Two additional samples
of 10,000 gavep-values of .073 and .068; the binomial distribution suggests
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Table 2.4: Log whole plant phosphorus
(ln µg/plant) 15 and 28 days after first harvest.

15 Days 28 Days

4.3 4.6 4.8 5.4 5.3 5.7 6.0 6.3

that these approximatep-values have a standard deviation of about
√

p × (1 − p)/10000 ≈
√

.07 × .93/10000 = .0026 .

2.4.2 Two-samplet-test

Figure 2 of Hunt (1973) provides data from an experiment looking at the
absorption of phosphorus byRumex acetosa. Table 2.4 is taken from Figure
2 of Hunt and gives the log phosphorus content of 8 whole plants, 4 each at
15 and 28 days after first harvest. These are 8 plants randomlydivided into
two groups of 4, with each group getting a different treatment. One natural
question is whether the average phosphorus content is the same at the two
sampling times. Formally, we test the null hypothesis that the two sampling
times have the same average.

A two-samplet-test is the standard method for addressing this question.
Let y11, . . ., y14 be the responses from the first sample, and lety21, . . ., y24 Two-sample t-test
be the response from the second sample. The usual assumptions for a two-
samplet-test are that the datay11, . . ., y14 are a sample from a normal dis-
tribution with meanµ1 and varianceσ2, the datay21, . . ., y24 are a sample
from a normal distribution with meanµ2 and varianceσ2, and the two sam-
ples are independent. Note that while the means may differ, the variances
are assumed to be the same. The null hypothesis isH0 : µ1 = µ2 and our
alternative isH1 : µ1 < µ2 (presumably growing plants will accumulate
phosphorus).

The two-samplet-statistic is

t =
y2• − y1•

sp

√
1/n1 + 1/n2

,

wherey1• andy2• are the means of the first and second samples,n1 andn2

are the sample sizes, ands2
p is the pooled estimate of variance defined by

sp =

√∑n1

i=1(y1i − y1•)
2 +

∑n2

i=1(y2i − y2•)
2

n1 + n2 − 2
.
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If our null hypothesis is correct and our assumptions are true, then thet-
statistic follows at-distribution withn1 + n2 − 2 degrees of freedom. The
p-value for our one-sided alternative is the area under thet-distribution curve
with n1 + n2 − 2 degrees of freedom that is to the right of our observed
t-statistic.

For these datay1• = 4.775, y2• = 5.825, sp = .446, andn1 = n2 = 4.
Thet-statistic is then

t =
5.825 − 4.775

.446
√

1/4 + 1/4
= 3.33,

and thep-value is .008, the area under at-curve with 6 degrees of freedom to
the right of 3.33. This is strong evidence against the null hypothesis, and we
would probably conclude that the null is false.

Now consider a randomization analysis. The randomization null hypoth-
esis is that growing time treatments are completely equivalent and serve onlyRandomization

null hypothesis as labels. In particular, the responses we observed for the 8units would be
the same no matter which treatments had been applied, and anysubset of four
units is equally likely to be the 15-day treatment group. Forexample, under
the randomization null wth the 15-day treatment, the responses (4.3, 4.6, 4.8,
5.4), (4.3, 4.6, 5.3, 5.7), and (5.4, 5.7, 6.0, 6.3) are all equally likely.

To construct a randomization test, we choose a descriptive statistic for
the data and then get the distribution of that statistic under the randomization
null hypothesis. The randomizationp-value is the probability (under this
randomization distribution) of getting a descriptive statistic as extreme or
more extreme than the one we observed.

For this problem, we take the average response at 28 days minus the aver-
age response at 15 days as our statistic. The observed value of this statistic isRandomization

statistic and
distribution

1.05. There are8C4 = 70 different ways that the 8 plants can be split between
the two treatments. Only two of those 70 ways give a difference of averages
as large as or larger than the one we observed. Thus the randomization p-
value is 2/70 = .029. Thisp-value is a bit bigger than that computed fromRandomization

p-value the t-test, but both give evidence against the null hypothesis. Note that the
smallest possible randomizationp-value for this experiment is 1/70 = .014.

2.4.3 Randomization inference and standard inference

We have seen a couple of examples where thep-values for randomization
tests were very close to those oft-tests, and a couple where thep-values
differed somewhat. Generally speaking, randomizationp-values are close to
standardp-values. The two tend to be very close when the sample size is
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large and the assumptions of the standard methods are met. For small sample
sizes, randomization inference is coarser, in the sense that there are relatively
few obtainablep-values.

Randomizationp-values are usually close to normal theoryp-values.

We will only mention randomization testing in passing in theremainder
of this book. Normal theory methods such as ANOVA andt-tests are much
easier to implement and generalize; furthermore, we get essentially the same
inference as the randomization tests, provided we take somecare to ensure
that the assumptions made by the standard procedures are met. We should
consider randomization methods when the assumptions of normal theory can-
not be met.

2.5 Further Reading and Extensions

Randomization tests, sometimes called permutation tests,were introduced
by Fisher (1935) and further developed by Pitman (1937, 1938) and others.
Some of the theory behind these tests can be found in Kempthorne (1955) and
Lehmann (1959). Fisher’s book is undoubtedly a classic and the granddaddy
of all modern books on the design of experiments. It is, however, difficult
for mere mortals to comprehend and has been debated and discussed since
it appeared (see, for example, Kempthorne 1966). Welch (1990) presents a
fairly general method for constructing randomization tests.

The randomization distribution for our test statistic is discrete, so there
is a nonzero lump of probability on the observed value. We have computed
thep-value by including all of this probability at the observed value as being
in the tail area (as extreme or more extreme than that we observed). One
potential variation on thep-value is to split the probability at the observed
value in half, putting only half in the tail. This can sometimes improve the
agreement between randomization and standard methods.

While randomization is traditional in experimental designand its use is
generally prescribed, it is only fair to point out that thereis an alternative
model for statistical inference in which randomization is not necessaryfor
valid experimental design, and under which randomization does not form
the basis for inference. This is the Bayesian model of statistical inference.
The drawback is that the Bayesian analysis must model all themiscellaneous
factors which randomization is used to avoid.
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The key assumption in many Bayesian analyses is the assumption of ex-
changeability, which is like the assumption of independence in a classical
analysis. Many Bayesians will concede that randomization can assist in mak-
ing exchangeability a reasonable approximation to reality. Thus, some would
do randomization to try to get exchangeability. However, Bayesians do not
need to randomize and so are free to consider other criteria,such as ethical
criteria, much more strongly. Berry (1989) has expounded this view rather
forcefully.

Bayesians believe in the likelihood principle, which here implies basing
your inference on the data you have instead of the data you might have had.
Randomization inference compares the observed results to results that would
have been obtained under other randomizations. This is a clear violation
of the likelihood principle. Of course, Bayesians don’t generally believe in
testing orp-values to begin with.

A fairly recent cousin of randomization inference isbootstrapping(see
Efron 1979; Efron and Tibshirani 1993; and many others). Bootstrap infer-
ence in the present context does not rerandomize the assignment of treat-
ments to units, rather it randomly reweights the observations in each treat-
ment group in an effort to determine the distribution of statistics of interest.

2.6 Problems

We wish to evaluate a new textbook for a statistics class. There are sevenExercise 2.1
sections; four are chosen at random to receive the new book, three receive the
old book. At the end of the semester, student evaluations show the following
percentages of students rate the textbook as “very good” or “excellent”:

Section 1 2 3 4 5 6 7
Book N O O N N O N
Rating 46 37 47 45 32 62 56

Find the one-sided randomizationp-value for testing the null hypothesis that
the two books are equivalent versus the alternative that thenew book is better
(receives higher scores).

Dairy cows are bred by selected bulls, but not all cows becomepregnantExercise 2.2
at the first service. A drug is proposed that is hoped to increase the bulls
fertility. Each of seven bulls will be bred to 2 herds of 100 cows each (a
total of 14 herds). For one herd (selected randomly) the bulls will be given
the drug, while no drug will be given for the second herd. Assume the drug
has no residual effect. The response we observe for each bullis the number
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of impregnated cows under drug therapy minus the number of impregnated
cows without the drug. The observed differences are -1, 6, 4,6, 2, -3, 5. Find
thep-value for the randomization test of the null hypothesis that the drug has
no effect versus a one-sided alternative (the drug improvesfertility).

Suppose we are studying the effect of diet on height of children, and we Exercise 2.3
have two diets to compare: diet A (a well balanced diet with lots of broccoli)
and diet B (a diet rich in potato chips and candy bars). We wishto find the
diet that helps children grow (in height) fastest. We have decided to use 20
children in the experiment, and we are contemplating the following methods
for matching children with diets:

1. Let them choose.

2. Take the first 10 for A, the second 10 for B.

3. Alternate A, B, A, B.

4. Toss a coin for each child in the study: heads→ A, tails→ B.

5. Get 20 children; choose 10 at random for A, the rest for B.

Describe the benefits and risks of using these five methods.

As part of a larger experiment, Dale (1992) looked at six samples of Exercise 2.4
a wetland soil undergoing a simulated snowmelt. Three were randomly se-
lected for treatment with a neutral pH snowmelt; the other three got a reduced
pH snowmelt. The observed response was the number of Copepoda removed
from each microcosm during the first 14 days of snowmelt.

Reduced pH Neutral pH

256 159 149 54 123 248

Using randomization methods, test the null hypothesis thatthe two treatments
have equal average numbers of Copepoda versus a two-sided alternative.

Chu (1970) studied the effect of the insecticide chlordane on the ner- Exercise 2.5
vous systems of American cockroaches. The coxal muscles from one meso-
and one metathoracic leg on opposite sides were surgically extracted from
each of six roaches. The roaches were then treated with 50 micrograms of
α-chlordane, and coxal muscles from the two remaining meso- and metatho-
racic legs were removed about two hours after treatment. TheNa+-K+ATPase
activity was measured in each muscle, and the percentage changes for the six
roaches are given here:

15.3 -31.8 -35.6 -14.5 3.1 -24.5
Test the null hypothesis that the chlordane treatment has not affected the
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Na+-K+ATPas activity. What experimental technique (not mentioned in the
description above) must have been used to justify a randomization test?

McElhoe and Conner (1986) use an instrument called a “Visiplume” toProblem 2.1
measure ultraviolet light. By comparing absorption in clear air and absorp-
tion in polluted air, the concentration of SO2 in the polluted air can be es-
timated. The EPA has a standard method for measuring SO2, and we wish
to compare the two methods across a range of air samples. The recorded
response is the ratio of the Visiplume reading to the EPA standard reading.
There were six observations on coal plant number 2: .950, .978, .762, .733,
.823, and 1.011. If we make the null hypothesis be that the Visiplume and
standard measurements are equivalent (and the Visiplume and standard labels
are just labels and nothing more), then the ratios could (with equal probabil-
ity) have been observed as their reciprocals. That is, the ratio of .950 could
with equal probability have been 1/.950 = 1.053, since the labels are equiva-
lent and assigned at random. Suppose we take as our summary ofthe data the
sum of the ratios. We observe .95 + ... + 1.011 = 5.257. Test (using random-
ization methods) the null hypothesis of equivalent measurement procedures
against the alternative that Visiplume reads higher than the standard. Report
ap-value.

In this problem, a data set of size 5 consists of the numbers 1 through 5;Problem 2.2
a data set of size 6 consists of the numbers 1 through 6; and so on.
(a) For data sets of size 5 and 6, compute the complete randomization distri-
bution for the mean of samples of size 3. (There will be 10 and 20 members
respectively in the two distributions.) How normal do thesedistributions
look?
(b) For data sets of size 4 and 5, compute the complete randomization distri-
bution for the mean of samples of any size (size 1, size 2,. . ., up to all the
data in the sample). Again, compare these to normal.
(c) Compare the size 5 distributions from parts a) and b). Howdo they com-
pare for mean, median, variance, and so on.

Let X1,X2, . . .,XN be independent, uniformly distributed, randomk-Question 2.1
digit integers (that is, less than10k). Find the probability of having no dupli-
cates inN draws.



Chapter 3

Completely Randomized
Designs

The simplest randomized experiment for comparing several treatments is the
Completely Randomized Design, or CRD. We will study CRD’s and their
analysis in some detail, before considering any other designs, because many
of the concepts and methods learned in the CRD context can be transferred
with little or no modification to more complicated designs. Here, we define
completely randomized designs and describe the initial analysis of results.

3.1 Structure of a CRD

We haveg treatments to compare andN units to use in our experiment. For
a completely randomized design: All partitions of

units with sizes
n1 through ng

equally likely in
CRD

1. Select sample sizesn1, n2, . . . , ng with n1 + n2 + · · · + ng = N .

2. Choosen1 units at random to receive treatment 1,n2 units at random
from theN − n1 remaining to receive treatment 2, and so on.

This randomization produces a CRD; all possible arrangements of theN
units into g groups with sizesn1 thoughng are equally likely. Note that
complete randomization only addresses the assignment of treatments to units;
selection of treatments, experimental units, and responses is also required.

Completely randomized designs are the simplest, most easily understood, First consider a
CRDmost easily analyzed designs. For these reasons, we consider the CRD first

when designing an experiment. The CRD may prove to be inadequate for
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some reason, but I always consider the CRD when developing anexperimen-
tal design before possibly moving on to a more sophisticateddesign.

Example 3.1 Acid rain and birch seedlings
Wood and Bormann (1974) studied the effect of acid rain on trees. “Clean”
precipitation has a pH in the 5.0 to 5.5 range, but observed precipitation pH
in northern New Hampshire is often in the 3.0 to 4.0 range. Is this acid rain
harming trees, and if so, does the amount of harm depend on thepH of the
rain?

One of their experiments used 240 six-week-old yellow birchseedlings.
These seedlings were divided into five groups of 48at random, and the
seedlings within each group received an acid mist treatment6 hours a week
for 17 weeks. The five treatments differed by mist pH: 4.7, 4.0, 3.3, 3.0, and
2.3; otherwise, the seedlings were treated identically. After the 17 weeks, the
seedlings were weighed, and total plant (dry) weight was taken as response.
Thus we have a completely randomized design, with five treatment groups
and eachni fixed at 48. The seedlings were the experimental units, and plant
dry weight was the response.

This is a nice, straightforward experiment, but let’s look over the steps
in planning the experiment and see where some of the choices and compro-
mises were made. It was suspected that damage might vary by pHlevel, plant
developmental stage, and plant species, among other things. This particu-
lar experiment only addresses pH level (other experiments were conducted
separately). Many factors affect tree growth. The experiment specifically
controlled for soil type, seed source, and amounts of light,water, and fer-
tilizer. The desired treatment was real acid rain, but the available treatment
was a synthetic acid rain consisting of distilled water and sulfuric acid (rain
in northern New Hampshire is basically a weak mixture of sulfuric and ni-
tric acids). There was no placeboper se. The experiment used yellow birch
seedlings; what about other species or more mature trees? Total plant weight
is an important response, but other responses (possibly equally important) are
also available. Thus we see that the investigators have narrowed an enormous
question down to a workable experiment using artificial acidrain on seedlings
of a single species under controlled conditions. A considerable amount of
nonstatistical background work and compromise goes into the planning of
even the simplest (from a statistical point of view) experiment.

Example 3.2 Resin lifetimes

Mechanical parts such as computer disk drives, light bulbs,and glue bonds
eventually fail. Buyers of these parts want to know how long they are likely
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Table 3.1: log10 times till failure of a resin under stress.

Temperature (oC)
175 194 213 231 250

2.04 1.85 1.66 1.66 1.53 1.35 1.15 1.21 1.26 1.02
1.91 1.96 1.71 1.61 1.54 1.27 1.22 1.28 .83 1.09
2.00 1.88 1.42 1.55 1.38 1.26 1.17 1.17 1.08 1.06
1.92 1.90 1.76 1.66 1.31 1.38 1.16

to last, so manufacturers perform tests to determine average lifetime, some-
times expressed as mean time to failure, or mean time betweenfailures for
repairable items. The last computer disk drive I bought had amean time to
failure of 800,000 hours (over 90 years). Clearly the manufacturer did not
have disks on test for over 90 years; how do they make such claims?

One experimental method for reliability is called anaccelerated life test.
Parts under stress will usually fail sooner than parts that are unstressed. By
modeling the lifetimes of parts under various stresses, we can estimate (ex-
trapolate to) the lifetime of parts that are unstressed. That way we get an
estimate of the unstressed lifetime without having to wait the complete un-
stressed lifetime.

Nelson (1990) gave an example where the goal was to estimate the life-
time (in hours) of an encapsulating resin for gold-aluminumbonds in inte-
grated circuits operating at 120oC. Since the lifetimes were expected to be
rather long, an accelerated test was used. Thirty-seven units were assigned
at random to one of five different temperature stresses, ranging from 175o to
250o. Table 3.1 gives thelog10 lifetimes in hours for the test units.

For this experiment, the choice of units was rather clear: integrated cir-
cuits with the resin bond of interest. Choice of treatments,however, de-
pended on knowing that temperature stress reduced resin bond lifetime. The
actual choice of temperatures probably benefited from knowledge of the re-
sults of previous similar experiments. Once again, experimental design is a
combination of subject matter knowledge and statistical methods.

3.2 Preliminary Exploratory Analysis

It is generally advisable to conduct a preliminary exploratory or graphical
analysis of the data prior to any formal modeling, testing, or estimation. Pre-
liminary analysis could include:

• Simple descriptive statistics such as means, medians, standard errors,
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interquartile ranges;

• Plots, such as stem and leaf diagrams, box-plots, and scatter-plots; and

• The above procedures applied separately to each treatment group.

See, for example, Moore and McCabe (1999) for a description of these ex-
ploratory techniques.

This preliminary analysis presents several possibilities. For example, a
set of box-plots with one box for each treatment group can show us the rel-Graphical

analysis reveals
patterns in data

ative sizes of treatment mean differences and experimentalerror. This often
gives us as much understanding of the data as any formal analysis proce-
dure. Preliminary analysis can also be a great help in discovering unusual
responses or problems in the data. For example, we might discover an outly-
ing value, perhaps due to data entry error, that was difficultto spot in a table
of numbers.

Example 3.3 Resin lifetimes, continued
We illustrate preliminary analysis by using Minitab to makebox-plots of
the resin lifetime data of Example 3.2, with a separate box-plot for each
treatment; see Figure 3.1. The data in neighboring treatments overlap, but
there is a consistent change in the response from treatmentsone through five,
and the change is fairly large relative to the variation within each treatment
group. Furthermore, the variation is roughly the same in thedifferent treat-
ment groups (achieving this was a major reason for using log lifetimes).

A second plot shows us something of the challenge we are facing. Fig-
ure 3.2 shows the average log lifetimes per treatment group plotted against
the stress temperature, with a regression line superimposed. We are trying to
extrapolate over to a temperature of 120o, well beyond the range of the data.
If the relationship is nonlinear (and it looks curved), the linear fit will give
a poor prediction and the average log lifetime at 120ocould be considerably
higher than that predicted by the line.

3.3 Models and Parameters

A modelfor data is a specification of the statistical distribution for the data.
For example, the number of heads in ten tosses of a fair coin would have a
Binomial(10,.5) distribution, where .5 gives the probability of a success and
10 is the number of trials. In this instance, the distribution depends on two
numbers, called parameters: the success probability and the number of trials.
For ten tosses of a fair coin, we know both parameters. In the analysis of
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Figure 3.1: Box-plots oflog10 times till failure of a resin under
five different temperature stresses, using Minitab.
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Figure 3.2: Averagelog10 time till failure versus temperature,
with linear regression line added, using MacAnova.

experimental data, we may posit several different models for the data, all
with unknown parameters. The objectives of the experiment can often be
described as deciding which model is the best description ofthe data, and
making inferences about the parameters in the models.
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Our models for experimental data have two basic parts. The first part
describes the average or expected values for the data. This is sometimes
called a “model for the means” or “structure for the means.” For example,Model for the

means consider the birch tree weights from Example 3.1. We might assume that
all the treatments have the same mean response, or that each treatment has
its own mean, or that the means in the treatments are a straight line function
of the treatment pH. Each one of these models for the means hasits own
parameters, namely the common mean, the five separate treatment means,
and the slope and intercept of the linear relationship, respectively.

The second basic part of our data models is a description of how the
data vary around the treatment means. This is the “model for the errors”Model for the

errors or “structure for the errors”. We assume that deviations from the treatment
means are independent for different data values, have mean zero, and all the
deviations have the same variance, denoted byσ2.σ2

This description of the model for the errors is incomplete, because we
have not described the distribution of the errors. We can actually go a fair
way with descriptive statistics using our mean and error models without everNormal

distribution of
errors needed for
inference

assuming a distribution for the deviations, but we will needto assume a dis-
tribution for the deviations in order to do tests, confidenceintervals, and other
forms of inference. We assume, in addition to independence,zero mean, and
constant variance, that the deviations follow a Normal distribution.

The standard analysis for completely randomized designs isconcerned
with the structure of the means. We are trying to learn whether the meansStandard analysis

explores means are all the same, or if some differ from the others, and the nature of any
differences that might be present. The error structure is assumed to be known,
except for the varianceσ2, which must be estimated and dealt with but is
otherwise of lesser interest.

Let me emphasize that these models in the standard analysis may not
be the only models of interest; for example, we may have data that do notStandard analysis

is not always
appropriate

follow a normal distribution, or we may be interested in variance differences
rather than mean differences (see Example 3.4). However, the usual analysis
looking at means is a reasonable place to start.

Example 3.4 Luria, Delbrück, and variances

In the 1940s it was known that some strains of bacteria were sensitive to a
particular virus and would be killed if exposed. Nonetheless, some members
of those strains did not die when exposed to the virus and happily proceeded
to reproduce. What caused this phenomenon? Was it spontaneous mutation,
or was it an adaptation that occurred after exposure to the virus? These two
competing theories for the phenomenon led to the same average numbers
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of resistant bacteria, but to different variances in the numbers of resistant
bacteria—with the mutation theory leading to a much higher variance. Ex-
periments showed that the variances were high, as predictedby the mutation
theory. This was an experiment where all the important information was in
the variance, not in the mean. It was also the beginning of a research collab-
oration that eventually led to the 1969 Nobel Prize for Luriaand Delbrück.

There are many models for the means; we start with two basic models.
We haveg treatments andN units. Letyij be thejth response in theith
treatment group. Thusi runs between 1 andg, andj runs between 1 andni,
in treatment groupi. The model of separate group means (the full model) as-Separate means

modelsumes that every treatment has its own mean responseµi. Combined with the
error structure, the separate means model implies that all the data are inde-
pendent and normally distributed with constant variance, but each treatment
group may have its own mean:

yij ∼ N(µi, σ
2) .

Alternatively, we may write this model as

yij = µi + ǫij ,

where theǫij ’s are “errors” or “deviations” that are independent, normally
distributed with mean zero and varianceσ2.

The second basic model for the means is the single mean model (the
reduced model). The single mean model assumes that all the treatments have Single mean

modelthe same meanµ. Combined with the error structure, the single mean model
implies that the data are independent and normally distributed with meanµ
and constant variance,

yij ∼ N(µ, σ2) .

Alternatively, we may write this model as

yij = µ + ǫij ,

where theǫij ’s are independent, normally distributed errors with mean zero
and varianceσ2.

Note that the single mean model is a special case or restriction of the Compare reduced
model to full

model
group means model, namely the case when all of theµi’s equal each other.
Model comparison is easiest when one of the models is a restricted or reduced
form of the other.
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We sometimes express the group meansµi asµi = µ⋆+αi. The constant
µ⋆ is called theoverall mean, andαi is called theith treatment effect. In thisOverall mean µ⋆

and treatment
effects αi

formulation, the single mean model is the situation where all the αi values
are equal to each other: for example, all zero. This introduction of µ⋆ and
αi seems like a needless complication, and at this stage of the game it really
is. However, the treatment effect formulation will be extremely useful later
when we look at factorial treatment structures.

Note that there is something a bit fishy here. There areg meansµi,
one for each of theg treatments, but we are usingg + 1 parameters (µ⋆

and theαi’s) to describe theg means. This implies thatµ⋆ and theαi’s areToo many
parameters not uniquely determined. For example, if we add 15 toµ⋆ and subtract 15

from all theαi’s, we get the same treatment meansµi: the 15’s just cancel.
However,αi − αj will always equalµi − µj, so the differences between
treatment effects will be the same no matter how we defineµ⋆.

We got into this embarrassment by imposing an additional mathematical
structure (the overall meanµ⋆) on the set ofg group means. We can get out of
this embarrassment by deciding what we mean byµ⋆; once we knowµ⋆, then
we can determine the treatment effectsαi by αi = µi − µ⋆. Alternatively,Restrictions make

treatment effects
well defined

we can decide what we mean byαi; then we can getµ⋆ by µ⋆ = µi − αi.
These decisions typically take the form of some mathematical restriction on
the values forµ⋆ or αi. Restrictingµ⋆ or αi is really two sides of the same
coin.

Mathematically, all choices for definingµ⋆ are equally good. In prac-
tice, some choices are more convenient than others. Different statistical soft-
ware packages use different choices, and different computational formulaeDifferences of

treatment effects
do not depend on
restrictions

use different choices; our major worry is keeping track of which particular
choice is in use at any given time. Fortunately,the important things don’t
depend on which set of restrictions we use.Important things are treatment
means, differences of treatment means (or equivalently, differences ofαi’s),
and comparisons of models.

One classical choice is to defineµ⋆ as the mean of the treatment means:

µ⋆ =
g∑

i=1

µi/g .

For this choice, the sum of the treatment effects is zero:Sum of treatment
effects is zero

g∑

i=1

αi = 0 .
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An alternative that makes some hand work simpler assumes that µ⋆ is the
weighted average of the treatment means, with the sample sizesni used as
weights:

µ⋆ =
g∑

i=1

niµi/N .

For this choice, the weighted sum of the treatment effects iszero: Or weighted sum
of treatment

effects is zerog∑

i=1

niαi = 0 .

When the sample sizes are equal, these two choices coincide.The computa-
tional formulae we give in this book will use the restrictionthat the weighted
sum of theαi’s is zero, because it leads to somewhat simpler hand computa-
tions. Some of the formulae in later chapters are only valid when the sample
sizes are equal.

Our restriction that the treatment effectsαi add to zero (either weighted
or not) implies that the treatment effects are not completely free to vary. We Degrees of

freedom for
treatment effects

can setg − 1 of them however we wish, but the remaining treatment effect is
then determined because it must be whatever value makes the zero sum true.
We express this by saying that the treatment effects haveg − 1 degrees of
freedom.

3.4 Estimating Parameters

Most data analysis these days is done using a computer. Few ofus sit down
and crunch through the necessary calculations by hand. Nonetheless, know-
ing the basic formulae and ideas behind our analysis helps usunderstand and
interpret the quantities that come out of the software blackbox. If we don’t
understand the quantities printed by the software, we cannot possibly use
them to understand the data and answer our questions.

The parameters of our group means model are the treatment means µi

and the varianceσ2, plus the derived parametersµ⋆ and theαi’s. We will Unbiased
estimators correct

on average
be computing “unbiased” estimates of these parameters. Unbiased means
that when you average the values of the estimates across all potential random
errorsǫij, you get the true parameter values.

It is convenient to introduce a notation to indicate the estimator of a pa-
rameter. The usual notation in statistics is to put a “hat” over the parameter to
indicate the estimator; thuŝµ is an estimator ofµ. Because we have parame-
ters that satisfyµi = µ⋆+αi, we will use estimators that satisfŷµi = µ̂⋆+α̂i.
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Let’s establish some notation for sample averages and the like. The sum
of the observations in theith treatment group is

yi• =
ni∑

j=1

yij .

The mean of the observations in theith treatment group isTreatment means

yi• =
1

ni

ni∑

j=1

yij = yi•/ni .

The overbar indicates averaging, and the dot (•) indicates that we have aver-
aged (or summed) over the indicated subscript. The sum of allobservations
is

y•• =
g∑

i=1

ni∑

j=1

yij =
g∑

i=1

yi• ,

and the grand mean of all observations isGrand mean

y•• =
1

N

g∑

i=1

ni∑

j=1

yij = y••/N .

The sum of squared deviations of the data from the group meansis

SSE =
g∑

i=1

ni∑

j=1

(yij − yi•)
2 .

TheSSE measures total variability in the data around the group means.
Consider first the separate means model, with each treatmentgroup hav-

ing its own meanµi. The natural estimator ofµi is yi•, the average of theµ̂i = yi•

observations in that treatment group. We estimate the expected (or average)
response in theith treatment group by the observed average in theith treat-
ment group responses. Thus we have

µ̂i = yi• .

The sample average is an unbiased estimator of the population average, sôµi

is an unbiased estimator ofµi.
In the single mean model, the only parameter in the model for the means

is µ. The natural estimator ofµ is y••, the grand mean of all the responses.µ̂ = y
••
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That is, if we felt that all the data were responses from the same population,
we would estimate the mean of that single population by the grand mean of
the data. Thus we have

µ̂ = y•• .

The grand mean is an unbiased estimate ofµ when the data all come from a
single population.

We use the restriction thatµ⋆ =
∑

i niµi/N ; an unbiased estimate ofµ⋆

is

µ̂⋆ =

∑g
i=1 niµ̂i

N
=

∑g
i=1 niyi•

N
=

y••
N

= y•• .

This is the same as the estimator we use forµ in the single mean model. µ = µ⋆ for
weighted sum

restriction
Becauseµ andµ⋆ are both estimated by the same value, we will drop the
notationµ⋆ and just use the single notationµ for both roles.

The treatment effectsαi are

αi = µi − µ ;

these can be estimated by α̂i = yi• − y
••

α̂i = µ̂i − µ̂

= yi• − y•• .

These treatment effects and estimates satisfy the restriction

g∑

i=1

niαi =
g∑

i=1

niα̂i = 0 .

The only parameter remaining to estimate isσ2. Our estimator ofσ2 is

σ̂2 = MSE =
SSE

N − g
=

∑g
i=1

∑ni

j=1(yij − yi•)
2

N − g
.

We sometimes use the notations in place ofσ̂ in analogy with the sample σ̂2 is unbiased for
σ2standard deviations. This estimator̂σ2 is unbiased forσ2 in both the separate

means and single means models. (Note thatσ̂ is not unbiased forσ.)
The deviations from the group meanyij−yi• add to zero in any treatment

group, so that anyni − 1 of them determine the remaining one. Put another
way, there areni − 1 degrees of freedom for error in each group, orN − g = Error degrees of

freedom
∑

i(ni − 1) degrees of freedom for error for the experiment. There are thus
N − g degrees of freedom for our estimateσ̂2. This is analogous to the
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Model Parameter Estimator
Single mean µ y••

σ2

∑g

i=1

∑ni
j=1

(yij−yi•)2

N−g

Separate meansµ y••

µi yi•

αi yi• − y••

σ2

∑g

i=1

∑ni
j=1

(yij−yi•)2

N−g

Display 3.1: Point estimators in the CRD.

formulan1+n2−2 for the degrees of freedom in a two-samplet-test. Another
way to think ofN−g is the number of data values minus the number of mean
parameters estimated.

The formulae for these estimators are collected in Display 3.1. The next
example illustrates their use.

Example 3.5 Resin lifetimes, continued
Most of the work for computing point estimates is done once weget the av-
erage responses overall and in each treatment group. Using the resin lifetime
data from Table 3.1, we get the following means and counts:

Treatment (oC) 175 194 213 231 250 All data

Average 1.933 1.629 1.378 1.194 1.057 1.465
Count 8 8 8 7 6 37

The estimateŝµi andµ̂ can be read from the table:

µ̂1 = 1.933 µ̂2 = 1.629 µ̂3 = 1.378
µ̂4 = 1.194 µ̂5 = 1.057 µ̂ = 1.465

Get theα̂i values by subtracting the grand mean from the group means:

α̂1 = 1.932 − 1.465 = .467 α̂2 = 1.629 − 1.465 = .164
α̂3 = 1.378 − 1.465 = −.088 α̂4 = 1.194 − 1.465 = −.271
α̂5 = 1.057 − 1.465 = −.408
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Notice that
∑g

i=1 niα̂i = 0 (except for roundoff error).

The computation for̂σ2 is a bit more work, because we need to compute
theSSE . For the resin data,SSE is

SSE = (2.04 − 1.933)2 + (1.91 − 1.933)2 + · · · + (1.90 − 1.933)2 +

(1.66 − 1.629)2 + (1.71 − 1.629)2 + · · · + (1.66 − 1.629)2 +

(1.53 − 1.378)2 + (1.54 − 1.378)2 + · · · + (1.38 − 1.378)2 +

(1.15 − 1.194)2 + (1.22 − 1.194)2 + · · · + (1.17 − 1.194)2 +

(1.26 − 1.057)2 + (.83 − 1.057)2 + · · · + (1.06 − 1.057)2

= .29369

Thus we have

σ̂2 = SSE/(N − g) = .29369/(37 − 5) = .009178 .

A point estimate gives our best guess as to the value of a parameter. A
confidence interval gives a plausible range for the parameter, that is, a set of Confidence

intervals for
means and

effects

parameter values that are consistent with the data. Confidence intervals forµ
and theµi’s are useful and straightforward to compute. Confidence intervals
for theαi’s are only slightly more trouble to compute, but are perhapsless
useful because there are several potential ways to define theα’s. Differences
betweenµi’s, or equivalently, differences betweenαi’s, are extremely useful;
these will be considered in depth in Chapter 4. Confidence intervals for the
error varianceσ2 will be considered in Chapter 11.

Confidence intervals for parameters in the mean structure have the gen-
eral form: Generic

confidence
interval for mean

parameter
unbiased estimate± multiplier× (estimated) standard error of estimate.

The standard errors for the averagesy•• andyi• areσ/
√

N andσ/
√

ni re-
spectively. We do not knowσ, so we usêσ = s =

√
MSE as an estimate

and obtains/
√

N ands/
√

ni as estimated standard errors fory•• andyi•.
For an interval with coverage1 − E , we use the upperE/2 percent point

of thet-distribution withN − g degrees of freedom as the multipler. This is
denotedtE/2,N−g. We use theE/2 percent point because we are constructing Use t multiplier

when error is
estimated

a two-sided confidence interval, and we are allowing error rates ofE/2 on
both the low and high ends. For example, we use the upper 2.5% point (or
97.5% cumulative point) oft for 95% coverage. The degrees of freedom for
the t-distribution come from̂σ2, our estimate of the error variance. For the
CRD, the degrees of freedom areN − g, the number of data points minus the
number of treatment groups.
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Parameter Estimator Standard Error

µ y•• s/
√

N
µi yi• s/

√
ni

αi yi• − y•• s
√

1/ni − 1/N

Display 3.2: Standard errors of point estimators in the CRD.

The standard error of an estimated treatment effectα̂i is σ
√

1/ni − 1/N .
Again, we must use an estimate ofσ, yielding s

√
1/ni − 1/N for the esti-

mated standard error. Keep in mind that the treatment effects α̂i are nega-
tively correlated, because they must add to zero.

3.5 Comparing Models: The Analysis of Variance

In the standard analysis of a CRD, we are interested in the mean responses
of the treatment groups. One obvious place to begin is to decide whether the
means are all the same, or if some of them differ. Restating this question in
terms of models, we ask whether the data can be adequately described by the
model of a single mean, or if we need the model of separate treatment group
means. Recall that the single mean model is a special case of the group means
model. That is, we can choose the parameters in the group means model soANOVA

compares models that we actually get the same mean for all groups. The single mean model is
said to be a reduced or restricted version of the group means model. Analysis
of Variance, usually abbreviated ANOVA, is a method for comparing the fit
of two models, one a reduced version of the other.

Strictly speaking, ANOVA is an arithmetic procedure for partitioning the
variability in a data set into bits associated with different mean structures
plus a leftover bit. (It’s really just the Pythagorean Theorem, though we’ve
chosen our right triangles pretty carefully inN -dimensional space.) When in
addition the error structure for the data is independent normal with constantANOVA partitions

variability variance, we can use the information provided by an ANOVA to construct
statistical tests comparing the different mean structuresor models for means
that are represented in the ANOVA. The link between the ANOVAdecom-
position for the variability and tests for models is so tight, however, that we
sometimes speak of testing via ANOVA even though the test is not really part
of the ANOVA.
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Our approach to model comparison is Occam’s Razor — we use thesim-
plest model that is consistent with the data. We only move to the more com- Use simplest

acceptable modelplicated model if the data indicate that the more complicated model is needed.
How is this need indicated? The residualsrij are the differences between

the datayij and the fitted mean model. For the single mean model, the Residuals and
SSRfitted values are ally••, so the residuals arerij = yij − y••; for the separate

means model, the fitted values are the group meansyi•, so the residuals are
rij = yij − yi•. We measure the closeness of the data to a fitted model by
looking at the sum of squared residuals (SSR). The point estimators we have
chosen for the mean parameters in our models areleast squaresestimators,
which implies that they are the parameter estimates that make these sums of Least squares
squared residuals as small as possible.

The sum of squared residuals for the separate means model is usually
smaller than that for the single mean model; it can never be larger. We will
conclude that the more complicated separate means model is needed if its
SSR is sufficiently less than that of the single mean model. We still need
to construct a criterion for deciding when theSSR has been reduced suffi-
ciently.

One way of constructing a criterion to compare models is via astatistical
test, with the null hypothesis that the single mean model is true versus the
alternative that the separate means model is true. In commonpractice, the
null and alternative hypotheses are usually expressed in terms of parameters
rather than models. Using theµi = µ + αi notation for group means, the Null and

alternative
hypotheses

null hypothesisH0 of a single mean can be expressed asH0 : αi = 0 for
all i, and the alternative can be expressed asHA : αi 6= 0 for somei. Note
that since we have assumed that

∑
niαi = 0, one nonzeroαi implies that the

αi’s are not all equal to each other. The alternative hypothesis does not mean
that all theαi’s are different, just that they are not all the same.

The model comparison point of view opts for the separate means model if
that model has sufficiently less residual variation, while the parameter testing
view opts for the separate means model if there is sufficiently great variation
between the observed group means. These seem like differentideas, but we
will see in the ANOVA decomposition that they are really saying the same
thing, because less residual variation implies more variation between group
means when the total variation is fixed.

3.6 Mechanics of ANOVA

ANOVA works by partitioning the total variability in the data into parts that
mimic the model. The separate means model says that the data are not all
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equal to the grand mean because of treatment effects and random error:ANOVA
decomposition
parallels model yij − µ = αi + ǫij .

ANOVA decomposes the data similarly into a part that deals with group
means, and a part that deals with deviations from group means:

yij − y•• = (yi• − y••) + (yij − yi•)

= α̂i + rij .

The difference on the left is the deviation of a response fromthe grand mean.SST

If you square all such differences and add them up you getSST , the total
sum of squares.1

The first difference on the right is the estimated treatment effect α̂i. If
you squared all these (one for each of theN data values) and added them up,
you would getSSTrt, thetreatment sum of squares:SSTrt

SSTrt =
g∑

i=1

ni∑

j=1

(yi• − y••)
2 =

g∑

i=1

ni(yi• − y••)
2 =

g∑

i=1

niα̂i
2 .

I think of this as

1. Square the treatment effect,

2. Multiply by the number of units receiving that effect, and

3. Add over the levels of the effect.

This three-step pattern will appear again frequently.
The second difference on the right is theijth residual from the model,

which gives us some information aboutǫij. If you squared and added theSSE

rij ’s you would getSSE, theerror sum of squares:

SSE =
g∑

i=1

ni∑

j=1

(yij − yi•)
2 .

This is the sameSSE that we use in estimatingσ2.

1For pedants in the readership, this quantity is thecorrectedtotal sum of squares. There
is also anuncorrectedtotal sum of squares. The uncorrected total is the sum of the squared
observations; the uncorrected total sum of squares equalsSST plusNy

••

2. In this book, total
sum of squares will mean corrected total sum of squares.
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SSTrt =
∑g

i=1 niα̂i
2

SSE =
∑g

i=1

∑ni

j=1(yij − yi•)
2

SST = SSTrt + SSE

Display 3.3: Sums of squares in the CRD

Recall that
yij − y•• = α̂i + rij

so that
(yij − y••)

2 = α̂i
2 + r2

ij + 2α̂irij .

Adding overi andj we get

SST = SSTrt + SSE + 2
g∑

i=1

ni∑

j=1

α̂irij .

We can show (see Question 3.2) that the sum of the cross-products is zero, so Total SS
that

SST = SSTrt + SSE .

Now we can see the link between testing equality of group means and com-
paring models viaSSR. For a given data set (and thus a fixedSST ), more Larger SSTrt

implies smaller
SSE

variation between the group means implies a largerSSTrt, which in turn im-
plies that theSSE must be smaller, which is theSSR for the separate means
model.

Display 3.3 summarizes the sums of squares formulae for the CRD. I
should mention that there are numerous “calculator” or “shortcut” formulae
for computing sums of squares quantities. In my experience,these formulae
are more difficult to remember than the ones given here, provide little insight
into what the ANOVA is doing, and are in some circumstances more prone
to roundoff errors. I do not recommend them.

ANOVA computations are summarized in a table with columns for source
of variation, degrees of freedom, sum of squares, mean squares, and F-
statistics. There is a row in the table for every source of variation in the full ANOVA table
model. In the CRD, the sources of variation are treatments and errors, some-
times called between- and within-groups variation. Some tables are written
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with rows for either or both of the grand mean and the total variation, though
these rows do not affect the usual model comparisons.

The following is a generic ANOVA table for a CRD.Generic ANOVA
table

Source DF SS MS F

Treatments g − 1 SSTrt SSTrt/(g − 1) MSTrt/MSE

Error N − g SSE SSE/(N − g)

The degrees of freedom areg − 1 for treatments andN − g for error. We
saw the rationale for these in Section 3.4. The formulae for sums of squares
were given above, and mean squares are always sums of squaresdivided by
their degrees of freedom. The F-statistic is the ratio of twomean squares, the
numerator mean square for a source of variation that we wish to assess, and
a denominator (or error) mean square that estimates error variance.

We use the F-statistic (or F-ratio) in the ANOVA table to makea test of
the null hypothesis that all the treatment means are the same(all theαi values
are zero) versus the alternative that some of the treatment means differ (some
of theαi values are nonzero). When the null hypothesis is true, the F-statistic
is about 1, give or take some random variation; when the alternative is true,
the F-statistic tends to be bigger than 1. To complete the test, we need to beF-test to compare

models able to tell how big is too big for the F-statistic. If the nullhypothesis is true
and our model and distributional assumptions are correct, then the F-statistic
follows the F-distribution withg − 1 andN − g degrees of freedom. Note
that the F-distribution has two “degrees of freedom”, one from the numerator
mean square and one from the denominator mean square.

To do the test, we compute the F-statistic and the degrees of freedom, and
then we compute the probability of observing an F-statisticas large or larger
than the one we observed, assuming all theαi’s were zero. This probability is
called thep-valueor observed significance levelof the test, and is computedp-value to assess

evidence as the area under an F-distribution from the observed F-statistic on to the
right, when the F-distribution has degrees of freedom equalto the degrees of
freedom for the numerator and denominator mean squares. This p-value is
usually obtained from a table of the F-distribution (for example, Appendix
Table D.5) or via the use of statistical software.

Small values of thep-value are evidence that the null may be incorrect:
either we have seen a rare event (big F-statistics when the null is actually
true, leading to a smallp-value), or an assumption we used to compute the
p-value is wrong, namely the assumption that all theαi’s are zero. Given
the choice of unlucky or incorrect assumption, most people choose incorrect
assumption.
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Table 3.2:Approximate Type I error probabilities for
differentp-values using the Sellkeet al. lower bound.

p .05 .01 .001 .0001

P(p) .29 .11 .018 .0025

We have now changed the question from “How big is too big an F?”to
“How small is too small ap-value?” By tradition,p-values less than .05
are termedstatistically significant, and those less than .01 are termedhighly
statistically significant. These values are reasonable (one chance in 20, one .05 and .01

significance levelschance in 100), but there is really no reason other than tradition to prefer
them over other similar values, say one chance in 30 and one chance in 200.
It should also be noted that a person using the traditional values would declare
one test withp-value of .049 to be significant and another test with ap-
value of .051 not to be significant, but the two tests are really giving virtually
identical results. Thus I prefer to report thep-value itself rather than simply
report significance or lack thereof.

As with any test, remember that statistical significance is not the same
as real world importance. A tinyp-value may be obtained with relatively Practical

significancesmallαi’s if the sample size is large enough orσ2 is small enough. Likewise,
large important differences between means may not appear significant if the
sample size is small or the error variance large.

It is also important not to overinterpret thep-value. Reportedp-values of
.05 or .01 carry the magnificent labels of statistically significant or highly sta-
tistically significant, but they actually are not terribly strong evidence against
the null. What we would really like to know is the probabilitythat rejecting
the null is an error;the p-value doesnot give us that information.Sellke,
Bayarri, and Berger (1999) define an approximate lower boundon this prob-
ability. They call their bound acalibratedp-value, but I do not like the name Approximate error

probabilitybecause their quantity is not really ap-value. Suppose that before seeing any
data you thought that the null and alternative each had probability .5 of being
true. Then forp-values less thane−1 ≈ .37, the Sellkeet al. approximate
error probability is

P(p) =
−ep log(p)

1 − ep log(p)
.

The interpretation of the approximate error probabilityP(p) is that having
seen ap-value ofp, the probability that rejecting the null hypothesis is an
error is at leastP(p). Sellkeet al. show that this lower bound is pretty
good in a wide variety of problems. Table 3.2 shows that the probability that
rejection is a Type I error is more than .1, even for ap-value of .01.
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Listing 3.1: Minitab output for resin lifetimes.

One-way Analysis of Variance

Analysis of Variance for Lifetime

Source DF SS MS F P ①
Temp 4 3.53763 0.88441 96.36 0.000

Error 32 0.29369 0.00918

Total 36 3.83132

Individual 95% CIs For Mean ②
Based on Pooled StDev

Level N Mean StDev --------+---------+---------+--------

1 8 1.9325 0.0634 (-*--)

2 8 1.6288 0.1048 (-*--)

3 8 1.3775 0.1071 (-*-)

4 7 1.1943 0.0458 (--*-)

5 6 1.0567 0.1384 (-*--)

--------+---------+---------+--------

Pooled StDev = 0.0958 1.20 1.50 1.80

Example 3.6 Resin lifetimes, continued
For our resin data, the treatment sum of squares is

SSTrt =
g∑

i=1

niα̂i
2

= 8 × .4672 + 8 × .1642 + 8 × (−.088)2 +

7 × (−.271)2 + 6 × (−.408)2

= 3.5376 .

We haveg = 5 treatments so there areg−1 = 4 degrees of freedom between
treatments. We computed theSSE in Example 3.5; it was .29369 with 32
degrees of freedom. The ANOVA table is

ANOVA
Source DF SS MS F

treatments 4 3.5376 .88441 96.4
error 32 .29369 .0091779
total 36 3.8313

The F-statistic is about 96 with 4 and 32 degrees of freedom. There is
essentially no probability under the F-curve with 4 and 32 degrees of freedom
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Listing 3.2: SAS output for resin lifetimes

Analysis of Variance Procedure

Dependent Variable: LIFETIME

Sum of Mean

Source DF Squares Square F Value Pr > F ①

Model 4 3.53763206 0.88440802 96.36 0.0001

Error 32 0.29369226 0.00917788

Corrected Total 36 3.83132432

R-Square C.V. Root MSE LIFETIME Mean

0.923344 6.538733 0.09580 1.46514

Level of -----------LIFETIME---------- ②
TEMPER N Mean SD

1 8 1.93250000 0.06341473

2 8 1.62875000 0.10480424

3 8 1.37750000 0.10713810

4 7 1.19428571 0.04577377

5 6 1.05666667 0.13837148

to the right of 96. (There is only .00001 probability to the right of 11.) Thus
thep-value for this test is essentially zero, and we would conclude that not all
the treatments yield the same mean lifetime. From a practical point of view,
the experimenters already knew this; the experiment was runto determine
the nature of the dependence of lifetime on temperature, notwhether there
was any dependence.

Different statistics software packages give slightly different output for the
ANOVA of the resin lifetime data. For example, Listing 3.1 gives Minitab
ANOVA output. In addition to the ANOVA table①, the standard Minitab
output includes a table of treatment means and a plot of 95% confidence
intervals for those means②. Listing 3.2 gives SAS output (edited to save
space) for these data①. SAS does not automatically print group means, but
you can request them as shown here②.

There is a heuristic for the degrees-of-freedom formulae. Degrees of
freedom for a model count the number of additional parameters used for the
mean structure when moving from the next simpler model to this model. For
example, the degrees of freedom for treatment areg − 1. The next simpler
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model is the model of a single mean for all treatments; the full model has a
different mean for each of theg treatments. That isg − 1 more parameters.Model df count

parameters Alternatively, look at theαi’s. Under the null, they are all zero. Under the
alternative, they may be nonzero, but onlyg − 1 of them can be set freely,
because the last one is then set by the restriction that theirweighted sum must
be zero. Degrees of freedom for error are the number of data less the number
of (mean) parameters estimated.

3.7 Why ANOVA Works

The mean square for error is a random variable; it depends on the random
errors in the data. If we repeated the experiment, we would get different ran-
dom errors and thus a different mean square for error. However, the expectedE(MSE) = σ2

value of the mean square for error, averaged over all the possible outcomes
of the random errors, is the variance of the random errorsσ2. Thus, the mean
square for error estimates the error variance, no matter what the values of the
αi’s.

The mean square for treatments is also a random variable, buttheMSTrt
has expectation:Expected mean

square for
treatments

E(MSTrt) = EMSTrt = σ2 +
g∑

i=1

niα
2
i /(g − 1) .

The important things to get from this expression are

1. When all of theαi’s are zero, the mean square for treatments also esti-
matesσ2.

2. When some of theαi’s are nonzero, the mean square for treatments
tends to be bigger thanσ2.

When the null hypothesis is true, bothMSTrt and MSE vary around
σ2, so their ratio (the F-statistic) is about one, give or take some random
variation. When the null hypothesis is false,MSTrt tends to be bigger than
σ2, and the F-statistic tends to be bigger than one. We thus reject the null
hypothesis for sufficiently large values of the F-statistic.

3.8 Back to Model Comparison

The preceding section described Analysis of Variance as a test of the null
hypothesis that all theαi values are zero. Another way to look at ANOVA is
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as a comparison of two models for the data. The reduced model is the model
that all treatments have the same expected value (that is, theαi values are all
zero); the full model allows the treatments to have different expected values. ANOVA

compares modelsFrom this point of view, we are not testing whether a set of parameters is all
zero; we are comparing the adequacy of two different models for the mean
structure.

Analysis of Variance uses sums of squared deviations from a model, just
as sample standard deviations use squared deviations from asample mean.
For the reduced model (null hypothesis), the estimated model is µ̂ = y••.
For the data valueyij, the residual is

rij = yij − µ̂ = yij − y••.

The residual sum of squares for the reduced model is then

SSR0 =
∑

ij

r2
ij =

∑

ij

(yij − y••)
2.

For the full model (alternative hypothesis), the estimatedmodel isµ̂i = yi•,
and the residuals are

rij = yij − µ̂i = yij − yi•.

The residual sum of squares for the full model is then Model SSR

SSRA =
∑

ij

r2
ij =

∑

ij

(yij − yi•)
2.

SSRA can never be bigger thanSSR0 and will almost always be smaller.
We would prefer the full model ifSSRA is sufficiently smaller thanSSR0.

How does this terminology for ANOVA mesh with what we have already
seen? The residual sum of squares from the full model,SSRA, is the error
sum of squaresSSE in the usual formulation. The residual sum of squares
from the reduced model,SSR0, is the total sum of squaresSST in the usual
formulation. The differenceSSR0 − SSRA is equal to the treatment sum of
squaresSSTrt. Thus the treatment sum of squares is the additional amount of Change in SSR
variation in the data that can be explained by using the more complicated full
model instead of the simpler reduced model.

This idea of comparing models instead of testing hypothesesabout pa-
rameters is a fairly subtle distinction, and here is why the distinction is im-
portant: in our heart of hearts, we almost never believe thatthe null hypoth-
esis could be true. We usually believe that at some level of precision, there
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Figure 3.3: Side-by-side plot for resin lifetime data, using
MacAnova.

is a difference between the mean responses of the treatments. So why the
charade of testing the null hypothesis?

The answer is that we are choosing a model for the data from a set of
potential models. We want a model that is as simple as possible yet still con-
sistent with the data. A more realistic null hypothesis is that the means are so
close to being equal that the differences are negligible. When we “reject the
null hypothesis” we are making the decision that the data aredemonstrablyChoose simplest

acceptable model inconsistent with the simpler model, the differences between the means are
not negligible, and the more complicated model is required.Thus we use the
F-test to guide us in our choice of model. This distinction between testing
hypotheses on parameters and selecting models will become more important
later.

3.9 Side-by-Side Plots

Hoaglin, Mosteller, and Tukey (1991) introduce theside-by-sideplot as a
method for visualizing treatment effects and residuals. Figure 3.3 shows a
side-by-side plot for the resin lifetime data of Example 3.2. We plot the es-
timated treatment effectŝαi in one column and the residualsrij in a secondSide-by-side plots

show effects and
residuals

column. (There will be more columns in more complicated models we will
see later.) The vertical scale is in the same units as the response. In this
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plot, we have used a box-plot for the residuals rather than plot them indi-
vidually; this will usually be more understandable when there are relatively
many points to be put in a single column.

What we see from the side-by-side plot is that the treatment effects are
large compared to the size of the residuals. We were also ableto see this in
the parallel box-plots in the exploratory analysis, but theside-by-side plots
will generalize better to more complicated models.

3.10 Dose-Response Modeling

In some experiments, the treatments are associated with numerical levels
such as drug dose, baking time, or reaction temperature. We will refer to Numerical levels

or dosessuch levels asdoses,no matter what they actually are, and the numerical
value of the dose for treatmenti will be denotedzi. When we have numer-
ical doses, we may reexpress the treatment means as a function of the dose
zi:

µ + αi = f(zi; θ) ,

whereθ is some unknown parameter of the function. For example, we could
express the mean weight of yellow birch seedlings as a function of the pH of
acid rain.

The most commonly used functionsf are polynomials in the dosezi: Polynomial
models

µ + αi = θ0 + θ1zi + θ2z
2
i + · · · + θg−1z

g−1
i .

We use the powerg − 1 because the means atg different doses determine
a polynomial of orderg − 1. Polynomials are used so often because they
are simple and easy to understand; they are not always the most appropriate
choice.

If we know the polynomial coefficientsθ0, θ1, . . ., θg−1, then we can de-
termine the treatment meansµ + αi, and vice versa. If we know the poly-
nomial coefficientsexcept for the constantθ0, then we can determine the Polynomials are

an alternative to
treatment effects

treatment effectsαi, and vice versa. Theg − 1 parametersθ1 throughθg−1

in this full polynomial model correspond to theg − 1 degrees of freedom
between the treatment groups. Thus polynomials in dose are not inherently
better or worse than the treatment effects model, just another way to describe
the differences between means.

Polynomial modeling is useful in two contexts. First, if only a few of
the polynomial coefficients are needed (that is, the others can be set to zero
without significantly decreasing the quality of the fit), then this reduced poly-
nomial model represents a reduction in the complexity of ourmodel. For
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example, learning that the response is linear or quadratic in dose is useful,
whereas a polynomial of degree six or seven will be difficult to comprehendPolynomial

models can
reduce number of
parameters
needed and
provide
interpolation

(or sell to anyone else). Second, if we wish to estimate the response at some
dose other than one used in the experiment, the polynomial model provides
a mechanism for generating the estimates. Note that these estimates may be
poor if we are extrapolating beyond the range of the doses in our experiment
or if the degree of the polynomial is high. High-order polynomials will fit
our observed treatment means exactly, but these high-orderpolynomials can
have bizarre behavior away from our data points.

Consider a sequence of regression models for our data, regressing the
responses on dose, dose squared, and so on. The first model just includes
the constantθ0; that is, it fits a single value for all responses. The second
model includes the constantθ0 and a linear termθ1zi; this model fits the
responses as a simple linear regression in dose. The third model includes the
constantθ0, a linear termθ1zi, and the quadratic termθ2z

2
i ; this model fits

the responses as a quadratic function (parabola) of dose. Additional models
include additional powers of dose up tog − 1.

LetSSRk be the residual sum of squares for the model that includes pow-
ers up tok, for k = 0, . . ., g − 1. Each successive model will explain a little
more of the variability between treatments, so thatSSRk > SSRk+1. When
we arrive at the full polynomial model, we will have explained all of the
between-treatment variability using polynomial terms; that is, SSRg−1 =Polynomial

improvement SS
for including an
additional term

SSE . The “linear sum of squares” is the reduction in residual variability
going from the constant model to the model with the linear term:

SSlinear= SS1 = SSR0 − SSR1 .

Similarly, the “quadratic sum of squares” is the reduction in residual variabil-
ity going from the linear model to the quadratic model,

SSquadratic= SS2 = SSR1 − SSR2 ,

and so on through the remaining orders.
Each of these polynomial sums of squares has 1 degree of freedom, be-

cause each is the result of adding one more parameterθk to the model for
the means. Thus their mean squares are equal to their sums of squares. InTesting

parameters a model with terms up through orderk, we can test the null hypothesis that
θk = 0 by forming the F-statisticSSk/MSE, and comparing it to an F-
distribution with 1 andN − g degrees of freedom.

One method for choosing a polynomial model is to choose the small-
est order such that no significant terms are excluded. (More sophisticatedModel selection
model selection methods exist.) It is important to know thatthe estimated
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Listing 3.3: MacAnova output for resin lifetimes polynomial model.

DF SS MS F P-value ①
CONSTANT 1 79.425 79.425 8653.95365 0

{temperature} 1 3.4593 3.4593 376.91283 0

{(temperature)^2} 1 0.078343 0.078343 8.53610 0.0063378

{(temperature)^3} 1 1.8572e-05 1.8572e-05 0.00202 0.9644

{(temperature)^4} 1 8.2568e-06 8.2568e-06 0.00090 0.97626

ERROR1 32 0.29369 0.0091779

CONSTANT ②
(1) 0.96995

{temperature}

(1) 0.075733

{(temperature)^2}

(1) -0.00076488

{(temperature)^3}

(1) 2.6003e-06

{(temperature)^4}

(1) -2.9879e-09

DF SS MS F P-value ③
CONSTANT 1 79.425 79.425 9193.98587 0

{temperature} 1 3.4593 3.4593 400.43330 0

{(temperature)^2} 1 0.078343 0.078343 9.06878 0.0048787

ERROR1 34 0.29372 0.0086388

CONSTANT ④
(1) 7.418

{temperature}

(1) -0.045098

{(temperature)^2}

(1) 7.8604e-05

coefficientŝθi depend on which terms are in the model when the model is es-
timated. Thus if we decide we only needθ0, θ1, andθ2 wheng is 4 or more,
we should refit using just those terms to get appropriate parameter estimates.

Resin lifetimes, continued Example 3.7

The treatments in the resin lifetime data are different temperatures (175, 194,
213, 231, and 250 degrees C), so we can use these temperaturesas doseszi in
a dose-response relationship. Withg = 5 treatments, we can use polynomials
up to power 4.

Listing 3.3 shows output for a polynomial dose-response modeling of the
resin lifetime data. The first model fits up to temperature to the fourth power.
From the ANOVA① we can see that neither the third nor fourth powers are
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significant, but the second power is, so a quadratic model seems appropriate.
The ANOVA for the reduced model is at③. The linear and quadratic sums
of squares are the same as in①, but theSSE in ③ is increased by the cubic
and quartic sums of squares in①. We can also see that the intercept, linear,
and quadratic coefficients change dramatically from the full model② to the
reduced model using just those terms④. We cannot simply take the intercept,
linear, and quadratic coefficients from the fourth power model and use them
as if they were coefficients in a quadratic model.

One additional trick to remember when building a dose-response model
is that we can transform or reexpress the dosezi. That is, we can buildTry transforming

dose models using log of dose or square root of dose as simply as we can using
dose. For some data it is much simpler to build a model as a function of a
transformation of the dose.

3.11 Further Reading and Extensions

There is a second randomization that is used occasionally, and unfortunately
it also is sometimes called completely randomized.

1. Choose probabilitiesp1 thoughpg with p1 + p2 + · · · + pg = 1.

2. Choose a treatment independently for each unit, choosingtreatmenti
with probabilitypi.

Now we wind up withni units getting treatment i, withn1 +n2 + · · ·+ng =
N , but the sample sizesni are random. This randomization is different than
the standard CRD randomization. ANOVA procedures do not distinguish be-
tween the fixed and random sample size randomizations, but ifwe were to do
randomization testing, we would use different procedures for the two differ-
ent randomizations. As a practical matter, we should note that even though
we may design for certain fixed sample sizes, we do not always achieve those
sample sizes when test tubes get dropped, subjects withdrawfrom studies, or
drunken statistics graduate students drive through experimental fields (you
know who you are!).

The estimates we have used for mean parameters are least squares es-
timates, meaning that they minimize the sum of squared residuals. Least
squares estimation goes back to Legendre (1806) and Gauss (1809), who
developed the procedure for working with astronomical data. Formal tests
based on thet-distribution were introduced by Gosset, who wrote under the
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pseudonym “Student” (Student 1908). Gosset worked at the Guiness Brew-
ery, and he was allowed to publish only under a pseudonym so that the com-
petition would not be alerted to the usefulness of the procedure. What Gosset
actually did was posit thet-distribution; proof was supplied later by Fisher
(1925a).

The Analysis of Variance was introduced by Fisher in the context of pop-
ulation genetics (Fisher 1918); he quickly extended the scope (Fisher 1925b).
The 1918 paper actually introduces the terms “variance” and“analysis of
variance”. Scheffé (1956) describes how models for data essentially the same
as those used for ANOVA were in use decades earlier, though analysis meth-
ods were different.

From a more theoretical perspective, theSSE is distributed asσ2 times
a chi-square random variable withN − g degrees of freedom;SSTrt is dis-
tributed asσ2 times a possibly noncentral chi-square random variable with
g − 1 degrees of freedom; and these two sums of squares are independent.
When the null hypothesis is true,SSTrt is a multiple of an ordinary (central)
chi-square; noncentrality arises under the alternative when the expected value
of MSTrt is greater thanσ2. The ratio of two independent central chi-squares,
each divided by their degrees of freedom, is defined to have anF-distribution.
Thus the null-hypothesis distribution of the F-statistic is F. Chapter 7 and
Appendix A discuss this distribution theory in more detail.Scheffé (1959),
Hocking (1985), and others provide book-length expositions of linear models
and their related theory.

We have described model selection via testing a null hypothesis. An
alternative approach isprediction; for example, we can choose the model
that we believe will give us the lowest average squared errorof prediction.
Mallows (1973) defined a quantity calledCp

Cp =
SSRp

MSE
+ 2p − N ,

whereSSRp is the residual sum of squares for a means model withp pa-
rameters (degrees of freedom including any overall constant), MSE is the
error mean square from the separate means model, andN is the number of
observations. We prefer models with smallCp.

The separate means model (withp = g parameters) hasCp = g. The
single mean model, dose-response models, and other models can haveCp

values greater or less thang. The criterion rewards models with smaller
SSR and penalizes models with largerp. When comparing two models, one
a reduced form of the other,Cp will prefer the larger model if the F-statistic
comparing the models is 2 or greater. Thus we see that it generally takes less
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“evidence” to choose a larger model when using a predictive criterion than
when doing testing at the traditional levels.

Quantitative dose-response models as described here are aninstance of
polynomial regression. Weisberg (1985) is a good general source on regres-
sion, including polynomial regression. We have used polynomials because
they are simple and traditional, but there are many other sets of functions we
could use instead. Some interesting alternatives include sines and cosines,
B-splines, and wavelets.

3.12 Problems

Rats were given one of four different diets at random, and theresponseExercise 3.1
measure was liver weight as a percentage of body weight. The responses
were

Treatment
1 2 3 4

3.52 3.47 3.54 3.74
3.36 3.73 3.52 3.83
3.57 3.38 3.61 3.87
4.19 3.87 3.76 4.08
3.88 3.69 3.65 4.31
3.76 3.51 3.51 3.98
3.94 3.35 3.86

3.64 3.71

(a) Compute the overall mean and treatment effects.

(b) Compute the Analysis of Variance table for these data. What would
you conclude about the four diets?

An experimenter randomly allocated 125 male turkeys to five treatmentExercise 3.2
groups: control and treatments A, B, C, and D. There were 25 birds in each
group, and the mean results were 2.16, 2.45, 2.91, 3.00, and 2.71, respec-
tively. The sum of squares for experimental error was 153.4.Test the null
hypothesis that the five group means are the same against the alternative that
one or more of the treatments differs from the control.

Twelve orange pulp silage samples were divided at random into fourExercise 3.3
groups of three. One of the groups was left as an untreated control, while
the other three groups were treated with formic acid, beet pulp, and sodium
chloride, respectively. One of the responses was the moisture content of the
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silage. The observed moisture contents of the silage are shown below (data
from Caroet al. 1990):

NaCl Formic acid Beet pulp Control

80.5 89.1 77.8 76.7
79.3 75.7 79.5 77.2
79.0 81.2 77.0 78.6

Means 79.6 82.0 78.1 77.5
Grand mean 79.3

Compute an analysis of variance table for these data and testthe null hypoth-
esis that all four treatments yield the same average moisture contents.

We have five groups and three observations per group. The group means Exercise 3.4
are 6.5, 4.5, 5.7, 5.7, and 5.1, and the mean square for error is .75. Compute
an ANOVA table for these data.

The leaves of certain plants in the genusAlbizziawill fold and unfold in Exercise 3.5
various light conditions. We have taken fifteen different leaves and subjected
them to red light for 3 minutes. The leaves were divided into three groups of
five at random. The leaflet angles were then measured 30, 45, and 60 minutes
after light exposure in the three groups. Data from W. Hughes.

Delay (minutes) Angle (degrees)

30 140 138 140 138 142
45 140 150 120 128 130
60 118 130 128 118 118

Analyze these data to test the null hypothesis that delay after exposure does
not affect leaflet angle.

Cardiac pacemakers contain electrical connections that are platinum pins Problem 3.1
soldered onto a substrate. The question of interest is whether different op-
erators produce solder joints with the same strength. Twelve substrates are
randomly assigned to four operators. Each operator soldersfour pins on each
substrate, and then these solder joints are assessed by measuring the shear
strength of the pins. Data from T. Kerkow.

Strength (lb)
Operator Substrate 1 Substrate 2 Substrate 3

1 5.60 6.80 8.32 8.70 7.64 7.44 7.48 7.80 7.72 8.40 6.98 8.00
2 5.04 7.38 5.56 6.96 8.30 6.86 5.62 7.22 5.72 6.40 7.54 7.50
3 8.36 7.04 6.92 8.18 6.20 6.10 2.75 8.14 9.00 8.64 6.60 8.18
4 8.30 8.54 7.68 8.92 8.46 7.38 8.08 8.12 8.68 8.24 8.09 8.06
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Analyze these data to determine if there is any evidence thatthe operators
produce different mean shear strengths. (Hint: what are theexperimental
units?)

Scientists are interested in whether the energy costs involved in reproduc-Problem 3.2
tion affect longevity. In this experiment, 125 male fruit flies were divided at
random into five sets of 25. In one group, the males were kept bythemselves.
In two groups, the males were supplied with one or eight receptive virgin fe-
male fruit flies per day. In the final two groups, the males weresupplied with
one or eight unreceptive (pregnant) female fruit flies per day. Other than
the number and type of companions, the males were treated identically. The
longevity of the flies was observed. Data from Hanley and Shapiro (1994).

Companions Longevity (days)

None 35 37 49 46 63 39 46 56 63 65 56 65 70
63 65 70 77 81 86 70 70 77 77 81 77

1 pregnant 40 37 44 47 47 47 68 47 54 61 71 75 89
58 59 62 79 96 58 62 70 72 75 96 75

1 virgin 46 42 65 46 58 42 48 58 50 80 63 65 70
70 72 97 46 56 70 70 72 76 90 76 92

8 pregnant 21 40 44 54 36 40 56 60 48 53 60 60 65
68 60 81 81 48 48 56 68 75 81 48 68

8 virgin 16 19 19 32 33 33 30 42 42 33 26 30 40
54 34 34 47 47 42 47 54 54 56 60 44

Analyze these data to test the null hypothesis that reproductive activity does
not affect longevity. Write a report on your analysis. Be sure to describe the
experiment as well as your results.

Park managers need to know how resistant different vegetative types areProblem 3.3
to trampling so that the number of visitors can be controlledin sensitive areas.
The experiment deals with alpine meadows in the White Mountains of New
Hampshire. Twenty lanes were established, each .5 m wide and1.5 m long.
These twenty lanes were randomly assigned to five treatments: 0, 25, 75, 200,
or 500 walking passes. Each pass consists of a 70-kg individual wearing lug-
soled boots walking in a natural gait down the lane. The response measured
is the average height of the vegetation along the lane one year after trampling.
Data based on Table 16 of Cole (1993).
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Number
of passes Height (cm)

0 20.7 15.9 17.8 17.6
25 12.9 13.4 12.7 9.0
75 11.8 12.6 11.4 12.1
200 7.6 9.5 9.9 9.0
500 7.8 9.0 8.5 6.7

Analyze these data to determine if trampling has an effect after one year, and
if so, describe that effect.

Caffeine is a common drug that affects the central nervous system. Among Problem 3.4
the issues involved with caffeine are how does it get from theblood to the
brain, and does the presence of caffeine alter the ability ofsimilar compounds
to move across the blood-brain barrier? In this experiment,43 lab rats were
randomly assigned to one of eight treatments. Each treatment consisted of
an arterial injection of C14-labeled adenine together with a concentration of
caffeine (0 to 50 mM). Shortly after injection, the concentration of labeled
adenine in the rat brains is measured as the response (data from McCall,
Millington, and Wurtman 1982).

Caffeine (mM) Adenine

0 5.74 6.90 3.86 6.94 6.49 1.87
0.1 2.91 4.14 6.29 4.40 3.77
0.5 5.80 5.84 3.18 3.18
1 3.49 2.16 7.36 1.98 5.51
5 5.92 3.66 4.62 3.47 1.33

10 3.05 1.94 1.23 3.45 1.61 4.32
25 1.27 .69 .85 .71 1.04 .84
50 .93 1.47 1.27 1.13 1.25 .55

The main issues in this experiment are whether the amount of caffeine present
affects the amount of adenine that can move from the blood to the brain, and
if so, what is the dose response relationship. Analyze thesedata.

Engineers wish to know the effect of polypropylene fibers on the com- Problem 3.5
pressive strength of concrete. Fifteen concrete cubes are produced and ran-
domly assigned to five levels of fiber content (0, .25, .50, .75, and 1%). Data
from Figure 2 of Paskova and Meyer (1997).
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Fiber
content (%) Strength (ksi)

0 7.8 7.4 7.2
.25 7.9 7.5 7.3
.50 7.4 6.9 6.3
.75 7.0 6.7 6.4
1 5.9 5.8 5.6

Analyze these data to determine if fiber content has an effecton concrete
strength, and if so, describe that effect.

Prove thatµ⋆ =
∑g

i=1 µi/g is equivalent to
∑g

i=1 αi = 0.Question 3.1

Prove thatQuestion 3.2

0 =
g∑

i=1

ni∑

j=1

α̂irij .



Chapter 4

Looking for Specific
Differences—Contrasts

An Analysis of Variance can give us an indication that not allthe treatment
groups have the same mean response, but an ANOVA does not, by itself, tell
us which treatments are different or in what ways they differ. To do this, we
need to look at the treatment means, or equivalently, at the treatment effects.
One method to examine treatment effects is called acontrast.

ANOVA is like background lighting that dimly illuminates all of our data,
but not giving enough light to see details. Using a contrast is like using a Contrasts

examine specific
differences

spotlight; it enables us to focus in on a specific, narrow feature of the data.
But the contrast has such a narrow focus that it does not give the overall
picture. By using several contrasts, we can move our focus around and see
more features. Intelligent use of contrasts involves choosing our contrasts so
that they highlight interesting features in our data.

4.1 Contrast Basics

Contrasts take the form of a difference between means or averages of means.
For example, here are two contrasts:

(µ + α6) − (µ + α3)

and
µ + α2 + µ + α4

2
− µ + α1 + µ + α3 + µ + α5

3
.
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The first compares the means of treatments 6 and 3, while the second com-
pares the mean response in groups 2 and 4 with the mean response in groups
1, 3, and 5.

Formally, acontrastis a linear combination of treatment means or effectsContrasts
compare
averages of
means

∑g
i=1 wiµi = w({µi}) or

∑g
i=1 wiαi = w({αi}), where the coefficientswi

satisfy
∑g

i=1 wi = 0.

Contrast coefficients add to zero.

Less formally, we sometimes speak of the set of contrast coefficients{wi} as
being a contrast; we will try to avoid ambiguity. Notice thatbecause the sum
of the coefficients is zero, we have that

w({αi}) =
g∑

i=1

wiαi = x
g∑

i=1

wi +
g∑

i=1

wiαi

=
g∑

i=1

wi(x + αi) =
g∑

i=1

wi(µ + αi) = w({µi})

for any fixed constant x (sayµ or π). We may also make contrasts in the
observed data:

w({yi•}) =
g∑

i=1

wiyi• =
g∑

i=1

wi(yi• − y••) =
g∑

i=1

wiα̂i = w({α̂i}) .

A contrast depends on the differences between the values being contrasted,
but not on the overall level of the values. In particular, a contrast in treatment
means depends on theαi’s but not onµ. A contrast in the treatment meansContrasts do not

depend on
α-restrictions

or effects will be the same regardless of whether we assume that α1 = 0,
or
∑

αi = 0, or
∑

niαi = 0. Recall that with respect to restrictions on
the treatment effects, we said that “the important things don’t depend on
which set of restrictions we use.” In particular, contrastsdon’t depend on the
restrictions.

We may use several different kinds of contrasts in any one analysis. The
trick is to find or construct contrasts that focus in on interesting features of
the data.

Probably the most common contrasts arepairwise comparisons, where
we contrast the mean response in one treatment with the mean response in a
second treatment. For a pairwise comparison, one contrast coefficient is 1,Pairwise

comparisons a second contrast coefficient is -1, and all other contrast coefficients are 0.
For example, in an experiment withg = 4 treatments, the coefficients (0, 1,
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-1, 0) compare the means of treatments 2 and 3, and the coefficients (-1, 0,
1, 0) compare the means of treatments 1 and 3. Forg treatments, there are
g(g − 1)/2 different pairwise comparisons. We will consider simultaneous
inference for pairwise comparisons in Section 5.4.

A second classic example of contrasts occurs in an experiment with a
control and two or more new treatments. Suppose that treatment 1 is a con-
trol, and treatments 2 and 3 are new treatments. We might wishto compare
the average response in the new treatments to the average response in the
control; that is, on average do the new treatments have the same response as
the control? Here we could use coefficients (-1, .5, .5), which would sub-
tract the average control response from the average of treatments 2 and 3’s
average responses. As discussed below, this contrast applied to the observed Control versus

other treatmentstreatment means ((y2• + y3•)/2 − y1•) would estimate the contrast in the
treatment effects ((α2 + α3)/2 − α1). Note that we would get the same
kind of information from contrasts with coefficients (1, -.5, -.5) or (-6, 3, 3);
we’ve just rescaled the result with no essential loss of information. We might
also be interested in the pairwise comparisons, including acomparison of the
new treatments to each other (0, 1, -1) and comparisons of each of the new
treatments to control (1, -1, 0) and (1, 0, -1).

Consider next an experiment with four treatments examiningthe growth
rate of lambs. The treatments are four different food supplements. Treat-
ment 1 is soy meal and ground corn, treatment 2 is soy meal and ground oats,
treatment 3 is fish meal and ground corn, and treatment 4 is fishmeal and
ground oats. Again, there are many potential contrasts of interest. A contrast
with coefficients (.5, .5, -.5, -.5) would take the average response for fish
meal treatments and subtract it from the average response for soy meal treat- Compare related

groups of
treatments

ments. This could tell us about how the protein source affects the response.
Similarly, a contrast with coefficients (.5, -.5, .5, -.5) would take the average
response for ground oats and subtract it from the average response for ground
corn, telling us about the effect of the carbohydrate source.

Finally, consider an experiment with three treatments examining the ef-
fect of development time on the number of defects in computerchips pro-
duced using photolithography. The three treatments are 30,45, and 60 sec-
onds of developing. If we think of the responses as lying on a straight line
function of development time, then the contrast with coefficients (-1/30, 0, Polynomial

contrasts for
quantitative

doses

1/30) will estimate the slope of the line relating response and time. If instead
we think that the responses lie on a quadratic function of development time,
then the contrast with coefficients (1/450, -2/450, 1/450) will estimate the
quadratic term in the response function. Don’t worry for nowabout where
these coefficients come from; they will be discussed in more detail in Sec-
tion 4.4. For now, consider that the first contrast compares the responses at
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the ends to get a rate of change, and the second contrast compares the ends
to the middle (which yields a 0 comparison for responses on a straight line)
to assess curvature.

4.2 Inference for Contrasts

We use contrasts in observed treatment means or effects to make inference
about the corresponding contrasts in the true treatment means or effects. The
kinds of inference we work with here are point estimates, confidence inter-
vals, and tests of significance. The procedures we use for contrasts are similar
to the procedures we use when estimating or testing means.

The observed treatment meanyi• is an unbiased estimate ofµi = µ + αi,
so a sum or other linear combination of observed treatment means is an un-w({yi•})

estimates
w({µi})

biased estimate of the corresponding combination of theµi’s. In particular,
a contrast in the observed treatment means is an unbiased estimate of the
corresponding contrast in the true treatment means. Thus wehave:

E[w({yi•})] = E[w({α̂i})] = w({µi}) = w({αi}) .

The variance ofyi• is σ2/ni, and the treatment means are independent,
so the variance of a contrast in the observed means is

Var [w({yi•})] = σ2
g∑

i=1

w2
i

ni
.

We will usually not knowσ2, so we estimate it by the mean square for error
from the ANOVA.

We compute a confidence interval for a mean parameter with thegeneral
form: unbiased estimate± t-multiplier× estimated standard error. Contrasts
are linear combinations of mean parameters, so we use the same basic form.Confidence

interval for
w({µi})

We have already seen how to compute an estimate and standard error, so

w({yi•}) ± tE/2,N−g

√
MSE

√√√√
g∑

i=1

w2
i

ni

forms a1 − E confidence interval forw({µi}). As usual, the degrees of
freedom for ourt-percent point come from the degrees of freedom for our
estimate of error variance, hereN −g. We use theE/2 percent point because
we are forming a two-sided confidence interval, withE/2 error on each side.
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The usualt-test statistic for a mean parameter takes the form

unbiased estimate− null hypothesis value
estimated standard error of estimate

.

This form also works for contrasts. If we have the null hypothesisH0 :
w({µi}) = δ, then we can do at-test of that null hypothesis by computing
the test statistic

t =
w({yi•}) − δ

√
MSE

√∑g
i=1

w2

i

ni

.

UnderH0, this t-statistic will have at-distribution withN − g degrees of t-test for w({µi})

freedom. Again, the degrees of freedom come from our estimate of error
variance. Thep-value for thist-test is computed by getting the area under
thet-distribution withN − g degrees of freedom for the appropriate region:
either less or greater than the observedt-statistic for one-sided alternatives,
or twice the tail area for a two-sided alternative.

We may also compute a sum of squares for any contrastw({yi•}):

SSw =
(
∑g

i=1 wiyi•)
2

∑g
i=1

w2

i

ni

.

This sum of squares has 1 degree of freedom, so its mean squareis MSw =
SSw/1 = SSw. We may useMSw to test the null hypothesis thatw({µi}) =
0 by forming the F-statisticMSw/MSE . If H0 is true, this F-statistic will
have an F-distribution with 1 andN − g degrees of freedom (N − g from the SS and F-test for

w({µi})MSE). It is not too hard to see that this F is exactly equal to the square of
thet-statistic computed for same null hypothesisδ = 0. Thus the F-test and
two-sidedt-tests are equivalent for the null hypothesis of zero contrast mean.
It is also not too hard to see that if you multiply the contrastcoefficients by
a nonzero constant (for example, change from (-1, .5, .5) to (2, -1, -1)), then
the contrast sum of squares is unchanged. The squared constant cancels from
the numerator and denominator of the formula.

Rat liver weights Example 4.1

Exercise 3.1 provided data on the weight of rat livers as a percentage of body
weight for four different diets. Summary statistics from those data follow:

i 1 2 3 4

yi• 3.75 3.58 3.60 3.92
ni 7 8 6 8 MSE = .04138
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If diets 1, 2, and 3 are rations made by one manufacturer, and diet 4 is a
ration made by a second manufacturer, then it may be of interest to compare
the responses from the diets of the two manufacturers to see if there is any
difference.

The contrast with coefficients (1/3, 1/3, 1/3, -1) will compare the mean
response in the first three diets with the mean response in thelast diet. Note
that we intend “the mean response in the first three diets” to denote the av-
erage of the treatment averages, not the simple average of all the data from
those three treatments. The simple average will not be the same as the aver-
age of the averages because the sample sizes are different.

Our point estimate of this contrast is

w({yi•}) =
1

3
3.75 +

1

3
3.58 +

1

3
3.60 + (−1)3.92 = −.277

with standard error

SE(w({yi•})) =
√

.04138

√
(1
3)2

7
+

(1
3 )2

8
+

(1
3 )2

6
+

(−1)2

8
= .0847 .

The mean square for error has29− 4 = 25 degrees of freedom. To construct
a 95% confidence interval forw({µi}), we need the upper 2.5% point of a
t-distribution with 25 degrees of freedom; this is 2.06, as can be found in
Appendix Table D.3 or using software. Thus our 95% confidenceinterval is

−.277 ± 2.06 × .0847 = −.277 ± .174 = (−.451,−.103) .

Suppose that we wish to test the null hypothesisH0 : w({µi}) = δ. Here
we will use thet-test and F-test to testH0 : w({µi}) = δ = 0, but thet-test
can test other values ofδ. Ourt-test is

−.277 − 0

.0847
= −3.27 ,

with 25 degrees of freedom. For a two-sided alternative, we compute thep-
value by finding the tail area under thet-curve and doubling it. Here we get
twice .00156 or about .003. This is rather strong evidence against the null
hypothesis.

Because our null hypothesis value is zero with a two-sided alternative, we
can also test our null hypothesis by computing a mean square for the contrast
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Listing 4.1: SAS PROC GLM output for the rat liver contrast.

Source DF Type I SS Mean Square F Value Pr > F

DIET 3 0.57820903 0.19273634 4.66 0.0102

Contrast DF Contrast SS Mean Square F Value Pr > F

1,2,3 vs 4 1 0.45617253 0.45617253 11.03 0.0028

Listing 4.2: MacAnova output for the rat liver contrast.

component: estimate

(1) -0.28115

component: ss

(1) 0.45617

component: se

(1) 0.084674

and forming an F-statistic. The sum of squares for our contrast is

(1
33.75 + 1

33.58 + 1
33.60 + (−1)3.92)2

(1/3)2

7 + (1/3)2

8 + (1/3)2

6 + (−1)2

8

=
(−.277)2

.1733
= .443 .

The mean square is also .443, so the F-statistic is .443/.04138 = 10.7. We
compute ap-value by finding the area to the right of 10.7 under the F-
distribution with 1 and 25 degrees of freedom, getting .003 as for thet-test.

Listing 4.1 shows output from SAS for computing the sum of squares for
this contrast; Listing 4.2 shows corresponding MacAnova output. The sum
of squares in these two listings differs from what we obtained above due to
rounding at several steps.

4.3 Orthogonal Contrasts

Two contrasts{w} and{w⋆} are said to beorthogonalif

g∑

i=1

wiw
⋆
i /ni = 0 .
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If there areg treatments, you can find a set ofg−1 contrasts that are mutually
orthogonal, that is, each one is orthogonal to all of the others. However, there
are infinitely many sets ofg − 1 mutually orthogonal contrasts, and there areg − 1 orthogonal

contrasts no mutually orthogonal sets with more thang−1 contrasts. There is an anal-
ogy from geometry. In a plane, you can have two lines that are perpendicular
(orthogonal), but youcan’t find a third line that is perpendicular to both of
the others. On the other hand, there are infinitely many pairsof perpendicular
lines.

The important feature of orthogonal contrasts applied to observed means
is that they are independent (as random variables). Thus, the random error ofOrthogonal

contrasts are
independent and
partition variation

one contrast is not correlated with the random error of an orthogonal contrast.
An additional useful fact about orthogonal contrasts is that they partition the
between groups sum of squares. That is, if you compute the sums of squares
for a full set of orthogonal contrasts (g−1 contrasts forg groups), then adding
up thoseg−1 sums of squares will give you exactly the between groups sum
of squares (which also hasg − 1 degrees of freedom).

Example 4.2 Orthogonal contrast inference

Suppose that we have an experiment with three treatments—a control and
two new treatments—with group sizes 10, 5, and 5, and treatment means 6.3,
6.4, and 6.5. TheMSE is .0225 with 17 degrees of freedom. The contrast
w with coefficients (1, -.5, -.5) compares the mean response inthe control
treatment with the average of the mean responses in the new treatments. The
contrast with coefficients (0, 1, -1) compares the two new treatments. In our
example above, we had a control with 10 units, and two new treatments with
5 units each. These contrasts are orthogonal, because

0 × 1

10
+

1 ×−.5

5
+

−1 ×−.5

5
= 0 .

We have three groups so there are 2 degrees of freedom betweengroups,
and we have described above a set of orthogonal contrasts. The sum of
squares for the first contrast is

(6.3 − .5 × 6.4 − .5 × 6.5)2

1
10 + (−.5)2

5 + (−.5)2

5

= .1125 ,

and the sum of squares for the second contrast is
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(0 + 6.4 − 6.5)2

0
10 + 12

5 + (−1)2

5

=
.01

.4
= .025 .

The between groups sum of squares is

10(6.3 − 6.375)2 + 5(6.4 − 6.375)2 + 5(6.5 − 6.375)2 = .1375

which equals .1125 + .025.

We can see from Example 4.2 one of the advantages of contrastsover
the full between groups sum of squares. The control-versus-new contrast has Contrasts isolate

differencesa sum of squares which is 4.5 times larger than the sum of squares for the
difference of the new treatments. This indicates that the responses from the
new treatments are substantially farther from the control responses than they
are from each other. Such indications are not possible usingthe between
groups sum of squares.

The actual contrasts one uses in an analysis arise from the context of
the problem. Here we had new versus old and the difference between the
two new treatments. In a study on the composition of ice cream, we might
compare artificial flavorings with natural flavorings, or expensive flavorings
with inexpensive flavorings. It is often difficult to construct a complete set
of meaningful orthogonal contrasts, but that should not deter you from using
an incomplete set of orthogonal contrasts, or from using contrasts that are
nonorthogonal.

Use contrasts that address the questions you are trying to answer.

4.4 Polynomial Contrasts

Section 3.10 introduced the idea of polynomial modeling of aresponse when
the treatments had a quantitative dose structure. We selected a polynomial Contrasts yield

improvement SS
in polynomial

dose-response
models

model by looking at the improvement sums of squares obtainedby adding
each polynomial term to the model in sequence. Each of these additional
terms in the polynomial has a single degree of freedom, just like a contrast. In
fact, each of these improvement sums of squares can be obtained as a contrast
sum of squares. We call the contrast that gives us the sum of squares for the
linear term the linear contrast, the contrast that gives us the improvement sum
of squares for the quadratic term the quadratic contrast, and so on.
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When the doses are equally spacedand the sample sizes are equal, then
the contrast coefficients for polynomial terms are fairly simple and can beSimple contrasts

for equally
spaced doses
with equal ni

found, for example, in Appendix Table D.6; these contrasts are orthogonal
and have been scaled to be simple integer values. Equally spaced doses
means that the gaps between successive doses are the same, asin 1, 4, 7,
10. Using these tabulated contrast coefficients, we may compute the linear,
quadratic, and higher order sums of squares as contrasts without fitting a sep-
arate polynomial model. Doses such as 1, 10, 100, 1000 are equally spaced
on a logarithmic scale, so we can again use the simple polynomial contrast
coefficients, provided we interpret the polynomial as a polynomial in the log-
arithm of dose.

When the doses are not equally spaced or the sample sizes are not equal,
then contrasts for polynomial terms exist, but are rather complicated to de-
rive. In this situation, it is more trouble to derive the coefficients for the
polynomial contrasts than it is to fit a polynomial model.

Example 4.3 Leaflet angles
Exercise 3.5 introduced the leaflet angles of plants at 30, 45, and 60 minutes
after exposure to red light. Summary information for this experiment is given
here:

Delay time (min)
30 45 60

yi• 139.6 133.6 122.4
ni 5 5 5

MSE = 58.13

With three equally spaced groups, the linear and quadratic contrasts are (-1,
0, 1) and (1, -2, 1).

The sum of squares for linear is

((−1)139.6 + (0)133.6 + (1)122.4)2

(−1)2

5 + 0
5 + 12

5

= 739.6 ,

and that for quadratic is

((1)139.6 + (−2)133.6 + (1)122.4)2

12

5 + (−2)2

5 + 12

5

= 22.53 .

Thus the F-tests for linear and quadratic are739.6/58.13 = 12.7 and
22.53/58.13 = .39, both with 1 and 12 degrees of freedom; there is a strong
linear trend in the means and almost no nonlinear trend.
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4.5 Further Reading and Extensions

Contrasts are a special case ofestimable functions, which are described in
some detail in Appendix Section A.6. Treatment means and averages of
treatment means are other estimable functions. Estimable functions are those
features of the data that do not depend on how we choose to restrict the treat-
ment effects.

4.6 Problems

An experimenter randomly allocated 125 male turkeys to five treatment Exercise 4.1
groups: 0 mg, 20 mg, 40 mg, 60 mg, and 80 mg of estradiol. There were
25 birds in each group, and the mean results were 2.16, 2.45, 2.91, 3.00,
and 2.71 respectively. The sum of squares for experimental error was 153.4.
Test the null hypothesis that the five group means are the sameagainst the
alternative that they are not all the same. Find the linear, quadratic, cubic,
and quartic sums of squares (you may lump the cubic and quartic together
into a “higher than quadratic” if you like). Test the null hypothesis that the
quadratic effect is zero. Be sure to report ap-value.

Use the data from Exercise 3.3. Compute a 99% confidence interval for Exercise 4.2
the difference in response between the average of the three treatment groups
(acid, pulp, and salt) and the control group.

Refer to the data in Problem 3.1. Workers 1 and 2 were experienced, Exercise 4.3
whereas workers 3 and 4 were novices. Find a contrast to compare the expe-
rienced and novice workers and test the null hypothesis thatexperienced and
novice works produce the same average shear strength.

Consider an experiment taste-testing six types of chocolate chip cookies: Exercise 4.4
1 (brand A, chewy, expensive), 2 (brand A, crispy, expensive), 3 (brand B,
chewy, inexpensive), 4 (brand B, crispy, inexpensive), 5 (brand C, chewy,
expensive), and 6 (brand D, crispy, inexpensive). We will use twenty different
raters randomly assigned to each type (120 total raters).

(a) Design contrasts to compare chewy with crispy, and expensive with inex-
pensive.

(b) Are your contrasts in part (a) orthogonal? Why or why not?

A consumer testing agency obtains four cars from each of six makes: Problem 4.1
Ford, Chevrolet, Nissan, Lincoln, Cadillac, and Mercedes.Makes 3 and 6
are imported while the others are domestic; makes 4, 5, and 6 are expensive
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while 1, 2, and 3 are less expensive; 1 and 4 are Ford products,while 2 and
5 are GM products. We wish to compare the six makes on their oiluse per
100,000 miles driven. The mean responses by make of car were 4.6, 4.3, 4.4,
4.7, 4.8, and 6.2, and the sum of squares for error was 2.25.

(a) Compute the Analysis of Variance table for this experiment. What
would you conclude?

(b) Design a set of contrasts that seem meaningful. For each contrast,
outline its purpose and compute a 95% confidence interval.

Consider the data in Problem 3.2. Design a set of contrasts that seemProblem 4.2
meaningful. For each contrast, outline its purpose and testthe null hypothesis
that the contrast has expected value zero.

Consider the data in Problem 3.5. Use polynomial contrasts to choose aProblem 4.3
quantitative model to describe the effect of fiber proportion on the response.

Show that orthogonal contrasts in the observed treatment means are un-Question 4.1
correlated random variables.



Chapter 5

Multiple Comparisons

When we make several related tests or interval estimates at the same time,
we need to makemultiple comparisonsor do simultaneous inference.The
issue of multiple comparisons is one of error rates. Each of the individual
tests or confidence intervals has a Type I error rateEi that can be controlled Multiple

comparisons,
simultaneous

inference, families
of hypotheses

by the experimenter. If we consider the tests together as afamily,then we can
also compute a combined Type I error rate for the family of tests or intervals.
When a family contains more and more true null hypotheses, the probabil-
ity that one or more of these true null hypotheses is rejectedincreases, and
the probability of any Type I errors in the family can become quite large.
Multiple comparisons procedures deal with Type I error rates for families of
tests.

Carcinogenic mixtures Example 5.1
We are considering a new cleaning solvent that is a mixture of100 chemicals.
Suppose that regulations state that a mixture is safe if all of its constituents
are safe (pretending we can ignore chemical interaction). We test the 100
chemicals for causing cancer, running each test at the 5% level. This is the
individual error rate that we can control.

What happens if all 100 chemicals are harmless and safe? Because we
are testing at the 5% level, we expect 5% of the nulls to be rejected even
when all the nulls are true. Thus, on average, 5 of the 100 chemicals will be
declared to be carcinogenic, even when all are safe. Moreover, if the tests
are independent, then one or more of the chemicals will be declared unsafe
in 99.4% of all sets of experiments we run, even if all the chemicals are safe.
This 99.4% is a combined Type I error rate; clearly we have a problem.
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5.1 Error Rates

When we have more than one test or interval to consider, thereare several
ways to define a combined Type I error rate for the family of tests. This vari-
ety of combined Type I error rates is the source of much confusion in the useDetermine error

rate to control of multiple comparisons, as different error rates lead to different procedures.
People sometimes ask “Which procedure should I use?” when the real ques-
tion is “Which error rate do I want to control?”. As data analyst, you need
to decide which error rate is appropriate for your situationand then choose
a method of analysis appropriate for that error rate. This choice of error rate
is not so much a statistical decision as a scientific decisionin the particular
area under consideration.

Data snoopingis a practice related to having many tests. Data snooping
occurs when we first look over the data and then choose the nullhypothesesData snooping

performs many
implicit tests

to be tested based on “interesting” features in the data. What we tend to
do is consider many potential features of the data and discard those with
uninteresting or null behavior. When we data snoop and then perform a test,
we tend to see the smallestp-value from the ill-defined family of tests that we
considered when we were snooping; we have not really performed just one
test. Some multiple comparisons procedures can actually control for data
snooping.

Simultaneous inferenceis deciding which error rate we wish to control, and
then using a procedure that controls the desired error rate.

Let’s set up some notation for our problem. We have a set ofK null
hypothesesH01, H02, . . ., H0K . We also have the “combined,” “overall,” or
“intersection” null hypothesesH0 which is true ifall of theH0i are true. InIndividual and

combined null
hypotheses

formula,
H0 = H01 ∩ H02 ∩ · · · ∩ H0K .

The collectionH01, H02, . . ., H0K is sometimes called a family of null hy-
potheses. We rejectH0 if any of null hypothesesH0i is rejected. In Exam-
ple 5.1,K = 100, H0i is the null hypothesis that chemicali is safe, andH0

is the null hypothesis that all chemicals are safe so that themixture is safe.

We now define five combined Type I error rates. The definitions of these
error rates depend on numbers or fractions of falsely rejected null hypotheses
H0i, which will never be known in practice. We set up the error rates here
and later give procedures that can be shown mathematically to control the
error rates.
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Theper comparison error rateor comparisonwise error rateis the prob-
ability of rejecting a particularH0i in a single test when thatH0i is true.
Controlling the per comparison error rate atE means that the expected frac- Comparisonwise

error ratetion of individual tests that rejectH0i whenH0 is true isE . This is just the
usual error rate for at-test or F-test; it makes no correction for multiple com-
parisons. The tests in Example 5.1 controlled the per comparison error rate
at 5%.

Theper experiment error rateor experimentwise error rateor familywise
error rate is the probability of rejecting one or more of theH0i (and thus Experimentwise

error raterejectingH0) in a series of tests when all of theH0i are true. Controlling
the experimentwise error rate atE means that the expected fraction of exper-
iments in which we would reject one or more of theH0i whenH0 is true
is E . In Example 5.1, the per experiment error rate is the fraction of times
we would declare one or more of the chemicals unsafe when in fact all were
safe. Controlling the experimentwise error rate atE necessarily controls the
comparisonwise error rate at no more thanE . The experimentwise error rate
considers all individual null hypotheses that were rejected; if any one of them
was correctly rejected, then there is no penalty for any false rejections that
may have occurred.

A statistical discovery is the rejection of anH0i. The false discovery
fraction is 0 if there are no rejections; otherwise it is the number of false False discovery

ratediscoveries (Type I errors) divided by the total number of discoveries. The
false discovery rate(FDR) is the expected value of the false discovery frac-
tion. If H0 is true, then all discoveries are false and the FDR is just the
experimentwise error rate. Thus controlling the FDR atE also controls the
experimentwise error atE . However, the FDR also controls atE the average
fraction of rejections that are Type I errors when someH0i are true and some
are false, a control that the experimentwise error rate doesnot provide. With
the FDR, we are allowed more incorrect rejections as the number of true re-
jections increases, but the ratio is limited. For example, with FDR at .05, we
are allowed just one incorrect rejection with 19 correct rejections.

The strong familywise error rateis the probability of making any false
discoveries, that is, the probability that the false discovery fraction is greater
than zero. Controlling the strong familywise error rate atE means that the Strong familywise

error rateprobability of making any false rejections isE or less, regardless of how
many correct rejections are made. Thus one true rejection cannot make any
false rejections more likely. Controlling the strong familywise error rate at
E controls the FDR at no more thanE . In Example 5.1, a strong familywise
error rate ofE would imply that in a situation where 2 of the chemicals were
carcinogenic, the probability of declaring one of the other98 to be carcino-
genic would be no more thanE .
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Finally, suppose that each null hypothesis relates to some parameter (for
example, a mean), and we put confidence intervals on all theseparameters.
An error occurs when one of our confidence intervals fails to cover the true
parameter value. If this true parameter value is also the null hypothesis value,
then an error is a false rejection. Thesimultaneous confidence intervalscri-Simultaneous

confidence
intervals

terion states that all of our confidence intervals must covertheir true param-
eters simultaneously with confidence1 − E . Simultaneous1 − E confidence
intervals also control the strong familywise error rate at no more thanE . (In
effect, the strong familywise criterion only requires simultaneous intervals
for the null parameters.) In Example 5.1, we could constructsimultaneous
confidence intervals for the cancer rates of each of the 100 chemicals. Note
that a single confidence interval in a collection of intervals with simultaneous
coverage1 − E will have coverage greater than1 − E .

There is a trade-off between Type I error and Type II error (failing to
reject a null when it is false). As we go to more and more stringent Type IMore stringent

procedures are
less powerful

error rates, we become more confident in the rejections that we do make, but
it also becomes more difficult to make rejections. Thus, whenusing the more
stringent Type I error controls, we are more likely to fail toreject some null
hypotheses that should be rejected than when using the less stringent rates. In
simultaneous inference, controlling stronger error ratesleads to less powerful
tests.

Example 5.2 Functional magnetic resonance imaging
Many functional Magnetic Resonance Imaging (fMRI) studiesare interested
in determining which areas of the brain are “activated” whena subject is
engaged in some task. Any one image slice of the brain may contain 5000
voxels (individual locations to be studied), and one analysis method produces
a t-test for each of the 5000 voxels. Null hypothesisH0i is that voxeli is not
activated. Which error rate should we use?

If we are studying a small, narrowly defined brain region and are uncon-
cerned with other brain regions, then we would want to test individually the
voxels in the brain regions of interest. The fact that there are 4999 other
voxels is unimportant, so we would use a per comparison method.

Suppose instead that we are interested in determining if there are any
activations in the image. We recognize that by making many tests we are
likely to find one that is “significant”, even when all nulls are true; we want
to protect ourselves against that possibility, but otherwise need no stronger
control. Here we would use a per experiment error rate.

Suppose that we believe that there will be many activations,so thatH0 is
not true. We don’t want some correct discoveries to open the flood gates for
many false discoveries, but we are willing to live with some false discoveries
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as long as they are a controlled fraction of the total made. This is acceptable
because we are going to investigate several subjects; the truly activated re-
jections should be rejections in most subjects, and the false rejections will be
scattered. Here we would use the FDR.

Suppose that in addition to expecting true activations, we are also only
looking at a single subject, so that we can’t use multiple subjects to determine
which activations are real. Here we don’t want false activations to cloud our
picture, so we use the strong familywise error rate.

Finally, we might want to be able to estimate the amount of activation in
every voxel, with simultaneous accuracy for all voxels. Here we would use
simultaneous confidence intervals.

A multiple comparisons procedureis a method for controlling a Type I error
rate other than the per comparison error rate.

The literature on multiple comparisons is vast, and despitethe length of
this Chapter, we will only touch the highlights. I have seen quite a bit of
nonsense regarding these methods, so I will try to set out rather carefully
what the methods are doing. We begin with a discussion of Bonferroni-based
methods for combining generic tests. Next we consider the Scheffé proce-
dure, which is useful for contrasts suggested by data (data snooping). Then
we turn our attention to pairwise comparisons, for which there are dozens of
methods. Finally, we consider comparing treatments to a control or to the
best response.

5.2 Bonferroni-Based Methods

The Bonferroni technique is the simplest, most widely applicable multiple
comparisons procedure. The Bonferroni procedure works fora fixed set of
K null hypotheses to test or parameters to estimate. Letpi be thep-value
for testingH0i. The Bonferroni procedure says to obtain simultaneous1 − Ordinary

BonferroniE confidence intervals by constructing individual confidenceintervals with
coverage1 − E/K, or rejectH0i (and thusH0) if

pi < E/K .

That is, simply run each test at levelE/K. The testing version controls the
strong familywise error rate, and the confidence intervals are simultaneous.
The tests and/or intervals need not be independent, of the same type, or re-
lated in any way.
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RejectH0(i) if Method Control

p(i) < E/K Bonferroni Simultaneous confidence
intervals

p(j) < E/(K − j + 1)
for all j = 1, . . ., i

Holm Strong familywise error
rate

p(j) ≤ jE/K
for somej ≥ i

FDR False discovery rate;
needs independent tests

Display 5.1: Summary of Bonferroni-style methods forK comparisons.

The Holm procedure is a modification of Bonferroni that controls the
strong familywise error rate, but does not produce simultaneous confidence
intervals (Holm 1979). Letp(1), . . ., p(K) be thep-values for theK testsHolm
sorted into increasing order, and letH0(i) be the null hypotheses sorted along
with thep-values. Then rejectH0(i) if

p(j) ≤ E/(K − j + 1) for all j = 1, . . ., i.

Thus we start with the smallestp-value; if it is rejected we consider the next
smallest, and so on. We stop when we reach the first nonsignificantp-value.
This is a little more complicated, but we gain some power since only the
smallestp-value is compared toE/K.

The FDR method of Benjamini and Hochberg (1995) controls theFalse
Discovery Rate. Once again, sort thep-values and the hypotheses. For theFDR modification

of Bonferroni
requires
independent tests

FDR, start with the largestp-value and work down. RejectH0i if

p(j) ≤ jE/K for somej ≥ i.

This procedure is correct when the tests are statistically independent. It con-
trols the FDR, but not the strong familywise error rate.

The three Bonferroni methods are summarized in Display 5.1.Exam-
ple 5.3 illustrates their use.
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Sensory characteristics of cottage cheeses Example 5.3
Table 5.1 shows the results of an experiment comparing the sensory charac-
teristics of nonfat, 2% fat, and 4% fat cottage cheese (Michicich 1995). The
table shows the characteristics grouped by type andp-values for testing the
null hypothesis that there was no difference between the three cheeses in the
various sensory characteristics. There are 21 characteristics in three groups
of sizes 7, 6, and 8.

How do we do multiple comparisons here? First we need to know:

1. Which error rate is of interest?

2. If we do choose an error rate other than the per comparison error rate,
what is the appropriate “family” of tests? Is it all 21 characteristics, or
separately within group of characteristic?

There is no automatic answer to either of these questions. The answers de-
pend on the goals of the study, the tolerance of the investigator to Type I error,
how the results of the study will be used, whether the investigator views the
three groups of characteristics as distinct, and so on.

The last two columns of Table 5.1 give the results of the Bonferroni,
Holm, and FDR procedures applied at the 5% level to all 21 comparisons
and within each group. Thep-values are compared to the criteria in Dis-
play 5.1 usingK = 21 for the overall family andK of 7, 6, or8 for by group
comparisons.

Consider the characteristic “cheesy flavor” with a .01p-value. If we use
the overall family, this is the tenth smallestp-value out of 21p-values. The
results are

• BonferroniThe critical value is.05/21 = .0024—not significant.

• HolmThe critical value is.05/(21−10+1) = .0042—not significant.

• FDR The critical value is10 × .05/21 = .024—significant.

If we use the flavor family, this is the fourth smallestp-value out of sixp-
values. Now the results are

• BonferroniThe critical value is.05/6 = .008—not significant.

• Holm The critical value is.05/(6 − 4 + 1) = .017 (and all smaller
p-values meet their critical values)—significant.

• FDR The critical value is4 × .05/6 = .033—significant.
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Table 5.1: Sensory attributes of three cottage cheeses:p-values and 5%
significant results overall and familywise by type of attribute using the
Bonferroni (•), Holm (◦), and FDR methods(⋆).

Characteristic p-value Overall By group

Appearance

White .004 ⋆ •◦⋆
Yellow .002 •◦⋆ •◦⋆
Gray .13
Curd size .29
Size uniformity .73
Shape uniformity .08
Liquid/solid ratio .02 ⋆ ⋆

Flavor

Sour .40
Sweet .24
Cheesy .01 ⋆ ◦⋆
Rancid .0001 •◦⋆ •◦⋆
Cardboard .0001 •◦⋆ •◦⋆
Storage .001 •◦⋆ •◦⋆

Texture

Breakdown rate .001 •◦⋆ •◦⋆
Firm .0001 •◦⋆ •◦⋆
Sticky .41
Slippery .07
Heavy .15
Particle size .42
Runny .002 •◦⋆ •◦⋆
Rubbery .006 ⋆ •◦⋆

These results illustrate that more null hypotheses are rejected considering
each group of characteristics to be a family of tests rather than overall (the
K is smaller for the individual groups), and fewer rejectionsare made using
the more stringent error rates. Again, the choices of error rate and family of
tests are not purely statistical, and controlling an error rate within a group of
tests does not control that error rate for all tests.
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5.3 The Scheff́e Method for All Contrasts

The Scheffé method is a multiple comparisons technique forcontrasts that
produces simultaneous confidence intervals foranyandall contrasts,includ-
ing contrasts suggested by the data. Thus Scheffé is the appropriate tech-
nique for assessing contrasts that result from data snooping. This sounds like Scheffé protects

against data
snooping, but has

low power

the ultimate in error rate control—arbitrarily many comparisons, even ones
suggested from the data! The downside of this amazing protection is low
power. Thus we only use the Scheffé method in those situations where we
have a contrast suggested by the data, or many, many contrasts that cannot
be handled by other techniques. In addition, pairwise comparison contrasts
yi• − yj•, even pairwise comparisons suggested by the data, are better han-
dled by methods specifically designed for pairwise comparisons.

We begin with the Scheffé test of the null hypothesisH0 : w({αi}) = 0
against a two-sided alternative. The Scheffé test statistic is the ratio

SSw/(g − 1)

MSE
;

we get ap-value as the area under an F-distribution withg−1 andν degrees Scheffé F-test
of freedom to the right of the test statistic. The degrees of freedomν are from
our denominatorMSE ; ν = N − g for the completely randomized designs
we have been considering so far. Reject the null hypothesis if this p-value
is less than our Type I error rateE . In effect, the Scheffé procedure treats
the mean square for any single contrast as if it were the fullg − 1 degrees of
freedom between groups mean square.

There is also a Scheffét-test for contrasts. Suppose that we are testing
the null hypothesisH0 : w({αi}) = δ against a two-sided alternative. The
Scheffét-test controls the Type I error rate atE by rejecting the null hypoth- Scheffé t-test
esis when

|w({yi•}) − δ|√
MSE

∑g
i=1

w2

i

ni

>
√

(g − 1)FE,g−1,ν ,

whereFE,g−1,ν is the upperE percent point of an F-distribution withg − 1
andν degrees of freedom. Again,ν is the degrees of freedom forMSE . For
the usual null hypothesis valueδ = 0, this is equivalent to the ratio-of-mean-
squares version given above.

We may also use the Scheffé approach to form simultaneous confidence Scheffé
confidence

interval
intervals for anyw({αi}):

w({yi•}) ±
√

(g − 1)FE,g−1,ν ×

√√√√MSE

g∑

i=1

w2
i

ni
.
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These Scheffé intervals have simultaneous1 − E coverage over any set of
contrasts, including contrasts suggested by the data.

Example 5.4 Acid rain and birch seedlings, continued
Example 3.1 introduced an experiment in which birch seedlings were ex-
posed to various levels of artificial acid rain. The following table gives some
summaries for the data:

pH 4.7 4.0 3.3 3.0 2.3

weight .337 .296 .320 .298 .177

n 48 48 48 48 48

TheMSE was.0119 with 235 degrees of freedom.
Inspection of the means shows that most of the response meansare about

.3, but the response for the pH 2.3 treatment is much lower. Thissuggests
that a contrast comparing the pH 2.3 treatment with the mean of the other
treatments would have a large value. The coefficients for this contrast are
(.25, .25, .25, .25, -1). This contrast has value

.337 + .296 + .320 + .298

4
− .177 = .1357

and standard error
√

.0119

(
.0625

48
+

.0625

48
+

.0625

48
+

.0625

48
+

1

48

)
= .0176 .

We must use the Scheffé procedure to construct a confidence interval or
assess the significance of this contrast, because the contrast was suggested
by the data. For a 99% confidence interval, the Scheffé multiplier is

√
4 F.01,4,235 = 3.688 .

Thus the 99% confidence interval for this contrast is.1357−3.688×.0176 up
to .1357 + 3.688 × .0176, or (.0708, .2006). Alternatively, thet-statistic for
testing the null hypothesis that the mean response in the last group is equal to
the average of the mean responses in the other four groups is.1357/.0176 =
7.71. The Scheffé critical value for testing the null hypothesis at theE = .001
level is

√
(g − 1)FE,g−1,N−g =

√
4 F.001,4,235 =

√
4 × 4.782 = 4.37 ,

so we can reject the null at the .001 level.
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Remember, it is not fair to hunt around through the data for a big contrast,
test it, and think that you’ve only done one comparison.

5.4 Pairwise Comparisons

A pairwise comparisonis a contrast that examines the difference between
two treatment meansyi• − yj•. Forg treatment groups, there are

(
g
2

) =
g(g − 1)

2

different pairwise comparisons. Pairwise comparisons procedures control a
Type I error rate atE for all pairwise comparisons. If we data snoop, choose
the biggest and smallestyi•’s and take the difference, we have not made just
one comparison; rather we have made allg(g − 1)/2 pairwise comparisons,
and selected the largest. Controlling a Type I error rate forthis greatest dif-
ference is one way to control the error rate for all differences.

As with many other inference problems, pairwise comparisons can be
approached using confidence intervals or tests. That is, we may compute Tests or

confidence
intervals

confidence intervals for the differencesµi − µj or αi − αj or test the null
hypothesesH0ij : µi = µj or H0ij : αi = αj. Confidence regions for the
differences of means are generally more informative than tests.

A pairwise comparisons procedure can generally be viewed asa critical
value (or set of values) for thet-tests of the pairwise comparison contrasts.
Thus we would reject the null hypothesis thatαi − αj = 0 if

|yi• − yj•|
√

MSE

√
1/ni + 1/nj

> u ,

whereu is a critical value. Various pairwise comparisons procedures differ Critical values u
for t-testsin how they define the critical valueu, andu may depend on several things,

includingE , the degrees of freedom forMSE , the number of treatments, the
number of treatments with means betweenyi• andyj•, and the number of
treatment comparisons with largert-statistics.

An equivalent form of the test will reject if

|yi• − yj•| > u
√

MSE

√
1/ni + 1/nj = Dij .
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If all sample sizes are equal and the critical valueu is constant, thenDij

will be the same for alli, j pairs and we would reject the null if any pair ofSignificant
differences Dij treatments had mean responses that differed byD or more. This quantityD

is called asignificant difference; for example, using a Bonferroni adjustment
to theg(g−1)/2 pairwise comparisons tests leads to a Bonferroni significant
difference (BSD).

Confidence intervals for pairwise differencesµi−µj can be formed from
the pairwise tests via

(yi• − yj•) ± u
√

MSE

√
1/ni + 1/nj .

The remainder of this section presents methods for displaying the results
of pairwise comparisons, introduces the Studentized range, discusses sev-
eral pairwise comparisons methods, and then illustrates the methods with an
example.

5.4.1 Displaying the results

Pairwise comparisons generate a lot of tests, so we need convenient and com-
pact ways to present the results. Anunderline diagramis a graphical presen-Underline

diagram
summarizes
pairwise
comparisons

tation of pairwise comparison results; construct the underline diagram in the
following steps.

1. Sort the treatment means into increasing order and write out treatment
labels (numbers or names) along a horizontal axis. Theyi• values may
be added if desired.

2. Draw a line segment under a group of treatments if no pair oftreat-
ments in that group is significantly different. Do not include short lines
that are implied by long lines. That is, if treatments 4, 5, and 6 are not
significantly different, only use one line under all of them—not a line
under 4 and 5, and a line under 5 and 6, and a line under 4, 5, and 6.

Here is a sample diagram for three treatments that we label A,B, and C:

C A B

This diagram includes treatment labels, but not treatment means. From this
summary we can see that C can be distinguished from B (there isno underline
that covers both B and C), but A cannot be distinguished from either B or C
(there are underlines under A and C, and under A and B).
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Note that there can be some confusion after pairwise comparisons. You
must not confuse “is not significantly different from” or “cannot be distin- Insignificant

difference does
not imply equality

guished from” with “is equal to.” Treatment mean A cannot be equal to
treatment means B and C and still have treatment means B and C not equal
each other. Such a pattern can hold for results of significance tests.

There are also several nongraphical methods for displayingpairwise com-
parisons results. In one method, we sort the treatments intoorder of increas-
ing means and print the treatment labels. Each treatment label is followed by Letter or number

tagsone or more numbers (letters are sometimes used instead). Any treatments
sharing a number (or letter) are not significantly different. Thus treatments
sharing common numbers or letters are analogous to treatments being con-
nected by an underline. The grouping letters are often put inparentheses or
set as sub- or superscripts. The results in our sample underline diagram might
thus be presented as one of the following:

C (1) A (12) B (2) C (a) A (ab) B (b)

C1 A12 B2 Ca Aab Bb

There are several other variations on this theme.
A third way to present pairwise comparisons is as a table, with treatments Table of CI’s or

significant
differences

labeling both rows and columns. Table elements can flag significant differ-
ences or contain confidence intervals for the differences. Only entries above
or below the diagonal of the table are needed.

5.4.2 The Studentized range

The range of a set is the maximum value minus the minimum value, and
Studentizationmeans dividing a statistic by an estimate of its standard error. Range,

Studentization,
and Studentized

range

Thus theStudentized rangefor a set of treatment means is

max
i

yi•√
MSE/n

− min
j

yj•√
MSE/n

.

Note that we have implicitly assumed that all the sample sizes ni are the
same.

If all the treatments have the same mean, that is, ifH0 is true, then the
Studentized range statistic follows the Studentized rangedistribution. Large Studentized

range distributionvalues of the Studentized range are less likely underH0 and more likely
under the alternative when the means are not all equal, so we may use the
Studentized range as a test statistic forH0, rejectingH0 when the Studentized
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range statistic is sufficiently large. This Studentized range test is a legitimate
alternative to the ANOVA F-test.

The Studentized range distribution is important for pairwise comparisons
because it is the distribution of the biggest (scaled) difference between treat-
ment means when the null hypothesis is true. We will use it as abuilding
block in several pairwise comparisons methods.

The Studentized range distribution depends only ong andν, the number
of groups and the degrees of freedom for the error estimateMSE . The quan-Percent points

qE(g, ν) tity qE(g, ν) is the upperE percent point of the Studentized range distribution
for g groups andν error degrees of freedom; it is tabulated in Appendix Ta-
ble D.8.

5.4.3 Simultaneous confidence intervals

The Tukey honest significant difference (HSD) is a pairwise comparisonsTukey HSD or
honest significant
difference

technique that uses the Studentized range distribution to construct simultane-
ous confidence intervals for differences of all pairs of means. If we reject the
null hypothesisH0ij when the (simultaneous) confidence interval forµi−µj

does not include 0, then the HSD also controls the strong familywise error
rate.

The HSD uses the critical value

u(E , ν, g) =
qE(g, ν)√

2
,

leading toThe HSD

HSD =
qE(g, ν)√

2

√
MSE

√
1

n
+

1

n
=

qE(g, ν)
√

MSE√
n

.

Form simultaneous1 − E confidence intervals via

yi• − yj• ±
qE(g, ν)√

2

√
MSE

√
1

n
+

1

n
.

The degrees of freedomν are the degrees of freedom for the error estimate
MSE .

Strictly speaking, the HSD is only applicable to the equal sample size
situation. For the unequal sample size case, the approximate HSD is

HSDij = qE(g, ν)
√

MSE

√
1

2ninj/(ni + nj)
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Table 5.2: Total free amino acids in cheeses
after 168 days of ripening.

Strain added
None A B A&B

4.195 4.125 4.865 6.155
4.175 4.735 5.745 6.488

or, equivalently, Tukey-Kramer
form for unequal

sample sizes
HSDij =

qE(g, ν)√
2

√
MSE

√
(

1

ni
+

1

nj
) .

This approximate HSD, often called the Tukey-Kramer form, tends to be
slightly conservative (that is, the true error rate is slightly less thanE).

The Bonferroni significant difference (BSD) is simply the application of Bonferroni
significant

difference or BSD
the Bonferroni technique to the pairwise comparisons problem to obtain

u = u(E , ν,K) = tE/(2K),ν ,

BSDij = tE/(2K),ν

√
MSE

√
1/ni + 1/nj ,

whereK is the number of pairwise comparisons. We haveK = g(g − 1)/2
for all pairwise comparisons betweeng groups. BSD produces simultaneous
confidence intervals and controls the strong familywise error rate.

When making all pairwise comparisons, the HSD is less than the BSD. Use HSD when
making all

pairwise
comparisons

Thus we prefer the HSD to the BSD for all pairwise comparisons, because
the HSD will produce shorter confidence intervals that are still simultaneous.
When only a preplanned subset of all the pairs is being considered, the BSD
may be less than and thus preferable to the HSD.

Free amino acids in cheese Example 5.5

Cheese is produced by bacterial fermentation of milk. Some bacteria in
cheese are added by the cheese producer. Other bacteria are present but were
not added deliberately; these are called nonstarter bacteria. Nonstarter bac-
teria vary from facility to facility and are believed to influence the quality of
cheese.

Two strains (A and B) of nonstarter bacteria were isolated ata premium
cheese facility. These strains will be added experimentally to cheese to deter-
mine their effects. Eight cheeses are made. These cheeses all get a standard
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starter bacteria. In addition, two cheeses will be randomlyselected for each
of the following four treatments: control, add strain A, addstrain B, or add
both strains A and B. Table 5.2 gives the total free amino acids in the cheeses
after 168 days of ripening. (Free amino acids are thought to contribute to
flavor.)

Listing 5.1 gives Minitab output showing an Analysis of Variance for
these data①, as well as HSD comparisons (called Tukey’s pairwise compar-
isons) usingE = .1 ②; we use theMSE from this ANOVA in constructing
the HSD. HSD is appropriate if we want simultaneous confidence intervals
on the pairwise differences. The HSD is

qE(g, ν)√
2

√
MSE

√
1

ni
+

1

nj
=

q.1(4, 4)√
2

√
.1572

√
1

2
+

1

2

= 4.586 × .3965/1.414 = 1.286 .

We form confidence intervals as the observed difference in treatment means,
plus or minus 1.286; so for A&B minus control, we have

6.322 − 4.185 ± 1.286 or (.851, 3.423) .

In fact, only two confidence intervals for pairwise differences do not include
zero (see Listing 5.1②). The underline diagram is:

C A B A&B
4.19 4.43 5.31 6.32

Note in Listing 5.1② that Minitab displays pairwise comparisons as a table
of confidence intervals for differences.

5.4.4 Strong familywise error rate

A step-down methodis a procedure for organizing pairwise comparisons
starting with the most extreme pair and then working in. Relabel the groupsStep-down

methods work
inward from the
outside
comparisons

so that the sample means are in increasing order withy(1)• smallest andy(g)•

largest. (The relabeled estimated effectsα̂(i) will also be in increasing or-
der, but the relabeled true effectsα[i] may or may not be in increasing order.)
With this ordering,y(1)• to y(g)• is a stretch ofg means,y(1)• to y(g−1)• is a
stretch ofg − 1 means, andy(i)• to y(j)• is a stretch ofj − i + 1 means. In a
step-down procedure, all comparisons for stretches ofk means use the same
critical value, but we may use different critical values fordifferentk. This
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Listing 5.1: Minitab output for free amino acids in cheese.

Source DF SS MS F P ①
Trt 3 5.628 1.876 11.93 0.018

Error 4 0.629 0.157

Total 7 6.257

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ------+---------+---------+---------+

A 2 4.4300 0.4313 (------*-------)

A+B 2 6.3215 0.2355 (-------*-------)

B 2 5.3050 0.6223 (-------*-------)

control 2 4.1850 0.0141 (-------*-------)

------+---------+---------+---------+

Pooled StDev = 0.3965 4.0 5.0 6.0 7.0

Tukey’s pairwise comparisons ②
Family error rate = 0.100

Individual error rate = 0.0315

Critical value = 4.59

Intervals for (column level mean) - (row level mean)

A A+B B

A+B -3.1784

-0.6046

B -2.1619 -0.2704

0.4119 2.3034

control -1.0419 0.8496 -0.1669

1.5319 3.4234 2.4069

Fisher’s pairwise comparisons ③
Family error rate = 0.283

Individual error rate = 0.100

Critical value = 2.132

Intervals for (column level mean) - (row level mean)

A A+B B

A+B -2.7369

-1.0461

B -1.7204 0.1711

-0.0296 1.8619

control -0.6004 1.2911 0.2746

1.0904 2.9819 1.9654
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has the advantage that we can use larger critical values for long stretches and
smaller critical values for short stretches.

Begin with the most extreme pair(1) and(g). Test the null hypothesis
that all the means for(1) up through(g) are equal. If you fail to reject,
declare all means equal and stop. If you reject, declare(1) different from(g)(i) and (j) are

different if their
stretch and all
containing
stretches reject

and go on to the next step. At the next step, we consider the stretches(1)
through(g − 1) and(2) through(g). If one of these rejects, we declare its
ends to be different and then look at shorter stretches within it. If we fail to
reject for a stretch, we do not consider any substretches within the stretch.
We repeat this subdivision till there are no more rejections. In other words,
we declare that means(i) and(j) are different if the stretch from(i) to (j)
rejects its null hypothesis and all stretches containing(i) to (j) also reject
their null hypotheses.

The REGWR procedure is a step-down range method that controls the
strong familywise error rate without producing simultaneous confidence in-REGWR is

step-down with
Studentized
range based
critical values

tervals. The awkward name REGWR abbreviates the Ryan-Einot-Gabriel-
Welsch range test, named for the authors who worked on it. TheREGWR
critical value for testing a stretch of lengthk depends onE , ν, k, andg.
Specifically, we use

u = u(E , ν, k, g) = qE(k, ν)/
√

2 k = g, g − 1,

and

u = u(E , ν, k, g) = qkE/g(k, ν)/
√

2 k = g − 2, g − 3, . . ., 2.

This critical value derives from a Studentized range withk groups, and we
use percent points with smaller tail areas as we move in to smaller stretches.

As with the HSD, REGWR error rate control is approximate whenthe
sample sizes are not equal.

Example 5.6 Free amino acids in cheese, continued
Suppose that we only wished to control the strong familywiseerror rate in-
stead of producing simultaneous confidence intervals. Thenwe could use
REGWR instead of HSD and could potentially see additional significant dif-
ferences. Listing 5.2② gives SAS output for REGWR (called REGWQ in
SAS) for the amino acid data.

REGWR is a step-down method that begins like the HSD. Comparing C
and A&B, we conclude as in the HSD that they are different. We may now
compare C with B and A with A&B. These are comparisons that involve
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Listing 5.2: SAS output for free amino acids in cheese.

Student-Newman-Keuls test for variable: FAA ①

Alpha= 0.1 df= 4 MSE= 0.157224

Number of Means 2 3 4

Critical Range 0.84531 1.1146718 1.2859073

Means with the same letter are not significantly different.

SNK Grouping Mean N TRT

A 6.3215 2 4

B 5.3050 2 3

C 4.4300 2 2

C

C 4.1850 2 1

Ryan-Einot-Gabriel-Welsch Multiple Range Test for variable: FAA ②

Alpha= 0.1 df= 4 MSE= 0.157224

Number of Means 2 3 4

Critical Range 1.0908529 1.1146718 1.2859073

Means with the same letter are not significantly different.

REGWQ Grouping Mean N TRT

A 6.3215 2 4

A

B A 5.3050 2 3

B

B C 4.4300 2 2

C

C 4.1850 2 1

stretches ofk = 3 means; sincek = g − 1, we still useE as the error rate.
The significant difference for these comparisons is

qE(k, ν)√
2

√
MSE

√
1

ni
+

1

nj
=

q.1(3, 4)√
2

√
.1572

√
1

2
+

1

2
= 1.115 .
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Both the B-C and A&B-A differences (1.12 and 1.89) exceed this cutoff, so
REGWR concludes that B differs from C, and A differs from A&B.Recall
that the HSD did not distinguish C from B.

Having concluded that there are B-C and A&B-A differences, we can
now compare stretches of means within them, namely C to A, A toB, and
B to A&B. These are stretches ofk = 2 means, so for REGWR we use the
error ratekE/g = .05. The significant difference for these comparisons is

qE/2(k, ν)√
2

√
MSE

√
1

ni
+

1

nj
=

q.05(2, 4)√
2

√
.1572

√
1

2
+

1

2
= 1.101 .

None of the three differences exceeds this cutoff, so we failto conclude that
those treatments differ and finish. The underline diagram is:

C A B A&B
4.19 4.43 5.31 6.32

Note in Listing 5.2② that SAS displays pairwise comparisons using what
amounts to an underline diagram turned on its side, with vertical lines formed
by letters.

5.4.5 False discovery rate

The Student-Newman-Keuls (SNK) procedure is a step-down method that
uses the Studentized range test with critical valueSNK

u = u(E , ν, k, g) = qE(k, ν)/
√

2

for a stretch ofk means. This is similar to REGWR, except that we keep the
percent point of the Studentized range constant as we go to shorter stretches.
The SNK controls the false discovery rate, but not the strongfamilywise
error rate. As with the HSD, SNK error rate control is approximate when the
sample sizes are not equal.

Example 5.7 Free amino acids in cheese, continued

Suppose that we only wished to control the false discovery rate; now we
would use SNK instead of the more stringent HSD or REGWR. Listing 5.2
① gives SAS output for SNK for the amino acid data.

SNK is identical to REGWR in the first two stages, so SNK will also get
to the point of making the comparisons of the three pairs C to A, A to B, and
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B to A&B. However, the SNK significant difference for these pairs is less
than that used in REGWR:

qE(k, ν)√
2

√
MSE

√
1

ni
+

1

nj
=

q.1(2, 4)√
2

√
.1572

√
1

2
+

1

2
= .845 .

Both the B-A and A&B-B differences (1.02 and .98) exceed the cutoff, but
the A-C difference (.14) does not. The underline diagram forSNK is:

C A B A&B
4.19 4.43 5.31 6.32

5.4.6 Experimentwise error rate

The Analysis of Variance F-test for equality of means controls the experi-
mentwise error rate. Thus investigating pairwise differences only when the Protected LSD

uses F-test to
control

experimentwise
error rate

F-test has ap-value less thanE will control the experimentwise error rate.
This is the basis for the Protected least significant difference, or Protected
LSD. If the F-test rejects at levelE , then do simplet-tests at levelE among
the different treatments.

The critical values are from at-distribution:

u(E , ν) = tE/2,ν ,

leading to the significant difference

LSD = tE/2,ν

√
MSE

√
1/ni + 1/nj .

As usual,ν is the degrees of freedom forMSE, andtE/2,ν is the upperE/2
percent point of at-curve withν degrees of freedom.

Confidence intervals produced from the protected LSD do not have the
anticipated1 − E coverage rate, either individually or simultaneously. See
Section 5.7.

Free amino acids in cheese, continued Example 5.8

Finally, suppose that we only wish to control the experimentwise error rate.
Protected LSD will work here. Listing 5.1① shows that the ANOVA F-
test is significant at levelE , so we may proceed with pairwise comparisons.
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Listing 5.1③ shows Minitab output for the LSD (called Fisher’s pairwise
comparisons) as confidence intervals.

LSD uses the same significant difference for all pairs:

tE/2,ν

√
MSE

√
1

ni
+

1

nj
= t.05,4

√
.1572

√
1

2
+

1

2
= .845 .

This is the same as the SNK comparison for a stretch of length 2. All dif-
ferences except A-C exceed the cutoff, so the underline diagram for LSD
is:

C A B A&B
4.19 4.43 5.31 6.32

5.4.7 Comparisonwise error rate

Ordinaryt-tests and confidence intervals without any adjustment control the
comparisonwise error rate. In the context of pairwise comparisons, this isLSD
called the least significant difference (LSD) method.

The critical values are the same as for the protected LSD:

u(E , ν) = tE/2,ν ,

and
LSD = tE/2,ν

√
MSE

√
1/ni + 1/nj .

5.4.8 Pairwise testing reprise

It is easy to get overwhelmed by the abundance of methods, andthere are
still more that we haven’t discussed. Your anchor in all thisis your error rate.Choose your

error rate, not
your method

Once you have determined your error rate, the choice of method is reasonably
automatic, as summarized in Display 5.2. Your choice of error rate is deter-
mined by the needs of your study, bearing in mind that the morestringent
error rates have fewer false rejections, and also fewer correct rejections.

5.4.9 Pairwise comparisons methods that donot control combined
Type I error rates

There are many other pairwise comparisons methods beyond those already
mentioned. In this Section we discuss two methods that are motivated by
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Error rate Method

Simultaneous confidence
intervals

BSD or HSD

Strong familywise REGWR

False discovery rate SNK

Experimentwise Protected LSD

Comparisonwise LSD

Display 5.2: Summary of pairwise comparison methods.

completely different criteria than controlling a combinedType I error rate.
These two techniques donot control the experimentwise error rate or any of
the more stringent error rates, and you should not use them with the expecta-
tion that they do. You should only use them when the situationand assump-
tions under which they were developed are appropriate for your experimental
analysis.

Suppose that you believea priori that the overall null hypothesisH0 is
less and less likely to be true as the number of treatments increases. Then the Duncan’s multiple

range if there is a
cost per error or
you believe H0

less likely as g
increases

strength of evidence required to rejectH0 should decrease as the number of
groups increases. Alternatively, suppose that there is a quantifiable penalty
for each incorrect (pairwise comparison) decision we make,and that the total
loss for the overall test is the sum of the losses from the individual decisions.
Under either of these assumptions, the Duncan multiple range (given below)
or something like it is appropriate. Note by comparison thatthe procedures
that control combined Type I error rates require more evidence to rejectH0 as
the number of groups increases, while Duncan’s method requires less. Also,
a procedure that controls the experimentwise error rate hasa penalty of 1 if
there are any rejections whenH0 is true and a penalty of 0 otherwise; this is
very different from the summed loss that leads to Duncan’s multiple range.

Duncan’s multiple range (sometimes called Duncan’s test orDuncan’s
new multiple range) is a step-down Studentized range method. You specify Duncan’s Multiple

Rangea “protection level”E and proceed in step-down fashion using

u = u(E , ν, k, g) = q1−(1−E)k−1(k, ν)/
√

2
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for the critical values. Notice thatE is the comparisonwise error rate for
testing a stretch of length 2, and the experimentwise error rate will be1 −
(1 − E)g−1, which can be considerably more thanE . Thusfixing Duncan’sExperimentwise

error rate very
large for Duncan

protection level atE doesnot control the experimentwise error rate or any
more stringent rate. Do not use Duncan’s procedure if you are interested in
controlling any of the combined Type I error rates.

As a second alternative to combined Type I error rates, suppose that our
interest is in predicting future observations from the treatment groups, and
that we would like to have a prediction method that makes the averageMinimize

prediction error
instead of testing

squared prediction error small. One way to do this prediction is to first par-
tition the g treatments intop classes,1 ≤ p ≤ g; second, find the average
response in each of thesep classes; and third, predict a future observation
from a treatment by the observed mean response of the class for the treat-
ment. We thus look for partitions that will lead to good predictions.

One way to choose among the partitions is to use Mallows’ Cp statistic:

Cp =
SSRp

MSE
+ 2p − N ,

whereSSRp is the sum of squared errors for the Analysis of Variance, par-Predictive
Pairwise
Comparisons

titioning the data intop groups. Partitions with low values of Cp should give
better predictions.

This predictive approach makes no attempt to control any Type I error
rate; in fact, the Type I error rate is .15 or greater even forg = 2 groups! This
approach is useful when prediction is the goal, but can be quite misleading if
interpreted as a test ofH0.

5.4.10 Confident directions

In our heart of hearts, we often believe that all treatment means differ when
examined sufficiently precisely. Thus our concern with nullhypothesesH0ijAll means differ,

but their order is
uncertain

is misplaced. As an alternative, we can make statements ofdirection. After
having collected data, we considerµi andµj; assumeµi < µj. We could de-
cide from the data thatµi < µj , or thatµi > µj, or that we don’t know—that
is, we don’t have enough information to decide. These decisions correspond
in the testing paradigm to rejectingH0ij in favor of µi < µj, rejectingH0ijCan only make

an error in one
direction

in favor of µj < µi, and failing to rejectH0ij. In the confident directions
framework, only the decisionµi > µj is an error. See Tukey (1991).

Confident directionsprocedures are pairwise comparisons testing proce-
dures, but with results interpreted in a directional context. Confident direc-
tions procedures bound error rates when making statements about direction.
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If a testing procedure bounds an error rate atE , then the corresponding confi-
dent directions procedure bounds a confident directions error rate atE/2, the
factor of 2 arising because we cannot falsely reject in the correct direction.

Let us reinterpret our usual error rates in terms of directions. Suppose
that we use a pairwise comparisons procedure with error ratebounded atE . Pairwise

comparisons can
be used for

confident
directions

In a confident directions setting, we have the following:

Strong familywise The probability of making any incorrect state-
ments of direction is bounded byE/2.

FDR Incorrect statements of direction will on average
be no more than a fractionE/2 of the total number
of statements of direction.

Experimentwise The probability of making any incorrect state-
ments of direction when all the means are very
nearly equal is bounded byE/2.

Comparisonwise The probability of making an incorrect statement
of direction for a given comparison is bounded by
E/2.

There is no directional analog of simultaneous confidence intervals, so pro-
cedures that produce simultaneous intervals should be considered procedures
that control the strong familywise error rate (which they do).

5.5 Comparison with Control or the Best

There are some situations where we do not do all pairwise comparisons, but
rather make comparisons between a control and the other treatments, or the Comparison with

control does not
do all tests

best responding treatment (highest or lowest average) and the other treat-
ments. For example, you may be producing new standardized mathematics
tests for elementary school children, and you need to compare the new tests
with the current test to assure comparability of the results. The procedures
for comparing to a control or the best are similar.

5.5.1 Comparison with a control

Suppose that there is a special treatment, say treatmentg, with which we
wish to compare the otherg − 1 treatments. Typically, treatmentg is a con-
trol treatment. The Dunnett procedure allows us to construct simultaneous Two-sided

Dunnett1 − E confidence intervals onµi − µg, for i = 1, . . ., g − 1 when all sample
sizes are equal via
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yi − yg ± dE (g − 1, ν)
√

MSE

√
1

ni
+

1

ng
,

whereν is the degrees of freedom forMSE . The valuedE (g − 1, ν) is tab-
ulated in Appendix Table D.9. These table values are exact when all sample
sizes are equal and only approximate when the sizes are not equal.

For testing, we can use

u(E , i, j) = dE (g − 1, ν) ,

which controls the strong familywise error rate and leads toDSD, the Dunnett
significant
difference

DSD = dE(g − 1, ν)
√

MSE

√
1

ni
+

1

ng
,

the Dunnett significant difference. There is also a step-down modification
that still controls the strong familywise error rate and is slightly more pow-
erful. We haveg − 1 t-statistics. Compare the largest (in absolute value) to
dE (g − 1, ν). If the test fails to reject the null, stop; otherwise compare the
second largest todE (g − 2, ν) and so on.

There are also one-sided versions of the confidence and testing proce-
dures. For example, you might reject the null hypothesis of equality only ifOne-sided

Dunnett the noncontrol treatments provide a higher response than the control treat-
ments. For these, test using the critical value

u(E , i, j) = d′E (g − 1, ν) ,

tabulated in Appendix Table D.9, or form simultaneous one-sided confidence
intervals onµi − µg with

yi − yg ≥ d′E(g − 1, ν)
√

MSE

√
1

ni
+

1

ng
.

For t-critical values, a one-sided cutoff is equal to a two-sidedcutoff with a
doubled E . The same is not true for Dunnett critical values, so that
d′E (g − 1, ν) 6= d2E (g − 1, ν).
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Alfalfa meal and turkeys Example 5.9

An experiment is conducted to study the effect of alfalfa meal in the diet
of male turkey poults (chicks). There are nine treatments. Treatment 1 is a
control treatment; treatments 2 through 9 contain alfalfa meal of two different
types in differing proportions. Units consist of 72 pens of eight birds each, so
there are eight pens per treatment. One response of interestis average daily
weight gains per bird for birds aged 7 to 14 days. We would liketo know
which alfalfa treatments are significantly different from the control in weight
gain, and which are not.

Here are the average weight gains (g/day) for the nine treatments:

22.668 21.542 20.001 19.964 20.893
21.946 19.965 20.062 21.450

TheMSE is 2.487 with 55 degrees of freedom. (The observant student will
find this degrees of freedom curious; more on this data set later.) Two-sided,
95% confidence intervals for the differences between control and the other
treatments are computed using

dE(g − 1, ν)
√

MSE

√
1

ni
+

1

ng
= d.05(8, 55)

√
2.487

√
1

8
+

1

8

= 2.74 × 1.577/2

= 2.16 .

Any treatment with mean less than 2.16 from the control mean of 22.668 is
not significantly different from the control. These are treatments 2, 5, 6, and
9.

It is a good idea to give the control (treatmentg) greater replication than
the other treatments. The control is involved in every comparison, so it Give the control

more replicationmakes sense to estimate its mean more precisely. More specifically, if you
had a fixed number of units to spread among the treatments, andyou wished
to minimize the average variance of the differencesyg•−yi•, then you would
do best when the rationg/ni is about equal to

√
g − 1.

Personally, I rarely use the Dunnett procedure, because I nearly always
get the itch to compare the noncontrol treatments with each other as well as
with the control.
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5.5.2 Comparison with the best

Suppose that the goal of our experiment is to screen a number of treatments
and determine those that give the best response—to pick the winner. The
multiple comparisons with best (MCB) procedure produces two results:Use MCB to

choose best
subset of
treatments

• It produces a subset of treatments that cannot be distinguished from
the best; the treatment having the true largest mean response will be in
this subset with probability1 − E .

• It produces simultaneous1−E confidence intervals onµi−maxj 6=i µj,
the difference between a treatment mean and the best of the other treat-
ment means.

The subset selection procedure is the more useful product, so we only discuss
the selection procedure.

The best subset consists of all treatmentsi such that

yi• > yj• − d′E(g − 1, ν)
√

MSE

√
1

ni
+

1

nj
for all j 6= i

In words, treatmenti is in the best subset if its mean response is greater than
the largest treatment mean less a one-sided Dunnett allowance. When small
responses are good, a treatmenti is in the best subset if its mean response is
less than the smallest treatment mean plus a one-sided Dunnett allowance.

Example 5.10 Weed control in soybeans
Weeds reduce crop yields, so farmers are always looking for better ways to
control weeds. Fourteen weed control treatments were randomized to 56 ex-
perimental plots that were planted in soybeans. The plots were later visually
assessed for weed control, the fraction of the plot without weeds. The per-
cent responses are given in Table 5.3. We are interested in finding a subset of
treatments that contains the treatment giving the best weedcontrol (largest
response) with confidence 99%.

For reasons that will be explained in Chapter 6, we will analyze as our
response the square root of percent weeds (that is, 100 minusthe percent
weed control). Because we have subtracted weed control, small values of the
transformed response are good. On this scale, the fourteen treatment means
are

1.000 2.616 2.680 2.543 2.941 1.413 1.618
2.519 2.847 1.618 1.000 4.115 4.988 5.755
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Table 5.3:Percent weed control in soybeans under 14 treatments.

1 2 3 4 5 6 7

99 95 92 95 85 98 99
99 92 95 88 92 99 95
99 95 92 95 92 95 99
99 90 92 95 95 99 95

8 9 10 11 12 13 14

95 92 99 99 88 65 75
85 90 95 99 88 65 50
95 95 99 99 85 92 72
97 90 95 99 68 72 68

and theMSE is .547 with 42 degrees of freedom. The smallest treatment
mean is 1.000, and the Dunnett allowance is

d′E(g − 1, ν)
√

MSE

√
1

ni
+

1

nj
= d′.01(13, 42)

√
.547

√
1

4
+

1

4

= 3.29 × .740 × .707

= 1.72.

So, any treatment with a mean of1 + 1.72 = 2.72 or less is included in the
99% grouping. These are treatments 1, 2, 3, 4, 6, 7, 8, 10, and 11.

5.6 Reality Check on Coverage Rates

We already pointed out that the error rate control for some multiple com-
parisons procedures is only approximate if the sample sizesare not equal
or the tests are dependent. However, even in the “exact” situations, these
procedures depend on assumptions about the distribution ofthe data for the
coverage rates to hold: for example normality or constant error variance.
These assumptions are often violated—data are frequently nonnormal and
error variances are often nonconstant.

Violation of distributional assumptions usually leads to true error rates
that are not equal to the nominalE . The amount of discrepancy depends on
the nature of the violation. Unequal sample sizes or dependent tests are just
another variable to consider.
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The point is that we need to get some idea of what the true erroris, and
not get worked up about the fact that it is notexactlyequal toE .

In the real world, coverage and error rates are always approximate.

5.7 A Warning About Conditioning

Except for the protected LSD, the multiple comparisons procedures discussed
above do not require the ANOVA F-test to be significant for protection of the
experimentwise error rate. They stand apart from the F-test, protecting the
experimentwise error rate by other means. In fact, requiring that the ANOVA
F-test be significant will alter their error rates.

Bernhardson (1975) reported on how conditioning on the ANOVA F-test
being significant affected the per comparison and per experiment error ratesRequiring the

F-test to be
significant alters
the error rates of
pairwise
procedures

of pairwise comparisons, including LSD, HSD, SNK, Duncan’sprocedure,
and Scheffé. Requiring the F to be significant lowered the per comparison
error rate of the LSD from 5% to about 1% and lowered the per experiment
error rate for HSD from 5% to about 3%, both for 6 to 10 groups. Looking
just at those null cases where the F-test rejected, the LSD had a per compari-
son error rate of 20 to 30% and the HSD per experiment error rate was about
65%—both for 6 to 10 groups. Again looking at just the null cases where
the F was significant, even the Scheffé procedure’s per experiment error rate
increased to 49% for 4 groups, 22% for 6 groups, and down to about 6% for
10 groups.

The problem is that when the ANOVA F-test is significant in thenull
case, one cause might be an unusually low estimate of the error variance.
This unusually low variance estimate gets used in the multiple comparisons
procedures leading to smaller than normal HSD’s, and so on.

5.8 Some Controversy

Simultaneous inference is deciding which error rate to control and then using
an appropriate technique for that error rate. Controversy arises because

• Users cannot always agree on the appropriate error rate. In particular,
some statisticians (including Bayesian statisticians) argue strongly that
the only relevant error rate is the per comparison error rate.
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• Users cannot always agree on what constitutes the appropriate family
of tests. Different groupings of the tests lead to differentresults.

• Standard statistical practice seems to be inconsistent in its application
of multiple comparisons ideas. For example, multiple comparisons are
fairly common when comparing treatment means, but almost unheard
of when examining multiple factors in factorial designs (see Chap-
ter 8).

You as experimenter and data analyst must decide what is the proper ap-
proach for inference. See Carmer and Walker (1982) for an amusing allegory
on this topic.

5.9 Further Reading and Extensions

There is much more to the subject of multiple comparisons than what we
have discussed here. For example, many procedures for contrasts can be
adapted to other linear combinations of parameters, and many of the pairwise
comparisons techniques can be adapted to contrasts. A good place to start is
Miller (1981), an instant classic when it appeared and stillan excellent and
readable reference; much of the discussion here follows Miller. Hochberg
and Tamhane (1987) contains some of the more recent developments.

The first multiple comparisons technique appears to be the LSD sug-
gested by Fisher (1935). Curiously, the next proposal was the SNK (though
not so labeled) by Newman (1939). Multiple comparisons thenlay dormant
till around 1950, when there was an explosion of ideas: Duncan’s multiple
range procedure (Duncan 1955), Tukey’s HSD (Tukey 1952), Scheffé’s all
contrasts method (Scheffé 1953), Dunnett’s method (Dunnett 1955), and an-
other proposal for SNK (Keuls 1952). The pace of introduction then slowed
again. The REGW procedures appeared in 1960 and evolved through the
1970’s (Ryan 1960; Einot and Gabriel 1975; Welsch 1977). Improvements
in the Bonferroni inequality lead to the modified Bonferroniprocedures in
the 1970’s and later (Holm 1979; Simes 1986; Hochberg 1988; Benjamini
and Hochberg 1995).

Curiously, procedures sometimes predate a careful understanding of the
error rates they control. For example, SNK has often been advocated as a
less conservative alternative to the HSD, but the false discovery rate was
only defined recently (Benjamini and Hochberg 1995). Furthermore, many
textbook introductions to multiple comparisons procedures do not discuss the
different error rates, thus leading to considerable confusion over the choice
of procedure.
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One historical feature of multiple comparisons is the heavyreliance on
tables of critical values and the limitations imposed by having tables only
for selected percent points or equal sample sizes. Computers and software
remove many of these limitations. For example, the softwarein Lund and
Lund (1983) can be used to compute percent points of the Studentized range
for E ’s not usually tabulated, while the software in Dunnett (1989) can com-
pute critical values for the Dunnett test with unequal sample sizes. When no
software for exact computation is available (for example, Studentized range
for unequal sample sizes), percent points can be approximated through sim-
ulation (see, for example, Ripley 1987).

Hayter (1984) has shown that the Tukey-Kramer adjustment tothe HSD
procedure is conservative when the sample sizes are not equal.

5.10 Problems

We have five groups and three observations per group. The group meansExercise 5.1
are 6.5, 4.5, 5.7, 5.6, and 5.1, and the mean square for error is .75. Com-
pute simultaneous confidence intervals (95% level) for the differences of all
treatment pairs.

Consider a completely randomized design with five treatments, four unitsExercise 5.2
per treatment, and treatment means

3.2892 10.256 8.1157 8.1825 7.5622.

The MSE is 4.012.

(a) Construct an ANOVA table for this experiment and test thenull hy-
pothesis that all treatments have the same mean.

(b) Test the null hypothesis that the average response in treatments 1 and
2 is the same as the average response in treatments 3, 4, and 5.

(c) Use the HSD procedure to compare the means of the five treatments.

Refer to the data in Problem 3.1. Test the null hypothesis that all pairsExercise 5.3
of workers produce solder joints with the same average strength against the
alternative that some workers produce different average strengths. Control
the strong familywise error rate at .05.

Refer to the data in Exercise 3.1. Test the null hypothesis that all pairs ofExercise 5.4
diets produce the same average weight liver against the alternative that some
diets produce different average weights. Control the FDR at.05.
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Use the data from Exercise 3.3. Compute 95% simultaneous confidence Exercise 5.5
intervals for the differences in response between the the three treatment groups
(acid, pulp, and salt) and the control group.

Use the data from Problem 3.2. Use the Tukey procedure to makeall Problem 5.1
pairwise comparisons between the treatment groups. Summarize your results
with an underline diagram.

In an experiment with four groups, each with five observations, the group Problem 5.2
means are 12, 16, 21, and 19, and the MSE is 20. A colleague points out that
the contrast with coefficients -4, -2, 3, 3 has a rather large sum of squares.
No one knows to begin with why this contrast has a large sum of squares,
but after some detective work, you discover that the contrast coefficients are
roughly the same (except for the overall mean) as the time thesamples had
to wait in the lab before being analyzed (3, 5, 10, and 10 days). What is the
significance of this contrast?

Consider an experiment taste-testing six types of chocolate chip cookies: Problem 5.3
1 (brand A, chewy, expensive), 2 (brand A, crispy, expensive), 3 (brand B,
chewy, inexpensive), 4 (brand B, crispy, inexpensive), 5 (brand C, chewy,
expensive), 6 (brand D, crispy, inexpensive). We will use twenty different
raters randomly assigned to each type (120 total raters). I have constructed
five preplanned contrasts for these treatments, and I obtainp-values of .03,
.04, .23, .47, and .68 for these contrasts. Discuss how you would assess the
statistical significance of these contrasts, including what issues need to be
resolved.

In an experiment with five groups and 25 degrees of freedom forerror, for Question 5.1
what numbers of contrasts is the Bonferroni procedure more powerful than
the Scheffé procedure?
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Chapter 6

Checking Assumptions

We analyze experimental results by comparing the average responses in dif-
ferent treatment groups using an overall test based on ANOVAor more fo-
cussed procedures based on contrasts and pairwise comparisons. All of these
procedures are based on theassumptionthat our data follow the model

yij = µ + αi + ǫij ,

where theαi’s are fixed but unknown numbers and theǫij ’s are independent
normals with constant variance. We have done nothing to ensure that these
assumptions are reasonably accurate.

What we did was random assignment of treatments to units, followed by
measurement of the response. As discussed briefly in Chapter2, randomiza-
tion methods permit us to make inferences based solely on therandomization,
but these methods tend to be computationally tedious and difficult to extend. Accuracy of

inference
depends on

assumptions
being true

Model-based methods with distributional assumptions usually yield good ap-
proximations to the randomization inferences, provided that the model as-
sumptions are themselves reasonably accurate. If we apply the model-based
methods in situations where the model assumptions do not hold, the infer-
ences we obtain may be misleading. We thus need to look to the accuracy of
the model assumptions.

6.1 Assumptions

The three basic assumptions we need to check are that the errors are 1) in-
dependent, 2) normally distributed, and 3) have constant variance. Indepen-
dence is the most important of these assumptions, and also the most difficult
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to accommodate when it fails. We will not discuss accommodating depen-
dent errors in this book. For the kinds of models we have been using, nor-
mality is the least important assumption, particularly forlarge sample sizes;Independence,

constant
variance,
normality

see Chapter 11 for a different kind of model that is extremelydependent on
normality. Constant variance is intermediate, in that nonconstant variance
can have a substantial effect on our inferences, but nonconstant variance can
also be accommodated in many situations.

Note that the quality of our inference depends on how well theerrorsǫij

conform to our assumptions, but that we do not observe the errors ǫij . The
closest we can get to the errors arerij , the residuals from the full model. Thus
we must make decisions about how well the errors meet our assumptions
based not on the errors themselves, but instead on residual quantities that
we can observe. This unobservable nature of the errors can make diagnosis
difficult in some situations.

In any real-world data set, we are almost sure to have one or more of the
three assumptions be false. For example, real-world data are never exactly
normally distributed. Thus there is no profit in formal testing of our assump-
tions; we already know that they are not true. The good news isthat our
procedures can still give reasonable inferences when the departures from our
assumptions are not too large. This is calledrobustness of validity, whichRobustness of

validity means that our inferences are reasonably valid across a range of departures
from our assumptions. Thus the real question is whether the deviations from
our assumptions are sufficiently great to cause us to mistrust our inference.
At a minimum, we would like to know in what way to mistrust the inference
(for example, our confidence intervals are shorter than theyshould be), and
ideally we would like to be able to correct any problems.

The remaining sections of this chapter consider diagnostics and reme-
dies for failed model assumptions. To some extent, we are falling prey to
the syndrome of “When all you have is a hammer, the whole worldlooks
like a nail,” because we will go through a variety of maneuvers to make our
linear models with normally distributed errors applicableto many kinds of
data. There are other models and methods that we could use instead, in-
cluding generalized linear models, robust methods, randomization methods,Many other

methods exist and nonparametric rank-based methods. For certain kinds ofdata, some of
these alternative methods can be considerably more efficient (for example,
produce shorter confidence intervals with the same coverage) than the linear
models/normal distribution based methods used here, even when the normal
based methods are still reasonably valid. However, these alternative methods
are each another book in themselves, so we just mention them here and in
Section 6.7.
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6.2 Transformations

The primary tool for dealing with violations of assumptionsis a transforma-
tion, or reexpression, of the response. For example, we might analyze the
logarithm of the response. The idea is that the responses on the transformed
scale match our assumptions more closely, so that we can use standard meth-
ods on the transformed data. There are several schemes for choosing trans- Transformed data

may meet
assumptions

formations, some of which will be discussed below. For now, we note that
transformations often help, and discuss the effect that transformations have
on inference. The alternative to transformations is to develop specialized
methods that deal with the violated assumptions. These alternative methods
exist, but we will discuss only some of them. There is a tendency for these
alternative methods to proliferate as various more complicated designs and
analyses are considered.

The null hypothesis tested by an F-test is that all the treatment means
are equal. Together with the other assumptions we have aboutthe responses,
the null hypothesis implies that the distributions of the responses in all the
treatment groups are exactly the same. Because these distributions are the
same before transformation, they will be the same after transformation, pro- Transformations

don’t affect the
null

vided that we used the same transformation for all the data. Thus we may test
the null hypothesis of equal treatment means on any transformation scale that
makes our assumptions tenable. By the same argument, we may test pairwise
comparisons null hypotheses on any transformation scale.

Confidence intervals are more problematic. We construct confidence in-
tervals for means or linear combinations of means, such as contrasts. How-
ever, the center described by a mean depends on the scale in which the mean Transformations

affect meanswas computed. For example, the average of a data set is not equal to the
square of the average of the square roots of the data set. Thisimplies that
confidence intervals for means or contrasts of means computed on a trans-
formed scale do not back-transform into confidence intervals for the analo-
gous means or contrasts of means on the original scale.

A confidence interval for an individual treatmentmediancan be obtained
by back-transforming a confidence interval for the corresponding mean from Medians follow

transformationsthe scale where the data satisfy our assumptions. This worksbecause medi-
ans are preserved through monotone transformations. If we truly need con-
fidence intervals for differences of means on the original scale, then there is
little choice but to do the intervals on the original scale (perhaps using some
alternative procedure) and accept whatever inaccuracy results from violated
assumptions. Large-sample, approximate confidence intervals on the origi-
nal scale can sometimes be constructed from data on the transformed scale
by using the delta method (Oehlert 1992).
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The logarithm is something of a special case. Exponentiating a confi-
dence interval for thedifferenceof two means on the log scale leads to aSpecial rules for

logs confidence interval for theratio of the means on the original scale. We can
also construct an approximate confidence interval for a meanon the origi-
nal scale using data on the log scale. Land (1972) suggests the following:
let µ̂ andσ̂2 be estimates of the mean and variance on the log scale, and let
η̂2 = σ̂2/n + σ̂4/[2(n + 1)] wheren is the sample size. Then form a1 − ELand’s method
confidence interval for the mean on the original scale by computing

exp(µ̂ + σ̂2/2 ± zE/2 η̂) ,

wherezE/2 is the upperE/2 percent point of the standard normal.

6.3 Assessing Violations of Assumptions

Our assumptions of independent, normally distributed errors with constant
variance are not true for real-world data. However, our procedures may still
give us reasonably good inferences, provided that the departures from our
assumptions are not too great. Therefore weassessthe nature and degree to
which the assumptions are violated and take corrective measures if they areAssess — don’t

test needed. Thep-value of a formal test of some assumption does not by itself
tell us the nature and degree of violations, so formaltesting is of limited
utility. Graphical and numerical assessments are the way togo.

Our assessments of assumptions about the errors are based onresiduals.
The raw residualsrij are simply the differences between the datayij andAssessments

based on
residuals

the treatment meansyi•. In later chapters there will be more complicated
structures for the means, but the raw residuals are always the differences
between the data and the fitted value.

We sometimes modify the raw residuals to make them more interpretable
(see Cook and Weisberg 1982). For example, the variance of a raw residual is
σ2(1−Hij), so we might divide raw residuals by an estimate of their standard
error to put all the residuals on an equal footing. (See belowfor Hij.) This is
the internally Studentizedresidualsij, defined byInternally

Studentized
residual sij =

rij√
MSE(1 − Hij)

.

Internally Studentized residuals have a variance of approximately 1.
Alternatively, we might wish to get a sense of how far a data value is from

what would be predicted for it from all the other data. This istheexternally
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Studentizedresidualtij , defined by

tij = sij

(
N − g − 1

N − g − s2
ij

)1/2

,

wheresij in this formula is the internally Studentized residual. Theexter-
nally Studentized residual helps us determine whether a data point follows Externally

Studentized
residual

the pattern of the other data. When the data actually come from our assumed
model, the externally Studentized residualstij follow a t-distribution with
N − g − 1 degrees of freedom.

The quantityHij used in computingsij (and thustij) is called thelever-
ageand depends on the model being fit to the data and sample sizes;Hij is Leverage
1/ni for the separate treatment means model we are using now. Moststatis-
tical software will produce leverages and various kinds of residuals.

6.3.1 Assessing nonnormality

The normal probability plot (NPP), sometimes called a rankit plot, is a graph-
ical procedure for assessing normality. We plot the ordereddata on the verti-
cal axis against the ordered normal scores on the horizontalaxis. For assess- Normal

probability plot
(NPP)

ing the normality of residuals, we plot the ordered residuals on the vertical
axis. If you make an NPP of normally distributed data, you geta more or
less straight line. It won’t be perfectly straight due to sampling variability. If
you make an NPP of nonnormal data, the plot will tend to be curved, and the
shape of curvature tells you how the data depart from normality.

Normal scores are the expected values for the smallest, second smallest,
and so on, up to the largest data point in a sample that really came from Normal scores

and rankitsa normal distribution with mean 0 and variance 1. Therankit is a simple
approximation to the normal score. Theith rankit from a sample of sizen is
the(i − 3/8)/(n + 1/4) percent point of a standard normal.

In our diagnostic setting, we make a normal probability plotof the resid-
uals from fitting the full model; it generally matters littlewhether we use raw
or Studentized residuals. We then examine this plot for systematic deviation
from linearity, which would indicate nonnormality. Figure6.1 shows proto-
type normal probability plots for long and short tailed dataand data skewed
to the left and right. All sample sizes are 50.

It takes some practice to be able to look at an NPP and tell whether the
deviation from linearity is due to nonnormality or samplingvariability, and Practice!
even with practice there is considerable room for error. If you have software
that can produce NPP’s for data from different distributions and sample sizes,
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Figure 6.1: Rankit plots of nonnormal data, using S-Plus.

it is well worth your time to look at a bunch of plots to get a feel for how they
may vary.

Outliers are an extreme form of nonnormality. Roughly speaking, an
outlier is an observation “different” from the bulk of the data, where different
is usually taken to mean far away from or not following the pattern of theOutliers
bulk of the data. Outliers can show up on an NPP as isolated points in the
corners that lie off the pattern shown by the rest of the data.

We can use externally Studentized residuals to construct a formal outlier
test. Each externally Studentized residual is a test statistic for the null hy-
pothesis that the corresponding data value follows the pattern of the rest of
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Table 6.1: Rainfall in acre feet from 52 clouds.
Unseeded Seeded

1202.6 87.0 26.1 2745.6 274.7 115.3
830.1 81.2 24.4 1697.8 274.7 92.4
372.4 68.5 21.7 1656.0 255.0 40.6
345.5 47.3 17.3 978.0 242.5 32.7
321.2 41.1 11.5 703.4 200.7 31.4
244.3 36.6 4.9 489.1 198.6 17.5
163.0 29.0 4.9 430.0 129.6 7.7
147.8 28.6 1.0 334.1 119.0 4.1
95.0 26.3 302.8 118.3

the data, against an alternative that it has a different mean. Large absolute
values of the Studentized residual are compatible with the alternative, so we
reject the null and declare a given point to be an outlier if that point’s Stu-
dentized residual exceeds in absolute value the upperE/2 percent point of
a t-distribution withN − g − 1 degrees of freedom. To test all data values
(or equivalently, to test the maximum Studentized residual), make a Bonfer-
roni correction and test the maximum Studentized residual against the upper
E/(2N) percent point of at-distribution withN − g− 1 degrees of freedom.
This test can be fooled if there is more than one outlier.

Cloud seeding Example 6.1
Simpson, Olsen, and Eden (1975) provide data giving the rainfall in acre feet
of 52 clouds, 26 of which were chosen at random for seeding with silver
oxide. The problem is to determine if seeding has an effect and what size the
effect is (if present). Data are given in Table 6.1.

An analysis of variance yields an F of 3.99 with 1 and 50 degrees of
freedom.

Source DF SS MS F

Seeding 1 1.0003e+06 1.0003e+06 3.99
Error 50 1.2526e+07 2.5052e+05

This has ap-value of about .05, giving moderate evidence of a difference
between the treatments.

Figure 6.2 shows an NPP for the cloud seeding data residuals.The plot
is angled with the bend in the lower right corner, indicatingthat the residuals
are skewed to the right. This skewness is pretty evident if you make box-plots
of the data, or simply look at the data in Table 6.1.
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Figure 6.2: Normal probability plot for cloud seeding data,
using MacAnova.

Now compute the externally Studentized residuals. The largest (corre-
sponding to 2745.6) is 6.21, and is well beyond any reasonable cutoff for be-
ing an outlier. The next largest studentized residual is 2.71. If we remove the
outlier from the data set and reanalyze, we now find that the largest studen-
tized residual is 4.21, corresponding to 1697.5. This has a Bonferronip-value
of about .003 for the outlier test. This is an example ofmasking, where one
apparently outlying value can hide a second. If we remove this second outlier
and repeat the analysis, we now find that 1656 has a Studentized residual of
5.35, again an “outlier”. Still more data values will be indicated as outliers
as we pick them off one by one. The problem we have here is not somuch
that the data are mostly normal with a few outliers, but that the data do not
follow a normal distribution at all. The outlier test is based on normality, and
doesn’t work well for nonnormal data.

6.3.2 Assessing nonconstant variance

There are formal tests for equality of variance—do not use them!This is for
two reasons. First,p-values from such tests do not tell us what we need toDon’t test equality

of variances know: the amount of nonconstant variance that is present andhow it affects
our inferences. Second, classical tests of constant variance (such as Bartlett’s
test or Hartley’s test) areso incredibly sensitiveto nonnormality that their
inferences are worthless in practice.
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We will look for nonconstant variance that occurs when the responses
within a treatment group all have the same varianceσ2

i , but the variances Does variance
differ by

treatment?
differ between groups. We cannot distinguish nonconstant variance within a
treatment group from nonnormality of the errors.

We assess nonconstant variance by making a plot of the residualsrij (or
sij or tij) on the vertical axis against the fitted valuesyij − rij = yi• on the Residual plots

reveal
nonconstant

variance

horizontal axis. This plot will look like several vertical stripes of points, one
stripe for each treatment group. If the variance is constant, the vertical spread
in the stripes will be about the same. Nonconstant variance is revealed as a
pattern in the spread of the residuals. Note that groups withlarger sample
sizes will tend to have some residuals with slightly larger absolute values,
simply because the sample size is bigger. It is the overall pattern that we are
looking for.

The most common deviations from constant variance are thosewhere the
residual variation depends on the mean. Usually we see variances increas-
ing as the mean increases, but other patterns can occur. Whenthe variance Right-opening

megaphone is
most common

nonconstant
variance

increases with the mean, the residual plot has what is calleda right-opening
megaphone shape; it’s wider on the right than on the left. When the variance
decreases with the mean, the megaphone opens to the left. A third possi-
ble shape arises when the responses are proportions; proportions around .5
tend to have more variability than proportions near 0 or 1. Other shapes are
possible, but these are the most common.

If you absolutely must test equality of variances—for example if change
of variance is the treatment effect of interest—Conover, Johnson, and John-
son (1981) suggest a modified Levene test. Letyij be the data. First compute Levene test
ỹi, the median of the data in groupi; then computedij = |yij − ỹi|, the ab-
solute deviations from the group medians. Now treat thedij as data, and use
the ANOVA F-test to test the null hypothesis that the groups have the same
average value ofdij . This test for means of thedij is equivalent to a test for
the equality of standard deviations of the original datayij. The Levene test as
described here is a general test and is not tuned to look for specific kinds of
nonconstant variance, such as right-opening megaphones. Just as contrasts
and polynomial models are more focused than ANOVA, corresponding vari-
ants of ANOVA in the Levene test may be more sensitive to specific ways in
which constant variance can be violated.

Resin lifetimes, continued Example 6.2

In Example 3.2 we analyzed thelog10 lifetimes of an encapsulating resin
under different temperature stresses. What happens if we look at the lifetimes
on the original scale rather than the log scale? Figure 6.3 shows a residual
plot for these data on the original scale. A right-opening megaphone shape is
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Figure 6.3: Residuals versus predicted plot for resin lifetime data, using
Minitab.

clear, showing that the variability of the residuals increases with the response
mean. The Levene test for the null hypothesis of constant variance has a
p-value of about .07.

6.3.3 Assessing dependence

Serial dependenceor autocorrelationis one of the more common ways that
independence can fail. Serial dependence arises when results close in timeSerial

dependence tend to be too similar (positivedependence) or too dissimilar (negativede-
pendence). Positive dependence is far more common. Serial dependence
could result from a “drift” in the measuring instruments, a change in skill of
the experimenter, changing environmental conditions, andso on. If there is
no idea of time order for the units, then there can be no serialdependence.

A graphical method for detecting serial dependence is to plot the resid-
uals on the vertical axis versus time sequence on the horizontal axis. TheIndex plot to

detect serial
dependence

plot is sometimes called anindex plot(that is, residuals-against-time index).
Index plots give a visual impression of whether neighbors are too close to-
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Table 6.2: Temperature differences in degrees Celsius between
two thermocouples for 64 consecutive readings, time order
along rows.

3.19 3.15 3.13 3.14 3.14 3.13 3.13 3.11
3.16 3.17 3.17 3.14 3.14 3.14 3.15 3.15
3.14 3.15 3.12 3.05 3.12 3.16 3.15 3.17
3.15 3.16 3.15 3.16 3.15 3.15 3.14 3.14
3.14 3.15 3.13 3.12 3.15 3.17 3.16 3.15
3.13 3.13 3.15 3.15 3.05 3.16 3.15 3.18
3.15 3.15 3.17 3.17 3.14 3.13 3.10 3.14
3.07 3.13 3.13 3.12 3.14 3.15 3.14 3.14

gether (positive dependence), or too far apart (negative dependence). Positive
dependence appears as drifting patterns across the plot, while negatively de-
pendent data have residuals that center at zero and rapidly alternate positive
and negative.

The Durbin-Watson statistic is a simple numerical method for checking
serial dependence. Letrk be the residuals sorted into time order. Then the Durbin-Watson

statistic to detect
serial

dependence

Durbin-Watson statistic is:

DW =

∑n−1
k=1(rk − rk+1)

2

∑n
k=1 r2

k

.

If there is no serial correlation, the DW should be about 2, give or take sam-
pling variation. Positive serial correlation will make DW less than 2, and
negative serial correlation will make DW more than 2. As a rough rule, se-
rial correlations corresponding to DW outside the range 1.5to 2.5 are large
enough to have a noticeable effect on our inference techniques. Note that DW
itself is random and may be outside the range 1.5 to 2.5, even if the errors are
uncorrelated. For data sets with long runs of units from the same treatment,
the variance of DW is a bit less than 4/N .

Temperature differences Example 6.3
Christensen and Blackwood (1993) provide data from five thermocouples
that were inserted into a high-temperature furnace to ascertain their relative
bias. Sixty-four temperature readings were taken using each thermocouple,
with the readings taken simultaneously from the five devices. Table 6.2 gives
the differences between thermocouples 3 and 5.

We can estimate the relative bias by the average of the observed differ-
ences. Figure 6.4 shows the residuals (deviations from the mean) plotted in
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Figure 6.4: Deviations from the mean for paired differences of 64
readings from two thermocouples, using MacAnova.

time order. There is a tendency for positive and negative residuals to cluster
in time, indicating positive autocorrelation. The Durbin-Watson statistic for
these data is 1.5, indicating that the autocorrelation may be strong enough to
affect our inferences.

Spatial association,another common form of dependence, arises when
units are distributed in space and neighboring units have responses moreSpatial

association similar than distant units. For example, spatial association might occur in
an agronomy experiment when neighboring plots tend to have similar fertil-
ity, but distant plots could have differing fertilities.

One method for diagnosing spatial association is thevariogram. We
make a plot with a point for every pair of units. The plotting coordinates
for a pair are the distance between the pair (horizontal axis) and the squaredVariogram to

detect spatial
association

difference between their residuals (vertical axis). If there is a pattern in this
figure—for example, the points in the variogram tend to increase with in-
creasing distance—then we have spatial association.

This plot can look pretty messy, so we usually do some averaging. Let
Dmax be the maximum distance between a pair of units. Choose some num-Plot binned

averages in
variogram

ber of binsK, say 10 or 15, and then divide the distance values intoK
groups: those from 0 toDmax/K, Dmax/K up to 2Dmax/K, and so on.
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Figure 6.5: Horizontal (x) and vertical (y) locations of good (1)
and bad (0) integrated circuits on a wafer

Now plot the average of the squared difference in residuals for each group of
pairs. This plot should be roughly flat for data with no spatial association; it
will usually have small average squared differences for small distances when
there is spatial association.

Defective integrated circuits on a wafer Example 6.4
Taam and Hamada (1993) provide an example from the manufacture of inte-
grated circuit chips. Many IC chips are made on a single silicon wafer, from
which the individual ICs are cut after manufacture. Figure 6.5 (Taam and
Hamada’s Figure 1) shows the location of good (1) and bad (0) chips on a
single wafer.

Describe the location of each chip by itsx (1 to 9) andy (1 to 8) coor-
dinates, and compute distances between pairs of chips usingthe usual Eu-
clidean distance. Bin the pairs into those with distances from 1 to 2, 2 to 3,
and so on. Figure 6.6 shows the variogram with this binning. We see that
chips close together, and also chips far apart, tend to be more similar than
those at intermediate distances. The similarity close together arises because
the good chips are clustered together on the wafer. The similarity at large
distances arises because almost all the edge chips are bad, and the only way
to get a pair with a large distance is for them to cross the chipcompletely.
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Figure 6.6: Variogram for chips on a wafer.

6.4 Fixing Problems

When our assessments indicate that our data do not meet our assumptions,
we must either modify the data so that they do meet the assumptions, or
modify our methods so that the assumptions are less important. We will give
examples of both strategies.

6.4.1 Accommodating nonnormality

Nonnormality, particularly asymmetry, can sometimes be lessened by trans-
forming the response to a different scale. Skewness to the right is lessenedTransformations

to improve
normality

by a square root, logarithm, or other transformation to a power less than one,
while skewness to the left is lessened by a square, cube, or other transforma-
tion to a power greater than one. Symmetric long tails do not easily yield to
a transformation. Robust and rank-based methods can also beused in cases
of nonnormality.

Individual outliers can affect our analysis. It is often useful to perform
the analysis both with the full data set and with outliers excluded. If yourTry analysis with

and without
outliers

conclusions change when the outliers are excluded, then youmust be fairly
careful in interpreting the results, because the results depend rather delicately
on a few outlier data values. Some outliers are truly “bad” data, and their
extremity draws our attention to them. For example, we may have miscopied
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Figure 6.7: Normal probability plot for log-transformed cloud
seeding data, using MacAnova.

the data so that 17.4 becomes 71.4, an outlier; or perhaps Joesneezed in a test
tube, and the yield on that run was less than satisfactory. However, outliers
need not be bad data points; in fact, they may be the most interesting and Outliers can be

interesting datainformative data points in the whole data set. They just don’t fit the model,
which probably means that the model is wrong.

Cloud seeding, continued Example 6.5
The cloud seeding data introduced in Example 6.1 showed considerable skew-
ness to the right. Thus a square root or logarithm should helpmake things
look more normal. Here is an Analysis of Variance for the dataon the loga-
rithmic scale.

Source DF SS MS F

Seeding 1 17.007 17.007 6.47382
Error 50 131.35 2.6271

Figure 6.7 shows an NPP for the logged cloudseeding data residuals. This
plot is much straighter than the NPP for the natural scale residuals, indicating
that the error distribution is more nearly normal. Thep-value for the test on
the log scale is .014; the change is due more to stabilizing variance (see
Section 6.5.2) than improved normality.
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Since the cloud seeding data arose from a randomized experiment, we
could use a randomization test on the difference of the meansof the seeded
and unseeded cloud rainfalls. There are almost5 × 1014 different possi-
ble randomizations, so it is necessary to take a random subsample of them
when computing the randomizationp-value. The two-sided randomization
p-values using data on the original and log scales are .047 and.014 respec-
tively. Comparing these with the correspondingp-values from the ANOVAs
(.051 and .014), we see that they agree pretty well, but are closer on the log
scale. We also note that the randomization inferences depend on scale as
well. We used the same test statistic (difference of means) on both scales, but
the difference of means on the log scale is the ratio of geometric means on
the original scale.

We also wish to estimate the effect of seeding. On the log scale, a 95%
confidence interval for the difference between seeded and unseeded is (.24,
2.05). This converts to a confidence interval on the ratio of the means of
(1.27, 7.76) by back-exponentiating. A 95% confidence interval for the mean
of the seeded cloud rainfalls, based on the original data andusing at-interval,
is (179.1, 704.8); this interval is symmetric around the sample mean 442.0.
Using Land’s method for log-normal data, we get (247.2, 1612.2); this inter-
val is not symmetric around the sample mean and reflects the asymmetry in
log-normal data.

6.4.2 Accommodating nonconstant variance

The usual way to fix nonconstant error variances is by transformation of the
response. For some distributions, there are standard transformations that
equalize or stabilize the variance. In other distributions, we use a more ad
hoc approach. We can also use some alternative methods instead of the usual
ANOVA.

Transformations of the response

There is a general theory of variance-stabilizing transformations that applies
to distributions where the variance depends on the mean. Forexample, Bino-
mial(1,p) data have a mean ofp and a variance ofp(1−p). This method uses
the relationship between the mean and the variance to construct a transfor-
mation such that the variance of the data after transformation is constant andVariance-

stabilizing
transformations

no longer depends on the mean. (See Bishop, Fienberg, and Holland 1975.)
These transformations generally work better when the sample size is large
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Table 6.3: Variance-stabilizing transformations.

Distribution Transformation New variance

Binomial proportions
X ∼ Bin(n, p)
p̂ = X/n
Var(p̂) = p(1 − p)/n

arcsin(
√

p̂) 1/(4n)

Poisson
X ∼ Poisson(λ)
Var(X) = E(X) = λ

√
X 1

4

Correlation coefficient
(ui, vi), i = 1, . . . , n are
independent, bivariate normal
pairs with correlationρ and
sample correlation̂ρ

1
2 log

(
1+ρ̂
1−ρ̂

)
1

(or the mean is large relative to the standard deviation); modifications may
be needed otherwise.

Table 6.3 lists a few distributions with their variance-stabilizing transfor-
mations. Binomial proportions model the fraction of success in some number
of trials. If all proportions are between about .2 and .8, then the variance is
fairly constant and the transformation gives little improvement. The Poisson
distribution is often used to model counts; for example, thenumber of bacte-
ria in a volume of solution or the number of asbestos particles in a volume of
air.

Artificial insemination in chickens Example 6.6

Tajima (1987) describes an experiment examining the effectof a freeze-thaw
cycle on the potency of semen used for artificial insemination in chickens.
Four semen mixtures are prepared. Each mixture consists of equal volumes
of semen from Rhode Island Red and White Leghorn roosters. Mixture 1
has both varieties fresh, mixture 4 has both varieties frozen, and mixtures 2
and 3 each have one variety fresh and the other frozen. Sixteen batches of
Rhode Island Red hens are inseminated with the mixtures, using a balanced
completely randomized design. The response is the fractionof chicks from
each batch that have white feathers (white feathers indicate a White Leghorn
father).

It is natural to model these fractions as binomial proportions. Each chick
in a given treatment group has the same probability of havinga White Leg-
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horn father, though this probability may vary between groups due to the
freeze-thaw treatments. Thus the total number of chicks with white feath-
ers in a given batch should have a binomial distribution, andthe fraction of
chicks is a binomial proportion. The observed proportions ranged from .19
to .95, so the arcsine square root transformation is a good bet to stabilize the
variability.

When we don’t have a distribution with a known variance-stabilizing
transformation (and we generally don’t), then we usually try a power fam-Power family

transformations ily transformation. The power family of transformations includes

y → sign(λ)yλ

and
y → log(y) ,

where sign(λ) is +1 for positiveλ and –1 for negativeλ. The log function
corresponds toλ equal to zero. We multiply by the sign ofλ so that the order
of the responses is preserved whenλ is negative.

Power family transformations are not likely to have much effect unless
the ratio of the largest to smallest value is bigger than 4 or so. Furthermore,Need positive

data with
max/min fairly
large

power family transformations only make sense when the data are all positive.
When we have data with both signs, we can add a constant to all the data to
make them positive before transforming. Different constants added lead to
different transformations.

Here is a simple method for finding an approximate variance-stabilizing
transformation powerλ. Compute the mean and standard deviation for the
data in each treatment group. Regress the logarithms of the standard devi-Regression

method for
choosing λ

ations on the logarithms of the group means; letβ̂ be the estimated regres-
sion slope. Then the estimated variance stabilizing power transformation is
λ = 1 − β̂. If there is no relationship between mean and standard deviation
(β̂ = 0), then the estimated transformation is the power 1, which doesn’t
change the data. If the standard deviation increases proportionally to the
mean (̂β = 1), then the log transformation (power 0) is appropriate for vari-
ance stabilization.

The Box-Cox method for determining a transformation power is some-
what more complicated than the simple regression-based estimate, but itBox-Cox

transformations tends to find a better power and also yields a confidence interval for λ. Fur-
thermore, Box-Cox can be used on more complicated designs where the sim-
ple method is difficult to adapt. Box-Cox transformations rescale the power
family transformation to make the different powers easier to compare. Leṫy
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denote the geometric mean of all the responses, where the geometric mean is
the product of all the responses raised to the 1/N power:

ẏ =




g∏

i=1

ni∏

j=1

yij




1/N

.

The Box-Cox transformations are then

y(λ) =





yλ − 1

λẏλ−1
λ 6= 0

ẏ log(y) λ = 0

.

In the Box-Cox technique, we transform the data using a rangeof λ val-
ues from, say, -2 to 3, and do the ANOVA for each of these transformations.
From these we can getSSE(λ), the sum of squared errors as a function of the
transformation powerλ. The best transformation powerλ⋆ is the power that Use best

convenient powerminimizesSSE(λ). We generally use a convenient transformation powerλ
close toλ⋆, where by convenient I mean a “pretty” power, like .5 or 0, rather
than the actual minimizing power which might be something like .427.

The Box-Cox minimizing powerλ⋆ will rarely be exactly 1; when should
you actually use a transformation? A graphical answer is obtained by making
the suggested transformation and seeing if the residual plot looks better. If
there was little change in the variances or the group variances were not that
different to start with, then there is little to be gained by making the transfor-
mation. A more formal answer can be obtained by computing an approximate Confidence

interval for λ1 − E confidence interval for the transformation powerλ. This confidence
interval consists of all powersλ such that

SSE(λ) ≤ SSE(λ⋆)(1 +
FE,1,ν

ν
) ,

whereν is the degrees of freedom for error. Very crudely, if the transforma-
tion doesn’t decrease the error sum of squares by a factor of at leastν/(ν+4),
thenλ = 1 is in the confidence interval, and a transformation may not be
needed. When I decide whether a transformation is indicated, I tend to rely
mostly on a visual judgement of whether the residuals improve after trans-
formation, and secondarily on the confidence interval.



130 Checking Assumptions

1500

2000

2500

3000

3500

4000

4500

-1 -0.5 0 0.5 1 1.5
Power

S
S

Figure 6.8: Box-Cox error SS versus transformation power for resin
lifetime data.

Example 6.7 Resin lifetimes, continued
The resin lifetime data on the original scale show considerable nonconstant
variance. The treatment means and variances are

1 2 3 4 5

Mean 86.42 43.56 24.52 15.72 11.87
Variance 169.75 91.45 41.07 3.00 13.69

If we regress the log standard deviations on the log means, weget a slope of
.86 for an estimated transformation power of .14; we would probably use a
log (power 0) or quarter power since they are near the estimated power.

We can use Box-Cox to suggest an appropriate transformation. Fig-
ure 6.8 showsSSE(λ) plotted against transformation power for powers be-
tween−1 and 1.5; the minimum appears to be about 1270 near a power
of .25. The logarithm does nearly as well as the quarter power(SSE(0) is
nearly as small asSSE(.25)), and the log is easier to work with, so we will
use the log transformation. As a check, the 95% confidence interval for the
transformation power includes all powers with Box-Cox error SS less than
1270(1+F.05,1,32/32) = 1436. The horizontal line on the plot is at this level;
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Figure 6.9: Residuals versus predicted plot for resin log lifetime data,
using Minitab.

the log has anSSE well below the line, and the original scale has anSSE

well above the line, suggesting that the logarithm is the wayto go. Figure 6.9
shows the improvement in residuals versus fitted values after transformation.
There is no longer as strong a tendency for the residuals to belarger when
the mean is larger.

Alternative methods

Dealing with nonconstant variance has provided gainful employment to statis-
ticians for many years, so there are a number of alternative methods to con-
sider. The simplest situation may be when the ratio of the variances in the
different groups is known. For example, suppose that the response for each
unit in treatments 1 and 2 is the average from five measurementunits, and
the response for each unit in treatments 3 and 4 is the averagefrom seven Weighted ANOVA

when ratio of
variances is

known

measurement units. If the variance among measurement unitsis the same,
then the variance between experimental units in treatments3 and 4 would
be 5/7 the size of the variance between experimental units intreatments 1
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and 2 (assuming no other sources of variation), simply due todifferent num-
bers of values in each average. Situations such as this can behandled using
weighted ANOVA, where each unit receives a weight proportional to the num-
ber of measurement units used in its average. Most statistical packages can
handle weighted ANOVA.

For pairwise comparisons, the Welch procedure is quite attractive. This
procedure is sometimes called the “unpooled”t-test. Lets2

i denote the sam-Welch’s t for
pairwise
comparisons with
unequal variance

ple variance in treatmenti. Then the Welch test statistic for testingµi = µj

is

tij =
yi• − yj•√

s2
i /ni + s2

j/nj

.

This test statistic is compared to a Student’st distribution with

ν = (s2
i /ni + s2

j/nj)
2/

(
1

ni − 1

s4
i

n2
i

+
1

nj − 1

s4
j

n2
j

)

degrees of freedom. For a confidence interval, we compute

tij = yi• − yj• ± tE/2,ν

√
s2
i /ni + s2

j/nj ,

with ν computed in the same way. More generally, for a contrast we use

t =

∑g
i wi yi•√∑g
i w2

i s
2
i /ni

with approximate degrees of freedom

ν = (
g∑

i=1

w2
i s

2
i /ni)

2/

( g∑

i=1

1

ni − 1

w4
i s

4
i

n2
i

)
.

Confidence intervals are computed in an analogous way.

The Welch procedure generally gives observed error rates close to the
nominal error rates. Furthermore, the accuracy improves quickly as the sam-
ple sizes increase, something that cannot be said for thet and F-tests underWelch’s t works

well nonconstant variance. Better still, there is almost no lossin power for using
the Welch procedure, even when the variances are equal. For simple com-
parisons, the Welch procedure can be used routinely. The problem arises in
generalizing it to more complicated situations.
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The next most complicated procedure is an ANOVA alternativefor non-
constant variance. The Brown-Forsythe method is much less sensitive to
nonconstant variance than is the usual ANOVA F test. Again let s2

i denote Brown-Forsythe
modified Fthe sample variance in treatmenti, and letdi = s2

i (1 − ni/N). The Brown-
Forsythe modified F-test is

BF =

∑g
i=1 ni(yi• − y••)

2

∑g
i=1 s2

i (1 − ni/N)
.

Under the null hypothesis of equal treatment means, BF is approximately
distributed as F withg − 1 andν degrees of freedom, where

ν =
(
∑

i di)
2

∑
i d

2
i /(ni − 1)

.

Resin lifetimes, continued Example 6.8
Suppose that we needed confidence intervals for the difference in means be-
tween the pairs of temperatures on the original scale for theresin lifetime
data. If we use the usual method and ignore the nonconstant variance, then
pairwise differences have an estimated standard deviationof

√
68.82(1/ni + 1/nj) ;

these range from 4.14 to 4.61, depending on sample sizes, andall would
use 35 degrees of freedom. Using the Welch procedure, we get standard
deviations for pairwise differences ranging from 5.71 (treatments 1 and 2) to
1.65 (treatments 4 and 5), with degrees of freedom ranging from 6.8 to 12.8.
Thus the comparisons using the usual method are much too short for pairs
such as 1 and 2, and much too long for pairs such as 4 and 5.

Consider now testing the null hypothesis that all groups have the same
mean on the original scale. The F ratio from ANOVA is 101.8, with 4 and 32
degrees of freedom. The Brown-Forsythe F is 111.7, with 4 and18.3 degrees
of freedom. Both clearly reject the null hypothesis.

6.4.3 Accommodating dependence

There are no simple methods for dealing with dependence in data. Time se-
ries analysis and spatial statistics can be used to model data with dependence,
but these methods are considerably beyond the scope of this book.
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6.5 Effects of Incorrect Assumptions

Our methods work as advertised when the data meet our assumptions. Some
violations of the assumptions have little effect on the quality of our infer-
ence, but others can cause almost catastrophic failure. This section gives an
overview of how failed assumptions affect inference.

6.5.1 Effects of nonnormality

Before describing the effects of nonnormality, we need someway to quan-
tify the degree to which a distribution is nonnormal. For this we will use
theskewnessandkurtosis, which measure asymmetry and tail length respec-
tively. The skewnessγ1 and kurtosisγ2 deal with third and fourth powers of
the data:

γ1 =
E[(X − µ)3]

σ3
and γ2 =

E[(X − µ)4]

σ4
− 3.

For a normal distribution, both the skewness and kurtosis are 0. DistributionsSkewness
measures
asymmetry

with a longer right tail have positive skewness, while distributions with a
longer left tail have negative skewness. Symmetric distributions, like the
normal, have zero skewness. Distributions with longer tails than the normal
(more outlier prone) have positive kurtosis, and those withshorter tails thanKurtosis

measures tail
length

the normal (less outlier prone) have negative kurtosis. The“-3” in the defi-
nition of kurtosis is there to make the normal distribution have zero kurtosis.
Note that neither skewness nor kurtosis depends on locationor scale.

Table 6.4 lists the skewness and kurtosis for several distributions, giving
you an idea of some plausible values. We could estimate the skewness and
kurtosis for the residuals in our analysis, but these valuesare of limited di-
agnostic value, as sample estimates of skewness and kurtosis are notoriously
variable.

For our discussion of nonnormal data, we will assume that thedistribu-
tion of responses in each treatment group is the same apart from different
means, but we will allow this common distribution to be nonnormal instead
of requiring it to be normal. Our usual point estimates of group means and
the common variance (yi• andMSE respectively) are still unbiased.

The nominalp-values for F-tests are only slightly affected by moder-
ate nonnormality of the errors. For balanced data sets (where all treatmentLong tails

conservative for
balanced data

groups have the same sample size), long tails tend to make theF-tests conser-
vative; that is, the nominalp-value is usually a bit larger than it should be; so
we reject the null too rarely. Again for balanced data, shorttails will tend to
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Table 6.4: Skewness and kurtosis for
selected distributions.
Distribution γ1 γ2

Normal 0 0

Uniform 0 −1.2

Normal truncated at
±1 0 −1.06
±2 0 −0.63

Student’s t (df)
5 0 6
6 0 3
8 0 1.5
20 0 .38

Chi-square (df)
1 2.83 12
2 2 6
4 1.41 3
8 1 1.5

make the F-tests liberal; that is, the nominalp-value is usually a bit smaller
than it should be, so that we reject the null too frequently. Asymmetry gener- Short tails liberal

for balanced dataally has a smaller effect than tail length onp-values. Unbalanced data sets are
less predictable and can be less affected by nonnormality than balanced data
sets, or even affected in the opposite direction. The effectof nonnormality
decreases quickly with sample size. Table 6.5 gives the trueType I error rate
of a nominal 5% F-test for various combinations of sample size, skewness,
and kurtosis.

The situation is not quite so good for confidence intervals, with skewness
generally having a larger effect than kurtosis. When the data are normal, Skewness affects

confidence
intervals

two-sidedt-confidence intervals have the correct coverage, and the errors
are evenly split high and low. When the data are from a distribution with
nonzero skewness, two-sidedt-confidence intervals still have approximately
the correct coverage, but the errors tend to be to one side or the other, rather
than split evenly high and low. One-sided confidence intervals for a mean
can be seriously in error. The skewness for a contrast is lessthan that for a
single mean, so the errors will be more evenly split. In fact,for a pairwise
comparison when the sample sizes are equal, skewness essentially cancels
out, and confidence intervals behave much as for normal data.
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Table 6.5: Actual Type I error rates for ANOVA F-test with nominal 5%
error rate for various sample sizes and values ofγ1 andγ2 using the
methods of Gayen (1950).

Four Samples of Size 5

γ2

γ1 -1 -.5 0 .5 1 1.5 2

0 .0527 .0514 .0500 .0486 .0473 .0459 .0446
.5 .0530 .0516 .0503 .0489 .0476 .0462 .0448
1 .0538 .0524 .0511 .0497 .0484 .0470 .0457
1.5 .0552 .0538 .0525 .0511 .0497 .0484 .0470

γ1 = 0 andγ2 = 1.5

4 groups ofk k groups of 5 (k1, k1, k2, k2)

k Error k Error k1, k2 Error

2 .0427 4 .0459 10,10 .0480
10 .0480 8 .0474 8,12 .0483
20 .0490 16 .0485 5,15 .0500
40 .0495 32 .0492 2,18 .0588

Individual outliers can so influence both treatment means and the mean
square for error that the entire inference can change if repeated excluding the
outlier. It may be useful here to distinguish between robustness (of validity)Outliers,

robustness,
resistance

and resistance (to outliers). Robustness of validity meansthat our procedures
give us inferences that are still approximately correct, even when some of our
assumptions (such as normality) are incorrect. Thus we say that the ANOVA
F-test is robust, because a nominal 5% F-test still rejects the null in about
5% of all samples when the null is true, even when the data are somewhat
nonnormal. A procedure is resistant when it is not overwhelmed by one or a
few individual data values. Our linear models methods are somewhat robust,
but they are not resistant to outliers.

6.5.2 Effects of nonconstant variance

When there areg = 2 groups and the sample sizes are equal, the Type I error
rate of the F-test is very insensitive to nonconstant variance. When there areNonconstant

variance affects
F-test p-values

more than two groups or the sample sizes are not equal, the deviation from
nominal Type I error rate is noticeable and can in fact be quite large. The
basic facts are as follows:
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Table 6.6: Approximate Type I error rateE for nominal 5%
ANOVA F-test when the error variance is not constant.
g σ2

i ni E
3 1, 1, 1 5, 5, 5 .05

1, 2, 3 5, 5, 5 .0579
1, 2, 5 5, 5, 5 .0685
1, 2, 10 5, 5, 5 .0864
1, 1, 10 5, 5, 5 .0954
1, 1, 10 50, 50, 50 .0748

3 1, 2, 5 2, 5, 8 .0202
1, 2, 5 8, 5, 2 .1833
1, 2, 10 2, 5, 8 .0178
1, 2, 10 8, 5, 2 .2831
1, 2, 10 20, 50, 80 .0116
1, 2, 10 80, 50, 20 .2384

5 1, 2, 2, 2, 5 5, 5, 5, 5, 5 .0682
1, 2, 2, 2, 5 2, 2, 5, 8, 8 .0292
1, 2, 2, 2, 5 8, 8, 5, 2, 2 .1453
1, 1, 1, 1, 5 5, 5, 5, 5, 5 .0908
1, 1, 1, 1, 5 2, 2, 5, 8, 8 .0347
1, 1, 1, 1, 5 8, 8, 5, 2, 2 .2029

1. If all the ni’s are equal, then the effect of unequal variances on the
p-value of the F-test is relatively small.

2. If big ni’s go with big variances, then the nominalp-value will be
bigger than the truep-value (we overestimate the variance and get a
conservative test).

3. If big ni’s go with small variances, then the nominalp-value will be
less than the truep-value (we underestimate the variance and get a
liberal test).

We can be more quantitative by using an approximation given in Box
(1954). Table 6.6 gives the approximate Type I error rates for the usual F
test when error variance is not constant. Clearly, nonconstant variance can
dramatically affect our inference. These examples show (approximate) true
type I error rates ranging from under .02 to almost .3; these are deviations
from the nominal .05 that cannot be ignored.

Our usual form of confidence intervals uses theMSE as an estimate of
error. When the error variance is not constant, theMSE will overestimate
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the error for contrasts between groups with small errors andunderestimateNonconstant
variance affects
confidence
intervals

the error for contrasts between groups with large errors. Thus our confidence
intervals will be too long when comparing groups with small errors and too
short when comparing groups with large errors. The intervals that are too
long will have coverage greater than the nominal1 − E , and vice versa for
the intervals that are too short. The degree to which these intervals are too
long or short can be arbitrarily large depending on sample sizes, the number
of groups, and the group error variances.

6.5.3 Effects of dependence

When the errors are dependent but otherwise meet our assumptions, our esti-
mates of treatment effects are still unbiased, and theMSE is nearly unbiased
for σ2 when the sample size is large. The big change is that the variance ofVariance of

average not σ2/n
for dependent
data

an average is no longer justσ2 divided by the sample size. This means that
our estimates of standard errors for treatment means and contrasts are biased
(whether too large or small depends on the pattern of dependence), so that
confidence intervals and tests will not have their claimed error rates. The
usual ANOVA F-test will be affected for similar reasons.

Let’s be a little more careful. The ANOVA F-test is robust to depen-
dence when considered as a randomization test. This means that averaged
across all possible randomizations, the F-test will rejectthe null hypothesisF robust to

dependence
averaged across
randomizations

about the correct fraction of times when the null is true. However, when the
original data arise with a dependence structure, certain outcomes of the ran-
domization will tend to have too many rejections, while other outcomes of
the randomization will have too few.

More severe problems can arise when there was no randomization across
the dependence. For example, treatments may have been assigned to units
at random; but when responses were measured, all treatment 1units were
measured, followed by all treatment 2 units, and so on. Random assignment
of treatment to units will not help us, even on average, if there is a strong
correlation across time in the measurement errors.

Example 6.9 Correlated errors

Consider a situation with two treatments and large, equal sample sizes. Sup-
pose that the units have a time order, and that there is a correlation of ρ
between the errorsǫij for time-adjacent units and a correlation of 0 between
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Table 6.7: Error rates×100 of nominal 95% confidence intervals
for µ1 − µ2, when neighboring data values have correlationρ and
data patterns are consecutive or alternate.

ρ
–.3 –.2 –.1 0 .1 .2 .3 .4

Con. .19 1.1 2.8 5 7.4 9.8 12 14
Alt. 12 9.8 7.4 5 2.8 1.1 .19 .001

the errors of other pairs. As a basis for comparison, Durbin-Watson values
of 1.5 and 2.5 correspond toρ of ±.125. For two treatments, the F-test is
equivalent to at-test. Thet-test assumes that the difference of the treatment
means has variance2σ2/n. The actual variance of the difference depends on
the correlationρ and the temporal pattern of the two treatments.

Consider first two temporal patterns for the treatments; call them con-
secutive and alternate. In the consecutive pattern, all of one treatment oc-
curs, followed by all of the second treatment. In the alternate pattern, the
treatments alternate every other unit. For the consecutivepattern, the actual
variance of the difference of treatment means is2(1 + 2ρ)σ2/n, while for
the alternate pattern the variance is2(1 − 2ρ)σ2/n. For the usual situation
of ρ > 0, the alternate pattern gives a more precise comparison thanthe con-
secutive pattern, but the estimated variance in thet-test (2σ2/n) is the same
for both patterns and correct for neither. So forρ > 0, confidence intervals in
the consecutive case are too short by a factor of1/

√
1 + 2ρ, and the intervals

will not cover the difference of means as often as they claim,whereas con-
fidence intervals in the alternate case are too long by a factor of 1/

√
1 − 2ρ

and will cover the difference of means more often than they claim.

Table 6.7 gives the true error rates for a nominal 95% confidence inter-
val under the type of serial correlation described above andthe consecutive
and alternate treatment patterns. These will also be the true error rates for
the two-group F-test, and the consecutive results will be the true error rates
for a confidence interval for a single treatment mean when thedata for that
treatment are consecutive.

In contrast, consider randomized assignment of treatmentsfor the same
kind of units. We could get consecutive or alternate patterns by chance, but
that is very unlikely. Under the randomization, each unit has on average one
neighbor with the same treatment and one neighbor with the other treatment,
tending to make the effects of serial correlation cancel out. Table 6.8 shows
median, upper, and lower quartiles of error rates forρ = .4 and sample sizes
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Table 6.8: Median, upper and lower quartiles of error rates×
100 of nominal 95% confidence intervals forµ1 − µ2 when
neighboring data values have correlation .4 and treatmentsare
assigned randomly, based on 10,000 simulations.

n
10 20 30 50 100

Lower quartile 3.7 3.9 4.0 4.2 4.5
Median 4.5 4.8 4.8 4.9 5.0
Upper quartile 6.5 5.7 5.8 5.5 5.4

from 10 to 100 based on 10,000 simulations. The best and worstcase error
rates are those from Table 6.7; but we can see in Table 6.8 thatmost random-
izations lead to reasonable error rates, and the deviation from the nominal
error rate gets smaller as the sample size increases.

Here is another way of thinking about the effect of serial correlation when
treatments are in a consecutive pattern. Positive serial correlation leads to
variances for treatment means that are larger thanσ2/n, sayσ2/(En), forPositive serial

correlation has a
smaller effective
sample size

E < 1. The effective sample sizeEn is less than our actual sample size
n, because an additional measurement correlated with other measurements
doesn’t give us a full unit’s worth of new information. Thus if we use the
nominal sample size, we are being overly optimistic about how much preci-
sion we have for estimation and testing.

The effects of spatial association are similar to those of serial correlation,
because the effects are due to correlation itself, not spatial correlation as
opposed to temporal correlation.

6.6 Implications for Design

The major implication for design is that balanced data sets are usually a good
idea. Balanced data are less susceptible to the effects of nonnormality andUse balanced

designs nonconstant variance. Furthermore, when there is nonconstant variance, we
can usually determine the direction in which we err for balanced data.

When we know that our measurements will be subject to temporal or
spatial correlation, we should take care to block and randomize carefully.
We can, in principle, use the correlation in our design and analysis to increase
precision, but these methods are beyond this text.
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6.7 Further Reading and Extensions

Statisticians started worrying about what would happen to their t-tests and
F-tests on real data almost immediately after they started using the tests. See,
for example, Pearson (1931). Scheffé (1959) provides a more mathematical
introduction to the effects of violated assumptions than wehave given here.
Ito (1980) also reviews the subject.

Transformations have long been used in Analysis of Variance. Tukey
(1957a) puts the power transformations together as a family, and Box and
Cox (1964) introduce the scaling required to make theSSE ’s comparable.
Atkinson (1985) and Hoaglin, Mosteller, and Tukey (1983) give more exten-
sive treatments of transformations for several goals, including symmetry and
equalization of spread.

The Type I error rates for nonnormal data were computed usingthe meth-
ods of Gayen (1950). Gayen assumed that the data followed an Edgeworth
distribution, which is specified by its first four moments, and then computed
the distribution of the F-ratio (after several pages of awe-inspiring calculus).
Our Table 6.5 is computed with his formula (2.30), though note that there are
typos in his paper.

Box and Andersen (1955) approached the same problem from a differ-
ent tack. They computed the mean and expectation of a transformation of
the F-ratio under the permutation distribution when the data come from non-
normal distributions. From these moments they compute adjusted degrees
of freedom for the F-ratio. They concluded that multiplyingthe numerator
and denominator degrees of freedom by(1 + γ2/N) gavep-values that more
closely matched the permutation distribution.

There are two enormous, parallel areas of literature that deal with out-
liers. One direction is outlier identification, which dealswith finding out-
liers, and to some extent with estimating and testing after outliers are found
and removed. Major references include Hawkins (1980), Beckman and Cook
(1983), and Barnett and Lewis (1994). The second direction is robustness,
which deals with procedures that are valid and efficient for nonnormal data
(particularly outlier-prone data). Major references include Andrewset al.
(1972), Huber (1981), and Hampelet al. (1986). Hoaglin, Mosteller, and
Tukey (1983) and Rey (1983) provide gentler introductions.

Rank-based, nonparametric methods are a classical alternative to linear
methods for nonnormal data. In the simplest situation, the numerical values
of the responses are replaced by their ranks, and we then do randomization
analysis on the ranks. This is feasible because the randomization distribution
of a rank test can often be computed analytically. Rank-based methods have
sometimes been advertised as assumption-free; this is not true. Rank methods
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have their own strengths and weakness. For example, the power of two-
sample rank tests for equality of medians can be very low whenthe two
samples have different spreads. Conover (1980) is a standard introduction to
nonparametric statistics.

We have been modifying the data to make them fit the assumptions of
our linear analysis. Where possible, a better approach is touse an analysis
that is appropriate for the data. Generalized Linear Models(GLM’s) per-
mit the kinds of mean structures we have been using to be combined with
a variety of error structures, including Poisson, binomial, gamma, and other
distributions. GLM’s allow direct modeling of many forms ofnonnormality
and nonconstant variance. On the down side, GLM’s are more difficult to
compute, and most of their inference is asymptotic. McCullagh and Nelder
(1989) is the standard reference for GLM’s.

We computed approximate test sizes for F under nonconstant variance us-
ing a method given in Box (1954). When our distributional assumptions and
the null hypothesis are true, then our observed F-statisticFobsis distributed
as F withg − 1 andN − g degrees of freedom, and

P (Fobs> FE,g−1,N−g) = E .

If the null is true but we have different variances in the different groups, then
Fobs/b is distributed approximately asF (ν1, ν2), where

b =
N − g

N(g − 1)

∑
i(N − ni)σ

2
i∑

i(ni − 1)σ2
i

,

ν1 =
[
∑

i(N − ni)σ
2
i ]

2

[
∑

i niσ2
i ]

2 + N
∑

i(N − 2ni)σ4
i

,

ν2 =
[
∑

i(ni − 1)σ2
i ]

2

∑
i(ni − 1)σ4

i

.

Thus the actual Type I error rate of the usual F test under nonconstant vari-
ance is approximately the probability that an F withν1 andν2 degrees of
freedom is greater thanFE,g−1,N−g/b.

The Durbin-Watson statistic was developed in a series of papers (Durbin
and Watson 1950, Durbin and Watson 1951, and Durbin and Watson 1971).
The distribution of DW is complicated in even simple situations. Ali (1984)
gives a (relatively) simple approximation to the distribution of DW.

There are many more methods to test for serial correlation. Several fairly
simple related tests are called runs tests. These tests are based on the idea that
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if the residuals are arranged in time order, then positive serial correlation will
lead to “runs” in the residuals. Different procedures measure runs differently.
For example, Geary’s test is the total number of consecutivepairs of residuals
that have the same sign (Geary 1970). Other runs include maximum number
of consecutive residuals of the same sign, the number of runsup (residuals
increasing) and down (residuals decreasing), and so on.

In some instances we might believe that we know the correlation struc-
ture of the errors. For example, in some genetics studies we might believe
that correlation can be deduced from pedigree information.If the correlation
is known, it can be handled simply and directly by using generalized least
squares (Weisberg 1985).

We usually have to use advanced methods from times series or spatial
statistics to deal with correlation. Anderson (1954), Durbin (1960), Pierce
(1971), and Tsay (1984) all deal with the problem of regression when the
residuals are temporally correlated. Kriging is a class of methods for dealing
with spatially correlated data that has become widely used,particularly in
geology and environmental sciences. Cressie (1991) is a standard reference
for spatial statistics. Grondona and Cressie (1991) describe using spatial
statistics in the analysis of designed experiments.

6.8 Problems

As part of a larger experiment, 32 male hamsters were assigned to four Exercise 6.1
treatments in a completely randomized fashion, eight hamsters per treatment.
The treatments were 0, 1, 10, and 100 nmole of melatonin daily, 1 hour prior
to lights out for 12 weeks. The response was paired testes weight (in mg).
Below are the means and standard deviations for each treatment group (data
from Rollag 1982). What is the problem with these data and what needs to
be done to fix it?

Melatonin Mean SD

0 nmole 3296 90
1 nmole 2574 153

10 nmole 1466 207
100 nmole 692 332

Bacteria in solution are often counted by a method known as serial dilu- Exercise 6.2
tion plating. Petri dishes with a nutrient agar are inoculated with a measured
amount of solution. After 3 days of growth, an individual bacterium will
have grown into a small colony that can be seen with the naked eye. Count-
ing original bacteria in the inoculum is then done by counting the colonies on
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the plate. Trouble arises because we don’t know how much solution to add.
If we get too many bacteria in the inoculum, the petri dish will be covered
with a lawn of bacterial growth and we won’t be able to identify the colonies.
If we get too few bacteria in the inoculum, there may be no colonies to count.
The resolution is to make several dilutions of the original solution (1:1, 10:1,
100:1, and so on) and make a plate for each of these dilutions.One of the
dilutions should produce a plate with 10 to 100 colonies on it, and that is the
one we use. The count in the original sample is obtained by multiplying by
the dilution factor.

Suppose that we are trying to compare three different Pasteurization treat-
ments for milk. Fifteen samples of milk are randomly assigned to the three
treatments, and we determine the bacterial load in each sample after treat-
ment via serial dilution plating. The following table givesthe counts.

Treatment 1 26 × 102 29 × 102 20 × 102 22 × 102 32 × 102

Treatment 2 35 × 103 23 × 103 20 × 103 30 × 103 27 × 103

Treatment 3 29 × 105 23 × 105 17 × 105 29 × 105 20 × 105

Test the null hypothesis that the three treatments have the same effect on
bacterial concentration.

In order to determine the efficacy and lethal dosage of cardiac relaxants,Exercise 6.3
anesthetized guinea pigs are infused with a drug (the treatment) till death
occurs. The total dosage required for death is the response;smaller lethal
doses are considered more effective. There are four drugs, and ten guinea
pigs are chosen at random for each drug. Lethal dosages follow.

1 18.2 16.4 10.0 13.5 13.5 6.7 12.2 18.2 13.5 16.4
2 5.5 12.2 11.0 6.7 16.4 8.2 7.4 12.2 6.7 11.0
3 5.5 5.0 8.2 9.0 10.0 6.0 7.4 5.5 12.2 8.2
4 6.0 7.4 12.2 11.0 5.0 7.4 7.4 5.5 6.7 5.5

Determine which drugs are equivalent, which are more effective, and which
less effective.

Four overnight delivery services are tested for “gentleness” by shippingExercise 6.4
fragile items. The breakage rates observed are given below:

A 17 20 15 21 28
B 7 11 15 10 10
C 11 9 5 12 6
D 5 4 3 7 6
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You immediately realize that the variance is not stable. Find an approximate
95% confidence interval for the transformation power using the Box-Cox
method.

Consider the following four plots. Describe what each plot tells you Exercise 6.5
about the assumptions of normality, independence, and constant variance.
(Some plots may tell you nothing about assumptions.)
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An instrument called a “Visiplume” measures ultraviolet light. By com-Exercise 6.6
paring absorption in clear air and absorption in polluted air, the concentration
of SO2 in the polluted air can be estimated. The EPA has a standard method
for measuring SO2, and we wish to compare the two methods across a range
of air samples. The recorded response is the ratio of the Visiplume reading to
the EPA standard reading. The four experimental conditionsare: measure-
ments of SO2 in an inflated bag (n = 9), measurements of a smoke generator
with SO2 injected (n = 11), measurements at two coal-fired plants (n = 5and
6). We are interested in whether the Visiplume instrument performs the same
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relative to the standard method across all experimental conditions, between
the coal-fired plants, and between the generated smoke and the real coal-fired
smoke. The data follow (McElhoe and Conner 1986):

Bag 1.055 1.272 .824 1.019 1.069 .983 1.025
1.076 1.100

Smoke 1.131 1.236 1.161 1.219 1.169 1.238 1.197
1.252 1.435 .827 3.188

Plant no. 1 .798 .971 .923 1.079 1.065
Plant no. 2 .950 .978 .762 .733 .823 1.011

We wish to study the competition of grass species: in particular, big Problem 6.1
bluestem (from the tall grass prairie) versus quack grass (aweed). We set
up an experimental garden with 24 plots. These plots were randomly al-
located to the six treatments: nitrogen level 1 (200 mg N/kg soil) and no
irrigation; nitrogen level 1 and 1cm/week irrigation; nitrogen level 2 (400
mg N/kg soil) and no irrigation; nitrogen level 3 (600 mg N/kgsoil) no ir-
rigation; nitrogen level 4 (800 mg N/kg soil) and no irrigation; and nitrogen
level 4 and 1 cm/week irrigation. Big bluestem was seeded in these plots
and allowed to establish itself. After one year, we added a measured amount
of quack grass seed to each plot. After another year, we harvest the grass
and measure the fraction of living material in each plot thatis big bluestem.
We wish to determine the effects (if any) of nitrogen and/or irrigation on the
ability of quack grass to invade big bluestem. (Based on Wedin 1990.)

N level 1 1 2 3 4 4
Irrigation N Y N N N Y

97 83 85 64 52 48
96 87 84 72 56 58
92 78 78 63 44 49
95 81 79 74 50 53

(a) Do the data need a transformation? If so, which transformation?

(b) Provide an Analysis of Variance for these data. Are all the treatments
equivalent?

(c) Are there significant quadratic effects of nitrogen under nonirrigated
conditions?

(d) Is there a significant effect of irrigation?

(e) Under which conditions is big bluestem best able to prevent the inva-
sion by quack grass? Is the response at this set of conditionssignifi-
cantly different from the other conditions?
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What happens to thet-statistic as one of the values becomes extremelyQuestion 6.1
large? Look at the data set consisting of the five numbers 0, 0,0, 0, K, and
compute thet-test for testing the null hypothesis that these numbers come
from a population with mean 0. What happens to thet-statistic as K goes to
infinity?

Why would we expect the log transformation to be the variance-stabilizingQuestion 6.2
transformation for the data in Exercise 6.2?



Chapter 7

Power and Sample Size

The last four chapters have dealt with analyzing experimental results. In this
chapter we return to design and consider the issues of choosing and assessing
sample sizes. As we know, an experimental design is determined by the
units, the treatments, and the assignment mechanism. Once we have chosen
a pool of experimental units, decided which treatments to use, and settled on
a completely randomized design, the major thing left to decide is the sample
sizes for the various treatments. Choice of sample size is important because Decide how large

an experiment is
needed

we want our experiment to be as small as possible to save time and money,
but big enough to get the job done. What we need is a way to figureout how
large an experiment needs to be to meet our goals; a bigger experiment would
be wasteful, and a smaller experiment won’t meet our needs.

7.1 Approaches to Sample Size Selection

There are two approaches to specifying our needs from an experiment, and
both require that we know something about the system under test to do ef-
fective sample size planning. First, we can require that confidence intervals
for means or contrasts should be no wider than a specified length. For exam- Specify maximum

CI widthple, we might require that a confidence interval for the difference in average
weight loss under two diets should be no wider than 1 kg. The width of a
confidence interval depends on the desired coverage, the error variance, and
the sample size, so we must know the error variance at least roughly before
we can compute the required sample size. If we have no idea about the size
of the error variance, then we cannot say how wide our intervals will be, and
we cannot plan an appropriate sample size.
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The second approach to sample size selection involves errorrates for the
fixed level ANOVA F-test. While we prefer to usep-values for analysis, fixed
level testing turns out to be a convenient framework for choosing sample size.
In a fixed level test, we either reject the null hypothesis or we fail to reject
the null hypothesis. If we reject a true null hypothesis, we have made a Type
I error, and if we fail to reject a false null hypothesis, we have made a Type II
error. The probability of making a Type I error isEI ; EI is under our control.

We choose a Type I error rateEI (5%, 1%, etc.), and rejectH0 if the p-Power is
probability of
rejecting a false
null hypothesis

value is less thanEI . The probability of making a Type II error isEII ; the
probability of rejectingH0 whenH0 is false is1 − EII and is calledpower.
The Type II error rateEII depends on virtually everything:EI , g, σ2, and the
αi’s andni’s. Most books use the symbolsα andβ for the Type I and II error
rates. We useE for error rates, and use subscripts here to distinguish types of
errors.

It is more or less true that we can fix all but one of the interrelated pa-
rameters and solve for the missing one. For example, we may chooseEI , g,
σ2, and theαi’s andni and then solve for1 − EII . This is called a power
analysis, because we are determining the power of the experiment for the al-
ternative specified by the particularαi’s. We may also chooseEI , g, 1−EII ,
σ2 and theαi’s and then solve for the sample sizes. This, of course, is calledFind minimum

sample size that
gives desired
power

a sample size analysis, because we have specified a required power and now
find a sample size that achieves that power. For example, consider a situation
with three diets, andEI is .05. How large shouldN be (assuming equalni’s)
to have a 90% chance of rejectingH0 whenσ2 is 9 and the treatment mean
responses are -7, -5, 3 (αi’s are -4, -2, and 6)?

The use of power or sample size analysis begins by deciding oninterest-
ing values of the treatment effects and likely ranges for theerror variance.
“Interesting” values of treatment effects could be anticipated effects, or theyUse prior

knowledge of
system

could be effects that are of a size to be scientifically significant; in either
case, we want to be able to detect interesting effects. For each combina-
tion of treatment effects, error variance, sample sizes, and Type I error rate,
we may compute the power of the experiment. Sample size computation
amounts to repeating this exercise again and again until we find the smallest
sample sizes that give us at least as much power as required. Thus what we
do is set up a set of circumstances that we would like to detectwith a given
probability, and then design for those circumstances.

Example 7.1 VOR in ataxia patients

Spinocerebellar ataxias (SCA’s) are inherited, degenerative, neurological dis-
eases. Clinical evidence suggests that eye movements and posture are af-
fected by SCA. There are several distinct types of SCA’s, andwe would like
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to determine if the types differ in observable ways that could be used to clas-
sify patients and measure the progress of the disease.

We have some preliminary data. One response is the “amplitude of the
vestibulo-ocular reflex for 20 deg/s2 velocity ramps”; let’s just call it VOR.
VOR deals with how your eyes move when trying to focus on a fixedtarget
while you are seated on a chair on a turntable that is rotatingincreasingly
quickly. We have preliminary observations on a total of seventeen patients
from SCA groups 1, 5, and 6, with sample sizes 5, 11, and 1. The response
appears to have stable variance on the log scale, on which scale the group
means of VOR are 2.82, 3.89, and 3.04, and the variance is .075. Thus it
looks like the average response (on the original scale) in SCA 5 is about
three times that of SCA 1, while the average response of SCA 6 is only about
25% higher than that of SCA 1.

We would like to know the required sample sizes for three criteria. First,
95% confidence intervals for pairwise differences (on the log scale) should
be no wider than .5. Second, power should be .99 when testing at the .01
level for two null hypotheses: the null hypothesis that all three SCAs have
the same mean VOR, and the null hypothesis that SCA 1 and SCA 6 have the
same mean VOR. We must specify the means and error variance tocompute
power, so we use those from the preliminary data. Note that there is only one
subject in SCA 6, so our knowledge there is pretty slim and ourcomputed
sample sizes involving SCA 6 will not have a very firm foundation.

7.2 Sample Size for Confidence Intervals

We can compute confidence intervals for means of treatment groups and con-
trasts between treatment groups. One sample size criterionis to choose the
sample sizes so that confidence intervals of interest are no wider than a max-
imum allowable widthW . For the mean of groupi, a 1 − EI confidence
interval has width Width of

confidence
interval

2 tEI/2,N−g

√
MSE/ni ;

for a contrast, the confidence interval has width

2 tEI/2,N−g

√
MSE

√√√√∑

i

w2
i

ni
.

In principle, the required sample size can be found by equating either of
these widths withW and solving for the sample sizes. In practice, we don’t
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knowMSE until the experiment has been performed, so we must anticipate
a reasonable value forMSE when planning the experiment.

Assuming that we use equal sample sizesni = n, we find thatCalculating
sample size

n ≈
4 t2EI/2,g(n−1) MSE

∑
w2

i

W 2
.

This is an approximation becausen must be a whole number and the quantity
on the right can have a fractional part; what we want is the smallest n such
that the left-hand side is at least as big as the right-hand side. The sample size
n appears in the degrees of freedom fort on the right-hand side, so we don’t
have a simple formula forn. We can compute a reasonable lower bound for
n by substituting the upperEI/2 percent point of a normal fort2EI/2,g(n−1).
Then increasen from the lower bound until the criterion is met.

Often the best we can do is provide a plausible range of valuesfor MSE .
Larger values ofMSE lead to larger sample sizes to meet maximum confi-If in doubt, design

for largest
plausible MSE

dence interval width requires. To play it safe, choose your sample size so that
you will meet your goals, even if you encounter the largest plausibleMSE.

Example 7.2 VOR in ataxia patients, continued
Example 7.1 gave a requirement that 95% confidence intervalsfor pairwise
differences should be no wider than .5. The preliminary datahad anMSE of
.075, so that is a plausible value for future data. The starting approximation
is then

n ≈ 4 × 4 × .075 × (12 + (−1)2)

.52
= 9.6 ,

so we round up to 10 and start there. With a sample size of 10, there are 27
degrees of freedom for error, so we now uset.025,27 = 2.052. Feeding in this
sample size, we get

n ≈ 4 × 2.0522 × .075 × (1 + 1)

.52
= 10.1 ,

and we round up to 11. There are now 30 degrees of freedom for error, and
t.025,30 = 2.042, and

n ≈ 4 × 2.0422 × .075 × (1 + 1)

.52
= 10.01 ,

son = 11 is the required sample size.
Taking a more conservative approach, we might feel that theMSE in a

future experiment could be as large as .15 (we will see in Chapter 11 that this



7.3 Power and Sample Size for ANOVA 153

is not unlikely). Repeating our sample size calculation with the newMSE

value we get

n ≈ 4 × 4 × .15 × (1 + 1)

.52
= 19.2 ,

or 20 for the first approximation. Becauset.025,60 = 2.0003, the first approx-
imation is the correct sample size.

On the other hand, we might be feeling extremely lucky and think that
theMSE will only be .0375 in the experiment. Repeat the calculationagain,
and we get

n ≈ 4 × 4 × .0375 × (1 + 1)

.52
= 4.8 ,

or 5 for the first approximation;t.025,12 = 2.18, so the second guess is

n ≈ 4 × 2.182 × .0375 × (1 + 1)

.52
= 5.7 ,

andn = 6 works out to be the required sample size.

Note from the example that doubling the assumedMSE does not quite Sample size
affects df and

t-percent point
double the required sample size. This is because changing the sample size
also changes the degrees of freedom and thus the percent point of t that we
use. This effect is strongest for small sample sizes.

7.3 Power and Sample Size for ANOVA

The ANOVA F-statistic is the ratio of the mean square for treatments to the
mean square for error. When the null hypothesis is true, the F-statistic follows
an F-distribution with degrees of freedom from the two mean squares. We re-
ject the null when the observed F-statistic is larger than the upperEI percent F-statistic follows

noncentral
F-distribution

when null is false

point of the F-distribution. When the null hypothesis is false, the F-statistic
follows a noncentral F-distribution. Power, the probability of rejecting the
null when the null is false, is the probability that the F-statistic (which fol-
lows a noncentral F-distribution when the alternative is true) exceeds a cutoff
based on the usual (central) F distribution.

This is illustrated in Figure 7.1. The thin line gives a typical null distri-
bution for the F-test. The vertical line is at the 5% cutoff point; 5% of the Power computed

with noncentral Farea under the null curve is to the right, and 95% is to the left. This 5% is
the Type I error rate, orEI . The thick curve is the distribution of the F-ratio
for one alternative. We would reject the null at the 5% level if our F-statistic
is greater than the cutoff. The probability of this happening is the area under
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Figure 7.1: Null distribution (thin line) and alternative
distribution (thick line) for an F test, with the 5% cutoff marked.

the alternative distribution curve to the right of the cutoff (the power); the
area under the alternative curve to the left of the cutoff is the Type II error
rateEII .

The noncentral F-distribution has numerator and denominator degrees of
freedom the same as the ordinary (central) F, and it also has anoncentrality
parameterζ defined byNoncentrality

parameter
measures
distance from null

ζ =

∑
i niα

2
i

σ2
.

The noncentrality parameter measures how far the treatmentmeans are from
being equal (α2

i ) relative to the variation ofyi• (σ2/ni). The ordinary central
F-distribution hasζ = 0, and the bigger the value ofζ, the more likely we
are to rejectH0.

We must use the noncentral F-distribution when computing power or
EII . This wouldn’t be too bad, except that there is a different noncentral
F-distribution for every noncentrality parameter. Thus there is a different al-
ternative distribution for each value of the noncentralityparameter, and we
will only be able to tabulate power for a selection of parameters.

There are two methods available to compute power. The first isto use
power tables—figures really—such as Appendix Table D.10, part of which isPower curves
reproduced here as Figure 7.2. There is a separate figure for each numerator
degrees of freedom, with power on the vertical axis and noncentrality param-
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Figure 7.2: Sample power curves for 2 numerator degrees of freedom,
.05 (thin) and .01 (thick) Type I error rates, and 8, 9, 10, 12,15, 20, 30,
and 60 denominator degrees of freedom (right to left within each group).

eter on the horizontal axis. Within a figure, each curve showsthe power for a
particular denominator degrees of freedom (8, 9, 10, 12, 15,20, 30, 60) and
Type I error rate (5% or 1%). The power curves for level .01 areshifted to
the right by 40 units to prevent overlap with the .05 curves.

To compute power, you first get the correct figure (according to numer-
ator degrees of freedom); then find the correct horizontal position on the
figure (according to the noncentrality parameter, shifted right for .01 tests);
then move up to the curve corresponding to the correct denominator degrees
of freedom (you may need to interpolate between the values shown); and then Find required

sample sizes
iteratively

read across to get power. Computing minimum sample sizes fora required
power is a trial-and-error procedure. We investigate a collection of sample
sizes until we find the smallest sample size that yields our required power.

VOR in ataxia patients, continued Example 7.3

We wish to compute the power for a test of the null hypothesis that the mean
VOR of the three SCA’s are all equal against the alternative that the means
are as observed in the preliminary data, when we have four subjects per group
and test at the .01 level. On the log scale, the group means in the prelimi-
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nary data were 2.82, 3.89, and 3.04; the variance was .075. The estimated
treatment effects (for equal sample sizes) are -.43, .64, and -.21, so the non-
centrality parameter we use is4(.432 + .642 + .212)/.075 = 34.06. There
are 2 and 9 degrees of freedom. Using Figure 7.2, the power is about .92.

Suppose that we wish to find the sample size required to have power .99.
Let’s try six subjects per group. Then the noncentrality is 51.1, with 2 and
15 degrees of freedom. The power is now above .99 and well off the chart
in Figure 7.2. We might be able to reduce the sample size, so let’s try five
subjects per group. Now the noncentrality is 42.6, with 2 and12 degrees of
freedom. The power is pretty close to .99, but it could be above or below.

Again trying to be conservative, recompute the sample size assuming that
the error variance is .15; because we are doubling the variance, we’ll double
the sample size and use 10 as our first try. The noncentrality is 42.6, with 2
and 27 degrees of freedom. The power is well above .99, so we try reducing
the sample size to 9. Now the noncentrality is 38.3, with 2 and24 degrees
of freedom. The power is still above .99, so we try sample size8. Now the
noncentrality is 34.06 with 2 and 21 degrees of freedom. It isdifficult to tell
from the graph, but the power seems to be less than .99; thus 9 is the required
sample size.

This example illustrates the major problems with using power curves.
Often there is not a curve for the denominator degrees of freedom that wePower curves are

difficult to use need, and even when there is, reading power off the curves is not very accu-
rate. These power curves are usable, but tedious and somewhat crude, and
certain to lead to eyestrain and frustration.

A better way to compute power or sample size is to use computersoft-
ware designed for that task. Unfortunately, many statistical systems don’t
provide power or sample size computations. Thomas and Krebs(1997) re-Power software
view power analysis software available in late 1996. As of summer 1999,
they also maintain a Web pagelisting power analysis capabilities and sources
for extensions for several dozen packages.1 Minitab and MacAnova can both
compute power and minimum sample size for several situations, including
ANOVA problems with equal replication. The user interfacesfor power soft-
ware computations differ dramatically; for example, in Minitab one enters
the means, and in MacAnova one enters the noncentrality parameter.

Example 7.4 VOR in ataxia patients, continued

Let’s redo the power and sample size computations using Minitab. Listing 7.1
shows Minitab output for the first two computations of Example 7.3. First we

1http://sustain.forestry.ubc.ca/cacb/power/review/po wrev.html
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Listing 7.1: Minitab output for power and sample size computation.

Power and Sample Size ①

One-way ANOVA

Sigma = 0.2739 Alpha = 0.01 Number of Levels = 3

Corrected Sum of Squares of Means = 0.6386

Means = 2.82, 3.89, 3.04

Sample

Size Power

4 0.9297

Power and Sample Size ②

One-way ANOVA

Sigma = 0.2739 Alpha = 0.01 Number of Levels = 3

Corrected Sum of Squares of Means = 0.6386

Means = 2.82, 3.89, 3.04

Sample Target Actual

Size Power Power

5 0.9900 0.9903

find the power when we have four subjects per group; this is shown in section
① of the listing. The computed power is almost .93; we read about .92 from
the curves. Second, we can find minimum the sample size to get power .99;
this is shown in section② of the listing. The minimum sample size for .99
power is 5, as we had guessed but were not sure about from the tables. The
exact power is .9903, so in this case we were actually pretty close using the
tables.

Here is a useful trick for choosing sample size. Sometimes itis difficult
to specify an interesting alternative completely; that is,we can’t specify all
the means or effectsαi, but we can say that any configuration of means that
has two means that differ by an amount D or more would be interesting. The Specify minimum

differencesmallest possible value for the noncentrality parameter when this condition
is met isnD2/(2σ2), corresponding to two means D units apart and all the
other means in the middle (with zeroαi’s). If we design for this alternative,
then we will have at least as much power for any other alternative with two
treatments D units apart.
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7.4 Power and Sample Size for a Contrast

The Analysis of Variance F-test is sensitive to all departures from the null
hypothesis of equal treatment means. A contrast is sensitive to particular de-
partures from the null. In some situations, we may be particularly interested
in one or two contrasts, and less interested in other contrasts. In that case,
we might wish to design our experiment so that the contrasts of particular
interest had adequate power.

Suppose that we have a contrast with coefficients{wi}. Test the null
hypothesis that the contrast has expected value zero by using an F-test (the
sum of squares for the contrast divided by theMSE). The F-test has 1 andNoncentrality

parameter for a
contrast

N − g degrees of freedom and noncentrality parameter

(
∑g

i=1 wiαi)
2

σ2
∑g

i=1 w2
i /ni

.

We now use power curves or software for 1 numerator degree of freedom to
compute power.

Example 7.5 VOR in ataxia patients, continued
Suppose that we are particularly interested in comparing the VOR for SCA 1
to the average VOR for SCA 5 and 6 using a contrast with coefficients (1, -.5,
-.5). On the basis of the observed means andMSE and equal sample sizes,
the noncentrality parameter is

(2.82 − .5(3.89 + 3.04))2

.075(1/n + .25/n + .25/n)
= 3.698n .

The noncentrality parameter forn = 5 is 18.49; this would have 1 and 12
degrees of freedom. The power from the tables (testing at .01) is about .86;
the exact power is .867.

7.5 More about Units and Measurement Units

Thinking about sample size, cost, and power brings us back tosome issues
involved in choosing experimental units and measurement units. The basic
problems are those of dividing fixed resources (there is never enough money,
time, material, etc.) and trying to get the most bang for the buck.

Consider first the situation where there is a fixed amount of experimental
material that can be divided into experimental units. In agronomy, the limited
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resource might be an agricultural field of a fixed size. In textiles, the limited
resource might be a bolt of cloth of fixed size. The problem is choosing
into how many units the field or bolt should be divided. Largerunits have Subdividing

spatial unitsthe advantage that their responses tend to have smaller variance, since these
responses are computed from more material. Their disadvantage is that you
end up with fewer units to average across. Smaller units havethe opposite
properties; there are more of them, but they have higher variance.

There is usually some positive spatial association betweenneighboring
areas of experimental material. Because of that, the variance of the average
of k adjacent spatial units is greater than the variance of the average ofk More little units

generally betterrandomly chosen units. (How much greater is very experimentspecific.) This
greater variance for contiguous blocks implies that randomizing treatments
across more little units will lead to smaller variances for treatment averages
and comparisons than using fewer big units.

There are limits to this splitting, of course. For example, there may be an
expensive or time-consuming analytical measurement that must be made on
each unit. An upper bound on time or cost thus limits the number of units that
can be considered. A second limit comes from edge guard wastage. When
units are treated and analyzedin situ rather then being physically separated,
it is common to exclude from analysis the edge of each unit. This is done
because treatments may spill over and have effects on neighboring units; ex-
cluding the edge reduces this spillover. The limit arises because as the units
become smaller and smaller, more and more of the unit becomesedge, and
we eventually we have little analyzable center left.

A second situation occurs when we have experimental units and mea-
surement units. Are we better off taking more measurements on fewer units More units or

measurement
units?

or fewer measurement on more units? In general, we have more power and
shorter confidence intervals if we take fewer measurements on more units.
However, this approach may have a higher cost per unit of information.

For example, consider an experiment where we wish to study the possi-
ble effects of heated animal pens on winter weight gain. Eachanimal will be
a measurement unit, and each pen is an experimental unit. We haveg treat- Costs may vary

by unit typements withn pens per treatment (N = gn total pens) andr animals per pen.
The cost of the experiment might well be represented asC1+gnC2+gnrC3.
That is, there is a fixed cost, a cost per pen, and a cost per animal. The cost
per pen is no doubt very high. Letσ2

1 be the variation from pen to pen, and let
σ2

2 be the variation from animal to animal. Then the variance of atreatment
average is

σ2
1

n
+

σ2
2

nr
.

The question is now, “What values ofn andr give us minimal variance of a
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treatment average for fixed total cost?” We need to know a great deal about
the costs and sources of variation before we can complete theexercise.

7.6 Allocation of Units for Two Special Cases

We have considered computing power and sample size for balanced alloca-
tions of units to treatments. Indeed, Chapter 6 gave some compelling reasons
for favoring balanced designs. However, there are some situations where un-
equal sample sizes could increase the power for alternatives of interest. We
examine two of these.

Suppose that one of theg treatments is a control treatment, say treatment
1, and we are only interested in determining whether the other treatments
differ from treatment 1. That is, we wish to compare treatment 2 to control,Comparison with

control treatment 3 to control,. . ., treatmentg to control, but we don’t compare
noncontrol treatments. This is the standard setup where Dunnett’s test is
applied. For such an experiment, the control plays a specialrole (it appears in
all contrasts), so it makes sense that we should estimate thecontrol response
more precisely by putting more units on the control. In fact,we can show that
we should choose group sizes so that the noncontrol treatments sizes (nt) are
equal and the control treatment size (nc) is aboutnc = nt

√
g − 1.

A second special case occurs when theg treatments correspond to nu-
merical levels or doses. For example, the treatments could correspond to four
different temperatures of a reaction vessel, and we can viewthe differencesAllocation for

polynomial
contrasts

in responses at the four treatments as linear, quadratic, and cubic temperature
effects. If one of these effects is of particular interest, we can allocate units
to treatments in such a way to make the standard error for thatselected effect
small.

Suppose that we believe that the temperature effect, if it isnonzero, is
essentially linear with only small nonlinearities. Thus wewould be most
interested in estimating the linear effect and less interested in estimating the
quadratic and cubic effects. In such a situation, we could put more units
at the lowest and highest temperatures, thereby decreasingthe variance for
the linear effect contrast. We would still need to keep some observations
in the intermediate groups to estimate quadratic and cubic effects, though
we wouldn’t need as many as in the high and low groups since determining
curvature is assumed to be of less importance than determining the presence
of a linear effect.

Note that we need to exercise some caution. If our assumptions about
shape of the response and importance of different contrastsare incorrect, we
could wind up with an experiment that is much less informative than the equal
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sample size design. For example, suppose we are near the peakof a quadratic Sample sizes
based on
incorrect

assumptions can
lower power

response instead of on an essentially linear response. Thenthe linear contrast
(on which we spent all our units to lower its variance) is estimating zero, and
the quadratic contrast, which in this case is the one with allthe interesting
information, has a high variance.

7.7 Further Reading and Extensions

When the null hypothesis is true, the treatment and error sums of squares
are distributed asσ2 times chi-square distributions. Mathematically, the ratio
of two independent chi-squares, each divided by their degrees of freedom,
has an F-distribution; thus the F-ratio has an F-distribution when the null is
true. When the null hypothesis is false, the error sum of squares still has
its chi-square distribution, but the treatment sum of squares has anoncentral
chi-squaredistribution. Here we briefly describe the noncentral chi-square.

If Z1, Z2, · · ·, Zn are independent normal random variables with mean 0
and variance 1, thenZ2

1 + Z2
2 + · · ·+ Z2

n (a sum of squares) has a chi-square
distribution withn degrees of freedom, denoted byχ2

n. If the Zi’s have vari-
anceσ2, then their sum of squares is distributed asσ2 times aχ2

n. Now
suppose that theZi’s are independent with meansδi and varianceσ2. Then
the sum of squaresZ2

1 +Z2
2 + · · ·+Z2

n has a distribution which isσ2 times a
noncentralchi-square distribution with n degrees of freedom and noncentral-
ity parameter

∑n
i=1 δ2

i /σ
2. Let χ2

n(ζ) denote a noncentral chi-square with n
degrees of freedom and noncentrality parameterζ. If the noncentrality pa-
rameter is zero, we just have an ordinary chi-square.

In Analysis of Variance, the treatment sum of squares has a distribution
that isσ2 times a noncentral chi-square distribution withg − 1 degrees of
freedom and noncentrality parameter

∑g
i=1 niα

2
i /σ

2. See Appendix A. The
mean square for treatments thus has a distribution

MStrt ∼
σ2

g − 1
χ2

g−1(

∑g
i=1 niα

2
i

σ2
) .

The expected value of a noncentral chi-square is the sum of its degrees of
freedom and noncentrality parameter, so the expected valueof the mean
square for treatments isσ2 +

∑g
i=1 niα

2
i /(g − 1). When the null is false,

the F-ratio is a noncentral chi-square divided by a central chi-square (each
divided by its degrees of freedom); this is a noncentral F-distribution, with
the noncentrality of the F coming from the noncentrality of the numerator
chi-square.
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7.8 Problems

Find the smallest sample size giving power of at least .7 whentestingExercise 7.1
equality of six groups at the .05 level whenζ = 4n.

We are planning an experiment comparing three fertilizers.We will haveExercise 7.2
six experimental units per fertilizer and will do our test atthe 5% level. One
of the fertilizers is the standard and the other two are new; the standard fer-
tilizer has an average yield of 10, and we would like to be ableto detect the
situation when the new fertilizers have average yield 11 each. We expect the
error variance to be about 4. What sample size would we need ifwe want
power .9?

What is the probability of rejecting the null hypothesis when there areExercise 7.3
four groups, the sum of the squared treatment effects is 6, the error variance
is 3, the group sample sizes are 4, andE is .01?

I conduct an experiment doing fixed-level testing withE = .05; I knowExercise 7.4
that for a given set of alternatives my power will be .85. Trueor False?

1. The probability of rejecting the null hypothesis when thenull hypoth-
esis is false is .15.

2. The probability of failing to reject the null hypothesis when the null
hypothesis is true is .05.

We are planning an experiment on the quality of video tape andhaveExercise 7.5
purchased 24 tapes, four tapes from each of six types. The sixtypes of tape
were 1) brand A high cost, 2) brand A low cost, 3) brand B high cost, 4)
brand B low cost, 5) brand C high cost, 6) brand D high cost. Each tape
will be recorded with a series of standard test patterns, replayed 10 times,
and then replayed an eleventh time into a device that measures the distortion
on the tape. The distortion measure is the response, and the tapes will be
recorded and replayed in random order. Previous similar tests had an error
variance of about .25.

a) What is the power when testing at the .01 level if the high cost tapes
have an average one unit different from the low cost tapes?

b) How large should the sample size have been to have a 95% brand A
versus brand B confidence interval of no wider than 2?

We are interested in the effects of soy additives to diets on the blood con-Problem 7.1
centration of estradiol in premenopausal women. We have historical data on
six subjects, each of whose estradiol concentration was measured at the same
stage of the menstrual cycle over two consecutive cycles. Onthe log scale,
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the error variance is about .109. In our experiment, we will have a pretreat-
ment measurement, followed by a treatment, followed by a posttreatment
measurement. Our response is the difference (post− pre), so the variance
of our response should be about .218. Half the women will receive the soy
treatment, and the other half will receive a control treatment.

How large should the sample size be if we want power .9 when testing
at the .05 level for the alternative that the soy treatment raises the estradiol
concentration 25% (about .22 log units)?

Nondigestible carbohydrates can be used in diet foods, but they may have Problem 7.2
effects on colonic hydrogen production in humans. We want totest to see if
inulin, fructooligosaccharide, and lactulose are equivalent in their hydrogen
production. Preliminary data suggest that the treatment means could be about
45, 32, and 60 respectively, with the error variance conservatively estimated
at 35. How many subjects do we need to have power .95 for this situation
when testing at theEI = .01 level?

Consider the situation of Exercise 3.5. The data we have appear to de- Problem 7.3
pend linearly on delay with no quadratic component. Supposethat the true
expected value for the contrast with coefficients (1,-2,1) is 1 (representing a
slight amount of curvature) and that the error variance is 60. What sample
size would be needed to have power .9 when testing at the .01 level?
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Chapter 8

Factorial Treatment Structure

We have been working with completely randomized designs, whereg treat-
ments are assigned at random toN units. Up till now, the treatments have had
no structure; they were justg treatments.Factorial treatment structureex- Factorials

combine the
levels of two or
more factors to

create treatments

ists when theg treatments are the combinations of the levels of two or more
factors. We call these combination treatmentsfactor-level combinationsor
factorial combinationsto emphasize that each treatment is a combination of
one level of each of the factors. We have not changed the randomization; we
still have a completely randomized design. It is just that now we are con-
sidering treatments that have a factorial structure. We will learn that there
are compelling reasons for preferring a factorial experiment to a sequence of
experiments investigating the factors separately.

8.1 Factorial Structure

It is best to start with some examples of factorial treatmentstructure. Lynch
and Strain (1990) performed an experiment with six treatments studying how
milk-based diets and copper supplements affect trace element levels in rat
livers. The six treatments were the combinations of three milk-based diets
(skim milk protein, whey, or casein) and two copper supplements (low and
high levels). Whey itself was not a treatment, and low copperwas not a
treatment, but a low copper/whey diet was a treatment. Nelson, Kriby, and
Johnson (1990) studied the effects of six dietary supplements on the occur-
rence of leg abnormalities in young chickens. The six treatments were the
combinations of two levels of phosphorus supplement and three levels of
calcium supplement. Finally, Hunt and Larson (1990) studied the effects of



166 Factorial Treatment Structure

Table 8.1: Barley sprouting data.

Age of Seeds (weeks)
ml H2O 1 3 6 9 12

4
11
9
6

7
16
17

9
19
35

13
35
28

20
37
45

8
8
3
3

1
7
3

5
9
9

1
10
9

11
15
25

sixteen treatments on zinc retention in the bodies of rats. The treatments were
the combinations of two levels of zinc in the usual diet, two levels of zinc in
the final meal, and four levels of protein in the final meal. Again, it is the
combination of factor levels that makes a factorial treatment.

We begin our study of factorial treatment structure by looking at two-
factor designs. We may present the responses of a two-way factorial as a tableTwo-factor

designs with rows corresponding to the levels of one factor (which wecall factor A)
and columns corresponding to the levels of the second factor(factor B). For
example, Table 8.1 shows the results of an experiment on sprouting barley
(these data reappear in Problem 8.1). Barley seeds are divided into 30 lots of
100 seeds each. The 30 lots are divided at random into ten groups of three
lots each, with each group receiving a different treatment.The ten treatments
are the factorial combinations of amount of water used for sprouting (factor
A) with two levels, and age of the seeds (factor B) with five levels. The
response measured is the number of seeds sprouting.

We use the notationyijk to indicate responses in the two-way factorial.
In this notation,yijk is thekth response in the treatment formed from theithMultiple

subscripts denote
factor levels and
replication

level of factor A and thejth level of factor B. Thus in Table 8.1,y2,5,3 = 25.
For a four by three factorial design (factor A has four levels, factor B has three
levels), we could tabulate the responses as in Table 8.2. This table is just a
convenient representation that emphasizes the factorial structure; treatments
were still assigned to units at random.

Notice in both Tables 8.1 and 8.2 that we have the same number of re-
sponses in every factor-level combination. This is calledbalance. BalanceBalanced data

have equal
replication

turns out to be important for the standard analysis of factorial responses. We
will assume for now that our data are balanced withn responses in every
factor-level combination. Chapter 10 will consider analysis of unbalanced
factorials.
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Table 8.2: A two-way factorial treatment structure.
B1 B2 B3

A1

y111
...

y11n

y121
...

y12n

y131
...

y13n

A2

y211
...

y21n

y221
...

y22n

y231
...

y23n

A3

y311
...

y31n

y321
...

y32n

y331
...

y33n

A4

y411
...

y41n

y421
...

y42n

y431
...

y43n

8.2 Factorial Analysis: Main Effect and Interaction

When our treatments have a factorial structure, we may also use a factorial
analysis of the data. The major concepts of this factorial analysis are main
effect and interaction.

Consider a two-way factorial where factor A has four levels and factor B
has three levels, as in Table 8.2. There areg = 12 treatments, with 11 degrees
of freedom between the treatments. We usei andj to index the levels of
factors A and B. The expected values in the twelve treatmentsmay be denoted
µij, coefficients for a contrast in the twelve means may be denotedwij (where
as usual

∑
ij wij = 0), and the contrast sum is

∑
ij wijµij . Similarly, yij•

is the observed mean in theij treatment group, andyi•• andy•j• are the Treatment, row,
and column

means
observed means for all responses having leveli of factor A or levelj of B,
respectively. It is often convenient to visualize the expected values, means,
and contrast coefficients in matrix form, as in Table 8.3.

For the moment, forget about factor B and consider the experiment to be
a completely randomized design just in factor A (itis completely randomized
in factor A). Analyzing this design with four “treatments,”we may compute
a sum of squares with 3 degrees of freedom. The variation summarized by Factor A ignoring

factor Bthis sum of squares is denotedSSA and depends on just the level of factor A.
The expected value for the mean of the responses in rowi is µ + αi, where
we assume that

∑
i αi = 0.
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Table 8.3: Matrix arrangement of (a) expected values, (b) means, and (c)
contrast coefficients in a four by three factorial.

(a)

µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

µ41 µ42 µ43

(b)

y11• y12• y13•

y21• y22• y23•

y31• y32• y33•

y41• y42• y43•

(c)

w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43

Now, reverse the roles of A and B. Ignore factor A and considerthe ex-
periment to be a completely randomized design in factor B. Wehave an ex-Factor B ignoring

factor A periment with three “treatments” and treatment sum of squaresSSB with 2
degrees of freedom. The expected value for the mean of the responses in
columnj is µ + βj , where we assume that

∑
j βj = 0.

The effectsαi andβj are called themain effectsof factors A and B,
respectively. The main effect of factor A describes variation due solely to theA main effect

describes
variation due to a
single factor

level of factor A (row of the response matrix), and the main effect of factor B
describes variation due solely to the level of factor B (column of the response
matrix). We have analogously thatSSA andSSB are main-effects sums of
squares.

The variation described by the main effects is variation that occurs from
row to row or column to column of the data matrix. The example has twelve
treatments and 11 degrees of freedom between treatments. Wehave de-
scribed 5 degrees of freedom using the A and B main effects, sothere mustInteraction is

variation not
described by
main effects

be 6 more degrees of freedom left to model. These 6 remaining degrees of
freedom describe variation that arises from changing rows and columns si-
multaneously. We call such variationinteractionbetween factors A and B,
or between the rows and columns, and denote it bySSAB .

Here is another way to think about main effect and interaction. The main
effect of rows tells us how the response changes when we move from one
row to another, averaged across all columns. The main effectof columns
tells us how the response changes when we move from one columnto an-
other, averaged across all rows. The interaction tells us how the change in re-
sponse depends on columns when moving between rows, or how the change
in response depends on rows when moving between columns. Interaction be-
tween factors A and B means that the change in mean response going from
level i1 of factor A to leveli2 of factor A depends on the level of factor B
under consideration. We can’t simply say that changing the level of factor A
changes the response by a given amount; we may need a different amount of
change for each level of factor B.
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Table 8.4: Sample main-effects and interaction contrast coefficientsfor
a four by three factorial design.

A

-3 -3 -3
-1 -1 -1
1 1 1
3 3 3

1 1 1
-1 -1 -1
-1 -1 -1
1 1 1

-1 -1 -1
3 3 3

-3 -3 -3
1 1 1

B

-1 0 1
-1 0 1
-1 0 1
-1 0 1

1 -2 1
1 -2 1
1 -2 1
1 -2 1

AB

3 0 -3
1 0 -1

-1 0 1
-3 0 3

-1 0 1
1 0 -1
1 0 -1

-1 0 1

1 0 -1
-3 0 3
3 0 -3

-1 0 1

-3 6 -3
-1 2 -1
1 -2 1
3 -6 3

1 -2 1
-1 2 -1
-1 2 -1
1 -2 1

-1 2 -1
3 -6 3

-3 6 -3
1 -2 1

We can make our description of main-effect and interaction variation
more precise by using contrasts. Any contrast in factor A (ignoring B) has
four coefficientsw⋆

i and observed valuew⋆({yi••}). This is a contrast in the
four row means. We can make an equivalent contrast in the twelve treatment
means by using the coefficientswij = w⋆

i /3. This contrast just repeatsw⋆
i

across each row and then divides by the number of columns to match up
with the division used when computing row means. Factor A hasfour levels,
so three orthogonal contrasts partitionSSA. There are three analogous or- Main-effects

contraststhogonalwij contrasts that partition the same variation. (See Question8.1.)
Table 8.4 shows one set of three orthogonal contrasts describing the factor A
variation; many other sets would do as well.

The variation inSSB can be described by two orthogonal contrasts be-
tween the three levels of factor B. Equivalently, we can describe SSB with
orthogonal contrasts in the twelve treatment means, using amatrix of contrast
coefficients that is constant on columns (that is,w1j = w2j = w3j = w4j

for all columnsj). Table 8.4 also shows one set of orthogonal contrasts for
factor B.
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Inspection of Table 8.4 shows that not only are the factor A contrasts
orthogonal to each other, and the factor B contrasts orthogonal to each other,A contrasts

orthogonal to B
contrasts for
balanced data

but the factor A contrasts are also orthogonal to the factor Bcontrasts. This
orthogonality depends on balanced data and is the key reasonwhy balanced
data are easier to analyze.

There are 11 degrees of freedom between the twelve treatments, and the
A and B contrasts describe 5 of those 11 degrees of freedom. The 6 addi-
tional degrees of freedom are interaction degrees of freedom; sample inter-
action contrasts are also shown in Table 8.4. Again, inspection shows thatInteraction

contrasts the interaction contrasts are orthogonal to both sets of main-effects contrasts.
Thus the 11 degrees of freedom between-treatment sum of squares can be
partitioned using contrasts intoSSA, SSB , andSSAB.

Look once again at the form of the contrast coefficients in Table 8.4.
Row-main-effects contrast coefficients are constant alongeach row, and add
to zero down each column. Column-main-effects contrasts are constant downContrast

coefficients
satisfy zero-sum
restrictions

each column and add to zero along each row. Interaction contrasts add to zero
down columns and along rows. This pattern of zero sums will occur again
when we look at parameters in factorial models.

8.3 Advantages of Factorials

Before discussing advantages, let us first recall the difference between facto-
rial treatment structure and factorial analysis. Factorial analysis is an optionFactorial structure

versus analysis we have when the treatments have factorial structure; we canalways ignore
main effects and interaction and just analyze theg treatment groups.

It is easiest to see the advantages of factorial treatment structure by com-
paring it to a design wherein we only vary the levels of a single factor. This
second design is sometimes referred to as “one-at-a-time.”The sproutingOne-at-a-time

designs data in Table 8.1 were from a factorial experiment where the levels of sprout-
ing water and seed age were varied. We might instead use two one-at-a-time
designs. In the first, we fix the sprouting water at the lower level and vary the
seed age across the five levels. In the second experiment, we fix the seed age
at the middle level, and vary the sprouting water across two levels.

Factorial treatment structure has two advantages:

1. When the factors interact, factorial experiments can estimate the inter-
action. One-at-at-time experiments cannot estimate interaction. Use
of one-at-a-time experiments in the presence of interaction can lead to
serious misunderstanding of how the response varies as a function of
the factors.
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2. When the factors do not interact, factorial experiments are more ef-
ficient than one-at-a-time experiments, in that the units can be used
to assess the (main) effects for both factors. Units in a one-at-a-time
experiment can only be used to assess the effects of one factor.

There are thus two times when you should use factorial treatment structure— Use factorials!
when your factors interact, and when your factors do not interact. Factorial
structure is a win, whether or not we have interaction.

The argument for factorial analysis is somewhat less compelling. We
usually wish to have a model for the data that is as simple as possible. When
there is no interaction, then main effects alone are sufficient to describe the
means of the responses. Such a model (or data) is said to beadditive. Additive model

has only main
effects

An additive model is simpler (in particular, uses fewer degrees of freedom)
than a model with a mean for every treatment. When interaction is moderate
compared to main effects, the factorial analysis is still useful. However, in
some experiments the interactions are so large that the ideaof main effects as
the primary actors and interaction as fine tuning becomes untenable. For such
experiments it may be better to revert to an analysis ofg treatment groups,
ignoring factorial structure.

Pure interactive response Example 8.1
Consider a chemistry experiment involving two catalysts where, unknown to
us, both catalysts must be present for the reaction to proceed. The response is
one or zero depending on whether or not the reaction occurs. The four treat-
ments are the factorial combinations of Catalyst A present or absent, and
Catalyst B present or absent. We will have a response of one for the com-
bination of both catalysts, but the other three responses will be zero. While
it is possible to break this down as main effect and interaction, it is clearly
more comprehensible to say that the response is one when bothcatalysts are
present and zero otherwise. Note here that the factorial treatment structure
was still a good idea, just not the main-effects/interactions analysis.

8.4 Visualizing Interaction

An interaction plot, also called aprofile plot, is a graphic for assessing the rel-
ative size of main effects and interaction; an example is shown in Figure 8.1. Interaction plots

connect-the-dots
between

treatment means

Consider first a two-factor factorial design. We construct an interaction plot
in a “connect-the-dots” fashion. Choose a factor, say A, to put on the hori-
zontal axis. For each factor level combination, plot the pair (i, yij•). Then
“connect-the-dots” corresponding to the points with the same level of factor
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Table 8.5: Iron levels in liver tissue, mg/g dry weight.

Diet Control Cu deficient

Skim milk protein .70 1.28
Whey .93 1.87
Casein 2.11 2.53

B; that is, connect(1, y1j•), (2, y2j•), up to (a, yaj•). In our four by three
prototype factorial, the level of factor A will be a number between one and
four; there will be three points plotted above one, three points plotted above
two, and so on; and there will be three “connect-the-dots” lines, one for each
level of factor B.

For additive data, the change in response moving between levels of factor
A does not depend on the level of factor B. In an interaction plot, that simi-
larity in change of level shows up as parallel line segments.Thus interactionInteraction plot

shows relative
size of main
effects and
interaction

is small compared to the main effects when the connect-the-dots lines are
parallel, or nearly so. Even with visible interaction, the degree of interaction
may be sufficiently small that the main-effects-plus-interaction description
is still useful. It is worth noting that we sometimes get visually different
impressions of the interaction by reversing the roles of factors A and B.

Example 8.2 Rat liver iron
Table 8.5 gives the treatment means for liver tissue iron in the Lynch and
Strain (1990) experiment. Figure 8.1 shows an interaction plot with milk diet
factor on the horizontal axis and the copper treatments indicated by different
lines. The lines seem fairly parallel, indicating little interaction.

Figure 8.1 points out a deficiency in the interaction plot as we have de-
fined it. The observed means that we plot are subject to error,so the lineInterpret “parallel”

in light of
variability

segments will not be exactly parallel—even if the true meansare additive.
The degree to which the lines are not parallel must be interpreted in light of
the likely size of the variation in the observed means. As thedata become
more variable, greater departures from parallel line segments become more
likely, even for truly additive data.

Example 8.3 Rat liver iron, continued

The line segments are fairly parallel, so there is not much evidence of inter-
action, though it appears that the effect of copper may be somewhat larger for
milk diet 2. The mean square for error in the Lynch and Strain experiment
was approximately .26, and each treatment had replicationn = 5. Thus the
standard errors of a treatment mean, the difference of two treatment means,
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Figure 8.1: Interaction plot of liver iron data with diet factor on
the horizontal axis, using MacAnova.

and the difference of two such differences are about .23, .32, and .46 respec-
tively. The slope of a line segment in the interaction plot isthe difference
of two treatment means. The slopes from milk diet 1 to 2 are .23and .59,
and the slopes from milk diets 2 to 3 are 1.18 and .66; each of these slopes
was calculated as the difference of two treatment means. Thedifferences
of the slopes (which have standard error .46 because they aredifferences of
differences of means) are .36 and .48. Neither of these differences is large
compared to its standard error, so there is still no evidencefor interaction.

We finish this section with interaction plots for the other two nutrition
experiments described in the first section.

Chick body weights Example 8.4
Figure 8.2 is an interaction plot of the chick body weights from the Nelson,
Kriby, and Johnson (1990) data with the calcium factor on thehorizontal
axis and a separate line for each level of phosphorus. Here, interaction is
clear. At the upper level of phosphorus, chick weight does not depend on
calcium. At the lower level of phosphorus, weight decreaseswith increasing
calcium. Thus the effect of changing calcium levels dependson the level of
phosphorus.
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Figure 8.2: Interaction plot of chick body weights data with
calcium on the horizontal axis, using Minitab.

Example 8.5 Zinc retention
Finally, let’s look at the zinc retention data of Hunt and Larson (1990). This
is a three-factor factorial design (four by two by two), so weneed to modify
our approach a bit. Figure 8.3 is an interaction plot of percent zinc retention
with final meal protein on the horizontal axis. The other fourfactor-level
combinations are coded 1 (low meal zinc, low diet zinc), 2 (low meal zinc,
high diet zinc), 3 (high meal zinc, low diet zinc), and 4 (highmeal zinc, high
diet zinc). Lines 1 and 2 are low meal zinc, and lines 3 and 4 arehigh meal
zinc. The 1,2 pattern across protein is rather different from the 3,4 pattern
across protein, so we conclude that meal zinc and meal protein interact.

On the other hand, the 1,3 pair of lines (low diet zinc) has thesame basic
pattern as the 2,4 pair of lines (high diet zinc), so the average of the 1,3 lines
should look like the average of the 2,4 lines. This means thatdiet zinc and
meal protein appear to be additive.
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Figure 8.3: Interaction plot of percent zinc retention data with
meal protein on the horizontal axis, using MacAnova.

8.5 Models with Parameters

Let us now look at the factorial analysis model for a two-way factorial treat-
ment structure. Factor A hasa levels, factor B hasb levels, and there are A has a levels, B

has b levels, n
replications

n experimental units assigned to each factor-level combination. Thekth re-
sponse at theith level of A andjth level of B isyijk. The model is

yijk = µ + αi + βj + αβij + ǫijk ,

wherei runs from 1 toa, j runs from 1 tob, k runs from 1 ton, and theǫijk’s Factorial model

are independent and normally distributed with mean zero andvarianceσ2.
Theαi, βj , andαβij parameters in this model are fixed, unknown constants.
There is a total ofN = nab experimental units.

Another way of viewing the model is that the table of responses is broken
down into a set of tables which, when summed element by element, give the
response. Display 8.1 is an example of this breakdown for a three by two
factorial withn = 1.

The termµ is called the overall mean; it is the expected value for the
responses averaged across all treatments. The termαi is called the main
effect of A at leveli. It is the average effect (averaged over levels of B) for Main effects
level i of factor A. Since the average of all the row averages must be the
overall average, these row effectsαi must sum to zero. The same is true for



176 Factorial Treatment Structure

responses overall mean row effects


y111 y121

y211 y221

y311 y321


 =




µ µ
µ µ
µ µ


 +




α1 α1

α2 α2

α3 α3


 +

column effects interaction effects


β1 β2

β1 β2

β1 β2


 +




αβ11 αβ12

αβ21 αβ22

αβ31 αβ32


 +

random errors


ǫ111 ǫ121

ǫ211 ǫ221

ǫ311 ǫ321




Display 8.1: Breakdown of a three by two table into factorial effects.

βj , which is the main effect of factor B at levelj. The termαβij is called the
interaction effect of A and B in theij treatment. Do not confuseαβij withInteraction effects
the product ofαi andβj ; they are different ideas. The interaction effect is a
measure of how far the treatment means differ from additivity. Because the
average effect in theith row must beαi, the sum of the interaction effects in
the ith row must be zero. Similarly, the sum of the interaction effects in the
jth column must be zero.

The expected value of the response for treatmentij is

E yijk = µ + αi + βj + αβij .

There areab different treatment means, but we have1 + a + b + ab pa-Expected value
rameters, so we have vastly overparameterized. Recall thatin Chapter 3 we
had to choose a set of restrictions to make treatment effectswell defined; we
must again choose some restrictions for factorial models. We will use the
following set of restrictions on the parameters:Zero-sum

restrictions on
parameters

0 =
a∑

i=1

αi =
b∑

j=1

βj =
a∑

i=1

αβij =
b∑

j=1

αβij .

This set of restrictions is standard and matches the description of the param-
eters in the preceding paragraph. Theαi values must sum to 0, so at most
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µ̂ = y•••
α̂i = yi•• − µ̂ = yi•• − y•••

β̂j = y•j• − µ̂ = y•j• − y•••

α̂βij = yij• − µ̂ − α̂i − β̂j

= yij• − yi•• − y•j• + y•••

Display 8.2: Estimators for main effects and
interactions in a two-way factorial.

a − 1 of them can vary freely; there area − 1 degrees of freedom for factor
A. Similarly, theβj values must sum to 0, so at mostb − 1 of them can vary
freely, givingb − 1 degrees of freedom for factor B. For the interaction, we Main-effect and

interaction
degrees of

freedom

haveab effects, but they must add to 0 when summed overi or j. We can
show that this leads to(a− 1)(b − 1) degrees of freedom for the interaction.
Note that the parameters obey the same restrictions as the corresponding con-
trasts: main-effects contrasts and effects add to zero across the subscript, and
interaction contrasts and effects add to zero across rows orcolumns.

When we add the degrees of freedom for A, B, and AB, we geta − 1
+ b − 1 + (a − 1)(b − 1) = ab − 1 = g − 1. That is, theab − 1 degrees Main effects and

interactions
partition between

treatments
variability

of freedom between the means of theab factor level combinations have been
partitioned into three sets: A, B, and the AB interaction. Within each factor-
level combination there aren − 1 degrees of freedom about the treatment
mean. The error degrees of freedom areN − g = N − ab = (n − 1)ab,
exactly as we would get ignoring factorial structure.

The Lynch and Strain data had a three by two factorial structure with
n = 5. Thus there are 2 degrees of freedom for factor A, 1 degree of freedom
for factor B, 2 degrees of freedom for the AB interaction, and24 degrees of
freedom for error.

Display 8.2 gives the formulae for estimating the effects ina two-way
factorial. Estimateµ by the mean of all the datay•••. Estimateµ + αi by
the mean of all responses that had treatment A at leveli, yi••. To get an
estimate ofαi itself, subtract our estimate ofµ from our estimate ofµ + αi. Estimating

factorial effectsDo similarly for factor B, usingy•j• as an estimate ofµ+βj. We can extend
this basic idea to estimate the interaction termsαβij . The expected value in
treatmentij isµ+αi+βj+αβij , which we can estimate byyij•, the observed
treatment mean. To get an estimate ofαβij , simply subtract the estimates of
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Table 8.6: Total free amino acids in cheddar cheese after
56 days of ripening.

Control R50#10 R21#2 blend

1.697 2.032 2.211 2.091
1.601 2.017 1.673 2.255
1.830 2.409 1.973 2.987

the lower order parameters (parameters that contain no additional subscripts
beyond those found in this term) from the estimate of the treatment mean.

We examine the estimated effects to determine which treatment levels
lead to large or small responses, and where factors interact(that is, which
combinations of levels have large interaction effects).

Example 8.6 Nonstarter bacteria in cheddar cheese
Cheese is made by bacterial fermentation of Pasteurized milk. Most of the
bacteria are purposefully added; these are the starter cultures. Some “wild”
bacteria are also present in cheese; these are nonstarter bacteria. This ex-
periment explores how intentionally-added nonstarter bacteria affect cheese
quality. We use two strains of nonstarter bacteria: R50#10 and R21#2. Our
four treatments will be control, addition of R50, addition of R21, and addi-
tion of a blend of R50 and R21. Twelve cheeses are made, three for each of
the four treatments, with the treatments being randomized to the cheeses. Af-
ter 56 days of ripening, each cheese is measured for total free amino acids (a
measure of bacterial activity related to cheese quality). Responses are given
in Table 8.6 (data from Peggy Swearingen).

Let’s estimate the effects in these data. The four treatmentmeans are

y11• = (1.697 + 1.601 + 1.830)/3 = 1.709 Control
y21• = (2.032 + 2.017 + 2.409)/3 = 2.153 R50
y12• = (2.211 + 1.673 + 1.973)/3 = 1.952 R21
y22• = (2.091 + 2.255 + 2.987)/3 = 2.444 Blend.

The grand mean is the total of all the data divided by 12,

y••• = 24.776/12 = 2.065 ;

the R50 (row or first factor) means are

y1•• = (1.709 + 1.952)/2 = 1.831

y2•• = (2.153 + 2.444)/2 = 2.299 ;



8.6 The Analysis of Variance for Balanced Factorials 179

and the R21 (column or second factor) means are

y•1• = (1.709 + 2.153)/2 = 1.931

y•2• = (1.952 + 2.444)/2 = 2.198 .

Using the formulae in Display 8.2 we have the estimates

µ̂ = y••• = 2.065

α̂1 = 1.831 − 2.065 = −.234
α̂2 = 2.299 − 2.065 = .234

β̂1 = 1.931 − 2.065 = −.134

β̂2 = 2.198 − 2.065 = .134

.

Finally, use the treatment means and the previously estimated effects to get
the estimated interaction effects:

α̂β11 = 1.709 − (2.065 + −.234 + −.134) = .012

α̂β21 = 2.153 − (2.065 + .234 + −.134) = −.012

α̂β12 = 1.952 − (2.065 + −.234 + .134) = −.012

α̂β22 = 2.444 − (2.065 + .234 + .134) = .012 .

8.6 The Analysis of Variance for Balanced Factorials

We have described the Analysis of Variance as an algorithm for partitioning
variability in data, a method for testing null hypotheses, and a method for
comparing models for data. The same roles hold in factorial analysis, but we
now have more null hypotheses to test and/or models to compare.

We partition the variability in the data by using ANOVA. There is a
source of variability for every term in our model; for a two-factor analy- ANOVA source

for every term in
model

sis, these are factor A, factor B, the AB interaction, and error. In a one-factor
ANOVA, we obtained the sum of squares for treatments by first squaring an
estimated effect (for example,̂αi

2), then multiplying by the number of units
receiving that effect (ni), and finally adding over the index of the effect (for Sum of squares
example, add overi for αi). The total sum of squares was found by sum-
ming the squared deviations of the data from the overall mean, and the error
sum of squares was found by summing the squared deviations ofthe data
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Term Sum of Squares Degrees of Freedom

A
a∑

i=1

bn(α̂i)
2 a − 1

B
b∑

j=1

an(β̂j)
2 b − 1

AB
a,b∑

i=1,j=1

n(α̂βij)
2 (a − 1)(b − 1)

Error
a,b,n∑

i=1,j=1,k=1

(yijk − yij•)
2 ab(n − 1)

Total
a,b,n∑

i=1,j=1,k=1

(yijk − y•••)
2 abn − 1

Display 8.3:Sums of squares in a balanced two-way factorial.

from the treatment means. We follow exactly the same programfor balanced
factorials, obtaining the formulae in Display 8.3.

The sums of squares must add up in various ways. For example

SST = SSA + SSB + SSAB + SSE .

Also recall thatSSA, SSB, andSSAB must add up to the sum of squaresSS partitions
between treatments, when considering the experiment to have g = ab treat-
ments, so that

a,b∑

i=1,j=1

n(yij• − y•••)
2 = SSA + SSB + SSAB .

These identities can provide useful checks on ANOVA computations.
We display the results of an ANOVA decomposition in an Analysis of

Variance table. As before, the ANOVA table has columns for source, degrees
of freedom, sum of squares, mean square, and F. For the two-way factorial,Two-factor

ANOVA table the sources of variation are factor A, factor B, the AB interaction, and error,
so the table looks like this:
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Source DF SS MS F

A a-1 SSA SSA/(a − 1) MSA/MSE

B b-1 SSB SSB/(b − 1) MSB/MSE

AB (a-1)(b-1) SSAB SSAB/[(a − 1)(b − 1)] MSAB/MSE

Error (n-1)ab SSE SSE/[(n − 1)ab]

Tests or model comparisons require assumptions on the errors. We have
assumed that the errorsǫijk are independent and normally distributed with Normality needed

for testingconstant variance. When the assumptions are true, the sums of squares as
random variables are independent of each other and the testsdiscussed below
are valid.

To test the null hypothesisH0 : α1 = α2 = . . . = αa = 0 against
the alternative that someαi’s are not zero, we use the F-statisticMSA/MSE

with a−1 andab(n−1) degrees of freedom. This is a test of the main effect of F-tests for
factorial null
hypotheses

A. Thep-value is calculated as before. To testH0 : β1 = β2 = . . . = βb = 0
against the null hypothesis that at least oneβ is nonzero, use the F-statistic
MSB/MSE, with b − 1 andab(n − 1) degrees of freedom. Similarly, the
test statistic for the null hypothesis that theαβ interaction terms are all zero
is MSAB/MSE , with (a − 1)(b − 1) andab(n − 1) degrees of freedom.
Alternatively, these tests may be viewed as comparisons between models that
include and exclude the terms under consideration.

Nonstarter bacteria, continued Example 8.7

We compute sums of squares using the effects of Example 8.6 and the for-
mulae of Display 8.3.

SSR50 = 6 × ((−.234)2 + .2342) = .656

SSR21 = 6 × ((−.134)2 + .1342) = .214

SSR50.R21 = 3 × (.0122 + (−.012)2 + (−.012)2 + .0122) = .002

ComputingSSE is more work:

SSE = (1.697 − 1.709)2 + (2.032 − 2.153)2 + (2.211 − 1.952)2

+ (2.091 − 2.444)2 + · · · + (2.987 − 2.444)2 = .726 .

We havea = 2 andb = 2, so the main effects and the two-factor interaction
have 1 degree of freedom each; there are12−4 = 8 error degrees of freedom.
Combining, we get the ANOVA table:
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Listing 8.1: SAS output for nonstarter bacteria.

General Linear Models Procedure

Dependent Variable: TFAA

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 0.87231400 0.29077133 3.21 0.0834

Error 8 0.72566267 0.09070783

Corrected Total 11 1.59797667

General Linear Models Procedure

Dependent Variable: TFAA

Source DF Type I SS Mean Square F Value Pr > F

R50 1 0.65613633 0.65613633 7.23 0.0275

R21 1 0.21440133 0.21440133 2.36 0.1627

R50*R21 1 0.00177633 0.00177633 0.02 0.8922

Source DF SS MS F p-value

R50 1 .656 .656 7.23 .028
R21 1 .214 .214 2.36 .16
R50.R21 1 .002 .002 .02 .89
Error 8 .726 .091

The largep-values indicate that we have no evidence that R21 interactswith
R50 or causes a change in total free amino acids. Thep-value of .028 indi-
cates moderate evidence that R50 may affect total free aminoacids.

Listing 8.1 shows SAS output for these data. Note that SAS gives the
ANOVA table in two parts. In the first, all model degrees of freedom are
combined into a single 3 degree-of-freedom term. In the second, the main
effects and interactions are broken out individually.

8.7 General Factorial Models

The model and analysis of a multi-way factorial are similar to those of a
two-way factorial. Consider a four-way factorial with factors A, B, C and D,
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which match with the lettersα, β, γ, andδ. The model is

yijklm = µ + αi + βj + γk + δl

+ αβij + αγik + αδil + βγjk + βδjl + γδkl

+ αβγijk + αβδijl + αγδikl + βγδjkl

+ αβγδijkl

+ ǫijklm .

The first line contains the overall mean and main effects for the four factors;
the second line has all six two-factor interactions; the third line has three-
factor interactions; the fourth line has the four-factor interaction; and the last
line has the error. Just as a two-factor interaction describes how a main effect
changes depending on the level of a second factor, a three-factor interaction Multi-factor

interactionslike αβγijk describes how a two-factor interaction changes depending on
the level of a third factor. Similarly, four-factor interactions describe how
three-factor interactions depend on a fourth factor, and soon for higher order
interactions.

We still have the assumption that theǫ’s are independent normals with
mean 0 and varianceσ2. Analogous with the two-factor case, we restrict our Zero-sum

restrictions on
parameters

effects so that they will add to zero when summed over any subscript. For
example,

0 =
∑

l

δl =
∑

k

βγjk =
∑

j

αβδijl =
∑

i

αβγδijkl .

These zero-sum restrictions make the model parameters unique. Theabcd
− 1 degrees of freedom between theabcd treatments are assorted among the
terms as follows. Each term contains some number of factors—one, two,
three, or four—and each factor has some number of levels—a, b, c, or d. To Degrees of

freedom for
general factorials

get the degrees of freedom for a term, subtract one from the number of levels
for each factor in the term and take the product. Thus, for theABD term, we
have(a − 1)(b − 1)(d − 1) degrees of freedom.

Effects in the model are estimated analogously with how we estimated
effects for a two-way factorial, building up from overall mean, to main ef-
fects, to two-factor interactions, to three-factor interactions, and so on. The
estimate of the overall mean iŝµ =

∑
ijklm yijklm/N = y•••••. Main-effect Main effects and

two-factor
estimates as

before

and two-factor interaction estimates are just like for two-factor factorials, ig-
noring all factors but the two of interest. For example, to estimate a main
effect, say thekth level of factor C, we take the mean of all responses that
received thekth level of factor C, and subtract out the lower order estimated
effects, here just̂µ:

γ̂k = y••k•• − µ̂ .
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For a three-way interaction, say theijkth level of factors A, B, and C, weMulti-way effects
for general
factorials

take the mean response at theijk combination of factors A, B, and C, and
then subtract out the lower order terms—the overall mean; main effects of A,
B, and C; and two-factor interactions in A, B, and C:

α̂βγijk = yijk•• − (µ̂ + α̂i + β̂j + γ̂k + α̂βij + α̂γik + β̂γjk) .

Simply continue this general rule for higher order interactions.
The rules for computing sums of squares follow the usual pattern: square

each effect, multiply by the number of units that receive that effect, and addSums of squares
for general
factorials

over the levels. Thus,

SSABD =
∑

ijl

nc(α̂βδijl)
2 ,

and so on.
As with the two-factor factorial, the results of the Analysis of Variance

are summarized in a table with the usual columns and a row for each term in
the model. We test the null hypothesis that the effects in a given term are allANOVA and

F-tests for
multi-way factorial

zeroes by taking the ratio of the mean square for that term to the mean square
for error and comparing this observed F to the F-distribution with the corre-
sponding numerator and denominator degrees of freedom. Alternatively, we
can consider these F-tests to be tests of whether a given termis needed in a
model for the data.

It is clear by now that the computations for a multi-way factorial are
tedious at best and should be performed on a computer using statistical soft-
ware. However, you might be stranded on a desert island (or inan exam
room) and need to do a factorial analysis by hand. Here is a technique for
multi-way factorials that reorganizes the computations required for comput-
ing factorial effects; some find this easier for hand work. The general ap-Alternate

computational
algorithm

proach is to compute an effect, subtract it from the data, andthen compute
the next effect on the differences from the preceding step. This way we only
need to subtract out lower order terms once, and it is easier to keep track of
things.

First compute the overall mean̂µ and subtract it from all the data values.
Now, compute the mean of the differences at each level of factor A. Because
we have already subtracted out the overall mean, these meansare the esti-Estimate marginal

means and
subtract

mated effects for factor A. Now subtract these factor A effects from their
corresponding entries in the differences. Proceed similarly with the other
main effects, estimating and then sweeping the effects out of the differences.
To get a two-factor interaction, get the two-way table of difference means.
Because we have already subtracted out the grand mean and main effects,
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these means are the two-factor interaction effects. Continue by computing
two-way means and sweeping the effects out of the differences. Proceed up
through higher order interactions. As long as we proceed in ahierarchical
fashion, we will obtain the desired estimated effects.

8.8 Assumptions and Transformations

The validity of our inference procedures still depends on the accuracy of our
assumptions. We still need to check for normality, constantvariance, and Check

assumptionsindependence and take corrective action as required, just as we did in single-
factor models.

One new wrinkle that occurs for factorial data is that violations of as-
sumptions may sometimes follow the factorial structure. For example, we
may find that error variance is constant within a given level of factor B, but
differs among levels of factor B.

A second wrinkle with factorials is that the appropriate model for the
mean structure depends on the scale in which we are analyzingthe data.
Specifically, interaction terms may appear to be needed on one scale but not
on another. This is easily seen in the following example. Suppose that the Transformation

affects mean
structure

means for the factor level combinations follow the model

µij = M exp αi exp βj .

This model is multiplicative in the sense that changing levels of factor A or
B rescales the response by multiplying rather than adding tothe response.
If we fit the usual factorial model to such data, we will need the interaction
term, because an additive model won’t fit multiplicative data well. For log-
transformed data the mean structure is

log (µij) = log (M) + αi + βj .

Multiplicative data look additive after log transformation; no interaction term
is needed. Serendipitously, log transformations often fix nonconstant vari-
ance at the same time.

Some people find this confusing at first, and it begs the question of what
do we mean by interaction. How can the data have interaction on one scale
but not on another? Data are interactivewhen analyzed on a particular scale
if the main-effects-only model is inadequate and one or moreinteraction Interaction

depends on scaleterms are required. Whether or not interaction terms are needed depends
on the scale of the response.
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8.9 Single Replicates

Some factorial experiments are run with only one unit at eachfactor-level
combination (n = 1). Clearly, this will lead to trouble, because we have no
degrees of freedom for estimating error. What can we do? At this point, anal-No estimate of

pure error in
single replicates

ysis of factorials becomes art as well as science, because you must choose
among several approaches and variations on the approaches.None of these
approaches is guaranteed to work, because none provides theestimate of pure
experimental error that we can get from replication. If we use an approach
that has an error estimate that is biased upwards, then we will have a conser-
vative procedure. Conservative in this context means that thep-value that we
compute is generally larger than the truep-value; thus we reject null hypothe-
ses less often than we should and wind up with models with fewer terms than
might be appropriate. On the other hand, if we use a procedurewith an er-Biased estimates

of error lead to
biased tests

ror estimate that is biased downwards, then we will have a liberal procedure.
Liberal means that the computedp-value is generally smaller than the true
p-value; thus we reject null hypotheses too often and wind up with models
with too many terms.

The most common approach is to combine one or more high-orderin-
teraction mean squares into an estimate of error; that is, select one or more
interaction terms and add their sums of squares and degrees of freedom to getHigh-order

interactions can
estimate error

a surrogate error sum of squares and degrees of freedom. If the underlying
true interactions are null (zero), then the surrogate errormean square is an
unbiased estimate of error. If any of these interactions is nonnull, then the
surrogate error mean square tends on average to be a little bigger than error.
Thus, if we use a surrogate error mean square as an estimate oferror and
make tests on other effects, we will have tests that range from valid (when
interaction is absent) to conservative (when interaction is present).

This valid to conservative range for surrogate errors assumes that you
haven’t peeked at the data. It is very tempting to look at interaction mean
squares, decide that the small ones must be error and the large ones must beData snooping

makes MSE too
small

genuine effects. However, this approach tends to give you error estimates
that are too small, leading to a liberal test. It is generallysafer to choose the
mean squares to use as error before looking at the data.

A second approach to single replicates is to use an external estimate of
error. That is, we may have run similar experiments before, and we know
what the size of the random errors was in those experiments. Thus we mightExternal

estimates of error
are possible but
risky

use anMSE from a similar experiment in place of anMSE from this exper-
iment. Thismight work, but it is a risky way of proceeding. The reason it
is risky is that we need to be sure that the external estimate of error is really
estimating the error that we incurred during this experiment. If the size of the
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Table 8.7: Page faults for a CPU experiment.

Allocation

Algorithm Sequence Size 1 2 3

1 1 1 32 48 538
2 53 81 1901
3 142 197 5689

2 1 52 244 998
2 112 776 3621
3 262 2625 10012

3 1 59 536 1348
2 121 1879 4637
3 980 5698 12880

2 1 1 49 67 789
2 100 134 3152
3 233 350 9100

2 1 79 390 1373
2 164 1255 4912
3 458 3688 13531

3 1 85 814 1693
2 206 3394 5838
3 1633 10022 17117

random errors is not stable, that is, if the size of the randomerrors changes
from experiment to experiment or depends on the conditions under which the
experiment is run, then an external estimate of error will likely be estimating
something other than the error of this experiment.

A final approach is to use one of the models for interaction described in
the next chapter. These interaction models often allow us tofit the bulk of an Model interaction
interaction with relatively few degrees of freedom, leaving the other degrees
of freedom for interaction available as potential estimates of error.

CPU page faults Example 8.8

Some computers divide memory into pages. When a program runs, it is
allocated a certain number of pages of RAM. The program itself may require
more pages than were allocated. When this is the case, currently unused
pages are stored on disk. From time to time, a page stored on disk is needed;
this is called apage fault. When a page fault occurs, one of the currently
active pages must be moved to disk in order to make room for thepage that
must be brought in from disk. The trick is to choose a “good” page to send
out to disk, where “good” means a page that will not be used soon.
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Listing 8.2: SAS output for log page faults.

General Linear Models Procedure

Dependent Variable: LFAULTS

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 45 173.570364 3.857119 1353.60 0.0001

Error 8 0.022796 0.002850

Corrected Total 53 173.593160

Source DF Type I SS Mean Square F Value Pr > F

SEQ 2 24.6392528 12.3196264 4323.41 0.0001

SIZE 2 41.6916546 20.8458273 7315.56 0.0001

ALLOC 2 92.6972988 46.3486494 16265.43 0.0001

ALG 1 2.5018372 2.5018372 877.99 0.0001

SEQ*SIZE 4 0.8289576 0.2072394 72.73 0.0001

SEQ*ALLOC 4 9.5104719 2.3776180 834.39 0.0001

SEQ*ALG 2 0.0176369 0.0088184 3.09 0.1010

SIZE*ALLOC 4 0.5043045 0.1260761 44.24 0.0001

SIZE*ALG 2 0.0222145 0.0111073 3.90 0.0658

ALLOC*ALG 2 0.0600396 0.0300198 10.54 0.0057

SEQ*SIZE*ALLOC 8 1.0521223 0.1315153 46.15 0.0001

SEQ*ALLOC*ALG 4 0.0260076 0.0065019 2.28 0.1491

SEQ*SIZE*ALG 4 0.0145640 0.0036410 1.28 0.3548

SIZE*ALLOC*ALG 4 0.0040015 0.0010004 0.35 0.8365

The experiment consists of running different programs on a computer
under different configurations and counting the number of page faults. There
were two paging algorithms to study, and this is the factor ofprimary interest.
A second factor with three levels was the sequence in which system routines
were initialized. Factor three was the size of the program (small, medium,
or large memory requirements), and factor four was the amount of RAM
memory allocated (large, medium, or small). Table 8.7 showsthe number of
page faults that occurred for each of the 54 combinations.

Before computing any ANOVA’s, look at the data. There is no replica-
tion, so there is no estimate of error. We will need to use someof the inter-
actions as experimental error. The obvious choice is the four-way interaction
with 8 degrees of freedom. Eight is on the low end of acceptable; I’d like
to have 15 or 20, but I don’t know which other interactions I should use—
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Plot of LFSTDRES*LFPRED. Legend: A = 1 obs, B = 2 obs, etc.
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Figure 8.4: Studentized residuals versus predicted values for log pagefault
data, using SAS.

all three- and four-way interactions, perhaps? I will stay with the four-way
interaction as a proxy error term.

The second thing to notice is that the data range over severalorders of
magnitude and just look multiplicative. Increasing the program size or chang-
ing the allocation seems to double or triple the number of page faults, rather
than just adding a constant number. This suggests that a log transform of
the response is advisable, and we begin by analyzing the log number of page
faults.

Listing 8.2 gives the ANOVA for log page faults. All main effects are sig-
nificant, and all interactions involving just allocation, program size, and load
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Plot of LFSTDRES*NS. Legend: A = 1 obs, B = 2 obs, etc.
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Figure 8.5: Normal probability plot of studentized residuals for log page
fault data, using SAS.

sequence are significant. There is fairly strong evidence for an allocation by
algorithm interaction (p-value .006), but interactions that include sequence
and algorithm or size and algorithm are not highly significant.

The variance is fairly stable on this scale (see Figure 8.4),and normality
looks good too (Figure 8.5). Thus we believe that our inferences are fairly
sound.

The full model explains 173.6 SS; of that, 170.9 is explainedby alloca-
tion, size, load sequence, and their interactions. Thus while algorithm and
some of its interactions may be significant, their effects are tiny compared to
the other effects. This is clear in the side-by-side plot (Figure 8.6).
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Figure 8.6: Side-by-side plot for log page fault data, using
MacAnova. Factor labels size-z, sequence-q, allocation-c,
algorithm-g.

Since algorithm is the factor of interest, we examine it moreclosely. The
effects for algorithm are -.215 and .215. Recalling that thedata are on the log
scale, the difference from algorithm 1 to 2 is about a factor of exp(2×.215) =
1.54, so algorithm 2 produces about 1.54 times as many page faultsas does
algorithm 1. This is worth knowing, since page faults take a lot of time on
a computer. Looking at the algorithm by allocation interaction, we find the
effects

-.0249 .0249
-.0223 .0223
.0471 -.0471

Thus while algorithm 1 is considerably better overall, its comparative advan-
tage over algorithm 2 is a few percent less on small allocations.

8.10 Pooling Terms into Error

Pooling is the practice of adding sums of squares and degreesof freedom
for nonsignificant model terms with those of error to form a new (pooled
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together) error term for further testing. In statistical software, this is usuallyPooling leads to
biased estimates
of error

done by computing the ANOVA for a model that does not include the terms
to be pooled into error. I donot recommend pooling as standard practice,
because pooling may lead to biased estimates of the error.

Pooling may be advantageous if there are very few error degrees of free-
dom. In that case, the loss of power from possible overestimation of the error
may be offset by the increase in error degrees of freedom. Only consider
pooling a term into error ifRules for pooling

1. There are 10 or fewer error degrees of freedom, and

2. The term under consideration for pooling has an F-ratio less than 2.

Otherwise, do not pool.
For unbalanced factorials, refitting with a model that only includes re-

quired terms has other uses. See Chapter 10.

8.11 Hierarchy

A factorial model for data is calledhierarchical if the presence of any term
in the model implies the presence of all lower order terms. For example, aHierarchical

models don’t skip
terms

hierarchical model including the AB interaction must include the A and B
main effects, and a hierarchical model including the BCD interaction must
include the B, C, and D main effects and the BC, BD, and CD interactions.
One potential source of confusion is that lower-order termsoccur earlier in a
model and thus appear above higher-order terms in the ANOVA table; lower-
order terms are above.

One view of data analysis for factorial treatment structureis the selec-
tion of an appropriate model for the data; that is, determining which terms
are needed, and which terms can be eliminated without loss ofexplanatoryChoose among

hierarchical
models

ability. Use hierarchical models when modeling factorial data. Do not au-
tomatically test terms above (that is, lower-order to) a needed interaction. If
factors A and B interact, conclude that A and B act jointly to influence the
response; there is no need to test the A and B main effects.

The F-test allows us to test whether any term is needed, even the main
effect of A when the AB interaction is needed. Why should we not test these
lower-order terms, and possibly break hierarchy, when we have the ability to
do so? The distinction is one between generic modeling of howthe responseBuilding a model

versus testing
hypotheses

depends on factors and interactions, and testing specific hypotheses about
the treatment means. Tests of main effects are tests that certain very specific
contrasts are zero. If those specific contrasts are genuinely of interest, then
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Table 8.8: Number of rats that died after exposure to three strains of
bacteria and treatment with one of two antibiotics, and factorial
decompositions using equal weighting and 1,2,1 weighting of rows.

Means Equal Weights Row Weighted

120 168
144 168
192 120

-24 24 -8
-12 12 4
36 -36 4

0 0 152

-21 21 -9
-9 9 3
39 -39 3

-3 3 153

testing main effects is appropriate, even if interactions exist. Thus I only
consider nonhierarchical models when I know that the main-effects contrasts,
and thus the nonhierarchical model, make sense in the experimental context.

The problem with breaking hierarchy is that we have chosen todefine
main effects and interactions using equally weighted averages of treatment
means, but we could instead define main effects and interactions using un- Are equally

weighted
averages

appropriate?

equally weighted averages. This new set of main effects and interactions is
just as valid mathematically as our usual set, but one set mayhave zero main
effects and the other set have nonzero main effects. Which dowe want to
test? We need to know the appropriate set of weights, or equivalently, the
appropriate contrast coefficients, for the problem at hand.

Unequal weights Example 8.9

Suppose that we have a three by two factorial design testing two antibiotics
against three strains of bacteria. The response is the number of rats (out of
500) that die from the given infection when treated with the given antibiotic.
Our goal is to find the antibiotic with the lower death rate. Table 8.8 gives
hypothetical data and two ways to decompose the means into grand mean,
row effects, column effects, and interaction effects.

The first decomposition in Table 8.8 (labeled equal weights)is our usual
factorial decomposition. The row effects and column effects add to zero,
and the interaction effects add to zero across any row or column. With this
standard factorial decomposition, the column (antibiotic) effects are zero, so
there is no average difference between the antibiotics.

On the other hand, suppose that we knew that strain 2 of bacteria was
twice as prevalent as the other two strains. Then we would probably want to
weight row 2 twice as heavily as the other rows in all averagesthat we make.
The second decomposition uses 1,2,1 row weights; all these factorial effects
are different from the equally weighted effects. In particular, the antibiotic
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Table 8.9: Amylase specific activity (IU), for two varieties of sprouted
maize under different growth and analysis temperatures (degrees C).

Analysis Temperature
GT Var. 40 35 30 25 20 15 13 10

25 B73 391.8 427.7 486.6 469.2 383.1 338.9 283.7 269.3
311.8 388.1 426.6 436.8 408.8 355.5 309.4 278.7
367.4 468.1 499.8 444.0 429.0 304.5 309.9 313.0

O43 301.3 352.9 376.3 373.6 377.5 308.8 234.3 197.1
271.4 296.4 393.0 364.8 364.3 279.0 255.4 198.3
300.3 346.7 334.7 386.6 329.2 261.3 239.4 216.7

13 B73 292.7 422.6 443.5 438.5 350.6 305.9 319.9 286.7
283.3 359.5 431.2 398.9 383.9 342.8 283.2 266.5
348.1 381.9 388.3 413.7 408.4 332.2 287.9 259.8

O43 269.7 380.9 389.4 400.3 340.5 288.6 260.9 221.9
284.0 357.1 420.2 412.8 309.5 271.8 253.6 254.4
235.3 339.0 453.4 371.9 313.0 333.7 289.5 246.7

effects change, and with this weighting antibiotic 1 has a mean response 6
units lower on average than antibiotic 2 and is thus preferred to antibiotic 2.

Analogous examples have zero column effects for weighted averages and
nonzero column effects in the usual decomposition. Note in the weighted
decomposition that column effects add to zero and the interactions add to
zero across columns, but row effects and interaction effects down columns
only add to zero with 1,2,1 weights.

If factors A and B do not interact, then the A and B main effectsare
the same regardless of how we weight the means. In the absenceof AB in-
teraction, testing the main effects of A and B computed usingour equallyWeighting

matters due to
interaction

weighted averages gives the same results as for any other weighting. Simi-
larly, if there is no ABC interaction, then testing AB, AC, orBC using the
standard ANOVA gives the same results as for any weighting.

Factorial effects are only defined in the context of a particular weighting
scheme for averages. As long as we are comparing hierarchical models, we
know that the parameter tests make sense for any weighting. When we testUse correct

weighting lower-order terms in the presence of an including interaction, we must use
the correct weighting.
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Figure 8.7: Residuals versus predicted values for amylase
activity data, using Minitab.

Amylase activity Example 8.10
Orman (1986) studied germinating maize. One of his experiments looked at
the amylase specific activity of sprouted maize under 32 different treatment
conditions. These treatment conditions were the factorialcombinations of
analysis temperature (eight levels, 40, 35, 30, 25, 20, 15, 13, and 10 degrees
C), growth temperature of the sprouts (25 or 13 degrees C), and variety of
maize (B73 or Oh43). There were 96 units assigned at random tothese 32
treatments. Table 8.9 gives the amylase specific activitiesin International
Units.

This is an eight by two by two factorial with replication, so we fit the
full factorial model. Figure 8.7 shows that the variabilityof the residuals
increases slightly with mean. The best Box-Cox transformation is the log
(power 0), and power 1 is slightly outside a 95% confidence interval for the
transformation power. After transformation to the log scale, the constant vari-
ance assumption is somewhat more plausible (Figure 8.8), but the improve-
ment is fairly small. The normal probability plot shows thatthe residuals are
slightly short-tailed.

We will analyze on the log scale. Listing 8.3 shows an ANOVA for
the log scale data (at is analysis temperature,gt is growth temperature,
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Figure 8.8: Residuals versus predicted values for log amylase
activity data, using Minitab.

andv is variety). Analysis temperature, variety, and the growthtemperature
by variety interaction are all highly significant; the analysis temperature by
growth temperature interaction is marginally significant.I include in any fi-
nal model the main effect of growth temperature (even thoughit has a fairly
largep-value), because growth temperature interacts with variety, and I wish
to maintain hierarchy.

Note that the analysis is not finished. We should look more closely at
the actual effects and interactions to describe them in moredetail. We will
continue this example in Chapter 9, but for now we examine theside-by-side
plot of all the effects and residuals, shown in Figure 8.9. Analysis temper-
ature and variety have the largest effects. Some of the analysis temperature
by growth temperature and analysis temperature by variety interaction effects
(neither terribly significant) are as large or larger than the growth temperature
by variety interactions. Occasional large effects in nonsignificant terms can
occur because the F-test averages across all the degrees of freedom in a term,
and many small effects can mask one large one.
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Listing 8.3: ANOVA for log amylase activity, using Minitab.

Analysis of Variance for ly

Source DF SS MS F P

at 7 3.01613 0.43088 78.86 0.000

gt 1 0.00438 0.00438 0.80 0.374

v 1 0.58957 0.58957 107.91 0.000

at*gt 7 0.08106 0.01158 2.12 0.054

at*v 7 0.02758 0.00394 0.72 0.654

gt*v 1 0.08599 0.08599 15.74 0.000

at*gt*v 7 0.04764 0.00681 1.25 0.292

Error 64 0.34967 0.00546

Total 95 4.20202
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Figure 8.9: Side-by-side plot for effects in analysis of log
amylase activity data.

8.12 Problems

Diet affects weight gain. We wish to compare nine diets; these diets are Exercise 8.1
the factor-level combinations of protein source (beef, pork, and grain) and
number of calories (low, medium, and high). There are eighteen test animals
that were randomly assigned to the nine diets, two animals per diet. The
mean responses (weight gain) are:
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Calories

Low Medium High

Beef 76.0 86.8 101.8
Source Pork 83.3 89.5 98.2

Grain 83.8 83.5 86.2

The mean square for error was 8.75. Analyze these data to determine an
appropriate model.

An experiment was conducted to determine the effect of germination timeExercise 8.2
(in days) and temperature (degrees C) on the free alpha aminonitrogen (FAN)
content of rice malt. The values shown in the following are the treatment
means of FAN withn = 2 (data from Aniche and Okafor 1989).

Temperature
Days 22 24 26 28 Row Means

1 39.4 49.9 55.1 59.5 50.98
2 56.4 68.0 76.4 88.8 72.40
3 70.2 81.5 95.6 99.6 86.72

Column Means 55.33 66.47 75.70 82.63
Grand Mean 70.03

The total sum of squares was 8097. Draw an interaction plot for these data.
Compute an ANOVA table and determine which terms are needed to describe
the means.

Brewer’s malt is produced from germinating barley, so brewers like toProblem 8.1
know under what conditions they should germinate their barley. The fol-
lowing is part of an experiment on barley germination. Barley seeds were
divided into 30 lots of 100 seeds, and each lot of 100 seeds wasgerminated
under one of ten conditions chosen at random. The conditionsare the ten
combinations of weeks after harvest (1, 3, 6, 9, or 12 weeks) and amount
of water used in germination (4 ml or 8 ml). The response is thenumber of
seeds germinating. We are interested in whether timing and/or amount of wa-
ter affect germination. The data for this problem are in Table 8.1 (Hareland
and Madson 1989). Analyze these data to determine how the germination
rate depends on the treatments.

Particleboard is made from wood chips and resins. An experiment isProblem 8.2
conducted to study the effect of using slash chips (waste wood chips) along
with standard chips. The researchers make eighteen boards by varying the
target density (42 or 48 lb/ft3), the amount of resin (6, 9, or 12%), and the
fraction of slash (0, 25, or 50%). The response is the actual density of the
boards produced (lb/ft3, data from Boehner 1975). Analyze these data to
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determine the effects of the factors on particleboard density and how the
density differs from target.

42 Target 48 Target

0% 25% 50% 0% 25% 50%

6 40.9 41.9 42.0 44.4 46.2 48.4
9 42.8 43.9 44.8 48.2 48.6 50.7
12 45.4 46.0 46.2 49.9 50.8 50.3

We have data from a four by three factorial with 24 units. Below are Problem 8.3
ANOVA tables and residual versus predicted plots for the data and the log-
transformed data. What would you conclude about interaction in the data?

Original data:

DF SS MS
r 3 7.8416e+06 2.6139e+06
c 2 2.7756e+06 1.3878e+06
r.c 6 4.7148e+06 7.858e+05
Error 12 1.7453e+06 1.4544e+05
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DF SS MS
r 3 27.185 9.0617
c 2 17.803 8.9015
r.c 6 7.5461 1.2577
Error 12 20.77 1.7308
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Implantable heart pacemakers contain small circuit boardscalled sub-Problem 8.4
strates. These substrates are assembled, cut to shape, and fired. Some of
the substrates will separate, or delaminate, making them useless. The pur-
pose of this experiment was to study the effects of three factors on the rate
of delamination. The factors were A: firing profile time, 8 versus 13 hours
with the theory suggesting 13 hours is better; B: furnace airflow, low versus
high, with theory suggesting high is better; and C: laser, old versus new, with
theory suggesting new cutting lasers are better.

A large number of raw, assembled substrates are divided intosixteen
groups. These sixteen groups are assigned at random to the eight factor-
level combinations of the three factors, two groups per combination. The
substrates are then processed, and the response is the fraction of substrates
that delaminate. Data from Todd Kerkow.

8 hrs 13 hrs

Low High Low High

Old .83 .68 .18 .25
.78 .90 .16 .20

New .86 .72 .30 .10
.67 .81 .23 .14

Analyze these data to determine how the treatments affect delamination.

Pine oleoresin is obtained by tapping the trunks of pine trees. TappingProblem 8.5
is done by cutting a hole in the bark and collecting the resin that oozes out.
This experiment compares four shapes for the holes and the efficacy of acid
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treating the holes. Twenty-four pine trees are selected at random from a plan-
tation, and the 24 trees are assigned at random to the eight combinations of
whole shape (circular, diagonal slash, check, rectangular) and acid treatment
(yes or no). The response is total grams of resin collected from the hole (data
from Low and Bin Mohd. Ali 1985).

Circular Diagonal Check Rect.

Control 9 43 60 77
13 48 65 70
12 57 70 91

Acid 15 66 75 97
13 58 78 108
20 73 90 99

Analyze these data to determine how the treatments affect resin yield.

A study looked into the management of various tropical grasses for im- Problem 8.6
proved production, measured as dry matter yield in hundredsof pounds per
acre over a 54-week study period. The management variables were height of
cut (1, 3, or 6 inches), the cutting interval (1, 3, 6, or 9 weeks), and amount
of nitrogen fertilizer (0, 8, 16, or 32 hundred pounds of ammonium sulfate
per acre per year). Forty-eight plots were assigned in completely randomized
fashion to the 48 factor-level combinations. Dry matter yields for the plots
are shown in the table below (data from Richards 1965). Analyze these data
and write your conclusions in a report of at most two pages.

Cutting Interval
1 wks. 3 wks. 6 wks. 9 wks.

Ht 1 F 0 74.1 65.4 96.7 147.1
F 8 87.4 117.7 190.2 188.6
F 16 96.5 122.2 197.9 232.0
F 32 107.6 140.5 241.3 192.0

Ht 3 F 0 61.7 83.7 88.8 155.6
F 8 112.5 129.4 145.0 208.1
F 16 102.3 137.8 173.6 203.2
F 32 115.3 154.3 211.2 245.2

Ht 6 F 0 49.9 72.7 113.9 143.4
F 8 92.9 126.4 175.5 207.5
F 16 100.8 153.5 184.5 194.2
F 32 115.8 160.0 224.8 197.5
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Big sagebrush is often planted in range restoration projects. An exper-Problem 8.7
iment is performed to determine the effects of storage length and relative
humidity on the viability of seeds. Sixty-three batches of 300 seeds each are
randomly divided into 21 groups of three. These 21 groups each receive a
different treatment, namely the combinations of storage length (0, 60, 120,
180, 240, 300, or 360 days) and storage relative humidity (0,32, or 45%).
After the storage time, the seeds are planted, and the response is the percent-
age of seeds that sprout (data from Welch 1996). Analyze these data for the
effects of the factors on viability.

Days
0 60 120 180 240 300 360

0% 82.1 78.6 79.8 82.3 81.7 85.0 82.7
79.0 80.8 79.1 75.5 80.1 87.9 84.6
81.9 80.5 78.2 79.1 81.1 82.1 81.7

32% 83.1 78.1 80.4 77.8 83.8 82.0 81.0
80.5 83.6 81.8 80.4 83.7 77.6 78.9
82.4 78.3 83.8 78.8 81.5 80.3 83.1

45% 83.1 66.5 52.9 52.9 52.2 38.6 25.2
78.9 61.4 58.9 54.3 51.9 37.9 25.8
81.0 61.2 59.3 48.7 48.8 40.6 21.0

Consider a balanced four by three factorial. Show that orthogonal con-Question 8.1
trasts in row means (ignoring factor B) are also orthogonal contrasts for all
twelve treatments when the contrast coefficients have been repeated across
rows (wij = wi). Show that a contrast in the row means and the analogous
contrast in all twelve treatment means have the same sums of squares.

In a two-way factorial, we have defined̂µ as the grand mean of the data,Question 8.2
µ̂+ α̂i as the mean of the responses for theith level of factor A,µ̂+ β̂j as the
mean of the responses for thejth level of factor B, and̂µ + α̂i + β̂j + α̂βij
as the mean of theijth factor-level combination. Show that this implies our
zero-sum restrictions on the estimated effects.

Suppose that we use the same idea, but instead of ordinary averages we
use weighted averages withvij as the weight for theijth factor-level combi-
nation. Derive the new zero-sum restrictions for these weighted averages.



Chapter 9

A Closer Look at Factorial
Data

Analysis of factorially structured data should be more thanjust an enumer-
ation of which main effects and interactions are significant. We should look
closely at the data to try to determine what the data are telling us by under- Look at more than

just significance
of main effects

and interactions

standing the main effects and interactions in the data. For example, reporting
that factor B only affects the response at the high level of factor A is more
informative than reporting that factors A and B have significant main effects
and interactions. One of my pet peeves is an analysis that just reports sig-
nificant terms. This chapter explores a few techniques for exploring factorial
data more closely.

9.1 Contrasts for Factorial Data

Contrasts allow us to examine particular ways in which treatments differ.
With factorial data, we can use contrasts to look at how specific main ef-
fects differ and to see patterns in interactions. Indeed, wehave seen that the Use contrasts to

explore the
response

usual factorial ANOVA can be built from sets of contrasts. Chapters 4 and 5
discussed contrasts and multiple comparisons in the context of single factor
analysis. These procedures carry over to factorial treatment structures with
little or no modification.

In this section we will discuss contrasts in the context of a three-way
factorial; generalization to other numbers of factors is straightforward. The
factors in our example experiment are drug (one standard drug and two new
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Display 9.1: Contrast formulae for a three-way factorial.

drugs), dose (four levels, equally spaced), and administration time (morning
or evening). We will usually assume balanced data, because contrasts for
balanced factorial data have simpler orthogonality relationships.

We saw in one-way analysis that the arithmetic of contrasts is not too
hard; the big issue was finding contrast coefficients that address an interest-
ing question. The same is true for factorials. Suppose that we have a setInference for

contrasts remains
the same

of contrast coefficientswijk. We can work with this contrast for a factorial
just as we did with contrasts in the one-way case using the formulae in Dis-
play 9.1. These formulae are nothing new, merely the application of our usual
contrast formulae to the design withg = abc treatments. We still need to find
meaningful contrast coefficients.

Pairwise comparisons are differences between two treatments, ignoring
the factorial structure. We might compare the standard drugat the lowestPairwise

comparisons dose with morning administration to the first new drug at the lowest dose
with evening administration. As we have seen previously with pairwise com-
parisons, there may be a multiple testing issue to consider,and our pairwise
multiple comparisons procedures (for example, HSD) carry over directly to
the factorial setting.
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A simple effectis a particular kind of pairwise comparison. A simple Simple effects are
pairwise

differences that
vary just one

factor

effect is a difference between two treatments that have the same levels of all
factors but one. A comparison between the standard drug at the lowest dose
with morning administration and the standard drug at the lowest dose with
evening administration is a simple effect. Differences of main effects are
averages of simple effects.

The structure of a factorial design suggests that we should also consider
contrasts that reflect the design, namely main-effect contrasts and interaction
contrasts. In general, we use contrasts with coefficient patterns that mimic
those of factorial effects. Amain-effect contrastis one where the coefficients Main-effect and

interaction
contrasts

examine factorial
components

wijk depend only on a single index; for example,k for a factor C contrast.
That is, two contrast coefficients are equal if they have the samek index.
These coefficients will add to zero acrossk for any i andj. For interaction
contrasts, the coefficients depend only on the indices of factors in the inter-
action in question and satisfy the same zero-sum restrictions as their corre-
sponding model terms. Thus a BC interaction contrast has coefficientswijk
that depend only onj andk and add to zero acrossj or k when the other
subscript is kept constant. For an ABC contrast, the coefficientswijk must
add to zero across any subscript.

We can use pairwise multiple comparisons procedures such asHSD for
marginal means. Thus to compare all levels of factor B using HSD, we treat
the meansy•j•• asb treatment means each with sample sizeacn and do mul-
tiple comparisons withabc(n − 1) degrees of freedom for error. The same Pairwise multiple

comparisons
work for marginal

means

approach works for two-way and higher marginal tables of means. For exam-
ple, treaty•jk• asbc treatment means each with sample sizean andabc(n−1)
degrees of freedom for error. Pairwise multiple comparisons procedures also
work when applied to main effects—for example,β̂j—but most do not work
for interaction effects due to the additional zero sum restrictions. (Bonferroni
does work.)

Please note: simple-effects, main-effects, and interaction contrasts are
examples of contrasts that are frequently useful in analysis of factorial data;
there are many other kinds of contrasts. Use contrasts that address your ques-
tions. Don’t be put off if a contrast that makes sense to you does not fit into
one of these neat categories.

Factorial contrasts Example 9.1
Let’s look at some factorial contrasts for our three-way drug test example.
Coefficientswijk for these contrasts are shown in Table 9.1. Suppose that we
want to compare morning and evening administration times averaged across
all drugs and doses. The first contrast in Table 9.1 has coefficients -1 for
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Table 9.1: Example contrasts.

Morning versus Evening
Dose Dose

Drug 1 2 3 4 Drug 1 2 3 4

1 1 1 1 1 1 -1 -1 -1 -1
2 1 1 1 1 2 -1 -1 -1 -1
3 1 1 1 1 3 -1 -1 -1 -1

Linear in Dose
Dose Dose

Drug 1 2 3 4 Drug 1 2 3 4

1 -3 -1 1 3 1 -3 -1 1 3
2 -3 -1 1 3 2 -3 -1 1 3
3 -3 -1 1 3 3 -3 -1 1 3

Linear in Dose by Morning versus Evening
Dose Dose

Drug 1 2 3 4 Drug 1 2 3 4

1 -3 -1 1 3 1 3 1 -1 -3
2 -3 -1 1 3 2 3 1 -1 -3
3 -3 -1 1 3 3 3 1 -1 -3

Linear in Dose by Morning versus Evening
by Drug 2 versus Drug 3

Dose Dose
Drug 1 2 3 4 Drug 1 2 3 4

1 0 0 0 0 1 0 0 0 0
2 -3 -1 1 3 2 3 1 -1 -3
3 3 1 -1 -3 3 -3 -1 1 3

Linear in Dose for Drug 1
Dose Dose

Drug 1 2 3 4 Drug 1 2 3 4

1 -3 -1 1 3 1 -3 -1 1 3
2 0 0 0 0 2 0 0 0 0
3 0 0 0 0 2 0 0 0 0
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evening and 1 for morning and thus makes the desired comparison. This is a
main-effect contrast (coefficients only depend on administration time, factor
C). We can get the same information by using a contrast with coefficients (1,
-1) and the meansy••k• or effectsγ̂k.

The response presumably changes with drug dose (factor B), so it makes
sense to examine dose as a quantitative effect. To determinethe linear effect
of dose, use a main-effect contrast with coefficients -3, -1,1, and 3 for doses
1 through 4 (Appendix Table D.6); this is the second contrastin Table 9.1.
As with the first example, we could again get the same information from a
contrast in the meansy•j•• or effectsβ̂j using the same coefficients. The
simple coefficients -3, -1, 1, and 3 are applicable here because the doses are
equally spaced and balance gives equal sample sizes.

A somewhat more complex question is whether the linear effect of dose is
the same for the two administration times. To determine this, we compute the
linear effect of dose from the morning data, and then subtract the linear effect
of dose from the evening data. This is the third contrast in Table 9.1. This
is a two-factor interaction contrast; the coefficients add to zero across dose
or administration time. Note that this contrast is literally the elementwise
product of the two corresponding main-effects contrasts.

A still more complex question is whether the dependence of the linear
effect of dose on administration times is the same for drugs 2and 3. To de-
termine this, we compute the linear in dose by administration time interaction
contrast for drug 2, and then subtract the corresponding contrast for drug 3.
This three-factor interaction contrast is the fourth contrast in Table 9.1. It
is formed as the elementwise product of the linear in dose by administration
time two-way contrast and a main-effect contrast between drugs 2 and 3.

Finally, the last contrast in Table 9.1 is an example of a useful contrast
that is not a simple effect, main effect, or interaction contrast. This contrast
examines the linear effect of dose for drug one, averaged across time.

The interaction contrasts in Example 9.1 illustrate an important special Products of
main-effect

contrasts
case of interaction contrasts, namely, products of main-effect contrasts. These
products allow us to determine if an interesting contrast inone main effect
varies systematically according to an interesting contrast in a second main
effect.

We can reexpress a main-effect contrast in the individual treatment means
yijk• in terms of a contrast in the factor main effects or the factormarginal
means. For example, a contrast in factor C can be reexpressedas
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∑

ijk

wijk yijk• =
∑

k


w11k

∑

ij

yijk•




=
∑

k

wk y••k•

=
∑

k

wk γ̂k ,

wherewk = abw11k. Because scale is somewhat arbitrary for contrast coef-Contrasts for
treatment means
or marginal
means

ficients, we could also usewk = w11k and still get the same kind of informa-
tion. For balanced data, two main-effect contrasts for the same factor with
coefficientswk andw⋆

k are orthogonal if

∑

k

wk w⋆
k = 0 .

We can also express an interaction contrast in the individual treatment
means as a contrast in marginal means or interaction effects. For example,Interaction

contrasts of
means or effects

supposewijk is a set of contrast coefficients for a BC interaction contrast.
Then we can rewrite the contrast in terms of marginal means orinteraction
effects:

∑

ijk

wijk yijk• =
∑

jk

wjk y•jk•

=
∑

jk

wjk β̂γjk

whereaw1jk = wjk. Two interaction contrasts for the same interaction with
coefficientswjk andw⋆

jk are orthogonal if

∑

jk

wjk w⋆
jk = 0 .

For balanced data, the formulae in Display 9.1 can be simplified by re-
placing the sample sizenijk by the common sample sizen. The formulae canSimplied formulae

for main-effect
and interaction
contrasts

be simplified even further for main-effect and interaction contrasts, because
they can be rewritten in terms of the effects or marginal means of interest in-
stead of using all treatment means. Consider a main-effect contrast in factor
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C with coefficientswk; the number of observations at thekth level of factor
C isabn. We have for the contrast

∑
k wk y••k•:

Expected value
∑

k wk γk

Variance
∑

k w2
k σ2/(abn)

Sum of squares
(
∑

k wk y••k•)
2

∑
k w2

k/(abn)

Confidence interval
∑

k wk y••k•±
tE/2,N−abc

√
MSE

∑
k w2

k/(abn)

F-test
(
∑

k wk y••k•)
2

MSE
∑

k w2
k/(abn)

The simplification is similar for interaction contrasts. For example, the BC
interaction contrast

∑
jk wjk y•jk• has sum of squares

(
∑

jk wjk y•jk•)
2

∑
jk w2

jk/(an)

(an is the “sample size” at eachjk combination).

9.2 Modeling Interaction

An interaction is a deviation from additivity. If the effectof going from dose 1
to dose 2 changes from drug 2 to drug 3, then there is an interaction between
drug and dose. Similarly, if the interaction of drug and doseis different
in morning and evening applications, then there is a three-factor interaction Models for

interaction help to
understand data

between drug, dose, and time. Try to understand and model anyinteraction
that may be present in your data. This is not always easy, but when it can
be done it leads to much greater insight into what the data have to say. This
section discusses three specific models for interaction; there are many others.

9.2.1 Interaction plots

We introduced interaction plots in Section 8.4 as a method for visualizing
interaction. These plots continue to be important tools, but there are a few
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variations on interaction plots that can make them more useful in multi-way
factorials. The first variation is to plot marginal means. If, for example, we
are exploring the AB interaction, then we can make an interaction plot usingInteraction plots

of marginal
means

the meansyij••. Thus we do not plot every treatment mean individually but
instead average across any other factors. This makes for a cleaner picture of
the AB interaction, because it hides all other interactions.

A second variation is to plot interaction effects rather than marginal means.
Marginal means such asyij•• satisfy

yij•• = µ̂ + α̂i + β̂j + α̂βij ,

so they contain main effects as well as interaction. By making the interaction
plot usingα̂βij instead ofyij••, we eliminate the main effects information
and concentrate on the interaction. This is good for understanding the nature
of the interaction once we are reasonably certain that interaction is there, butInteraction plots

of interaction
effects

it works poorly for diagnosing the presence of interaction because interac-
tion plots of interaction effects will always show interaction. So first decide
whether interaction is present by looking at means or by using ANOVA. If
interaction is present, a plot of interaction effects can beuseful in understand-
ing the interaction.

9.2.2 One-cell interaction

A one-cell interactionis a common type of interaction where most of the ex-
periment is additive, but one treatment deviates from the additive structure.
The name “cell” comes from the idea that one cell in the table of treatmentA single unusual

treatment can
make all
interactions
significant

means does not follow the additive model. More generally, there may be
one or a few cells that deviate from a relatively simple model. If the devia-
tion from the simple model in these few cells is great enough,all the usual
factorial interaction effects can be large and statistically significant.

Understanding one-cell interaction is easy: the data follow a simple model
except for a single cell or a few cells. Finding a one-cell interaction is harder.
It requires a careful study of the interaction effects or plots or a more sophis-
ticated estimation technique than the least squares we havebeen using (see
Daniel 1976 or Oehlert 1994). Be warned, large one-cell interactions can be
masked or hidden by other large one-cell interactions.

One-cell interactions can sometimes be detected by examination of in-
teraction effects. A table of interaction effects adds to zero across rows or
columns. A one-cell interaction shows up in the effects as anentry with a
large absolute value. The other entries in the same row and column are mod-
erate and of the opposite sign, and the remaining entries aresmall and of
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Table 9.2: Data from a replicated four-factor experiment.
All factors have two levels, labeled low and high.

A B C D

Low High

low low low 26.1 27.5 23.5 21.1
low low high 22.8 23.8 30.6 32.5
low high low 22.0 20.2 28.1 29.9
low high high 30.0 29.3 38.3 38.5
high low low 11.4 11.0 20.4 22.0
high low high 22.3 20.2 28.7 28.8
high high low 18.9 16.4 26.6 26.5
high high high 29.6 29.8 34.5 34.9

the same sign as the interacting cell. For example, a three byfour factorial
with all responses 0 except for 12 in the (2,2) cell has interaction effects as
follows: Characteristic

pattern of effects
for a one-cell

interaction
1 -3 1 1

-2 6 -2 -2
1 -3 1 1

Rearranging the rows and columns to put the one-cell interaction in a corner
emphasizes the pattern:

6 -2 -2 -2
-3 1 1 1
-3 1 1 1

One-cell interaction Example 9.2
Consider the data in Table 9.2 (Table 1 of Oehlert 1994). These data are
responses from an experiment with four factors, each at two levels labeled
low and high, and replicated twice. A standard factorial ANOVA of these
data shows that all main effects and interactions are highlysignificant, and
analysis of the residuals reveals no problems. In fact, these data follow an
additive model, except for one unusual treatment. Thus all interaction in
these data is one-cell interaction.

The interacting cell is the treatment combination with all factors low (it
is about 12.5 units higher than the additive model predicts); casual inspection
of the data would probably suggest the treatment with mean 11.2, but that is
incorrect. We can see the one-cell interaction in Figure 9.1, which shows an
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Figure 9.1: Interaction plot for data in Table 9.2, using
MacAnova. Horizontal locations 1 through 4 correspond to (A
low, B low), (A high, B low), (A low, B high), and (A high, B
high). Curves 1 through 4 correspond to (C low, D low), (C high,
D low), (C low, D high), and (C high, D high).

interaction plot of the treatment means. The first mean in theline labeled 1
is too high, but the other segments are basically parallel.

9.2.3 Quantitative factors

A second type of interaction that can be easily modeled occurs when one
or more of the factors have quantitative levels (doses). First consider thePolynomial

models for
quantitative
factors

situation when the interacting factors are all quantitative. Suppose that the
doses for factor A arezAi, and those for factor B arezBj . We can build a
polynomial regression model for cell means as

µij = θ0 +
a−1∑

r=1

θArz
r
Ai +

b−1∑

s=1

θBsz
s
Bj +

a−1∑

r=1

b−1∑

s=1

θArBsz
r
Aiz

s
Bj .

Polynomial terms inzAi model the main effects of factor A, polynomial terms
in zBj model the main effects of factor B, and cross product terms model the
AB interaction. Models of this sort are most useful when relatively few of
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the polynomial terms are needed to provide an adequate description of the
response.

A polynomial termzr
Aiz

s
Bj is characterized by its exponents(r, s). A

term with exponents(r, s) is “above” a term with exponents(u, v) if r ≤ u
and s ≤ v; we also say that(u, v) is below(r, s). The mnemonic here is Lower powers are

above higher
powers

that in an ANOVA table, simpler terms (such as main effects) are above more
complicated terms (such as interactions). This is a little confusing, because
we also use the phrasehigher order for the more complicated terms, but
higher order terms appear below the simpler terms.

A term in this polynomial model is needed if its own sum of squares is
large, or if it is above a term with a large sum of squares. Thispreserves a Use hierarchical

polynomial
models

polynomial hierarchy. We compute the sum of squares for a term by looking
at the difference in error sums of squares for two models: subtract the error
sum of squares for the model that contains the term of interest, and all terms
that are above it from the error sum of squares for the model that contains
only the terms above the term of interest. Thus, the sum of squares for the Computing

polynomial sums
of squares

term z2
Aiz

1
Bi is the error sum of squares for the model with termszAi, z2

Ai,
zBi andzAizBi, less the error sum of squares for the model with termszAi,
z2
Ai, zBi, zAizBi, andz2

Aiz
1
Bi.

Computation of the polynomial sums of squares can usually beaccom-
plished in statistical software with one command. Recall, however, that the
polynomial coefficientsθ depend on what other polynomial terms are in a
given regression model. Thus if we determine that only linear and quadratic Compute

polynomial
coefficients for

final model
including only

selected terms

terms are needed, we must refit the model with just those termsto find their
coefficients when the higher order terms are omitted. In particular, you
should not use coefficients from the full model when predicting with a model
with fewer terms. Use the full modelMSE for determining which terms to
include, but use coefficients computed for a model includingjust your se-
lected terms.

For single-factor models, we were able to compute polynomial sums of
squares using polynomial contrasts when the sample sizes are equal and the
doses are equally spaced. The same is true for balanced factorials with
equally spaced doses. Polynomial main-effect contrast coefficients are the Polynomial

contrastssame as the polynomial contrast coefficients for single-factor models, and
polynomial interaction contrast coefficients are the elementwise products of
the polynomial main-effect contrasts.

Amylase activity, continued Example 9.3

Recall the amylase specific activity data of Example 8.10. The three factors
are analysis temperature, growth temperature, and variety. On the log scale,
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Listing 9.1: MacAnova output for polynomial effects in the log amylase activity data.

DF SS MS P-value

at^1 1 0.87537 0.87537 0

at^2 1 2.0897 2.0897 0

at^3 1 0.041993 0.041993 0.0072804

at^4 1 0.0028388 0.0028388 0.47364

at^5 1 1.3373e-06 1.3373e-06 0.98757

at^6 1 0.0034234 0.0034234 0.43154

at^7 1 0.002784 0.002784 0.47792

gt 1 0.0043795 0.0043795 0.37398

gt*at^1 1 0.035429 0.035429 0.013298

gt*at^2 1 8.9037e-05 8.9037e-05 0.89882

gt*at^3 1 0.029112 0.029112 0.024224

gt*at^4 1 0.0062113 0.0062113 0.29033

gt*at^5 1 0.0068862 0.0068862 0.26577

gt*at^6 1 0.0009846 0.0009846 0.67262

gt*at^7 1 0.0023474 0.0023474 0.51452

the analysis temperature by growth temperature interaction (both quantitative
variables) was marginally significant. Let us explore the main effects and
interactions using quantitative variables. We cannot use the tabulated contrast
coefficients here because the levels of analysis temperature are not equally
spaced.

Listing 9.1 gives the ANOVA for the polynomial main effects and in-
teractions of analysis temperature (at ) and growth temperature (gt ). The
MSE for this experiment was .00546 with 64 degrees of freedom. Wesee
that linear, quadratic, and cubic terms in analysis temperature are significant,
but no higher order terms. Also the cross products of linear in growth tem-
perature and linear and cubic analysis temperature are significant. Thus a
succinct model would include the three lowest order terms for analysis tem-
perature, growth temperature, and their cross products. Weneed to refit with
just those terms to get coefficients.

This example also illustrates a bothersome phenomenon—theaveraging
involved in multi-degree-of-freedom mean squares can obscure some inter-
esting effects in a cloud of uninteresting effects. The 7 degree-of-freedom
growth temperature by analysis temperature interaction ismarginally signif-
icant with ap-value of .054, but some individual degrees of freedom in that
7 degree-of-freedom bundle are rather more significant.

There can also be interaction between a quantitative factorand a non-
quantitative factor. Here are a couple of ways to proceed. First, we can use
interaction contrasts that are products of a polynomial contrast in the quanti-
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tative factor and an interesting contrast in the qualitative factor. For example,
we might have three drugs at four doses, with one control drugand two new
drugs. An interesting contrast with coefficients (1, -.5, -.5) compares the con- Interaction of

quantitative and
qualitative factors

trol drug to the mean of the new drugs. The interaction contrast formed by
the product of this contrast and linear in dose would comparethe linear effect
of dose in the new drugs with the linear effect of dose in the control drug.

Second, we can make polynomial models of the response (as a function
of the quantitative factor) separately for each level of thequalitative factor.
Let µij be the expected response at leveli of a quantitative factor with dose Separate

polynomial
models

zAi and levelj of a qualitative factor. We have a choice of several equivalent
models, including:

µij = θj +
a−1∑

r=1

θArjz
r
Ai

and

µij = θ0 + βj +
a−1∑

r=1

θAr0z
r
Ai +

a−1∑

r=1

θβArjz
r
Ai ,

whereθj = θ0 + βj , θArj = θAr0 + θβArj, and the parameters have the zero
sum restrictions

∑
j βj = 0 and

∑
j θβArj = 0.

In both forms there is a separate polynomial of degreea − 1 in zAi for
each level of factor B. The only difference between these models is how the
regression coefficients are expressed. In the first version the constant terms Alternate forms

for regression
coefficients

of the model are expressed asθj; in the second version the constant terms
are expressed as an overall constantθ0 plus deviationsβj that depend on
the qualitative factor. In the first version the coefficientsfor power r are
expressed asθArj; in the second version the coefficients for powerr are
expressed as an overall coefficientθAr0 plus deviationsθβArj that depend
on the qualitative factor. These are analogous to having treatment meansµi

written asµ + αi, an overall mean plus treatment effects.
Suppose again that we have three drugs at four doses; do we need sepa-

rate cubic coefficients for the different drugs, or will one overall coefficient Overall plus
deviation form

can be easier for
testing

suffice? To answer this we can test the null hypothesis that all theθA3j ’s equal
each other, or equivalently, that all theθβA3j ’s are zero. In many statistics
packages it is easier to do the tests using the overall-plus-deviation form of
the model.

Seed viability Example 9.4

Let’s examine the interaction in the data from Problem 8.7. The interac-
tion plot in Figure 9.2 shows the interaction very clearly: there is almost
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Figure 9.2: Interaction plot for seed viability data, using
Minitab.

no dependence on storage time at the two lowest humidities, and consider-
able dependence on storage time at the highest humidity. Thus even though
humidity is a quantitative variable, it is descriptive to treat it as qualitative.

Listing 9.2 shows MacAnova output for the viability data. This model
begins with an overall constant and polynomial terms in storage, and then
adds the deviations from the overall terms that allow separate polynomial
coefficients for each level of humidity. Terms up to cubic in storage time
are significant. There is modest evidence for some terms higher order than
cubic, but their effects are small compared to the included terms and so will
be ignored. To get the coefficients for the needed terms, refitusing only those
terms; the estimated values for the coefficients will changedramatically.

The overall storage by humidity interaction has 12 degrees of freedom
and 4154.2 sum of squares. It appears from the interaction plot that most of
the interaction is a difference in slope (coefficient of the linear term) between
the highest level of humidity and the lower two levels. We canaddress that
observation with an interaction contrast with coefficients
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Listing 9.2: MacAnova output for polynomial effects in the viability activity data.

DF SS MS P-value

CONSTANT 1 3.2226e+05 3.2226e+05 0

{s} 1 1562 1562 0

{(s)^2} 1 5.3842 5.3842 0.29892

{(s)^3} 1 191.16 191.16 1.6402e-07

{(s)^4} 1 0.001039 0.001039 0.98841

{(s)^5} 1 0.22354 0.22354 0.83134

{(s)^6} 1 29.942 29.942 0.017221

h 2 11476 5738.2 0

{s}.h 2 3900.5 1950.2 0

{(s)^2}.h 2 17.672 8.8359 0.17532

{(s)^3}.h 2 185.81 92.906 1.2687e-06

{(s)^4}.h 2 25.719 12.86 0.083028

{(s)^5}.h 2 5.6293 2.8147 0.56527

{(s)^6}.h 2 18.881 9.4405 0.15643

ERROR1 42 204.43 4.8673

-3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3
6 4 2 0 -2 -4 -6

.

This contrast has sum of squares 3878.9, which is over 93% of the total in-
teraction sum of squares.

9.2.4 Tukey one-degree-of-freedom for nonadditivity

TheTukey one-degree-of-freedommodel for interaction is also calledtrans-
formable nonadditivity,because interaction of this kind can usually be re-
duced or even eliminated by transforming the response by an appropriate Transformable

nonadditivity is
reduced on the

correct scale

power. (Some care needs to be taken when using this kind of transformation,
because the transformation to reduce interaction could introduce nonconstant
variance.) The form of a Tukey interaction is similar to thatof a linear by lin-
ear interaction, but the Tukey model can be used with nonquantitative factors.

The Tukey model can be particularly useful in single replicates, where
we have no estimate of pure error and generally must use high-order interac-
tions as surrogate error. If we can transform to a scale that removes much of
the interaction, then using high-order interactions as surrogate error is much
more palatable.

In a two-factor model, Tukey interaction has the formαβij = ηαiβj/µ,
for some multiplierη. If interaction is of this form, then transforming the
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responses with a power1 − η will approximately remove the interaction.
You may recall our earlier admonition that an interaction effect αβij wasTukey interaction

is a scaled
product of main
effects

not the product of the main effects; well, the Tukey model of interaction for
the two-factor model is a multiple of just that product. The Tukey model
adds one additional parameterη, so it is a one-degree-of-freedom model for
nonadditivity. The form of the Tukey interaction for more general models
is discussed in Section 9.3, but it is always a single degree of freedom scale
factor times a combination of other model parameters.

There are several algorithms for fitting a Tukey interactionand testing
its significance. The following algorithm is fairly general, though somewhat
obscure.Algorithm to fit a

Tukey
one-degree-of-
freedom
interaction

1. Fit a preliminary model; this will usually be an additive model.

2. Get the predicted values from the preliminary model; square them and
divide their squares by twice the mean of the data.

3. Fit the data with a model that includes the preliminary model and the
rescaled squared predicted values as explanatory variables.

4. The improvement sum of squares going from the preliminarymodel to
the model including the rescaled squared predicted values is the single
degree of freedom sum of squares for the Tukey model.

5. Test for significance of a Tukey type interaction by dividing the Tukey
sum of squares by the error mean square from the model including
squared predicted terms.

6. The coefficient for the rescaled squared predicted valuesis η̂, an es-
timate ofη. If Tukey interaction is present, transform the data to the
power1 − η̂ to remove the Tukey interaction.

The transforming power1−η found in this way is approximate and can often
be improved slightly.

Example 9.5 CPU page faults, continued

Recall the CPU page fault data from Example 8.8. We originally analyzed
those data on the log scale because they simply looked multiplicative. Would
we have reached the same conclusion via a Tukey interaction analysis?

Listing 9.3① shows the ANOVA for the four main effects and rescaled,
squared predicted values from the additive model on the raw data. The Tukey
interaction is highly significant, with an F-statistic of 241. The coefficient for
the rescaled, squared predicted values is.899 with a standard error of about
.06 ②, so the estimated power transformation is1 − .899 = .101 with the
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Listing 9.3: SAS output for Tukey one-degree-of-freedom interaction inthe page faults data.

General Linear Models Procedure

Dependent Variable: FAULTS

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 8 764997314 95624664 107.38 0.0001

Error 45 40074226 890538

Corrected Total 53 805071540

R-Square C.V. Root MSE FAULTS Mean

0.950223 37.42933 943.683 2521.24

General Linear Models Procedure

Dependent Variable: FAULTS

Source DF Type I SS Mean Square F Value Pr > F

SEQ 2 59565822 29782911 33.44 0.0001

SIZE 2 216880816 108440408 121.77 0.0001

ALLOC 2 261546317 130773159 146.85 0.0001

ALG 1 11671500 11671500 13.11 0.0007

RSPV 1 215332859 215332859 241.80 0.0001 ①

General Linear Models Procedure

Dependent Variable: FAULTS

T for H0: Pr > |T| Std Error of

Parameter Estimate Parameter=0 Estimate

Tukey eta 0.89877776 15.55 0.0001 0.05779942 ②

same standard error, or approximately a log transformation. Thus a Tukey
interaction analysis confirms our choice of the log transformation.

The main effects account for about 68% of the total sum of squares be-
fore transformation, and about 93% after transformation. As we saw, some
interactions are still significant, but they are smaller compared to the main
effects after transformation.
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9.3 Further Reading and Extensions

One way of understanding Tukey models is to suppose that we have a simple
structure for valuesµij = µ+αi +βj . Let’s divide through byµ and assume
that row and column effects are relatively small compared tothe mean. We
now haveµij = µ(1 + αi/µ + βj/µ). But instead of working with data on
this scale, suppose that we have these data raised to the1/λ power. Then the
observed mean structure looks like

(1 +
αi

µ
+

βj

µ
)1/λ ≈ 1 +

αi

µ
+

βj

µ
+

1 − λ

2µ2λ2
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where the first approximation is via a Taylor series and

ri =
αi

µ
+

1 − λ

2µ2λ2
α2

i

cj =
βj

µ
+

1 − λ

2µ2λ2
β2

j .

Thus when we see mean structure of the formµ + ri + cj + (1 − λ)ricj/µ,
we should be able to recover an additive structure by taking the data to the
powerλ. That is, the transformation power is one minus the coefficient of
the cross product term. The cross productsricj/µ are called the comparison
values, because we can compare the residuals from the additive model to
these comparison values to see if Tukey style interaction ispresent.

Here is why our algorithm works for assessing Tukey interaction. We
are computing the improvement sum of squares for adding a single degree of
freedom termX to a modelM . In any ANOVA or regression, the improve-
ment sum of squares obtained by adding theX to M is the same as the sum
of squares for the single degree of freedom model consistingof the residuals
of X fit to M . For the Tukey interaction procedure in a two-way factorial, the
predicted values have the form̂µ+ α̂i + β̂j, so the rescaled squared predicted
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values equal

µ̂

2
+ (α̂i +

α̂i
2

2µ̂
) + (β̂j +

β̂j
2

2µ̂
) +

α̂iβ̂j

µ̂
.

If we fit the additive model to these rescaled squared predicted values, the
residuals will bêαiβ̂j/µ̂. These residuals are exactly the comparison values,
so the sum of squares for the squared predicted values entered last will be
equal to the sum of squares for the comparison values.

What do we do for comparison values in more complicated models; for
example, three factors instead of two? For two factors, the comparison values
are the product of the row and column effects divided by the mean. The
comparison values for other models are the sums of the cross products of all
the terms in the simple model divided by the mean. For example:

Simple Model Tukey Interaction

µ + αi + βi + γk η(
αiβj

µ
+

αiγk
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)

Once we have the comparison values, we can get their coefficient and the
Tukey sum of squares by adding the comparison values to our ANOVA model.
In all cases, using the rescaled squared predicted values from the base model
accomplishes the same task.

There are several further models of interaction that can be useful, par-
ticularly for designs with only one data value per treatment. (See Cook and
Weisberg 1982, section 2.5, for a fuller discussion.) Mandel (1961) intro-
duced therow-model, column-model,andslopes-model.These are general-
izations of the Tukey model of interaction, and take the forms

Row-model: µij = µ + αi + βj + ζjαi

Column-model: µij = µ + αi + βj + ξiβj

Slopes-model: µij = µ + αi + βj + ζjαi + ξiβj .
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Clearly, the slopes-model is just the union of the row- and column-models.
These models have the restrictions that

∑

j

ζj =
∑

i

ξi = 0 ,

so they representb− 1, a− 1, anda + b− 2 degrees of freedom respectively
in the(a − 1)(b − 1) degree of freedom interaction. The Tukey model is the
special case whereζj = ηβj or ξi = ηαi. It is not difficult to verify that
the row- and column-models of interaction are orthogonal tothe main effects
and each other (though not to the Tukey model, which they include, or the
slopes-model, which includes both of them).

The interpretation of these models is not too hard. The row-model states
that mean value of each treatment is a linear function of the row effects,
but the slope (1 + ζj) and intercept (µ + βj) differ from column to column.
Similarly, the column-model states that the mean value of each treatment is
a linear function of the column effects, but the slope (1 + ξi) and intercept
(µ + αi) differ from row to row.

Johnson and Graybill (1972) proposed a model of interactionthat does
not depend on the main effects:

αβij = δviuj ,

with the restrictions that
∑

i vi =
∑

j uj = 0, and
∑

i v2
i =

∑
j u2

j = 1. This
more general structure can model several forms of nonadditivity, including
one cell interactions and breakdown of the table into separate additive parts.
The componentsδ, vi, anduj are computed from the singular value decom-
position of the residuals from the additive model. See Cook and Weisberg
for a detailed discussion of this procedure.

9.4 Problems

Fat acidity is a measure of flour quality that depends on the kind of flour,Problem 9.1
how the flour has been treated, and how long the flour is stored.In this exper-
iment there are two types of flour (Patent or First Clear); theflour treatment
factor (extraction) has eleven levels, and the flour has beenstored for one of
six periods (0, 3, 6, 9, 15, or 21 weeks). We observe only one unit for each
factor-level combination. The response is fat acidity in mgKOH/100 g flour
(data from Nelson 1961). Analyze these data. Of particular interest are the
effect of storage time and how that might depend on the other factors.
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Extraction
T W 1 2 3 4 5 6 7 8 9 10 11

P 0 12.7 12.3 15.4 13.3 13.9 30.3 123.9 53.4 29.4 11.4 19.0
3 11.3 16.4 18.1 14.6 10.5 27.5 112.3 48.9 31.4 11.6 29.1
6 16.5 24.3 27.2 10.9 11.6 34.1 117.5 52.9 38.3 15.8 17.1
9 10.9 30.8 24.5 13.5 13.2 33.2 107.4 49.6 42.9 17.8 15.9
15 12.5 30.6 26.5 15.8 13.3 36.2 109.5 51.0 15.2 18.2 13.5
21 15.2 36.3 36.8 14.4 13.1 43.2 98.6 48.2 58.6 22.2 17.6

FC 0 36.5 38.5 38.4 27.1 35.0 38.3 274.6 241.4 21.8 34.2 34.2
3 35.4 68.5 63.6 41.4 34.5 76.8 282.8 231.8 47.9 33.9 33.2
6 35.7 93.2 76.7 50.2 34.0 96.4 270.8 223.2 65.2 38.9 35.2
9 33.8 95.0 113.0 44.9 36.1 94.5 271.6 200.1 75.0 39.0 34.7
15 43.0 156.7 160.0 30.2 33.0 75.8 269.5 213.6 88.9 37.9 33.0
21 53.0 189.3 199.3 41.0 45.5 143.9 136.1 198.9 104.0 39.2 37.1

Artificial insemination is an important tool in agriculture, but freezing se- Problem 9.2
men for later use can reduce its potency (ability to produce offspring). Here
we are trying to understand the effect of freezing on the potency of chicken
semen. Four semen mixtures are prepared, consisting of equal parts of either
fresh or frozen Rhode Island Red semen, and either fresh or frozen White
Leghorn semen. Sixteen batches of Rhode Island Red hens are assigned at
random, four to each of the four treatments. Each batch of hens is insemi-
nated with the appropriate mixture, and the response measured is the fraction
of the hatching eggs that have white feathers and thus White Leghorn fa-
thers (data from Tajima 1987). Analyze these data to determine how freezing
affects potency of chicken semen.

RIR WL

Fresh Fresh .435 .625 .643 .615
Frozen Frozen .500 .600 .750 .750
Fresh Frozen .250 .267 .188 .200
Frozen Fresh .867 .850 .846 .950

Explore the interaction in the pacemaker delamination dataintroduced in Problem 9.3
Problem 8.4.

Explore the interaction in the tropical grass production data introduced Problem 9.4
in Problem 8.6.

One measure of the effectiveness of cancer drugs is their ability to reduce Problem 9.5
the number of viable cancer cells in laboratory settings. Inthis experiment,
the A549 line of malignant cells is plated onto petri dishes with various con-
centrations of the drug cisplatin. After 7 days of incubation, half the petri
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dishes at each dose are treated with a dye, and the number of viable cell
colonies per 500 mm2 is determined as a response for all petri dishes (after
Figure 1 of Alley, Uhl, and Lieber 1982). The dye is supposed to make the
counting machinery more specific to the cancer cells.

Cisplatin (ng/ml)
0 .15 1.5 15 150 1500

Conventional 200 178 158 132 63 40
Dye added 56 50 45 63 18 14

Analyze these data for the effects of concentration and dye.What can you
say about interaction?

An experiment studied the effects of starch source, starch concentration,Problem 9.6
and temperature on the strength of gels. This experiment wascompletely
randomized with sixteen units. There are four starch sources (adzuki bean,
corn, wheat, and potato), two starch percentages (5% and 7%), and two tem-
peratures (22oC and 4oC). The response is gel strength in grams (data from
Tjahjadi 1983).

Temperature Percent Bean Corn Wheat Potato

22 5 62.9 44.0 43.8 34.4
7 110.3 115.6 123.4 53.6

4 5 60.1 57.9 58.2 63.0
7 147.6 180.7 163.8 92.0

Analyze these data to determine the effects of the factors ongel strength.

Show how to construct simultaneous confidence intervals forall pairwiseQuestion 9.1
differences of interaction effectŝαβij using Bonferroni. Hint: first find the
variances of the differences.

Determine the condition for orthogonality of two main-effects contrastsQuestion 9.2
for the same factor when the data are unbalanced.

Show that an interaction contrastwij in the meansyij•• equals the corre-Question 9.3

sponding contrast in the interaction effectŝαβij .



Chapter 10

Further Topics in Factorials

There are many more things to learn about factorials; this chapter covers just
a few, including dealing with unbalanced data, power and sample size for
factorials, and special methods for two-series designs.

10.1 Unbalanced Data

Our discussion of factorials to this point has assumedbalance;that is, that all
factor-level combinations have the same amount of replication. When this is Balanced versus

unbalanced datanot true, the data are said to beunbalanced. The analysis of unbalanced data
is more complicated, in part because there are no simple formulae for the
quantities of interest. Thus we will need to rely on statistical software for all
of our computation, and we will need to know just exactly whatthe software
is computing, because there are several variations on the basic computations.

The root cause of these complications has to do with orthogonality, or
rather the lack of it. When the data are balanced, a contrast for one main
effect or interaction is orthogonal to a contrast for any other main effect or Imbalance

destroys
orthogonality

interaction. One consequence of this orthogonality is thatwe can estimate
effects and compute sums of squares one term at a time, and theresults for
that term do not depend on what other terms are in the model. When the
data are unbalanced, the results we get for one term depend onwhat other
terms are in the model, so we must to some extent do all the computations
simultaneously.

The questions we want to answer do not change because the dataare
unbalanced. We still want to determine which terms are required to model



226 Further Topics in Factorials

the response adequately, and we may wish to test specific nullhypothesesBuild models
and/or test
hypotheses

about model parameters. We made this distinction for balanced data in Sec-
tion 8.11, even though the test statistics for comparing models or testing hy-
potheses are the same. For unbalanced data, this distinction actually leads to
different tests.

Our discussion will be divided into two parts: building models and test-
ing hypotheses about parameters. We will consider only exact approaches
for computing sums of squares and doing tests. There are approximate meth-Use exact

methods ods for unbalanced factorials that were popular before the easy availability
of computers for doing all the hard computations. But when you have the
computational horsepower, you might as well use it to get exact results.

10.1.1 Sums of squares in unbalanced data

We have formulated the sum of squares for a term in a balanced ANOVA
model as the difference in error sum of squares for a reduced model that
excludes the term of interest, and that same model with the term of interest
included. The term of interest is said to have been “adjustedfor” the termsSS adjusted for

terms in reduced
model

in the reduced model. We also presented simple formulae for these sums of
squares. When the data are unbalanced, we still compute the sum of squares
for a term as a difference in error sums of squares for two models, but there
are no simple formulae to accomplish that task. Furthermore, precisely whichTerms in model

affect SS two models are used doesn’t matter in balanced data so long asthey only
differ by the term of interest, but which models are useddoesmatter for
unbalanced data.

Models are usually specified as a sequence of terms. For example, in
a three-factor design we might specify (1, A, B, C) for main effects, or (1,
A, B, AB, C) for main effects and the AB interaction. The “1” denotes the
overall grand meanµ that is included in all models. The sum of squares forSS(B|1, A) is SS

of B adjusted for
1 and A

a term is the difference in error sums of squares for two models that differ
only by that term. For example, if we look at the the two models(1, A, C)
and (1, A, B, C), then the difference in error sums of squares will be the sum
of squares for B adjusted for 1, A, and C. We write this asSS(B|1, A,C).

Example 10.1 Unbalanced amylase data
Recall the amylase data of Example 8.10, where we explore howamylase
activity depends on analysis temperature (A), variety (B),and growth tem-
perature (C). Suppose that the first observation in growth temperature 25,
analysis temperature 40, and variety B73 were missing, making the data un-
balanced. The sum of squares for factor C is computed as the difference
in error sums of squares for a pair of models differing only inthe term C.
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Here are five such model pairs: (1), (1, C); (1, A), (1, A, C); (1, B), (1, B,
C); (1, A, B), (1, A, B, C); (1, A, B, AB), (1, A, B, AB, C). The sums of
squares for C computed using these five model pairs are denoted SS(C|1),
SS(C|1, A), SS(C|1, B), SS(C|1, A,B) andSS(C|1, A,B,AB), and are
shown in following table (sum of squares×106, data on log scale):

SS(C|1) 2444.1
SS(C|1, A) 1396.0
SS(C|1, B) 3303.0
SS(C|1, A,B) 2107.4
SS(C|1, A,B,AB) 2069.4

All five of these sums of squares differ, some rather substantially. There is
no single sum of squares for C, so we must explicitly state which one we are
using at any give time.

The simplest choice for a sum of squares issequentialsums of squares.
This is called Type I in SAS. For sequential sums of squares, we specify Type I SS is

sequentiala model and the sum of squares for any term is adjusted for those terms
that precede it in the model. If the model is (1, A, B, AB, C), then the
sequential sums of squares areSS(A|1), SS(B|1, A), SS(AB|1, A,B), and
SS(C|1, A,B,AB). Notice that if you specify the terms in a different order, Type I SS

depends on order
of terms

you get different sums of squares; the sequential sums of squares for (1, A, B,
C, AB) areSS(A|1), SS(B|1, A), SS(C|1, A,B), andSS(AB|1, A,B,C).

Two models that include the same terms in different order will have the
same estimated treatment effects and interactions. However, models that in- Estimated effects

don’t depend on
order of terms

clude different terms may have different estimated effectsfor the terms they
have in common. Thus (1, A, B, AB, C) and (1, A, B, C, AB) will have the
sameα̂i’s, but (1, A, B, AB, C) and (1, A, B, C) may have differentα̂i’s.

10.1.2 Building models

Building modelsmeans deciding which main effects and interactions are
needed to describe the data adequately. I build hierarchical models. In a
hierarchical model, the inclusion of any interaction in a model implies the Compare

hierarchical
models

inclusion of any term that is “above” it, where we say that a factorial term U
is above a factorial term V if every factor in term U is also in term V. The goal
is to find the hierarchical model that includes all terms thatmust be included,
but does not include any unnecessary terms.

Our approach to computing sums of squares when model-building is to
use as the reduced model for term U the largest hierarchical model M that
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does not contain U. This is called Type II in the SAS statistical program. InType II SS or
Yates’ fitting
constants

two-factor models, this might be called “Yates’ fitting constants” or “each
adjusted for the other.”

Consider computing Type II sums of squares for all the terms in a three-
factor model. The largest hierarchical models not including ABC, BC, and
C are (1, A, B, C, AB, AC, BC), (1, A, B, C, AC, AB), and (1, A, B, AB),
respectively. Thus for Type II sums of squares, the three-factor interaction isType II adjusts for

largest hierarchal
model not
including term

adjusted for all main effects and two-factor interactions,a two-factor inter-
action is adjusted for all main effects and the other two-factor interactions,
and a main effect is adjusted for the other main effects and their interactions,
or SS(ABC|1, A,B,C,AB,AC,BC), SS(BC|1, A,B,C,AB,AC), and
SS(C|1, A,B,AB). In Example 10.1, the Type II sum of squares for growth
temperature (factor C) is2069 × 10−6.

It is important to point out that the denominator mean squareused for
testing isMSE from the full model. We do not pool “unused” terms intoUse MSE from

full model error. Thus, the Type II SS for C isSS(C|1, A,B,AB), but the error mean
square is from the model (1, A, B, C, AB, AC, BC, ABC).

Example 10.2 Unbalanced amylase data, continued
Listing 10.1① shows SAS output giving the Type II analysis for the un-
balanced amylase data of Example 10.1. Choose the hierarchical model by
starting at the three-factor interaction. The three-factor interaction is not sig-
nificant (p-value .21) and so will not be retained in the model. Because it is
not needed, we can now test to see if any of the two-factor interactions are
needed. Growth temperature by variety is highly significant; therefore, that
interaction and the main effects of growth temperature and variety will be
in our final model. Neither the analysis temperature by growth temperature
interaction nor the analysis temperature by variety interaction is significant,
so they will not be retained. We may now test analysis temperature, which
is significant. We do not test the other main effects because they are implied
by the significant two-factor interaction. The final model isall three main
effects and the growth temperature by variety interaction.

If your software does not compute Type II sums of squares directly, you
can determine them from Type I sums of squares for a sequence of models
with the terms arranged in different orders. For example, suppose we haveGet Type II SS

from Type I SS the Type I sums of squares for the model (1, A, B, AB, C, AC, BC, ABC).
Then the Type I sums of squares for ABC, BC, and C are also Type II sums
of squares. Type I sums of squares for (1, B, C, BC, A, AB, AC, ABC) allow
us to get Type II sums of squares for A, AC, ABC, and so on.



10.1 Unbalanced Data 229

Listing 10.1: SAS output for unbalanced amylase data.

General Linear Models Procedure

Dependent Variable: LY

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 31 3.83918760 0.12384476 23.26 0.0001

Error 63 0.33537806 0.00532346

Source DF Type II SS Mean Square F Value Pr > F

ATEMP 7 3.03750534 0.43392933 81.51 0.0001

GTEMP 1 0.00206944 0.00206944 0.39 0.5352

ATEMP*GTEMP 7 0.06715614 0.00959373 1.80 0.1024

VAR 1 0.55989306 0.55989306 105.17 0.0001

ATEMP*VAR 7 0.02602887 0.00371841 0.70 0.6731

GTEMP*VAR 1 0.07863197 0.07863197 14.77 0.0003

ATEMP*GTEMP*VAR 7 0.05355441 0.00765063 1.44 0.2065 ①

Source DF Type III SS Mean Square F Value Pr > F

ATEMP 7 3.03041604 0.43291658 81.32 0.0001

GTEMP 1 0.00258454 0.00258454 0.49 0.4885

ATEMP*GTEMP 7 0.06351586 0.00907369 1.70 0.1241

VAR 1 0.55812333 0.55812333 104.84 0.0001

ATEMP*VAR 7 0.02589103 0.00369872 0.69 0.6761

GTEMP*VAR 1 0.07625999 0.07625999 14.33 0.0003

ATEMP*GTEMP*VAR 7 0.05355441 0.00765063 1.44 0.2065 ②

Contrast DF Contrast SS Mean Square F Value Pr > F

gtemp low vs high 1 0.00258454 0.00258454 0.49 0.4885 ③

Type I sums of squares for the terms in a model will sum to the overall
model sum of squares withg − 1 degrees of freedom. This is not true for
Type II sums of squares, as can be seen in Listing 10.1; the model sum of
squares is 3.8392, but the Type II sums of squares add to 3.8248.

The Type II approach to model building is not foolproof. The following
example shows that in some situations the overall model can be highly sig-
nificant, even though none of the individual terms in the model is significant.

Unbalanced data puzzle Example 10.3

Consider the data in Table 10.1. These data are highly unbalanced. List-
ing 10.2 gives SAS output for these data, including Type I andII sums of
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Table 10.1:A highly unbalanced two by two factorial.

A B

1 2

1 2.7 7.9 26.3 -1.9 30.6 21.5
3.8 27.2 20.9 20.6 14.6

2 26.1 41.1 46.7 57.8 38 39.3

squares at② and③. Note that the Type I and II sums of squares for B and
AB are the same, because B enters the model after A and so is adjusted for A
in Type I; similarly, AB enters after A and B and is adjusted for them in the
Type I analysis. A enters first, so its Type I sum of squaresSS(A|1) is not
Type II.

Also shown at① is the sum of squares with 3 degrees of freedom for the
overall model, ignoring the factorial structure. The overall model is signifi-
cant with ap-value of about .002. However, neither the interaction nor either
main effect has a Type IIp-value less than .058. Thus the overall model is
highly significant, but none of the individual terms is significant.

What has actually happened in these data is that either A or B alone
explains a large amount of variation (see the sum of squares for A in ②),
but they are in some sense explaining the same variation. Thus B is not
needed if A is already present, A is not needed if B is already present, and
the interaction is never needed.

10.1.3 Testing hypotheses

In some situations we may wish to test specific hypotheses about treatment
means rather than building a model to describe the means. Many of these
hypotheses can be expressed in terms of the factorial parameters, but recallStandard tests

are for equally
weighted factorial
parameters

that the parameters we use in our factorial decomposition carry a certain
amount of arbitrariness in that they assume equally weighted averages. When
the hypotheses of interest correspond to our usual, equallyweighted factorial
parameters, testing is reasonably straightforward; otherwise, special purpose
contrasts must be used.

Let’s review how means and parameters correspond in the two-factor sit-
uation. Letµij be the mean of theijth treatment:

µij = µ + αi + βj + αβij
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Listing 10.2: SAS output for data in Table 10.1.

General Linear Models Procedure

Dependent Variable: Y

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 2876.88041 958.96014 8.53 0.0022 ①

Error 13 1460.78900 112.36838

Corrected Total 16 4337.66941

Source DF Type I SS Mean Square F Value Pr > F

A 1 2557.00396 2557.00396 22.76 0.0004 ②
B 1 254.63189 254.63189 2.27 0.1561

A*B 1 65.24457 65.24457 0.58 0.4597

Source DF Type II SS Mean Square F Value Pr > F

A 1 485.287041 485.287041 4.32 0.0581 ③
B 1 254.631889 254.631889 2.27 0.1561

A*B 1 65.244565 65.244565 0.58 0.4597

Source DF Type III SS Mean Square F Value Pr > F

A 1 499.951348 499.951348 4.45 0.0549 ④
B 1 265.471348 265.471348 2.36 0.1483

A*B 1 65.244565 65.244565 0.58 0.4597

with
0 =

∑

i

αi =
∑

j

βj =
∑

i

αβij =
∑

j

αβij .

Let nij be the number of observations in theijth treatment. Form row and
column averages of treatment means using equal weights for the treatment
means: Row and column

averages of
treatment

expected valuesµi• =
b∑

j=1

µij/b

= µ + αi ,

µ•j =
a∑

i=1

µij/a

= µ + βj .
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The null hypothesis that the main effects of factor A are all zero (αi ≡ 0)
is the same as the null hypothesis that all the row averages ofthe treatment
means are equal (µ1• = µ2• = · · · = µa•). This is also the same as the null
hypothesis that all factor A main-effects contrasts evaluate to zero.

Testing the null hypothesis that the main effects of factor Aare all zero
(αi ≡ 0) is accomplished with an F-test. We compute the sum of squares
for this hypothesis by taking the difference in error sum of squares for twoTest equally

weighted
hypotheses using
Type III SS or
standard
parametric

models: the full model with all factors and interactions, and that model with
the main effect of factor A deleted, orSS(A|1, B,C,AB,AC,BC,ABC)
in a three-factor model. This reduced model is not hierarchical; it includes
interactions with A but not the main effect of A. Similarly, we compute a
sum of squares for any other hypothesis that a set of factorial effects is all
zero by comparing the sum of squares for the full model with the sum of
squares for the model with that effect removed. This may be called “standard
parametric,” “Yates’ weighted squares of means,” or “fullyadjusted”; in SAS
it is called Type III.

Example 10.4 Unbalanced data puzzle, continued
Let us continue Example 10.3. If we wish to test the null hypothesis that
αi ≡ 0 or βj ≡ 0, we need to use Type III sums of squares. This is shown
at ④ of Listing 10.2. None of the null hypotheses about main effects or
interaction is anywhere near as significant as the overall model; all havep-
values greater than .05.

How can this be so when we know that there are large differences be-
tween treatment means in the data? Consider for a moment the test for factor
A main effects. The null hypothesis is that the factor A main effects are zero,
but no constraint is placed on factor B main effects or interactions. We can fit
the data fairly well with theαi’s equal to zero, so long as we can manipulate
the βj ’s andαβij ’s to take up the slack. Similarly, when testing factor B,
no constraint is placed on factor A main effects or AB interactions. These
three tests of A, B, and AB do not test that all three null hypotheses are true
simultaneously. For that we need to test the overall model with 3 degrees of
freedom.

When we test the null hypothesis that a contrast in treatmenteffects is
zero, we are testing the null hypothesis that a particular linear combination
of treatment means is zero with no other restrictions on the cell means. ThisContrast SS are

Type III is equivalent to testing that the single degree of freedom represented by the
contrast can be removed from the full model, so the contrast has been ad-
justed for all other effects in the model. Thus the sum of squares for any
contrast is a Type III sum of squares.
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Unbalanced amylase data, continued Example 10.5
Continuing Example 10.1, the Type III ANOVA can be found at② in List-
ing 10.1. The Type III sum of squares for growth temperature is .0025845,
different from both Types I and II. If you compute the main-effect contrast in
growth temperature with coefficients 1 and -1, you get the results shown at③
in Listing 10.1, including the same sum of squares as the TypeIII analysis.
This equivalence of the effect sum of squares and the contrast sum of squares
is due to the fact that the effect has only a single degree of freedom, and thus
the contrast describes the entire effect.

The only factorial null hypotheses that would be rejected are those for the
main effects of analysis temperature and variety and the interaction of growth
temperature and variety. Thus while growth temperature andvariety jointly
act to influence the response, there is no evidence that the average responses
for the two growth temperatures differ (equally weighted averages across all
analysis temperatures and varieties).

10.1.4 Empty cells

The problems of unbalanced data are increased when one or more of the cells
are empty, that is, when there are no data for some factor-level combinations.
The model-building/Type II approach to analysis doesn’t really change. We
can just keep comparing hierarchical models. The hypothesis testing ap- Empty cells make

factorial effects
ambiguous

proach becomes very problematic, however, because the parameters about
which we are making hypotheses are no longer uniquely defined, even when
we are sure we want to work with equal weighting.

When there are empty cells, there are infinitely many different sets of
factorial effects that fit the observed treatment means exactly; these different
sets of effects disagree on what they fit for the empty cells. Consider the fol- Multiple sets of

parameters with
different fits for

empty cells

lowing three by two table of means with one empty value, and two different
factorial decompositions of the means into grand mean, row,column, and
interaction effects.

196 124
156 309
47

156.0 -23.0 23.0

4.0 59.0 -59.0
76.5 -53.5 53.5

-80.5 -5.5 5.5

133.0 .0 .0

27.0 36.0 -36.0
99.5 -76.5 76.5

-126.5 40.5 -40.5

Both of these factorial decompositions meet the usual zero-sum require-
ments, and both add together to match the table of means exactly. The first
is what would be obtained if the empty cell had mean 104, and the second if
the empty cell had mean -34.
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Because the factorial effects are ambiguous, it makes no sense to test hy-
potheses about the factorial model parameters. For example, are the column
effects above zero or nonzero? What does make sense is to lookat simpleUse contrasts to

analyze data with
empty cells

effects and to set up contrasts that make factorial-like comparisons where
possible. For example, levels 1 and 2 of factor A are complete, so we can
compare those two levels with a contrast. Note that the difference of row
means is 72.5, andα2 − α1 is 72.5 in both decompositions. We might also
want to compare level 1 of factor B with level 2 of factor B for the two lev-
els of factor A that are complete. There are many potential ways to choose
interesting contrasts for designs with empty cells.

10.2 Multiple Comparisons

The perceptive reader may have noticed that we can do a lot of F-tests in the
analysis of a factorial, but we haven’t been talking about multiple compar-
isons adjustments. Why this resounding silence, when we were so careful to
describe and account for multiple testing for pairwise comparisons? I haveF-tests in factorial

ANOVA not
usually adjusted
for multiple
comparisons

no good answer; common statistical practice seems inconsistent in this re-
gard. What common practice does is treat each main effect andinteraction
as a separate “family” of hypotheses and make multiple comparisons adjust-
ments within a family (Section 9.1) but not between families.

We sometimes use an informal multiple comparisons correction when
building hierarchical models. Suppose that we have a three-way factorial,
and only the three-way interaction is significant, with ap-value of .04; the
main-effects and two-factor interactions are not near significance. I would
probably conclude that the lowp-value for the three-way interaction is due
to chance rather than interaction effects. I conclude this because I usually
expect main effects to be bigger than two-factor interactions, and two-factor
interactions to be bigger than three-factor interactions.I thus interpret anBe wary of

isolated
significant
interactions

isolated, marginally significant three-way interaction asa null result. I know
that isolated three-way interaction can occur, but it seemsless likely to me
than chance occurrence of a moderately lowp-value.

We could also adopt a predictive approach to model selection(as in Sec-
tion 5.4.9) and choose that hierarchical model that has lowest Mallows’ Cp.
Models chosen by predictive criteria can include more termsthan those cho-
sen via tests, because the Cp criterion corresponds to including terms with
F-tests greater than 2.
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10.3 Power and Sample Size

Chapter 7 described the computation of power and sample sizefor com-
pletely randomized designs. If we ignore the factorial structure and con-
sider our treatments simply asg treatments, then we can use the methods of
Chapter 7 to compute power and sample size for the overall null hypothesis
of no model effects. Power depends on the Type I error rateEI , numerator
and denominator degrees of freedom, and the effects, samplesizes, and error
variance through the noncentrality parameter.

For factorial data, we usually test null hypotheses about main effects or
interactions in addition to the overall null hypothesis of no model effects. Compute power

for main effects
and interactions

separately

Power for these tests again depends on the Type I error rateEI , numerator
and denominator degrees of freedom, and the effects, samplesizes, and error
variance through the noncentrality parameter, so we can do the same kinds
of power and sample size computations for factorial effectsonce we identify
the degrees of freedom and noncentrality parameters.

We will address power and sample size only for balanced data,because
most factorial experiments are designed to be balanced, andsimple formulae Power for

balanced datafor noncentrality parameters exist only for balanced data.For concreteness,
we present the formulae in terms of a three-factor design; the generalization
to more factors is straightforward. In a factorial, main effects and interactions
are tested separately, so we can perform a separate power analysis for each
main effect and interaction. The numerator degrees of freedom are simply
the degrees of freedom for the factorial effect: for example, (b−1)(c−1) for
the BC interaction. Error degrees of freedom(N − abc) are the denominator
degrees of freedom.

The noncentrality parameter depends on the factorial parameters, sample
size, and error variance. The algorithm for a noncentralityparameter in a
balanced design is

1. Square the factorial effects and sum them,

2. Multiply this sum by the total number of data in the design divided by Noncentrality
parameterthe number of levels in the effect, and

3. Divide that product by the error variance.

For the AB interaction, this noncentrality parameter is

N
ab

∑
ij αβ2

ij

σ2
=

nc
∑

ij αβ2
ij

σ2
.

The factor in step 2 equals the number of data values observedat each level of
the given effect. For the AB interaction, there aren values in each treatment,
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andc treatments with the sameij levels, for a total ofnc observations in each
ij combination.

As in Chapter 7, minimum sample sizes to achieve a given powerare
found iteratively, literally by trying different sample sizes and finding the
smallest one that does the job.

10.4 Two-Series Factorials

A two-seriesfactorial design is one in which all the factors have just two
levels. Fork factors, we call this a2k design, because there are2k differentAll factors have

exactly two levels
in two-series
factorials

factor-level combinations. Similarly, a design withk factors, each with three
levels, is a three-series design and denoted by3k. Two-series designs are
somewhat special, because they are the smallest designs with k factors. They
are often used when screening many factors.

Because two-series designs are so common, there are specialnotations
and techniques associated with them. The two levels for eachfactor are gen-
erally calledlow andhigh. These terms have clear meanings if the factors areLevels called low

and high quantitative, but they are often used as labels even when thefactors are not
quantitative. Note that “off” and “on” would work just as well, but low and
high are the usual terms.

There are two methods for denoting a factor-level combination in a two-
series design. The first uses letters and is probably the morecommon. DenoteLower-case

letters denote
factors at high
levels

a factor-level combination by a string of lower-case letters: for example,bcd.
We have been using these lower-case letters to denote the number of levels
in different factors, but all factors in a two-series designhave two levels, so
there should be no confusion. Letters that are present correspond to factors
at their high levels, and letters that are absent correspondto factors at their
low levels. Thusac is the combination where factors A and C are at their
high levels and all other factors are at their low levels. Usethe symbol(1)
to denote the combination where all factors are at their low levels. DenoteDo not confuse

treatments like bc
with effects like
BC

the mean response at a given factor-level combination byy with a subscript,
for exampleyab. Do not confuse the factor-level combinationbc with the
interaction BC; the former is a single treatment, and the latter is a contrast
among treatments.

The second method uses numbers and generalizes to three-series and
higher-order factorials as well. A factor-level combination is denoted byk
binary digits, with one digit giving the level of each factor: a zero denotesBinary digits, 1 for

high, 0 for low a factor at its low level, and a one denotes a factor at its highlevel. Thus
000 is all factors at low level, the same as(1), and011 is factors B and C at
high level, the same asbc. This generalizes to other factorials by using more
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Table 10.2:Pluses and minuses for a23 design.

A B C

(1) – – –
a + – –
b – + –
ab + + –
c – – +
ac + – +
bc – + +
abc + + +

digits. For example, we use the digits 0, 1, and 2 to denote thethree levels of
a three-series.

It is customary to arrange the factor-level combinations ofa two-series
factorial instandard order. Standard order will help us keep track of factor-
level combinations when we later modify two-series designs. Historically, Standard order

prescribes a
pattern for listing

factor-level
combinations

standard order was useful for Yates’ algorithm (see next section). Standard
order for a two-series design begins with(1). Then proceed through the
remainder of the factor-level combinations with factor A varying fastest, then
factor B, and so on. In standard order, factor A will repeat the pattern low,
high; factor B will repeat the pattern low, low, high, high; factor C will repeat
the pattern low, low, low, low, high, high, high, high; and soon though other
factors. In general, thejth factor will repeat a pattern of2j−1 lows followed
by 2j−1 highs. For a24, standard order is(1), a, b, ab, c, ac, bc, abc, d, ad,
bd, abd, cd, acd, bcd, andabcd.

Two-series factorials form the basis of several designs we will consider
later, and one of the tools we will use is a table of pluses and minuses. For Table of + and –
a2k design, build a table with2k rows andk columns. The rows are labeled
with factor-level combinations in standard order, and the columns are labeled
with thek factors. In principle, the body of the table contains+1’s and−1’s,
with +1 indicating a factor at a high level, and−1 indicating a factor at a
low level. In practice, we use just plus and minus signs to denote the factor
levels. Table 10.2 shows this table for a23 design.

10.4.1 Contrasts

One nice thing about a two-series design is that every main effect and inter-
action is just a single degree of freedom, so we may representany main effect
or interaction by a single contrast. For example, the main effect of factor A
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in a23 can be expressed as

α̂2 = −α̂1

= y2•• − y•••

=
1

8
(ya + yab + yac + yabc − y(1) − yb − yc − ybc)

=
1

8
(−y(1) + ya − yb + yab − yc + yac − ybc + yabc) ,

which is a contrast in the eight treatment means with plus signs where A is
high and minus signs where A is low. Similarly, the sum of squares for A canTwo-series effects

are contrasts be written

SSA = 4nα̂1
2 + 4nα̂2

2

=
n

8
(ya + yab + yac + yabc − y(1) − yb − yc − ybc)

2

=
n

8
(−y(1) + ya − yb + yab − yc + yac − ybc + yabc)

2 ,

which is the sum of squares for the contrastwA with coefficients+1 whereEffect contrasts
same as columns
of pluses and
minuses

A is high and−1 where A is low (or.25 and−.25, or−17.321 and17.321,
as the sum of squares is unaffected by a nonzero multiplier for the contrast
coefficients). Note that this contrastwA has exactly the same pattern of pluses
and minuses as the column for factor A in Table 10.2.

The difference

y2••• − y1••• = α̂2 − α̂1 = 2α̂2

is thetotal effectof factor A. The total effect is the average response whereTotal effect
A is high, minus the average response where A is low, so we can also obtain
the total effect of factor A by rescaling the contrastwA

y2••• − y1••• =
1

4

∑

ijk

wAijk yijk• ,

where the divisor of 4 is replaced by2k−1 for a2k design.
The columns of Table 10.2 give us contrasts for the main effects. Inter-

actions in the two-series are also single degrees of freedom, so there must beInteraction
contrasts are
products of
main-effects
contrasts

contrasts for them as well. We obtain these interaction contrasts by taking el-
ementwise products of main-effects contrasts. For example, the coefficients
in the contrast for the BC interaction are the products of thecoefficients for
the B and C contrasts. A three-way interaction contrast is the product of the
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Table 10.3:All contrasts for a23 design.

A B C AB AC BC ABC

(1) – – – + + + –
a + – – – – + +
b – + – – + – +
ab + + – + – – –
c – – + + – – +
ac + – + – + – –
bc – + + – – + –
abc + + + + + + +

three main-effects contrasts, and so on. This is most easilydone by referring
to the columns of Table 10.2, with+ and− interpreted as+1 and−1. We
show these contrasts for a23 design in Table 10.3.

Yates’ algorithm is a method for efficient computation of theeffects in a
two-series factorial. It can be modified to work in three-series and general
factorials, but we will only discuss it for the two-series. Yates’ algorithm Yates’ algorithm

efficiently
computes effects

in two-series

begins with the treatment means in standard order and produces the grand
mean and factorial effects in standard order with a minimum of computa-
tion. Looking at Table 10.3, we see that there are2k effect columns (adding
a column of all ones for the overall mean) each involving2k additions, sub-
tractions, or multiplications for a total of22k operations. Yates’ algorithm
allows us to get the same results withk2k operations, a substantial savings
for hand computation and worth consideration in computer software as well.

Arrange the treatment means of a2k in standard order in a column; call it
column 0. Yates’ algorithm computes the effects ink passes through the data, Each column is

sums and
differences of

preceding column

each pass producing a new column. We perform an operation on column 0
to get column 1; then we perform the same operation on column 1to get
column 2; and so on. The operation is sums and differences of successive
pairs. To make a new column, the first half of the elements are found as sums
of successive pairs in the preceding column. The last half ofthe elements are
found as differences of successive pairs in the preceding column.

For example, in a23, the elements of column 0 (the data) arey(1), ya, yb,
yab, yc, yac, ybc, yabc. The elements in column 1 are:y(1) + ya, yb + yab, yc

+ yac, ybc + yabc, ya – y(1), yab – yb, yac – yc, andyabc – ybc. We repeat the
same operation on column 1 to get column 2:y(1) + ya + yb + yab, yc + yac
+ ybc + yabc, ya – y(1) + yab – yb, yac – yc + yabc – ybc, yb + yab – y(1) – ya,
ybc + yabc – yc – yac, yab – yb – ya + y(1), andyabc – ybc – yac + yc. This
procedure continues through the remaining columns.
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Table 10.4:Yates’ algorithm for the pacemaker substrate data.

Data 1 2 3 Effects

(1) 4.388 7.219 14.686 29.090 3.636 Mean
a 2.831 7.467 14.404 -5.735 -.717 A
b 4.360 7.598 -2.809 -.544 -.068 B
ab 3.107 6.806 -2.926 -.500 -.062 AB
c 4.330 -1.556 .248 -.282 -.035 C
ac 3.268 -1.252 -.791 -.117 -.015 AC
bc 4.336 -1.061 .304 -1.039 -.130 BC
abc 2.471 -1.865 -.804 -1.108 -.138 ABC

After k passes, thekth column contains the total of the treatment means
and the effect contrasts with±1 coefficients applied to the treatment means.
These results are in standard order (total, A effect, B effect, AB effect, and
so on). To get the grand mean and effects, divide columnk by 2k.

Example 10.6 Pacemaker substrates
We use the data of Problem 8.4. This was a23 experiment with two repli-
cations; factors A—profile time, B—airflow, and C—laser; andresponse the
fraction of substrates delaminating. The column labeledData in Table 10.4
shows the treatment means for the log scale data. Columns labeled1, 2,and
3 are the three steps of Yates’ algorithm, and the final column is the grand
mean followed by the seven factorial effects in standard order. Profile time
(A) clearly has the largest effect (in absolute value).

10.4.2 Single replicates

As with all factorials, a single replication in a two-seriesdesign means that
we have no degrees of freedom for error. We can apply any of theusualSingle replicates

need an estimate
of error

methods for single replicates to a two-series design, but there are also meth-
ods developed especially for single replicate two-series.We describe two of
these methods. The first is graphically based and is subjective; it does not
providep-values. The second is just slightly more complicated, but it does
allow at least approximate testing.

Both methods are based on the idea that if our original data are indepen-
dent and normally distributed with constant variance, thenuse of the effectsEffects are

independent with
constant variance

contrasts in Table 10.3 gives us results that are also independent and nor-
mally distributed with constant variance. The expected value of any of these
contrasts is zero if the corresponding null hypothesis of nomain effect or
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interaction is correct. If that null hypothesis is not correct, then the expected
value of the contrast is not zero. So, when we look at the results, contrasts
corresponding to null effects should look like a sample froma normal dis-
tribution with mean zero and fixed variance, and contrasts corresponding to Significant effects

are outliersnon-null effects will have different means and should look like outliers. We
now need a technique to identify outliers.

We implicitly make an assumption here. We assume that we willhave
mostly null results, with a few non-null results that shouldlook like outliers.
This is calledeffect sparsity.These techniques will work poorly if there are We assume effect

sparsitymany non-null effects, because we won’t have a good basis fordeciding what
null behavior is.

The first method is graphical and is usually attributed to Daniel (1959).
Simply make a normal probability plot of the contrasts and look for outliers.
Alternatively, we can use ahalf-normalprobability plot, because we don’t Half-normal plot

of effectscare about the signs of the effects when determining which ones are outliers.
A half-normal probability plot plots the sorted absolute values on the vertical
axis against the sorted expected scores from a half-normal distribution (that
is, the expected value ofith smallest absolute value from a sample of size
2k − 1 from a normal distribution). I usually find the half-normal plots easier
to interpret.

The second method computes apseudo-standard error(PSE) for the con-
trasts, allowing us to dot-tests. Lenth (1989) computes the PSE in two steps.
First, lets0 be 1.5 times the median of the absolute values of the contrastre- Lenth’s

pseudo-standard
error

sults. Second, delete any contrasts results whose absolutevalues are greater
than2.5s0, and let the PSE be 1.5 times the median of the remaining abso-
lute contrast results. Treat the PSE as a standard error for the contrasts with
(2k − 1)/3 degrees of freedom, and dot-tests. These can be individual tests,
or you can do simultaneous tests using a Bonferroni correction.

Pacemaker substrates, continued Example 10.7

We illustrate both methods using the pacemaker substrate data from Ta-
ble 10.4. The column labeledEffectsgives the grand mean and effects. Re-
moving the grand mean, we make a half-normal plot of the remaining seven
effects, as shown in Figure 10.1. Effect 1, the main effect ofA, appears as a
clear outlier, and the rest appear to follow a nice line. Thuswe would con-
clude subjectively that A is significant, but no other effects are significant.

To use Lenth’s method, we first need the median of the absolutefactorial
effects, .068 for these data. We next delete any absolute effects greater than
2.5× .068 = .17; only the the main effect of A meets this cutoff. The median
of the remaining absolute effects is .065, so the PSE is1.5 × .065 = .098.
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Figure 10.1: Half-normal plot of factorial effects for the log
pacemaker substrate data, using MacAnova. Numbers indicate
standard order: 1 is A, 7 is ABC, and so on.

We treat this PSE as having 7/3 degrees of freedom. With this criterion, the
main effect of A has a two-sidedp-value of about .01, in agreement with our
subjective conclusion.

An interesting feature of two-series factorials can be seenif you look
at a data set consisting of all zeroes except for a single nonzero value. All
factorial effects for such a data set are equal in absolute value, but some willA single nonzero

response yields
effects equal in
absolute value

be positive and some negative, depending on which data valueis nonzero
and the pattern of pluses and minuses. For example, suppose that c has a
positive value and all other responses are zero. Looking at the row forc in
Table 10.3, the effects for C, AB, and ABC should be positive,and the effects
for A, B, AC, and BC should be negative. Similarly, ifbc had a negative value
and all other responses were zero, then the row forbc shows us that A, AB,
AC, and ABC would be positive, and B, C, and BC would be negative. The
patterns of positive and negative effects are unique for allcombinations of
which response is nonzero and whether the response is positive or negative.

When a two-series design contains a large one-cell interaction, many of
what should be null effects will have about the same absolutevalue, and weFlat spots in half

normal plot may
mean one-cell
interaction

will see an approximate horizontal line in the half-normal plot. By matching
the signs of the seemingly constant effects (or their inverses) to rows of tables
of pluses and minuses, we can determine which cell is interacting.
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Figure 10.2: Half-normal plot of factorial effects for seed
maturation data, using MacAnova.

Seed maturation on cut stems Example 10.8
Sixteen heliopsis (sunflower) blooms were cut with 15 cm stems and the
stems were randomly placed in eight water solutions with thecombinations
of the following three factors: preservative at one-quarter or one-half strength,
MG or MS preservative, 1% or 2% sucrose. After the blooms had dried, the
total number of seeds for the two blooms was determined as response (data
from David Zlesak). In standard order, the responses were:

(1) a b ab c ac bc abc
12 10 60 8 89 87 52 49

Figure 10.2 shows a half-normal plot of the factorial effects. Effects 1, 2, 3,
5, and 7 (A, B, AB, AC, and ABC) seem roughly constant. Examination of
the effects (not shown) reveals that A, B, and AB have negative effects, and
AC and ABC have positive effects. Looking at Table 10.3, we can see that
the only factor-level combination where the A, B, and AB contrasts have the
same sign—and the AC and ABC contrasts have the same sign and oppo-
site that of A, B, and AB—is theab combination. Examining the data, the
response of 8 forab indeed looks like a one-cell interaction.
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10.5 Further Reading and Extensions

A good expository discussion of unbalance can be found in Herr (1986);
more advanced treatments can be found in texts on linear models, such as
Hocking (1985).

The computational woes of unbalance are less forproportional balance.
In a two-factor design, we have proportional balance ifnij/N = ni•/N ×
n•j/N . For example, treatments at level 1 of factor A might have replication
4, and all other treatments have replication 2. Under proportional balance,
contrasts in one main effect or interaction are orthogonal to contrasts in any
other main effect or interaction. Thus the order in which terms enter a model
does not matter, and ordinary, Type II, and Type III sums of squares all agree.
Balanced data are obviously a special case of proportional balance. For more
than two factors, the rule for proportional balance is that the fraction of the
data in one cell should be the product of the fractions in the different margins.

When we have specific hypotheses that we would like to test, but they
do not correspond to standard factorial terms, then we must address them
with special-purpose contrasts. This is reasonably easy for a single degree
of freedom. For hypotheses with several degrees of freedom,we can form
multidegree of freedom sums of squares for a set of contrastsusing methods
described in Hocking (1985) and implemented in many software packages.
Alternatively, we may use Bonferroni to combine the tests ofindividual de-
grees of freedom.

It is somewhat instructive to see the hypotheses tested by approaches
other than Type III. Form row and column averages of treatment means using
weights proportional to cell counts:

µi⋆ =
b∑

j=1

nijµij/ni•

µ⋆j =
a∑

i=1

nijµij/n•j ;

and form averages for each row of the column weighted averages, and
weighted averages for each column of the row weighted averages:

(µ⋆j)i⋆ =
b∑

j=1

nijµ⋆j/ni•

(µi⋆)⋆j =
a∑

i=1

nijµi⋆/n•j .
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Thus there is a(µ⋆j)i⋆ value for each rowi, formed by taking a weighted
average of the column weighted averagesµ⋆j . The values may differ between
rows because the countsnij may differ between rows, leading to different
weighted averages.

Consider two methods for computing a sum of squares for factor A. We
can calculate the sum of squares for factor A ignoring all other factors; this
is SAS Type I for factor A first in the model, and is also called “weighted
means.” This sum of squares is the change in error sum of squares in going
from a model with just a grand mean to a model with row effects and is
appropriate for testing the null hypothesis

µ1⋆ = µ2⋆ = · · · = µa⋆ .

Alternatively, calculate the sum of squares for factor A adjusted for factor B;
this is a Type II sum of squares for a two-way model and is appropriate for
testing the null hypothesis

µ1⋆ = (µ⋆j)1⋆; µ2⋆ = (µ⋆j)2⋆; . . . ; µa⋆ = (µ⋆j)a⋆ .

That is, the Type II null hypothesis for factor A allows the row weighted
means to differ, but only because they are different weighted averages of the
column weighted means.

Daniel (1976) is an excellent source for the analysis of two-series de-
signs, including unreplicated two-series designs. Much data-analytic wisdom
can be found there.

10.6 Problems

Three ANOVA tables are given for the results of a single experiment. Exercise 10.1
These tables give sequential (Type I) sums of squares. Construct a Type II
ANOVA table. What would you conclude about which effects andinterac-
tions are needed?

DF SS MS

a 1 1.9242 1.9242

b 2 1584.2 792.1

a.b 2 19.519 9.7595

c 1 1476.7 1476.7

a.c 1 17.527 17.527

b.c 2 191.84 95.92

a.b.c 2 28.567 14.284

Error 11 166.71 15.155
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DF SS MS

b 2 1573 786.49

c 1 1428.7 1428.7

b.c 2 153.62 76.809

a 1 39.777 39.777

b.a 2 69.132 34.566

c.a 1 27.51 27.51

b.c.a 2 28.567 14.284

Error 11 166.71 15.155

DF SS MS

c 1 1259.3 1259.3

a 1 9.0198 9.0198

c.a 1 0.93504 0.93504

b 2 1776.1 888.04

c.b 2 169.92 84.961

a.b 2 76.449 38.224

c.a.b 2 28.567 14.284

Error 11 166.71 15.155

A single replicate of a24 factorial is run. The results in standard order areExercise 10.2
1.106, 2.295, 7.074, 6.931, 4.132, 2.148, 10.2, 10.12, 3.337, 1.827, 8.698,
6.255, 3.755, 2.789, 10.99, and 11.85. Analyze the data to determine the
important factors and find which factor-level combination should be used to
maximize the response.

Here are two sequential (Type I) ANOVA tables for the same data. Com-Exercise 10.3
plete the second table. What do you conclude about the significance of row
effects, column effects, and interactions?

DF SS MS

r 3 3.3255 1.1085

c 3 112.95 37.65

r.c 9 0.48787 0.054207

ERROR 14 0.8223 0.058736

DF SS MS

c 3 116.25 38.749

r 3

c.r 9

ERROR 14

Consider the following two plots, which show normal and half-normalExercise 10.4
plots of the effects from an unreplicated25 factorial design. The effects are
numbered starting with A as 1 and are in standard order. What would you
conclude?
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An experiment investigated the release of the hormone ACTH from rat Problem 10.1
pituitary glands under eight treatments: the factorial combinations of CRF (0
or 100 nM; CRF is believed to increase ACTH release), calcium(0 or 2 mM
of CaCl2), and Verapamil (0 or 50µM; Verapamil is thought to block the
effect of calcium). Thirty-six rat pituitary cell culturesare assigned at ran-
dom to the factor-level combinations, with control (all treatments 0) getting
8 units, and other combinations getting 4. The data follow (Giguere, Lefevre,
and Labrie 1982). Analyze these data and report your conclusions.
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Control 1.73 1.57 1.53 2.1
1.31 1.45 1.55 1.75

V (Verapamil) 2.14 2.24 2.15 1.87
CRF 4.72 2.82 2.76 4.44
CRF + V 4.36 4.05 6.08 4.58
Ca (Calcium) 3.53 3.13 3.47 2.99
Ca + V 3.22 2.89 3.32 3.56
CRF + Ca 13.18 14.26 15.24 11.18
CRF + Ca + V 19.53 16.46 17.89 14.69

Consumers who are not regular yogurt eaters are polled and asked to rateProblem 10.2
on a 1 to 9 scale the likelihood that they would buy a certain yogurt product at
least once a month; 1 means very unlikely, 9 means very likely. The product
is hypothetical and described by three factors: cost (“C”—low, medium, and
high), sensory quality (“S”—low, medium, and high), and nutritional value
(“N”—low and high). The plan was to poll three consumers for each product
type, but it became clear early in the experiment that peoplewere unlikely
to buy a high-cost, low-nutrition, low-quality product, soonly one consumer
was polled for that combination. Each consumer received oneof the eighteen
product descriptions chosen at random. The data follow:

CSN Scores CSN Scores

HHH 2.6 2.5 2.9 HHL 1.5 1.6 1.5
HMH 2.3 2.1 2.3 HML 1.4 1.5 1.4
HLH 1.05 1.06 1.05 HLL 1.01
MHH 3.3 3.5 3.3 MHL 2.2 2.0 2.1
MMH 2.6 2.6 2.3 MML 1.8 1.7 1.8
MLH 1.2 1.1 1.2 MLL 1.07 1.08 1.07
LHH 7.9 7.8 7.5 LHL 5.5 5.7 5.7
LMH 4.5 4.6 4.0 LML 3.8 3.3 3.1
LLH 1.7 1.8 1.8 LLL 1.5 1.6 1.5

Analyze these data for the effects of cost, quality, and nutrition on likeli-
hood of purchase.

Modern ice creams are not simple recipes. Many use some type of gum toProblem 10.3
enhance texture, and a non-cream protein source (for example, whey protein
solids). A food scientist is trying to determine how types ofgum and pro-
tein added change a sensory rating of the ice cream. She runs afive by five
factorial with two replications using five gum types and five protein sources.
Unfortunately, six of the units did not freeze properly, andthese units were
not rated. Ratings for the other units are given below (higher numbers are
better).
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Protein
Gum 1 2 3 4 5

1 3.5 3.6 2.1 4.0 3.1
3.0 2.9 4.5

2 7.2 6.8 6.7 7.5 6.8
4.8 6.9 9.3

3 4.1 5.8 4.5 5.3 4.1
5.6 4.8 4.6 7.3 5.3

4 5.3 4.8 5.0 6.7 5.2
3.2 7.2 6.7 4.2

5 4.5 5.1 5.0 4.9 4.5
2.7 3.7 4.5 4.7

Analyze these data to determine if protein and/or gum have any effect on
the sensory rating. Determine which, if any, proteins and/or gums differ in
their sensory ratings.

Gums are used to alter the texture and other properties of foods, in part Problem 10.4
by binding water. An experiment studied the water-binding of various car-
rageenan gums in gel systems under various conditions. The experiment had
factorial treatment structure with four factors. Factor 1 was the type of gum
(kappa, mostly kappa with some lambda, and iota). Factor 2 was the concen-
tration of the gum in the gel in g/100g H20 (level 1 is .1; level 2 is .5; and
level 3 is 2 for gums 1 and 2, and 1 for gum 3). The third factor was type of
solute (NaCl, Na2SO4, sucrose). The fourth factor was solute concentration
(ku/kg H20). For sucrose, the three levels were .05, .1, and .25; for NaCl and
Na2SO4, the levels were .1, .25, and 1. The response is the water-binding
for the gel in mOsm (data from Rey 1981). This experiment was completely
randomized. There were two units at each factor-level combination except
solute concentration 3, where all but one combination had four units.

Analyze these data to determine the effects and interactions of the factors.
Summarize your analysis and conclusions in a report.
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G. conc. 1 G. conc. 2 G. conc. 3
S. S. conc. G. 1 G. 2 G. 3 G. 1 G. 2 G. 3 G. 1 G. 2 G. 3

1 1 99.7 97.6 99.0 100.0 104.7 107.3 123.0 125.7 117.3
98.3 103.7 98.0 104.3 105.7 106.7 116.3 121.7 117.3

1 2 239.0 239.7 237.0 249.7 244.7 243.7 277.0 266.3 268.0
236.0 246.7 237.7 255.7 245.7 247.7 262.3 276.3 266.7

1 3 928.7 940.0 899.3 937.0 942.7 953.3 968.0 992.7 1183.7
930.0 961.3 941.0 938.7 988.0 991.0 975.7 1019.0 1242.0
929.0 939.7 944.3 939.7 945.7 988.7 972.7 1018.7 1133.0
930.0 931.3 919.0 924.3 933.0 965.7 968.0 1021.0 1157.0

2 1 87.3 80.0 88.0 92.3 94.5 86.7 104.3 115.7 101.0
89.0 89.3 89.0 97.7 94.3 95.3 104.0 118.0 104.3

2 2 203.7 204.0 203.0 209.0 210.7 203.7 218.0 241.0 214.7
204.0 206.3 201.7 209.3 210.0 209.0 221.5 232.7 222.7

2 3 695.0 653.0 668.7 688.7 697.7 726.7 726.0 731.0 747.7
679.7 642.7 686.7 701.3 701.7 744.7 747.7 790.3 897.0
692.7 686.0 665.0 698.0 698.0 741.0 736.7 799.7 812.7
688.0 646.0 688.3 711.7 698.7 708.7 743.7 806.0 885.0

3 1 55.0 56.7 54.7 61.7 62.7 63.7 90.7 99.0 72.7
55.3 56.0 56.3 62.0 64.0 65.0 99.3 102.3 75.0

2 123.7 109.7 105.0 113.3 115.0 114.3 229.3 213.4 123.7
106.0 111.0 105.7 115.0 115.7 116.7 193.7 196.3 132.7

3 3 283.3 271.7 258.3 277.3 279.3 282.0 426.5 399.7 291.7
276.0 275.3 268.0 277.0 283.0 279.3 389.3 410.3 308.0
266.0 267.3 273.3 281.3 282.7 420.0 360.0 310.0
263.0 268.7 272.7 279.0 281.0 421.7 409.3 303.3

Expanded/extruded wheat flours have air cells that vary in size, and theProblem 10.5
size may depend on the variety of wheat used to make the flour, the location
where the wheat was grown, and the temperature at which the flour was ex-
truded. An experiment has been conducted to assess these factors. The first
factor is the variety of wheat used (Butte 86, 2371, or Grandin). The second
factor is the growth location (MN or ND). The third factor is the temperature
of the extrusion (120oC or 180oC). The response is the area in mm2 of the
air cells (data from Sutheerawattananonda 1994).

Analyze these data and report your conclusions; variety andtemperature
effects are of particular interest.
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Temp. Loc. Var. Response

1 1 1 4.63 10.37 7.53
1 1 2 6.83 7.43 2.99
1 1 3 11.02 13.87 2.47
1 2 1 3.44 5.88
1 2 2 2.60 4.48
1 2 3 4.29 2.67
2 1 1 2.80 3.32
2 1 2 3.01 4.51
2 1 3 5.30 3.58
2 2 1 3.12 2.58 2.97
2 2 2 2.15 2.62 3.00
2 2 3 2.24 2.80 3.18

Anticonvulsant drugs may be effective because they encourage the ef- Problem 10.6
fect of the neurotransmitter GABA (γ-aminobutyric acid). Calcium transport
may also be involved. The present experiment randomly assigned 48 rats
to eight experimental conditions. These eight conditions are the factor-level
combinations of three factors, each at two levels. The factors are the an-
ticonvulsant Trifluoperazine (brand name Stelazine) present or absent, the
anticonvulsant Diazepam (brand name Valium) present or absent, and the
calcium-binding protein calmodulin present or absent. Theresponse is the
amount of GABA released when brain tissues are treated with 33 mM K+

(data based on Table I of de Belleroche, Dick, and Wyrley-Birch 1982).

Tri Dia Cal

A A A 1.19 1.33 1.34 1.23 1.24 1.23 1.28 1.32
P 1.07 1.44 1.14 .87 1.35 1.19 1.17 .89

P A .58 .54 .63 .81
P .61 .60 .51 .88

P A A .89 .40 .89 .80 .65 .85 .45 .37
P 1.21 1.20 1.40 .70 1.10 1.09 .90 1.28

P A .19 .34 .61 .30
P .34 .41 .29 .52

Analyze these data and report your findings. We are interested in whether the
drugs affect the GABA release, by how much, and if the calmodulin changes
the drug effects.

In a study of patient confidentiality, a large number of pediatricians was Problem 10.7
surveyed. Each pediatrician was given a “fable” about a female patient less
than 18 years old. There were sixteen different fables, the combinations of
the factors complaint (C: 1—drug problem, 2—venereal disease), age (A:
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1—14 years, 2—17 years), the length of time the pediatricianhad known
the family (L: 1—less than 1 year, 2—more than 5 years), and the maturity
of patient (M: 1—immature for age, 2—mature for age). The response at
each combination of factor levels is the fraction of doctorswho would keep
confidentiality and not inform the patient’s parents (data modeled on Moses
1987). Analyze these data to determine which factors influence the pediatri-
cian’s decision.

C A L M Response C A L M Response

1 1 1 1 .445 2 1 1 1 .578
1 1 1 2 .624 2 1 1 2 .786
1 1 2 1 .360 2 1 2 1 .622
1 1 2 2 .493 2 1 2 2 .755
1 2 1 1 .513 2 2 1 1 .814
1 2 1 2 .693 2 2 1 2 .902
1 2 2 1 .534 2 2 2 1 .869
1 2 2 2 .675 2 2 2 2 .902

An animal nutrition experiment was conducted to study the effects ofProblem 10.8
protein in the diet on the level of leucine in the plasma of pigs. Pigs were
randomly assigned to one of twelve treatments. These treatments are the
combinations of protein source (fish meal, soybean meal, anddried skim
milk) and protein concentration in the diet (9, 12, 15, or 18 percent). The
response is the free plasma leucine level in mcg/ml (data from Windels 1964)

Meal 9% 12% 15% 18%

Fish 27.8 31.5 34.0 30.6
23.7 28.5 28.7 32.7

32.8 28.3 33.7
Soy 39.3 39.8 38.5 42.9

34.8 40.0 39.2 49.0
29.8 39.1 40.0 44.4

Milk 40.6 42.9 59.5 72.1
31.0 50.1 48.9 59.8
34.6 37.4 41.4 67.6

Analyze these data to determine the effects of the factors onleucine level.



Chapter 11

Random Effects

Random effectsare another approach to designing experiments and model-
ing data. Random effects are appropriate when the treatments are random
samples from a population of potential treatments. They arealso useful for Random effects

for randomly
chosen

treatments and
subsamples

random subsampling from populations. Random-effects models make the
same kinds of decompositions into overall mean, treatment effects, and ran-
dom error that we have been using, but random-effects modelsassume that
the treatment effects are random variables. Also, the focusof inference is on
the population, not the individual treatment effects. Thischapter introduces
random-effects models.

11.1 Models for Random Effects

A company has 50 machines that make cardboard cartons for canned goods,
and they want to understand the variation in strength of the cartons. They Carton

experiment one, a
single random

factor

choose ten machines at random from the 50 and make 40 cartons on each ma-
chine, assigning 400 lots of feedstock cardboard at random to the ten chosen
machines. The resulting cartons are tested for strength. This is a completely
randomized design, with ten treatments and 400 units; we will refer to this as
carton experiment one.

We have been using models for data that take the form

yij = µi + ǫij = µ + αi + ǫij .

The parameters of the mean structure (µi, µ, andαi) have been treated as
fixed, unknown numbers with the treatment effects summing tozero, and
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the primary thrust of our inference has been learning about these mean pa-
rameters. These sorts of models are calledfixed-effectsmodels, because theFixed effects
treatment effects are fixed numbers.

These fixed-effects models are not appropriate for our carton strength
data. It still makes sense to decompose the data into an overall mean, treat-
ment effects, and random error, but the fixed-effects assumptions don’t make
much sense here for a couple of reasons. First, we are trying to learn about
and make inferences about the whole population of machines,not just these
ten machines that we tested in the experiment, so we need to beable to makeRandom-effects

designs study
populations of
treatments

statements for the whole population, not just the random sample that we used
in the experiment. Second, we can learn all we want about these ten ma-
chines, but a replication of the experiment will give us an entirely different
set of machines. Learning aboutα1 in the first experiment tells us nothing
aboutα1 in the second experiment—they are probably different machines.
We need a new kind of model.

The basic random effects model begins with the usual decomposition:

yij = µ + αi + ǫij .

We assume that theǫij are independent normal with mean 0 and varianceTreatment effects
are random in
random-effects
models

σ2, as we did in fixed effects. For random effects, we also assumethat the
treatment effectsαi are independent normal with mean 0 and varianceσ2

α,
and that theαi’s and theǫij ’s are independent of each other. Random effects
models do not require that the sum of theαi’s be zero.

The variance ofyij is σ2
α + σ2. The termsσ2

α andσ2 are calledcompo-
nents of varianceor variance components. Thus the random-effects model isVariance

components sometimes called a components of variance model. The correlation between
yij andykl is

Cor(yij, ykl) =





0 i 6= k
σ2

α/(σ2
α + σ2) for i = k andj 6= l

1 i = k andj = l
.

The correlation is nonzero wheni = k because the two responses share a
common value of the random variableαi. The correlation between two re-Intraclass

correlation sponses in the same treatment group is called theintraclasscorrelation. An-
other way of thinking about responses in a random-effects model is that they
all have meanµ, varianceσ2

α + σ2, and a correlation structure determined byRandom effects
can be specified
by correlation
structure

the variance components. The additive random-effects model and the corre-
lation structure approach are nearly equivalent (the additive random-effects
model can only induce positive correlations, but the general correlation struc-
ture model allows negative correlations).
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The parameters of the random effects model are the overall meanµ, the
error varianceσ2, and the variance of the treatment effectsσ2

α; the treatment
effectsαi are random variables, not parameters. We want to make infer- Tests and

confidence
intervals for
parameters

ences about these parameters; we are not so interested in making inferences
about theαi’s andǫij ’s, which will be different in the next experiment any-
way. Typical inferences would be point estimates or confidence intervals for
the variance components, or a test of the null hypothesis that the treatment
varianceσ2

α is 0.

Now extend carton experiment one. Suppose that machine operators may
also influence the strength of the cartons. In addition to theten machines
chosen at random, the manufacturer also chooses ten operators at random.
Each operator will produce four cartons on each machine, with the cardboard Carton

experiment two,
two random

factors

feedstock assigned at random to the machine-operator combinations. We
now have a two-way factorial treatment structure with both factors random
effects and completely randomized assignment of treatments to units. This is
carton experiment two.

The model for two-way random effects is

yijk = µ + αi + βj + αβij + ǫijk ,

whereαi is a main effect for factor A,βj is a main effect for factor B,αβij

is an AB interaction, andǫijk is random error. The model assumptions are
that all the random effectsαi, βj , αβij , andǫijk are independent, normally Two-factor model

distributed, with mean 0. Each effect has its own variance: Var(αi) = σ2
α,

Var(βj) = σ2
β , Var(αβij) = σ2

αβ, and Var(ǫijk) = σ2. The variance ofyijk

is σ2
α + σ2

β + σ2
αβ + σ2, and the correlation of two responses is the sum

of the variances of the random components that they share, divided by their
common varianceσ2

α + σ2
β + σ2

αβ + σ2.

This brings us to another way that random effects differ fromfixed ef-
fects. In fixed effects, we have a table of means onto which we impose a
structure of equally weighted main effects and interactions. There are other
plausible structures based on unequal weightings that can have different main
effects and interactions, so testing main effects when interactions are present
in fixed effects makes sense only when we are truly interestedin the specific,
equally-weighted null hypothesis corresponding to the main effect. Random
effects set up a correlation structure among the responses,with autonomous
contributions from the different variance components. It is reasonable to ask Hierarchy less

important in
random-effects

models

if a main-effect contribution to correlation is absent evenif interaction con-
tribution to correlation is present. Similarly, equal weighting is about the
only weighting that makes sense in random effects; after all, the row effects
and column effects are chosen randomly and exchangeably. Why weight one



256 Random Effects

row or column more than any other? So for random effects, we more or less
automatically test for main effects, even if interactions are present.

We can, of course, have random effects models with more than two fac-
tors. Suppose that there are many batches of glue, and we choose two of themCarton

experiment three,
three random
factors

at random. Now each operator makes two cartons on each machine with each
batch of glue. We now have 200 factor-level combinations assigned at ran-
dom to the 400 units. This is carton experiment three.

The model for three-way random effects is

yijkl = µ + αi + βj + αβij + γk + αγik + βγjk + αβγijk + ǫijkl ,

whereαi, βj , andγk are main effects;αβij , αγik, βγik, andαβγijk areThree-factor
model interactions; andǫijkl is random error. The model assumptions remain that

all the random effects are independent and normally distributed with mean 0.
Each effect has its own variance: Var(αi) = σ2

α, Var(βj) = σ2
β, Var(γk) = σ2

γ ,
Var(αβij ) = σ2

αβ , Var(αγik) = σ2
αγ , Var(βγjk) = σ2

βγ , Var(αβγijk) = σ2
αβγ ,

and Var(ǫijkl) = σ2. Generalization to more factors is straightforward, and
Chapter 12 describes some additional variations that can occur for factorials
with random effects.

11.2 Why Use Random Effects?

The carton experiments described above are all completely randomized de-
signs: the units are assigned at random to the treatments. The difference
from what we have seen before is that the treatments have beenrandomly
sampled from a population. Why should anyone design an experiment that
uses randomly chosen treatments?

The answer is that we are trying to draw inferences about the popula-
tion from which the treatments were sampled. Specifically, we are trying toRandom effects

study variances in
populations

learn about variation in the treatment effects. Thus we wantto design an ex-
periment that looks at variation in a population by looking at the variability
that arises when we sample from the population. When you wantto study
variances and variability, think random effects.

Random-effects models are also used in subsampling situations. Revise
carton experiment one. The manufacturer still chooses ten machines at ran-Use random

effects when
subsampling

dom, but instead of making new cartons, she simply goes to thewarehouse
and collects 40 cartons at random from those made by each machine. It still
makes sense to model the carton strengths with a random effect for the ran-
domly chosen machine and a random error for the randomly chosen cartons
from each machine’s stock; that is precisely the random effects model.
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Source DF EMS

Treatments g-1 σ2 + nσ2
α

Error N-g σ2

Display 11.1:Generic skeleton ANOVA for a
one-factor model.

In the subsampling version of the carton example, we have done no ex-
perimentation in the sense of applying randomly assigned treatments to units.
Instead, the stochastic nature of the data arises because wehave sampled
from a population. The items we have sampled are not exactly alike, so the Subsampling

induces random
variation

responses differ. Furthermore, the sampling was done in a structured way
(in the example, first choose machines, then cartons for eachmachine) that
produces some correlation between the responses. For example, we expect
cartons from the same machine to be a bit similar, but cartonsfrom different
machines should be unrelated. The pattern of correlation for subsampling is
the same as the pattern of correlation for randomly chosen treatments applied
to units, so we can use the same models for both.

11.3 ANOVA for Random Effects

An analysis of variance for random effects is computedexactly the same
as for fixed effects. (And yes, this implies that unbalanced data give us
difficulties in random effects factorials too; see Section 12.8.) The ANOVA No changes in SS

or dftable has rows for every term in the model and columns for source, sums of
squares, degrees of freedom, mean squares, and F-statistics.

A random-effects ANOVA table usually includes an additional column
for expected mean squares (EMS’s). The EMS for a term is literally the ex- ANOVA table

includes column
for EMS

pected value of its mean square. We saw EMS’s briefly for fixed effects, but
their utility there was limited to their relationship with noncentrality parame-
ters and power. The EMS is much more useful for random effects. Chapter 12
will give general rules for computing EMS’s in balanced factorials. For now,
we will produce them magically and see how they are used.

The EMS for error isσ2, exactly the same as in fixed effects. For bal-
anced single-factor data, the EMS for treatments isσ2 + nσ2

α. Display 11.1
gives the general form for a one-factor skeleton ANOVA (justsources, de- One-factor EMS
grees of freedom, and EMS). For carton experiment one, the EMS for ma-
chines isσ2 + 40σ2

α.
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Source DF EMS

A a − 1 σ2 + nσ2
αβ + nbσ2

α

B b − 1 σ2 + nσ2
αβ + naσ2

β

AB (a − 1)(b − 1) σ2 + nσ2
αβ

Error N − ab = ab(n − 1) σ2

Display 11.2:Generic skeleton ANOVA for a two-factor model.

To test the null hypothesis thatσ2
α = 0, we use the F-ratioMSTrt/MSE

and compare it to an F-distribution withg− 1 andN − g degrees of freedom
to get ap-value. Let’s start looking for the pattern now. To test the null
hypothesis thatσ2

α = 0, we try to find two expected mean squares that wouldConstruct tests by
examining EMS be the same if the null hypothesis were true and would differ otherwise. Put

the mean square with the larger EMS in the numerator. If the null hypothesis
is true, then the ratio of these mean squares should be about 1(give or take
some random variation). If the null hypothesis is false, then the ratio tends
to be larger than 1, and we reject the null for large values of the ratio. In a
one-factor ANOVA such as carton experiment one, there are only two mean
squares to choose from, and we useMSTrt/MSE to test the null hypothesis
of no treatment variation.

It’s a bit puzzling at first that fixed- and random-effects models, which
have such different assumptions about parameters, should have the same test
for the standard null hypothesis. However, think about the effects when the
null hypotheses are true. For fixed effects, theαi are fixed and all zero; for
random effects, theαi are random and all zero. Either way, they’re all zero.
It is this commonality under the null hypothesis that makes the two tests the
same.

Now look at a two-factor experiment such as carton experiment two. The
sources in a two-factor ANOVA are A, B, the AB interaction, and error; Dis-Two-factor EMS
play 11.2 gives the general two-factor skeleton ANOVA. For carton experi-
ment 2, this table is

Source DF EMS

Machine 9 σ2 + 4σ2
αβ + 40σ2

α

Operator 9 σ2 + 4σ2
αβ + 40σ2

β

Machine.operator 81 σ2 + 4σ2
αβ

Error 300 σ2
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Source EMS

A σ2 + nσ2
αβγ + ncσ2

αβ + nbσ2
αγ + nbcσ2

α

B σ2 + nσ2
αβγ + ncσ2

αβ + naσ2
βγ + nacσ2

β

C σ2 + nσ2
αβγ + nbσ2

αγ + naσ2
βγ + nabσ2

γ

AB σ2 + nσ2
αβγ + ncσ2

αβ

AC σ2 + nσ2
αβγ + nbσ2

αγ

BC σ2 + nσ2
αβγ + naσ2

βγ

ABC σ2 + nσ2
αβγ

Error σ2

Display 11.3:Expected mean squares for a three-factor model.

Suppose that we want to test the null hypothesis thatσ2
αβ = 0. The EMS

for the AB interaction isσ2 + nσ2
αβ, and the EMS for error isσ2. These

differ only by the variance component of interest, so we can test this null
hypothesis using the ratioMSAB/MSE, with (a− 1)(b − 1) andab(n − 1)
degrees of freedom.

That was pretty familiar; how about testing the null hypothesis thatσ2
α =

0? The only two lines that have EMS’s that differ by a multiple of σ2
α are A

and the AB interaction. Thus we use the F-ratioMSA/MSAB with a − 1
and(a − 1)(b − 1) degrees of freedom to testσ2

α = 0. Similarly, the test for
σ2

β = 0 is MSB/MSAB with b − 1 and(a − 1)(b − 1) degrees of freedom.
Not havingMSE in the denominator is a major change from fixed effects,
and figuring out appropriate denominators is one of the main uses of EMS.

The denominator mean square for F-tests in random effects models will not
always beMSE!

Let’s press on to three random factors. The sources in a three-factor
ANOVA are A, B, and C; the AB, AC, BC, and ABC interactions; anderror. Three-factor

modelDisplay 11.3 gives the generic expected mean squares. For carton experiment
3, with m, o, and g indicating machine, operator, and glue, this table is
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Source DF EMS

m 9 σ2 + 2σ2
αβγ + 4σ2

αβ + 20σ2
αγ + 40σ2

α

o 9 σ2 + 2σ2
αβγ + 4σ2

αβ + 20σ2
βγ + 40σ2

β

g 1 σ2 + 2σ2
αβγ + 20σ2

αγ + 20σ2
βγ + 200σ2

γ

m.o 81 σ2 + 2σ2
αβγ + 4σ2

αβ

m.g 9 σ2 + 2σ2
αβγ + 20σ2

αγ

o.g 9 σ2 + 2σ2
αβγ + 20σ2

βγ

m.o.g 81 σ2 + 2σ2
αβγ

Error 200 σ2

Testing for interactions is straightforward using our rulefor finding two
terms with EMS’s that differ only by the variance component of interest.
Thus error is the denominator for ABC, and ABC is the denominator for AB,
AC, and BC. What do we do about main effects? Suppose we want totest the
main effect of A, that is, test whetherσ2

α = 0. If we setσ2
α to 0 in the EMSNo exact F-tests

for some
hypotheses

for A, then we getσ2 + 2σ2
αβγ + 4σ2

αβ + 20σ2
αγ . A quick scan of the table

of EMS’s shows thatno term hasσ2 + 2σ2
αβγ + 4σ2

αβ + 20σ2
αγ for its EMS.

What we have seen is that there is no exact F-test for the null hypothesis
that a main effect is zero in a three-way random-effects model. The lack of
an exact F-test turns out to be not so unusual in models with many random
effects. The next section describes how we handle this.

11.4 Approximate Tests

Some null hypotheses have no exact F-tests in models with random effects.
For example, there is no exact F-test for a main effect in a model with three
random factors. This Section describes how to construct approximate tests
for such hypotheses.

An exact F-test is the ratio of two positive, independently distributed ran-
dom quantities (mean squares). The denominator is distributed as a multipleMean squares

are multiples of
chi-squares
divided by their
degrees of
freedom

τd of a chi-square random variable divided by its degrees of freedom (the
denominator degrees of freedom), and the numerator is distributed as a mul-
tiple τn of a chi-square random variable divided by its degrees of freedom
(the numerator degrees of freedom). The multipliersτd andτn are the ex-
pected mean squares;τn = τd when the null hypothesis is true, andτn > τd

when the null hypothesis is false. Putting these together gives us a test statis-
tic that has an F-distribution when the null hypothesis is true and tends to be
bigger when the null is false.
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1. Find a mean square to start the numerator. This mean square
should have an EMS that includes the variance component
of interest.

2. Find the EMS of the numerator when the variance compo-
nent of interest is zero, that is, under the null hypothesis.

3. Find a sum of mean squares for the denominator. The sum
of the EMS for these mean squares must include every vari-
ance component in the null hypothesis EMS of the numera-
tor, include only those variance components in the null hy-
pothesis EMS of the numerator, and be at least as big as the
null hypothesis EMS of the numerator. The mean squares
in the denominator should not appear in the numerator.

4. Add mean squares to the numerator as needed to make its
expectation at least as big as that of the denominator but not
larger than necessary. The mean squares added to the nu-
merator should not appear in the denominator and should
contain no variance components that have not already ap-
peared.

5. If the numerator and denominator expectations are not the
same, repeat the last two steps until they are.

Display 11.4:Steps to find mean squares for approximate F-tests.

We want the approximate test to mimic the exact test as much aspossi-
ble. The approximate F-test should be the ratio of two positive, independently
distributed random quantities. When the null hypothesis istrue, both quan- Approximate tests

mimic exact teststities should have the same expected value. For exact tests,the numerator
and denominator are each a single mean square. For approximate tests, the
numerator and denominator are sums of mean squares. Becausethe numer-
ator and denominator should be independent, we need to use different mean
squares for the two sums.

The key to the approximate test is to find sums for the numerator and
denominator that have the same expectation when the null hypothesis is true.
We do this by inspection of the table of EMS’s using the steps given in Dis-
play 11.4; there is also a graphical technique we will discuss in the next
chapter. One helpful comment: you always have the same number of mean
squares in the numerator and denominator.
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Example 11.1 Finding mean squares for an approximate test
Consider testing for no factor A effect (H0 : σ2

α = 0) in a three-way model
with all random factors. Referring to the expected mean squares in Dis-
play 11.3 and the steps in Display 11.4, we construct the approximate test as
follows:

1. The only mean square with an EMS that involvesσ2
α is MSA, so it

must be in the numerator.

2. The EMS for A under the null hypothesisσ2
α = 0 is σ2 + nσ2

αβγ +

ncσ2
αβ + nbσ2

αγ .

3. We need to find a term or terms that will includencσ2
αβ andnbσ2

αγ

without extraneous variance components. We can getncσ2
αβ from

MSAB , and we can getnbσ2
αγ from MSAC . Our provisional denomi-

nator is nowMSAB + MSAC ; its expected value is2σ2 + 2nσ2
αβγ +

ncσ2
αβ + nbσ2

αγ , which meets our criteria.

4. The denominator now has an expected value that isσ2 + nσ2
αβγ larger

than that of the numerator. We can make them equal in expectation by
addingMSABC to the numerator.

5. The numeratorMSA + MSABC and denominatorMSAB + MSAC

have the same expectations under the null hypothesis, so we can stop
and use them in our test.

Now that we have the numerator and denominator, the test statistic is their
ratio. To compute ap-value, we have to know the distribution of the ratio, and
this is where the approximation comes in. We don’t know the distribution ofGet approximate

p-value using
F-distribution

the ratio exactly; we approximate it. Exact F-tests follow the F-distribution,
and we are going to computep-values assuming that our approximate F-test
also follows an F-distribution, even though it doesn’t really. The degrees
of freedom for our approximating F-distribution come from Satterthwaite
formula (Satterthwaite 1946) shown below. These degrees offreedom will
almost never be integers, but that is not a problem for most software. If you
only have a table, rounding the degrees of freedom down givesa conservative
result.

The simplest situation is when we have the sum of several meansquares,
sayMS1, MS2, andMS3, with degrees of freedomν1, ν2, andν3. The
approximate degrees of freedom are calculated as

ν⋆ =
(MS1 + MS2 + MS3)

2

MS2
1/ν1 + MS2

2/ν2 + MS2
3/ν3

.
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In more complicated situations, we may have a general linearcombination of Satterthwaite
approximate

degrees of
freedom

mean squares
∑

k gkMSk. This linear combination has approximate degrees
of freedom

ν⋆ =
(
∑

k gkMSk)
2

∑
k g2

kMS2
k/νk

.

Unbalanced data will lead to these more complicated forms. The approxima-
tion tends to work better when all the coefficientsgk are positive.

Carton experiment three (F-tests) Example 11.2
Suppose that we obtain the following ANOVA table for carton experiment 3
(data not shown):

DF SS MS EMS

m 9 2706 300.7 σ2 + 2σ2
αβγ + 4σ2

αβ + 20σ2
αγ + 40σ2

α

o 9 8887 987.5 σ2 + 2σ2
αβγ + 4σ2

αβ + 20σ2
βγ + 40σ2

β

g 1 2376 2376 σ2 + 2σ2
αβγ + 20σ2

αγ + 20σ2
βγ + 200σ2

γ

m.o 81 1683 20.78 σ2 + 2σ2
αβγ + 4σ2

αβ

m.g 9 420.4 46.71 σ2 + 2σ2
αβγ + 20σ2

αγ

o.g 9 145.3 16.14 σ2 + 2σ2
αβγ + 20σ2

βγ

m.o.g 81 1650 20.37 σ2 + 2σ2
αβγ

error 200 4646 23.23 σ2

The test for the three-way interaction uses error as the denominator; the F
is 20.368/23.231 = .88 with 81 and 200 degrees of freedom andp-value
.75. The tests for the two-way interactions use the three-way interaction as
denominator. Of these, only the machine by glue interactionhas an F much
larger than 1. Its F is 2.29 with 9 and 81 degrees of freedom andap-value of
.024, moderately significant.

We illustrate approximate tests with a test for machine. We have already
discovered that the numerator should be the sum of the mean squares for
machine and the three-way interaction; these are 300.7 and 20.37 with 9
and 81 degrees of freedom. Our numerator is 321.07, and the approximate
degrees of freedom are:

ν⋆
n =

321.072

300.72/9 + 20.372/81
≈ 10.3 .

The denominator is the sum of the mean squares for the machineby operator
and the machine by glue interactions; these are 20.78 and 46.71 with 81 and 9
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degrees of freedom. The denominator is 67.49, and the approximate degrees
of freedom are

ν⋆
d =

67.492

20.782/81 + 46.712/9
≈ 18.4 .

The F test is321.07/67.49 = 4.76 with 10.3 and 18.4 approximate degrees of
freedom and an approximatep-value of .0018; this is strong evidence against
the null hypothesis of no machine to machine variation.

11.5 Point Estimates of Variance Components

The parameters of a random-effects model are the variance components, and
we would like to get estimates of them. Specifically, we wouldlike both
point estimates and confidence intervals. There are many point estimators
for variance components; we will describe only the easiest method. There is
anMS andEMS for each term in the model. Choose estimates of the vari-
ance components so that the observed mean squares equal their expectations
when we use the estimated variance components in the EMS formulae. Op-ANOVA estimates

of variance
components are
unbiased but may
be negative

erationally, we get the estimates by equating the observed mean squares with
their expectations and solving the resulting set of equations for the variance
components. These are called the ANOVA estimates of the variance compo-
nents. ANOVA estimates are unbiased, but they can take negative values.

In a one-factor design, the mean squares areMSA andMSE with expec-
tationsσ2 + nσ2

α andσ2, so we get the equations:

MSA = σ̂2 + nσ̂2
α

MSE = σ̂2

with solutions

σ̂2
α =

MSA − MSE

n
σ̂2 = MSE .

It is clear that̂σ2
α will be negative wheneverMSA < MSE.

We follow the same pattern in bigger designs, but things are more com-
plicated. For a three-way random-effects model, we get the equations:

MSA = σ̂2 + nσ̂2
αβγ + ncσ̂2

αβ + nbσ̂2
αγ + nbcσ̂2

α
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MSB = σ̂2 + nσ̂2
αβγ + ncσ̂2

αβ + naσ̂2
βγ + nacσ̂2

β

MSC = σ̂2 + nσ̂2
αβγ + nbσ̂2

αγ + naσ̂2
βγ + nabσ̂2

γ

MSAB = σ̂2 + nσ̂2
αβγ + ncσ̂2

αβ

MSAC = σ̂2 + nσ̂2
αβγ + nbσ̂2

αγ

MSBC = σ̂2 + nσ̂2
αβγ + naσ̂2

βγ

MSABC = σ̂2 + nσ̂2
αβγ

MSE = σ̂2 .

It’s usually easiest to solve these from the bottom up. The solutions are

σ̂2 = MSE

σ̂2
αβγ =

MSABC − MSE

n

σ̂2
βγ =

MSBC − MSABC

na

σ̂2
αγ =

MSAC − MSABC

nb

σ̂2
αβ =

MSAB − MSABC

nc

σ̂2
γ =

MSC − MSAC − MSBC + MSABC

nab

σ̂2
β =

MSB − MSAB − MSBC + MSABC

nac

σ̂2
α =

MSA − MSAB − MSAC + MSABC

nbc

You can see a relationship between the formulae for variancecomponent Numerator MS’s
are added,

denominator MS’s
are subtracted in

estimates

estimates and test numerators and denominators: mean squares in the test
numerator are added in estimates, and mean squares in the test denominator
are subtracted. Thus a variance component with an exact testwill have an
estimate that is just a difference of two mean squares.

Each ANOVA estimate of a variance component is a linear combination
of mean squares, so we can again use the Satterthwaite formula to compute
an approximate degrees of freedom for each estimated variance component.
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Example 11.3 Carton experiment three (estimates of variance components)

Let’s compute ANOVA estimates of variance components and their approxi-
mate degrees of freedom for the data from carton experiment 3.

Effect Estimate Calculation DF

σ̂2 23.231 200
σ̂2

αβγ −1.43 (20.368 − 23.231)/2 1.05

σ̂2
βγ −.21 (16.15 − 20.368)/20 .52

σ̂2
αγ 1.317 (46.71 − 20.368)/20 2.80

σ̂2
αβ .10 (20.775 − 20.368)/20 2.80

σ̂2
γ 11.67 (2375.8 − 46.71 − 16.15 + 20.368)/200 .96

σ̂2
β 24.27 (987.47 − 20.775 − 16.15 + 20.368)/40 8.70

σ̂2
α 6.34 (300.71 − 20.775 − 46.71 + 20.368)/40 6.24

We can see several things from this example. First, negativeestimates for
variance components are not just a theoretical anomaly; they happen regu-
larly in practice. Second, the four terms that were significant (the three main
effects and the machine by glue interaction) have estimatedvariance compo-
nents that are positive and reasonably far from zero in some cases. Third,
the approximate degrees of freedom for a variance componentestimate can
be much less than the degrees of freedom for the corresponding term. For
example, AB is an 81 degree of freedom term, but its estimatedvariance
component has fewer than 3 degrees of freedom.

We know that variance components are nonnegative, but ANOVAesti-
mates of variance components can be negative. What should wedo if we get
negative estimates? The three possibilities are to ignore the issue, to get a
new estimator, or to get a new model for the data. Ignoring theissue is cer-
tainly easiest, but this may lead to problems in a subsequentanalysis that usesNegative

estimates of
variance
components can
cause problems
and may indicate
model
inadequacy

estimated variance components. The simplest new estimatoris to replace the
negative estimate by zero, though this revised estimator isno longer unbi-
ased. Section 11.9 mentions some other estimation approaches that do not
give negative results. Finally, negative variance estimates may indicate that
our variance component model is inadequate. For example, consider an an-
imal feeding study where each pen gets a fixed amount of food. If some
animals get more food so that others get less food, then the weight gains of
these animals will be negatively correlated. Our variance component mod-
els handle positive correlations nicely but are more likelyto give negative
estimates of variance when there is negative correlation.



11.6 Confidence Intervals for Variance Components 267

11.6 Confidence Intervals for Variance Components

Degrees of freedom tell us something about how precisely we know a pos-
itive quantity—the larger the degrees of freedom, the smaller the standard
deviation is as a fraction of the mean. Variances are difficult quantities to Precise estimates

of variances need
lots of data

estimate, in the sense that you need lots of data to get a firm handle on a vari-
ance. The standard deviation of a mean square withν degrees of freedom is√

2/ν times the expected value, so if you want the standard deviation to be
about 10% of the mean, you need 200 degrees of freedom! We rarely get that
kind of precision.

We can compute a standard error for estimates of variance components,
but it is of limited use unless the degrees of freedom are fairly high. The
usual interpretation for a standard error is something like“plus or minus 2 SE of a variance

estimate only
useful with many

degrees of
freedom

standard errors is approximately a 95% confidence interval.” That works
for normally distributed estimates, but it only works for variance estimates
with many degrees of freedom. Estimates with few or moderatedegrees of
freedom have so much asymmetry that the symmetric-plus-or-minus idea is
more misleading than helpful. Nevertheless, we can estimate the standard
error of a linear combination of mean squares

∑
k gkMSk via

√
2
∑

k

(g2
kMS2

k/νk) ,

whereMSk hasνk degrees of freedom. This looks like the approximate
degrees-of-freedom formula because the variance is used incomputing ap-
proximate degrees of freedom.

Carton experiment three (standard errors) Example 11.4
Let’s compute standard errors for the estimates of the error, machine by glue,
and machine variance components in carton experiment three. We estimate
the error variance byMSE with 200 degrees of freedom, so its standard
deviation is estimated to be

√
2 × 23.2312/200 = 2.3231 .

The machine by glue variance component estimateσ̂2
αγ is (MSAC −

MSABC)/20, so the coefficientsg2
k = 1/400, and the standard deviation is

√
2

400
(46.712/9 + 20.3682/81) = 1.11 .
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νMS

χ2
E/2,ν

≤ EMS ≤ νMS

χ2
1−E/2,ν

Display 11.5:1 − E confidence interval for an EMS
based on its MS withν degrees of freedom.

Finally, the machine variance component estimateσ̂2
α is (MSA−MSAB−

MSAC + MSABC)/40, so the coefficientsg2
k = 1/1600, and the standard

deviation is
√

2

1600
(300.712/9 + 20.7752/81 + 46.712/9 + 20.3682/81) = 3.588 .

Recall from Examples 11.2 and 11.3 that thep-values for testing the null
hypotheses of no machine variation and no machine by glue variation were
.0018 and .024, and that the corresponding variance component estimates
were 6.34 and 1.32. We have just estimated their standard errors to be 3.588
and 1.11, so the estimates are only 1.8 and 1.2 standard errors from their
null hypothesis values of zero, even though the individual terms are rather
significant. The usual plus or minus two standard errors interpretation simply
doesn’t work for variance components with few degrees of freedom.

We can construct confidence intervals that account for the asymmetry
of variance estimates, but these intervals are exact in onlya few situations.
One easy situation is a confidence interval for the expected value of a mean
square. If we letχ2

E,ν be the upperE percent point of a chi-square distribution
with ν degrees of freedom, then a1 − E confidence interval for the EMS of
an MS can be formed as shown in Display 11.5. The typical use for this is anConfidence

interval for σ2 interval estimate forσ2 based onMSE:

νMSE

χ2
E/2,ν

≤ σ2 ≤ νMSE

χ2
1−E/2,ν

.

Example 11.5 Carton experiment three (confidence interval for σ2)
Use the method of Display 11.5 to compute a confidence interval for σ2.
The error mean square was 23.231 with 200 degrees of freedom.For a 95%
interval, we need the upper and lower 2.5% points ofχ2 with 200 degrees of
freedom; these are 162.73 and 241.06. Our interval is



11.6 Confidence Intervals for Variance Components 269

F

FE/2,ν1,ν2

≤ EMS1

EMS2
≤ F

F1−E/2,ν1,ν2

Display 11.6:1 − E confidence interval for the ratio
EMS1/EMS2 based onF = MS1/MS2 with ν1 and
ν2 degrees of freedom.

200 × 23.231

241.06
= 19.27 ≤ σ2 ≤ 28.55 =

200 × 23.231

162.73
.

Even with 200 degrees of freedom, this interval is not symmetric around the
estimated component. The length of the interval is about 4 standard errors,
however.

We can also construct confidence intervals for ratios of EMS’s from ra-
tios of the corresponding mean squares. LetMS1 andMS2 haveEMS1 Confidence

intervals for ratios
of EMS’s

and EMS2 as their expectations. Then a1 − E confidence interval for
EMS1/EMS2 is shown in Display 11.6. This confidence interval is rarely
used as is; instead, it is used as a building block for other confidence inter-
vals. Consider a one-way random effects model; the EMS’s areshown in
Display 11.1. Using the confidence interval in Display 11.6,we get

MSTrt/MSE

FE/2,ν1,ν2

≤ σ2 + nσ2
α

σ2
≤ MSTrt/MSE

F1−E/2,ν1,ν2

.

Subtracting 1 and dividing byn, we get a confidence interval forσ2
α/σ2:

L =
1

n

(
MSTrt/MSE

FE/2,ν1,ν2

− 1

)
≤ σ2

α

σ2
≤ 1

n

(
MSTrt/MSE

F1−E/2,ν1,ν2

− 1

)
= U .

Continuing, we can get a confidence interval for the intraclass correlation Confidence
interval for
intraclass

correlation

via
L

1 + L
≤ σ2

α

σ2 + σ2
α

≤ U

1 + U
.

This same approach works for any pair of mean squares withEMS2 = τ
andEMS1 = τ + nσ2

η to get confidence intervals forσ2
η/τ andτ/(τ + σ2

η).
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Example 11.6 Carton experiment three (confidence interval for σ2

αγ/(σ2

+ 2σ2

αβγ
))

The machine by glue interaction was moderately significant in Example 11.2,
so we would like to look more closely at the machine by glue interaction
variance component. The mean square for machine by glue was 46.706 with
9 degrees of freedom and EMSσ2 + 2σ2

αβγ + 20σ2
αγ . The mean square for

the three-way interaction was 20.368 with 81 degrees of freedom and EMS
σ2 +2σ2

αβγ . For a 90% confidence interval, we need the upper and lower 5%
points of F with 9 and 81 degrees of freedom; these are .361 and1.998.

The confidence interval is

1

20

(
46.706/20.368

1.998
− 1

)
≤ σ2

αγ

σ2 + 2σ2
αβγ

≤ 1

20

(
46.706/20.368

.361
− 1

)

.0074 ≤ σ2
αγ

σ2 + 2σ2
αβγ

≤ .268 .

Example 11.6 illustrates that even for a significant term (p-value = .024)
with reasonably large degrees of freedom (9, 81), a confidence interval forConfidence

intervals for ratios
of variances often
cover more than
one order of
magnitude

a ratio of variances with a reasonable coverage rate can cover an order of
magnitude. Here we saw the upper endpoint of a 90% confidence interval for
a variance ratio to be 36 times as large as the lower endpoint.The problem
gets worse with higher coverage and lower degrees of freedom. Variance
ratios are even harder to estimate than variances.

There are no simple, exact confidence intervals for any variance com-
ponents other thanσ2, but a couple of approximate methods are available.
In one, Williams (1962) provided a conservative confidence interval for vari-
ance components that have exact F-tests. Suppose that we wish to construct a
confidence interval for a componentσ2

η, and that we have two mean squaresWilliams’
approximate
confidence
interval for a
variance
component with
an exact test

with expectations EMS1 = τ + kσ2
η and EMS2 = τ and degrees of freedom

ν1 andν2. The test forσ2
η has an observed F-ratio ofFO = MS1/MS2. We

construct a confidence interval forσ2
η with coverage at least1−E as follows:

ν1MS1(1 − FE/4,ν1,ν2
/FO)

kχ2
E/4,ν1

≤ σ2
η ≤

ν1MS1(1 − F1−E/4,ν1,ν2
/FO)

kχ2
1−E/4,ν1

.

The use ofE/4 arises because we are combining two exact1−E/2 confidence
intervals (onτ + kσ2

η andσ2
η/τ ) to get a1 − E interval onσ2

η. In fact, we
can useFEF /2,ν1,ν2

, F1−EF /2,ν1,ν2
, χ2

Eχ/2,ν1

, andχ2
1−Eχ/2,ν1

for anyEF and
Eχ that add toE .
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The other method is simple and works for any variance component es-
timated with the ANOVA method, but it is also very approximate. Each Approximate CI

by treating as a
single mean

square

estimated variance component has an approximate degrees offreedom from
Satterthwaite; use the formula in Display 11.5, treating our estimate and its
approximate degrees of freedom as if they were a mean square and a true
degrees of freedom.

Carton experiment three (confidence interval forσ2

αγ
) Example 11.7

Considerσ2
αγ in carton experiment three. Example 11.3 gave a point estimate

of 1.32 with 2.8 approximate degrees of freedom. For a 95% confidence
interval the approximate method gives us:

2.8 × 1.32

.174
≤ σ2

αγ ≤ 2.8 × 1.32

8.97
.412 ≤ σ2

αγ ≤ 21.2 .

This more than an order of magnitude from top to bottom is fairly typical for
estimates with few degrees of freedom.

We can also use the Williams’ method. The mean squares we use are
MSAC (46.706 with expectationσ2 + 2σ2

αβγ + 20σ2
αγ and 9 degrees of free-

dom) andMSABC (20.368 with expectationσ2 + 2σ2
αβγ and 81 degrees

of freedom); the observed F isFO = 2.29. The required percent points are
F.0125,9,81 = 2.55, F.9875,9,81 = .240, χ.0125,9 = 21.0, andχ.9875,9 = 2.22.
Computing, we get

9 × 46.71(1 − 2.55/2.29)

20 × 21.0
≤ σ2

η ≤ 9 × 46.71(1 − .240/2.293)

20 × 2.22

−.114 ≤ σ2
η ≤ 8.48

This interval is considerably shorter than the interval computed via the other
approximation, but it does include zero. If we useEF = .0495 andEχ =
.0005, then we get the interval (.0031, 22.32), which is much more similar to
the approximate interval.

11.7 Assumptions

We have discussed tests of null hypotheses that variance components are
zero, point estimates for variance components, and interval estimates for vari-
ance components. Nonnormality and nonconstant variance affect the tests in
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random-effects models in much the same way as they do tests offixed effects.Random effects
tests affected
similarly to fixed
effects tests

This is because the fixed and random tests are essentially thesame under the
null hypothesis, though the notion of “error” changes from test to test when
we have different denominators. Transformation of the response can improve
the quality of inference for random effects, just as it does for fixed effects.

Point estimates of variance components remain unbiased when the distri-
butions of the random effects are nonnormal.

But now the bad news: the validity of the confidence intervalswe have
constructed for variance components is horribly, horriblydependent on nor-
mality. Only a little bit of nonnormality is needed before the coverage rateConfidence

intervals depend
strongly on
normality

diverges greatly from1 − E . Furthermore, not just the errorsǫijk need to be
normal; other random effects must be normal as well, depending on which
confidence intervals we are computing. While we often have enough data to
make a reasonable check on the normality of the residuals, werarely have
enough levels of treatments to make any kind of check on the normality of
treatment effects. Only the most blatant outliers seem likely to be identified.

To give you some idea of how bad things are, suppose that we have a 25
degree of freedom estimate for error, and we want a 95% confidence interval
for σ2. If one in 20 of the data values has a standard deviation 3 times that
of the other 24, then a 95% confidence interval will have only about 80%
coverage.

Confidence intervals for variance components of real-worlddata are quite
likely to miss their stated coverage rather badly, and we should consider
them approximate at best.

11.8 Power

Power is one of the few places where random effects are simpler than fixed
effects, because there are no noncentrality parameters to deal with in random
effects. Suppose that we wish to compute the power for testing the null hy-Power for random

effects uses
central F

pothesis thatσ2
η = 0, and that we have two mean squares with expectations

EMS1 = τ + kσ2
η and EMS2 = τ and degrees of freedomν1 andν2. The test

for σ2
η is the F-ratioMS1/MS2.

When the null hypothesis is true, the F-ratio has an F-distribution withν1

andν2 degrees of freedom. We reject the null when the observed F-statistic
is greater thanFE,ν1,ν2

. When the null hypothesis is false, the observed F-
statistic is distributed as(τ + kσ2

η)/τ times an F withν1 andν2 degrees of
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Numerator df = 3

Ratio of EMS (times 10 for .01 level)

P
o
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Figure 11.1: Power for random effects F-tests with 3 numerator
degrees of freedom, testing at the .05 and .01 levels, and 2, 3, 4, 6,
8, 16, 32, or 256 denominator degrees of freedom. Curves for .01
have been shifted right by a factor of 10.

freedom. Thus the power is the probability than an F withν1 andν2 degrees
of freedom exceedsτ/(τ + kσ2

η)FE,ν1,ν2
. This probability can be computed

with any software that can computep-values and critical points for the F-
distribution.

Alternatively, power curves are available in the Appendix Tables for ran-
dom effects tests with small numerator degrees of freedom. The curves for
three numerator degrees of freedom are reproduced in Figure11.1. Look-
ing at these curves, we see that the ratio of expected mean squares must be
greater than 10 before power is .9 or above.

Changing the sample sizen or the number of levelsa, b, or c can affect
τ , k, ν1, or ν2, depending on the mean squares in use. However, there is aYou may need to

change number
of levels a instead

of replications n

major difference between fixed-effects power and random-effects power that
must be stressed. In fixed effects, power can be made as high asdesired by
increasing the replicationn. That isnot necessarily true for random effects;
in random effects, you may need to increasea, b, or c instead.

Carton experiment three (power) Example 11.8

Consider the power for testing the null hypothesis thatσ2
αγ is zero when

σ2
αγ = 1, σ2 + 2σ2

αβγ = 20, andEI = .01. The F-ratio isMSAC/MSABC .
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This F-ratio is distributed as(σ2 + nσ2
αβγ + nbσ2

αγ)/(σ2 + nσ2
αβγ) times

an F-distribution with(a − 1)(c − 1) and(a − 1)(b − 1)(c − 1) degrees of
freedom, here 2 times an F with 9 and 81 degrees of freedom. Power for this
test is the probability that an F with 9 and 81 degrees of freedom exceeds
F.01,9,81/2 = 1.32, or about 24%.

Suppose that we want 95% power. Increasingn does not change the
degrees of freedom, but it does change the multiplier. However, the multiplier
can get no bigger than1 + bσ2

αγ/σ2
αβγ = 1 + 10σ2

αγ/σ2
αβγ = 1 + 10/σ2

αβγ

no matter how much you increasen. If σ2
αβγ = 2, then the largest multiplier

is 1 + 10/2 = 6, and the power will be the probability that an F with 9 and
81 degrees of freedom exceedsF.01,9,81/6, which is only 91%.

To make this test more powerful, you have to increaseb. For example,
b = 62 andn = 2 has the F-test distributed as 7.2 times an F with 9 and 549
degrees of freedom (assuming still thatσ2

αγ = 1 andσ2
αβγ = 2). This gives

the required power.

11.9 Further Reading and Extensions

We have only scratched the surface of the subject of random effects. Searle
(1971) provides a review, and Searle, Casella, and McCulloch (1992) provide
book-length coverage.

In the single-factor situation, there is a simple formula for the EMS for
treatments when the data are unbalanced:σ2 + n′σ2

α, where

n′ =
1

a − 1
[N − 1

N

a∑

i=1

n2
i ] .

The formula forn′ reduces ton for balanced data.

Expected mean squares do not depend on normality, though thechi-
square distribution for mean square and F-distribution fortest statistics do
depend on normality. Tukey (1956) and Tukey (1957b) work outvariances
for variance components, though the notation and algebra are rather heavy
going.

The Satterthwaite formula is based on matching the mean and variance of
an unknown distribution to that of an approximating distribution. There are
quite a few other possibilities; Johnson and Kotz (1970) describe the major
ones.
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We have discussed the ANOVA method for estimating variance compo-
nents. There are several others, including maximum likelihood estimates,
restricted maximum likelihood estimates (REML), and minimum norm quad-
ratic unbiased estimates (MINQUE). All of these have the advantage of pro-
viding estimates that will be nonnegative, but they are all much more com-
plicated to compute. See Searle, Casella, and McCulloch (1992) or Hocking
(1985).

11.10 Problems

The following ANOVA table is from an experiment where four identi- Exercise 11.1
cally equipped cars were chosen at random from a car dealership, and each
car was tested 3 times for gas mileage on a dynamometer.

Source DF SS MS

Cars 3 15 5
Error 8 16 2

Find estimates of the variance components and a 95% confidence interval for
the intraclass correlation of the mileage measurements.

We wish to examine the average daily weight gain by calves sired by four Exercise 11.2
bulls selected at random from a population of bulls. Bulls denoted A through
D were mated with randomly selected cows. Average daily weight gain by
the calves is given below.

A B C D

1.46 1.17 .98 .95
1.23 1.08 1.06 1.10
1.12 1.20 1.15 1.07
1.23 1.08 1.11 1.11
1.02 1.01 .83 .89
1.15 .86 .86 1.12

a) Test the null hypothesis that there is no sire to sire variability in the re-
sponse.

b) Find 90% confidence intervals for the error variance and the sire to sire
variance.
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Five tire types (brand/model combinations like Goodyear/Arriva) in theExercise 11.3
size 175/80R-13 are chosen at random from those available ina metropolitan
area, and six tires of each type are taken at random from warehouses. The
tires are placed (in random order) on a machine that will testtread durability
and report a response in thousands of miles. The data follow:

Brand Miles

1 55 56 59 55 60 57
2 39 42 43 41 41 42
3 39 41 43 40 43 43
4 44 44 42 39 40 43
5 46 42 45 42 42 44

Compute a 99% confidence interval for the ratio of type to typevariabil-
ity to tire within type variability (σ2

α/σ2). Do you believe that this interval
actually has 99% coverage? Explain.

A 24-head machine fills bottles with vegetable oil. Five of the headsExercise 11.4
are chosen at random, and several consecutive bottles from these heads were
taken from the line. The net weight of oil in these bottles is given in the
following table (data from Swallow and Searle 1978):

Group
1 2 3 4 5

15.70 15.69 15.75 15.68 15.65
15.68 15.71 15.82 15.66 15.60
15.64 15.75 15.59
15.60 15.71

15.84

Is there any evidence for head to head variability? Estimatethe head to head
and error variabilities.

The burrowing mayflyHexageniacan be used as an indicator of waterExercise 11.5
quality (it likes clean water). Before starting a monitoring program using
Hexageniawe take three samples from each of ten randomly chosen locations
along the upper Mississippi between Lake Peppin and the St. Anthony Lock
and Dam. We use these data to estimate the within location andbetween
location variability inHexageniaabundance. An ANOVA follows; the data
are in hundreds of insects per square meter.

DF SS MS

Location 9 11.59 1.288

Error 20 1.842 0.0921
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a) Give a point estimate for the between location variance inHexageniaabun-
dance.
b) Give a 95% confidence interval for the within location variance inHexa-
geniaabundance.

Anecdotal evidence suggests that some individuals can tolerate alcohol Exercise 11.6
better than others. As part of a traffic safety study, you are planning an exper-
iment to test for the presence of individual to individual variation. Volunteers
will be recruited who have given their informed consent for participation
after having been informed of the risks of the study. Each individual will
participate in two sessions one week apart. In each session,the individual
will arrive not having eaten for at least 4 hours. They will take a hand-eye
coordination test, drink 12 ounces of beer, wait 15 minutes,and then take a
second hand-eye coordination test. The score for a session is the change in
hand-eye coordination. There are two sessions, son = 2. We believe that the
individual to individual variationσ2

α will be about the same size as the error
σ2. If we are testing at the 1% level, how many individuals should be tested
to have power .9 for this setup?

Suppose that you are interested in estimating the variationin serum choles- Problem 11.1
terol in a student population; in particular, you are interested in the ratio
σ2

α/σ2. Resources limit you to 100 cholesterol measurements. Are you bet-
ter off taking ten measurements on each of ten students, or two measurements
on each of 50 students? (Hint: which one should give you a shorter interval?)

Milk is tested after Pasteurization to assure that Pasteurization was effec- Problem 11.2
tive. This experiment was conducted to determine variability in test results
between laboratories, and to determine if the interlaboratory differences de-
pend on the concentration of bacteria.

Five contract laboratories are selected at random from those available in
a large metropolitan area. Four levels of contamination arechosen at random
by choosing four samples of milk from a collection of samplesat various
stages of spoilage. A batch of fresh milk from a dairy was obtained and split
into 40 units. These 40 units are assigned at random to the twenty combi-
nations of laboratory and contamination sample. Each unit is contaminated
with 5 ml from its selected sample, marked with a numeric code, and sent to
the selected laboratory. The laboratories count the bacteria in each sample
by serial dilution plate counts without knowing that they received four pairs,
rather than eight separate samples. Data follow (colony forming units per
µl):
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Sample
Lab 1 2 3 4

1 2200 3000 210 270
2200 2900 200 260

2 2600 3600 290 360
2500 3500 240 380

3 1900 2500 160 230
2100 2200 200 230

4 2600 2800 330 350
4300 1800 340 290

5 4000 4800 370 500
3900 4800 340 480

Analyze these data to determine if the effects of interest are present. If
so, estimate them.

Composite materials used in the manufacture of aircraft components mustProblem 11.3
be tested to determine tensile strength. A manufacturer tests five random
specimens from five randomly selected batches, obtaining the following coded
strengths (data from Vangel 1992).

Batch

1 379 357 390 376 376
2 363 367 382 381 359
3 401 402 407 402 396
4 402 387 392 395 394
5 415 405 396 390 395

Compute point estimates for the between batch and within batch variance
components, and compute a 95% confidence interval forσ2

α/σ2.

Why do you always wind up with the same number of numerator andQuestion 11.1
denominator terms in approximate tests?

Derive the confidence interval formula given in Display 11.5.Question 11.2

Derive the Satterthwaite approximate degrees of freedom for a sum ofQuestion 11.3
mean squares by matching the first two moments of the sum of mean squares
to a multiple of a chi-square.



Chapter 12

Nesting, Mixed Effects, and
Expected Mean Squares

We have seen fixed effects and random effects in the factorialcontext of
forming treatments by combining levels of factors, and we have seen how
sampling from a population can introduce structure for which random effects
are appropriate. This chapter introduces new ways in which factors can be
combined, discusses models that contain both fixed and random effects, and
describes the rules for deriving expected mean squares.

12.1 Nesting Versus Crossing

The vitamin A content of baby food carrots may not be consistent. To eval-
uate this possibility, we go to the grocery store and select four jars of carrots
at random from each of the three brands of baby food that are sold in our
region. We then take two samples from each jar and measure thevitamin A
in every sample for a total of 24 responses.

It makes sense to consider decomposing the variation in the 24 responses Multiple sources
of variationinto various sources. There is variation between the brands, variation be-

tween individual jars for each brand, and variation betweensamples for every
jar.

It doesnot make sense to consider jar main effects and brand by jar in-
teraction. Jar one for brand A has absolutely nothing to do with jar one for No jar effect

across brandsbrand B. They might both have lots of vitamin A by chance, but it would just
be chance. They are not linked, so there should be no jar main effect across
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the brands. If the main effect of jar doesn’t make sense, thenneither does
a jar by brand interaction, because that two-factor interaction can be inter-
preted as how the main effect of jar must be altered at each level of brand to
obtain treatment means.

Main effects and interaction are appropriate when the treatment factors
are crossed. Two factors are crossed when treatments are formed as theCrossed factors

form treatments
with their
combinations

combinations of levels of the two factors, and we use the samelevels of the
first factor for every level of the second factor, and vice versa. All factors we
have considered until the baby carrots have been crossed factors. The jar and
brand factors are not crossed, because we have different jars (levels of the jar
factor) for every brand.

The alternative to crossed factors isnestedfactors. Factor B is nested in
factor A if there is a completely different set of levels of B for every levelFactor B nested

in A has different
levels for every
level of A

of A. Thus the jars are nested in the brands and not crossed with the brands,
because we have a completely new set of jars for every brand. We write
nested models using parentheses in the subscripts to indicate the nesting. If
brand is factor A and jar (nested in brand) is factor B, then the model is
written

yijk = µ + αi + βj(i) + ǫk(ij) .

The j(i) indicates that the factor corresponding toj (factor B) is nested in
the factor corresponding toi (factor A). Thus there is a differentβj for each
level i of A.

Note that we wroteǫk(ij), nesting the random errors in the brand-jar com-
binations. This means that we get a different, unrelated setof random errorsErrors are nested
for each brand-jar combination. In the crossed factorials we have used until
now, the random error is nested in the all-way interaction, so that for a three-
way factorial the errorǫijkl could more properly have been writtenǫl(ijk).
Random errors are always nested in some model term; we’ve just not needed
to deal with it before now.

Nested factors can be random or fixed, though they are usuallyrandom
and often arise from some kind of subsampling. As an example of a factorNested factors

are usually
random

that is fixed and nested, consider a company with work crews, each crew
consisting of four members. Members are nested in crews, andwe get the
same four crew members whenever we look at a given crew, making member
a fixed effect.

When we have a chain of factors, each nested in its predecessor, we say
that the design is fully nested. The baby carrots example is fully nested,
with jars nested in brand, and sample nested in jar. Another example comesFully nested

design from genetics. There are three subspecies. We randomly choose five males
from each subspecies (a total of fifteen males); each male is mated with four
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Source DF EMS

A a − 1 σ2 + nσ2
δ + ndσ2

γ + ncdσ2
β + nbcdσ2

α

B(A) a(b − 1) σ2 + nσ2
δ + ndσ2

γ + ncdσ2
β

C(AB) ab(c − 1) σ2 + nσ2
δ + ndσ2

γ

D(ABC) abc(d − 1) σ2 + nσ2
δ

Error abcd(n − 1) σ2

Display 12.1:Skeleton ANOVA and EMS for a generic fully-nested
four-factor design.

females (of the same subspecies, a total of 60 females); we observe three
offspring per mating (a total of 180 offspring); and we make two measure-
ments on each offspring (a total of 360 measurements). Offspring are nested
in females, which are nested in males, which are nested in subspecies.

The expected mean squares for a balanced, fully-nested design with ran- EMS for
fully-nested

model
dom terms are simple; Display 12.1 shows a skeleton ANOVA andEMS for
a four-factor fully-nested design. Note that in parallel tothe subscript nota-
tion, factor B nested in A can be denoted B(A). Rules for deriving the EMS
will be given in Section 12.6. The degrees of freedom for any term are the
total number of effects for that term minus the number of degrees of freedom
above the term, counting 1 for the constant. For example, B(A) hasab effects
(b for each of thea levels of A), soab − (a − 1) − 1 = a(b − 1) degrees
of freedom for B(A). The denominator for any term is the term immediately
below it.

For the fully-nested genetics example we have:

Source DF EMS

s 2 σ2 + 2σ2
δ + 6σ2

γ + 24σ2
β + 120σ2

α

m(s) 12 σ2 + 2σ2
δ + 6σ2

γ + 24σ2
β

f(ms) 45 σ2 + 2σ2
δ + 6σ2

γ

o(fms) 120 σ2 + 2σ2
δ

Error 180 σ2

where s, m, f, and o indicate subspecies, males, females, andoffspring. To
test the null hypothesisσ2

β = 0, that is, no male to male variation, we would
use the F-statisticMSm/MSf with 12 and 45 degrees of freedom.
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Component Estimate

σ2
α (MSA − MSB)/(nbcd)

σ2
β (MSB − MSC)/(ncd)

σ2
γ (MSC − MSD)/(nd)

σ2
δ (MSD − MSE)/n

σ2 MSE

Display 12.2:ANOVA estimates for variance components
in a fully-nested four-factor design.

One potential problem with fully-nested designs is that thedegrees of
freedom tend to pile up at the bottom. That is, the effects that are nested
more and more deeply tend to have more degrees of freedom. This can be
a problem if we are as interested in the variance components at the top ofMost df at bottom
the hierarchy as we are those at the bottom. We return to this issue in Sec-
tion 12.9.

The ANOVA estimates of variance components are again found by equat-
ing observed mean squares with their expectations and solving for the pa-
rameters. Display 12.2 shows that each variance component is estimated byANOVA estimates

of variance
components

a rescaled difference of two mean squares. As before, these simple estimates
of variance components can be negative. Confidence intervals for these vari-
ance components can be found using the methods of Section 11.6.

Here are two approaches to computing sums of squares for completely
nested designs. In the first, obtain the sum of squares for factor A as usual.
There areab different j(i) combinations for B(A). Get the sum of squaresSums of squares

for fully nested
designs

treating theseab differentj(i) combinations asab different treatments. Note
that the sum of squares for factor A is included in what we justcalculated for
thej(i) groups. Therefore, subtract the sum of squares for factor A from that
for thej(i) groups to get the improvement from adding B(A) to the model.
For C(AB), there areabc differentk(ij) combinations. Again, get the sum
of squares between these different groups, but subtract from this the sums of
squares of the terms that are above C, namely A and B(A). The same is done
for later terms in the model.

The second method begins with a fully-crossed factorial decomposition
with main effects and interactions and then combines these factorial pieces
(some of which do not make sense by themselves in a nested design) to get
the results we need. The sum of squares, degrees of freedom, and estimated
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effects for A can be taken straight from this factorial decomposition. The sum SS and effects by
recombination of

factorial terms
of squares and degrees of freedom for B(A) are the totals of those quantities
for B and AB from the factorial. Similarly, the estimated effects are found
by addition:

β̂j(i) = β̂j + α̂βij

In general, the sum of squares, degrees of freedom, and estimated effects for
a term X nested in a term Y are the sums of the corresponding quantities for
term X and term X crossed with any subset of factors from term Yin the
full factorial. Thus for D nested in ABC, the sums will be overD, AD, BD,
ABD, CD, ACD, BCD, and ABCD; and for CD nested in AB, the sums will
be over CD, ACD, BCD, and ABCD.

12.2 Why Nesting?

We may design an experiment with nested treatment structurefor several rea-
sons. Subsampling produces small units by one or more layersof selection
from larger bundles of units. For the baby carrots we went from brands to
jars to samples, with each layer being a group of units from the layer be- Unit generation,

logistics, and
constraints may
lead to nesting

neath it. Subsampling can be used to select treatments as well as units. In
some experiments crossing is theoretically possible, but logistically imprac-
tical. There may be two or three clinics scattered around thecountry that can
perform a new diagnostic technique. We could in principle send our patients
to all three clinics to cross clinics with patients, but it ismore realistic to send
each patient to just one clinic. In other experiments, crossing simply cannot
be done. For example, consider a genetics experiment with females nested
in males. We need to be able to identify the father of the offspring, so we
can only breed each female to one male at a time. However, if females of the
species under study only live through one breeding, we must have different
females for every male.

We do not simply choose to use a nested model for an experiment. We Models must
match designsuse a nested model because the treatment structure of the experiment was

nested, and we must build our models to match our treatment structure.

12.3 Crossed and Nested Factors

Designs can have both crossed and nested factors. One commonsource of
this situation is that “units” are produced in some sense through a nesting Units with nesting

crossed with
treatments

structure. In addition to the nesting structure, there are treatment factors, the
combinations of which are assigned at random to the units in such a way
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that all the combinations of nesting factors and treatment factors get an equal
number of units.

Example 12.1 Gum arabic
Gum arabic is used to lengthen the shelf life of emulsions, including soft
drinks, and we wish to see how different gums and gum preparations affect
emulsion shelf life. Raw gums are ground, dissolved, treated (possible treat-
ments include Pasteurization, demineralization, and acidification), and then
dried; the resulting dry powder is used as an emulsifier in food products.

Gum arabic comes from acacia trees; we obtain four raw gum samples
from each of two varieties of acacia tree (a total of eight samples). Each
sample is split into two subsamples. One of the subsamples (chosen at ran-
dom) will be demineralized during treatment, the other willnot. The sixteen
subsamples are now dried, and we make five emulsions from eachsubsample
and measure as the response the time until the ingredients inthe emulsion
begin to separate.

This design includes both crossed and nested factors. The samples of raw
gum are nested in variety of acacia tree; we have completely different sam-
ples for each variety. The subsamples are nested in the samples. Subsample
is now a unit to which we apply one of the two levels of the demineralization
factor. Because one subsample from each sample will be demineralized and
the other won’t be, each sample occurs with both levels of thedemineraliza-
tion treatment factor. Thus sample and treatment factor arecrossed. Simi-
larly, each variety of acacia occurs with both levels of demineralization so
that variety and treatment factor are crossed. The five individual emulsions
from a single subsample are nested in that subsample, or equivalently, in the
variety-sample-treatment combinations. They are measurement units.

If we let variety, sample, and demineralization be factors A, B, and C,
then an appropriate model for the responses is

yijkl = µ + αi + βj(i) + γk + αγik + βγjk(i) + ǫl(ijk) .

Not all designs with crossed and nested factors have such a clear idea
of unit. For some designs, we can identify the sources of variation amongTreatments and

units not always
clear

responses as factors crossed or nested, but identifying “treatments” randomly
assigned to “units” takes some mental gymnastics.

Example 12.2 Cheese tasting

Food scientists wish to study how urban and rural consumers rate cheddar
cheeses for bitterness. Four 50-pound blocks of cheddar cheese of different
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types are obtained. Each block of cheese represents one of the segments of
the market (for example, a sharp New York style cheese). The raters are
students from a large introductory food science class. Ten students from
rural backgrounds and ten students from urban backgrounds are selected at
random from the pool of possible raters. Each rater will taste eight bites of
cheese presented in random order. The eight bites are two each from the four
different cheeses, but the raters don’t know that. Each rater rates each bite
for bitterness.

The factors in this experiment are background, rater, and type of cheese.
The raters are nested in the backgrounds, but both background and rater are
crossed with cheese type, because all background-cheese type combinations
and all rater/cheese type combinations occur. This is an experiment with both
crossed and nested factors. Perhaps the most sensible formulation of this as
treatments and units is to say that bites of cheese are units (nested in type of
cheese) and that raters nested in background are treatmentsapplied to bites
of cheese.

If we let background, rater, and type be factors A, B, and C, then an
appropriate model for the responses is

yijkl = µ + αi + βj(i) + γk + αγik + βγjk(i) + ǫl(ijk) .

This is the same model as Example 12.1, even though the structure of units
and treatments is very different!

These two examples illustrate some of the issues of working with designs
having both crossed and nested factors. You need to Steps to build a

model
1. Determine the sources of variation,

2. Decide which cross and which nest,

3. Decide which factors are fixed and which are random, and

4. Decide which interactions should be in the model.

Identifying the appropriate model is the hard part of working with fixed-
random-crossed-nested designs; it takes a lot of practice.We will return to
model choice in Section 12.5.

12.4 Mixed Effects

In addition to having both crossed and nested factors, Example 12.1 has both
fixed (variety and demineralization) and random (sample) factors; Exam-
ple 12.2 also has fixed (background and cheese type) and random (rater)
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factors. An experiment with both fixed and random effects is said to haveMixed effects
models have fixed
and random
factors

mixedeffects. The interaction of a fixed effect and a random effectmust be
random, because a new random sample of factor levels will also lead to a new
sample of interactions.

Analysis of mixed-effects models reminds me of the joke in the computer
business about standards: “The wonderful thing about standards is that thereTwo standards for

analysis of mixed
effects

are so many to choose from.” For mixed effects, there are two sets of as-
sumptions that have a reasonable claim to being standard. Unfortunately, the
two sets of assumptions lead to different analyses, and potentially different
answers.

Before stating the mathematical assumptions, let’s visualize two mecha-
nisms for producing the data in a mixed-effects model; each mechanism leads
to a different set of assumptions. By thinking about the mechanisms behindTwo mechanisms

to generate mixed
data

the assumptions, we should be able to choose the appropriateassumptions in
any particular experiment. Let’s consider a two-factor model, with factor A
fixed and factor B random, and a very small error variance so that the data
are really just the sums of the row, column, and interaction effects.

Here is one way to get the data. Imagine a table witha rows and a very
large number of columns. Our random factor B corresponds to selectingb ofMechanism 1:

sampling columns
from a table

the columns from the table at random, and the data we observe are the items
in the table for the columns that we select.

This construction implies that if we repeated the experiment and we hap-
pened to get the same column twice, then the column totals of the data for the
repeated column would be the same in the two experiments. Putanother way,
once we know the column we choose, we know the total for that column; we
don’t need to wait and see what particular interaction effects are chosen be-Restricted model

has interaction
effects that add to
zero across the
fixed levels

fore we see the column total. Thus column differences are determined by
the main effects of column; we can assume that the interaction effects in a
given column add to zero. This approach leads to therestrictedmodel, since
it restricts the interaction effects to add to zero when summed across a fixed
effect.

The second approach treats the main effects and interactions indepen-
dently. Now we have two populations of effects; one population contains
random column main effectsβj , and the other population contains ran-Mechanism 2:

independent
sampling from
effects
populations

dom interaction effectsαβij . In this second approach, we have fixed row
effects, we choose column effects randomly and independently from the col-
umn main effects population, and we choose interaction effects randomly
and independently from the interaction effects population; the column and
interaction effects are also independent.

When we look at column totals in these data, the column total of the
interaction effects can change the column total of the data.Another sample
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with the same column will have a different column total, because we will No zero sums
when unrestrictedhave a different set of interaction effects. This second approach leads to the

unrestrictedmodel, because it has no zero-sum restrictions.

Choose between these models by answering the following question: if
you reran the experiment and got a column twice, would you have the same Restricted model

if repeated main
effect implies

repeated
interaction

interaction effects or an independent set of interaction effects for that re-
peated column? If you have the same set of interaction effects, use the
restricted model. If you have new interaction effects, use the unrestricted
model. I tend to use the restricted model by default and switch to the unre-
stricted model when appropriate.

Cheese tasting, continued Example 12.3
In the cheese tasting example, one of our raters is Mary; Marylikes sharp
cheddar cheese and dislikes mild cheese. Any time we happen to get Mary in
our sample, she will rate the sharp cheese higher and the mildcheese lower.
We get the same rater by cheese interaction effects every time we choose
Mary, so the restricted model is appropriate.

Particle sampling Example 12.4
To monitor air pollution, a fixed volume of air is drawn through disk-shaped
filters, and particulates deposit on the filters. Unfortunately, the particulate
deposition is not uniform across the filter. Cadmium particulates on a filter
are measured by X-ray fluorescence. The filter is placed in an instrument
that chooses a random location on the filter, irradiates thatlocation twice,
measures the resulting fluorescence spectra, and converts them to cadmium
concentrations. We compare three instruments by choosing ten filters at ran-
dom and running each filter through all three instruments, for a total of 60
cadmium measurements.

In this experiment we believe that the primary interaction between filter
and instrument arises because of the randomly chosen locations on that filter
that are scanned and the nonuniformity of the particulate onthe filter. Each
time the filter is run through an instrument, we get a different location and
thus a different “interaction” effect, so the unrestrictedmodel is appropriate.

Unfortunately, the choice between restricted and unrestricted models is
not always clear.

Gum arabic, continued Example 12.5

Gum sample is random (nested in variety) and crosses with thefixed de-
mineralization factor. Should we use the restricted or unrestricted model? If
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a gum sample is fairly heterogeneous, then at least some of any interaction
that we observe is probably due to the random split of the sample into two
subsamples. The next time we do the experiment, we will get different sub-
samples and probably different responses. In this case, thedemineralization
by sample interaction should be treated as unrestricted, because we would
get a new set of effects every time we redid a sample.

On the other hand, how a sample reacts to demineralization may be a
shared property of the complete sample. In this case, we would get the same
interaction effects each time we redid a sample, so the restricted model would
be appropriate.

We need to know more about the gum samples before we can make a
reasoned decision on the appropriate model.

Here are the technical assumptions for mixed effects. For the unrestricted
model, all random effects are independent and have normal distributionsUnrestricted

model
assumptions

with mean 0. Random effects corresponding to the same term have the same
variance:σ2

β, σ2
αβ, and so on. Any purely fixed effect or interaction must add

to zero across any subscript.
The assumptions for the restricted model are the same, except for in-

teractions that include both fixed and random factors. Random effects in a
mixed-interaction term have the same variance, which is written as a fac-Restricted model

assumptions tor times the usual variance component: for example,rab σ2
αβ . These effects

must sum to zero across any subscript corresponding to a fixedfactor, but
are independent if the random subscripts are not the same. The zero sum
requirement induces negative correlation among the randomeffects with the
same random subscripts.

The scaling factors likerab are found as follows. Get the number of levels
for all fixed factors involved in the interaction. Letr1 be the product of theseScale factors in

restricted model
variances

levels, and letr2 be the product of the levels each reduced by 1. Then the
multiplier is r2/r1. For an AB interaction with A fixed and B random, this
is (a − 1)/a; for an ABC interaction with A and B fixed and C random, the
multiplier is (a − 1)(b − 1)/(ab).

12.5 Choosing a Model

A table of data alone does not tell us the correct model. Before we can
analyze data, we have to have a model on which to build the analysis. This
model reflects both the structure of the experiment (nestingand/or crossing ofAnalysis depends

on model effects), how broadly we are trying to make inference (just these treatments
or a whole population of treatments), and whether mixed effects should be
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restricted or unrestricted. Once we have answered these questions, we can
build a model. Parameters are only defined within a model, so we need the
model to make tests, compute confidence intervals, and so on.

We must decide whether each factor is fixed or random. This decision is
usually straightforward but can actually vary depending upon the goals of an
experiment. Suppose that we have an animal breeding experiment with four Fixed or random

factors?sires. Now we know that the four sires we used are the four sires that were
available; we did no random sampling from a population. If weare trying to
make inferences about just these four sires, we treat sire asa fixed effect. On
the other hand, if we are trying to make inferences about the population of
potential sires, we would treat sires as a random effect. This is reasonable,
provided that we can consider the four sires at hand to be a random sample
from the population, even though we did no actual sampling. If these four
sires are systematically different from the population, trying to use them to
make inferences about the population will not work well.

We must decide whether each factor is nested in some other factor or
interaction. The answer is determined by examining the construction of an
experiment. Do all the levels of the factor appear with all the levels of another Nesting or

crossing?effect (crossing), or do some levels of the factor appear with some levels of
the effect and other levels of the factor appear with other levels of the effect?
For the cheese raters example, we see a different set of raters for rural and
urban backgrounds, so rater must be nested in background. Conversely, all
the raters taste all the different kinds of cheese, so rater is crossed with cheese
type.

My model generally includes interactions for all effects that could inter-
act, but we will see in some designs later on (for example, split plots) that
not all possible interactions are always included in models. To some degree Which

interactions?the decision as to which interactions to include is based on knowledge of the
treatments and experimental materials in use, but there is also a degree of
tradition in the choice of certain models.

Finally, we must decide between restricted and unrestricted model as-
sumptions. I generally use the restricted model as a default, but we must Restricted or

unrestricted?think carefully in any given situation about whether the zero-sum restrictions
are appropriate.

12.6 Hasse Diagrams and Expected Mean Squares

One of the major issues in random and mixed effects is finding expected
mean squares and appropriate denominators for tests. The tool that we use
to address these issues for balanced data is the Hasse diagram (Lohr 1995).
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M 1
1

A 5
4 (B) 4

3

(AB) 20
12

(E) 40
20

M 1
1

(A) 5
4 (B) 4

3

(AB) 20
12

C 2
1

(AC) 10
4 (BC) 8

3

(ABC) 40
12

(E) 80
40

M 1
1

(A) 5
4

(B) 20
15

(C) 40
20

(E) 80
40

(a) (b) (c)

Figure 12.1: Hasse diagrams: (a) two-way factorial with A fixed and B
random, A and B crossed; (b) three-way factorial with A and B random, C
fixed, all factors crossed; (c) fully nested, with B fixed, A and C random. In
all cases, A has 5 levels, B has 4 levels, and C has 2 levels.

A Hasse diagram is a graphical representation of a model showing the nest-
ing/crossing and random/fixed structure. We can go back and forth between
models and Hasse diagrams. I find Hasse diagrams to be useful when I am
trying to build my model, as I find the graphic easier to work with and com-
prehend than a cryptic set of parameters and subscripts.

Figure 12.1 shows three Hasse diagrams that we will use for illustration.
First, every term in a model has anodeon the Hasse diagram. A node con-Nodes for terms,

joined by lines for
above/below

sists of a label to identify the term (for example, AB), a subscript giving the
degrees of freedom for the term, and a superscript giving thenumber of dif-
ferent effects in a given term (for example,ab for βj(i)). Some nodes are
joined by line segments. Term U is above term V (or term V is below term
U) if you can go from U to V by movingdownline segments. For example,
in Figure 12.1(b), AC is below A, but BC is not. The label for a random fac-Random terms in

parentheses tor or any term below a random factor is enclosed in parentheses to indicate
that it is random.

12.6.1 Test denominators

Hasse diagrams look the same whether you use the restricted model or the
unrestricted model, but the models are different and we musttherefore use
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1. The denominator for testing a term U is the leading eligible
random term below U in the Hasse diagram.

2. An eligible random term V below U is leading if there is no
eligible random term that is above V and below U.

3. If there are two or more leading eligible random terms, then
we must use an approximate test.

4. In the unrestricted model, all random terms below U are
eligible.

5. In the restricted model, all random terms below U are eli-
gible except those that contain a fixed factor not found in
U.

Display 12.3:Rules for finding test denominators in balanced factorials
using the Hasse diagram.

the Hasse diagram slightly differently for restricted and unrestricted models.
Display 12.3 gives the steps for finding test denominators using the Hasse
diagram. In general, you find the leading random term below the term to be Finding test

denominatorstested, but only random terms without additional fixed factors are eligible in
the restricted model. If there is more than one leading random term, we have
an approximate test.

Test denominators in the restricted model Example 12.6

Consider the Hasse diagram in Figure 12.1(a). The next random term below
A is the AB interaction. The only fixed factor in AB is A, so AB isthe
denominator for A. The next random term below B is also the AB interaction.
However, AB contains A, an additional fixed factor not found in B, so AB
is ineligible to be the denominator for B. Proceeding down, we get to error,
which is random and does not contain any additional fixed factors. Therefore,
error is the denominator for B. Similarly, error is the denominator for AB.

Figure 12.1(b) is a Hasse diagram for a three-way factorial with factors A
and B random, and factor C fixed. The denominator for ABC is error. Imme-
diately below AB is the random interaction ABC. However, ABCis not an
eligible denominator for AB because it includes the additional fixed factor C.
Therefore, the denominator for AB is error. For AC and BC, thedenominator
will be ABC, because it is random, immediately below, and contains no ad-
ditional fixed factor. Next consider main effects. We see tworandom terms
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immediately below A, the AB and AC interactions. However, ACis not an
eligible denominator for A, because it includes the additional fixed factor C.
Therefore, the denominator for A is AB. Similarly, the denominator for B is
AB. Finally consider C. There are two random terms immediately below C
(AC and BC), and both of these are eligible to be denominatorsfor C because
neither includes an additional fixed factor. Thus we have an approximate test
for C (C and ABC in the numerator, AC and BC in the denominator,as we
will see when we get to expected mean squares).

Figure 12.1(c) is a Hasse diagram for a three-factor, fully-nested model,
with A and C random and B fixed. Nesting structure appears as a vertical
chain, with one factor below another. Note that the B nested in A term is a
random term, even though B is a fixed factor. This seems odd, but consider
that there is a different set of B effects for every level of A;we have a random
set of A levels, so we must have a random set of B levels, so B nested in A
is a random term. The denominator for C is E, and the denominator for B is
C. The next random term below A is B, but B contains the fixed factor B not
found in A, so B is not an eligible denominator. The closest eligible random
term below A is C, which is the denominator for A.

When all the nested effects are random, the denominator for any term is
simply the term below it. A fixed factor nested in a random factor is some-
thing of an oddity—it is a random term consisting only of a fixed factor. It
will never be an eligible denominator in the restricted model.

Example 12.7 Test denominators in the unrestricted model
Figure 12.1(a) shows a two-factor mixed-effects design. Using the unre-
stricted model, error is the denominator for AB, and AB is thedenominator
for both A and B. This is a change from the restricted model, which had error
as the denominator for B.

Using the unrestricted model in the three-way mixed effectsdesign shown
in Figure 12.1(b), we find that error is the denominator for ABC, and ABC is
the denominator for AB, BC, and AC; error was the denominatorfor AB in
the restricted model. All three main effects have approximate tests, because
there are two leading eligible random two-factor interactions below every
main effect.

In the three-way nested design shown in Figure 12.1(c), the denominator
for every term is the term immediately below it. This is againdifferent from
the restricted model, which used C as the denominator for A.

One side effect of using the unrestricted model is that thereare more
approximate tests, because there are more eligible denominators.
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1. The representative element for a random term is its variance
component.

2. The representative element for a fixed term is a function Q
equal to the sum of the squared effects for the term divided
by the degrees of freedom.

3. The contribution of a term is the number of data values N,
divided by the number of effects for that term (the super-
script for the term in the Hasse diagram), times the repre-
sentative element for the term.

4. The expected mean square for a term U is the sum of the
contributions for U and all eligible random terms below U
in the Hasse diagram.

5. In the unrestricted model, all random terms below U are
eligible.

6. In the restricted model, all random terms below U are eli-
gible except those that contains a fixed factor not found in
U.

Display 12.4:Rules for computing expected mean squares in balanced
factorials using the Hasse diagram.

12.6.2 Expected mean squares

The rules for computing expected mean squares are given in Display 12.4.
The description of the representative element for a fixed term seems a little Representative

elements appear
in noncentrality

parameters

arcane, but we have seen this Q before in expected mean squares. For a fixed
main effect A, the representative element is

∑
i α2

i /(a − 1) = Q(α). For a
fixed interaction AB, the representative element is

∑
ij(αβij)

2/[(a − 1)(b −
1)] = Q(αβ). These are the same forms we saw in Chapters 3 and 10 when
discussing EMS, noncentrality parameters, and power.

Expected mean squares in the restricted model Example 12.8
Consider the term A in Figure 12.1(b). In the restricted model, the eligible
random terms below A are AB and E; AC and ABC are ineligible dueto the
inclusion of the additional fixed factor C. Thus the expectedmean square for
A is



294 Nesting, Mixed Effects, and Expected Mean Squares

σ2 +
80

20
σ2

αβ +
80

5
σ2

α = σ2 + 4σ2
αβ + 16σ2

α .

For term C in Figure 12.1(b), all random terms below C are eligible, so the
EMS for C is

σ2 +
80

40
σ2

αβγ +
80

8
σ2

βγ +
80

10
σ2

αγ +
80

2
Q(γ) =

σ2 + 2σ2
αβγ + 10σ2

βγ + 8σ2
αγ + 40Q(γ) .

For term A in Figure 12.1(c), the eligible random terms are C and E; B is
ineligible. Thus the expected mean square for A is

σ2 +
80

40
σ2

γ +
80

5
σ2

α = σ2 + 2σ2
γ + 16σ2

α .

Example 12.9 Expected mean squares in the unrestricted model
We now recompute two of the expected mean squares from Example 12.8
using the unrestricted model. There are four random terms below A in Fig-
ure 12.1(b); all of these are eligible in the unrestricted model, so the expected
mean square for A is

σ2 +
80

40
σ2

αβγ +
80

20
σ2

αβ +
80

10
σ2

αγ +
80

5
σ2

α =

σ2 + 2σ2
αβγ + 4σ2

αβ + 8σ2
αγ + 16σ2

α .

This includes two additional contributions that were not present in the re-
stricted model.

For term A in Figure 12.1(c), B, C, and E are all eligible random terms.
Thus the expected mean square for A is

σ2 +
80

40
σ2

γ + +
80

20
σ2

β +
80

5
σ2

α = σ2 + 2σ2
γ + 4σ2

β + 16σ2
α .

Term B contributes to the expected mean square of A in the unrestricted
model.

We can figure out approximate tests by using the rules for expected mean
squares and the Hasse diagram. Consider testing C in Figure 12.1(b). AC
and BC are both eligible random terms below C, so both of theirexpected
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M 1
1

(A) 2
1 (B) 2

1 (C) 2
1 (D) 2

1

(AB) 4
1 (AC) 4

1 (AD) 4
1 (BC) 4

1 (BD) 4
1 (CD) 4

1

(ABC) 8
1 (ABD) 8

1 (ACD) 8
1 (BCD) 8

1

(ABCD) 16
1

(E) 32
16

Figure 12.2:Hasse diagram for a four-way factorial with all random
effects.

mean squares will appear in the EMS for C; thus both AC and BC need to be
in the denominator for C. However, putting both AC and BC in the denom-
inator double-counts the terms below AC and BC, namely ABC and error.
Therefore, we add ABC to the numerator to match the double-counting.

Here is a more complicated example: testing a main effect in afour-factor
model with all factors random. Figure 12.2 shows the Hasse diagram. Sup- Use Hasse

diagrams to find
approximate tests

pose that we wanted to test A. Terms AB, AC, and AD are all eligible random
terms below A, so all would appear in the EMS for A, and all mustappear in
the denominator for A. If we put AB, AC, and AD in the denominator, then
the expectations of ABC, ABD, and ACD will be double-countedthere. Thus
we must add them to the numerator to compensate. With A, ABC, ABD, and
ACD in the numerator, ABCD and error are quadruple-counted in the numer-
ator but only triple-counted in the denominator, so we must add ABCD to the
denominator. We now have a numerator (A + ABC + ABD + ACD) and a
denominator (AB + AC + AD + ABCD) with expectations that differ only by
a multiple ofσ2

α.
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1. Start row 0 with node M for the grand mean.

2. Put a node on row 1 for each factor that is not nested in any
term. Add lines from the node M to each of the nodes on
row 1. Put parentheses around random factors.

3. On row 2, add a node for any factor nested in a row 1 node,
and draw a line between the two. Add nodes for terms with
two explicit or implied factors and draw lines to the terms
above them. Put parentheses around nodes that are below
random nodes.

4. On each successive row, say rowi, add a node for any factor
nested into a rowi − 1 node, and draw a line between the
two. Add nodes for terms withi explicit or implied factors
and draw lines to the terms above them. Put parentheses
around nodes that are below random nodes.

5. When all interactions have been exhausted, add a node for
error on the bottom line, and draw a line from error to the
dangling node above it.

6. For each node, add a superscript that indicates the number
of effects in the term.

7. For each node, add a subscript that indicates the degrees of
freedom for the term. Degrees of freedom for a term U are
found by starting with the superscript for U and subtracting
out the degrees of freedom for all terms above U.

Display 12.5:Steps for constructing a Hasse diagram.

12.6.3 Constructing a Hasse diagram

A Hasse diagram always has a node M at the top for the grand mean, a
node (E) at the bottom for random error, and nodes for each factorial termBuild from top

down in between. I build Hasse diagrams from the top down, but to dothat I need
to know which terms go above other terms. Hasse diagrams havethe same
above/below relationships as ANOVA tables.

A term U is above a term V in an ANOVA table if all of the factors in term
U are in term V. Sometimes these factors are explicit; for example, factors A,Nested factors

include implicit
factors

B, and C are in the ABC interaction. When nesting is present, some of the
factors may be implicit or implied in a term. For example, factors A, B, and
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(a) (b) (c)

M

B C

M

B

(R)

C

BC

M

B

(R)

C

BC

(RC)

(d) (e) (f)

M

B

(R)

C

BC

(RC)

(E)

M 1

B 2

(R) 20

C 4

BC 8

(RC)80

(E) 160

M 1
1

B 2
1

(R) 20
18

C 4
3

BC 8
3

(RC)80
54

(E) 160
80

Figure 12.3: Stages in the construction of Hasse diagram for the cheese
rating example.

C are all in the term C nested in the AB interaction. When we write the term
as C, A and B are there implicitly. We will say that term U is above term V
if all of the factors in term U are present or implied in term V.

Before we start the Hasse diagram, we must determine the factors in the
model, which are random and which are fixed, and which nest andwhich
cross. Once these have been determined, we can construct thediagram using
the steps in Display 12.5.
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Example 12.10 Cheese tasting Hasse diagram
The cheese tasting experiment of Example 12.2 had three factors: the fixed
factor for background (two levels, labeled B), the fixed factor cheese type
(four levels, labeled C), and the random factor for rater (ten levels, random,
nested in background, labeled R). Cheese type crosses with both background
and rater.

Figure 12.3(a) shows the first stage of the diagram, with the Mnode for
the mean and nodes for each factor that is not nested.

Figure 12.3(b) shows the next step. We have added rater nested in back-
ground. It is in parentheses to denote that it is random, and we have a line
up to background to show the nesting. Also in this row is the BCtwo-factor
interaction, with lines up to B and C.

Figure 12.3(c) shows the third stage, with the rater by cheese RC inter-
action. This is random (in parentheses) because it is below rater. It is also
below BC; B is present implicitly in any term containing R, because R nests
in B.

Figure 12.3(d) adds the node for random error. You can determine the
appropriate denominators for tests at this stage without completing the Hasse
diagram.

Figure 12.3(e) adds the superscripts for each term. The superscript is the
number of different effects in the term and equals the product of the number
of levels of all the implied or explicit factors in a term.

Finally, Figure 12.3(f) adds the subscripts, which give thedegrees of free-
dom. Compute the degrees of freedom by starting with the superscript and
subtracting out the degrees of freedom for all terms above the given term.
It is easiest to get degrees of freedom by starting with termsat the top and
working down.

12.7 Variances of Means and Contrasts

Variances of treatment means are easy to calculate in a fixed-effects models—
simply divideσ2 by the number of responses in the average. Furthermore,
distinct means are independent. Things are more complicated for mixed-
effects models, because there are multiple random terms that can all con-Distinct means

can be correlated
in mixed effects
models

tribute to the variance of a mean, and some of these random terms can cause
nonzero covariances as well. In this section we give a set of rules for cal-
culating the variance and covariance of treatment means. Wecan use the
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(a) (b) (c)

M 1
1

A 3
2 B 4

3

AB 12
6

(C) 5
4

(AC) 15
8 (BC) 20

12

(ABC) 60
24

(E) 120
60

M 1
1

A 3
2 (B) 4

3

(AB) 12
6

(C) 5
4

(AC) 15
8 (BC) 20

12

(ABC) 60
24

(E) 120
60

M 1
1

A 3
2

(C) 15
12

B 4
3

AB 12
6

(BC) 60
36

(E) 120
60

Figure 12.4: Hasse diagrams for three three-way factorials. (a) C random;
(b) B and C random; (c) C random and nested in A.

covariance to determine the variance of pairwise comparisons and other con-
trasts.

Treatment means make sense for combinations of fixed factors, but are
generally less interesting for random effects. Consider the Hasse diagrams
in Figure 12.4. All are three-way factorials witha = 3, b = 4, c = 5, and Look at treatment

means for fixed
factors

n = 2. In panels (a) and (c), factors A and B are fixed. Thus it makes sense
to consider means for levels of factor A (yi•••), for levels of factor B (y•j••),
and for AB combinations (yij••). In panel (b), only factor A is fixed, so only
meansyi••• are usually of interest.

It is tempting to use the denominator mean square for A as the variance
for meansyi•••. This does not work!We must go through the steps given in
Display 12.6 to compute variances for means. We can use the denominator Do not use

denominator
mean squares as

variances for
means

mean square for A when computing the variance for acontrastin factor A
means; simply substitute the denominator mean square as an estimate of vari-
ance into the usual formula for the variance of a contrast. Similarly, we can
use the denominator mean square for the AB interaction when we compute
the variance of an AB interaction contrast, but this will notwork for means
yij•• or paired differences or other combinations that are not interaction con-
trasts.

Display 12.6 gives the steps required to compute the variance of a mean.
For a meanyi•••, the base term is A and the base factor is A; for a mean
yij••, the base term is AB and the base factors are A and B.
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1. Make a Hasse diagram for the model.

2. Identify the base term and base factors for the mean of in-
terest.

3. The variance of the mean of interest will be the sum over all
contributing terms T of

σ2
T

product of superscripts of all base factors above T
superscript of term T

4. In the unrestricted model, all random terms contribute tothe
variance of the mean of interest.

5. In the restricted model, all random terms contribute to the
variance of the mean of interest except those that contain a
fixed factor not found in the base term.

Display 12.6:Steps for determining the variance of a marginal mean.

Example 12.11 Variances of means
Let’s compute variances for some means in the models of Figure 12.4 using
restricted model assumptions. Consider first the meanyi•••. The base term
is A, and the base factor is A. In panel (a), there will be contributions from
C, AC, and E (but not BC or ABC because they contain the additional fixed
factor B). The variance is

σ2
γ

1

5
+ σ2

αγ

3

15
+ σ2 3

120
.

In panel (b), there will be contributions from all random terms (A is the only
fixed term). Thus the variance is

σ2
β

1

4
+ σ2

γ

1

5
+ σ2

αβ

3

12
+ σ2

αγ

3

15
+ σ2

βγ

1

20
+ σ2

αβγ

3

60
+ σ2 3

120
.

Finally, in panel (c), there will be contributions from C andE (but not BC).
The variance is

σ2
γ

3

15
+ σ2 3

120
.

Now consider a meany•j•• in model (c). The contributing terms will be
C, BC, and E, and the variance is
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1. Identify the base term and base factors for the means of in-
terest.

2. Determine whether the subscripts agree or disagree for each
base factor.

3. The covariance of the means will be the sum over all con-
tributing terms T of

σ2
T

product of superscripts of all base factors above T
superscript of term T

4. In the unrestricted model, all random terms contribute tothe
covarianceexceptthose that are below a base factor with
disagreeing subscripts.

5. In the restricted model, all random terms contribute to the
covarianceexceptthose that contain a fixed factor not found
in the base term and those that are below a base factor with
disagreeing subscripts.

Display 12.7:Steps for determining the covariance between two
marginal means.

σ2
γ

1

15
+ σ2

βγ

4

60
+ σ2 4

120
.

Finally, consider the variance ofyij••; this mean does not make sense in
panel (b). In panel (a), all random terms contribute to the variance, which is

σ2
γ

1

5
+ σ2

αγ

3

15
+ σ2

βγ

4

20
+ σ2

αβγ

3 × 4

60
+ σ2 3 × 4

120
.

In panel (c), all random terms contribute, but the variance here is

σ2
γ

3

15
+ σ2

βγ

3 × 4

60
+ σ2 3 × 4

120
.

The variance of a difference is the sum of the individual variances minus
twice the covariance. We thus need to compute covariances ofmeans in Need covariances

to get variance of
a difference

order to get variances of differences of means. Display 12.7gives the steps
for computing the covariance between two means, which are similar to those
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for variances, with the additional twist that we need to knowwhich of the
subscripts in the means agree and which disagree. For example, the factor A
subscripts inyi••• − yi′••• disagree, but inyij•• − yij′••, j 6= j′, the factor
A subscripts agree while the factor B subscripts disagree.

Example 12.12 Covariances of means
Now compute covariances for some means in the models of Figure 12.4 using
restricted model assumptions. Consider the meansyi••• andyi′•••. The base
term is A, the base factor is A, and the factor A subscripts disagree. In model
(a), only term C contributes to the covariance, which is

σ2
γ

1

5

Using the variance foryi••• computed in Example 12.11, we find

Var(yi••• − yi′•••) = Var(yi•••) + Var(yi′•••) − 2 × Cov(yi•••, yi′•••)

= 2 × (σ2
γ

1

5
+ σ2

αγ

1

5
+ σ2 1

40
) − 2 × σ2

γ

1

5

= 2 × (σ2
αγ

1

5
+ σ2 1

40
)

= EMSAC(
1

40
+

1

40
) .

The last line is what we would get by using the denominator forA and ap-
plying the usual contrast formulae with a sample size of 40 ineach mean.

In model (b), B, C, and BC contribute to the covariance, whichis

σ2
β

1

4
+ σ2

γ

1

5
+ σ2

βγ

1

20

and leads to

Var(yi••• − yi′•••) = Var(yi•••) + Var(yi′•••) − 2 × Cov(yi•••, yi′•••)

= 2 × (σ2
αβ

1

4
+ σ2

αγ

1

5
+ σ2

αβγ

1

20
+ σ2 1

40
)

In panel (c), all the random terms are below A, so none can contribute to
the covariance, which is thus 0.

Consider nowy•j••− y•j′•• in model (c). Only the term C contributes to
the covariance, which is
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Table 12.1:Covariances and variances of differences of two-factor
meansyij•• for models (a) and (c) of Figure 12.4 as a function of which
subscripts disagree.

Covariance Variance of difference

(a) A 1
5σ2

γ + 1
5σ2

βγ 2 × (1
5σ2

αγ + 1
5σ2

αβγ + 1
10σ2)

(a) B 1
5σ2

γ + 1
5σ2

αγ 2 × (1
5σ2

βγ + 1
5σ2

αβγ + 1
10σ2)

(a) A and B 1
5σ2

γ 2 × (1
5σ2

αγ + 1
5σ2

βγ + 1
5σ2

αβγ + 1
10σ2)

(c) A 0 2 × (1
5σ2

γ + 1
5σ2

βγ + 1
10σ2)

(c) B 1
5σ2

γ 2 × (1
5σ2

βγ + 1
10σ2)

(c) A and B 0 2 × (1
5σ2

γ + 1
5σ2

βγ + 1
10σ2)

σ2
γ

1

15
;

and leads to

Var(y•j•• − y•j′••) = Var(y•j••) + Var(y•j′••) − 2 × Cov(y•j••, y•j′••)

= 2 × (σ2
βγ

1

15
+ σ2 1

30
)

=
2

30
EMSBC ;

which is what would be obtained by using the denominator for Bin the stan-
dard contrast formulae for means with sample size 30.

Things get a little more interesting with two-factor means,because we
can have the first, the second, or both subscripts disagreeing, and we can get
different covariances for each. Of course there are even more possibilities
with three-factor means. Consider covariances for AB meansin panel (a) of
Figure 12.4. If the A subscripts differ, then only C and BC cancontribute
to the covariance; if the B subscripts differ, then C and AC contribute to
the covariance; if both differ, then only C contributes to the covariance. In
panel (c), if the A subscripts differ, then no terms contribute to covariance;
if the B subscripts differ, then only C contributes to covariance. Table 12.1
summarizes the covariances and variances of differences ofmeans for these
cases.
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Listing 12.1: MacAnova output for restricted Type III EMS.

EMS(a) = V(ERROR1) + 1.9753V(a.b.c) + 7.8752V(a.c) + 9.8424V(a.b) + 39.516Q(a)

EMS(b) = V(ERROR1) + 5.9048V(b.c) + 29.524V(b)

EMS(a.b) = V(ERROR1) + 1.9758V(a.b.c) + 9.8469V(a.b)

EMS(c) = V(ERROR1) + 5.9062V(b.c) + 23.625V(c)

EMS(a.c) = V(ERROR1) + 1.976V(a.b.c) + 7.8803V(a.c)

EMS(b.c) = V(ERROR1) + 5.9167V(b.c)

EMS(a.b.c) = V(ERROR1) + 1.9774V(a.b.c)

EMS(ERROR1) = V(ERROR1)

12.8 Unbalanced Data and Random Effects

Unbalanced data or random effects make data analysis more complicated;EMS for Types I,
II, and III, and
restricted or
unrestricted
models by
computer

life gets very interesting with unbalanced data and random effects. Mean
squares change depending on how they are computed (Type I, II, or III),
so there are also Type I, II, and III expected mean squares to go along with
them. Type III mean squares are generally more usable in unbalanced mixed-
effects models than those of Types I or II, because they have simpler expected
mean squares. As with balanced data, expected mean squares for unbalanced
data depend on whether we are using the restricted or unrestricted model as-
sumptions. Expected mean squares cannot usually be determined by hand; inDo not use Hasse

diagram with
unbalanced data

particular, the Hasse diagram method for finding denominators and expected
mean squares is for balanced data and does not work for unbalanced data.

Many statistical software packages can compute expected mean squares
for unbalanced data, but most do not compute all the possibilities. For exam-
ple, SAS PROC GLM can compute Type I, II, or III expected mean squares,
but only for the unrestricted model. Similarly, Minitab computes sequential
(Type I) and “adjusted” (Type III) expected mean squares forthe unrestricted
model. MacAnova can compute sequential and “marginal” (Type III) ex-
pected mean squares for both restricted and unrestricted assumptions.

Example 12.13 Unbalanced expected mean squares
Suppose we make the three-way factorial of Figure 12.4(b) unbalanced by
having only one response when all factors are at their low levels. List-
ings 12.1, 12.2, and 12.3 show the EMS’s for Type III restricted, Type III un-
restricted, and Type II unrestricted, computed respectively using MacAnova,
Minitab, and SAS. All three tables of expected mean squares differ, indicat-
ing that the different sums of squares and assumptions lead to different tests
and possibly different inferences.
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Listing 12.2: Minitab output for unrestricted Type III EMS.

Expected Mean Squares, using Adjusted SS

Source Expected Mean Square for Each Term

1 A (8) + 1.9677(7) + 7.8710(5) + 9.8387(4) + Q[1]

2 B (8) + 1.9683(7) + 5.9048(6) + 9.8413(4) + 29.5238(2)

3 C (8) + 1.9688(7) + 5.9063(6) + 7.8750(5) + 23.6250(3)

4 A*B (8) + 1.9697(7) + 9.8485(4)

5 A*C (8) + 1.9706(7) + 7.8824(5)

6 B*C (8) + 1.9722(7) + 5.9167(6)

7 A*B*C (8) + 1.9762(7)

8 Error (8)

Listing 12.3: SAS output for unrestricted Type II EMS.

Source Type II Expected Mean Square

A Var(Error) + 1.9878 Var(A*B*C) + 7.9265 Var(A*C)

+ 9.9061 Var(A*B) + Q(A)

B Var(Error) + 1.9888 Var(A*B*C) + 5.9496 Var(B*C)

+ 9.9104 Var(A*B) + 29.714 Var(B)

A*B Var(Error) + 1.9841 Var(A*B*C) + 9.8889 Var(A*B)

C Var(Error) + 1.9893 Var(A*B*C) + 5.9509 Var(B*C)

+ 7.9316 Var(A*C) + 23.778 Var(C)

A*C Var(Error) + 1.9845 Var(A*B*C) + 7.913 Var(A*C)

B*C Var(Error) + 1.9851 Var(A*B*C) + 5.9375 Var(B*C)

A*B*C Var(Error) + 1.9762 Var(A*B*C)

For unbalanced data, almost all tests are approximate tests. For exam-
ple, consider testingσ2

γ = 0 using the Type III unrestricted analysis in List- Use general
linear

combinations of
MS to get

denominators

ing 12.2. The expected mean square for C is

σ2 + 1.9688σ2
αβγ + 5.9063σ2

βγ + 7.8750σ2
αγ + 23.625σ2

γ ,

so we need to find a linear combination of mean squares with expectation

σ2 + 1.9688σ2
αβγ + 5.9063σ2

βγ + 7.8750σ2
αγ

to use as a denominator. The combination
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.9991MSAC + .9982MSBC − .9962MSABC − .0011MSE

has the correct expectation, so we could use this as our denominator for
MSC with approximate degrees of freedom computed with Satterthwaite’s
formula.

Alternatively, we could useMSC + .9962MSABC + .0011MSE as the
numerator and.9991MSAC + .9982MSBC as the denominator, computing
approximate degrees of freedom for both the numerator and denominator.
This second form avoids subtracting mean squares and generally leads toRearrange so that

all MS’s are
added

larger approximate degrees of freedom. It does move the F-ratio towards
one, however.

We can compute point estimates and confidence intervals for variance
components in unbalanced problems using exactly the same methods weANOVA estimates

of variance
components

used in the balanced case. To get point estimates, equate theobserved mean
squares with their expectations and solve for the variance components (the
ANOVA method). Confidence intervals are approximate, basedon the Sat-
terthwaite degrees of freedom for the point estimate, and ofdubious cover-
age.

12.9 Staggered Nested Designs

One feature of standard fully-nested designs is that we havefew degrees of
freedom for the top-level mean squares and many for the low-level meanOrdinary nesting

has more
degrees of
freedom for
nested terms

squares. For example, in Figure 12.1(c), we have a fully-nested design with
4, 15, 20, and 40 degrees of freedom for A, B, C, and error. Thisdifference
in degrees of freedom implies that our estimates for the top-level variance
components will be more variable than those for the lower-level components.
If we are equally interested in all the variance components,then some other
experimental design might be preferred.

Staggered nested designscan be used to distribute the degrees of freedom
more evenly (Smith and Beverly 1981). There are several variants on these
designs; we will only discuss the simplest. Factor A hasa levels, where we’d
like a as large as feasible. A has(a−1) degrees of freedom. Factor B has twoStaggered nested

designs nest in an
unbalanced way

levels and is nested in factor A; B appears at two levels for every level of A.
B hasa(2−1) = a degrees of freedom. Factor C has two levels and is nested
in B, but in an unbalanced way. Only level 2 of factor B will have two levels
of factor C; level 1 of factor B will have just one level of factor C. Factor D is
nested in factor C, but in the same unbalanced way. Only level2 of factor C
will have two levels of factor D; level 1 of factor C will have just one level of
factor D. Any subsequent factors are nested in the same unbalanced fashion.
Figure 12.5 illustrates the idea for a four-factor model.
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Figure 12.5: Example of staggered nested design.

Listing 12.4: SAS output for Type I EMS in a staggered nested design.

Source Type I Expected Mean Square

A Var(Error) + 1.5 Var(C(A*B)) + 2.5 Var(B(A)) + 4 Var(A)

B(A) Var(Error) + 1.1667 Var(C(A*B)) + 1.5 Var(B(A))

C(A*B) Var(Error) + 1.3333 Var(C(A*B))

For a staggered nested design withh factors (counting error), there are
ha units. There is 1 degree of freedom for the overall mean,a − 1 degrees
of freedom for A, anda degrees of freedom for each nested factor below A.Staggered nested

designs spread
degrees of

freedom evenly

The expected mean squares will generally be determined using software. For
example, Listing 12.4 gives the Type I expected mean squaresfor a staggered
nested design withh = 4 factors counting error anda = 10 levels for factor
A; the degrees of freedom are 9 for A and 10 for B, C, and error.

12.10 Problems

Many of the problems in this Chapter will askthe standard five questions:

(a) Draw the Hasse diagram for this model.

(b) Determine the appropriate denominators for testing each term using
the restricted model assumptions.
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(c) Determine the expected mean squares for each term using the restricted
model assumptions.

(d) Determine the appropriate denominators for testing each term using
the unrestricted model assumptions.

(e) Determine the expected mean squares for each term using the unre-
stricted model assumptions.

Consider a four-factor model with A and D fixed, each with three levels.Exercise 12.1
Factors B and C are random with two levels each. There is a total of 72
observations. All factors are crossed. Standard five questions.

Consider a four-factor model with A and D fixed, each with three levels.Exercise 12.2
Factors B and C are random with two levels each. B nests in A, C nests in B,
and D crosses with the others. There is a total of 72 observations. Standard
five questions.

Consider a four-factor model with A and D fixed, each with three levels.Exercise 12.3
Factors B and C are random with two levels each. B nests in A, C nests
in D, and all other combinations cross. There is a total of 72 observations.
Standard five questions.

Briefly describe the treatment structure you would choose for each ofExercise 12.4
the following situations. Describe the factors, the numberof levels for each,
whether they are fixed or random, and which are crossed.

(a) One of the expenses in animal experiments is feeding the animals. A
company salesperson has made the claim that their new rat chow (35%
less expensive) is equivalent to the two standard chows on the market.
You wish to test this claim by measuring weight gain of rat pups on the
three chows. You have a population of 30 inbred, basically exchange-
able female rat pups to work with, each with her own cage.

(b) Different gallons of premixed house paints with the samelabel color
do not always turn out the same. A manufacturer of paint believes
that color variability is due to three sources: supplier of tint materials,
miscalibration of the devices that add the tint to the base paint, and un-
controllable random variation between gallon cans. The manufacturer
wishes to assess the sizes of these sources of variation and is willing to
use 60 gallons of paint in the process. There are three suppliers of tint
and 100 tint-mixing machines at the plant.

(c) Insect infestations in croplands are not uniform; that is, the number
of insects present in meter-square plots can vary considerably. Our
interest is in determining the variability at different geographic scales.
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That is, how much do insect counts vary from meter square to meter
square within a hectare field, from hectare to hectare withina county,
and from county to county? We have resources for at most 10 counties
in southwestern Minnesota, and at most 100 total meter-square insect
counts.

(d) The disposable diaper business is very competitive, with all manufac-
turers trying to get a leg up, as it were. You are a consumer testing
agency comparing the absorbency of two brands of “newborn” size
diapers. The test is to put a diaper on a female doll and pump body-
temperature water through the doll into the diaper at a fixed rate until
the diaper leaks. The response is the amount of liquid pumpedbefore
leakage. We are primarily interested in brand differences,but we are
also interested in variability between individual diapersand between
batches of diapers (which we can only measure as between boxes of
diapers, since we do not know the actual manufacturing time or place
of the diapers). We can afford to buy 32 boxes of diapers and test 64
diapers.

Answer the standard five questions for each of the following experiments. Problem 12.1

(a) We are interested in the relationship between atmospheric sulfate aero-
sol concentration and visibility. As a preliminary to this study, we
examine how we will measure sulfate aerosol. Sulfate aerosol is mea-
sured by drawing a fixed volume of air through a filter and then chem-
ically analyzing the filter for sulfate. There are four brands of filter
available and two methods to analyze the filters chemically.We ran-
domly select eight filters for each brand-method combination. These
64 filters are then used (by drawing a volume of air with a knowncon-
centration of sulfate through the filter), split in half, andboth halves are
chemically analyzed with whatever method was assigned to the filter,
for a total of 128 responses.

(b) A research group often uses six contract analytical laboratories to de-
termine total nitrogen in plant tissues. However, there is apossibility
that some labs are biased with respect to the others. Forty-two tissue
samples are taken at random from the freezer and split at random into
six groups of seven, one group for each lab. Each lab then makes two
measurements on each of the seven samples they receive, for atotal of
84 measurements.

(c) A research group often uses six contract analytical laboratories to de-
termine total nitrogen in plant tissues. However, there is apossibility
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that some labs are biased with respect to the others. Seven tissue sam-
ples are taken at random from the freezer and each is split into six parts,
one part for each lab. We expect some variation among the subsamples
of a given sample. Each lab then makes two measurements on each of
the seven samples they receive, for a total of 84 measurements.

Dental fillings made with gold can vary in hardness dependingon how theProblem 12.2
metal is treated prior to its placement in the tooth. Two factors are thought
to influence the hardness: the gold alloy and the condensation method. In
addition, some dentists doing the work are better at some types of fillings
than others.

Five dentists were selected at random. Each dentist prepares 24 fillings
(in random order), one for each of the combinations of method(three levels)
and alloy (eight levels). The fillings were then measured forhardness using
the Diamond Pyramid Hardness Number (big scores are better). The data
follow (from Xhonga 1971 via Brown 1975):

Alloy
Dentist Method 1 2 3 4 5 6 7 8

1 1 792 824 813 792 792 907 792 835
2 772 772 782 698 665 1115 835 870
3 782 803 752 620 835 847 560 585

2 1 803 803 715 803 813 858 907 882
2 752 772 772 782 743 933 792 824
3 715 707 835 715 673 698 734 681

3 1 715 724 743 627 752 858 762 724
2 792 715 813 743 613 824 847 782
3 762 606 743 681 743 715 824 681

4 1 673 946 792 743 762 894 792 649
2 657 743 690 882 772 813 870 858
3 690 245 493 707 289 715 813 312

5 1 634 715 707 698 715 772 1048 870
2 649 724 803 665 752 824 933 835
3 724 627 421 483 405 536 405 312

Analyze these data to determine which factors influence the response and
how they influence the response. (Hint: the dentist by methodinteraction
can use close inspection.)

An investigative group at a television station wishes to determine if doc-Problem 12.3
tors treat patients on public assistance differently from those with private
insurance. They measure this by how long the doctor spends with the pa-
tient. There are four large clinics in the city, and the station chooses three
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pediatricians at random from each of the four clinics. Ninety-six families on
public assistance are located and divided into four groups of 24 at random.
All 96 families have a one-year-old child and a child just entering school.
Half the families will request a one-year checkup, and the others will request
a preschool checkup. Half the families will be given temporary private in-
surance for the study, and the others will use public assistance. The four
groupings of families are the factorial combinations of checkup type and in-
surance type. Each group of 24 is now divided at random into twelve sets
of two, with each set of two assigned to one of the twelve selected doctors.
Thus each doctor will see eight patients from the investigation. Recap: 96
units (families); the response is how long the doctor spendswith each family;
and treatments are clinic, doctor, checkup type, and insurance type. Standard
five questions.

Eurasian water milfoil is an exotic water plant that is infesting North Problem 12.4
American waters. Some weevils will eat milfoil, so we conduct an exper-
iment to see what may influence weevils’ preferences for Eurasian milfoil
over the native northern milfoil. We may obtain weevils thatwere raised
on Eurasian milfoil or northern milfoil. From each source, we take ten ran-
domly chosen males (a total of twenty males). Each male is mated with
three randomly chosen females raised on the same kind of milfoil (a total
of 60 females). Each female produces many eggs. Eight eggs are chosen at
random from the eggs of each female (a total of 480 eggs). The eight eggs
for each female are split at random into four groups of two, with each set
of two assigned to one of the factor-level combinations of hatching species
and growth species (an egg may be hatched on either northern or Eurasian
milfoil, and after hatching grows to maturity on either northern or Eurasian
milfoil). After the hatched weevils have grown to maturity,they are given ten
opportunities to swim to a plant. The response is the number of times they
swim to Eurasian. Standard five questions.

City hall wishes to learn about the rate of parking meter use.They Problem 12.5
choose eight downtown blocks at random (these arecity blocks, notstatisti-
cal blocks!), and on each block they choose five meters at random.Six weeks
are chosen randomly from the year, and the usage (money collected) on each
meter is measured every day (Monday through Sunday) for all the meters on
those weeks. Standard five questions.

Eight 1-gallon containers of raw milk are obtained from a dairy and are Problem 12.6
assigned at random to four abuse treatments, two containersper treatment.
Abuse consists of keeping the milk at 25oC for a period of time; the four
abuse treatments are four randomly selected durations between 1 and 18
hours. After abuse, each gallon is split into five equal portions and frozen.
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We have selected five contract laboratories at random from those avail-
able in the state. For each gallon, the five portions are randomly assigned
to the five laboratories. The eight portions for a given laboratory are then
placed in an insulated shipping container cooled with dry ice and shipped.
Each laboratory is asked to provide duplicate counts of bacteria in each milk
portion. Data follow (bacteria counts perµl).

Abuse
Lab 1 2 3 4

1 7800 7000 870 490 1300 1000 31000 36000
7500 7200 690 530 1200 980 35000 34000

2 8300 9700 900 930 2500 2300 27000 28000
8200 10000 940 840 1900 2300 34000 32000

3 7300 7300 760 840 2100 2300 34000 34000
7600 7900 790 780 2000 2200 34000 33000

4 5400 5500 520 750 1400 1100 16000 16000
5700 5600 770 620 1300 1400 16000 15000

5 15000 12000 1200 800 4600 3500 41000 39000
14000 12000 1100 600 4000 3600 40000 39000

Analyze these data. The main issues are the sources and sizesof varia-
tion, with an eye toward reliability of future measurements.

Cheese is made by bacterial fermentation of Pasteurized milk. Most ofProblem 12.7
the bacteria are purposefully added to do the fermentation;these are the
starter cultures. Some “wild” bacteria are also present in cheese; these are
the nonstarter bacteria. One hypothesis is that nonstarterbacteria may affect
the quality of a cheese, so that otherwise identical cheese making facilities
produce different cheeses due to their different indigenous nonstarter bacte-
ria.

Two strains of nonstarter bacteria were isolated at a premium cheese fa-
cility: R50#10 and R21#2. We will add these nonstarter bacteria to cheese to
see if they affect quality. Our four treatments will be control, addition of R50,
addition of R21, and addition of a blend of R50 and R21. Twelvecheeses are
made, three for each of the four treatments, with the treatments being ran-
domized to the cheeses. Each cheese is then divided into fourportions, and
the four portions for each cheese are randomly assigned to one of four aging
times: 1 day, 28 days, 56 days, and 84 days. Each portion is measured for
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total free amino acids (a measure of bacterial activity) after it has aged for its
specified number of days (data from Peggy Swearingen).

Days

Treatment Cheese 1 28 56 84

Control 1 .637 1.250 1.697 2.892
2 .549 .794 1.601 2.922
3 .604 .871 1.830 3.198

R50 1 .678 1.062 2.032 2.567
2 .736 .817 2.017 3.000
3 .659 .968 2.409 3.022

R21 1 .607 1.228 2.211 3.705
2 .661 .944 1.673 2.905
3 .755 .924 1.973 2.478

R50+R21 1 .643 1.100 2.091 3.757
2 .581 1.245 2.255 3.891
3 .754 .968 2.987 3.322

We are particularly interested in the bacterial treatment effects and interac-
tions, and less interested in the main effect of time.

As part of a larger experiment, researchers are looking at the amount of Problem 12.8
beer that remains in the mouth after expectoration. Ten subjects will repeat
the experiment on two separate days. Each subject will place10 ml or 20 ml
of beer in his or her mouth for five seconds, and then expectorate the beer.
The beer has a dye, so the amount of expectorated beer can be determined,
and thus the amount of beer retained in the mouth (in ml, data from Bréfort,
Guinard, and Lewis 1989)

10 ml 20 ml

Subject Day 1 Day 2 Day 1 Day 2
1 1.86 2.18 2.49 3.75
2 2.08 2.19 3.15 2.67
3 1.76 1.68 1.76 2.57
4 2.02 3.87 2.99 4.51
5 2.60 1.85 3.25 2.42
6 2.26 2.71 2.86 3.60
7 2.03 2.63 2.37 4.12
8 2.39 2.58 2.19 2.84
9 2.40 1.91 3.25 2.52
10 1.63 2.43 2.00 2.70

Compute confidence intervals for the amount of beer retainedin the mouth
for both volumes.
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An experiment is performed to determine the effects of different Pasteur-Problem 12.9
ization methods on bacterial survival. We work with whole milk, 2% milk,
and skim milk. We obtain four gallons of each kind of milk froma grocery
store. These gallons are assumed to be a random sample from all potential
gallons. Each gallon is then dosed with an equal number of bacteria. (We as-
sume that this dosing is really equal so that dosing is not a factor of interest in
the model.) Each gallon is then subdivided into two parts, with the two Pas-
teurization methods assigned at random to the two parts. Ourobservations
are 24 bacterial concentrations after Pasteurization. Standard five questions.

Start with a four by three table of independent normals with mean 0 andQuestion 12.1
variance 1. Compute the row means and then subtract out theserow means.
Find the distribution of the resulting differences and relate this to the re-
stricted model for mixed effects.

Consider a three-factor model with A and B fixed and C random. ShowQuestion 12.2
that the variance for the differenceyij• − yi′j• − yij′• + yi′j′• can be com-
puted using the usual formula for contrast variance with the“denominator”
expected mean square as error variance.



Chapter 13

Complete Block Designs

We now begin the study ofvariance reduction design. Experimental error
makes inference difficult. As the variance of experimental error (σ2) in- Variance

reduction designcreases, confidence intervals get longer and test power decreases. All other
things being equal, we would thus prefer to conduct our experiments with
units that are homogeneous so thatσ2 will be small. Unfortunately, all other
things are rarely equal. For example, there may be few units available, and
we must simply take what we can get. Or we might be able to find homoge-
neous units, but using the homogeneous units would restrictour inference to
a subset of the population of interest. Variance reduction designs can give us
many of the benefits of smallσ2, without necessarily restricting us to a subset
of the population of units.

13.1 Blocking

Variance reduction design deals almost exclusively with a technique called
blocking. A block of units is a set of units that are homogeneous in someA block is a set of

homogeneous
units

sense. Perhaps they are field plots located in the same general area, or are
samples analyzed at about the same time, or are units that came from a single
supplier. These similarities in the units themselves lead us to anticipate that
units within a block may also have similar responses. So whenconstructing
blocks, we try to achieve homogeneity of the units within blocks, but units in
different blocks may be dissimilar.

Blocking designs are not completely randomized designs. The Random- Blocking restricts
randomizationized Complete Block design described in the next section is the first design

we study that uses some kind of restricted randomization. When we design
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an experiment, we know the design we choose to use and thus therandom-
ization that is used. When we look at an experiment designed by someone
else, we can determine the design from the way the randomization was done,
that is, from the kinds of restrictions that were placed on the randomization,
not on the actual outcome of which units got which treatments.

There are many, many blocking designs, and we will only coversome
of the more widely used designs. This chapter deals withcomplete block
designsin which every treatment is used in every block; later chapters dealComplete blocks

include every
treatment

with incomplete block designs(not every treatment is used in every block)
and some special block designs for treatments with factorial structure.

13.2 The Randomized Complete Block Design

The Randomized Complete Block design (RCB) is the basic blocking design.
There areg treatments, and each treatment will be assigned tor units for a
total ofN = gr units. We partition theN units intor groups ofg units each;RCB has r blocks

of g units each theser groups are our blocks. We make this partition into blocks in such
a way that the units within a block are somehow alike; we anticipate that
these alike units will have similar responses. In the first block, we randomly
assign theg treatments to theg units; we do an independent randomization,Block for

homogeneity assigning treatments to units in each of the other blocks. This is the RCB
design.

Blocks exist at the time of the randomization of treatments to units. We
cannot impose blocking structure on a completely randomized design after
the fact; either the randomization was blocked or it was not.

Example 13.1 Mealybugs on cycads

Modern zoos try to reproduce natural habitats in their exhibits as much as
possible. They therefore use appropriate plants, but theseplants can be in-
fested with inappropriate insects. Zoos need to take great care with pesti-
cides, because the variety of species in a zoo makes it more likely that a
sensitive species is present.

Cycads (plants that look vaguely like palms) can be infestedwith mealy-
bug, and the zoo wishes to test three treatments: water (a control), horti-
cultural oil (a standard no-mammalian-toxicity pesticide), and fungal spores
in water (Beauveria bassiana, a fungus that grows exclusively on insects).
Five infested cycads are removed to a testing area. Three branches are ran-
domly chosen on each cycad, and two 3 cm by 3 cm patches are marked on
each branch; the number of mealybugs in these patches is noted. The three
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Table 13.1:Changes in mealybug counts on cycads after treatment.
Treatments are water,Beauveria bassianaspores, and horticultural oil.

Plant
1 2 3 4 5

Water -9 18 10 9 -6
-6 5 9 0 13

Spores -4 29 4 -2 11
7 10 -1 6 -1

Oil 4 29 14 14 7
11 36 16 18 15

branches on each cycad are randomly assigned to the three treatments. After
three days, the patches are counted again, and the response is the change in
the number of mealybugs (before− after). Data for this experiment are given
in Table 13.1 (data from Scott Smith).

How can we decode the experimental design from the description just
given?Follow the randomization!Looking at the randomization, we see that
the treatments were applied to the branches (or pairs of patches). Thus the
branches (or pairs) must be experimental units. Furthermore, the randomiza-
tion was done so that each treatment was applied once on each cycad. There
was no possibility of two branches from the same plant receiving the same
treatment. This is a restriction on the randomization, withcycads acting as
blocks. The patches are measurement units. When we analyze these data, we
can take the average or sum of the two patches on each branch asthe response
for the branch. To recap, there wereg = 3 treatments applied toN = 15
units arranged inr = 5 blocks of size3 according to an RCB design; there
were two measurement units per experimental unit.

Why did the experimenter block? Experience and intuition lead the ex-
perimenter to believe that branches on the same cycad will tend to be more
alike than branches on different cycads—genetically, environmentally, and
perhaps in other ways. Thus blocking by plant may be advantageous.

It is important to realize that tables like Table 13.1 hide the randomization
that has occurred. The table makes it appear as though the first unit in every
block received the water treatment, the second unit the spores, and so on.
This is not true. The table ignores the randomization for theconvenience of
a readable display. The water treatment may have been applied to any of the
three units in the block, chosen at random.

You cannot determine the design used in an experiment just bylooking at
a table of results, you have to know the randomization. Theremay be many
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different designs that could produce the same data, and you will not knowFollow the
randomization to
determine design

the correct analysis for those data without knowing the design. Follow the
randomization to determine the design.

An important feature to note about the RCB is that we have placed no
restrictions on the treatments. The treatments could simply beg treatments,General

treatment
structure

or they could be the factor-level combinations of two or morefactors. These
factors could be fixed or random, crossed or nested. All of these treatment
structures can be incorporated when we use blocking designsto achieve vari-
ance reduction.

Example 13.2 Protein/amino acid effects on growing rats
Male albino laboratory rats (Sprague-Dawley strain) are used routinely in
many kinds of experiments. Proper nutrition for the rats is important. This
experiment was conducted to determine the requirements forprotein and the
amino acid threonine. Specifically, this experiment will examine the factorial
combinations of the amount of protein in diet and the amount of threonine in
diet. The general protein in the diet is threonine deficient.There are eight
levels of threonine (.2 through .9% of diet) and five levels ofprotein (8.68,
12, 15, 18, and 21% of diet), for a total of 40 treatments.

Two-hundred weanling rats were acclimated to cages. On the second
day after arrival, all rats were weighed, and the rats were separated into five
groups of 40 to provide groupings of approximately uniform weight. The
40 rats in each group were randomly assigned to the 40 treatments. Body
weight and food consumption were measured twice weekly, andthe response
we consider is average daily weight gain over 21 days.

This is a randomized complete block design. Initial body weight is a
good predictor of body weight in 3 weeks, so the rats were blocked by initial
weight in an attempt to find homogeneous groups of units. There are 40
treatments, which have an eight by five factorial structure.

13.2.1 Why and when to use the RCB

We use an RCB to increase the power and precision of an experiment by
decreasing the error variance. This decrease in error variance is achieved
by finding groups of units that are homogeneous (blocks) and,in effect,
repeating the experiment independently in the different blocks. The RCBBlock when you

can identify a
source of
variation

is an effective design when there is a single source of extraneous variation
in the responses that we can identify ahead of time and use to partition the
units into blocks. Blocking is done at the time of randomization; you can’t
construct blocks after the experiment has been run.
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There is an almost infinite number of ways in which units can begrouped
into blocks, but a few examples may suffice to get the ideas across. We would
like to group into blocks on the basis of homogeneity of the responses, but
that is not possible. Instead, we must group into blocks on the basis of other
similarities that we think may be associated with responses.

Some blocking is fairly obvious. For example, you need milk to make
cheese, and you get a new milk supply every day. Each batch of milk makes Block on batch
slightly different cheese. If your batches are such that youcan make several
types of cheese per batch, then blocking on batch of raw material is a natural.

Units may be grouped spatially. For example, some units may be located
in one city, and other units in a second city. Or, some units may be in cages
on the top shelf, and others in cages on the bottom shelf. It iscommon for Block spatially
units close in space to have more similar responses, so spatial blocking is
also common.

Units may be grouped temporally. That is, some units may be treated or
measured at one time, and other units at another time. For example, you may
only be able to make four measurements a day, and the instrument may need Block temporally
to be recalibrated every day. As with spatial grouping, units close in time
may tend to have similar responses, so temporal blocking is common.

Age and gender blocking are common for animal subjects. Sometimes
units have a “history.” The number of previous pregnancies could be a block- Age, gender, and

history blocksing factor. In general, any source of variation that you think may influence the
response and which can be identified prior to the experiment is a candidate
for blocking.

13.2.2 Analysis for the RCB

Now all the hard work in the earlier chapters studying analysis methods pays
off. The design of an RCB is new, but there is nothing new in theanalysis of Nothing new in

analysis of RCBan RCB. Once we have the correct model, we do point estimates,confidence
intervals, multiple comparisons, testing, residual analysis, and so on, in the
same way as for the CRD.

Letyij be the response for theith treatment in thejth block. The standard
model for an RCB has a grand mean, a treatment effect, a block effect, and
experimental error, as in Blocks usually

assumed additive

yij = µ + αi + βj + ǫij .

This standard model says that treatments and blocks are additive, so that
treatments have the same effect in every block and blocks only serve to shift
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Figure 13.1: Models for a Randomized Complete Block.

the mean response up or down. Hasse diagrams (a) or (c) in Figure 13.1
correspond to this standard model.

To complete the model, we must decide which terms are random and
which are fixed; we must also decide whether to use the standard additive
model given above or to allow for the possibility that treatments and blocks
interact. Fortunately, all variations lead to the same operational analysis pro-All reasonable

models for RCB
use the same
analysis

cedure for the RCB design. Figure 13.1 shows Hasse diagrams for four dif-
ferent sets of assumptions for the RCB. Panels (a) and (b) assume the blocks
are fixed, and panels (c) and (d) assume the blocks are random.Panels (a)
and (c) assume that blocks do not interact with treatments (as in the standard
model above), and panels (b) and (d) include an interaction between blocks
and treatments. In all four cases, we will use the(r − 1)(g − 1) degree of
freedom term below treatments as the denominator for treatments. This is
true whether we think that the treatments are fixed or random;what differs is
how this denominator term is interpreted.
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In panels (a) and (c), where we assume that blocks and treatments are
additive, the(r − 1)(g − 1) degree of freedom term is the usual error and
the only random term below treatments. In panel (d), this term is the block Denominator for

treatments is
(r − 1)(g − 1)

degree of
freedom

interaction or
error

by treatment interaction and is again the natural denominator for treatments.
In panel (b), the correct denominator for treatments is “error,” but “error”
cannot be estimated because we have 0 degrees of freedom for error (only
one observation for each treatment in each block). Instead,we must use the
block by treatment interaction as a surrogate for error and recognize that this
surrogate error may be too large if interaction is indeed present. Thus we will
arrive at the same inferences regardless of our assumptionson randomness
of blocks and interaction between treatments and blocks.

The computation of estimated effects, sums of squares, contrasts, and so
on is done exactly as for a two-way factorial. In this themodelwe are using
to analyze an RCB is just the same as a two-way factorial with replication
n = 1, even though thedesignof an RCB is not the same.

One difference between an RCB and a factorial is that we do nottry
to make inferences about blocks, even though the machinery of our model
allows us to do so. The reason for this goes back to thinking ofF-tests as Do not test

blocks—they
were not

randomized

approximations to randomization tests. Under the RCB randomization, units
are assigned at random to treatments, but units always stay in the same block.
Thus the block effects and sums of squares are not random, andthere is no
test for blocks; blocks simply exist. More pragmatically, we blocked because
we believed that the units within blocks were more similar, so finding a block
effect is not a major revelation.

Mealybugs, continued Example 13.3

We take as our response the mean of the two measurements for each branch
from Table 13.1. The ANOVA table follows:

DF SS MS F-stat p-value
Blocks 4 686.4 171.60
Treatments 2 432.03 216.02 12.2 .0037
Error 8 141.8 17.725

There is fairly strong evidence for differences in mealybugs between the
treatments, and there is no evidence that assumptions were violated.

Looking more closely, we can use pairwise comparisons to examine the
differences. We compute the pairwise comparisons (HSD’s orLSD’s or
whatever) exactly as for ordinary factorial data. The underline diagram below
shows the HSD at the 5% level:
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Water Spores Oil
-4.57 -2.97 7.53

Here we see that spores treatment cannot be distinguished from the control
(water) treatment, but both can be distinguished from the oil treatment.

The usual assumption made for an RCB model is that blocks and treat-
ments do not interact. To some degree this assumption is forced on us, be-
cause as we saw from the Hasse diagrams, there is little we cando besides
assume additivity. When the treatments have a factorial structure, we could
have a model with blocks random and interacting with the various factors. InStandard model

has blocks
additive

such a model, the error for factor A would be the A by block interaction, the
error for factor B would be the B by block interaction, and so on. However,
the standard model allows treatment factors to interact, whereas blocks are
still additive.

Assuming that blocks and treatments are additive does not make them
so. One thing we can do with potential interaction in the RCB is investi-
gate transformable nonadditivity using Tukey one-degree-of-freedom proce-Transform for

additivity dures. When there is transformable nonadditivity, reexpressing the data on
the appropriate scale can make the data more additive. When the data are
more additive, the term that we use as error contains less interaction and is a
better surrogate for error.

13.2.3 How well did the blocking work?

The gain from using an RCB instead of a CRD is a decrease in error variance,
and the loss is a decrease in error degrees of freedom by(r − 1). This loss is
only severe for small experiments. How can we quantify our gain or loss fromGain in variance,

lose in degrees of
freedom

an RCB? As discussed above, the “F-test” for blocks does not correspond to
a valid randomization test for blocks. Even if it did, knowing simply that the
blocks are not all the same does not tell us what we need to know: how much
have we saved by using blocks? We need something other than the F-test to
measure that gain.

Suppose that we have an RCB and a CRD to test the same treatments;
both designs have the same total size N, and both use the same population of
units. The efficiency of the RCB relative to the CRD is the factor by which
the sample size of the CRD would need to be increased to have the same in-Relative

efficiency
measures sample
size savings

formation as the RCB. (Information is a technical term; think of two designs
with the same information as having approximately the same power or yield-
ing approximately the same length of confidence intervals.)For example,
if an RCB with fifteen units has relative efficiency 2, then a CRD using the
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same population of units would need 30 units to obtain the same information.
Units almost always translate to time or money, so reducingN by blocking
is one good way to save money.

Efficiency is denoted by E with a subscript to identify the designs be-
ing compared. The relative efficiency of an RCB to a CRD is given in the
following formula: Relative

efficiency is the
ratio of variances
times a degrees

of freedom
adjustment

ERCB:CRD=
(νrcb + 1)(νcrd + 3)

(νrcb + 3)(νcrd + 1)

σ2
crd

σ2
rcb

,

whereσ2
crd andσ2

rcb are the error variances for the CRD and RCB,νrcb =
(r − 1)(g − 1) is the error degrees of freedom for the RCB design, and
νcrd = (r − 1)g is the error degrees of freedom for the CRD of the same
size. The first part is a degrees of freedom adjustment; variances must be
estimated and we get better estimates with more degrees of freedom. The
second part is the ratio of the error variances for the two different designs.
The efficiency is determined primarily by this ratio of variances; the degrees
of freedom adjustment is usually a smaller effect.

We will never know the actual variancesσ2
crd or σ2

rcb; we must estimate
them. Suppose that we have conducted an RCB experiment. We can estimate
σ2

rcb usingMSE for the RCB design. We estimateσ2
crd via Estimate σ2

crd

with a weighted
average of MSE

and MSBlocks
σ̂2

crd =
(r − 1)MSBlocks + ((g − 1) + (r − 1)(g − 1))MSE

(r − 1) + (g − 1) + (r − 1)(g − 1)

This is the weighted average ofMSBlocks andMSE with MSBlocks having
weight equal to the degrees of freedom for blocks andMSE having weight
equal to the sum of the degrees of freedom for treatment and error. This is
not the result of simply pooling sums of squares and degrees of freedom for
blocks and error in the RCB.

Mealybugs, continued Example 13.4
For the mealybug experiment, we haveg = 3, r = 5, νrcb = (r−1)(g−1) =
8, νcrd = g(r − 1) = 12, MSBlocks = 171.6, andMSE = 17.725, so we get

σ̂2
crd =

4 × 171.6 + (2 + 8) × 17.725

4 + 2 + 8
= 61.69 ,

(νrcb + 1)(νcrd + 3)

(νrcb + 3)(νcrd + 1)
=

9 × 15

11 × 13
= .944 ,

ÊRCB:CRD =
(νrcb + 1)(νcrd + 3)

(νrcb + 3)(νcrd + 1)

σ̂2
crd

MSE
,
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= .944 × 61.69

17.725
= 3.29 .

We had five units for each treatment, so an equivalent CRD would have
needed5×3.29 = 16.45, call it seventeen units per treatment. This blocking
was rather successful. Observe that even in this fairly small experiment, the
loss from degrees of freedom was rather minor.

13.2.4 Balance and missing data

The standard RCB is balanced, in the sense that each treatment occurs once in
each block. Balance was helpful in factorials, and it is helpful in randomized
complete blocks for the same reason: it makes the calculations and inferenceBalance makes

inference easier easier. When the data are balanced, simple formulae can be used, exactly
as for balanced factorials. When the data are balanced, adding 1 million
to all the responses in a given block does not change any contrast between
treatment means.

Missing data in an RCB destroy balance. The approach to inference is to
look at treatment effects adjusted for blocks. If the treatments are themselves
factorial, we can compute whatever type of sum of squares we feel is appro-
priate, but we always adjust for blocks prior to treatments.The reason is thatTreatments

adjusted for
blocks

we believed, before any experimentation, that blocks affected the response.
We thus allow blocks to account for any variability they can before exam-
ining any additional variability that can be explained by treatments. This
“ordering” for sums of squares and testing does not affect the final estimated
effects for either treatments or blocks.

13.3 Latin Squares and Related Row/Column Designs

Randomized Complete Block designs allow us to block on a single source of
variation in the responses. There are experimental situations with more than
one source of extraneous variation, and we need designs for these situations.

Example 13.5 Addled goose eggs

The Canada goose (Branta canadensis) is a magnificent bird, but it can be
a nuisance in urban areas when present in large numbers. One population
control method is to addle eggs in nests to prevent them from hatching. This
method may be harmful to the adult females, because the females fast while
incubating and tend to incubate as long as they can if the eggsare unhatched.
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Would the removal of addled eggs at the usual hatch date prevent these po-
tential side effects?

An experiment is proposed to compare egg removal and no egg removal
treatments. The birds in the study will be banded and observed in the future
so that survival can be estimated for the two treatments. It is suspected that
geese nesting together at a site may be similar due to both environmental
and interbreeding effects. Furthermore, we know older females tend to nest
earlier, and they may be more fit.

We need to block on both site and age. We would like each treatment to
be used equally often at all sites (to block on populations),and we would like
each treatment to be used equally often with young and old birds (to block
on age).

A Latin Square (LS) is a design that blocks for two sources of variation.
A Latin Square design forg treatments usesg2 units and is thus a little re- LS has g2 units

for g treatments
and blocks two

ways

strictive on experiment size. Latin Squares are usually presented pictorially.
Here are examples of LS designs forg = 2, 3, and4 treatments:

B A
A B

A B C
B C A
C A B

A B C D
B A D C
C D A B
D C B A

Theg2 units are represented as a square (what a surprise!). By convention,
the letters A, B, and so on represent theg different treatments. There are two
blocking factors in a Latin Square, and these are represented by the rows and
columns of the square. Each treatment occurs once in each rowand once Each treatment

once in each row
and column

in each column. Thus in the goose egg example, we might have rows one
and two be different nesting sites, with column one being young birds and
column two being older birds. This square uses four units, one young and
one old bird from each of two sites. Using the two by two squareabove,
treatment A is given to the site 1 old female and the site 2 young female, and
treatment B is given to the site 1 young female and the site 2 old female.

Look a little closer at what the LS design is accomplishing. If you ignore
the row blocking factor, the LS design is an RCB for the columnblocking
factor (each treatment appears once in each column). If you ignore the col- Rows and

columns of LS
form RCBs

umn blocking factor, the LS design is an RCB for the row blocking factor
(each treatment appears once in each row). The rows and columns are also
balanced because of the square arrangement of units. A LatinSquare blocks
on both rows and columnssimultaneously.
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We use Latin Squares because they allow blocking on two sources of
variation, but Latin Squares do have drawbacks. First, a single Latin Square
has exactlyg2 units. This may be too few or even too many units. Second,
Latin Squares generally have relatively few degrees of freedom for estimating
error; this problem is particularly serious for small designs. Third, it may be
difficult to obtain units that block nicely on both sources ofvariation. For
example, we may have two sources of variation, but one sourceof variation
may only haveg − 1 units per block.

13.3.1 The crossover design

One of the more common uses for a Latin Square arises when a sequence of
treatments is given to a subject over several time periods. We need to block
on subjects, because each subject tends to respond differently, and we need to
block on time period, because there may consistent differences over time dueCrossover design

has subject and
time period blocks

to growth, aging, disease progression, or other factors. Acrossoverdesign
has each treatment given once to each subject, and has each treatment occur-
ring an equal number of times in each time period. Withg treatments given
to g subjects overg time periods, the crossover design is a Latin Square. (We
will also consider a more sophisticated view of and analysisfor the crossover
design in Chapter 16.)

Example 13.6 Bioequivalence of drug delivery
Consider the blood concentration of a drug after the drug hasbeen adminis-
tered. The concentration will typically start at zero, increase to some maxi-
mum level as the drug gets into the bloodstream, and then decrease back to
zero as the drug is metabolized or excreted. These time-concentration curves
may differ if the drug is delivered in a different form, say a tablet versus a
capsule. Bioequivalence studies seek to determine if different drug delivery
systems have similar biological effects. One variable to compare is the area
under the time-concentration curve. This area is proportional to the average
concentration of the drug.

We wish to compare three methods for delivering a drug: a solution, a
tablet, and a capsule. Our response will be the area under thetime-concentra-
tion curve. We anticipate large subject to subject differences, so we block on
subject. There are three subjects, and each subject will be given the drug
three times, once with each of the three methods. Because thebody may
adapt to the drug in some way, each drug will be used once in thefirst period,
once in the second period, and once in the third period. Table13.2 gives
the assignment of treatments and the responses (data from Selwyn and Hall
1984). This Latin Square is a crossover design.
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Table 13.2:Area under the curve for administering a drug via
A—solution, B—tablet, and C—capsule. Table entries are
treatments and responses.

Subject
1 2 3

1 A 1799 C 2075 B 1396

Period 2 C 1846 B 1156 A 868

3 B 2147 A 1777 C 2291

13.3.2 Randomizing the LS design

It is trivial to produce an LS for any number of treatmentsg. Assign the treat-
ments in the first row in order. In the remaining rows, shift left all the treat-
ments in the row above, bringing the first element of the row above around to One LS is easy,

random LS is
harder

the end of this row. The three by three square on page 325 was produced in
this fashion. It is much less trivial to choose a square randomly. In principle,
you assign treatments to units randomly, subject to the restrictions that each
treatment occurs once in each row and once in each column, buteffecting
that randomization is harder than it sounds.

The recommended randomization is described in Fisher and Yates (1963).
This randomization starts withstandard squares, which are squares with the Standard squares
letters in the first row and first column in order. The three by three and four
by four squares on page 325 are standard squares. Forg of 2, 3, 4, 5, and 6,
there are 1, 1, 4, 56, and 9408 standard squares. Appendix C contains several
standard Latin Square plans.

The Fisher and Yates randomization goes as follows. Forg of 3, 4, or
5, first choose a standard square at random. Then randomly permute all
rows except the first, randomly permute all columns, and randomly assign Fisher-Yates

randomizationthe treatments to the letters. Forg of 6, select a standard square at random,
randomly permute all rows and columns, and randomly assign the treatments
to the letters. Forg of 7 or greater, choose any square, randomly permute the
rows and columns, and randomly assign treatments to the letters.

13.3.3 Analysis for the LS design

The standard model for a Latin Square has a grand mean, effects for row Additive
treatment, row,

and column
effects

and column blocks and treatments, and experimental error. Let yijk be the
response from the unit given theith treatment in thejth row block andkth
column block. The standard model is
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yijk = µ + αi + βj + γk + ǫijk ,

whereαi is the effect of theith treatment,βj is the effect of thej row block,
andγk is the effect of thekth column block. As with the RCB, block effects
are assumed to be additive.

Here is something new: we do not observe allg3 of the i, j, k combina-
tions in an LS; we only observeg2 of them. However, the LS is constructedUsual formulae

still work for LS so that we have balance when we look at rows and columns, rows and treat-
ments, or columns and treatments. This balance implies thatcontrasts be-
tween rows, contrasts between columns, and contrasts between treatments
are all orthogonal, and the standard calculations for effects, sums of squares,
contrasts, and so on work for the LS. Thus, for example,

α̂i = yi•• − y•••

SSTrt =
g∑

i=1

gα̂i
2 .

Note thaty••• andyi•• are means overg2 andg units respectively. The sum
of squares for error is usually found by subtracting the sumsof squares for
treatments, rows, and columns from the total sum of squares.

The Analysis of Variance table for a Latin Square design has sources
for rows, columns, treatments, and error. We test the null hypothesis of no
treatment effects via the F-ratio formed by mean square for treatments over
mean square for error. As in the RCB, we do not test row or column blocking.
Here is a schematic ANOVA table for a Latin Square:

Source SS DF MS F
Rows SSRows g − 1 SSRows/(g − 1)
Columns SSCols g − 1 SSCols/(g − 1)
Treatments SSTrt g − 1 SSTrt/(g − 1) MSTrt/MSE

Error SSE (g − 2)(g − 1) SSE/[(g − 2)(g − 1)]

There is no intuitive rule for the degrees of freedom for error (g − 2)(g − 1);
we just have to do our sums. Start with the total degrees of freedomg2 and
subtract one for the constant and all the degrees of freedom in the model,Few degrees of

freedom for error 3(g − 1). The difference is(g − 2)(g − 1). Latin Squares can have few
degrees of freedom for error.
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Listing 13.1: SAS output for bioequivalence Latin Square.

General Linear Models Procedure

Dependent Variable: AREA

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 1798011.33 299668.56 66.67 0.0149

Error 2 8989.56 4494.78

Source DF Type I SS Mean Square F Value Pr > F

PERIOD 2 928005.556 464002.778 103.23 0.0096

SUBJECT 2 261114.889 130557.444 29.05 0.0333

TRT 2 608890.889 304445.444 67.73 0.0145 ①

Tukey’s Studentized Range (HSD) Test for variable: AREA

Alpha= 0.05 df= 2 MSE= 4494.778

Critical Value of Studentized Range= 8.331

Minimum Significant Difference= 322.46

Means with the same letter are not significantly different.

Tukey Grouping Mean N TRT

A 2070.67 3 3 ②

B 1566.33 3 2

B

B 1481.33 3 1

Bioequivalence, continued Example 13.7
Listing 13.1 shows the ANOVA for the bioequivalence data from Table 13.2.
There is reasonable evidence against the null hypothesis that all three meth-
ods have the same area under the curve,p-value .0145①. Looking at the
Tukey HSD output②, it appears that treatment 3, the capsule, gives a higher
area under the curve than the other two treatments.

Note that this three by three Latin Square has only 2 degrees of freedom
for error.

The output in Listing 13.1 shows F-tests for both period and subject. We
should ignore these, because period and subject are unrandomized blocking
factors. The software does not know this and simply computesF-tests for all
model terms.
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13.3.4 Replicating Latin Squares

Increased replication gives us better estimates of error and increased power
through averaging. We often need better estimates of error in LS designs,Replicate for

better precision
and error
estimates

because a single Latin Square has relatively few degrees of freedom for error
(for example, Listing 13.1). Thus using multiple Latin Squares in a single
experiment is common practice.

When we replicate a Latin Square, we may be able to “reuse” rowor
column blocks. For example, we may believe that the period effects in a
crossover design will be the same in all squares; this reusesthe period blocksSome blocks can

be reused across the squares. Replicated Latin Squares can reuse bothrow and column
blocks, reuse neither row nor column blocks, or reuse one of the row or
column blocks. Whether we reuse any or all of the blocks when replicating an
LS depends on the experimental and logistical constraints.Some blocks may
represent small batches of material or time periods when weather is fairlyReusability

depends on
experiment and
logistics

constant; these blocks may be unavailable or have been consumed prior to
the second replication. Other blocks may represent equipment that could be
reused in principle, but we might want to use several pieces of equipment at
once to conclude the experiment sooner rather than later.

From an analysis point of view, the advantage of reusing a block fac-
tor is that we will have more degrees of freedom for error. Therisk when
reusing a block factor is that the block effects will actually change, so that
the assumption of constant block effects across the squaresis invalid.

Example 13.8 Carbon monoxide emissions

Carbon monoxide (CO) emissions from automobiles can be influenced by the
formulation of the gasoline that is used. In Minnesota, we use “oxygenated
fuels” in the winter to decrease CO emissions. We have four gasoline blends,
the combinations of factors A and B, each at two levels, and wewish to test
the effects of these blends on CO emissions in nonlaboratoryconditions, that
is, in real cars driven over city streets. We know that there are car to car
differences in CO emissions, and we suspect that there are route to route
differences in the city (stop and go versus freeway, for example). With two
blocking factors, a Latin Square seems appropriate. We willuse three squares
to get enough replication.

If we have only four cars and four routes, and these will be used in all
three replications, then we are reusing the row and column blocking factors
across squares. Alternatively, we might be using only four cars, but we have
twelve different routes. Then we are reusing the row blocks (cars), but not
the column blocks (routes). Finally, we could have twelve cars and twelve
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routes, which we divide into three sets of four each to createsquares. For this
design, neither rows nor columns is reused.

The analysis of a replicated Latin Square varies slightly depending on
which blocks are reused. Letyijkl be the response for treatmenti in row j
and columnk of squarel. There areg treatments (and rows and columns in Models depend

on which blocks
are reused

each block) andm squares. Consider the provisional model

yijkl = µ + αi + βj(l) + γk(l) + δl + ǫijkl .

This model has an overall meanµ, the treatment effectsαi, square effectsδl,
and row and column block effectsβj(l) andγk(l). As usual in block designs,
block effects are additive.

This model has row and column effects nested in square, so that each
square will have its own set of row and column effects. This model is ap-
propriate when neither row nor column blocks are reused. Thedegrees of Df when neither

rows nor columns
reused

freedom for this model are one for the grand mean,g − 1 between treat-
ments,m− 1 between squares,m(g − 1) for each of rows and columns, and
(mg − m − 1)(g − 1) for error.

The model terms and degrees of freedom for the row and column block
effects depend on whether we are reusing the row and/or column blocks.
Suppose that we reuse row blocks, but not column blocks; reusing columns
but not rows can be handled similarly. The model is now

yijkl = µ + αi + βj + γk(l) + δl + ǫijkl ,

and the degrees of freedom are one for the grand mean,g − 1 between treat- Df when rows
reusedments,m − 1 between squares,g − 1 between rows,m(g − 1) between

columns, and(mg − 2)(g − 1) for error. Finally, consider reusing both row
and column blocks. Then the model is

yijkl = µ + αi + βj + γk + δl + ǫijkl ,

and the degrees of freedom are one for the grand mean,g − 1 between treat- Df when rows and
columns reusedments, rows and columns,m− 1 between squares, and(mg +m− 3)(g− 1)

for error.

CO emissions, continued Example 13.9

Consider again the three versions of the CO emissions example given above.
The degrees of freedom for the sources of variation are
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4 cars, 4 routes 4 cars, 12 routes 12 cars, 12 routes
Source DF DF DF

Squares (m − 1) = 2 (m − 1) = 2 (m − 1) = 2
Cars (g − 1) = 3 (g − 1) = 3 m(g − 1) = 9
Routes (g − 1) = 3 m(g − 1) = 9 m(g − 1) = 9
Fuels (g − 1) = 3 (g − 1) = 3 (g − 1) = 3

or A 1 1 1
B 1 1 1

AB 1 1 1
Error (mg + m − 3)(g − 1) (mg − 2)(g − 1) (mg − m − 1)(g − 1)

= 12 × 3 = 36 = 10 × 3 = 30 = 8 × 3 = 24
or

Error 47 − 11 = 36 47 − 17 = 30 47 − 23 = 24

Note that we have computed error degrees of freedom twice, once by apply-
ing the formulae, and once by subtracting model degrees of freedom from
total degrees of freedom. I usually obtain error degrees of freedom by sub-
traction.

Estimated effects follow the usual patterns, because even though we do
not see all theijkl combinations, the combinations we do see are such that
treatment, row, and column effects are orthogonal. So, for example,Estimated effects

and sums of
squares follow the
usual patterns

α̂i = yi••• − y••••

δ̂l = y•••l − y•••• .

If row blocks are reused, we have

β̂j = y•j•• − y•••• ,

and if row blocks are not reused we have

β̂j(l) = y•j•l − δ̂l − µ̂

= y•j•l − y•••l .

The rules for column block effects are analogous. In all cases, the sum of
squares for a source of variation is found by squaring an effect, multiplying
that by the number of responses that received that effect, and adding across
all levels of the effect.

When only one of the blocking factors (rows, for example) is reused, it is
fairly common to combine the terms for “between squares” (m−1 degrees ofCan combine

between squares
with columns

freedom) and “between columns within squares” (m(g − 1) degrees of free-
dom) into an overall between columns factor withgm−1 degrees of freedom.
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Table 13.3:Area under the curve for administering a drug via
A—solution, B—tablet, and C—capsule. Table entries are
treatments and responses.

Period

Subject 1 2 3
1 A 1799 C 1846 B 2147
2 C 2075 B 1156 A 1777
3 B 1396 A 868 C 2291
4 B 3100 A 3065 C 4077
5 C 1451 B 1217 A 1288
6 A 3174 C 1714 B 2919
7 C 1430 A 836 B 1063
8 A 1186 B 642 C 1183
9 B 1135 C 1305 A 984
10 C 873 A 1426 B 1540
11 A 2061 B 2433 C 1337
12 B 1053 C 1534 A 1583

This is not necessary, but it sometimes makes the software commands easier.
Note that when neither rows nor columns is reused, you cannotget combined
m(g − 1) degrees of freedom terms for both rows and columns at the same
time. The “between squares” sums of squares and degrees of freedom comes
from contrasts between the means of the different squares and can be con-
sidered as either a row or column difference, but it cannot becombined into
bothrows and columns in the same analysis.

Bioequivalence (continued) Example 13.10

Example 13.6 introduced a three by three Latin Square for comparing deliv-
ery of a drug via solution, tablet, and capsule. In fact, thiscrossover design
includedm = 4 Latin Squares. These squares involve twelve different sub-
jects, but the same three time periods. Data are given in Table 13.3.

Listing 13.2① gives an Analysis of Variance for the complete bioequiv-
alence data. The residuals show some signs of nonconstant variance, but the
power 1 is reasonably within a confidence interval for the Box-Cox transfor-
mation and the residuals do not look much better on the log or quarter power
scale, so we will stick with the original data.
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Listing 13.2: SAS output for bioequivalence replicated Latin Square.

Dependent Variable: AREA

Sum of Mean

Source DF Squares Square F Value Pr > F

Error 20 4106499.6 205325.0

SQ 3 8636113.56 2878704.52 14.02 0.0001

PERIOD 2 737750.72 368875.36 1.80 0.1916

SUBJECT 8 7748946.67 968618.33 4.72 0.0023

TRT 2 81458.39 40729.19 0.20 0.8217 ①

Sum of Mean

Source DF Squares Square F Value Pr > F

Error 14 2957837.9 211274.1

SQ 3 8636113.56 2878704.52 13.63 0.0002

PERIOD 2 737750.72 368875.36 1.75 0.2104

SUBJECT 8 7748946.67 968618.33 4.58 0.0065

TRT 2 81458.39 40729.19 0.19 0.8268

SQ*TRT 6 1148661.61 191443.60 0.91 0.5179 ②

Level of Level of -------------AREA------------ ③
SQ TRT N Mean SD

1 1 3 1481.33333 531.27614

1 2 3 1566.33333 516.99162

1 3 3 2070.66667 222.53165

2 1 3 2509.00000 1058.82057

2 2 3 2412.00000 1038.84984

2 3 3 2414.00000 1446.19120

3 1 3 1002.00000 175.69291

3 2 3 946.66667 266.29370

3 3 3 1306.00000 123.50304

4 1 3 1690.00000 330.74613

4 2 3 1675.33333 699.88309

4 3 3 1248.00000 339.36853

Sum of Mean

Source DF Squares Square F Value Pr > F ④
----------------------------------- SQ=1 -----------------------------------

Error 2 8989.56 4494.78

TRT 2 608890.889 304445.444 67.73 0.0145

----------------------------------- SQ=2 -----------------------------------

Error 2 937992.67 468996.33

TRT 2 18438.00 9219.00 0.02 0.9807

----------------------------------- SQ=3 -----------------------------------

Error 2 46400.889 23200.444

TRT 2 224598.222 112299.111 4.84 0.1712

----------------------------------- SQ=4 -----------------------------------

Error 2 327956.22 163978.11

TRT 2 378192.889 189096.444 1.15 0.4644
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Note that the complete data set is compatible with the null hypothesis
of no treatment effects. Those of you keeping score may recall from Exam-
ple 13.7 that the data from just the first square seemed to indicate that there
were differences between the treatments. Also theMSE in the complete data
is about 45 times bigger than for the first square. What has happened?

Here are three possibilities. First, the subjects may not have been num-
bered in a random order, so the early subjects could be systematically dif-
ferent from the later subjects. This can lead to some dramatic differences
between analysis of subsets and complete sets of data, though we have no
real evidence of that here.

Second, there could be subject by treatment interaction giving rise to
different treatment effects for different subsets of the data. Our Latin Square
blocking model is based on the assumption of additivity, butinteraction could
be present. The error term in our ANOVA contains any effects not explicitly
modeled, so it would be inflated in the presence of subject by treatment in-
teraction, and interaction could obviously lead to different treatment effects
being estimated in different squares.

We explore this somewhat at② of Listing 13.2, which shows a second
ANOVA that includes a square by treatment interaction. Thisterm explains
a reasonable sum of squares, but is not significant as a 6 degree of freedom
mean square. Listing 13.2③ shows the response means separately by square
and treatment. Means by square for treatments 1 and 2 are generally not too
far apart. The mean for treatment 3 is higher than the other two in squares
1 and 3, about the same in square 2, and lower in square 4. The interaction
contrast making this comparison has a large sum of squares, but it is not
significant after making a Scheffé adjustment for having data snooped. This
is suggestive that the effect of treatment 3 depends on subject, but certainly
not conclusive; a follow up experiment may be in order.

Third, we may simply have been unlucky. Listing 13.2④ shows error
and treatment sums of squares for each square separately. The MSE in the
first square is unusually low, and theMSTrt is somewhat high. It seems most
likely that the results in the first square appear significantdue to an unusually
small error mean square.

13.3.5 Efficiency of Latin Squares

We approach the efficiency of Latin Squares much as we did the efficiency
of RCB designs. That is, we try to estimate by what factor the sample sizes
would need to be increased in order for a simpler design to have as much
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information as the LS design. We can compare an LS design to anRCBEfficiency of LS
relative to RCB or
CRD

by considering the elimination of either row or column blocks, or we can
compare an LS design to a CRD by considering the elimination of both row
and column blocks.

As with RCB’s, our estimate of efficiency is the product of twofactors,
the first a correction for degrees of freedom for error and thesecond an esti-
mate of the ratio of the error variances for the two designs. With g2 units in aError degrees of

freedom Latin Square, there areνls = (g − 1)(g − 2) degrees of freedom for error; if
either row or column blocks are eliminated, there areνrcb = (g − 1)(g − 1)
degrees of freedom for error; and if both row and column blocks are elimi-
nated, there areνcrd = (g − 1)g degrees of freedom for error.

The efficiency of a Latin Square relative to an RCB isELS:RCB

ELS:RCB =
(νls + 1)(νrcb + 3)

(νls + 3)(νrcb + 1)

σ2
rcb

σ2
ls

,

and the efficiency of a Latin Square relative to a CRD isELS:CRD

ELS:CRD =
(νls + 1)(νcrd + 3)

(νls + 3)(νcrd + 1)

σ2
crd

σ2
ls

.

We have already computed the degrees of freedom, so all that remains is the
estimates of variance for the three designs.

The estimated variance for the LS design is simplyMSE from the LS
design. For the RCB and CRD we estimate the error variance in the sim-
pler design with a weighted average of theMSE from the LS and the mean
squares from the blocking factors to be eliminated. The weight for MSE is
(g − 1)2, the sum of treatment and error degrees of freedom, and the weights
for blocking factors are their degrees of freedom(g − 1). In formulae:

σ̂2
rcb =

(g − 1)MSRows+ ((g − 1) + (g − 1)(g − 2))MSE

2(g − 1) + (g − 1)(g − 2)

=
MSRows+ (g − 1)MSE

g
(row blocks eliminated),

or

σ̂2
rcb =

(g − 1)MSCols + ((g − 1) + (g − 1)(g − 2))MSE

2(g − 1) + (g − 1)(g − 2)

=
MSCols + (g − 1)MSE

g
(column blocks eliminated),
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or

σ̂2
crd =

(g − 1)(MSRows+ MScol + MSE) + (g − 1)(g − 2)MSE

3(g − 1) + (g − 1)(g − 2)

=
MSRows+ MSCols + (g − 1)MSE

g + 1
(both eliminated).

The two versions of̂σ2
rcb are for eliminating row and column blocking, re-

spectively.

Bioequivalence, continued Example 13.11
Example 13.7 gave the ANOVA table for the first square of the bioequiva-
lence data. The mean squares for subject, period, and error were 130,557;
464,003; and 4494.8 respectively. All three of these and treatments had 2
degrees of freedom each. Thus we haveνls = 2, νrcb = 4, andνcrd = 6. The
estimated variances are

Blocking removed

Neither σ̂2
ls = 4494.8

Subjects σ̂2
rcb =

130, 557 + 2 × 4494.8

3
= 46516

Periods σ̂2
rcb =

464, 003 + 2 × 4494.8

3
= 157664

Both σ̂2
crd =

130557 + 464, 003 + 2 × 4494.8

4
= 150887 .

The estimated efficiencies are

Subjects E =
(2 + 1)(4 + 3)

(2 + 3)(4 + 1)

46516

4494.8
= 8.69

Periods E =
(2 + 1)(4 + 3)

(2 + 3)(4 + 1)

157664

4494.8
= 29.46

Both E =
(2 + 1)(6 + 3)

(2 + 3)(6 + 1)

150887

4494.8
= 25.90 .

Both subject and period blocking were effective, particularly the period block-
ing.
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13.3.6 Designs balanced for residual effects

Crossover designs give all treatments to all subjects and use subjects and
periods as blocking factors. The standard analysis includes terms for subject,
period, and treatment. There is an implicit assumption thatthe response in a
given time period depends on the treatment for that period, and not at all onResidual effects

affect subsequent
treatment periods

treatments from prior periods. This is not always true. For example, a drug
that is toxic and has terrible side effects may alter the responses for a subject,
even after the drug is no longer being given. These effects that linger after
treatment are calledresidual effectsor carryover effects.

There are experimental considerations when treatments mayhave resid-
ual effects. Awashout periodis a time delay inserted between successive
treatments for a subject. The idea is that residual effects will decrease or per-A washout period

may reduce
residual effects

haps even disappear given some time, so that if we can design this time into
the experiment between treatments, we won’t need to worry about the resid-
ual effects. Washout periods are not always practical or completely effective,
so alternative designs and models have been developed.

In an experiment with no residual effects, only the treatment from the cur-
rent period affects the response. The simplest form of residual effect occursBalance for

residual effects of
preceding
treatment

when only the current treatment and the immediately preceding treatment
affect the response. A design balanced for residual effects, or carryover de-
sign, is a crossover design with the additional constraint that each treatment
follows every other treatment an equal number of times.

Look at these two Latin Squares with rows as periods and columns as
subjects.

A B C D

B A D C

C D A B

D C B A

A B C D

B D A C

C A D B

D C B A

In the first square, A occurs first once, follows B twice, and follows D once.
Other treatments have a similar pattern. The first square is acrossover design,
but it is not balanced for residual effects. In the second square, A occurs first
once, and follows B, C, and D once each. A similar pattern occurs for the
other treatments, so the second square is balanced for residual effects. When
g is even, we can find a design balanced for residual effects usingg subjects;
wheng is odd, we need2g subjects (two squares) to balance for residuals
effects. A design that includes all possible orders for the treatments an equal
number of times will be balanced for residual effects.
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Table 13.4:Milk production (pounds per 6 weeks) for eighteen cows
fed A—roughage, B—limited grain, and C—full grain.

Cow
Period 1 2 3 4 5 6

1 A 1376 B 2088 C 2238 A 1863 B 1748 C 2012
2 B 1246 C 1864 A 1724 C 1755 A 1353 B 1626
3 C 1151 A 1392 B 1272 B 1462 C 1339 A 1010

Period 7 8 9 10 11 12

1 A 1655 B 1938 C 1855 A 1384 B 1640 C 1677
2 B 1517 C 1804 A 1298 C 1535 A 1284 B 1497
3 C 1366 A 969 B 1233 B 1289 C 1370 A 1059

Period 13 14 15 16 17 18

1 A 1342 B 1344 C 1627 A 1180 B 1287 C 1547
2 B 1294 C 1312 A 1186 C 1245 A 1000 B 1297
3 C 1371 A 903 B 1066 B 1082 C 1078 A 887

The model for a residual-effects design has terms for subject, period,
direct effect of a treatment, residual effect of a treatment, and error. Specif-
ically, let yijkl be the response for thekth subject in thelth time period; the
subject received treatmenti in periodl and treatmentj in periodl − 1. The Residual-effects

model has
subject, period,

direct treatment,
and residual

treatment effects

indicesi andl run from 1 tog, andk runs across the number of subjects. Use
j = 0 to indicate that there was no earlier treatment (that is, when l = 1 and
we are in the first period);j then runs from 0 tog. Our model is

yijkl = µ + αi + βj + γk + δl + ǫijkl

whereαi is called the direct effect of treatmenti, βj is called the residual
effect of treatmentj, andγk andδl are subject and period effects as usual.
We make the usual zero-sum assumptions for the block and direct treatment
effects. For theβj ’s we assume thatβ0 = 0 and

∑g
j=1 βj = 0. That is, we

assume that there is a zero residual effect when in the first treatment period.

Direct treatment effects are orthogonal to block effects (we have a cross-
over design), but residual effects are not orthogonal to direct treatment effects
or subjects. Formulae for estimated effects and sums of squares are thus
rather opaque, and it seems best just to let your statisticalsoftware do its
work.
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Figure 13.2: Residuals versus predicted values for the milk
production data on the original scale, using Minitab.

Example 13.12 Milk yield
Milk production in cows may depend on their feed. There is large cow to cow
variation in production, so blocking on cow and giving all the treatments to
each cow seems appropriate. Milk production for a given cow also tends to
decrease during any given lactation, so blocking on period is important. This
leads us to a crossover design. The treatments of interest are A—roughage,
B—limited grain, and C—full grain. The response will be the milk pro-
duction during the six week period the cow is on a given feed. There was
insufficient time for washout periods, so the design was balanced for residual
effects. Table 13.4 gives the data from Cochran, Autrey, andCannon (1941)
via Bellavance and Tardif (1995).

A plot of residuals versus predicted values on the original scale in Fig-
ure 13.2 shows problems (I call this shape the flopping fish). The plot seems
wider on the right than the left, suggesting a lower power to stabilize the vari-
ability. Furthermore, the plot seems bent—low in the middleand high on the
ends. This probably means that we are analyzing on the wrong scale, but it
can indicate that we have left out important terms. Box-Cox suggests a log
transformation, and the new residual plot looks much better(Figure 13.3).
There is one potential outlier that should be investigated.
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Listing 13.3: Minitab output for milk yield data.

Analysis of Variance for lmilk, using Sequential SS for Tests

Source DF Seq SS Adj SS Seq MS F P

period 2 0.99807 0.99807 0.49903 123.25 0.000

cow 17 0.90727 0.88620 0.05337 13.18 0.000

trt 2 0.40999 0.42744 0.20500 50.63 0.000

r1 1 0.03374 0.02425 0.03374 8.33 0.007

r2 1 0.00004 0.00004 0.00004 0.01 0.917

Error 30 0.12147 0.12147 0.00405

Total 53 2.47058

Term Coef StDev T P

Constant 7.23885 0.00866 835.99 0.000

trt

1 -0.12926 0.01369 -9.44 0.000

2 0.01657 0.01369 1.21 0.236

r1 -0.04496 0.01837 -2.45 0.020

r2 -0.00193 0.01837 -0.10 0.917

Listing 13.3 gives an ANOVA for the milk production data on the log
scale. There is overwhelming evidence of a treatment effect. There is also
reasonably strong evidence that residual effects exist.

The direct effects for treatments 1 and 2 are estimated to be−.129 and
.017; the third must be .113 by the zero sum criterion. These effects are on the
log scale, so roughage and full grain correspond to about 12%decreases and
increases from the partial grain treatment. The residual effects for treatments
1 and 2 are estimated to be−.045 and−.002; the third must be .047 by the
zero sum criterion. Thus the period after the roughage treatment tends to be
about 5% lower than might be expected otherwise, and the period after the
full-grain treatment tends to be about 5% higher.

Most statistical software packages are not set up to handle residual ef-
fects directly. I implemented residual effects in the last example by including
two single-degree-of-freedom terms calledr1 andr2. The termsr1 andr2
appear in the model as regression variables. The regressioncoefficients for
r1 andr2 are the residual effects of treatments 1 and 2; the residual effect of Implementing

residual effectstreatment 3 is found by the zero-sum constraint to be minus the sum of the
first two residual effects.

To implement residual effects forg treatments, we needg − 1 termsri,
for i running from 1 tog − 1. Their regression coefficients are the residual
effects of the firstg − 1 treatments, and the last residual effect is found by
the zero-sum constraint. Begin the construction of termri with a column
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Figure 13.3: Residuals versus predicted values for the milk
production data on the log scale, using Minitab.

of all zeroes of lengthN , one for each experimental unit. Set to +1 those
elements inri corresponding to units that immediately follow treatmenti,
and set to –1 those elements inri corresponding to units that immediately
follow treatmentg. In all these “r” terms, an observation has a –1 if it follows
treatmentg; in termri, an observation has a +1 if it follows treatmenti; all
other entries in the “r” terms have zeroes. For example, consider just the first
two cows in Table 13.4, with treatments A, B, C, and B, C, A. Ther1 term
would be (0, 1, 0, 0, 0, -1), andr2 term would be (0, 0, 1, 0, 1, -1). It is
the temporal order in which subjects experience treatmentsthat determines
which treatments follow others, not the order in which the units are listed
in some display. There are other constructions that give thecorrect sum of
squares in the ANOVA, but their coefficients may be interpreted differently.

When resources permit an additional test period for each subject, consid-
erable gain can be achieved by repeating the last treatment for each subject.
For example, if cow 13 received the treatments A, B, and C, then the treat-Repeat last

treatment ment in the fourth period should also be C. With this structure, every treat-
ment follows every treatment (including itself) an equal number of times,
and every residual effect occurs with every subject. These conditions permit
more precise estimation of direct and residual treatment effects.
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13.4 Graeco-Latin Squares

Randomized Complete Blocks allow us to control one extraneous source of
variability in our units, and Latin Squares allow us to control two sources.
The Latin Square design can be extended to control for three sources of extra- Graeco-Latin

Squares block
three ways

neous variability; this is the Graeco-Latin Square. For four or more sources
of variability, we use Latin Hyper-Squares. Graeco-Latin Squares allow us to
testg treatments usingg2 units blocked three different ways. Graeco-Latin
Squares don’t get used very often, because they require a fairly restricted set
of circumstances to be applicable.

The Graeco-Latin Square is represented as ag by g table or square. En-
tries in the table correspond to theg2 units. Rows and columns of the square
correspond to blocks, as in a Latin Square. Each entry in the table has one Treatments occur

once in each
blocking factor

Latin letter and one Greek letter. Latin letters correspondto treatments, as in
a Latin Square, and Greek letters correspond to the third blocking factor. The
Latin letters occur once in each row and column (they form a Latin Square),
and the Greek letters occur once in each row and column (they also form a
Latin Square). In addition, each Latin letter occurs once with each Greek
letter. Here is a four by four Graeco-Latin Square:

A α B γ C δ D β

B β A δ D γ C α

C γ D α A β B δ

D δ C β B α A γ

Each treatment occurs once in each row block, once in each column block,
and once in each Greek letter block. Similarly, each kind of block occurs
once in each other kind of block.

If two Latin Squares are superimposed and allg2 combinations of letters
from the two squares once, the Latin Squares are calledorthogonal. A Orthogonal Latin

SquaresGraeco-Latin Square is the superposition of two orthogonalLatin Squares.
Graeco-Latin Squares do not exist for all values ofg. For example, there

are Graeco-Latin Squares forg of 3, 4, 5, 7, 8, 9, and 10, butnot for g of 6. No GLS for g = 6

Appendix C lists orthogonal Latin Squares forg = 3, 4, 5, 7, from which a
Graeco-Latin Square can be built.

The usual model for a Graeco-Latin Square has terms for treatments and
row, column, and Greek letter blocks and assumes that all these terms are Additive blocks

plus treatmentsadditive. The balance built into these designs allows us to use our standard
methods for estimating effects and computing sums of squares, contrasts, and
so on, just as for a Latin Square.
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The Latin Square/Graeco-Latin Square family of designs canbe extended
to have more blocking factors. These designs, called Hyper-Latin Squares,Hyper Squares
are rare in practice.

13.5 Further Reading and Extensions

Our discussion of the RCB has focused on its standard form, where we have
g treatments and blocks of sizeg. There are several other possibilities. For
example, we may be able to block our units, but there may not beenough
units in each block for each treatment. This leads us to incomplete block
designs, which we will consider in Chapter 14.

Alternatively, we may have more thang units in each block. What should
we do now? This depends on several issues. If units are very inexpensive,
one possibility is to use onlyg units from each block. This preserves the
simplicity of the RCB, without costing too much. If units areexpensive, such
waste is not tolerable. If there is some multiple ofg units per block, say2g or
3g, then we can randomly assign each treatment to two or three units in each
block. This design, sometimes called a Generalized Randomized Complete
Block, still has a simple structure and analysis. The standard model has
treatments fixed, blocks random, and the treatment by blocksinteraction as
the denominator for treatments. Figure 13.4 shows a Hasse diagram for a
GRCB withg treatments,r blocks of sizekg units, andn measurement units
per unit.

A third possibility is that units are expensive, but the block sizes are not
a nice multiple of the number of treatments. Here, we can combine an RCB
(or GRCB) with one of the incomplete block designs from Chapter 14. For
example, with three treatments (A, B, and C) and three blocksof size 5, we
could use (A, B, C, A, B) in block 1, (A, B, C, A, C) in block 2, and(A, B, C,
B, C) in block 3. So each block has one full complement of the treatments,
plus two more according to an incomplete block design.

The final possibility that we mention is that we can have blocks with dif-
ferent numbers of units; that is, some blocks have more unitsthan others.
Standard designs assume that all blocks have the same numberof units, so
we must do something special. The most promising approach isprobablyop-
timal designvia special design software. Optimal design allocates treatments
to units in such a way as to optimize some criterion; for example, we may
wish to minimize the average variance of the estimated treatment effects. See
Silvey (1980). The algorithms that do the optimization are complicated, but
software exists that will do what is needed (though most statistical analy-
sis packages do not). See Cook and Nachtsheim (1989). Oh yes,in case
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Figure 13.4: Hasse diagram for a Generalized Randomized
Complete Block withg treatments,r blocks of sizekg units, and
n measurement units per unit; blocks are assumed random.

you were worried, most standard designs such as RCB’s are also “optimal”
designs; we just don’t need the fancy software in the standard situations.

13.6 Problems

Winter road treatments to clear snow and ice can lead to cracking in the Exercise 13.1
pavement. An experiment was conducted comparing four treatments: sodium
chloride, calcium chloride, a proprietary organic compound, and sand. Traf-
fic level was used as a blocking factor and a randomized complete block ex-
periment was conducted. One observation is missing, because the spreader
in that district was not operating properly. The response isnew cracks per
mile of treated roadway.

A B C D
Block 1 32 27 36
Block 2 38 40 43 33
Block 3 40 63 14 27

Our interest is in the following comparisons: chemical versus physical
(A,B,C versus D), inorganic versus organic (A,B versus C), and sodium ver-
sus calcium (A versus B). Which of these comparisons seem large?
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Grains or crystals adversely affect the sensory qualities of foods usingExercise 13.2
dried fruit pulp. A factorial experiment was conducted to determine which
factors affect graininess. The factors were drying temperature (three levels),
acidity (pH) of pulp (two levels), and sugar content (two levels). The exper-
iment has two replications, with each replication using a different batch of
pulp. Response is a measure of graininess.

Sugar low Sugar high
Temp. Rep. pH low pH high pH low pH high

1 1 21 12 13 1
2 21 18 14 8

2 1 23 14 13 1
2 23 17 16 11

3 1 17 20 16 14
2 23 17 17 5

Analyze these data to determine which factors effect graininess, and which
combination of factors leads to the least graininess.

The data below are from a replicated Latin Square with four treatments;Exercise 13.3
row blocks were reused, but column blocks were not. Test for treatment dif-
ferences and use Tukey HSD with level .01 to analyze the pairwise treatment
differences.

D 44 B 26 C 67 A 77 B 51 D 62 A 71 C 49
C 39 A 45 D 71 B 74 C 63 A 74 D 67 B 47
B 52 D 49 A 81 C 88 A 74 C 75 B 60 D 58
A 73 C 58 B 76 D 100 D 82 B 79 C 74 A 68

Consider replicating a six by six Latin Square three times, where weExercise 13.4
use the same row blocks but different column blocks in the three replicates.
The six treatments are the factorial combinations of factorA at three levels
and factor B at two levels. Give the sources and degrees of freedom for the
Analysis of Variance of this design.

Disk drive substrates may affect the amplitude of the signalobtainedExercise 13.5
during readback. A manufacturer compares four substrates:aluminum (A),
nickel-plated aluminum (B), and two types of glass (C and D).Sixteen disk
drives will be made, four using each of the substrates. It is felt that operator,
machine, and day of production may have an effect on the drives, so these
three effects were blocked. The design and responses (in microvolts×10−2)
are given in the following table (data from Nelson 1993, Greek letters indi-
cate day):
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Operator
Machine 1 2 3 4

1 Aα 8 Cγ 11 Dδ 2 Bβ 8
2 Cδ 7 Aβ 5 Bα 2 Dγ 4
3 Dβ 3 Bδ 9 Aγ 7 Cα 9
4 Bγ 4 Dα 5 Cβ 9 Aδ 3

Analyze these data and report your findings, including a description of the
design.

Ruminant animals, such as sheep, may not be able to quickly utilize pro- Problem 13.1
tein in their diets, because the bacteria in their stomachs absorb the protein
before it reaches the ruminant’s intestine. Eventually thebacteria will die and
the protein will be available for the ruminant, but we are interested in dietary
changes that will help the protein get past the bacteria and to the intestine of
the ruminant sooner.

We can vary the cereal source (oats or hay) and the protein source (soy or
fish meal) in the diets. There are twelve lambs available for the experiment,
and we expect fairly large animal to animal differences. Each diet must be
fed to a lamb for at least 1 week before the protein uptake measurement is
made. The measurement technique is safe and benign, so we mayuse each
lamb more than once. We do not expect any carryover (residual) effects from
one diet to the next, but there may be effects due to the aging of the lambs.

Describe an appropriate designed experiment and its randomization. Give
a skeleton ANOVA (source and degrees of freedom only).

Briefly describe the experimental design you would choose for each of Problem 13.2
the following situations.

(a) We wish to study the effects of three factors on corn yields: nitrogen
added, planting depth, and planting date. The nitrogen and depth fac-
tors have two levels, and the date factor has three levels. There are 24
plots available: twelve are in St. Paul, MN, and twelve are inRose-
mount, MN.

(b) You manage a french fry booth at the state fair and wish to compare
four brands of french fry cutters for amount of potato wasted. You
sell a lot of fries and keep four fry cutters and their operators going
constantly. Each day you get a new load of potatoes, and you expect
some day to day variation in waste due to size and shape of thatday’s
load. Different operators may also produce different amounts of waste.
A full day’s usage is needed to get a reasonable measure of waste, and
you would like to finish in under a week.
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(c) A Health Maintenance Organization wishes to test the effect of sub-
stituting generic drugs for name brand drugs on patient satisfaction.
Satisfaction will be measured by questionnaire after the study. They
decide to start small, using only one drug (a decongestant for which
they have an analogous generic) and twenty patients at each of their
five clinics. The patients at the different clinics are from rather differ-
ent socioeconomic backgrounds, so some clinic to clinic variation is
expected. Drugs may be assigned on an individual basis.

For each of the following, describe the design that was used,give a skele-Problem 13.3
ton ANOVA, and indicate how you would test the various terms in the model.

(a) Birds will often respond to other birds that invade theirterritory. We
are interested in the time it takes nesting red-shouldered hawks to re-
spond to invading calls, and want to know if that time varies accord-
ing to the type of intruder. We have two state forests that have red-
shouldered hawks nesting. In each forest, we choose ten nests at ran-
dom from the known nesting sites. At each nest, we play two pre-
recorded calls over a loudspeaker (several days apart). Onecall is a
red-shouldered hawk call; the other call is a great horned owl call. The
response we measure is the time until the nesting hawks leavethe nest
to drive off the intruder.

(b) The food science department conducts an experiment to determine if
the level of fiber in a muffin affects how hungry subjects perceive them-
selves to be. There are twenty subjects—ten randomly selected males
and ten randomly selected females—from a large food scienceclass.
Each subject attends four sessions lasting 15 minutes. At the begin-
ning of the session, they rate their hunger on a 1 to 100 scale.They
then eat the muffin. Fifteen minutes later they again rate their hunger.
The response for a given session is the decrease in hunger. Atthe four
sessions they receive two low-fiber muffins and two high-fibermuffins
in random order.

Many professions have board certification exams. Part of thecertificationProblem 13.4
process for bank examiners involves a “work basket” of tasksthat the exami-
nee must complete in a satisfactory fashion in a fixed time period. New work
baskets must be constructed for each round of examinations,and much effort
is expended to make the workbaskets comparable (in terms of average score)
from exam to exam. This year, two new work baskets (A and B) arebeing
evaluated. We have three old work baskets (C, D, and E) to forma basis for
comparison. We have ten paid examinees (1 through 6 are certified bank ex-
aminers, 7 through 9 are noncertified bank examiners nearingthe end of their
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training, and 10 is a public accountant with no bank examining experience
or training) who will each take all five tests. There are five graders who will
each grade ten exams. We anticipate differences between theexaminees and
the graders; our interest is in the exams, which were randomized so that each
examinee took each exam and each grader grades two of each exam.

The data follow. The letter indicates exam. Scores are out of100, and 60
is passing. We want to know if either or both of the new exams are equivalent
to the old exams.

Student Grader
1 2 3 4 5

1 68 D 65 A 76 E 74 C 76 B
2 68 A 77 E 84 B 65 D 75 C
3 73 C 85 B 72 D 68 E 62 A
4 74 E 76 C 57 A 79 B 64 D
5 80 B 71 D 76 C 59 A 68 E
6 69 D 75 E 81 B 68 A 68 C
7 60 C 62 D 62 E 66 B 40 A
8 70 B 55 A 62 C 57 E 40 D
9 61 E 67 C 53 A 63 D 69 B
10 37 A 53 B 31 D 48 C 33 E

An experiment was conducted to see how variety of soybean andcrop Problem 13.5
rotation practices affect soybean productivity. There aretwo varieties used,
Hodgson 78 and BSR191. These varieties are each used in four different 5-
year rotation patterns with corn. The rotation patterns are(1) four years of
corn and then soybeans (C-C-C-C-S), (2) three years of corn and then two
years of soybeans (C-C-C-S-S), (3) soybean and corn alternation (S-C-S-C-
S), and (4) five years of soybeans (S-S-S-S-S). Here we only analyze data
from the fifth year.

This experiment was conducted twice in Waseca, MN, and twicein Lam-
berton, MN. Two groups of eight plots were chosen at each location. The first
group of eight plots at each location was randomly assigned to the variety-
rotation treatments in 1983. The second group was then assigned in 1984.
Responses were measured in 1987 and 1988 (the fifth years) forthe two
groups.

The response of interest is the weight (g) of 100 random seedsfrom soy-
bean plants (data from Whiting 1990). Analyze these data andreport your
findings.
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Rotation pattern
Location-Year Variety 1 2 3 4

W87 1 155 151 147 146
2 153 156 159 155

W88 1 170 159 157 168
2 164 170 162 169

L87 1 142 135 139 136
2 146 138 135 133

L88 1 170 155 159 173
2 167 162 153 162

An experiment was conducted to determine how different soybean vari-Problem 13.6
eties compete against weeds. There were sixteen varieties of soybeans and
three weed treatments: no herbicide, apply herbicide 2 weeks after planting
the soybeans, and apply herbicide 4 weeks after planting thesoybeans. The
measured response is weed biomass in kg/ha. There were two replications
of the experiment—one in St. Paul, MN, and one in Rosemount, MN—for a
total of 96 observations (data from Bussan 1995):

Herb. 2 weeks Herb. 4 weeks No herb.

Variety R StP R StP R StP

Parker 750 1440 1630 890 3590 740
Lambert 870 550 3430 2520 6850 1620
M89-792 1090 130 2930 570 3710 3600
Sturdy 1110 400 1310 2060 2680 1510
Ozzie 1150 370 1730 2420 4870 1700
M89-1743 1210 430 6070 2790 4480 5070
M89-794 1330 190 1700 1370 3740 610
M90-1682 1630 200 2000 880 3330 3030
M89-1946 1660 230 2290 2210 3180 2640
Archer 2210 1110 3070 2120 6980 2210
M89-642 2290 220 1530 390 3750 2590
M90-317 2320 330 1760 680 2320 2700
M90-610 2480 350 1360 1680 5240 1510
M88-250 2480 350 1810 1020 6230 2420
M89-1006 2430 280 2420 2350 5990 1590
M89-1926 3120 260 1360 1840 5980 1560

Analyze these data for the effects of herbicide and variety.

Plant shoots can be encouraged in tissue culture by exposingthe cotyle-Problem 13.7
dons of plant embryos to cytokinin, a plant growth hormone. However, some
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shoots become watery, soft, and unviable; this is vitrification. An experi-
ment was performed to study how the orientation of the embryoduring expo-
sure to cytokinin and the type of growth medium after exposure to cytokinin
affect the rate of vitrification. There are six treatments, which are the fac-
torial combinations of orientation (standard and experimental) and medium
(three kinds). On a given day, the experimenters extract embryos from white
pine seeds and randomize them to the six treatments. The embryos are ex-
posed using the selected orientation for 1 week, and then go onto the selected
medium. The experiment was repeated 22 times on different starting days.
The response is the fraction of shoots that are normal (data from David Zle-
sak):

Medium 1 Medium 2 Medium 3

Exp. Std. Exp. Std. Exp. Std.

1 .67 .34 .46 .26 .63 .40
2 .70 .42 .69 .42 .74 .17
3 .86 .42 .89 .33 .80 .17
4 .76 .53 .74 .60 .78 .53
5 .63 .71 .50 .29 .63 .29
6 .65 .60 .95 1.00 .90 .40
7 .73 .50 .83 .88 .93 .88
8 .94 .75 .94 .75 .80 1.00
9 .93 .70 .77 .50 .90 .80

10 .71 .30 .48 .40 .65 .30
11 .83 .20 .74 .00 .69 .30
12 .82 .50 .72 .00 .63 .30
13 .67 .67 .67 .25 .90 .42
14 .83 .50 .94 .40 .83 .33
15 1.00 1.00 .80 .33 .90 1.00
16 .95 .75 .76 .25 .96 .63
17 .47 .50 .71 .67 .67 .50
18 .83 .50 .94 .67 .83 .83
19 .90 .33 .83 .67 .97 .50
20 1.00 .50 .69 .25 .92 1.00
21 .80 .63 .63 .00 .70 .50
22 .82 .60 .57 .40 1.00 .50

Analyze these data and report your conclusions on how orientation and medium
affect vitrification.

An army rocket development program was investigating the effects of Problem 13.8
slant range and propellant temperature on the accuracy of rockets. The over-
all objective of this phase of the program was to determine how these vari-
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ables affect azimuth error (that is, side to side as opposed to distance) in the
rocket impacts.

Three levels were chosen for each of slant range and temperature. The
following procedure was repeated on 3 days. Twenty-seven rockets are grouped
into nine sets of three, which are then assigned to the nine factor-level com-
binations in random order. The three rockets in a group are fired all at once
in a single volley, and the azimuth error recorded. (Note that meteorologi-
cal conditions may change from volley to volley.) The data follow (Bicking
1958):

Slant range
1 2 3

Days Days Days

1 2 3 1 2 3 1 2 3

-10 -22 -9 -5 -17 -4 11 -10 1
Temp 1 -13 0 7 -9 6 13 -5 10 20

14 -5 12 21 0 20 22 6 24

-15 -25 -15 -14 -3 14 -9 8 14
Temp 2 -17 -5 2 15 -1 5 -3 -2 18

7 -11 5 -11 -20 -10 20 -15 -2

-21 -26 -15 -18 -8 0 13 -5 -8
Temp 3 -23 -8 -5 5 5 -13 -9 -18 3

0 -10 0 -10 -10 3 -13 -3 12

Analyze these data and determine how slant range and temperature affect
azimuth error. (Hint: how many experimental units per block?)

An experiment is conducted to study the effect of alfalfa meal in the dietProblem 13.9
of male turkey poults (chicks). There are nine treatments. Treatment 1 is a
control treatment; treatments 2 through 9 contain alfalfa meal. Treatments 2
through 5 contain alfalfa meal type 22; treatments 6 through9 contain alfalfa
meal type 27. Treatments 2 and 6 are 2.5% alfalfa, treatments3 and 7 are 5%
alfalfa, treatments 4 and 8 are 7.5% alfalfa. Treatments 5 and 9 are also 7.5%
alfalfa, but they have been modified to have the same caloriesas the control
treatment.

The randomization is conducted as follows. Seventy-two pens of eight
birds each are set out. Treatments are separately randomized to pens grouped
1–9, 10–18, 19–27, and so on. We do not have the response for pen 66. The
response is average daily weight gain per bird for birds aged7 to 14 days in
g/day (data from Turgay Ergul):
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Trt 1–9 10–18 19–27 28–36 37–45 46–54 55–63 64–72

1 23.63 19.86 24.00 22.11 25.38 24.18 23.43 18.75
2 20.70 20.02 23.95 19.13 21.21 20.89 23.55 22.89
3 19.95 18.29 17.61 19.89 23.96 20.46 22.55 17.30
4 21.16 19.02 19.38 19.46 20.48 19.54 19.96 20.71
5 23.71 16.44 20.71 20.16 21.70 21.47 20.44 22.51
6 20.38 18.68 20.91 23.07 22.54 21.73 25.04 23.22
7 21.57 17.38 19.55 19.79 20.77 18.36 20.32 21.98
8 18.52 18.84 22.54 19.95 21.27 20.09 19.27 20.02
9 23.14 20.46 18.14 21.70 22.93 21.29 22.49

Analyze these data to determine the effects of the treatments on weight gain.

Implantable pacemakers contain a small circuit board called a substrate. Problem 13.10
Multiple substrates are made as part of a single “laminate.”In this experi-
ment, seven laminates are chosen at random. We choose eight substrate loca-
tions and measure the length of the substrates at those eightlocations on the
seven substrates. Here we give coded responses (10, 000×[response−1.45],
data from Todd Kerkow).

Laminate
Location 1 2 3 4 5 6 7

1 28 20 23 29 44 45 43
2 11 20 27 31 33 38 36
3 26 26 14 17 41 36 36
4 23 26 18 21 36 36 39
5 20 21 30 28 45 31 33
6 16 19 24 23 33 32 39
7 37 43 49 33 53 49 32
8 04 09 13 17 39 29 32

Analyze these data to determine the effect of location. (Hint: think carefully
about the design.)

The oleoresin of trees is obtained by cutting a tapping gash in the bark Problem 13.11
and removing the resin that collects there. Acid treatmentscan also im-
prove collection. In this experiment, four trees (Dipterocarpus kerrii) will
be tapped seven times each. Each of the tappings will be treated with a dif-
ferent strength of sulfuric acid (0, 2.5, 5, 10, 15, 25, and 50% strength), and
the resin collected from each tapping is the response (in grams, data from
Bin Jantan, Bin Ahmad, and Bin Ahmad 1987):
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Acid strength (%)
Tree 0 2.5 5 10 15 25 50

1 3 108 219 276 197 171 166
2 2 100 198 319 202 173 304
3 1 43 79 182 123 172 194
4 .5 17 33 78 51 41 70

Determine the effect of acid treatments on resin output; if acid makes a dif-
ference, which treatments are best?

Hormones can alter the sexual development of animals. This experimentProblem 13.12
studies the effects of growth hormone (GH) and follicle-stimulating hormone
(FSH) on the length of the seminiferous tubules in pigs. The treatments are
control, daily injection of GH, daily injection of FSH, and daily injection of
GH and FSH. Twenty-four weanling boars are used, four from each of six
litters. The four boars in each litter are randomized to the four treatments.
The boars are castrated at 100 days of age, and the length (in meters!) of
the seminiferous tubules determined as response (data fromSwanlundet al.
1995).

Litter
1 2 3 4 5 6

Control 1641 1290 2411 2527 1930 2158
GH 1829 1811 1897 1506 2060 1207
FSH 3395 3113 2219 2667 2210 2625
GH+FSH 1537 1991 3639 2246 1840 2217

Analyze these data to determine the effects of the hormones on tubule length.

Shade trees in coffee plantations may increase or decrease the yield ofProblem 13.13
coffee, depending on several environmental and ecologicalfactors. Robusta
coffee was planted at three locations in Ghana. Each location was divided
into four plots, and trees were planted at densities of 185, 90, 70, and 0 trees
per hectare. Data are the yields of coffee (kg of fresh berries per hectare) for
the 1994-95 cropping season (data from Amoah, Osei-Bonsu, and Oppong
1997):

Location 185 90 70 0

1 3107 2092 2329 2017
2 1531 2101 1519 1766
3 2167 2428 2160 1967

Analyze these data to determine the effect of tree density oncoffee produc-
tion.
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A sensory experiment was conducted to determine if consumers have Problem 13.14
a preference between regular potato chips (A) and reduced-fat potato chips
(B). Twenty-four judges will rate both types of chips; twelve judges will
rate the chips in the order regular fat, then reduced fat; andthe other twelve
will have the order reduced fat, then regular fat. We anticipate judge to judge
differences and possible differences between the first and second chips tasted.
The response is a liking scale, with higher scores indicating greater liking
(data from Monica Coulter):

1 2 3 4 5 6 7 8 9 10 11 12

A first 8 5 7 8 7 7 4 9 8 7 7 7
B second 6 6 8 8 4 7 8 9 9 7 5 3

13 14 15 16 17 18 19 20 21 22 23 24

B first 4 6 6 7 6 4 8 6 7 6 8 7
A second 7 8 7 8 4 8 7 7 7 8 8 8

Analyze these data to determine if there is a difference in liking between the
two kinds of potato chips.

Find conditions under which the estimated variance for a CRDbased Question 13.1
on RCB data is less than the naive estimate pooling sums of squares and
degrees of freedom for error and blocks. Give a heuristic argument, based on
randomization, suggesting why your relationship is true.

The inspector general is coming, and an officer wishes to arrange some Question 13.2
soldiers for inspection. In the officer’s command are men andwomen of three
different ranks, who come from six different states. The officer is trying to
arrange 36 soldiers for inspection in a six by six square withone soldier from
each state-rank-gender combination. Furthermore, the idea is to arrange the
soldiers so that no matter which rank or file (row or column) isinspected
by the general, the general will see someone from each of the six states,
one woman of each rank, and one man of each rank. Why is this officer so
frustrated?
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Chapter 14

Incomplete Block Designs

Block designs group similar units into blocks so that variation among units
within the blocks is reduced. Complete block designs, such as RCB and Not all treatments

appear in an
incomplete block

LS, have each treatment occurring once in each block. Incomplete block
designs also group units into blocks, but the blocks do not have enough units
to accommodate all the treatments.

Incomplete block designs share with complete block designsthe advan-
tage of variance reduction due to blocking. The drawback of incomplete
block designs is that they do not provide as much informationper experi- Incomplete blocks

less efficient than
complete blocks

mental unit as a complete block design with the same error variance. Thus
complete blocks are preferred over incomplete blocks when both can be con-
structed with the same error variance.

Eyedrops Example 14.1

Eye irritation can be reduced with eyedrops, and we wish to compare three
brands of eyedrops for their ability to reduce eye irritation. (There are prob-
lems here related to measuring eye irritation, but we set them aside for now.)
We expect considerable subject to subject variation, so blocking on subject
seems appropriate. If each subject can only be used during one treatment
period, then we must use one brand of drop in the left eye and another brand
in the right eye. We are forced into incomplete blocks of sizetwo, because
our subjects have only two eyes.

Suppose that we have three subjects that receive brands (A and B), (A and
C), and (B and C) respectively. How can we estimate the expected difference
in responses between two treatments, say A and B? We can get some infor-
mation from subject 1 by taking the difference of the A and B responses; the
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subject effect will cancel in this difference. This first difference has variance
2σ2. We can also get an estimate of A-B by subtracting the B-C difference in
subject three from the A-C difference in subject two. Again,subject effects
cancel out, and this difference has variance4σ2. Similar approaches yield
estimates of A-C and B-C using data from all subjects.

If we had had two complete blocks (three-eyed subjects?) with the same
unit variance, then we would have had two independent estimates of A-B
each with variance2σ2. Thus the incomplete block design has more variance
in its estimates of treatment differences than does the complete block design
with the same variance and number of units.

There are many kinds of incomplete block designs. This chapter will
cover only some of the more common types. Several of the incomplete block
designs given in this chapter have “balanced” in their name.It is important
to realize that these designs are not balanced in the sense that all block and
factor-level combinations occur equally often. Rather they are balanced using
somewhat looser criteria that will be described later.

Two general classes of incomplete block designs areresolvabledesigns
andconnecteddesigns. Suppose that each treatment is usedr times in theResolvable

designs split into
replications

design. A resolvable design is one in which the blocks can be arranged into
r groups, with each group representing a complete set of treatments. Resolv-
able designs can make management of experiments simpler, because each
replication can be run at a different time or a different location, or entire
replications can be dropped if the need arises. The eyedrop example is not
resolvable.

A design isdisconnectedif you can separate the treatments into two
groups, with no treatment from the first group ever appearingin the sameConnected

designs can
estimate all
treatment
differences

block with a treatment from the second group. Aconnecteddesign is one
that is not disconnected. In a connected design you can estimate all treatment
differences. You cannot estimate all treatment differences in a disconnected
design; in particular, you cannot estimate differences between treatments in
different groups. Connectedness is obviously a very desirable property.

14.1 Balanced Incomplete Block Designs

The Balanced Incomplete Block Design (BIBD) is the simplestincomplete
block design. We haveg treatments, and each block hask units, withk < g.BIBD
Each treatment will be given tor units, and we will useb blocks. The total
number of unitsN must satisfyN = kb = rg. The final requirement for a
BIBD is that all pairs of treatments must occur together in the same number of
blocks. The BIBD is called “balanced” because the variance of the estimated
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Table 14.1:Plates washed before foam disappears. Letters indicate
treatments.

Session
1 2 3 4 5 6 7 8 9 10 11 12

A 19 D 6 G 21 A 20 B 17 C 15 A 20 B 16 C 13 A 20 B 17 C 14
B 17 E 26 H 19 D 7 E 26 F 23 E 26 F 23 D 7 F 24 D 6 E 24
C 11 F 23 J 28 G 20 H 19 J 31 J 31 G 21 H 20 H 19 J 29 G 21

difference of treatment effectŝαi − α̂j is the same for all pairs of treatments
i, j.

Example 14.1 is the simplest possible BIBD. There areg = 3 treatments,
with blocks of sizek = 2. Each treatment occursr = 2 times in theb = 3
blocks. There areN = 6 total units, and each pair of treatments occurs
together in one block.

We may use the BIBD design for treatments with factorial structure. For
example, suppose that we have three factors each with two levels for a total
of g = 8 treatments. If we haveb = 8 blocks of sizek = 7, then we can use
a BIBD with r = 7, with each treatment left out of one block and each pair
of treatments occurring together six times.

Dish detergent Example 14.2
John (1961) gives an example of a BIBD. Nine different dishwashing solu-
tions are to be compared. The first four consist of base detergent I and 3, 2,
1, and 0 parts of an additive; solutions five through eight consist of base de-
tergent II and 3, 2, 1, and 0 parts of an additive; the last solution is a control.
There are three washing basins and one operator for each basin. The three
operators wash at the same speed during each test, and the response is the
number of plates washed when the foam disappears. The speed of washing
is the same for all three detergents used at any one session, but could differ
from session to session.

Table 14.1 gives the design and the results. There areg = 9 treatments
arranged inb = 12 incomplete blocks of sizek = 3. Each treatment appears
r = 4 times, and each pair of treatments appears together in one block.

The requirement that all pairs of treatments occur togetherin an equal
number of blocks is a real stickler. Any given treatment occurs in r blocks,
and there arek − 1 other units in each of these blocks for a total ofr(k − 1) Treatment pairs

occur together λ
times

units. These must be divided evenly between theg−1 other treatments. Thus
λ = r(k − 1)/(g − 1) must be a whole number for a BIBD to exist. For the
eyedrop example,λ = 2(2 − 1)/(3 − 1) = 1, and for the dishes example,
λ = 4(3 − 1)/(9 − 1) = 1.
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A major impediment to the use of the BIBD is that no BIBD may exist for
your combination ofkb = rg. For example, you may haveg = 5 treatments
andb = 5 blocks of sizek = 3. Thenr = 3, butλ = 3(3−1)/(5−1) = 3/2
is not a whole number, so there can be no BIBD for this combination of r, k,
andg. Unfortunately,λ being a whole number is not sufficient to guarantee
that a BIBD exists, though one usually does.

A BIBD always exists for every combination ofk < g. For example, you
can always generate a BIBD by using all combinations of theg treatmentsUnreduced BIBD

has all
combinations

takenk at a time. Such a BIBD is calledunreduced. The problem with this
approach is that you may need a lot of blocks for the design. For example,
the unreduced design forg = 8 treatments in blocks of sizek = 4 requires
b = 70 blocks. Appendix C contains a list of some BIBD plans forg ≤ 9.BIBD tables
Fisher and Yates (1963) and Cochran and Cox (1957) contain much more
extensive lists.

If you have a plan for a BIBD withg, k, andb blocks, then you can
construct a plan forg treatments inb blocks ofg − k units per block simplyDesign

complement by using in each block of the second design the treatmentsnot used in the
corresponding block of the first design. The second design iscalled thecom-
plementof the first design. Whenb = g andr = k, a BIBD is said to be
symmetric. The eyedrop example above is symmetric; the detergent exampleSymmetric BIBD
is not symmetric.

Randomization of a BIBD occurs in three steps. First, randomize the
assignment of physical blocks to subgroups of treatment letters (or numbers)BIBD

randomization given in the design. Second, randomize the assignment of these treatment
letters to physical units within blocks. Third, randomize the assignment of
treatment letters to treatments.

14.1.1 Intrablock analysis of the BIBD

Intrablock analysis sounds exotic, but it is just the standard analysis that you
would probably have guessed was appropriate. Letyij be the response for
treatmenti in block j; we do not observe alli, j combinations. Use theBIBD model
model

yij = µ + αi + βj + ǫij .

If treatments are fixed, we assume that the treatment effectssum to zero;
otherwise we assume that they are a random sample from aN(0, σ2

α) distri-
bution. Block effects may be fixed or random.

Our usual methods for estimating treatment effectsdo notwork for the
BIBD. In this way, this “balanced” design is more like an unbalanced facto-
rial or an RCB with missing data. For those situations, we relied on statistical
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Listing 14.1: SAS output for intrablock analysis of detergent data.

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 19 1499.56481 78.92446 95.77 0.0001

Error 16 13.18519 0.82407 ①

Source DF Type III SS Mean Square F Value Pr > F

BLOCK 11 10.06481 0.91498 1.11 0.4127

DETERG 8 1086.81481 135.85185 164.85 0.0001 ②

Contrast DF Contrast SS Mean Square F Value Pr > F

control vs test 1 345.041667 345.041667 418.70 0.0001 ③
base I vs base II 1 381.337963 381.337963 462.75 0.0001

linear in additive 1 306.134259 306.134259 371.49 0.0001

T for H0: Pr > |T| Std Error of

Parameter Estimate Parameter=0 Estimate

base I vs base II -7.97222222 -21.51 0.0001 0.37060178 ④

software to fit the model, and we do so here as well. Similarly,our usual con- Usual estimates
of treatment

effects do not
work for BIBD

trast methods do not work either. An RCB with missing data is agood way
to think about the analysis of the BIBD, even though in the BIBD the data
were planned to be missing in a very systematic way.

For the RCB with missing data, we computed the sum of squares for
treatments adjusted for blocks. That is, we let blocks account for as much Intrablock

analysis is
treatments

adjusted for
blocks

variation in the data as they could, and then we determined how much addi-
tional variation could be explained by adding treatments tothe model. Be-
cause we had already removed the variation between blocks, this additional
variation explained by treatments must be variation withinblocks: hencein-
trablock analysis. Intrablock analysis of a BIBD is analysis with treatments
adjusted for blocks.

Dish detergent, continued Example 14.3

The basic intrablock ANOVA consists of treatments adjustedfor blocks. List-
ing 14.1② shows SAS output for this model; the Type III sum of squares for
detergent is adjusted for blocks. Residual plots show that the variance is
fairly stable, but the residuals have somewhat short tails.There is strong
evidence against the null hypothesis (p-value .0001).
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Figure 14.1: Treatment effects for intrablock analysis of dish
detergent data, using Minitab.

We can examine the treatment effects more closely by comparing the two
detergent bases with each other and the control, and by looking at the effects
of the additive. Figure 14.1 shows the nine treatment effects. Clearly there is
a mostly linear effect due to the amount of additive, with more additive giving
a higher response. We also see that detergent base I gives lower responses
than detergent base II, and both are lower than the control. For example, the
contrast between base I and base II has sum of squares 381.34;the contrast
between the control and the other treatments has sum of squares 345.04; and
the linear in additive contrast has sum of squares 306.16 (Listing 14.1③).
These 3 degrees of freedom account for 1032.5 of the total 1086.8 sum of
squares between treatments.

There is in fact a fairly simple hand-calculation for treatments adjusted
for blocks in the BIBD; the availability of this simple calculation helped
make the BIBD attractive before computers. We discuss the calculation not
because you will ever be doing the calculations that way, butrather because itEfficiency of BIBD

to RCB helps give some insight intoEBIBD:RCB, the efficiency of the BIBD relative
to the RCB. DefineEBIBD:RCB to be

EBIBD:RCB =
g(k − 1)

(g − 1)k
,
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whereg is the number of treatments andk is the number of units per block.
Observe thatEBIBD:RCB < 1, becausek < g in the BIBD. For the detergent
example,EBIBD:RCB = 9 × 2/(8 × 3) = 3/4.

The valueEBIBD:RCB is the relative efficiency of the BIBD to an RCB
with the same variance. One way to think aboutEBIBD:RCB is that every unit
in a BIBD is only worthEBIBD:RCB units worth of information in an RCB Effective sample

size rEBIBD:RCBwith the same variance. Thus while each treatment is usedr times in a BIBD,
the effective sample size is onlyrEBIBD:RCB.

The hand-calculation formulae for the BIBD use the effective sample size
in place of the actual sample size. Lety•j be the mean response in thejth
block; letvij = yij − y•j be the data with block means removed; and letvi• Hand formulae for

BIBD use
effective sample

size

be the sum of thevij values for treatmenti (there arer of them). Then we
have

α̂i =
vi•

rEBIBD:RCB
,

SSTrt =
g∑

i=1

(rEBIBD:RCB)α̂i
2 ,

and

V ar(
∑

i

wiα̂i) = σ2
∑

i

w2
i

rEBIBD:RCB
.

We can also use pairwise comparison procedures with the effective sample
size.

In practice, we can often find incomplete blocks with a smaller variance
σ2

bibd than can be attained using complete blocksσ2
rcb. We prefer the BIBD

design over the RCB if BIBD beats RCB
if variance

reduction great
enough

σ2
bibd

rEBIBD:RCB
<

σ2
rcb

r

or
σ2

bibd

σ2
rcb

< EBIBD:RCB ;

in words, we prefer the BIBD if the reduction in variance morethan com-
pensates for the loss of efficiency. This comparison ignoresadjustments for
error degrees of freedom.
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14.1.2 Interblock information

The first thing we did in the intrablock analysis of the BIBD was to subtract
block means from the data to get deviations from the block means. When
the block effects in a BIBD are random effects, then these block means alsoRecovery of

interblock
information when
block effects are
random

contain information about treatment differences. We can use block means
or block totals to produce a second set of estimates for treatment effects,
called theinterblockestimates, independent of the usual intrablock estimates.
Combining the interblock and intrablock estimates is called “recovery of in-
terblock information.”

Suppose that we want to estimate a contrastζ =
∑

i wiαi. Recovery
of interblock information takes place in three steps. First, compute thein-
trablock estimate of the contrast and its variance. Second, compute thein-
terblock estimate of the contrast and its variance. Third, combine the two
estimates. The intrablock estimate is simply the standard estimate of the lastFirst get

intrablock
estimate

section:

ζ̂ =
g∑

i=1

wiα̂i

with variance

V ar(ζ̂) = σ2
g∑

i=1

w2
i

rEBIBD:RCB
,

usingMSE to estimateσ2.

For step 2, start by lettingnij be 1 if treatmenti occurs in blockj, and 0
otherwise. Then the block totaly•j can be expressed

y•j = kµ +
g∑

i=1

nijαi +

{
kβj +

g∑

i=1

nijǫij

}

= kµ +
g∑

i=1

nijαi + ηj .

This has the form of a multiple regression withg predicting variables and anInterblock
estimates from
block totals

independent and normally distributed errorηj having variancek2σ2
β + kσ2.

Some tedious algebra shows that the interblock estimates are

µ̃ = y••

α̃i =

∑b
j=1 nijy•j − rkµ̃

r − λ
,
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and the variance of the contrastζ̃ =
∑g

i=1 wiα̃i is

V ar(ζ̃) = (k2σ2
β + kσ2)

g∑

i=1

w2
i

r − λ
.

We estimateσ2 using theMSE from the intrablock analysis. Estimat-
ing σ2

β involves something highly unusual. The expected value of the mean
square forblocks adjusted for treatmentsis σ2 + (N − g)σ2

β/(b − 1). Thus Use blocks
adjusted for

treatments to get
block variance

an unbiased estimate ofσ2
β is

σ̂2
β =

b − 1

N − g
(MSblocks adjusted− MSE) .

This interblock recovery is the only place we will consider blocks adjusted
for treatments.

At this stage, we have the intrablock estimateζ̂ and its varianceV ar(ζ̂),
and we have the interblock estimateζ̃ and its varianceV ar(ζ̃). If the vari-
ances were equal, we would just average the two estimates to get a combined
estimate. However, the variance of the intrablock estimateis always less
than the interblock estimate, so we want to give the intrablock estimate more
weight in the average. The best weight is “inversely proportional to the vari- Use weighted

average to
combine inter-
and intrablock

estimates

ance”, so the combined estimate for contrastζ is

ζ̄ =

1

V ar(ζ̂)
ζ̂ +

1

V ar(ζ̃)
ζ̃

1

V ar(ζ̂)
+

1

V ar(ζ̃)

.

This combined estimate has variance

V ar(ζ̄) =
1

1

V ar(ζ̂)
+

1

V ar(ζ̃)

.

Dish detergent, continued Example 14.4

Suppose that we wish to examine the difference between detergent bases I
and II. We can do that with a contrastw with coefficients (.25, .25, .25,
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.25, -.25, -.25, -.25, -.25, 0). Listing 14.1④ shows that this contrast has an
estimated value of -7.972 with a standard error of .3706 (variance .1373); this
is the intrablock estimate.

We begin the interblock analysis by getting the block totals, the incidence
matrix {nij} (shown here with treatments indexing columns), and the sums
of the cross products:

Block Treatment incidence
total 1 2 3 4 5 6 7 8 9

47 1 1 1 0 0 0 0 0 0
55 0 0 0 1 1 1 0 0 0
68 0 0 0 0 0 0 1 1 1
47 1 0 0 1 0 0 1 0 0
62 0 1 0 0 1 0 0 1 0
69 0 0 1 0 0 1 0 0 1
77 1 0 0 0 1 0 0 0 1
60 0 1 0 0 0 1 1 0 0
40 0 0 1 1 0 0 0 1 0
63 1 0 0 0 0 1 0 1 0
52 0 1 0 1 0 0 0 0 1
59 0 0 1 0 1 0 1 0 0

∑
j nijy•j 234 221 215 194 253 247 234 233 266

Applying the formula, we get that the interblock estimates are .333, -4, -6,
-13, 6.667, 4.667, .333, 0, and 11. The interblock estimateζ̃ is thus

ζ̃ = (.333 − 4 − 6 − 13)/4 − (6.667 + 4.667 + .333 + 0)/4 = −8.583 .

The variance of̃ζ is

V ar(ζ̃) = (k2σ2
β + kσ2)

a∑

i=1

w2
i

r − λ

= (9σ2
β + 3σ2)

8 × .252

3

= (3σ2
β + σ2)/2

The intrablockMSE of .82407 estimatesσ2 (Listing 14.1①). The mean
square for blocks adjusted for treatments is .91498 from Listing 14.1②. (We
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show Type III sums of squares, so blocks are also adjusted fortreatments.)
The estimate forσ2

β is thus

σ̂2
β =

b − 1

N − g
(MSblocks adjusted− MSE)

=
11

27
(.91498 − .82407)

= .0370

Substituting in, we get

V ar(ζ̃) = (3σ2
β + σ2)/2

= (3 × .0370 + .82407)/2

= .4675

Note that even with an estimated block variance of nearly zero, the intra-
block estimate of the contrast is still much more precise than the interblock
estimate.

The intrablock estimate and variance are -7.972 and .1374, and the in-
terblock estimate and variance are -8.583 and .4675. The combined estimate
is

ζ̄ =

−7.972

.1374
+

−8.583

.4675

1

.1374
+

1

.4675

= −8.111

with variance

V ar(ζ̄) =
1

1

.1374
+

1

.4675

= .1062

That was a lot of work. Unfortunately, this effort often provides minimal Interblock
recovery often
provides little
improvement

improvement over the intrablock estimates. When there is noblock vari-
ance (that is, whenσ2

β = 0), then the interblock variance for a contrast is
g(k− 1)/(g − k) times as large as the intrablock variance. When blocking is
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successful, the variation between blocks will be large compared to the vari-
ation within blocks. Then the variance of intrablock estimates will be much
smaller than those of interblock estimates, and the combined estimates are
very close to the intrablock estimates.

Another fact to bear in mind is that the weights used in the weighted
average to combine intra- and interblock information are rather variable when
b is small. This variation comes from the ratioMSblocks adjusted/MSE , whichWeights are

variable appears in the formula for the weights. As we saw when trying to estimate
ratios of variance components, we need quite a few degrees offreedom in
both the numerator and denominator before the ratio, and thus the weights,
are stable.

14.2 Row and Column Incomplete Blocks

We use Latin Squares and their variants when we need to block on two
sources of variation in complete blocks. We can useYouden Squareswhen
we need to block on two sources of variation, but cannot set upthe com-
plete blocks for LS designs. I’ve always been amused by this name, because
Youden Squares are not square.

The simplest example of a Youden Square starts with a Latin Square
and deletes one of the rows (or columns). The resulting arrangement hasYouden Squares

are incomplete
Latin Squares

g columns andg − 1 rows. Each row is a complete block for the treatments,
and the columns form an unreduced BIBD for the treatments. Here is a sim-
ple Youden Square formed from a four by four Latin Square:

A B C D
B A D C
C D A B

A more general definition of a Youden Square is a rectangular arrange-
ment of treatments, with the columns forming a BIBD and all treatmentsYouden Square is

BIBD on columns
and RCB on rows

occurring an equal number of times in each row. In particular, any symmet-
ric BIBD (b = g) can be rearranged into a Youden Square. For example, here
is a symmetric BIBD withg = b = 7 andr = k = 3 arranged as a Youden
Square:

A B C D E F G
B C D E F G A
D E F G A B C
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Table 14.2:Serum levels of lithium (µEq/l) 12 hours after
administration. Treatments are 300 mg and 250 mg capsules,
450 mg time delay capsule, and 300 mg solution.

Week Subject

1 A 200 D 267 C 156 B 280 D 333 D 233
2 B 160 C 178 A 200 C 178 A 167 B 200

1 B 320 B 320 C 111 A 333 A 233 C 244
2 A 200 D 200 D 133 D 200 C 178 B 160

In Appendix C, thoses BIBD’s that can be arranged as Youden Squares are
so arranged.

The analysis of a Youden Square is a combination of the Latin Square
and BIBD, as might be expected. Because both treatments and columns ap-
pear once in each row, row contrasts are orthogonal to treatment and column Row orthogonal

designscontrasts, and this makes computation a little easier. Youden Squares are also
calledrow orthogonalfor this reason. The intrablock ANOVA has terms for
rows, columns, treatments (adjusted for columns), and error. Row effects and Intrablock

analysis adjusts
for rows and

columns

sums of squares are computed via the standard formulae, ignoring columns
and treatments. Column sums of squares (unadjusted) are computed ignor-
ing rows and treatments. Intrablock treatment effects and sums of squares
are computed as for a BIBD with columns as blocks. Error sums of squares Interblock

analysis similar to
BIBD

are found by subtraction. Interblock analysis of the YoudenSquare and the
combination of inter- and intrablock information are exactly like the BIBD.

Lithium in blood Example 14.5
We wish to compare the blood concentrations of lithium 12 hours after ad-
ministering lithium carbonate, using either a 300 mg capsule, 250 mg cap-
sule, 450 mg time delay capsule, or 300 mg solution. There aretwelve sub-
jects, each of whom will be used twice, 1 week apart. We anticipate that the
responses will be different in the second week, so we block onsubject and
week. The response is the serum lithium level as shown in Table 14.2 (data
from Westlake 1974).

There areg = 4 treatments inb = 12 blocks of sizek = 2, so thatr = 6.
We haveλ = 2, E = 2/3, and each treatment appears three times in each
week for a Youden Square.

The intrablock ANOVA for these data is shown in Listing 14.2.The
residual plots (not shown) are passable. There is no evidence for a difference
between the treatments 12 hours after administration. However, note that the
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Listing 14.2: Minitab output for intrablock analysis of lithium data.

Source DF Seq SS Adj SS Seq MS F P

week 1 0.031974 0.031974 0.031974 15.79 0.004

subject 11 0.039344 0.029946 0.003577 1.77 0.215

treatmen 3 0.005603 0.005603 0.001868 0.92 0.473

Error 8 0.016203 0.016203 0.002025

mean square for the week blocking factor is fairly large. If we had ignored
the week effect, we could anticipate an error mean square of

11 × .0020253 + .031974

12
= .00452 ,

more than doubling the error mean square in the Youden Squaredesign.

14.3 Partially Balanced Incomplete Blocks

BIBD’s are great, but their balancing requirements may imply that the small-
est possible BIBD for a giveng andk is too big to be practical. For ex-BIBD’s are too big

for some g and k ample, let’s look for a BIBD forg = 12 treatments in incomplete blocks
of sizek = 7. To be a BIBD,λ = r(k − 1)/(g − 1) = 6r/11 must be
a whole number; this implies thatr is some multiple of 11. In addition,
b = rg/k = (11×m)× 12/7 must be a whole number, and that implies that
b is a multiple of11× 12 = 132. So the smallest possible BIBD hasr = 77,
b = 132, andN = 924. This is a bigger experiment that we are likely to run.

Partially Balanced Incomplete Block Designs (PBIBD) allowus to run
incomplete block designs with fewer blocks than may be required for a BIBD.PBIBD has

N = gr = bk;
some treatment
pairs more
frequent

The PBIBD hasg treatments andb blocks ofk units each; each treatment is
usedr times, and there is a total ofN = gr = bk units. The PBIBD does not
have the requirement that each pair of treatments occurs together in the same
number of blocks. This in turn implies that not all differencesα̂i − α̂j have
the same variance in a PBIBD.

Here is a sample PBIBD withg = 12, k = 7, r = 7, andb = 12. In
this representation, each row is a block, and the numbers in the row indicateSample PBIBD
which treatments occur in that block.
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Block Treatments
1 1 2 3 4 5 8 10
2 2 3 4 5 6 9 11
3 3 4 5 6 7 10 12
4 1 4 5 6 7 8 11
5 2 5 6 7 8 9 12
6 1 3 6 7 8 9 10
7 2 4 7 8 9 10 11
8 3 5 8 9 10 11 12
9 1 4 6 9 10 11 12

10 1 2 5 7 10 11 12
11 1 2 3 6 8 11 12
12 1 2 3 4 7 9 12

We see, for example, that treatment 1 occurs three times withtreatments 5
and 9, and four times with all other treatments.

The design rules for a PBIBD are fairly complicated: Requirements for
PBIBD

1. There areg treatments, each usedr times. There areb blocks of size
k < g. Of course,bk = gr. No treatment occurs more than once in a
block.

2. There arem associate classes. Any pair of treatments that areith
associates appears together inλi blocks. We usually arrange theλi Associate classes
values in decreasing order, so that first associates appear together most
frequently.

3. All treatments have the same number ofith associates, namelyρi. ρi ith associates

4. Let A and B be two treatments that areith associates, and letpi
jk be the

number of treatments that arejth associates of A andkth associates
of B. This numberpi

jk does not depend on the pair ofith associates
chosen. In particular,pi

jk = pi
kj.

The PBIBD is partially balanced, because the variance ofα̂i − α̂j depends
upon whetheri, j are first, second, ormth associates. The randomization of Randomize

PBIBD like BIBDa PBIBD is just like that for a BIBD.
Let’s check the design given above and verify that it is a PBIBD. First

note thatg = 12, k = 7, r = 7, b = 12, and no treatment appears twice in
a block. Next, there are two associate classes, with first associates appearing
together four times and second associates appearing together three times. The
pairs (1,5), (1,9), (2,6), (2,10), (3,7), (3,11), (4,8), (4,12), (5,9), (6,10), (7,11),
and (8,12) are second associates; all other pairs are first associates. Each
treatment has nine first associates and two second associates. For any pair of
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first associates, there are six other treatments that are first associates of both,
four other treatments that are first associates of one and second associates
of the other (two each way), and no treatments that are secondassociates of
both. We thus have

{p1
ij} =

[
6 2
2 0

]
.

For any pair of second associates, there are nine treatmentsthat are first as-
sociates of both, and one treatment that is a second associate of both, so that

{p2
ij} =

[
9 0
0 1

]
.

Thus all the design requirements are met, and the example design is a PBIBD.
One historical advantage of the PBIBD was that the analysis could beIntrablock

analysis is
treatments
adjusted for
blocks

done by hand. That is, there are relatively simple expressions for the various
intra- and interblock analyses. With computers, that particular advantage
is no longer very useful. The intrablock analysis of the PBIBD is simply
treatments adjusted for blocks, as with the BIBD.

The efficiency of a PBIBD is actually an average efficiency. The variance
of α̂i − α̂j depends on whether treatmentsi andj are first associates, second
associates, or whatever. So to compute efficiencyEPBIBD:RCB, we dividePBIBD less

efficient on
average than
BIBD

the variance obtained in an RCB for a pairwise difference (2σ2/r) by the
average of the variances of all pairwise differences in the PBIBD. There is
an algorithm to determineEPBIBD:RCB, but there is no simple formula. We
can say that the efficiency will be less thang(k − 1)/[(g − 1)k], which is the
efficiency of a BIBD with the same block size and number of treatments.

There are several extensive catalogues of PBIBD’s, including Bose, Clat-
worthy, and Shrikhande (1954) (376 separate designs) and Clatworthy (1973).

14.4 Cyclic Designs

Cyclic designsare easily constructed incomplete block designs that permit
the study ofg treatments in blocks of sizek. We will only examine theCyclic designs

are simple simplest situation, where the replicationr for each treatment is a multiple of
k, the block size. Sor = mk, andb = mg is the number of blocks. Cyclic
designs include some BIBD and PBIBD designs.

A cycle of treatments starts with an initial treatment and then proceeds
through the subsequent treatments in order. Once we get to treatmentg, we
go back down to treatment 1 and start increasing again. For example, withCycles of

treatments seven treatments we might have the cycle (4, 5, 6, 7, 1, 2, 3).
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Cyclic construction starts with an initial block and buildsg − 1 more
blocks from the initial block by replacing each treatment inthe initial block Proceed through

cycles from initial
block

by its successor in the cycle. Additional sets ofg blocks are constructed from
new initial blocks. Thus all we need to know to build the design are the initial
blocks.

Write the initial block in a column, and write the cycles for each treatment
in the initial block in rows, obtaining ak by g arrangement. The columns of
this arrangement are the blocks. For example, suppose we have seven treat-
ments and the initial block [1,4]. The cyclic design has blocks (columns):

1 2 3 4 5 6 7
4 5 6 7 1 2 3

Each row is a cycle started by a treatment in the initial block. Cycles are
easy, so cyclic designs are easy, once you have the initial block.

But wait, there’s more! Not only do we have an incomplete block design Cyclic designs
are row

orthogonal
with the columns as blocks, we have a complete block design with the rows as
blocks. Thus cyclic designs are row orthogonal designs (andmay be Youden
Squares if the cyclic design is BIBD).

Appendix C.3 contains a table of initial blocks for cyclic designs fork
from 2 through 10 andg from 6 through 15. Several initial blocks are given
for the smaller designs, depending on how many replicationsare required.
For example, fork = 3 the table shows initial blocks for 3, 6, and 9 repli-
cations. Use the first initial block ifr = 3, use the first and second initial
blocks if r = 6, and use all three initial blocks ifr = 9. Forg = 10, k = 3,
andr = 6, the initial blocks are (1,2,5) and (1,3,8), and the plan is

1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 1
5 6 7 8 9 10 1 2 3 4

1 2 3 4 5 6 7 8 9 10
3 4 5 6 7 8 9 10 1 2
8 9 10 1 2 3 4 5 6 7

As with the PBIBD, there is an algorithm to compute the (average) effi-
ciency of a cyclic design, but there is no simple formula. Theinitial blocks
given in Appendix C.3 were chosen to make the cyclic designs as efficient as
possible.
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14.5 Square, Cubic, and Rectangular Lattices

Lattice designs work when the number of treatmentsg and the size of the
blocksk follow special patterns. Specifically,Lattice designs

for special g, k
combinations • A Square Lattice can be used wheng = k2.

• A Cubic Lattice can be used wheng = k3.

• A Rectangular Lattice can be used wheng = k(k + 1).

These lattice designs are resolvable and are most useful when we have a large
number of treatments to be run in small blocks.

We illustrate the Square Lattice wheng = 9 = 32. Arrange the nine
treatments in a square; for example:

1 2 3
4 5 6
7 8 9

There is nothing special about this pattern; we could arrange the treatmentsA simple lattice
has two
replications made
of rows and
columns of the
square

in any way. The first replicate of the Square Lattice consistsof blocks made
up of the rows of the square: here (1, 2, 3), (4, 5, 6), and (7, 8,9). The
second replicate consists of blocks made from the columns ofthe square: (1,
4, 7), (2, 5, 8), and (3, 6, 9). A Square Lattice must have at least these two
replicates to be connected, and a Square Lattice with only two replicates is
called asimple lattice.

We add a third replication using a Latin Square. A Square Lattice with
three replicates is called atriple lattice. Here is a three by three Latin Square:Triple lattice uses

Latin Square for
third replicate A B C

B C A
C A B

Assign treatments to blocks using the letter patterns from the square. The
three blocks of the third replicate are (1, 6, 8), (2, 4, 9), and (3, 5, 7).

You can construct additional replicates for every Latin Square that is or-Additional
replicates use
orthogonal Latin
Squares

thogonal to those already used. For example, the following square

A B C
C A B
B C A



14.5 Square, Cubic, and Rectangular Lattices 375

is orthogonal to the first one used. Our fourth replicate is thus (1, 5, 9), (2,
6, 7), and (3, 4, 8). Recall that there are no six by six Graeco-Latin Squares
(six by six orthogonal Latin Squares), so only simple and triple lattices are
possible forg = 62.

Forg = k2, there are at mostk−1 orthogonal Latin Squares. The Square
Lattice formed whenk − 1 Latin Squares are used hask + 1 replicates; is Balanced Lattice

(k + 1 replicates)
is a BIBD

called abalanced lattice; and is a BIBD withg = k2, b = k(k+1), r = k+1,
λ = 1, andE = k/(k + 1). The BIBD plan forg = 9 treatments inb = 12
blocks of sizek = 3, given in Appendix C, is exactly the balanced lattice
constructed above.

The (average) efficiency of a Square Lattice relative to an RCB is

ESL:RCB =
(k + 1)(r − 1)

(k + 1)(r − 1) + r
.

This is the best possible efficiency for any resolvable design.
TheRectangular Latticeis closely related to the Square Lattice. Arrange

theg = k(k + 1) treatments in an(k + 1)× (k + 1) square with the diagonal Rectangular
Lattice is subset

of a square
blank, for example:

• 1 2 3
4 • 5 6
7 8 • 9

10 11 12 •
As with the Square Lattice, the first two replicates are formed from the rows
and columns of this arrangement, ignoring the diagonal: (1,2, 3), (4, 5, 6), Rows, columns,

and Latin
Squares for a

Rectangular
Lattice

(7, 8, 9), (10, 11, 12), (4, 7, 10), (1, 8, 11), (2, 5, 12), (3, 6,9). Additional
replicates are formed from the letters of orthogonal Latin Squares that satisfy
the extra constraints that all the squares have the same diagonal and all letters
appear on the diagonal; for example:

A B C D A C D B
C D A B B D C A
D C B A C A B D
B A D C D B A C

These squares are orthogonal and share the same diagonal containing all
treatments. The next two replicates for this Rectangular Lattice design are
thus (5, 9, 11), (1, 6, 10), (2, 4, 8), (3, 7, 12) and (6, 8, 12), (3, 4, 11), (1, 5,
7), (2, 9, 10).

The Cubic Latticeis a generalization the Square Lattice. In the Square
Lattice, each treatment can be indexed by two subscriptsi, j, with 1 ≤ i ≤ k



376 Incomplete Block Designs

and1 ≤ j ≤ k. The subscripti indexes rows, and the subscriptj indexes
columns. The first row in the Square Lattice is all those treatments with
i = 1. The second column is all those treatments withj = 2. The blocksCubic Lattice for

k3 treatments in
blocks of k

of the first replicate of a Square Lattice are rows; that is, treatments are the
same block if they have the samei. The blocks of the second replicate of the
Square Lattice are columns; that is, treatments are in the same block if they
have the samej.

For the Cubic Lattice, we haveg = k3 treatments that we index with
three subscriptsi, j, l, with 1 ≤ i ≤ k, 1 ≤ j ≤ k, and1 ≤ l ≤ k.
Each replicate of the Cubic Lattice will bek2 blocks of sizek. In the firstForm blocks by

keeping two
subscripts
constant

replicate of a Cubic Lattice, treatments are grouped so thatall treatments in
a block have the same values ofi andj. In the second replicate, treatments
in the same block have the same values ofi andl, and in the third replicate,
treatments in the same block have the same values ofj andl. For example,
wheng = 8 = 23, the cubic lattice will have four blocks of size two in each
replicate. These blocks are as follows (using theijl subscript to represent a
treatment):

Replicate 1 Replicate 2 Replicate 3

(111, 112) (111, 121) (111, 211)
(121, 122) (112, 122) (112, 212)
(211, 212) (211, 221) (121, 221)
(221, 222) (212, 222) (122, 222)

Cubic Lattice designs can have 3, 6, 9, and so forth replicates by repeating
this pattern.

The intrablock Analysis of Variance for a Square, Cubic, or Rectangu-Treatments
adjusted for
blocks

lar Lattice is analogous to that for the BIBD; namely, treatments should be
adjusted for blocks.

14.6 Alpha Designs

Alpha Designs allow us to construct resolvable incomplete block designs
when the number of treatmentsg or block sizek does not meet the strictAlpha Designs

are resolvable
with g = mk

requirements for one of the lattice designs. Alpha Designs require that the
number of treatments be a multiple of the block sizeg = mk, so that there
arem blocks per replication andb = rm blocks in the complete design.

We construct an Alpha Design in three steps. First we obtain the “gener-
ating array” fork, m, andr. This array hask rows andr columns. Next weThree-step

construction expand each column of the generating array tom columns using a cyclic pat-
tern to obtain an “intermediate array” withk rows andmr columns. Finally
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we addm to the second row of the intermediate array,2m to the third row,
and so on. Columns of the final array are blocks.

Section C.4 has generating arrays form from 5 to 15,k at least four but Finding the
generating arrayno more than the minimum ofm and100/m, andr up to four. The major

division is bym, so first find the full array for your value ofm. We only need
the firstk rows andr columns of this full tabulated array.

For example, suppose that we haveg = 20 treatments and blocks of size
k = 4, and we desirer = 2 replications. Thenm = 5 andb = 10. The full
generating array form = 5 from Section C.4 is

1 1 1 1
1 2 5 3
1 3 4 5
1 4 3 2
1 5 2 4

We only need the firstk = 4 rows andr = 2 columns, so our generating
array is

1 1
1 2
1 3
1 4

Step two takes each column of the generating array and does cyclic sub- Construct
intermediate

array
stitution with 1, 2,. . ., m, to getm columns. So, for our array, we get

1 2 3 4 5 1 2 3 4 5
1 2 3 4 5 2 3 4 5 1
1 2 3 4 5 3 4 5 1 2
1 2 3 4 5 4 5 1 2 3

The first five columns are from the first column of the generating array, and
the last five columns are from the last column of the generating array. This is
the intermediate array.

Finally, we take the intermediate array and addm = 5 to the second row, Add multiples of
m to rows2m = 10 to the third row, and3m = 15 to the last row, obtaining

1 2 3 4 5 1 2 3 4 5
6 7 8 9 10 7 8 9 10 6

11 12 13 14 15 13 14 15 11 12
16 17 18 19 20 19 20 16 17 18



378 Incomplete Block Designs

This is our final design, with columns being blocks and numbers indicating
treatments.

The Alpha Designs constructed from the tables in Section C.4are with
a few exceptions the most efficient Alpha Designs possible. The average
efficiencies for these Alpha Designs are very close to the theoretical upper
bound for average efficiency of a resolvable design, namely

Eα:RCB ≤ (g − 1)(r − 1)

(g − 1)(r − 1) + r(m − 1)
.

14.7 Further Reading and Extensions

Incomplete block designs have been the subject of a great deal of research
and theory; we have mentioned almost none of it. Two excellent sources for
more theoretical discussions of incomplete blocks are John(1971) and John
and Williams (1995). Among the topics relevant to this chapter, John (1971)
describes recovery of interblock information for BIBD, PBIBD, and general
incomplete block designs; existence and construction of BIBD’s; classifi-
cation, existence, and construction of PBIBD’s; and efficiency. John and
Williams (1995) is my basic reference for Cyclic Designs, Alpha Designs,
and incomplete block efficiencies; and it has a good deal to say about row
column designs, interblock information, and other topics as well.

Most of the designs described in this chapter are not recent.Many of
these incomplete block designs were introduced by Frank Yates in the late
1930’s, including BIBD’s (Yates 1936a), Square Lattices (Yates 1936b), and
Cubic Lattices (Yates 1939), as well other designs such as Lattice Squares
(different from a Square Lattice, Yates 1940). PBIBD’s firstappear in Bose
and Nair (1939). Alpha Designs are the relative newcomers, first appearing
in Patterson and Williams (1976).

John and Williams (1995) provide a detailed discussion of the efficien-
cies of incomplete block designs, including a proof that theBIBD has the
highest possible efficiency for equally replicated designswith equal block
sizes. Section 3.3 of their book gives an expression for the efficiency of a
cyclic design; Sections 2.8 and 4.10 give a variety of upper bounds for the
efficiencies of blocked designs and resolvable designs. Chapter 12 of John
(1971) and Chapter 1 of Bose, Clatworthy, and Shrikhande (1954) describe
efficiency of PBIBD’s.

Some experimental situations will not fit into any of the standard design
categories. For example, different treatments may have different replication,
or blocks may have different sizes. Computer software exists that will search
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for “optimal” allocations of the treatments to units.Optimalcan be defined
in several ways; for example, you could choose to minimize the average vari-
ance for pairwise comparisons. See Silvey (1980) and Cook and Nachtsheim
(1989).

14.8 Problems

Consider the following incomplete block experiment with nine treatments Exercise 14.1
(A-I) in nine blocks of size three.

Block
1 2 3 4 5 6 7 8 9

C 54 B 35 A 48 G 46 D 61 C 52 A 54 B 45 A 31
H 56 G 36 G 42 H 56 E 61 I 53 H 59 I 46 B 28
D 53 D 40 E 43 I 59 F 54 E 48 F 62 F 47 C 25

(a) Identify the type of design.
(b) Analyze the data for differences between the treatments.

Chemical yield may be influenced by the temperature, pressure, and/or Exercise 14.2
time in the reactor vessel. Each of these factors may be set ata high or a low
level. Thus we have a23 experiment. Unfortunately, the process feedstock
is highly variable, so batch to batch differences in feedstock are expected;
we must start with new feedstock every day. Furthermore, each batch of
feedstock is only big enough for seven runs (experimental units). We have
enough money for eight batches of feedstock. We decide to usea BIBD, with
each of the eight factor-level combinations missing from one of the blocks.

Give a skeleton ANOVA (source and degrees of freedom only), and de-
scribe an appropriate randomization scheme.

Briefly describe the following incomplete block designs (BIBD, or PBIBD Exercise 14.3
with what associate classes, and so on).

(a)

Block 1 2 3 4

A A B A
B C C B
C D D D

(b)

Block 1 2 3 4 5

A A A B C
B B C D D
C D E E E

(c)
Block 1 2 3 4

1 3 1 2
2 4 3 4
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We wish to compare the average access times of five brands of half-heightExercise 14.4
computer disk drives (denoted A through E). We would like to block on the
computer in which they are used, but each computer will only hold four
drives. Average access times and the design are given in the following ta-
ble (data from Nelson 1993):

Computer
1 2 3 4 5

A 35 A 41 B 40 A 32 A 40
B 42 B 45 C 42 C 33 B 38
C 31 D 32 D 33 D 35 C 35
D 30 E 40 E 39 E 36 E 37

Analyze these data and report your findings, including a description of the
design.

Japanese beetles ate the Roma beans in our garden last year, so we ranProblem 14.1
an experiment this year to learn the best pesticide. We have six garden beds
with beans, and the garden store has three different sprays that claim to keep
the beetles off the beans. Sprays drift on the wind, so we cannot spray very
small areas. We divide each garden bed into two plots and use adifferent
spray on each plot. Below are the numbers of beetles per plot.

Bed
1 2 3 4 5 6

19 A 9 A 25 B 9 A 26 A 13 B
21 B 16 C 30 C 11 B 33 C 18 C

Analyze these data to determine the effects of sprays. Whichone should we
use?

Milk can be strained through filter disks to remove dirt and debris. FiltersProblem 14.2
are made by surface-bonding fiber webs to both sides of a disk.This experi-
ment is concerned with how the construction of the filter affects the speed of
milk flow through the filter.

We have a24 factorial structure for the filters. The factors are fiber weight
(normal or heavy), loft (thickness of the filter, normal or low), bonding so-
lution on bottom surface (A or B), and bonding solution on topsurface (A
or B). Note the unfortunate fact that the “high” level of the second factor,
loft, is low loft. Treatments 1 through 16 are the factor-level combinations in
standard order.

These are speed tests, so we pour a measured amount of milk through the
disk and record the filtration time as the response. We expectconsiderable
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variation from farm to farm, so we block on farm. We also expect variation
from milking to milking, so we want all measurements at one farm to be done
at a single milking. However, only three filters can be satisfactorily used at a
single milking. Thus we must use incomplete blocks of size three.

Sixteen farms were selected. At each farm there will be threestrainings
at one milking, with the milk strained first with one filter, then a second, then
a third. Each treatment will be used three times in the design: once as a first
filter, once as second, and once as third. The treatments and responses for the
experiment are given below (data from Connor 1958):

Treatments and Responses
Filtration time

Farm First Second Third

1 10 451 7 457 16 343
2 11 260 8 418 13 320
3 12 464 5 317 14 315
4 9 306 6 462 15 291
5 13 381 4 597 6 491
6 14 362 1 325 7 449
7 15 292 2 402 8 576
8 16 431 3 477 5 394
9 7 329 9 261 4 430

10 8 389 10 413 1 272
11 5 368 11 244 2 447
12 6 398 12 517 3 354
13 2 490 16 311 9 278
14 3 467 13 429 10 486
15 4 735 14 642 11 474
16 1 402 15 380 12 589

What type of design is this? Analyze the data and report your findings on the
influence of the treatment factors on straining time.

The State Board of Education has adopted basic skills tests for high Problem 14.3
school graduation. One of these is a writing test. The student writing samples
are graded by professional graders, and the board is taking some care to be
sure that the graders are grading to the same standard. We examine grader
differences with the following experiment. There are 25 graders. We select
30 writing samples at random; each writing sample will be graded by five
graders. Thus each grader will grade six samples, and each pair of graders
will have a test in common.
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Exam Grader Score Exam Grader Score

1 1 2 3 4 5 60 59 51 64 53 16 1 9 12 20 23 61 67 69 68 65
2 6 7 8 9 10 64 69 63 63 71 17 2 10 13 16 24 78 75 76 75 72
3 11 12 13 14 15 84 85 86 85 83 18 3 6 14 17 25 67 72 72 75 76
4 16 17 18 19 20 72 76 77 74 77 19 4 7 15 18 21 84 81 76 79 77
5 21 22 23 24 25 65 73 70 71 70 20 5 8 11 19 22 81 84 85 84 81
6 1 6 11 16 21 52 54 62 54 55 21 1 8 15 17 24 70 65 61 66 66
7 2 7 12 17 22 56 51 52 57 51 22 2 9 11 18 25 84 82 86 85 86
8 3 8 13 18 23 55 60 59 60 61 23 3 10 12 19 21 72 85 77 82 79
9 4 9 14 19 24 88 76 77 77 74 24 4 6 13 20 22 85 75 78 82 83

10 5 10 15 20 25 65 68 72 74 77 25 5 7 14 16 23 58 64 58 57 58
11 1 10 14 18 22 79 77 77 77 79 26 1 7 13 19 25 66 71 73 70 70
12 2 6 15 19 23 70 66 63 62 66 27 2 8 14 20 21 73 67 63 70 66
13 3 7 11 20 24 48 49 51 48 50 28 3 9 15 16 22 58 70 69 61 71
14 4 8 12 16 25 75 64 75 68 65 29 4 10 11 17 23 95 84 88 88 87
15 5 9 13 17 21 79 77 81 79 83 30 5 6 12 18 24 47 47 51 49 56

Analyze these data to determine if graders differ, and if so,how. Be sure to
describe the design.

Thirty consumers are asked to rate the softness of clothes washed by tenProblem 14.4
different detergents, but each consumer rates only four different detergents.
The design and responses are given below:

Trts Softness Trts Softness

1 A B C D 37 23 37 41 16 A B C D 52 41 45 48
2 A B E F 35 32 39 37 17 A B E F 46 42 45 42
3 A C G H 39 45 39 41 18 A C G H 44 43 41 36
4 A D I J 44 42 46 44 19 A D I J 32 42 36 29
5 A E G I 44 44 45 50 20 A E G I 43 42 44 44
6 A F H J 55 45 53 49 21 A F H J 46 41 43 45
7 B C F I 47 50 48 52 22 B C F I 43 51 40 42
8 B D G J 37 42 40 37 23 B D G J 38 37 36 34
9 B E H J 32 34 39 29 24 B E H J 40 49 43 44

10 B G H I 36 41 39 43 25 B G H I 23 20 27 29
11 C E I J 45 44 40 36 26 C E I J 46 49 48 43
12 C F G J 42 38 39 39 27 C F G J 48 43 48 41
13 C D E H 47 48 46 47 28 C D E H 35 35 31 26
14 D E F G 43 47 48 41 29 D E F G 45 47 47 42
15 D F H I 39 32 32 31 30 D F H I 43 39 38 39

Analyze these data for treatment effects and report your findings.
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Briefly describe the experimental design you would choose for each of Problem 14.5
the following situations, and why.

(a) Competition cuts tree growth rate, so we wish to study theeffects on
tree growth of using four herbicides on the competition. There are
many study sites available, but each site is only large enough for three
plots. Resources are available for 24 plots (that is, eight sites with three
plots per site). Large site differences are expected.

(b) We use 2-inch wide tape to seal moving cartons, and we wantto find
the brand that seals best. The principal problem is not the tape break-
ing, but the tape pulling away from the cardboard. Unfortunately, there
is considerable variation from carton to carton in the ability of any tape
to adhere to the cardboard. There are four brands of tape available. The
test is to seal a box bottom with four strips of tape of one or more types,
place the carton so that only the edges are supported, drop 50pounds
of old National Geographics into the carton from a height of one foot,
and then measure the length of tape that pulled away from the card-
board. There is a general tendency for tape to pull away more in the
center of the carton than near its ends. Our cheap boss has given us
only sixteen boxes to ruin in this destructive fashion before deciding
on a tape. Tape placement on the bottom looks like this:

T
ape

T
ape

T
ape

T
ape

(c) Three treatments are being studied for the rehabilitation of acidified
lakes. Unfortunately, there is tremendous lake to lake variability, and
we only have six lakes on which we are allowed to experiment. We
may treat each lake as a whole, or we may split each lake in two using a
plastic “curtain” and treat the halves separately. Sadly, the technology
does not allow us to split each lake into three.

(d) A retail bookstore has two checkouts, and thus two checkout advertis-
ing displays. These displays are important for enticing impulse pur-
chases, so the bookstore would like to know which of the four types of
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displays available will lead to the most sales. The displayswill be left
up for one week, because it is expensive to change displays and you
really need a full week to get sufficient volume of sales and overcome
day-of-week effects; there are, however, week to week differences in
sales. The store wishes to complete the comparison in at most8 and
preferably fewer weeks.

(e) We wish to compare four “dog collars.” The thought is thatsome col-
lars will lead to faster obedience than others. The responsewe measure
will be the time it takes a dog to complete a walking course with lots of
potential distractions. We have 24 dogs that can be used, andwe expect
large dog to dog variability. Dogs can be used more than once,but if
they are used more than once there should be at least 1 week between
trials. Our experiment should be completed in less than 3 weeks, so no
dog could possibly be used more than three times.

For each of the following, describe the experimental designthat was used,Problem 14.6
and give a skeleton ANOVA.

(a) Plant breeders wish to study six varieties of corn. They have 24 plots
available, four in each of six locations. The varieties are assigned to
location as follows (there is random assignment of varieties to plot
within location):

Locations
1 2 3 4 5 6

A B A A B A
B C C B C C
D E D D E D
E F F E F F

(b) We wish to study gender bias in paper grading. We have 12 “lower”
level papers and 12 “advanced” level papers. There are four paid
graders who do not know the students or their names. Each paper
is submitted for grading exactly once (that is, no paper is graded by
more than one grader). We examine gender bias by the name put on
the paper: either a male first name, a female first name, or justinitials.
The twelve lower-level papers are assigned at random to the combina-
tions of grader and name gender, as are the advanced-level papers. The
response we measure is the grade given (on a 0-100 scale).

(c) Song bird abundance can be measured by sending trained observers to
a site to listen for the calls of the birds and make counts. Consider an
experiment on the effects of three different forest harvesting techniques
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on bird abundance. There are six forests and two observers, and there
will be two harvests in each of the six forests. The harvest techniques
were assigned in the following way:

Forest
Observer 1 2 3 4 5 6

1 A C B B A C
2 C A A C B B

(d) Wafer board is a manufactured wood product made from woodchips.
One potential problem is warping. Consider an experiment where we
compare three kinds of glue and two curing methods. All six combi-
nations are used four times, once for each of four different batches of
wood chips. The response is the amount of warping.

When recovering interblock information in a BIBD, we take the weighted Question 14.1
average of intra- and interblock estimates

ζ̄ = λζ̂ + (1 − λ)ζ̃ .

Suppose thatσ2 = σ2
β = 1, g = 8, k = 7, andb = 8. Find the mean and

standard deviation of1/λ. Do you feel thatλ is well determined?
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Chapter 15

Factorials in Incomplete
Blocks—Confounding

We may use the complete or incomplete block techniques of thelast two
chapters when treatments have factorial structure; just consider that there are
g = abc treatments and proceed as usual. However, there are some incom-
plete block techniques that are specialized for factorial treatment structure.
We consider these factorial-specific methods in this chapter and the next.

This chapter describesconfoundingas a design technique. A design with
confounding is unable to distinguish between some treatment comparisons Use confounding

in designand other sources of variation. For example, if the experimental drug is only
given to patients with advanced symptoms, and the standard therapy is given
to other patients, then the treatments are confounded with patient popula-
tion. We usually go to great lengths to avoid confounding, sowhy would we
deliberately introduce confounding into an experiment?

Incomplete blocks are less efficient than complete blocks; we always
lose some information when we use incomplete blocks insteadof complete
blocks. Thus the issue with incomplete blocks is not whetherwe lose infor-
mation, but how much information we lose, and which particular compar- Confounding

isolates
incomplete block

inefficiency

isons lose information. Incomplete block designs like the BIBD and PBIBD
spread the inefficiency around every comparison. Confounded factorials al-
low us to isolate the inefficiency of incomplete blocks in particular contrasts
that we specify at design time and retain full efficiency for all other contrasts.

Let’s restate that. With factorial treatment structure we are usually more Put inefficiency in
interactionsinterested in main effects and low-order interactions thanwe are in multi-

factor interactions. Confounding designs will allow us to isolate the inef-
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Table 15.1:All contrasts and grand mean for a23 design.

I A B C AB AC BC ABC

(1) + – – – + + + –
a + + – – – – + +
b + – + – – + – +
ab + + + – + – – –
c + – – + + – – +
ac + + – + – + – –
bc + – + + – – + –
abc + + + + + + + +

ficiency of incomplete blocks in the multi-factor interactions and have full
efficiency for main effects and low-order interactions.

15.1 Confounding the Two-Series Factorial

Let’s begin with a review of some notation and facts from Chapter 10. The
2k factorial hask factors, each at two levels for a total ofg = 2k treatments.
There are two common ways to denote factor-level combinations. First is a
lettering method. Let(1) denote all factors at their low level. Otherwise,
denote a factor-level combination by including (lower-case) letters for all
factors at their high levels. Thusbc denotes factors B and C at their high
levels and all other factors are their low levels. Second, there is a numberingLetter or digit

labels for
factor-level
combinations

method. Each factor-level combination is denoted by ak-tuple, with a1 for
each factor at the high level and a0 for each factor at the low level. For
example, in a23, bc corresponds to011. To refer to individual factors, letxA

be the level of A, and so on, so thatxA = 0, xB = 1, andxC = 1 in 011.

Standard order for a two-series design arranges the factor-level combina-
tions in a specific order. Begin with(1). Then proceed through the remainderStandard order
of the factor-level combinations with factor A varying fastest, then factor B,
and so on. In a23, the standard order is(1), a, b, ab, c, ac, bc, abc.

Each main effect and interaction in a two-series factorial is a single de-
gree of freedom and can be described with a single contrast. It is customary toTable of + and −

use contrast coefficients of+1 and−1, and the contrast is often represented
as a set of plus and minus signs, one for each factor-level combination. The
full table of contrasts for a23 is shown in Table 15.1, which also includes a
column of all + signs corresponding to the grand mean.
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1. Choose a factorial effect to confound with blocks and get its
contrast.

2. Put all factor-level combinations with a plus sign in the con-
trast in one block and all the factor-level combinations with
a minus sign in the other block.

Display 15.1:Steps to confound a2k design into two blocks.

The2k factorial can be confounded into two blocks of size2k−1 or four
blocks of2k−2, and so on, to2q blocks of size2k−q in general. Let’s begin 2q blocks of size

2k−qwith just one replication of the experiment confounded in two blocks of size
2k−1; we look at smaller blocks and additional replication later.

15.1.1 Two blocks

Confounding a2k design into two blocks of size2k−1 is simple; the steps are
given in Display 15.1. Every factorial effect corresponds to a contrast with
2k−1 plus signs and2k−1 minus signs. Choose a factorial effect to confound
with blocks; this is thedefining contrast. Put all factor-level combinations Confound

defining contrast
with blocks

with a plus sign on the defining contrast in one block and all the factor-level
combinations with a minus sign in the other block. This confounds the block
difference with the defining contrast effect, so we have zeroinformation on
that effect. However, all factorial effects are orthogonal, so block differences
are orthogonal to the unconfounded factorial effects, and we have complete
information and full efficiency for all unconfounded factorial effects.

It makes sense to choose as defining contrast a multifactor interaction,
because multifactor interactions are generally of less interest, and we will Use k-factor

interaction as
defining contrast

lose all information about whatever contrast is used as defining contrast. For
the2k factorial in two blocks of size2k−1, the obvious defining contrast is
thek-factor interaction.

23 in two blocks of size four Example 15.1
Suppose that we wish to confound a23 into two blocks of size four. We
use the ABC interaction as the defining contrast, because it is the highest-
order interaction. The pattern of plus and minus signs is thelast column of
Table 15.1. The four factor-level effects with minus signs are(1), ab, ac, and
bc; the four factor-level effects with plus signs area, b, c, andabc. Thus the
two blocks are
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(1) a
ab b
ac c
bc abc

This idea of finding the contrast pattern for a defining contrast to con-
found into two blocks works for any two-series design, but finding the patternAlternative

methods for
finding blocks

becomes tedious for large designs. For example, dividing a26 into two blocks
of 32 with ABCDEF as defining contrast requires finding the ABCDEF con-
trast, which is the product of the six main-effects contrasts. Here are two
equivalent procedures that you may find easier, though whichmethod you
like best is entirely a personal matter.

First is the “even/odd” rule. Examine the letter designation for every
factor-level combination. Divide the factor-level combinations into two groupsEven/odd rule

and 0/1 rule depending on whether the letters of a factor-level combination contain an
even or odd number of letters from the defining contrast. The second ap-
proach is the “0/1” rule. Now we work with the numerical 0/1 designations
for the factor-level combinations. What we do is compute foreach factor-
level combination the sum of the 0/1 level indicators for thefactors that ap-
pear in the defining contrast, and then reduce this modulo 2. (Reduction
modulo 2 subtracts any multiples of 2; 0 stays 0, 1 stays 1, 2 becomes 0, 3
becomes 1, and so on.) For the defining contrast ABC, we compute

L = xA + xB + xC mod 2 ;

those factor-level combinations that yield anL value of 0 go in one block,
and those that yield a 1 go in the second block. It is not too hard to see that
this 0/1 rule is just the even/odd rule in numerical form.

Example 15.2 24 in two blocks of eight

Suppose that we have a24 that we wish to block into two blocks using BCD
as the defining contrast. To choose blocks using the even/oddrule, we first
find the letters from each factor-level combination that appear in the defining
contrast, as shown in Table 15.2. We then count whether thereis an even
or odd number of these letters and put the factor-level combinations with an
even number of letters matching in one block and those with anodd number
matching in a second block. For example, the combinationac has one letter
in BCD, soac goes in the odd group; and the combinationbc has two letters
in BCD, so it goes in the even group. Note that we would not ordinarily use
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Table 15.2:Confounding a24 with defining contrast BCD using
the even/odd rule.

Matches Even/odd Block 1 Block 2

(1) none even (1) b
a none even a ab
b B odd bc c
ab B odd abc ac
c C odd bd d
ac C odd abd ad
bc BC even cd bcd
abc BC even acd abcd
d D odd
ad D odd
bd BD even
abd BD even
cd CD even
acd CD even
bcd BCD odd
abcd BCD odd

BCD as the defining contrast; we use it here for illustration to show that even
and odd is not simply the number of letters in a factor-level combination, but
the number in that combination that occur in the defining contrast.

To use the 0/1 rule, we start by computingxB + xC + xD. We then
reduce the sum modulo 2, and assign the zeroes to one block andthe ones to
a second block. For0111 (bcd), this sum is1+ 1+ 1 = 3, and3 mod 2 = 1;
for 1110 (abc), the sum is1+1+0 = 2, and2 mod 2 = 0. Table 15.3 shows
the results of the 0/1 rule for our example.

The block containing(1) or 0000 is called theprincipal block. The other
block is called thealternate block. These blocks have some nice mathe- Principal block

and alternate
block

matical properties that we will find useful in more complicated confounding
situations. Consider the following modified multiplication which we will de-
note by⊙. Let (1) act as an identity—anything multiplied by(1) is just
itself. Soa⊙ (1) = a andbcd⊙ (1) = bcd. For any other pair of factor-level Multiply and

reduce exponents
mod 2

combinations, multiply as usual but then reduce exponents modulo 2. Thus
a ⊙ ab = a2b = a0b = b, anda ⊙ a = a2 = a0 = (1).

There is an analogous operation we can perform with the 0/1 represen-
tation of the factor-level combinations. Think of the zeroes and ones as
exponents; for example,1101 corresponds toa1b1c0d1 = abd. Exponents
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add when we multiply, so the corresponding operation is to add the zeroes
and ones componentwise and then reduce them mod 2. Thusabd ⊙ acd =
a2bcd2 = bc corresponds to1101 ⊕ 1011 = 2112 = 0110. Personally, I
prefer the letters, but some people prefer the numbers.

Here are the useful mathematical properties. If you multiply any two
elements of the principal block together reducing exponents modulo two,
you get another element of the principal block. If you multiply all elementsGet alternate

blocks from
principal block

of the principal block by an element not in the principal block, you get an
alternate block. What this means is that you can find alternate blocks easily
once you have the principal block. This is no big deal when there are only
two blocks, but can be very useful when we have four, eight, ormore blocks.

Example 15.3 24 in two blocks of eight, continued
In our24 example with BCD as the defining contrast,ac is not in the principal
block. Multiplying every element of the principal block byac, we get the
following

(1) ⊙ ac = ac = ac
a ⊙ ac = a2c = c
bc ⊙ ac = abc2 = ab

abc ⊙ ac = a2bc2 = b
bd ⊙ ac = abcd = abcd

abd ⊙ ac = a2bcd = bcd
cd ⊙ ac = ac2d = ad

acd ⊙ ac = a2c2d = d

This is the alternate block, but in a different order than Table 15.2.

15.1.2 Four or more blocks

A single replication of a2k design can be confounded into two blocks, four
blocks, eight blocks, and so on. The last subsection showed how to con-Use q defining

contrasts for 2q

blocks
found into two blocks using one defining contrast. We can confound into
four blocks using two defining contrasts, and in general we can confound
into 2q blocks usingq defining contrasts. Let’s begin with four blocks.

Start by choosing two defining contrasts for confounding a24 design into
four blocks of size four. It turns out that choosing these defining contrasts isChoose defining

contrasts
carefully

very important, and bad choices lead to poor designs. We willuse ABC and
BCD as defining contrasts; these are good choices. Later on wewill see what
can happen with bad choices.
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Table 15.3:Confounding a24 with defining contrast BCD
using the 0/1 rule.

xB + xC + xD Reduced mod 2 Block 1 Block 2

0000 0 0 0000 0100
1000 0 0 1000 1100
0100 1 1 0110 0010
1100 1 1 1110 1010
0010 1 1 0101 0001
1010 1 1 1101 1001
0110 2 0 0011 0111
1110 2 0 1011 1111
0001 1 1
1001 1 1
0101 2 0
1101 2 0
0011 2 0
1011 2 0
0111 3 1
1111 3 1

Each defining contrast divides the factor-level combinations into evens
and odds (or ones and zeroes). If we look at those factor-level combinations
that are even for BCD, half of them will be even for ABC and the other half
will be odd for ABC. Similarly, those combinations that are odd for BCD are
evenly split between even and odd for ABC. Our blocks will be formed as Combinations of

defining contrasts
form blocks

those combinations that are even for both ABC and BCD, those that are odd
for both ABC and BCD, those that are even for ABC and odd for BCD, and
those that are odd for ABC and even for BCD. Table 15.4 shows the results
of confounding on ABC and BCD. Alternatively, we computeL1 andL2 for
the two defining contrasts, and take as blocks those combinations that are
zero on both, one on both, zero on the first and one on the second, and zero
on the second and one on the first.

We have confounded into four blocks, so there are 3 degrees offreedom
between blocks. We know that the two defining contrasts are confounded
with block differences, but what is the third degree of freedom that is con-
founded with block differences? The ABC contrast is constant (plus or mi-
nus 1) within each block, and the BCD contrast is also constant within each
block. Therefore, their product is constant within each block. Recall that
each contrast is formed as the product of the corresponding main-effect con-
trasts, so the product of the ABC and BCD contrasts must be thecontrast for
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Table 15.4:Confounding the24 into four blocks using ABC and
BCD as defining contrasts.

ABC BCD

(1) even even
a odd even
b odd odd
ab even odd
c odd odd
ac even odd
bc even even
abc odd even
d even odd
ad odd odd
bd odd even
abd even even
cd odd even
acd even even
bcd even odd
abcd odd odd

BCD even BCD odd

ABC even (1) ab
bc ac
abd d
acd bcd

ABC odd a b
abc c
bd ad
cd abcd

AB2C2D = AD. Squared terms disappear because their elements are allGeneralized
interactions of
defining contrasts
are confounded

ones. The term AD is called thegeneralized interactionof ABC and BCD.
When we confound into four blocks using two defining contrasts, we not only
confound the defining contrasts with blocks, we also confound their general-
ized interaction. If you examine the blocks in Table 15.4, you will see that
two of them always have exactly one ofa or d, and the other two always have
both or neither.

Note that if we had chosen AD and ABC as our defining contrasts,we
would get the same four blocks, and the generalized interaction BCD would
also be confounded with blocks.

This fact that we also confound the generalized interactionexplains why
we need to be careful when choosing defining contrasts. It is very temptingCheck

generalized
interactions when
choosing defining
contrasts

to use the intuition that we want to confound interactions with as high an
order as possible, so we choose, say, ABCD and BCD as generators. This
intuition leads to disaster, because the generalized interaction of ABCD and
BCD is A, and we would thus confound a main effect with blocks.

When choosing defining contrasts, we need to look at the full set of ef-
fects that are confounded with blocks. We want first to find a set such that
the lowest-order term confounded with blocks is as high an order as possi-
ble. Among all the sets that meet the first criterion, we want sets that have
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as few low-order terms as possible. For example, consider the sets (A, BCD, We want as few
lower order
interactions

confounded as
possible

ABCD), (ABC, BCD, AD), and (AB, CD, ABCD). We prefer the second and
third sets to the first, because the first confounds a main effect, and the sec-
ond and third confound two-factor interactions. We prefer the second set to
the third, because the second set confounds only one two-factor interaction,
while the third set confounds two two-factor interactions.

Section C.5 suggests defining contrasts and their generalized interactions Confounding
plansfor two-series designs with up to eight factors.

Use three defining contrasts to get eight blocks. These defining contrasts
must be independent of each other, in the sense that none of them is the gen-
eralized interaction the other two. Thus we cannot use ABC, BCD, and AD
as three defining contrasts to get eight blocks, because AD isthe generalized
interaction of ABC and BCD. Divide the factor-level combinations into eight
groups using the even/odd patterns of the three defining contrasts: (even,
even, even), (even, even, odd), (even, odd, even), (even, odd, odd), (odd,
even, even), (odd, even, odd), (odd, odd, even), and (odd, odd, odd). There
are eight blocks, so there must be 7 degrees of freedom between them. The
three defining contrasts are confounded with blocks, as are their three two-
way generalized interactions and their three-way generalized interaction, for
a total of 7 degrees of freedom.

We again note that once you have the principal block, you can find the
other blocks by choosing an element not in the principal block and multiply-
ing all the elements of the principal block by the new elementand reducing
exponents mod 2.

25 in eight blocks of four Example 15.4
Suppose that we wish to block a25 design into eight blocks of four. Sec-
tion C.5 suggests ABC, BD, and AE for the defining contrasts. The principal
block is that block containing(1), or equivalently those factor-level combi-
nations that are even for ABC, BD, and AE. The principal blockis (1), bcd,
ace, andabde. This principal block was found by inspection, meaning work-
ing through the factor-level combinations finding those that are even for all
three defining contrasts.

The remaining blocks can be found by multiplying the elements of the
principal block by a factor-level combination not already accounted for. For
example,a is not in the principal block, so we multiply and geta, abcd,
ce, andbde for a second block. Next,b has not been listed, so we multiply
by b and getb, cd, abce, andade for the third block. Table 15.5 gives the
remaining blocks.
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Table 15.5:25 in eight blocks of four using ABC, BD, and
AE as defining contrasts, found by products with principal
block.

Multiply by
P.B. a b c d e ab ad

(1) a b c d e ab ad
bcd abcd cd bd bc bcde acd abc
ace ce abce ae acde ac bce cde
abde bde ade abcde abe abd de be

For 2q blocks, we useq defining contrasts. Theseq defining contrasts
must be independent; no defining contrast can be a generalized interaction of
two or more of the others. Form blocks by grouping the factor-level combina-q defining

contrasts for 2q

blocks
tions according to the2q different even-odd combinations for theq defining
contrasts. There will be2k−q factor-level combinations in each block. There
are2q blocks, so there are2q−1 degrees of freedom confounded with blocks.
These are theq defining contrasts, their two-way, three-way, and up toq-way
generalized interactions.

Doing the actual blocking is rather tedious in large designs, so it is help-
ful to have software that will do confounding. The usual even/odd or 0/1
methods are available if you must do the confounding by hand,but a little
thinking first can save a lot of calculation.

Example 15.5 27 in 16 blocks of eight
Suppose that we are going to confound a27 design into 16 blocks of size
eight using the defining contrasts ABCD, BCE, ACF, and ABG. The effects
that are confounded with blocks will be

ABCD ACEG = (BCE)(ABG)
BCE BCFG = (ACF)(ABG)
ACF CDEF = (ABCD)(BCE)(ACF)
ABG BDEG = (ABCD)(BCE)(ABG)
ADE = (ABCD)(BCE) ADFG = (ABCD)(ACF)(ABG)
BDF = (ABCD)(ACF) EFG = (BCE)(ACF)(ABG)
CDG = (ABCD)(ABG) ABCDEFG = (ABCD)(BCE)(ACF)(ABG)
ABEF = (BCE)(ACF)

We get exactly the same blocks using BCE, ACF, ABG, and ABCDEFG
as defining contrasts. Combinations in the principal block always have an
even number of letters from every defining contrast. Becausethe full seven-
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way interaction including all the letters is one of the defining contrasts, all
elements in the principal block must have an even number of letters. Next, no
pair of letters occurs an even number of times in BCE, ACF, andABG, so no
two-letter combinations can be in the principal block. Similarly, no six-letter
combinations can be in the principal block. This indicates that the principal
block will contain(1) and combinations with four letters.

Start going through groups of four letters. We findabcd is a match right
at the start. We next findabef . We can either get this with a direct search, or
by reasoning that if we havea andb, then we can’t haveg, so we must have
two of c, d, e, andf . The combinations withc or d don’t work, butabef
does work. Similarly, if we start withbc, then we can’t havee, and we must
have two ofa, d, f , andg. The combinations witha andd don’t work, but
bcfg does work.

We now have(1), abcd, abef , andbcfg in the principal block. We know
that in the principal group we can multiply any two elements together, reduce
the exponent mod 2, and get another element of the block. Thuswe find that
abcd ⊙ abef = cdef , abcd ⊙ bcfg = adfg, abef ⊙ bcfg = aceg, and
abcd ⊙ abef ⊙ bcfg = bdeg are also in the principal block.

Now that we have the principal block, we can find alternate blocks by
finding a factor-level combination not already accounted for and multiplying
the elements of the principal block by this new element. For example,a is
not in the principal block, so we can find a second block asa = (1) ⊙ a,
bcd = abcd ⊙ a, bef = abef ⊙ a, abcfg = bcfg ⊙ a, acdef = cdef ⊙ a,
dfg = adfg ⊙ a, ceg = aceg ⊙ a, andabdeg = bdeg ⊙ a. Next, b is not
in these first two blocks, sob = (1) ⊙ b, acd = abcd ⊙ b, aef = abef ⊙ b,
cfg = bcfg ⊙ b, bcdef = cdef ⊙ b, abdfg = adfg ⊙ b, abceg = aceg ⊙ b,
anddeg = bdeg ⊙ b are the next block.

15.1.3 Analysis of an unreplicated confounded two-series

Remember that the trick to the analysis of any unreplicated factorial is ob-
taining an estimate of error. The additional complication with confounding
is that some of the treatment degrees of freedom are confounded with blocks.
The approach we take is to compute the sum of squares or total effect for Use standard

methods with
nonblock effects

each main effect and interaction, remove from consideration those that are
confounded with blocks, and then analyze the remaining nonconfounded ef-
fects with standard methods.

Visual perception Example 15.6
We wish to study how image properties affect visual perception. In this ex-
periment we will have a subject look at a white computer screen. At random
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Table 15.6:Fraction of images identified in vision
experiment. Data in standard order reading down columns.

.27 .47 .20 .73 .40 .73 .20 .33

.40 .87 .20 .33 .33 .53 .27 .60

.40 .60 .53 .47 .27 .60 .53 .67

.40 .87 .20 .67 .27 .40 .80 .93

.47 .53 .53 .53 .47 .73 .47 .47

.47 .60 .13 .73 .27 .87 .47 .47

.40 .33 .47 .80 .53 .73 .33 .80

.33 .60 .47 .47 .33 .73 .33 .60

.20 .67 .20 .67 .27 .53 .40 .73

.27 .33 .60 .73 .33 .87 .40 .53

.60 .60 .20 .53 .33 .47 .27 .67

.40 .67 .47 .73 .60 .40 .20 .33

.60 .27 .13 .67 .07 .47 .47 .73

.27 .60 .73 .60 .47 .60 .33 .73

.27 .67 .27 .47 .33 .67 .27 .60

.53 .80 .20 .60 .27 .93 .20 .47

intervals averaging about 5 seconds, we will put a small image on the screen
for a very short time. The subject is supposed to click the mouse button when
she sees an image on the screen. The experiment takes place insixteen ten-
minute sessions to prevent tiring; during each session we present 120 images.
In fact, these are eight images repeated fifteen times each and presented in
random order. We record as the response the fraction of timesthat the mouse
is clicked for a given image type.

We wish to study 128 different images, the factorial combinations of
seven factors each at two levels: size of image, shape of image, color of im-
age, orientation of image, duration of image, vertical location of image, and
horizontal location of image. Because we anticipate session to session vari-
ability, we should design the experiment to account for that. A confounded
factorial with sixteen blocks of size eight will work. We usethe defining
contrasts of Example 15.5, and Table 15.6 gives the responses in standard
order.

There are fifteen factorial effects confounded with blocks,seven three-
way interactions, seven four-way interactions, and the seven-way interaction.
The remaining127 − 15 = 112 are not confounded with blocks. We could
pool the five- and six-way interaction degrees of freedom fora 28-degree-
of-freedom estimate of error, and then use this surrogate error in testing the
lower-order terms that are not confounded with blocks. Alternatively, we
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Figure 15.1: Halfnormal plot of factorial effects for transformed
vision data, including those confounded with blocks. Number
indicates effect.

could make a rankit plot or half normal plot of the total effects. It would
be best to make these plots using only the 112 nonconfounded terms, but it
is usually tedious to remove the confounded terms. Outliersin a plot of all
terms will need to be interpreted with blocks in mind.

We begin the analysis by noting that the responses are binomial propor-
tions ranging from .07 to .93; for such data we anticipate nonconstant vari-
ance, so we transform using arcsine-square roots at the start. Next we make
the half-normal plot of effects shown in Figure 15.1. This plot has all 127
effects in standard order, including those confounded withblocks. Effect 16
(the E main effect) is a clear outlier. Other outliers are effects 105, 42, and
127; these are ADFG, BDF, and ABCDEFG. All three are confounded with
blocks, so we regard this as block rather than treatment effects.

We conclude that of the treatments we chose, only factor E (duration) has
an effect; images that are on the screen longer are easier to see.

15.1.4 Replicating a confounded two-series

We replicate confounded two-series designs for the same reasons that we
replicate any design—replication gives us more power, shorter confidence
intervals, and better estimates of error. We must choose defining contrasts
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for the confounding in each replication, and here we have an option. We canComplete versus
partial
confounding

confound the same defining contrasts in all replications, orwe can confound
different contrasts in each replication. Contrasts confounded in all replica-
tions are calledcompletely confounded, and contrasts confounded in some
but not all replications are calledpartially confounded. Partial confounding
generally seems like the better choice, because we will haveat least some
information on every effect.

Suppose that we have four replications of a23 factorial with two blocks of
size four per replication, for a total of eight blocks. One partial confounding
scheme would use a different defining contrast in each replication, say ABC
in the first replication, AB in the second replication, AC in the third, and BC
in the fourth. What can we estimate? First, we can estimate the variation
between blocks. There are eight blocks, so there are 7 degrees of freedom
between blocks, and the sum of squares for blocks is the sum ofsquares
between the eight groups formed by the blocks. Second, the effects and sums
of squares for A, B, and C can be computed in the usual way. Thisis true
for any effect that is never confounded. Next, we can computethe sums of
squares and estimated effects for AB, AC, BC, and ABC. Here wemust be
careful, because all these effects are partially confounded.

Consider first ABC, which is confounded with blocks in the first replica-
tion but not in the other replications. The degree of freedomthat the ABC
effect would estimate in the first replication has already been accounted for as
block variation (it is one of the 7 block degrees of freedom),so the first repli-Partially

confounded
effects can be
estimated in
replications
where they are
not confounded

cation tells us nothing about ABC. The ABC effect is not confounded with
blocks in replications two through four, so compute the ABC sum of squares
and estimated effects from replications two through four. Similarly, we com-
pute the AB effect from replications one, three, and four. Ingeneral, estimate
an effect and compute its sum of squares from those replication where the
effect is not confounded. All that remains after blocks and treatments is error
or residual variation. In summary, there are 7 degrees of freedom between
blocks, 1 degree of freedom each for A, B, C, AB, AC, BC, and ABC, and
31 − 14 = 17 degrees of freedom for error.

Let’s repeat the pattern one more time. First remove block toblock vari-
ation. Compute sums of squares and estimated effects for anymain effectTreatments

adjusted for
blocks

or interaction by using the standard formulae applied to those replications
in which the main effect or interaction is not confounded. Any effect con-
founded in every replication cannot be estimated. Error variation is the re-
mainder. This pattern works for complete or partial confounding, and when
using statistical software for analysis is most easily expressed as treatments
adjusted for blocks.
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Table 15.7:Milk chiller sensory ratings, by blocks

(1) 86 a 88 (1) 82 b 93
ab 87 b 97 a 74 ab 91
ac 84 c 82 bc 84 c 79
bc 91 abc 85 abc 83 ac 81

We can estimate all effects in a partially confounded factorial, but we do
not have full information on the partially confounded effects. The effective
sample size for any effect is the number of replications in which the effect
is not confounded. In the example, the effective sample sizeis four for A, Partial

information on
partially

confounded
effects

B, and C, but only three for AB, AC, BC, and ABC. Each of these loses one
replication due to confounding. The fraction of information available for an
effect is the effective sample size divided by the number of replications. Thus
in the example we have full or 100% information for the main effects and 3/4
information for the interactions.

Milk chiller Example 15.7
Milk is chilled immediately after Pasteurization, and we need to design a
chiller. The goal is to get high flow at low capital and operating costs while
still chilling the milk quickly enough to maintain sensory qualities. Basic
chiller design is a set of refrigerated plates over which thehot milk is pumped.
We are investigating the effect of the spacing between the plates (two levels),
the temperature of the plates (two levels), and the flow rate of the milk (two
levels) on the perceived quality of the resulting milk. There is a fresh batch
of raw milk each day, and we expect batch to batch differencesin quality.
Because of the time involved in modifying the chiller, we canuse at most
four factor-level combinations in a day.

This constraint of at most four observations a day suggests aconfounded
design. We use two replicates, confounding ABC and BC in the two repli-
cates. The processed milk is judged daily by a trained expertwho is blinded
to the treatments used; the design and results are in Table 15.7. Listing 15.1
shows an ANOVA for these data. All effects can be estimated because of
the partial confounding. There is evidence for an effect of plate temperature,
with lower temperatures giving better sensory results. There is very slight
evidence for a rate effect.

By way of illustration, the sum of squares for the three-factor interaction
in the second replicate is 10.12, what Listing 15.1 shows forthe three-factor
interaction after adjusting for blocks. The block sum of squares is the sum of
the between replicates, ABC in replicate one, and BC in replicate two sums
of squares (68.06, 2.00, and 55.13 respectively).
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Listing 15.1: Minitab output for chiller data.

Source DF Seq SS Adj SS Seq MS F P

block 3 125.19 106.19 41.73 4.07 0.083

space 1 27.56 27.56 27.56 2.69 0.162

temp 1 189.06 189.06 189.06 18.42 0.008

rate 1 52.56 52.56 52.56 5.12 0.073

space*temp 1 18.06 18.06 18.06 1.76 0.242

space*rate 1 14.06 14.06 14.06 1.37 0.295

temp*rate 1 0.00 0.00 0.00 0.00 1.000

space*temp*rate 1 10.12 10.12 10.12 0.99 0.366

Error 5 51.31 51.31 10.26

Total 15 487.94

Term Coef StDev T P

space

1 1.3125 0.8009 1.64 0.162

temp

1 -3.4375 0.8009 -4.29 0.008

rate

1 1.8125 0.8009 2.26 0.073

15.1.5 Double confounding

Latin Squares, Youden Squares, and related designs allow usto block on
two sources of variation at once;double confoundingallows us to block on
two sources of variation in a confounding design. Suppose that we have aDouble

confounding
blocks on two
sources of
variation

2k treatment structure and that we have two sources of variation on which
to block; there are2q levels of blocking on one source and2k−q levels of
blocking on the other source. Arrange the treatments in a rectangle with2q

rows and2k−q columns. The rows and columns form the blocks for the two
sources of variation.

In double confounding, we chooseq defining contrasts to generate row
blocking, andk − q defining contrasts to generate column blocking. To pro-Products of

principal blocks duce the design, we find the principal blocks for rows and columns and put
these in the first row and column of the rectangular arrangement. The remain-
der of the arrangement is filled by taking products and reducing exponents
modulo 2.

For example, in a24 factorial we could block on two sources of variation
with four levels each. Put the treatments in a four by four arrangement, using
AB and BCD to generate the row blocking, and ABC and CD to generateConfound rows

and columns
separately

the column blocking. The generalized interactions ACD and ABD are also
confounded. The column principal block is(1), ab, bcd, andacd; the row
principal block is(1), abc, cd, andabd; and the full design is
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(1) ab acd bcd
abd d bc ac
cd abcd a b
abc c bd ad

For example, we take the third row elementcd times the fourth column ele-
mentbcd to getb for the3, 4 element of the table. Each row of the treatment
arrangement contains a block from the row-defining contrasts, and each col-
umn of the arrangement contains a block from the column-defining contrasts.

15.2 Confounding the Three-Series Factorial

Confounding in the three-series factorial is analogous to confounding in the
two-series, but threes keep popping up instead of twos. The2k is confounded 3q blocks of 3k−q

units; partial or
complete

confounding

into 2q blocks each with2k−q units. The3k is confounded into3q blocks,
each with3k−q units. When we replicate a three-series design with con-
founding, we can use complete or partial confounding, just as for the two-
series design.

The levels of a factor in a three-series design are denoted 0,1, or 2; for
example, the factor-level combinations of a32 design are 00, 10, 20, 01, 11,
21, 02, 12, and 22. The level for factor A is denoted byxA, just as for the
two-series design.

Main effects in a three-series design have 2 degrees of freedom, two-
factor interactions have 4 degrees of freedom, andq-factor interactions have
2q degrees of freedom. We can partition all three-series effects into two-
degree-of-freedom bundles. Each main effect contains one of these bundles, Partition

three-series
effects into

two-degree-of-
freedom
bundles

each two-factor interaction contains two of these bundles,each three-factor
interaction contains four of these bundles, and so on. Each two-degree-of-
freedom bundle arises by, in effect, splitting the factor-level combinations
into three groups and assessing the variation in the 2 degrees of freedom be-
tween these three groups. These two-degree-of-freedom splits provide the
basis for confounding the three series, just as one-degree-of-freedom con-
trasts are the basis for confounding the two series.

Each two-degree-of-freedom split has a label, and the labels can be con-
fused with the ordinary interactions, so let’s explain themcarefully at the
beginning. The label for an interaction effect is the letters in the interac-
tion, for example, BCD. The label for a two-degree-of-freedom split is the Label

two-degree-of-
freedom splits

with exponents

letters from the factors, each with an exponent of either 0, 1, or 2. By con-
vention, we drop the letters with exponent 0, and by further convention, the
first nonzero exponent is always a 1. ThusA1C2 andB1C1D2 are exam-
ples of two-degree-of-freedom splits. The two-degree-of-freedom splits that
make up an interaction are those splits that have nonzero exponents for the
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same set of factors as the interaction. Thus the splits in BCDareB1C1D1,
B1C1D2, B1C2D1, andB1C2D2.

We use these two-degree-of-freedom splits to generate confounding in
the three-series in the same way that defining contrasts generate confounding
in a two-series, so these splits are often calleddefining contrasts, even though
they are not really contrasts (which have just 1 degree of freedom).

15.2.1 Building the design

Each two-degree-of-freedom portion corresponds to a different way to split
the factor-level combinations into three groups. For concreteness, consider
theB1C2D1 split in a34 design. Compute for each factor-level combination

Sums of factor
levels mod 3
determine splits

L = xB + 2xC + xD mod 3 .

The L values will be 0, 1, or 2, and we split the factor-level combinations
into three groups according to their values ofL. In general, for the split
ArABrBCrCDrD , we compute for each factor-level combination

L = rAxA + rBxB + rCxC + rDxD mod 3 .

TheseL values will again be 0, 1, or 2, determining three groups. TheblockPrincipal block
containing the combination with all factors low is the principal block.

Example 15.8 A32 with A1B2 confounded
Suppose that we want to confound a32 design into three blocks of size three
usingA1B2 as the defining split. We need to compute the defining splitL
values, and then group the factor-level combinations into blocks, as shown
here:

xAxB xA + 2xB L

00 0 0
10 1 1
20 2 2
01 2 2
11 3 0
21 4 1
02 4 1
12 5 2
22 6 0

L = 0 L = 1 L = 2

00 10 20
11 21 01
22 02 12

This particular arrangement into blocks forms a Latin Square, as can be seen
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when the block numbers are superimposed on the three by threepattern be-
low:

xB

0 1 2

0 0 2 1

xA 1 1 0 2

2 2 1 0

If we had usedA1B1 as the defining split, we would again get a Latin Square
arrangement, but that Latin Square would be orthogonal to this one.

To block a three-series into nine blocks, we must use two defining splits
P1 andP2 with correspondingL valuesL1 andL2. EachL can take the Use q defining

splits for 3q blocksvalues 0, 1, or 2, so there are nine combinations ofL1 andL2 values, and
these form the nine blocks. To get 27 blocks, we use three defining splits and
look at all combinations of 0, 1, or 2 from theL1, L2, andL3 values, and so
on for more blocks.

For 3q blocks, we follow the same pattern but useq defining splits. The
only restriction on these splits is that none can be a generalized interaction of
any of the others (see the next section). Thus we cannot useA1C2, B1D1,
andA1B1C2D1 as our defining splits. As with two-series confounded de-
signs, we try to find defining splits that confound interactions of as high an
order as possible.

Confounding a33 in nine blocks Example 15.9

Suppose that we wish to confound a33 design into nine blocks using defining
splitsA1B1 andA1C2. TheL equations are

L1 = xA + xB mod 3

and
L2 = xA + 2xC mod 3

We need to go through all 27 factor-level combinations and compute theL1

andL2 values. Once we have the L-values, we can make the split into nine
blocks. For example, the 110 treatment has anL1 value of1 + 1 = 2 and an
L2 value of1 + 2 × 0 = 1, so it belongs in the 2/1 block; the 102 treatment
has anL1 value of1 + 0 = 1 and anL2 value of1 + 2 × 2 mod 3 = 2, so it
belongs in the 1/2 block. The full design follows:
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Treatment L1 L2

000 0 0
100 1 1
200 2 2
010 1 0
110 2 1
210 0 2
020 2 0
120 0 1
220 1 2
001 0 2
101 1 0
201 2 1
011 1 2
111 2 0
211 0 1
021 2 2
121 0 0
221 1 1
002 0 1
102 1 2
202 2 0
012 1 1
112 2 2
212 0 0
022 2 1
122 0 2
222 1 0

0/0 0/1 0/2

000 120 210
121 211 001
212 022 122

1/0 1/1 1/2

010 100 220
101 221 011
222 012 102

2/0 2/1 2/2

020 110 200
111 201 021
202 022 112

In the two-series using the 0/1 labels, any two elements of the principal
block could be combined using the operation⊕ with the result being an ele-Combine factor

levels mod 3 ment of the principal block. Furthermore, if you combine theprincipal block
with any element not in the principal block, you get another block. These
properties also hold for the three-series design, providedyou interpret the
operation⊕ as “add the factor levels individually and reduce modulo three.”

For example, the principal block in Example 15.9 was000, 121, and212.
We see that121 ⊕ 121 = 242 = 212, which is in the principal block. Also,
the combination210 is not in the principal block, so000 ⊕ 210 = 210,
121⊕ 210 = 331 = 001, and212⊕ 210 = 422 = 122 form a block (the one
labeled 0/2).



15.2 Confounding the Three-Series Factorial 407

15.2.2 Confounded effects

Confounding a three-series design into three blocks uses one defining split
with 2 degrees of freedom. There are 2 degrees of freedom between the three
blocks, and these 2 degrees of freedom are exactly those of the defining split.

Confounding a three-series design into nine blocks uses twodefining
splits, each with 2 degrees of freedom. The 4 degrees of freedom for these
two defining splits are confounded with block differences. There are 8 de-
grees of freedom between the nine blocks, so 4 more degrees offreedom must Confounded

effects are P1, P2,
P1P2 and P1P

2

2

be confounded along with the two defining splits. These additional degrees
of freedom are from the generalized interactions of the defining splits. IfP1

andP2 are the defining splits, then the generalized interactions areP1P2 and
P1P

2
2 .
Recall that we always write these two-degree-of-freedom splits in a three

series with exponents of 0, 1, or 2, with the first nonzero exponent always
being a 1. Products likeP1P2 won’t always be in that form, so how can Rearrange to get

a leading
exponent of 1

we convert? First, reduce exponents modulo three. Second, if the leading
nonzero exponent is not a 1, then square the term and reduce exponents mod-
ulo three again. The net effect of this second step is to leavezero exponents
as zero and swap ones and twos.

Confounding a33 in nine blocks, continued Example 15.10
The defining splits in Example 15.9 wereA1B1 andA1C2, so the generalized
interactions are

P1P2 = A1B1 × A1C2

= A2B1C2

= (A2B1C2)2 leading exponent was 2, so square

= A4B2C4

= A1B2C1 reduce exponents modulo 3

P1P
2
2 = A1B1 (A1C2)2

= A3B1C4

= B1C1 reduce exponents modulo 3

Thus the full set of confounded effects isA1B1, A1C2, A1B2C1, B1C1.

When we confound into 27 blocks using defining splitsP1, P2, andP3,
there are 26 degrees of freedom between blocks, comprising thirteen two-
degree-of-freedom splits. Now it makes sense to give the general rule. Sup-
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pose that there areq defining contrasts,P1, P2, . . .Pq. The confounded de-
grees of freedom will beP v1

1 P v2

2 · · ·, P vq

q , for all exponent sets that use expo-
nents 0, 1, or 2, and with the leading nonzero exponent being a1. Applying
this to q = 3, we get the following confounded terms:P1, P2, P3, P1P2,
P1P

2
2 , P1P3, P1P

2
3 , P2P3, P1P

2
3 , P1P2P3, P1P2P

2
3 , P1P

2
2 P3, andP1P

2
2 P 2

3 .

Example 15.11 Confounding a35 in 27 blocks
Suppose that we wish to confound a35 into 27 blocks usingA1C1, A1B1D1,
andA1B2E2 as defining splits. The the complete list of confounded effects
will be

P1 = A1C1 = A1C1

P2 = A1B1D1 = A1B1D1

P3 = A1B2E2 = A1B2E2

P1P2 = A2B1C1D1 = A1B2C2D2

P1P
2
2 = A3B2C1D2 = B2C1D2 = B1C2D1

P1P3 = A2B2C1E2 = A1B1C2E1

P1P
2
3 = A3B4C1E4 = B1C1E1

P2P3 = A2B3D1E2 = A2D1E2 = A1D2E1

P2P
2
3 = A3B5D1E4 = B2D1E1 = B1D2E2

P1P2P3 = A3B3C1D1E2 = C1D1E2

P1P2P
2
3 = A4B5C1D1E4 = A1B2C1D1E1

P1P
2
2 P3 = A4B4C1D2E2 = A1B1C1D2E2

P1P
2
2 P 2

3 = A5B6C1D2E4 = A2C1D2E1 = A1C2D1E2

This design confounds 2 degrees of freedom in the AC interaction, but other-
wise confounds three-way interactions and higher.

15.2.3 Analysis of confounded three-series

Analysis of a confounded three-series is analogous to analysis of a con-
founded two-series. First remove variation between blocks, then remove any
treatment variation that can be estimated; any remaining variation is used
as error. When there is only one replication, the highest-order interaction isTreatments

adjusted for
blocks

typically used as an estimate of error. With most statistical software, you can
get this analysis by requesting an ANOVA with treatment sumsof squares
adjusted for blocks.
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The accounting is a little more complicated in a confounded three-series
than it was in the two-series, because confounding is done via two-degree- Interactions

containing
completely

confounded splits
have fewer than

nominal degrees
of freedom

of-freedom splits, whereas the ANOVA is usually tabulated by interaction
terms. For example, consider two replications of a32 with A1B1 completely
confounded. There are eighteen experimental units, with 17degrees of free-
dom between them. There are 5 degrees of freedom between the blocks, 2
degrees of freedom for each main effect, 2 degrees of freedomfor the AB
interaction, and 6 degrees of freedom for error. The 2 degrees of freedom for
AB are theA1B2 degrees of freedom, which are not confounded with blocks.

When we use partial confounding, we can estimate all treatment effects,
but we will only have partial information on those effects that are partially
confounded. Again consider two replications of a32, but confoundA1B1 in
the first replication andA1B2 in the second. We can estimateA1B1 in the
second replication andA1B2 in the first, so we have 4 degrees of freedom for
interaction. However, the effective sample size for each ofthese interaction
effects is nine, rather than eighteen.

15.3 Further Reading and Extensions

Two- and three-series are the easiest factorials to confound, but we can use
confounding for other factorials too. John (1971) is a good place to get started
with these other designs. Kempthorne (1952) also has a good discussion.
Derivation and methods for some of these other designs takessome (abstract)
algebra. In fact, this algebra is present in the two- and three-series designs;
we’ve just been ignoring it. For example, we have stated thatmultiplying
two elements of the principal block together gives another element in the
principal block, and that multiplying the principal block by any element not
in the principal block yields an alternate block. These are aconsequence
of the facts that the factor-level combinations form an (algebraic) group, the
principal block is a subgroup, and the alternate blocks are cosets.

Confoundingsk designs whens is prime is the straightforward gener-
alization of the 0/1 and 0/1/2 methods we used for2k and3k designs. For
example, whens = 5 andk = 4, represent the factor levels by 0, 1, 2, 3, and
4. Block into five blocks of size125 using the defining splitArABrBCrCDrD

by computing

L = rAxA + rBxB + rCxC + rDxD mod 5

and splitting into groups based onL. If you have two defining splitsP1 and
P2, the confounded effects areP1, P2, P1P2, P1P

2
2 , P1P

3
2 , andP1P

4
2 . More

generally, use powers up tos − 1.
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To confoundsk designs whens is themth power of a prime, reexpress the
design as apmk design, wherep is the prime factor ofs. Now use standard
methods for confounding apmk, but take care that none of the generalized
interactions that get confounded are actually main effects. For example, con-
found a42 design into four blocks of four. A42 design can be reexpressed
as a24 design, with the AB combinations indexing the first four-level factor,
and the BC combinations indexing the second four-level factor. We could
confound ABC and AD (and their generalized interaction BCD). All three of
these degrees of freedom are in the 9-degree-of-freedom interaction for the
four-series design. We would not want to confound AB, BCD, and ACD,
because AB is a degree of freedom in the main effect of the firstfour-level
factor.

Mixed-base factorials are more limited. Suppose we have ask1

1 sk2

2 facto-
rial, wheres1 ands2 are different primes. It is straightforward to choosesq

1

blocks of sizesk1−q
1 sk2

2 or sq
2 blocks of sizesk1

1 sk2−q
2 . Just use methods for

the factors in play and carry the other factors along. Getting s1s2 blocks of
sizesk1−1

1 sk2−1
2 is considerably more difficult.

15.4 Problems

Confound a25 factorial into four blocks of eight, confounding BCD andExercise 15.1
ACD with blocks. Write out the factor-level combinations that go into each
block.

We want to confound a24 factorial into four blocks of size four usingExercise 15.2
ACD and ABD as defining contrasts. Find the factor-level combinations that
go into each block.

Suppose that we confound a28 into sixteen blocks of size 16 usingExercise 15.3
ABCF, ABDE, ACDE, and BCDH as defining contrasts. Find the allthe
confounded effects.

Divide the factor-level combinations in a33 factorial into three groups ofExercise 15.4
nine according to theA1B1C2 interaction term.

Suppose that we have a partially confounded33 factorial design run inExercise 15.5
four replicates, withA1B1C1, A1B1C2, A1B2C1, andA1B2C2 confounded
in the four replicates. Give a skeletal ANOVA for such an experiment (sources
and degrees of freedom only).

Briefly describe the experimental design you would choose for each ofProblem 15.1
the following situations, and why.
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(a) Untrained consumer judges cannot reliably rate their liking of more
than about fifteen to twenty similar foods at one sitting. However,
you have been asked to design an experiment to compare the liking of
cookies made with 64 recipes, which are the factorial combinations of
six recipe factors, each at two levels. The judges are paid, and you are
allowed to use up to 50 judges.

(b) Seed germination is sensitive to environmental conditions, so many
experiments are performed in laboratory growth chambers that seek to
provide a uniform environment. Even so, we know that the environ-
ment is not constant: temperatures vary from the front to theback with
the front being a bit cooler. We wish to determine if there is any ef-
fect on germination due to soil type. We have resources for 64units
(pots with a given soil type). There are eight soil types of interest,
and the growth chamber is big enough for 64 pots in an eight by eight
arrangement.

(c) Acid rain seems to kill fish in lakes, and we would like to study the
mechanism more closely. We would like to know about effects due
to the kind of acid (nitric versus sulfuric), amount of acid exposure
(as measured by two levels of pH in the water), amount of aluminum
present (two levels of aluminum; acids leach aluminum from soils, so
it could be the aluminum that is killing the fish instead of theacid), and
time of exposure (that is, a single peak acute exposure versus a chronic
exposure over 3 months). We have 32 aquariums to use, and a large
supply of homogeneous brook trout.

Briefly describe the experimental design used in each of the following Problem 15.2
and give a skeleton ANOVA.

(a) Neurologists use functional Magnetic Resonance Imaging (fMRI) to
determine the amount of the brain that is “activated” (in use) during
certain activities. We have twelve right-handed subjects.Each subject
will lie in the magnet. On a visual signal, the subject will perform an
action (tapping of fingers in a certain order) using either the left or the
right hand (depending on the signal). The measured responseis the
number of “pixels” on the left side of the brain that are activated. We
expect substantial subject to subject variation in the response, and there
may be a consistent difference between the first trial and thesecond
trial. Six subjects are chosen at random for the left-right order, and
the other six get right-left. We obtain responses for each subject under
both right- and left-hand tapping.

(b) We wish to study the winter hardiness of four new varieties of rose-
bushes compared with the standard variety. An experimentalunit will
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consist of a plot of land suitable for 4 bushes, and we have 25 plots
available in a five by five arrangement (a total of 100 bushes).The plots
are located on the side of a hill, so the rows have different drainage.
Furthermore, one side of the garden is sheltered by a clump oftrees, so
that we expect differences in wind exposure from column to column.
The five varieties are randomly arranged subject to the constraint that
each variety occurs once in each row and each column. The response
of interest is the number of blooms produced after the first winter.

(c) Nisin is a naturally occurring antimicrobial substance, andListeria is
a microbe we’d like to control. Consider an experiment wherewe ex-
amine the effects of the two factors “amount of nisin” (factor A, three
levels, 0, 100, and 200 IU) and “heat” (factor B, three levels, 0, 5, and
10 second scalds) on the number of liveListeria bacteria on poultry
skin. We use six chicken thighs. The skin of each thigh is divided
into three sections, and each section receives a different A-B combi-
nation. We expect large thigh to thigh variability in bacteria counts.
The factor-level combinations used for each skin section follow (using
0,1,2 type notation for the three levels of each factor):

Thigh
Section 1 2 3 4 5 6

1 00 10 20 00 10 02
2 11 21 01 21 01 20
3 22 02 12 12 22 11

(d) Semen potency is measured by counting the number of fertilized eggs
produced when the semen is used. Consider a study on the influence
of four treatments on the potency of thawed boar semen. The factors
are cryoprotector used (factor A, two levels) and temperature regime
(factor B, two levels). We expect large sow to sow differences in fertil-
ity, so we block on sow by using one factor-level combinationin each
of the two horns (halves) of the uterus. Eight sows were used,with the
following treatment assignment.

Sow
1 2 3 4 5 6 7 8

a ab (1) b b (1) (1) a
b (1) ab a a ab ab b

Choose an experimental design appropriate for the following conditions.Problem 15.3
Describe treatments, blocks, and so on.
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(a) “Habitat improvement” (HI) is the term used to describe the modifica-
tion of a segment of a stream to increase the numbers of trout in the
stream. HI has been used for decades, but there is little experimental
evidence on whether it works. We have eight streams in southeast-
ern Minnesota to work with, and we can make up to eight habitatim-
provements (that is, modify eight stream segments). Each stream flows
through both agricultural and forested landscapes, and foreach stream
we have identified two segments for potential HI, one in the forested
area and one in the agricultural area. We anticipate large differences
between streams in trout numbers; there may be differences between
forested and agricultural areas. We can count the trout in all sixteen
segments.

(b) We wish to study how the fracturability of potato chips isaffected by
the recipe for the chip. (Fracturability is related to crispness.) We
are going to study five factors, each at two levels. Thus thereare 32
recipes to consider. We can only bake and measure eight recipes a day,
and we expect considerable day to day variation due to environmental
conditions (primarily temperature and humidity). We have resources
for eight days.

(c) One of the issues in understanding the effects of increasing atmo-
spheric CO2 is the degree to which trees will increase their uptake
of CO2 as the atmospheric concentration of CO2 increases. We can
manipulate the CO2 concentration in a forest by using Free-Air CO2

Enrichment (FACE) rings. Each ring is a collection of sixteen tow-
ers (and other equipment) 14 m tall and 30 m in diameter that can be
placed around a plot in a forest. A ring can be set to enrich CO2 in-
side the ring by 0, 100, or 200 ppm. We have money for six rings and
can work at two research stations, one in North Carolina and one in
South Carolina. Both research stations have plantations of10-year-old
loblolly pine. The response we measure will be the growth of the trees
over 3 years.

(d) We wish to study the effects of soil density, pH, and moisture on snap-
dragon seed germination, with each factor at two levels. Twenty-four
pots are prepared with appropriate combinations of the factors, and
then seeds are added to each pot. The 24 pots are put on trays that are
scattered around the greenhouse, but only 4 pots fit on a tray.

Individuals perceive odors at different intensities. We have a procedure Problem 15.4
that allows us to determine the concentration of a solution at which an in-
dividual first senses the odor (the threshold concentration). We would like
to determine how the threshold concentrations vary over sixteen solutions.
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However, the threshold-determining procedure is time consuming and any
individual judge can only be used to find threshold concentrations for four
solutions.

Each solution is a combination of five compounds in various ratios. The
sixteen solutions are formed by manipulating four factors,each at two levels.
Factor 1 is the ratio of the concentration of compound 1 to theconcentration
of compound 5. Factors 2 through 4 are are similar.

We have eight judges. Two judges are assigned at random to each of the
solution sets [(1), bc, abd, acd], [a, abc, bd, cd], [ab, ac, d, bcd], and [b, c, ad,
abcd]. We then determine the threshold concentration for the solutions for
each judge. The threshold concentrations are normalized bydividing by a
reference concentration. The ratios are given below:

Judge
1 2 3 4

(1) 8389 a 4351 ab 6 b 375
bc 816 abc 78 ac 262 c 33551
abd 4 bd 5941 d 1230 ad 246
acd 46 cd 27138 bcd 98 abcd 10

5 6 7 8

(1) 56034 a 2346 ab 67 b 40581
bc 25046 abc 35 ac 3081 c 90293
abd 109 bd 228 d 50991 ad 19103
acd 490 cd 6842 bcd 784 abcd 61

Analyze these data to determine how the compounds affect thethreshold
concentration. Are there any deficiencies in the design?

Eurasian water milfoil is a nonnative plant that is taking over many lakesProblem 15.5
in Minnesota and driving out the native northern milfoil. However, there is a
native weevil (an insect) that eats milfoil and may be usefulas a control. We
wish to investigate how eight treatments affect the damage the weevils do to
Eurasian milfoil. The treatments are the combinations of whether a weevil’s
parents were raised on Eurasian or northern, whether the weevil was hatched
on Eurasian or northern, and whether the weevil grew to maturity on Eurasian
or northern.

We have eight tanks (big aquariums), each of which is subdivided into
four sections. The subdivision is accomplished with a fine mesh that lets
water through, but not weevils. The tanks are planted with equal amounts of
Eurasian milfoil. We try to maintain uniformity between tanks, but there will
be some tank to tank variation due to differences in light andtemperature.
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The tanks are planted in May, then weevils are introduced. InSeptember,
milfoil biomass is measured as response and is shown here:

Tank
1 2 3 4

(1) 10.4 a 4.8 (1) 16.8 a 12.3
ab 17.5 b 8.9 ab 19.6 b 17.1
ac 22.2 c 6.8 c 16.4 ac 13.3
bc 27.7 abc 17.6 abc 35.6 bc 19.5

5 6 7 8

(1) 7.7 a 6.3 (1) 14.9 b 7.1
ac 13.3 c 7.3 bc 34.0 c 8.3
b 12.4 ab 11.2 a 16.9 ab 15.3
abc 17.7 bc 25.0 abc 36.8 ac 7.0

Analyze these data to determine how the treatments affect milfoil biomass.

Scientists wish to understand how the amount of sugar (two levels), cul- Problem 15.6
ture strain (two levels), type of fruit (blueberry or strawberry), and pH (two
levels) influence shelf life of refrigerated yogurt. In a preliminary experi-
ment, they produce one batch of each of the sixteen kinds of yogurt. The
yogurt is then placed in two coolers, eight batches in each cooler. The re-
sponse is the number of days till an off odor is detected from the batch.

Cooler
1 2

(1) 34 a 35
ab 34 b 36
ac 32 c 39
ad 34 d 41
bc 34 abc 39
bd 39 abd 44
cd 38 acd 44
abcd 37 bcd 42

Analyze these data to determine how the treatments affect time till off odor.

Consider a defining split in a three-series design, sayArABrBCrCDrD . Question 15.1
Now double the exponents and reduce them modulo 3 to generatea new
defining split. Show that the two splits lead to the same threesets of factor-
level combinations.
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Show that in a three-series design, any defining split with leading nonzeroQuestion 15.2
exponent 2 is equivalent to a a defining split with leading nonzero exponent
1.

Show that in a three-series design with defining splitsP1 andP2, theQuestion 15.3
generalized interactionsP1P

2
2 andP 2

1 P2 are equivalent.



Chapter 16

Split-Plot Designs

Split plots are another class of experimental designs for factorial treatment
structure. We generally choose a split-plot design when some of the factors
are more difficult or expensive to vary than the others, but split plots can arise Use split plots

when some
factors more

difficult to vary

for other reasons. Split plots can be described in several ways, including
incomplete blocks and restrictions on the randomization, but the key features
to recognize are that split plots have more than one randomization and more
than one idea of experimental unit.

16.1 What Is a Split Plot?

The terminology of split plots comes from agricultural experimentation, so
let’s begin with an agricultural example. Suppose that we wish to determine
the effects of four corn varieties and three levels of irrigation on yield. Irriga-
tion is accomplished by using sprinklers, and these sprinklers irrigate a large
area. Thus it is logistically difficult to use a design with smallish experimen-
tal units, with adjacent units having different levels of irrigation. At the same
time, we might want to have small units, because there may be alimit on the
total amount of land available for the experiment, or there may be variation
in the soils leading us to desire small units grouped in blocks. Split plots give
us something of a compromise.

Divide the land into sixwhole plots. These whole plots should be sized so
that we can set the irrigation on one whole plot without affecting its neigh- Whole plots and

whole-plot factorbors. Randomly assign each irrigation level to two of the whole plots. Irri-
gation is thewhole-plot factor, sometimes called thewhole-plot treatment.
Divide each whole plot into foursplit plots. Randomly assign the four corn
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varieties to the four split plots, with a separate, independent randomization
in each whole plot. Variety is thesplit-plot factor. One possible arrangementSplit plots and

split-plot factor is as follows, with the six columns representing whole plotswith four split
plots within each:

I2 V1 I3 V4 I3 V1 I1 V3 I2 V3 I1 V2

I2 V3 I3 V3 I3 V3 I1 V2 I2 V1 I1 V1

I2 V2 I3 V1 I3 V4 I1 V1 I2 V2 I1 V4

I2 V4 I3 V2 I3 V2 I1 V4 I2 V4 I1 V3

What makes a split-plot design different from other designswith factorial
treatment structure? Here are three ways to think about whatmakes the split
plot different. First, the split plot has two sizes of units and two separate ran-
domizations. Whole plots act as experimental units for one randomization,Split plots have

two sizes of units
and two
randomizations

which assigns levels of the whole-plot factor irrigation tothe whole plots.
The other randomization assigns levels of the split-plot factor variety to split
plots. In this randomization, split plots act as experimental units, and whole
plots act as blocks for the split plots. There are two separate randomizations,
with two different kinds of units that can be identified before randomization
starts. This is the way I usually think about split plots.

Second, a split-plot randomization can be done in one stage,assigning
factor-level combinations to split plots, provided that werestrict the random-Split plots restrict

randomization ization so that all split plots in any whole plot get the same level of the whole-
plot factor and no two split plots in the same whole plot get the same level
of the split-plot factor. Thus a split-plot design is a restricted randomization.
We have seen other restrictions on randomization; for example, RCB designs
can be considered a restriction on randomization.

Third, a split plot is a factorial design in incomplete blocks with one main
effect confounded with blocks. The whole plots are the incomplete blocks,Split plots

confound
whole-plot factor
with incomplete
blocks

and the whole-plot factor is confounded with blocks. We willstill be able to
make inference about the whole-plot factor, because we haverandomized the
assignment of whole plots to levels of the whole-plot factor. This is analo-
gous to recovering interblock information in a BIBD, but is fortunately much
simpler.

Here is another split-plot example to help fix ideas. A statistically ori-
ented music student performs the following experiment. Eight pianos are
obtained, a baby grand and a concert grand from each of four manufacturers.
Forty music majors are divided at random into eight panels offive students
each. Two panels are assigned at random to each manufacturer, and will hear
and rate the sound of the baby and concert grand pianos from that manufac-
turer. Logistically, each panel goes to the concert hall fora 30-minute time
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period. The panelists are seated and blindfolded. The curtain opens to re-
veal the two pianos of the appropriate brand, and the same piece of music is
played on the two pianos in random order (the pianos are randomized, not
the music!). Each panelist rates the sound on a 1–100 scale after each piece.

The whole plots are the eight panels, and the whole-plot factor is man-
ufacturer. The split plots are the two listening sessions for each panel, and
the split-plot factor is baby versus concert grand. How can we tell? We have
to follow the randomization and see how treatments were assigned to units. Follow the

randomization to
identify a split plot

Manufacturer was randomized to panel, and piano type was randomized to
session within each panel. The randomization was restricted in such a way
that both sessions for a panel had to have the same level of manufacturer.
Thus panel was the unit for manufacturer, and session was theunit for type.
Individual panelist is a measurement unit in this experiment, not an experi-
mental unit. The response for any session must be some summary of the five
panelist ratings.

You cannot distinguish a split-plot design from some other design simply
by looking at a table of factor levels and responses. Youmustknow how the
randomization was done. We also have been speaking as if the whole plot
randomization was done first; this is often true, but is not required.

Before moving on, we should state that the flexibility that split plots pro- Split-plot
comparisons

more precise than
whole-plot

comparisons

vide for dealing with factors that are difficult to vary comesat a price: com-
parisons involving the split-plot factor are more precise than those involving
the whole-plot factor. This will be more explicit in the Hasse diagrams below,
where we will see two separate error terms, the one for whole plots having a
larger expectation.

16.2 Fancier Split Plots

The two examples given in the last section were the simplest possible split-
plot design: the treatments have a factorial structure withtwo factors, levels
of the whole-plot factor are assigned to whole plots in a completely random-
ized fashion; and levels of the split-plot factor are assigned to split plots in
randomized complete block fashion with whole plots as blocks. The key to
a split plot is two sizes of units and two randomizations; we can increase the
number of factors and/or change the whole-plot randomization and still have
a split plot.

Begin with the number of factors. The treatments assigned towhole plots
need not be just the levels of a single factor: they can be the factor-level com- Can have more

than one
whole-plot factor

binations of two or more factors. For example, the four pianomanufacturers
could actually be the two by two factorial combinations of the factors source
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(levels domestic and imported) and cost (levels expensive and very expen-
sive). Here there would be two whole-plot factors. Other experiments could
have more.

Similarly, the treatments assigned to split plots at the split-plot level can
be the factor-level combinations of two or more factors. Thefour varietiesCan have more

than one split plot
factor

of corn could be from the combinations of the two factors insect resistant/not
insect resistant, and fungus resistant/not fungus resistant. This would have
two split-plot factors, and more are possible.

Of course, these can be combined to have two or more factors atthe
whole-plot level and two or more factors at the split-plot level. The keyRandomization is

key feature of the split plot is not the number of factors, but thekind of random-
ization.

Next consider the way that whole-plot treatments are assigned to whole
plots. Our first examples used completely randomized design; this is not
necessary. It is very common to have the whole plots grouped together into
blocks, and assign whole-plot treatments to whole plots in RCB design. ForWhole plots

blocked in RCB example, the six whole plots in the irrigation experiment could be grouped
into two blocks of three whole plots each. Then we randomly assign the three
levels of irrigation to the whole plots in the first block, andthen perform an
independent randomization in the second block of whole plots. In this kind
of design, there are two kinds of blocks: blocks of whole plots for the whole-
plot treatment randomization, and whole plots acting as blocks for split plots
in the split-plot treatment randomization.

We can use other designs at the whole-plot level, arranging the whole
plots in Balanced Incomplete Blocks, Latin Squares, or other blocking de-Other block

designs for whole
plots

signs. These are not common, but there is no reason that they cannot be used
if the experimental situation requires it.

Whole plots always act as blocks for split plots. Additionalblocking at
the split-plot level is possible, but fairly rare. For example, we might expectAdditional split

plot blocking a consistent difference between the first and second pianos rated by a panel.
The two panels for a given manufacturer could then be run as a Latin Square,
with panel as column-blocking factor and first or second session as the row-
blocking factor. This would block on the additional factor time.

16.3 Analysis of a Split Plot

Analysis of a split-plot design is fairly straightforward,once we figure out
what the model should be. We assume that there is a random effect for everyRandom effect for

every
randomization

randomization. Thus we get a random value for each whole plot; if we ignore
the split plots, we have a design with whole plot as experimental unit, and this
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random value is the experimental error. We also get a random value for each
split plot to go with the split-plot randomization; this is experimental error at
the split-plot level. Here are several examples of split plots and models for
them.

Split plot with one whole-plot factor, one split-plot factor, and
CRD at the whole-plot level

Example 16.1

Suppose that there is one whole-plot factor A, witha levels, one split-plot
factor B, withb levels, andn whole plots for each level of A. The model is

yijk = µ + αi + ηk(i)

+ βj + αβij + ǫk(ij) ,

with ηk(i) as the whole-plot level random error, andǫk(ij) as the split-plot
level random error. Note that there is anηk(i) value for each whole plot
(some whole plots have bigger responses than others), and anǫk(ij) for each
split plot. The whole-plot error term nests within whole-plot treatments in the
same way that an ordinary error term nests within treatmentsin a CRD. In
fact, if you just look at whole-plot effects (those not involving j) and ignore
the split-plot effects in the second line, this model is a simple CRD on the
whole plots with the whole-plot factor as treatment. Similarly, if you lump
together all the whole-plot effects in the first line and think of them as blocks,
then we have a model for an RCB with the first line as block, sometreatment
effects, and an error.

Below are two Hasse diagrams. The first is generic and the second is for
a split plot withan = 10 whole plots, whole-plot factor A witha = 2 levels,
and split-plot factor B withb = 3 levels. The denominator for the whole-plot
factor A is whole-plot error (WPE); the denominator for the split-plot factor
B and the AB interaction is split-plot error (SPE).

M 1
1

A a
a−1

(WPE)an
an−a

B b
b−1

AB ab
(a−1)(b−1)

(SPE)abn
a(b−1)(n−1)

M 1
1

A 2
1

(WPE)10
8

B 3
2

AB 6
2

(SPE)3016
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Example 16.2 Split plot with two whole-plot factors, one split-plot factor, and
CRD at the whole-plot level
Now consider a split-plot design with three factors, two at the whole-plot
level and one at the split-plot level. We still assume a completely randomized
design for whole plots. An appropriate model for this designwould be

yijkl = µ + αi + βj + αβij + ηl(ij)

+ γk + αγik + βγjk + αβγijk + ǫl(ijk) ,

where we have again arranged the model into a first line with whole-plot
effects (those withoutk) and a second line with split-plot effects. The indices
i, j, andk run up toa, b, andc, the number of levels of factors A, B, and C;
and the indexl runs up ton, the replication at the whole-plot level.

Here are two Hasse diagrams. The first is generic for this setup, and the
second is for such a split plot withn = 5 and whole-plot factors A and B
with a = 2 andb = 3 levels, and split-plot factor C withc = 5 levels. The
denominator for the whole-plot effects A, B, and AB is whole-plot error; the
denominator for the split-plot effects C, AC, BC, and ABC is split-plot error.

M 1
1

A a
a−1 B b

b−1

AB ab
(a−1)(b−1)

(WPE)abn
ab(n−1)

C c
c−1

AC ac
(a−1)(c−1) BC bc

(b−1)(c−1)

ABC abc
(a−1)(b−1)(c−1)

(SPE)abcn
ab(n−1)(c−1)

M 1
1

A 2
1 B 3

2

AB 6
2

(WPE)30
24

C 5
4

AC 10
4 BC 15

8

ABC 30
8

(SPE)15096

Example 16.3 Split plot with one whole-plot factor, two split-plot factors, and
CRD at the whole-plot level
This split plot again has three factors, but now only one is atthe whole-plot
level and two are at the split-plot level. We keep a completely randomized
design for whole plots. An appropriate model for this designwould be

yijkl = µ + αi + ηl(i)

+βj + αβij + γk + αγik + βγjk + αβγijk + ǫl(ijk) ,

where we have arranged the model into a first line with whole-plot effects
(those withoutj or k) and a second line with split-plot effects. The indicesi,
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j, andk run up toa, b, andc, the number of levels of factors A, B, and C; and
the indexl runs up ton, the amount of replication at the whole-plot level.

Below is the generic Hasse diagram for such a split plot. The denomina-
tor for the whole-plot effect A is whole-plot error; the denominator for the
split plot effects B, AB, C, AC, BC, and ABC is split-plot error.

M 1
1

A a
a−1

(WPE)an
a(n−1)

B b
b−1

AB ab
(a−1)(b−1)

C c
c−1

AC ac
(a−1)(c−1) BC bc

(b−1)(c−1)

ABC abc
(a−1)(b−1)(c−1)

(SPE)abcn
a(n−1)(bc−1)

Split plot with one whole-plot factor, one split-plot factor, and RCB
at the whole-plot level

Example 16.4

Now consider a split-plot design with two factors, one at thewhole-plot level
and one at the split-plot level, but use a block design for thewhole plots. An
appropriate model for this design would be

yijkl = µ + αi + γk + ηl(ik)

+ βj + αβij + ǫl(ijk) ,

where we have again arranged the model into a first line with whole-plot
effects (those withoutj) and a second line with split-plot effects. The indices
i andj run up toa andb, the number of levels of factors A and B; the index
k runs up ton, the number of blocks at the whole-plot level; and the indexl
runs up to 1, the number of whole plots in each block getting a given whole-
plot treatment or the number of split plots in each whole plotgetting a given
split-plot treatment. Thus the model assumes that block effects are fixed and
additive with whole-plot treatments, and there is a random error for each
whole plot. This is just the standard RCB model applied to thewhole plots.

Below is a generic Hasse diagram for a blocked split plot and asample
Hasse diagram for a split plot withn = 5 blocks and whole-plot factor A with
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a = 2 levels, and split-plot factor B withb = 3 levels. The denominator for
the whole-plot effect A is whole-plot error; the denominator for the split-plot
effects B and AB is split-plot error.

M 1
1

Blk n
n−1 A a

a−1

(WPE)na
(n−1)(a−1)

B b
b−1

AB ab
(a−1)(b−1)

(SPE)nab
a(n−1)(b−1)

M 1
1

Blk 5
4 A 2

1

(WPE)10
4

B 3
2

AB 6
2

(SPE)3016

This model assumes that blocks are additive. If we allow a block by whole-
plot factor interaction, then there will be no degrees of freedom for whole-
plot error, and we will need to use the block by whole-plot factor interaction
as surrogate error for whole-plot factor.

We can use our standard methods for mixed-effects factorials from Chap-
ter 12 to analyze split-plot designs using these split-plotmodels. Alter-
natively, we can achieve the same results using the following heuristic ap-
proach. A split plot has two sizes of units and two randomizations, so first
split the variation in the data into two bundles, the variation between wholePartition variation

into between and
within whole plots

plots and the variation within whole plots (between split plots). Using a
simple split-plot design with just two factors, there arean whole plots and
N − 1 = abn − 1 degrees of freedom between all the responses. We can get
the variation between whole plots by considering the whole plots to bean
“treatment groups” ofb units each and doing an ordinary one-way ANOVA.
There are thusan − 1 degrees of freedom between the whole plots and
(abn − 1) − (an − 1) = an(b − 1) degrees of freedom within whole plots,
between split plots. Visualize this decomposition as:

Between WPan−1 Within WPan(b−1)

Total(N−1)

The between whole plots variation is made up of effects that affect com-
plete whole plots. These include the whole-plot treatment factor(s), whole-
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plot error, and any blocking that might have been done at the whole-plot level. Whole-plot
variation includes
blocks, whole-plot

factor, and
whole-plot error

This variation yields the following decomposition, assuming the whole plots
were blocked.

Blocksn−1 Aa−1 WPE(a−1)(n−1)

Between WPan−1

The variation between split plots (within whole plots) is variation in the
responses that depends on effects that affect individual split plots, including Split-plot variation

includes split-plot
factor, whole-by-

split-factor
interaction, and

split-plot error

the split-plot treatment factor(s), interaction between whole-plot and split-
plot treatment factors, and split-plot error. The variation is decomposed as

Bb−1 AB(a−1)(b−1) SPEa(b−1)(n−1)

Within WPan(b−1)

The easiest way to get the degrees of freedom for split-plot error is by sub-
traction. There arean(b − 1) degrees of freedom between split plots within Get df by

subtractionwhole plots;b−1 of these go to B,(a−1)(b−1) go to AB, and the remainder
must be split-plot error.

It may not be obvious why the interaction between the whole- and split-
plot factors should be a split-plot level effect. Recall that one way to describe
this interaction is how the split-plot treatment effects change as we vary the Interaction at

split-plot levelwhole-plot treatment. Because this is dealing with changing split-plot treat-
ment levels, this effect cannot be at the whole-plot level; it must be lower.

Assembling the pieces, we get the overall decomposition:

Blkn−1 Aa−1 WPE(a−1)(n−1)

Between WPan−1

Bb−1 AB(a−1)(b−1) SPEa(b−1)(n−1)

Within WPan(b−1)

Total(N−1)

I find that this decomposition gives me a little more understanding about what
is going on in the split-plot analysis than just looking at the Hasse diagram.
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Table 16.1:Number of memory errors by type, tension, and anxiety
level; subjects are columns.

Anxiety 1 1 1 1 1 1 2 2 2 2 2 2
Tension 1 1 1 2 2 2 1 1 1 2 2 2

Type 1 18 19 14 16 12 18 16 18 16 19 16 16
Type 2 14 12 10 12 8 10 10 8 12 16 14 12
Type 3 12 8 6 10 6 5 8 4 6 10 10 8
Type 4 6 4 2 4 2 1 4 1 2 8 9 8

We compute sums of squares and estimates of treatment effects in the
usual way. When it is time for testing or computing standard errors for con-
trasts, effects at the split-plot level use the split-plot error with its degrees of
freedom, and effects at the whole-plot level use the whole-plot error with its
degrees of freedom.

Example 16.5 Anxiety, tension, and memory
We wish to study the effects of anxiety and muscular tension on four differ-
ent types of memory. Twelve subjects are assigned to one of four anxiety-
tension combinations at random. The low-anxiety group is told that they will
be awarded $5 for participation and $10 if they remember sufficiently accu-
rately, and the high-anxiety group is told that they will be awarded $5 for
participation and $100 if they remember sufficiently accurately. Everyone
must squeeze a spring-loaded grip to keep a buzzer from sounding during
the testing period. The high-tension group must squeeze against a stronger
spring than the low-tension group. All subjects then perform four memory
trials in random order, testing four different types of memory. The response
is the number of errors on each memory trial, as shown in Table16.1.

This is a split-plot design. There are two separate randomizations. We
first randomly assign the anxiety-tension combinations to each subject. Even
though we will have four responses from each subject, the randomization
is restricted so that all four of those responses will be at the same anxiety-
tension combination. Anxiety and tension are thus whole-plot treatment fac-
tors. Each subject will do four memory trials. The trial typeis randomized
to the four trials for a given subject. Thus the four trials for a subject are
the split plots, and the trial type is the split-plot treatment. At the whole-plot
level, the anxiety-tension combinations are assigned according to a CRD, so
there is no blocking.

Listing 16.1 shows some Minitab output from an analysis of these data.
The ANOVA table has been arranged so that the whole-plot analysis is on
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Listing 16.1: Minitab output for memory errors data.

Source DF Seq SS Adj SS Adj MS F P

anxiety 1 10.083 10.083 10.083 0.98 0.352

tension 1 8.333 8.333 8.333 0.81 0.395

anxiety*tension 1 80.083 80.083 80.083 7.77 0.024

subject(anxiety tension) 8 82.500 82.500 10.312 4.74 0.001

type 3 991.500 991.500 330.500 152.05 0.000

anxiety*type 3 8.417 8.417 2.806 1.29 0.300

tension*type 3 12.167 12.167 4.056 1.87 0.162

anxiety*tension*type 3 12.750 12.750 4.250 1.96 0.148

Error 24 52.167 52.167 2.174

top and the split-plot analysis below, as is customary. The whole-plot error is
shown assubjectnested inanxietyandtension,and the split-plot error is just
denotedError. Note that the split-plot error is smaller than the whole-plot
error by a factor of nearly 5. Subject to subject variation isnot negligible,
and split-plot comparisons, which are made with subjects asblocks, are much
more precise than whole-plot comparisons, where subjects are units.

At the split-plot level, the effect of type is highly significant. All the type
effectsγk differ from each other by more than 3, and the standard error of
the difference of two type means is

√
2.174(1/12 + 1/12) = .602. Thus all

type means are at least 5 standard errors apart and can be distinguished from
each other. No interactions with type appear to be significant.

Analysis at the whole-plot level is more ambiguous. The maineffects
of anxiety and tension are both nonsignificant, but their interaction is mod-
erately significant. Figure 16.1 shows an interaction plot for anxiety and
tension. We see that more errors occur when anxiety and tension are both
low or both high. With such strong interaction, it makes sense to examine
the treatment means themselves. The greatest difference between the four
whole plot treatment means is 3.5, and the standard error fora difference of
two means is

√
10.312(1/12 + 1/12) = 1.311. This is only a bit more than

2.5 standard errors and is not significant after adjusting for multiple com-
parisons; for example, the Bonferronip-value is .17. This is in accordance
with the result we obtain by considering the four whole-plottreatments to
be a single factor with four levels. Pooling sums of squares and degrees of
freedom for anxiety, tension, and their interaction, we geta mean square of
32.83 with 3 degrees of freedom and ap-value of .08.

The residuals-versus-predicted plot shows slight nonconstant variance;
no transformation makes much improvement, so the data have been analyzed
on the original scale.
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Figure 16.1: Anxiety by tension interaction plot for memory
errors data, using Minitab.

In conclusion, there is strong evidence that the number of errors differs
between memory type. There is no evidence that this difference depends on
anxiety or tension individually. There is mild evidence that there are more
errors when anxiety and tension are both high or both low, butnone of the
actual anxiety-tension combinations can be distinguished.

Let me note here that some authors prefer an alternate model for the split
plot with one whole-plot factor, one split-plot factor, andRCB structure onAlternate model

has blocks
random and
interacting

the whole plots. This model assumes that blocks are a random effect that
interact with all other factors; effectively this is a three-way factorial model
with one random factor.

16.4 Split-Split Plots

What we have split once, we can split again. Consider an experiment withSplit the split plots
three factors. The levels of factor A are assigned at random to n whole plots
each (total ofan whole plots). Each whole plot is split intob split plots.
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The levels of factor B are assigned at random to split plots, using whole
plots as blocks. So far, this is just like a split-plot design. Now each split
plot is divided intoc split-split plots, and the levels of factor C are randomly
assigned to split-split plots using split plots as blocks. Obviously, once we
get used to splitting, we can split again for a fourth factor,and keep on going.

Split-split plots arise for the same reasons as ordinary split plots: some
factors are easier to vary than others. For example, consider a chemical ex-
periment where we study the effects of the type of feedstock,the temperature
of the reaction, and the duration of the reaction on yield. Some experimental
setups require extensive cleaning between different feedstocks, so we might
wish to vary the feedstock as infrequently as possible. Similarly, there may Use split-split

plots with three
levels of difficulty

for varying factors

be some delay that must occur when the temperature is changedto allow
the equipment to equilibrate at the new temperature. In sucha situation, we
might choose type of feedstock as the whole-plot factor, temperature of reac-
tion as the split-plot factor, and duration of reaction as the split-split-plot fac-
tor. This makes our experiment more feasible logistically,because we have
fewer cleanups and temperature delays; comparisons involving time will be
more precise than those for temperature, which are themselves more precise
than those for feedstock.

Split-split plots have three sizes of units. Whole plots actas unit for
the whole-plot treatments. Whole plots act as blocks for split plots, and split
plots act as unit for the split-plot treatments. Split plotsact as blocks for split-
split plots, and split-split plots act as unit for the split-split-plot treatments.
The whole plots can be blocked, just as in the split plot.

Split-split plot with one whole-plot factor, one split-plot factor, one
split-split-plot factor and CRD at the whole plot level

Example 16.6

Now consider a split-split-plot design with three factors,one at the whole-
plot level, one at the split-plot level, and one at the split-split-plot level, with
a completely randomized design for whole plots. An appropriate model for
this design would be

yijkl = µ + αi + ηl(i)

+ βj + αβij + ζl(ij)

+ γk + αγik + βγjk + αβγijk + ǫl(ijk) ,

where we have arranged the model into a first line with whole-plot effects
(those withoutj or k), a second line with split-plot effects (those withj but
not k), and the last line with split-split-plot effects. The indicesi, j, andk
run up toa, b, andc, the number of levels of factors A, B, and C; and the
indexl runs up ton, the amount of replication at the whole plot level.
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Below is a Hasse diagram for this generic split-split plot with three fac-
tors and a CRD at the whole-plot level. The denominator for the whole-plot
effect A is whole-plot error; the denominator for the split-plot effects B and
AB is the split-plot error; and the denominator for the split-split-plot effects
C, AC, BC, and ABC is split-split-plot error (SSPE).

M 1
1

A a
a−1

(WPE)na
a(n−1)

B b
b−1

AB ab
(a−1)(b−1)

(SPE)nab
a(n−1)(b−1)

C c
c−1

AC ac
(a−1)(c−1) BC bc

(b−1)(c−1)

ABC abc
(a−1)(b−1)(c−1)

(SSPE)nabc
ab(n−1)(c−1)

A split-split plot has at least three treatment factors, butit can have moreRandomization,
not number of
factors,
determines
design

than three. Any of whole-, split-, or split-split-plot treatments can have facto-
rial structure. Thus you cannot distinguish a split plot from a split-split plot
or other design solely on the basis of the number of factors; the units and
randomization determine the design.

Analysis of a split-split plot can be conducted using standard methods
for mixed-effects factorials, but I find that a graphical partitioning of degreesPartition variation

between levels of
the design

of freedom and their associated sums of squares helps me understand what
is going on. Consider three factors witha, b, andc levels, in a split-split-plot
design withn replications. Begin the decomposition just as for a split plot:

Between WPan−1 Within WPan(bc−1)

Total(abcn−1)

The only difference between this and a split-plot design is that we havebc−1
degrees of freedom within each whole plot, because each whole plot is a
bundle ofbc split-split-plot values instead of justb split-plot values.

The between whole plots variation partitions in the same wayas for a
split-plot design. For example, with blocking we get:
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Blocksn−1 Aa−1 WPE(a−1)(n−1)

Between WPan−1

Variation within whole plots can be divided into variation between split
plots and variation between split-split plots within the split plots. This is like Between and

within split plotssplit plots as block variation, and split-split plots as unit to unit within block
variation. This partition is:

Between SPan(b−1) Within SPabn(c−1)

Within WPan(bc−1)

There areb split plots in each whole plot, sob−1 degrees of freedom between
split plots in a single whole plot, andan(b − 1) total degrees of freedom
between split plots within whole plots. There arec split-split plots in each
split plot, soc − 1 degrees of freedom between split-split plots in a single
split plot, andabn(c − 1) total degrees of freedom between split-split plots
within a split plot.

The variation between split plots within whole plots is partitioned just as Between split
plotsfor a split-plot design:

Bb−1 AB(a−1)(b−1) SPEa(b−1)(n−1)

Between SPan(b−1)

Finally, we come to the variation between split-split plotswithin split Between
split-split plotsplots. This is variation due to factor C and its interactions, and split-split-plot

error:

Cc−1 AC(a−1)(c−1) BC(b−1)(c−1) ABC(a−1)(b−1)(c−1) SSPEab(c−1)(n−1)

Within SPabn(c−1)
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Table 16.2:Percent of wetland biomass that is nonweed, by
table (T), nitrogen (N), weed (W), and clipping (C).

W 1 W 2 W 3
T N C 1 C 2 C 1 C 2 C 1 C 2

1 1 87.2 88.8 70.4 75.7 75.9 80.6
2 80.5 83.8 59.2 61.5 59.5 62.5
3 76.8 80.8 47.8 49.5 48.4 52.9
4 77.7 81.5 35.7 37.3 38.3 42.4

2 1 78.2 80.5 65.1 68.3 65.3 66.6
2 79.8 85.2 57.6 61.4 58.5 61.6
3 82.4 83.1 50.5 54.0 51.6 54.7
4 75.5 78.7 39.0 43.9 41.9 45.1

Example 16.7 Weed biomass in wetlands
An experiment studies the effect of nitrogen and weeds on plant growth in
wetlands. We investigate four levels of nitrogen, three weed treatments (no
additional weeds, addition of weed species 1, addition of weed species 2),
and two herbivory treatments (clipping and no clipping). Wehave eight trays;
each tray holds three artificial wetlands consisting of rectangular wire baskets
containing wetland soil. The trays are full of water, so the artificial wetlands
stay wet. All of the artificial wetlands receive a standard set of seeds to start
growth.

Four of the trays are placed on a table near the door of the greenhouse,
and the other four trays are placed on a table in the center of the greenhouse.
On each table, we randomly assign one of the trays to each of the four ni-
trogen treatments. Within each tray, we randomly assign thewetlands to the
three weed treatments. Each wetland is split in half. One half is chosen at
random and will be clipped after 4 weeks, with the clippings removed; the
other half is not clipped. After 8 weeks, we measure the fraction of biomass
in each wetland that is nonweed as our response. Responses are given in
Table 16.2.

This is a split-split-plot design. Everything in a given tray has the same
level of nitrogen, so the trays are whole plots, and nitrogenis the whole-plot
factor. The whole plots are arranged in two blocks, with table as block ac-
counting for any differences between the door and center of the greenhouse.
Both measurements for a given wetland have the same weed treatment, so
the wetlands are split plots, and weed is the split-plot factor. Finally each
wetland half gets its own clipping treatment, so wetland halves are split-split
plots, and clipping is the split-split-plot factor.
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Listing 16.2: SAS output for wetland weeds data.

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 35 11602.7467 331.5070 310.30 0.0001

Error 12 12.8200 1.0683

Source DF Type I SS Mean Square F Value Pr > F

TABLE 1 14.30083 14.30083 13.39 0.0033

N 3 3197.05500 1065.68500 997.52 0.0001

TRAY 3 278.95083 92.98361 87.04 0.0001

W 2 7001.25542 3500.62771 3276.72 0.0001

N*W 6 929.51625 154.91938 145.01 0.0001

WET 8 50.41833 6.30229 5.90 0.0033

C 1 125.45333 125.45333 117.43 0.0001

N*C 3 0.73500 0.24500 0.23 0.8742

W*C 2 0.24542 0.12271 0.11 0.8925

N*W*C 6 4.81625 0.80271 0.75 0.6203

Tests of Hypotheses using the Type I MS for TRAY as an error term

Source DF Type I SS Mean Square F Value Pr > F

N 3 3197.05500 1065.68500 11.46 0.0377

Tests of Hypotheses using the Type I MS for WET as an error term

Source DF Type I SS Mean Square F Value Pr > F

W 2 7001.25542 3500.62771 555.45 0.0001

N*W 6 929.51625 154.91938 24.58 0.0001

Listing 16.2 shows SAS output for these data. Notice that F-ratios and
p-values in the ANOVA table use the 12-degree-of-freedom error term as
denominator. This is correct for split-split-plot terms (those including clip-
ping), but is incorrect for whole-plot and split-plot terms. Those must be
tested separately in SAS by specifying the appropriate denominators. This
is important, because the whole-plot error mean square is about 15 times as
big as the split-plot error mean square, which is about 6 times as big as the
split-split-plot mean square.

All main effects and the nitrogen by weed interaction are significant. An
interaction plot for nitrogen and weed shows the nature of the interaction,
Figure 16.2. Weeds do better as nitrogen is introduced, but the effect is much
larger when the weeds have been seeded. Clipping slightly increases the
fraction of nonweed biomass.
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Figure 16.2: Nitrogen by weed interaction plot for for wetland
weeds data, using Minitab.

Residual plots show that the variance increases somewhat with the mean,
but no reasonable transformation fixes the problem.

16.5 Other Generalizations of Split Plots

One way to think about split plots is that the units have a structure somewhat
like that of nested factorial treatments. In a split plot, the split plots are nested
in whole plots; in a split-split plot, the split-split plotsare nested in split plots,Other unit

structures
besides nesting
are possible

which are themselves nested in whole plots. In the split-plot design, levels
of different factors are assigned to the different kinds of units. This section
deals with some other unit structures that are possible.

Example 16.8 Machine shop

Consider a machine shop that is producing parts cut from metal blanks. The
quality of the parts is determined by their strength and fidelity to the desired
shape. The shop wishes to determine how brand of cutting tooland sup-
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plier of metal blank affect the quality. An experiment will be performed one
week, and then repeated the next week. Four brands of cuttingtools will
be obtained, and brand of tool will be randomly assigned to four lathes. A
different supplier of metal blank will be randomly selectedfor each of the 5
work days during the week. That way, all brand-supplier combinations are
observed.

A schematic for the design might look like this:

Day 1 Day 2 Day 3 Day 4 Day 5

Lathe 1 Br 3 Sp 5 Br 3 Sp 1 Br 3 Sp 2 Br 3 Sp 4 Br 3 Sp 3

Lathe 2 Br 2 Sp 5 Br 2 Sp 1 Br 2 Sp 2 Br 2 Sp 4 Br 2 Sp 3

Lathe 3 Br 1 Sp 5 Br 1 Sp 1 Br 1 Sp 2 Br 1 Sp 4 Br 1 Sp 3

Lathe 4 Br 4 Sp 5 Br 4 Sp 1 Br 4 Sp 2 Br 4 Sp 4 Br 4 Sp 3

The table shows the combinations of the four lathes and 5 days. Brand is
assigned to lathe, or row of the table. Thus the unit for brandis lathe. Sup-
plier of blanks is assigned to day, or column of the table. Thus the unit for
supplier is day. There are two separate randomizations donein this design to
two different kinds of units, but this is not a split plot, because here the units
do not nest as they would in a split plot.

The design used in the machine shop example has been given a couple
of different names, includingstrip plot andsplit block. What we have in Strip plot or split

block, with units
that cross

a strip plot is two different kinds of units, with levels of factors assigned to
each unit, but the unitscrosseach other. This is in contrast to the split plot,
where the units nest.

Like the split plot, the strip plot arises through ease-of-use considerations. Strip plot easy to
useIt is easier to use one brand of tool on each lathe than it is to change. Simi-

larly, it is easier to use one supplier all day than to change suppliers during
the day. When units are large and treatments difficult to change, but the units
and treatments can cross, a strip plot can be the design of choice.

The usual assumptions in model building for split plots and related de-
signs such as strip plots are that there is a random term for each kind of unit, Random term for

every unit and
every cross of

units

or kind of randomization if you prefer, and there is a random term whenever
two units cross. For the split plot, there is a random term forwhole plots
that we call whole-plot error, and a random term for split plots that we call
split-plot error. There are no further random terms becausethe unit structure
in a whole plot does not cross; it nests.

For the strip plot, there is a random term for rows and a randomterm for
columns, because these are the two basic units. There is alsoa random term
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for each row-column combination, because this is where two units cross. For
the machine tool example, we have the model

yijkl = µ + γk + αi + ηl(ik) +

βj + ζl(jk) +

αβij + ǫl(ijk) ,

wherei and j index the levels of brand and supplier,k indexes the week
(weeks are acting as blocks), andl is always 1 and indicates a particular unitStrip plot has row,

column, and unit
errors

for a block-treatment-unit size combination. The termηl(ik) is the random
effect for machine to machine (row to row) differences within a week; the
termζl(jk) is the random effect for day to day (column to column) differences
within a week;ǫl(ijk) is unit experimental error.

Here is a Hasse diagram for the machine shop example. We denote brand
and supplier by B and S; R and C denote the row and column randomeffects.

M 1
1

Blk 2
1 B 4

3

(R) 8
3

S5
4

(C) 10
4 BS20

12

(RC)40
12

We can see from the Hasse diagram that row and column mean squares tendInteraction error
smaller to be larger than the error for individual cells. This means that a strip plot

experiment has less precise comparisons and lower power formain effects,
and more precision and power for interactions.

When we saw that treatment factors could cross or nest, a whole world
of new treatment structures opened to us. Many combinationsof crossing
and nesting were useful in different situations. The same istrue for unitUnits can nest

and/or cross structures—we can construct more diverse designs by combining nesting and
crossing of units. Just as with the split plot and strip plot,these unit structures
usually arise through ease-of-use requirements.

Now extend the machine tool example by supposing that in addition to
four brands of tool, there are also two types. Brands of tool are assigned
to each lathe at random as before, but we now assign at random the first or
second tool type to morning or afternoon use. If all the lathes use the sameThree kinds of

units crossing type of tool in the morning and the other type in the afternoon, then our units



16.5 Other Generalizations of Split Plots 437

have a three-way crossing structure, with lathe, day, and hour being rows,
columns, and layers in a three-way table. There will be separate random
terms for each unit type (lathe, day, and hour) and for each crossing of unit
types (lathe by day, lathe by hour, day by hour, and lathe by day by hour).

M 1
1

(Blk) 2
1 B 4

3

(R) 8
3

S5
4

(C) 10
4 BS20

12

(RC)40
12

T 2
1

(L) 4
1 BT 8

3

(RL) 16
3

ST10
4

(CL) 20
4 BST40

12

(RCL) 80
12

In the Hasse diagram, R, C, and L are the random effects for rows, columns,
and layers (lathes, days, and hours). The interaction RCL cannot be distin-
guished from the usual experimental error E. The appropriate test denomina-
tors are

Term B S T BS BT ST BST
Denominator R C L RC RL CL RCL

Alternatively, suppose that instead of using the same type of tool for all
lathes in the mornings and afternoons, we instead randomizetypes to morn-
ing or afternoon separately for each lathe. Then ignoring supplier and day, Units nested and

crossedwe have hour units nested in lathe units, so that the experiment is a split plot
in brand and type. Overall we have three treatment factors, all crossed, and
unit structure hour nested in lathe and crossed with day. This is a split plot
(in brand and type, with lathe as whole plot, time as split plot, and week as
block) crossed with an RCB (in supplier, with day as unit and week as block).

The Hasse diagram for this setup is on the next page. In the Hasse di-
agram, R, C, and L are the random effects for rows, columns, and layers
(lathes, days, and hours). The layer effects L (hours) are nested in rows
(lathes). Again, the interaction CL cannot be distinguished from the usual
experimental error E. The appropriate test denominators are

Term B T BT S BS TS BTS
Denominator R L L C RC CL CL
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M 1
1

Blk 2
1 B 4

3

(R) 8
3

T 2
1

BT 8
3

(L) 16
4

S5
4

(C) 10
4 BS20

12

(RC)40
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4
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16.6 Repeated Measures

Consider the following experiment, which looks similar to asplit-plot design
but lacks an important ingredient. We wish to study the effects of different
infant formulas and time on infant growth. Thirty newborns are assigned at
random to three different infant formulas. (All the formulas are believed to
provide adequate nutrition, and informed consent of the parents is obtained.)
The weights of the infants are measured at birth, 1 week, 4 weeks, 2 months,
and 6 months. The main effect of time is expected; the research questions
relate to the main effect of formula and interaction betweentime and formula.

This looks a little like a split-plot design, with infant as whole plot and
formula as whole-plot treatment, and infant time periods assplit plot and age
as split-plot treatment. However, this is not a split-plot design, because ageSplit plot needs

two
randomizations

was not randomized; indeed, age cannot be randomized. A split-plot design
has two sizes of units and two randomizations. This experiment has two sizes
of units, but only one randomization.

This is the prototypicalrepeated-measuresdesign. The jargon used in
repeated measures is a bit different from split plots. Wholeplots are usually
called “subjects,” whole-plot treatment factors are called “grouping factors”Repeated

measures have
only one
randomization

or “between subjects factors,” and split-plot treatment factors are called “re-
peated measures” or “within subjects factors” or “trial factors.” In a repeated-
measures design, the grouping factors are randomized to thesubjects, but the
repeated measures are not randomized. The example has a single group-
ing factor applied to subjects in a completely randomized fashion, but there
could be multiple grouping factors, and the subject level design could include
blocking.
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What we really have with a repeated-measures design is that subjects are
units, and every unit has amultivariate response. That is, instead of a single Repeated

measures have
multivariate

response

response, every subject has a whole vector of responses, with one element
for each repeated measure. Thus, each infant in the example above has a
response that is a vector of length 5, giving weights at the five ages.

The challenge presented by repeated measures is that the components in
a vector of responses tend to be correlated, not independent, and every pair of Correlated

responses can
improve precision

but complicate
analysis

repeated measures could have a different correlation. Thiscorrelation is both
a blessing and a curse. It is a blessing because within-subject correlation
makes comparisons between repeated measures more precise,in the same
way that blocking makes treatment comparisons more precise. It is a curse
because correlation complicates the analysis.

There are three basic choices for the analysis of repeated-measures de-
signs. First, you can do a full multivariate analysis, though such an analysis Multivariate

analysisis beyond the scope of this text. Second, you can make a suitable univariate
summary of the data for each subject, and then use these summaries as the
response in a standard analysis. For the infant formula example, we could
calculate the average growth rate for each infant and then analyze these as Univariate

summariesresponses in a CRD with three treatments, or we could simply use the 6
month weight as response to see if the formulas have any effect on weight af-
ter 6 months. In fact, most experiments have more than one response, which
we usually analyze separately; the trick comes in analyzingmore than one
response at a time.

The third method is to analyze the data with a suitable ANOVA model.
The applicability of the third method depends on whether nature has been
kind to us: if the correlation structure of the responses meets certain require-
ments, then we can ignore the correlation and get a proper analysis using uni- Univariate

ANOVA works in
some cases, such

as compound
symmetry, or two

repeated
measures

variate mixed-effects models and ANOVA. For example, if allthe repeated
measures have the same variance, and all pairs of repeated measures have the
same correlation (a condition calledcompound symmetry), then we can get an
appropriate analysis by treating the repeated-measures design as if it were a
split-plot design. Another important case is when there areonly two repeated
measures; then the requirements are always met. Thus you canalways use
the standard split-plot type analysis when there are only two repeated mea-
sures. When the ANOVA model is appropriate, it provides morepowerful
tests than the multivariate procedures.

The mysterious “certain requirements” mentioned above arecalled the
Huynh-Feldt condition or circularity, and it states that all differences of re- Huynh-Feldt

condition and
Mauchly test

peated measures have the same variance. For example, compound symmetry
implies the Huynh-Feldt condition. There is a test for the Huynh-Feldt con-
dition, called the Mauchly test for sphericity, but it is very dependent on
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normality in the same way that most classical tests of equal variance are de-
pendent on normality.

The standard model in a univariate analysis of repeated measures as-
sumes that there is a random effect for each subject, and thatthis random ef-
fect interacts with all repeated-measures effects and their interactions, but notRandom subject

effect interacts
with trial factors

with the grouping by repeated interactions. For example, consider a model
for the infant weights:

yijk = µ + αi + ǫk(i) +

βj + αβij + ǫβjk(i) .

The termαi is the formula effect (F), andǫk(i) is the subject random effect
(S); effectβj is age (A), andǫβjk(i) is the interaction of age and subject.

M 1
1

F a
a−1

(S)an
a(n−1)

A b
b−1

FA ab
(a−1)(b−1)

(SA) abn
a(n−1)(b−1)

M 1
1

F 3
2

(S)30
27

A 5
4

FA 15
8

(SA) 150
108

We see that formula is tested against subject, and age and theformula by age
interaction are tested against the subject by age interaction. This analysis isOne trial factor is

like split plot just like a split-plot design.
Suppose now that the infants are weighed twice at each age, using two

different techniques. Now the model looks like

yijkl = µ + αi + ǫl(i) +

βj + αβij + ǫβjl(i) +

γk + αγik + ǫγkl(i) +

βγjk + αβγijk + ǫβγjkl(i) .

The repeated measures effects areβj for age,γk for measurement technique
(T), andβγjk for their interaction. Each of these is assumed to interact withTwo trial factors

unlike split plot the subject effectǫl(i). This leads to the error structure shown in the Hasse
diagram below, which is unlike either a split-plot design with two factors at
the split-plot level or a split-split plot.
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M 1
1

F 3
2

(S)30
27

A 5
4

FA 15
8

(SA) 150
108

T 2
1

FT 6
2

(ST)60
27

AT 10
4

FAT 30
8

(SAT) 300
108

The test denominators are

Term F A FA T FT AT FAT
Denominator S SA SA ST ST SAT SAT

16.7 Crossover Designs

In this section we make a brief return to crossover designs, which in Chap-
ter 13 we described as replicated Latin Squares with blocking on subjects Crossover as

Latin Squareand periods. For concreteness suppose that we have three treatments, three
periods, and twelve subjects.

The three treatments can be given to the subjects in any of sixorders.
Assign the orders at random to the subject, two subjects per order, and ob-
serve the responses to the treatments in the three periods. From this point
of view, the crossover design is a repeated measures design.Order is the
grouping factor,period is the trial factor, and treatment lies in the order by Crossover as

repeated
measure

period interaction. Any carryover effects are also in the order by period in-
teraction. It is customary not to fit the entire order by period interaction, but
instead to fit only treatment and carryover effects as needed. With this re-
duced model, the only difference between the repeated measures and Latin
Square approaches to a crossover design is that the Latin Square pools all be-
tween subjects variation into a single block term, and the repeated measure
splits this into between orders and between subjects withinorder, allowing Fit order effects
the estimation and testing of the overall order effect.

16.8 Further Reading and Extensions

Unbalanced mixed-effects designs are generally difficult to analyze, and split
plots are no different. Software that can compute Type I and III mean squares
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and their expectations for unbalanced data helps find reasonable test statis-
tics. Mathew and Sinha (1992) describe exact and optimal tests for unbal-
anced split plots.

Nature is not always so kind as to provide us with repeated-measures data
that meet the Huynh-Feldt condition (Huynh and Feldt 1970),and as noted
above, the Mauchly (1940) test is sensitive to nonnormality. The result of
nonconforming correlations is to make the within subjects procedures liberal;
that is, confidence intervals are too short and tests reject the null hypothesis
more often than they should. This tendency for tests to be liberal can be
reduced by modifying the degrees of freedom used when assessing p-values.
For example, the within subjects tests for B and AB haveb−1, a(b−1)(n−1)
and(a − 1)(b − 1), a(b − 1)(n − 1) degrees of freedom; these degrees of
freedom are adjusted by rescaling toλ(b − 1), λa(b − 1)(n − 1) andλ(a −
1)(b − 1), λa(b − 1)(n − 1), where1/(b − 1) ≤ λ ≤ 1.

There are two fairly common methods for computing this adjustmentλ.
The first is from Greenhouse and Geisser (1959); Huynh and Feldt (1976)
provide a slightly less conservative correction. Both adjustments are too te-
dious for hand computation but are available in many software packages.
Greenhouse and Geisser (1959) also provide a simple conservative test that
uses the minimum possible value ofλ, namely1/(b − 1). For this conserva-
tive approach, the tests for B and AB have1, a(n − 1) and(a− 1), a(n − 1)
degrees of freedom.

16.9 Problems

Briefly describe the experimental design you would choose for each ofProblem 16.1
the following situations, and explain why.

(a) A plant breeder wishes to study the effects of soil drainage and variety
of tulip bulbs on flower production. Twelve 3 m by 10 m experimental
sites are available in a garden. Each site is a .5 m–deep trench. Soil
drainage is changed by adding varying amounts of sand to a clay soil
(more sand improves drainage), mixing the two well, and placing the
mixture in the trench. The bulbs are then planted in the soils, and
flower production is measured the following spring. It is felt that four
different levels of soil drainage would suffice, and there are fifteen tulip
varieties that need to be studied.

(b) It’s Girl Scout cookie time, and the Girl Scout leaders want to find out
how to sell even more cookies (make more dough?) in the future. The
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variables they have to work with are type of sales (two levels: door-to-
door sales or table sales at grocery stores, malls, etc.) andcookie selec-
tion (four levels comprising four different “menus” of cookies offered
to customers). Administratively, the Girl Scouts are organized into
“councils” consisting of many “troops” of 30-or-so girls each. Each
Troop in the experiment will be assigned a menu and a sales type for
the year, and for logistical reasons, all the troops in a given council
should have the same cookie selection. Sixteen councils have agreed
to participate in the experiment.

(c) Rodent activity may be affected by photoperiod patterns. We wish to
test this possibility by treating newly-weaned mouse pups with three
different treatments. Treatment 1 is a control with the micegetting 14
hours of light and 10 hours of dark per day. Treatment 2 also has 14
hours of light, but the 10 hours of dark are replaced by 10 hours of a
low light level. Treatment 3 has 24 hours of full light.

Mice will be housed in individual cages, and motion detectors con-
nected to computers will record activity. We can use 24 cages, but the
computer equipment must be shared and is only available to usfor 1
month.

Mice should be on a treatment for 3 days—one day to adjust and
then 2 days to take measurements. We may use each mouse for more
than one treatment, but if we do, there should be 7 days of standard
photoperiod between treatments. We expect large subject-to-subject
variation. There may or may not be a change in activity as the rat pups
age; we don’t know.

A food scientist is interested in the production of ice cream. He has two Problem 16.2
different recipes (A and B). Additional factors that may affect the ice cream
are the temperature at which the process is run and the pressure used. We
wish to investigate the effects of recipe, temperature, andpressure on ice
cream viscosity. The production machinery is available for8 days, and two
batches of ice cream can be made each day. A fresh supply of milk will be
used each day, and there is probably some day to day variability in the quality
of the milk.

The production machinery is such that temperature and pressure have to
be set at the start of each day and cannot be changed during theday. Both
temperature and pressure can be set at one of two levels (low and high). Each
batch of ice cream will be measured for viscosity.

(a) Describe an appropriate experiment. Give a skeleton ANOVA (source
and degrees of freedom only), and describe an appropriate randomiza-
tion scheme.
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(b) Explain how to construct simultaneous 95% confidence intervals for
the differences in mean viscosity between the various combinations of
temperature and pressure.

An experiment was conducted to study the effects of irrigation, crop vari-Problem 16.3
ety, and aerially sprayed pesticide on grain yield. There were two replicates.
Within each replicate, three fields were chosen and randomlyassigned to be
sprayed with one of the pesticides. Each field was then divided into two east-
west strips; one of these strips was chosen at random to be irrigated, and
the other was left unirrigated. Each east-west strip was split into north-south
plots, and the two varieties were randomly assigned to plots.

Rep 1 Rep 2
P1 P2 P3 P1 P2 P3 Irrig Var

53.4 54.3 55.9 46.5 57.2 57.4 yes 1
53.8 56.3 58.6 51.1 56.9 60.2 yes 2
58.2 60.4 62.4 49.2 61.6 57.2 no 1
59.5 64.5 64.5 51.3 66.8 62.7 no 2

What is the design of this experiment? Analyze the data and report your
conclusions. What is the standard error of the estimated difference in aver-
age yield between pesticide 1 and pesticide 2? irrigation and no irrigation?
variety 1 and variety 2?

Most universities teach many sections of introductory calculus, and fac-Problem 16.4
ulty are constantly looking for a method to evaluate students consistently
across sections. Generally, all sections of intro-calculus take the final exam
at the same time, so a single exam is used for all sections. An exam service
claims that it can supply different exams that consistentlyevaluate students.
Some faculty doubt this claim, in part because they believe that there may be
an interaction between the text used and the exam used.

Three math departments (one each at Minnesota, Washington,and Berke-
ley) propose the following experiment. Three random final exams are ob-
tained from the service: E1, E2, and E3. At Minnesota, the three exams will
be used in random order in the fall, winter, and spring quarters. Randomiza-
tion will also be done at Washington and Berkeley. The three schools all use
the same two intro calculus texts. Sections of intro calculus at each school
will be divided at random into two groups, with half of the sections using text
A and the other half using text B. At the end of the year, the mean test scores
are tallied with the following results.
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Text

School Exam A B
Wash 1 81 87

2 79 85
3 70 78

Minn 1 84 82
2 81 81
3 83 84

Berk 1 87 98
2 82 93
3 86 90

Analyze these data to determine if there is any evidence of variation be-
tween exams, text effect, or exam by text interaction. Be sure to include an
explicit description of the model you used.

Companies A, M, and S are three long-distance carriers. All claim to give Problem 16.5
quality service, but S has been advertising its network as being incredibly
clear. A consumer testing agency wishes to determine if S really is any better.
A complicating factor in this determination is that you don’t hook directly
to a long-distance company. Your call must first go through your personal
phone, through local lines, and through the local switch before it even gets
to the long-distance company equipment, and then the call must go through
local switch, local lines, and a local phone on the receivingend. Thus while
one long-distance carrier might, in fact, have clearer transmissions than the
others, you might not be able to detect the difference due to noise generated
by local phones, lines, and switches. Furthermore, the quality may depend on
the load on the long-distance system. Load varies during theday and between
days, but is fairly constant over periods up to about 15 or 20 minutes.

The consumer agency performs the following experiment. Allcalls will
originate from one of two phones, one in New York and the otherin New
Haven, CT. Calls will be placed by a computer which will put a very precise
2-minute sequence of tones on the line. All calls will terminate at one of
three cities: Washington, DC; Los Angeles; or Ely, MN. All calls will be
answered by an answering machine with a high-quality tape recorder. The
quality of the transmission is judged by comparing the tape recording of the
tones with the known original tones, producing a distortionscore D. Calls are
placed in the following way. Twenty-four time slots were chosen at random
over a period of 7 days. These 24 time slots were randomly assigned to the
six originating/terminating city pairs, four time slots per pair. Three calls
will be made from the originating city to the terminating city during the time
slot, using each of the long-distance companies in a random order. The data
follow (and are completely fictitious).
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Time slots

City pair LD 1 2 3 4
NY/DC A 4.3 4.7 5.6 7.7

M 6.8 7.6 9.2 10.7
S 2.3 2.2 2.6 4.3

NY/LA A 3.2 5.4 4.9 10.7
M 5.6 8.0 7.7 13.1
S 0.3 2.3 3.0 8.2

NY/Ely A 13.7 13.5 12.3 10.6
M 16.1 16.5 15.6 13.2
S 13.2 13.1 13.3 10.8

NH/DC A 7.9 6.3 8.9 6.1
M 10.8 8.7 10.7 9.0
S 6.2 4.6 6.4 4.4

NH/LA A 9.0 11.4 10.6 9.3
M 11.1 14.5 13.2 11.6
S 6.7 9.9 8.4 6.2

NH/Ely A 13.9 12.1 14.2 17.1
M 16.1 15.9 17.8 19.8
S 14.2 11.2 14.4 16.7

We are mostly interested in differences in long-distance carriers, but we are
also interested in city pair effects. Analyze these data. What conclusions
would you draw, and what implications does the experiment have for people
living in Ely?

For each of the following, describe the experimental designused and giveProblem 16.6
a skeleton ANOVA (sources and degrees of freedom only).

(a) A grocery store chain is experimenting with its weekly advertising, try-
ing to decide among cents-off coupons, regular merchandisesales, and
special-purchase merchandise sales. There are two cities about 100 km
apart in which the chain operates, and the chain will always run one ad-
vertisement in each city on Wednesday, with the offer good for 1 week.
The response of interest is total sales in each city, and large city to city
differences in total sales are expected due to population differences.
Furthermore, week to week differences are expected. The chain runs
the experiment on 12 consecutive weeks, randomizing the assignment
of advertising method to each city, subject to the restrictions that each
of the three methods is used eight times, four times in each city, and
each of the three pairs of methods is used an equal number of times.

(b) A forest products company conducts a study on twenty sites of 1 hectare
each to determine good forestry practice. Their goal is to maximize the
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production of wood biomass (used for paper) on a given site over 20
years. All sites in the study have been cut recently, and the factors of
interest are species to plant (alder or birch) and the thinning regime
(thin once at 10 years, or twice at 10 and 15 years). The species is
assigned at random to each site. The sites are then split intoeast-
west halves. The thinning regimes are assigned at random to east-west
halves independently for each site.

(c) We wish to study the acidity of orange juice available at our grocery
store. We choose two national brands. We then choose 3 days atran-
dom (from the next month) for each brand; cartons of brand A will be
purchased only on the days for brand A, and similarly for brand B. On
a purchase day for brand A, we choose five cartons of brand A orange
juice at random from the shelf, and similarly for brand B. Each carton
is sampled twice and the samples are measured for acidity.

(d) We wish to determine the number of warblers that will respond to three
recorded calls. We will get eighteen counts, nine from each of two
forest clearings. We expect variation in the counts from early to mid to
late morning, and we expect variation in the counts from early to mid
to late in the breeding season. Each recorded call is used three times
at each clearing, arranged in such a way that each call is usedonce in
each phase of the breeding season and once in each morning hour.

Artificial insemination is widely used in the beef industry,but there are Problem 16.7
still many questions about how fresh semen should be frozen for later use.
The motility of the thawed semen is the usual laboratory measure of semen
quality, and this varies from bull to bull and ejaculate to ejaculate even with-
out the freeze/thaw cycle. We wish to evaluate five freeze/thaw methods for
their effects on motility.

Four bulls are selected at random from a population of potential donors;
three ejaculates are collected from each of the four bulls (these may be con-
sidered a random sample). Each ejaculate is split into five parts, with the parts
being randomly assigned to the five freeze/thaw methods. After each part is
frozen and thawed, two small subsamples are taken and observed under the
microscope for motility.

Give a skeleton ANOVA for this design and indicate how you would test
the various effects. (Hint: is this a split plot or not?)

Traffic engineers are experimenting with two ideas. The firstis that erect- Problem 16.8
ing signs that say “Accident Reduction Project Area” along freeways will
raise awareness and thus reduce accidents. Such signs may have an effect
on traffic speed. The second idea is that metering the flow of vehicles onto
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on-ramps will spread out the entering traffic and lead to an average increase
in speed on the freeway. The engineers conduct an experimentto determine
how these two ideas affect average traffic speed.

First, twenty more-or-less equivalent freeway interchanges are chosen,
spread well around a single metropolitan area and not too close to each other.
Ten of these interchanges are chosen at random to get “Accident Reduction
Project Area” signs (in both directions); the other ten receive no signs. Traf-
fic lights are installed on all on-ramps to meter traffic. The traffic lights can
be turned off (that is, no minimum spacing between entering vehicles) or be
adjusted to require 3 or 6 seconds between entering vehicles. Average traffic
speed 6:30–8:30 A.M. and 4:30–6:30 P.M. will be measured at each inter-
change on three consecutive Tuesdays, with our response being the average
of morning and evening speeds. At each interchange, the three settings of the
traffic lights are assigned at random to the three Tuesdays.

The results of the experiment follow. Analyze the results and report your
conclusions.

Timing

Interchange Sign? 0 3 6

1 n 13 25 26
2 n 24 35 37
3 n 22 38 41
4 n 24 32 37
5 n 23 35 38
6 n 23 33 35
7 n 24 35 41
8 n 19 34 35
9 n 21 33 37

10 n 15 30 30
11 y 19 31 33
12 y 12 28 27
13 y 10 24 29
14 y 12 23 28
15 y 26 41 41
16 y 17 31 30
17 y 17 27 31
18 y 18 32 33
19 y 16 29 30
20 y 24 37 37

A consumer testing agency wishes to test the ability of laundry deter-Problem 16.9
gents, bleaches, and prewash treatments to remove soils andstains from fab-
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ric. Three detergents are selected (a liquid, an all-temperature powder, and
a hot-water powder). The two bleach treatments are no bleachor chlorine
bleach. The three prewash treatments are none, brand A, and brand B. The
three stain treatments are mud, grass, and gravy. There are thus 54 factor-
level combinations.

Each of 108 white-cotton handkerchiefs is numbered with a random code.
Nine are selected at random, and these nine are assigned at random to the nine
factor-level combinations of stain and prewash. These ninehandkerchiefs
along with four single sheets make a “tub” of wash. This is repeated twelve
times to get twelve tubs. Each tub of wash is assigned at random to one of
the six factor-level combinations of detergent and bleach.After washing and
drying, the handkerchiefs are graded (in random order) for whiteness by a
single evaluator using a 1 to 100 scale, with 1 being whitest (cleanest).

Analyze these data and report your findings.

Stain 1 Stain 2 Stain 3

Tub Det. Bl. P1 P2 P3 P1 P2 P3 P1 P2 P3

1 1 1 1 3 3 3 3 5 10 3 2
2 1 2 5 3 3 3 5 3 7 3 2
3 2 1 3 2 2 4 6 1 5 1 2
4 2 2 3 1 2 2 4 3 8 1 2
5 3 1 34 29 35 35 34 41 49 25 26
6 3 2 7 5 6 6 6 7 10 5 4
7 1 1 4 4 4 5 7 10 11 5 4
8 1 2 4 6 3 4 7 6 9 7 5
9 2 1 6 8 7 5 6 7 11 6 4

10 2 2 6 6 7 8 7 9 12 5 5
11 3 1 26 28 31 38 30 34 41 27 27
12 3 2 2 4 2 2 5 3 8 3 2

We wish to study the effect of drought stress on height growthof red Problem 16.10
maple seedlings. The factors of interest are the amount of stress and variety
of tree. Stress is at two levels: no stress (that is, always well watered) and
drought-stressed after 6 weeks of being well watered. Thereare four vari-
eties available, and all individuals within a given varietyare clones, that is,
genetically identical.

This will be a greenhouse experiment so that we can control the watering.
Plants will be grown in six deep sandboxes. There is space in each sandbox
for 36 plants in a 6 by 6 arrangement. However, the plants in the outer row
have a dissimilar environment and are used as a “guard row,” so responses
are observed on only the inner 16 plants (in 4 by 4 arrangement).
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The six sandboxes are in a three by two arrangement, with three boxes
north to south and two boxes east to west. We anticipate considerable dif-
ferences in light (and perhaps temperature and other related factors) on the
north to south axis. No differences are anticipated on the east to west axis.

Only one watering level can be given to each sandbox. Varietycan be
varied within sandbox. The response is measured after 6 months.

(a) Describe an experimental design appropriate for this setup.

(b) Give a skeleton ANOVA (sources and df only) for this design.

(c) Suppose now that the heights of the seedlings are measured ten times
over the course of the experiment. Describe how your analysis would
change and any assumptions that you might need to make.

Consider the following experimental design. This design was random-Problem 16.11
ized independently on each of ten fields. First, each field is split into northern
and southern halves, and we randomly assign herbicide/no herbicide treat-
ments to the two halves. Next, each field is split into easternand western
halves, and we randomly assign tillage method 1 or tillage method 2 to the
two halves. Finally, each tillage half is again split into east and west halves (a
quarter of the whole field), and we randomly assign two different insecticides
to the two different quarters, independently in the two tillage halves. Thus,
within each field we have the following setup:

1 2 3 4

5 6 7 8

Plots 1, 2, 3, and 4 all receive the same herbicide treatment,as do plots 5,
6, 7, and 8. Plots 1, 2, 5, and 6, all receive the same tillage treatment, as do
plots 3, 4, 7, and 8. Insecticide A is given to plot pair (1, 5) or plot pair (2,
6); the other pair gets insecticide B. Similarly, one of the plot pairs (3, 7) and
(4, 8) gets insecticide A and the other gets B.

Construct a Hasse diagram for this experiment. Indicate howyou would
test the null hypotheses that the various terms in the model are zero.

Consider the following situation. We have four varieties ofwheat to test,Problem 16.12
and three levels of nitrogen fertilizer to use, for twelve factor-level combi-
nations. We have chosen eight blocks of land at random on an experimental
study area; each block of land will be split into twelve plotsin a four by
three rectangular pattern. We are considering two different experimental de-
signs. In the first design, the twelve factor-level combinations are assigned
at random to the twelve plots in each block, and this randomization is redone
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from block to block. In the second design, a variety of wheat is assigned
at random to each row of the four by three pattern, and a level of nitrogen
fertilizer is assigned at random to each column of the four bythree pattern;
this randomization is redone from block to block.

(a) What are the types of the two designs (for example, CRD, RCB, and
so on)?

(b) Give Hasse diagrams for these designs, and indicate how you would
test the null hypotheses that the various terms in the model are zero.

(c) Which design provides more power for testing main effects? Which
design is easier to implement?

Yellow perch and ruffe are two fish species that compete. An experi- Problem 16.13
ment is run to determine the effects of fish density and competition with ruffe
on the weight change in yellow perch. There are two levels of fish density
(low and high) and two levels of competition (ruffe absent and ruffe present).
Sixteen tanks are arranged in four enclosures of four tanks each. Within
each enclosure, the four tanks are randomly assigned to the four factor-level
combinations of density and competition. The response is the change in the
weight of perch after 5 weeks (in grams, data from Julia Frost).

Enclosure
Ruffe Density 1 2 3 4

Absent Low .0 .4 .9 -.4
High .9 -.4 -.6 -1.2

Present Low .0 -.4 -.9 -.9
High -1.2 -1.5 -1.1 -.7

Analyze these data for the effects of density and competition.
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Chapter 17

Designs with Covariates

Covariates are predictive responses, meaning that covariates are responses
measured for an experimental unit in anticipation that the covariates will be
associated with, and thus predictors for, the primary response. The use of Covariates are

predictive
responses

covariates is not design in the sense of treatment structure, unit structure, or
the way treatments are assigned to units. Instead, a covariate is an additional
response that we exploit by modifying our models to include.Nearly any
model can be modified to include covariates.

Keyboarding pain Example 17.1
A company wishes to choose an ergonomic keyboard for its computers to
reduce the severity of repetitive motion disorders (RMD) among its staff.
Twelve staff known to have mild RMD problems are randomly assigned
to three keyboard types. The staff keep daily logs of the amount of time
spent keyboarding and their subjective assessment of the RMD pain. After
2 weeks, we get the total number of hours spent keyboarding and the total
number of hours in RMD pain.

The primary response here is pain; we wish to choose a keyboard that
reduces the pain. However, we know that the amount of pain depends on
the amount of time spent keyboarding—more keyboarding usually leads to
more pain. If we knew at the outset the amount of keyboarding to be done,
we could block on time spent keyboarding. However, we don’t know that at
the outset of the experiment, we can only measure it along with the primary
response. Keyboarding time is a covariate.
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17.1 The Basic Covariate Model

Before we show how to use covariates, let’s describe what they can do for
us. First, we can make comparisons between treatments more precise by
including covariates in our model. Thus we get a form of variance reductionCovariates make

treatment
comparisons
more precise

through modeling the response-covariate relationship, rather than through
blocking. The responses we observe are just as variable as without covariates,
but we can account for some of that variability using covariates in our model
and obtain many of the benefits of variance reduction via modeling instead
of blocking.

Second—and this is not completely separate from the first advantage—Treatment
comparisons
adjusted to
common
covariate value

covariate models allow us to compare predicted treatment responses at a
common value of the covariate for all treatments. Thus treatments which by
chance received above or below average covariate values canbe compared in
the center.

One potential pitfall of covariate models is that they assume that the co-
variate is not affected by the treatment. When treatments affect covariates,Treatments

should not affect
covariates

the comparison of responses at equal covariate values (our second advan-
tage) may, in fact, obscure treatment differences. For example, one of the
keyboards may be so awkward that the users avoid typing; trying to compare
it to the others at an average amount of typing hides part of the effect of the
keyboard.

The key to using covariates is building a model that is appropriate for
the design and the data. Covariate models have two parts: a usual treatment
effect part and a covariate effect part. The treatment effect part is essentially
determined by the design, as usual; but there are several possibilities for theTreatment and

covariate effects covariate effect part, and our model will be appropriate forthe data only when
we have accurately modeled the relationship between the covariates and the
response.

Let’s begin with the simplest sort of covariance modeling—in fact, the
sort usually calledAnalysis of Covariance. We will generalize to more com-Analysis of

covariance plicated models later. Consider a completely randomized design with a single
covariatex; let xij be the covariate foryij. For the CRD, the model ignoring
the covariate is

yij = µ + αi + ǫij .

We can estimate theith treatment mean̂µ + α̂i or a contrast between treat-
ments

∑
wiα̂i, and we can test the null hypothesis that all theαi values are

zero with the usual F-test by comparing the fit of this model tothe fit of a
model without theαi’s.
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Now consider a model that uses the covariate. We augment the previous
model to include a regression-like term for the covariate: Include covariate

via regression
yij = µ⋆ + α⋆

i + βxij + ǫ⋆
ij .

As usual, the treatment effectsα⋆
i add to zero. The⋆’s in this model are

shown just this once to indicate that theµ, αi, andǫij values in this model
are different from those in the model without covariates. The ⋆’s will be
dropped now for ease of notation.

The difference between the covariate and no-covariate models is the term
βxij . This term models the response as a linear function of the covariatex. Model assumes

linear relationship
between

response and
covariate

The assumption of a linear relationship betweenx andy is a big one, and
writing a model with a linear relationship doesn’t make the actual relation-
ship linear. As with any regression, we may need to transformthex or y to
improve linearity. Plots of the response versus the covariate are essential for
assessing this relationship.

Also note that the slopeβ is assumed to be the same for every treatment.
The covariate model for treatmenti is a linear regression with slopeβ and Common slope

creates parallel
lines

interceptµ + αi. Because theαi’s can all differ, this is a set of parallel lines,
one for each treatment. Thus this covariate model is called theparallel-lines
model or theseparate-interceptsmodel.

We need to be able to test the same hypotheses and estimate thesame
quantities as in noncovariate models. To test the null hypothesis of no treat- Test via model

comparisonment effects (all theαi’s equal to zero) when covariate effects are present,
compare the model with treatment and covariate effects to the reduced model
with only covariate effects:

yij = µ + βxij + ǫij .

This simpler model is called thesingle-linemodel, because it is a simple
linear regression of the response on the covariate. The reduction in error Single-line model
sum of squares going from the single-line model to the parallel-lines model
hasg−1 degrees of freedom. The mean square for this reduction is divided by F-test for

covariate-
adjusted

treatment effects

the mean square for error from the larger parallel-lines model to form an F-
test of the null hypothesis of no treatment effects. These treatment effects are
said to be covariate-adjusted, because the covariate is present in the model.
There are formulae for these sums of squares, but I don’t think you’ll find
them enlightening; just let your software do the computations.

The underlying philosophy of the test is that the covariate relationship
with the response is real and exists with or without treatment effects. The Analysis of

Covariancetest is only to determine if adding treatment effects to a model that already in-
cludes a covariate makes any significant improvement in explanatory power.
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Table 17.1:Hours keyboarding (x) and hours of repetitive-motion
pain (y) during 2 weeks for three styles of keyboards.

1 2 3
x y x y x y

60 85 54 41 56 41
72 95 68 74 56 34
61 69 66 71 55 50
50 58 59 52 51 40

That is, does the parallel-lines model explain significantly more than the
single-line model. This test is the classical Analysis of Covariance.

Computer software can supply estimates of the effects in ourmodels. The
estimated treatment effectŝαi describe how far apart the parallel lines are,µ̂

gives an average intercept,µ̂ + α̂i gives the intercept for treatmenti, andβ̂
is the estimated slope.

How should we answer the question, “What is the mean responsein treat-
menti?” This is a little tricky, because the response depends on the covariate.Means depend on

covariate We need to choose some standard covariate valueẋ and evaluate the treat-
ment means there.

Covariate-adjusted meansare the estimated values in each treatment group
when the covariate is set tox••, the grand mean of the covariates, orCovariate

adjusted means
at grand mean of
covariate

µ̂ + α̂i + β̂x•• .

Covariate-adjusted means give us a common basis for comparison, because
all treatments are evaluated at the same covariate level. Note that the dif-
ference between two covariate-adjusted means is just the difference between
the treatment effects; we would get the same differences if we compare the
means at the common covariate valueẋ = 0.

Example 17.2 Keyboarding pain, continued
Table 17.1 shows hours of keyboarding and hours of pain for the twelve sub-
jects, and Figure 17.1 shows a plot of the response versus thecovariate, with
keyboard type indicated by the plotting symbol. The plot clearly shows a
strong, reasonably linear relationship between the response and the covari-
ate. The figure also shows that the keyboard 1 responses tend to be above
the keyboard 2 responses for similar covariate values, and keyboard 2 and 3
responses are somewhat mixed at the low end of the covariate.We can fur-
ther see that keyboard 3 covariates tend to be a bit smaller than the other two
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Figure 17.1: Hours of pain versus hours of keyboarding for
twelve subjects and three keyboard types, using Minitab.

keyboards, so presumably at least some of the explanation for the low re-
sponses for keyboard 3 is the low covariate values.

Listing 17.1 shows Minitab output analyzing these data. We first check
to see if treatments affect the covariate keyboarding time.The ANOVA ①
provides no evidence against the null hypothesis that the treatments have
the same average covariate values (p-value .29). In these data, keyboard 3
averages about 6 to 7 hours less than the other two keyboards②, but the
difference is within sampling variability.

Next we do the Analysis of Covariance③. The model includes the co-
variate and then the treatment. Minitab produces both sequential and Type
III sums of squares; in either case, the sum of squares for treatments is treat-
ments adjusted for covariates, which is what we need. Thep-value is .004,
indicating strong evidence against the null hypothesis of no treatment effects.

The covariate-adjusted means and their standard errors aregiven at⑤.
Note that the standard errors are not all equal. We can also construct the
covariate adjusted means from the effects④. For example, the covariate-
adjusted mean for keyboard 1 is

−48.21 + 14.399 + 1.8199 × 59 = 73.57 .
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Listing 17.1: Minitab output for keyboarding pain.

Analysis of Variance for x

Source DF SS MS F P

type 2 123.50 61.75 1.45 0.286 ①
Error 9 384.50 42.72

Means

type N x ②
1 4 60.750

2 4 61.750

3 4 54.500

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

x 1 2598.8 1273.5 1273.5 24.79 0.001 ③
type 2 1195.8 1195.8 597.9 11.64 0.004

Error 8 411.0 411.0 51.4

Term Coef StDev T P

Constant -48.21 21.67 -2.22 0.057 ④
x 1.8199 0.3655 4.98 0.001

type

1 14.399 2.995 4.81 0.001

2 -4.671 3.094 -1.51 0.170

Means for Covariates

Covariate Mean StDev

x 59.00 6.796

Least Squares Means for y

type Mean StDev ⑤
1 73.57 3.641

2 54.50 3.722

3 49.44 3.943

Tukey 95.0% Simultaneous Confidence Intervals ⑥
Response Variable y

All Pairwise Comparisons among Levels of type

type = 1 subtracted from:

type Lower Center Upper -------+---------+---------+---------

2 -33.59 -19.07 -4.553 (--------*---------)

3 -40.01 -24.13 -8.244 (----------*----------)

-------+---------+---------+---------

-30 -15 0
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Listing 17.1, continued
type = 2 subtracted from:

type Lower Center Upper -------+---------+---------+---------

3 -21.39 -5.056 11.28 (----------*----------)

-------+---------+---------+---------

-30 -15 0

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

type 2 2521.2 2521.2 1260.6 6.74 0.016 ⑦
Error 9 1684.5 1684.5 187.2

Term Coef StDev T P

Constant 59.167 3.949 14.98 0.000 ⑧
type

1 17.583 5.585 3.15 0.012

2 0.333 5.585 0.06 0.954

Least Squares Means for y

type Mean StDev ⑨
1 76.75 6.840

2 59.50 6.840

3 41.25 6.840

It appears that keyboards 2 and 3 are about the same, and keyboard 1 is
worse (leads to a greater response). This is confirmed by doing a pairwise
comparison of the three treatment effects using Tukey HSD⑥.

We conclude that there are differences between the three keyboards, with
keyboard 1 leading to about 21 more hours of pain in the 2-weekperiod for
an average number of hours keyboarding. The coefficient of keyboard hours
was estimated to be 1.82, so an additional hour of keyboarding is associated
with about 1.82 hours of additional pain.

Before leaving the example, a few observations are in order.First, the
linear model is only reliable for the range of data over whichit was fit. In
these data, the hours of keyboarding ranged from about 50 to 70, so it makes
no sense to think that doing no keyboarding with keyboard 1 will lead to -34
hours of pain (34 hours of pleasure?).

Next, it is instructive to compare the results of this Analysis of Covari-
ance with those that would be obtained if the covariate had been ignored.
You would not ordinarily do this as part of your analysis, butit helps us see
what the covariate has done for us. Two things are noteworthy. First, the
error mean square for the analysis without the covariate⑦ is about 3.6 times
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larger than that with the covariate. Regression on the covariate has explained
much of the variation within treatment groups, so that residual variation is
reduced. Second, the covariate-adjusted treatment effects④ are not the same
as the unadjusted treatment effects⑧; likewise, the covariate-adjusted means
73.565, 54.495, and 49.44⑤ differ from the raw treatment means 76.75, 59.5,
and 41.25⑨. This shows the effect of comparing the treatments at a common
value of the covariate. For these data, the covariate-adjusted means are more
tightly clustered than the raw means; other data sets may show other patterns.

Some authors prefer to write the covariate model

yij = µ + αi + βxij + ǫij

in the slightly different form

yij = µ̃ + αi + β(xij − x••) + ǫij .

The difference is that the covariatex is centered to have mean zero, so thatCentered
covariates the covariate-adjusted means in the revised model are justµ̃ + αi. We can

see that there is no essential difference between these two models once we
realize that̃µ = µ + βx••.

17.2 When Treatments Change Covariates

The usual Analysis of Covariance assumes that treatments donot affect the
covariates. When this is true, it makes sense to compare treatments via
covariate-adjusted means—that is, to compare treatments at a common value
of the covariate—because any differences between covariates are just ran-Covariate

adjustment can
obscure the
treatment effect

dom variation. When treatments do affect covariates, differences between
covariates are partly treatment effect and partly random variation. Forcing
treatment comparisons to be at a common value of the covariate obscures the
true treatment differences.

We can make this more precise by reexpressing the covariate in our
model. Expand the covariate into a grand mean, deviations oftreatment
means from the grand mean, and deviations from treatment means to obtain
xij = x•• + (xi• − x••) + (xij − xi•), and substitute it into the model:

yij = µ + αi + βxij + ǫij

= µ + αi + β(x•• + (xi• − x••) + (xij − xi•)) + ǫij

= (µ + βx••) + (αi + β(xi• − x••)) + β(xij − xi•) + ǫij

= µ̃ + α̃i + βx̃ij + ǫij
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Listing 17.2: Minitab analysis of keyboarding pain when treatments affect covariates.

Analysis of Variance for y, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

xtilde 1 1273.5 1273.5 1273.5 24.79 0.001

type 2 2521.2 2521.2 1260.6 24.54 0.000

Error 8 411.0 411.0 51.4

Least Squares Means for y

type Mean StDev

1 76.75 3.584

2 59.50 3.584

3 41.25 3.584

We have seen that covariate-adjusted treatment effects maynot equal covar- Covariate
adjustment to

means is
β(xi• − x••)

iate-unadjusted treatment effects. In the preceding equations,αi is the covar-
iate-adjusted treatment effect, andα̃i is the unadjusted effect (see Ques-
tion 17.1). These differ byβ(xi• − x••), so adjusted and unadjusted effects
are the same if all treatments have the same average covariate. If the treat-
ments are affecting the covariate, these adjustments should not be made.

We can obtain the variance reduction property of covarianceanalysis Using x̃ gives
variance

reduction only
without also doing covariate adjustment by using the covariatex̃ instead of
x. Computex̃ by treating the covariatex as a response with the treatments
as explanatory variables; the residuals from this model arex̃.

Note that the two analyses described here are extremes: ordinary analysis
of covariance assumes that treatments cause no variation inthe covariate, and
the analysis with the altered covariatex̃ assumes that all between treatment
variation in the covariates is due to treatment.

Keyboarding pain, continued Example 17.3

An analysis of variance on the keyboarding times in Table 17.1 showed no
evidence that the different keyboards affected keyboarding times. Nonethe-
less, we use those data here to illustrate the analysis that uses covariates only
for variance reduction, and not for covariate adjustment.

The first step is to get the modified covariate as the residualsfrom a model
with treatments and the covariate as the response. The ANOVAfor this model
is at① of Listing 17.1; the residuals have been saved asx̃, which we next use
in a standard Analysis of Covariance.
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Listing 17.2 shows Minitab output using this modified covariate. We
can see in the ANOVA table that the error mean square is the same in this
analysis as it was in the standard Analysis of Covariance in Listing 17.1③.
The mean square for treatments adjusted for this modified covariate is the
same as the mean square for treatments alone; in fact, we constructed the
modified covariate to make this so. For these data, the treatment mean square
adjusted for the modified covariate (same as the unadjusted treatment mean
square) is over twice the size of the treatments adjusted forcovariate mean
square; thep-value in the modified analysis is thus much smaller.

Finally, we see that the covariate-adjusted treatment means using the
modified covariate are the same as the simple treatment meansin Listing 17.1
⑨. The standard errors for these adjusted means are much smaller than the
standard errors for the unadjusted means, however, becausethe modified co-
variate accounts for a large amount of response variation within each treat-
ment group. Also, the standard errors for the covariate-adjusted means using
x̃ are equal, unlike those usingx.

The covariate-adjusted treatment effects can be larger or smaller than the
unadjusted effects (depending on the sign ofβ and the pattern of covariates).
Similarly, the covariate-adjusted effects may have a larger or smallerp-value
than the treatment effects in a model with the modified covariate. We must
not choose between the original and modified covariates based on the results
of the analysis; we must choose based on whether we wish to ascribe covari-
ate differences to treatments.

17.3 Other Covariate Models

We have been discussing the simplest possible covariate model: a single co-
variate with the same slope in all treatment groups. It is certainly possible to
have two or more covariates. The standard analysis is still treatments adjusted
for covariates, and covariate-adjusted means are evaluated with each covari-More than one

covariate ate at its overall average. If one or more covariates are affected by treatments
and we wish to identify the variation associated with treatment differences in
those covariates as treatment variation, then each of thosecovariates should
be individually modified as described in the preceding section.

Covariates can also be used in other designs beyond the CRD with a sin-
gle treatment factor. Blocking designs and fixed-effects factorials can easily
accommodate covariates; simply look at treatments adjusted for any blocksCovariates with

blocks or
factorials

and covariates. Note that treatment factors adjusted for covariates will not
usually be orthogonal, even for balanced designs, so you will need to do
Type II or Type III analyses for factorials.
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Separate Intercepts Separate Slopes

Separate Lines

Figure 17.2:Lattice of covariate models.

Our covariate models have assumed that treatments affect the response
by an additive constant that is the same for all values of the covariate. This is
the parallel-lines model, and it is the standard model for covariates. It is by Treatments could

change the
covariate slope

no means the only possibility for treatment effects. For example, treatments
could change the slope of the response-covariate relationship, or treatments
could change both the slope and the intercept.

We can put covariate models into an overall framework as shown in Fig-
ure 17.2. Models are simplest on top and add complexity as youmove down Lattice of

covariate modelsan edge. Any two models that can be connected by going down oneor more
edges can be compared using an Analysis of Variance. The lower model is
the full model and the upper model is the reduced model, and the change in
error sum of squares between the two models is the sum of squares used to
compare the two models. The degrees of freedom for any model comparison
is the number of additional parameters that must be fit for thelarger model.

The top model is a constant mean; this is a model with no treatment ef-
fects and no covariate effect. We only use this model if we areinterested in Constant mean
determining whether there is any covariate effect at all (bycomparing it to
the single-line model). The single line model is the model where the covari-
ate affects the response, but there are no treatment effects. This model has
one more parameter than the constant mean model, so there is 1degree of Single line
freedom in the comparison of the constant-mean and single-line models (and
that degree of freedom is the slope parameter).

Moving down the figure, we have two choices. On the left is the separate-
intercepts model. This is the model with a common covariate slope and a dif- Separate

interceptsferent intercept for each treatment. The comparison between the single-line
model and the separate-intercepts model is the standard Analysis of Covari-
ance, and it hasg − 1 degrees of freedom for theg − 1 additional intercepts
that must be fit.
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Listing 17.3: MacAnova output for keyboarding pain.

Model used is y=x+type+x.type

DF SS MS F P-value

x 1 2598.8 2598.8 53.62884 0.00033117 ①
type 2 1195.8 597.91 12.33835 0.0074822

x.type 2 120.27 60.136 1.24095 0.35398

ERROR1 6 290.76 48.459

Model used is y=x+x.type+type

DF SS MS F P-value

x 1 2598.8 2598.8 57.62884 0.00033117 ②
x.type 2 1168.4 584.22 12.05596 0.0079111

type 2 147.65 73.826 1.52345 0.29171

ERROR1 6 290.76 48.459

Model used is y=x59+x59.type

DF SS MS F P-value

x59 1 2598.8 2598.8 14.66486 0.0050217 ③
x59.type 2 189.13 94.566 0.53363 0.60598

ERROR1 8 1417.7 177.21

If instead we move down to the right, we get the separate-slopes model:

yij = µ + βi(xij − x0) + ǫij

In this model, the relationship between response and covariate has a differentSeparate slopes
slopeβi for each treatment, but all the lines intersect at the covariate value
x0. If you setx0 = 0, then all the lines have the same intercept. Different
values ofx0 are like different covariates. This model hasg − 1 more degrees
of freedom than the single-line model.

At the bottom, we have the separate-lines model:

yij = µ + αi + βixij + ǫij

This model hasg − 1 more degrees of freedom than either the separate-Separate lines
intercepts or separate-slopes models. If we move down the left side of the
figure, we add intercepts then slopes, while moving down the right side we
add the slopes first, then the intercepts.

Example 17.4 Keyboarding pain, continued
Let’s fit the full lattice of covariate models to the keyboarding pain data.
Listing 17.3 shows MacAnova output for these models; all sums of squares
are sequential. ANOVA① descends the left-hand side of the lattice, start-
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Figure 17.3: Covariate model fits for the keyboarding pain data, using MacAnova: (a) separate
intercepts, (b) separate slopesx0 = 0, (c) separate slopesx0 = 59, (d) separate lines.

ing with the covariate x (time), adding keyboard type adjusted for covariate
(separate intercepts), and finally adding separate slopes to get separate lines.
The type mean square of 597.91 is the usual Analysis of Covariance mean
square. ANOVA② descends the right-hand side of the lattice, starting with
the covariate x, adding separate slopes, and finally adding separate intercepts
to get separate lines. Adding separate slopes makes a significant improve-
ment over a single line (p-value of .0079), but adding separate lines is not a
significant improvement over separate slopes. The separateslopes model②
usesx0 = 0, so the fitted lines intersect at 0. ANOVA③ fits a separate slopes
model withx0 = 59. In this case, there is no significant improvement going
to separate slopes. Figure 17.3 shows the fits for four models.
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The single-line and separate-intercepts models are the most commonly
used models of this family. They are analogues of treatment models with
blocking. However, not all experimental data will fit nicelyinto this view of
the world, and we need to be ready to consider the less common covariate
models if the data require it.

17.4 Further Reading and Extensions

Federer and Meredith (1992) discuss the use of covariates insplit-plot and
split-block designs. Consider two situations. First, all split plots in a whole
plot have the same covariate, so that the covariate only depends on the whole
plot. In this case, covariate is a whole-plot effect, and its1 degree of freedom
and sum of squares are computed at the whole-plot level.

Second, consider when each split plot has its own covariate valuexijk.
Construct two new covariates fromx. The first is a covariate at the whole-
plot level formed by taking the average covariate for each whole plot: xi•k.
This covariate acts at the whole-plot level, and its 1 degreeof freedom and
sum of squares are computed at the whole-plot level. The second is a split-
plot covariate:x̃ijk = xijk − xi•k. This split-plot covariate is the deviation
of the original covariatex from the whole-plot average value forx. The 1
degree of freedom and sum of squares for this covariate are atthe split-plot
level. Note that there may be different coefficients (slopes) for the covariates
at the whole- and split-plot levels.

Analysis of Covariance for general random- and mixed-effects models
is considerably more difficult. Henderson and Henderson (1979) and Hen-
derson (1982) discuss the problems and possible approaches. In fact, the
whole September 1982 issue ofBiometricsthat includes Henderson (1982)
is devoted to Analysis of Covariance.

17.5 Problems

What is the difference in randomization between a completely random-Exercise 17.1
ized design in which a covariate is measured and a completelyrandomized
design in which no covariate is measured?

Briefly discuss the difference indesignbetween a randomized completeExercise 17.2
block design with four treatments and five blocks, and a two-way factorial
design with factor A having four levels and factor B having five levels.

Pollutants may reduce the strength of bird bones. We believethat theProblem 17.1
strength reduction, if present, is due to a change in the boneitself, and not a
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change in the size of the bone. One measure of bone strength iscalcium con-
tent. We have an instrument which can measure the total amount of calcium
in a 1cm length of bone. Bird bones are essentially thin tubesin shape, so the
total amount of calcium will also depend on the diameter of the bone.

Thirty-two chicks are divided at random into four groups. Group 1 is a
control group and receives a normal diet. Each other group receives a diet
including a different toxin (pesticides related to DDT). At6 weeks, the chicks
are sacrificed and the calcium content (in mg) and diameter (in mm) of the
right femur is measured for each chick.

Control P #1 P #2 P #3
C Dia C Dia C Dia C Dia

10.41 2.48 12.10 3.10 10.33 2.57 10.46 2.6
11.82 2.81 10.38 2.61 10.03 2.48 8.64 2.17
11.58 2.73 10.08 2.49 11.13 2.77 10.48 2.64
11.14 2.67 10.71 2.69 8.99 2.30 9.32 2.35
12.05 2.90 9.82 2.43 10.06 2.56 11.54 2.89
10.45 2.45 10.12 2.52 8.73 2.18 9.48 2.38
11.39 2.69 10.16 2.54 10.66 2.65 10.08 2.55
12.5 2.94 10.14 2.55 11.03 2.73 9.12 2.29

Analyze these data with respect to the effect of pesticide oncalcium in
bones.

Briefly describe the experimental design you would choose for each of Problem 17.2
the following situations, and why.

(a) We wish to determine the amount of salt to put in a microwave popcorn
so that it has the best overall acceptability. We will test three levels
of salt: low, medium, and high. We have recruited 25 volunteers to
taste popcorn, and while we expect the individuals to be reasonably
consistent in their own personal ratings, we expect large volunteer to
volunteer differences in overall ratings.

(b) Some brands of golf balls claim to fly farther. To test thisclaim, you
devise a mechanical golf ball whacker which will strike the golf balls
with the same power and stroke time after time. Ten balls of each of
six brands will be struck once by the device and measured for distance
traveled. Wind speed, which will affect the distance traveled, is vari-
able and unpredictable, but can be measured.

(c) We wish to study the effects of two food additives (plus a control treat-
ment for a total of three treatments) on the milk productivity of cows.
We have three large herds available, each of a different breed, and we
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expect breed to breed differences in the response. Furthermore, we ex-
pect an age effect, which we make explicit by dividing cows into three
groups: those which have had 0, 1, and 2 or more previous calves. We
have enough resources to study 27 animals through one breeding cycle.

For each of the following, describe the experimental designused and giveProblem 17.3
a skeleton ANOVA (sources and degrees of freedom only).

(a) We wish to study the effects of air pressure (low or high) and tire type
(radial versus all season radial) on gas mileage. We do this by fitting
tires of the appropriate type and pressure on a car, driving the car 150
miles around a closed circuit, then changing the tire settings and driv-
ing again. We have obtained eight cars for this purpose and can use
each car for one day. Unfortunately, we can only do three of the four
tire combinations on one day, so we have each factor-level combination
missing for two cars.

(b) Metribuzin is an agricultural chemical that may accumulate in soils.
We wish to determine whether the amount of metribuzin retained in
the soil depends on the amount applied to the soil. To test theaccu-
mulation, we select 24 plots. Each plot is treated with one ofthree
levels of metribuzin, with plots assigned to levels at random. After one
growing season, we take a sample of the top three cm of soil from each
plot and determine the amount of metribuzin in the soil. We also mea-
sure the pH of the soil, as pH may affect the ability of the soilto retain
metribuzin.

(c) We wish to test the efficacy of dental sealants for reducing tooth decay
on molars in children. There are five treatments (sealants A or B ap-
plied at either 6 or 8 years of age, and a control of no sealant). We have
40 children, and the five treatments are assigned at random tothe 40
children. As a response, we measure the number of cavities onthe mo-
lars by age 10. In addition, we measure the number of cavitieson the
nonmolar teeth (this may be a general measure of quality of brushing
or resistance to decay).

(d) A national travel agency is considering new computer hardware and
software. There are two hardware setups and three competingsoftware
setups. All three software setups will run on both hardware setups, but
the different setups have different strengths and weaknesses. Twenty
branches of the agency are chosen to take part in an experiment. Ten
are high sales volume; ten are low sales volume. Five of the high-sales
branches are chosen at random for hardware A; the other five get hard-
ware B. The same is done in the low-sales branches. All three software
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setups are tried at each branch. One of the three software systems is
randomly assigned to each of the first 3 weeks of May (this is done
separately at each branch). The measured response for each hardware-
software combination is a rating score based on the satisfaction of the
sales personnel.

Advertisers wish to determine if program content affects the success of Problem 17.4
their ads on those programs. They produce two videos, one containing a de-
pressing drama and some ads, the second containing an upbeatcomedy and
the same ads. Twenty-two subjects are split at random into two groups of
eleven, with the first group watching the drama and the secondgroup watch-
ing the comedy. After the videos, the subjects are asked several questions,
including “How do you feel?” and “How likely are you to buy?” one of the
products mentioned in the ads. “How do you feel” was on a 1 to 6 scale, with
1 being happy and 6 being sad. “How likely are you to buy?” was also on a
1 to 6 scale, with 6 being most likely.

Drama Comedy
Feel Buy Feel Buy

5 1 3 1
1 3 2 2
5 1 3 1
5 3 2 3
4 5 4 1
4 3 1 3
5 2 1 4
6 1 2 4
5 5 3 1
3 4 4 1
4 1 2 2

Analyze these data to determine if program type affects the likelihood of
product purchase.

A study has been conducted on the environmental impact of an industrial Problem 17.5
incinerator. One of the concerns is the emission of heavy metals from the
stack, and one way to measure the impact is by looking at metalaccumu-
lations in soil and seeing if nearby sites have more metals than distant sites
(presumably due to deposition of metals from the incinerator).

Eleven sites of one hectare each (100 m by 100 m) were selectedaround
the incinerator. Five sites are on agricultural soils, while the other six are on
forested soils. Five of the sites were located near the incinerator (on their
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respective soil types), while the other sites were located far from the incin-
erator. At each site, nine locations are randomly selected within the site and
mineral soil sampled at each location. We then measure the mercury content
in each sample (mg/kg).

Complicating any comparison is the fact that heavy metals are generally
held in the organic portion of the soil, so that a soil sample with more carbon
will tend to have more heavy metals than a sample with less carbon, regard-
less of the deposition histories of the samples, soil type, etc. For this reason,
we also measure the carbon fraction of each sample (literally the fraction of
the soil sample that was carbon).

The data given below are site averages for carbon and mercury. Analyze
these data to determine if there is any evidence of an incinerator effect on soil
mercury.

Soil Distance Carbon Mercury

Agricultural Near .0084 .0128
Agricultural Near .0120 .0146
Agricultural Near .0075 .0130
Agricultural Far .0087 .0133
Agricultural Far .0105 .0090
Forest Near .0486 .0507
Forest Near .0410 .0477
Forest Far .0370 .0410
Forest Far .0711 .0613
Forest Far .0358 .0388
Forest Far .0459 .0466

Show that the covariate-adjusted means using the covariatex̃ equal theQuestion 17.1
unadjusted treatment means.



Chapter 18

Fractional Factorials

This chapter and the next deal withtreatment design.We have been us-
ing treatments that are the factor-level combinations of two or more factors.
These factors may be fixed or random or nested or crossed, but we have a Treatment design
regular array of factor combinations as treatments. Treatment design investi-
gates other ways for choosing treatments. This chapter investigates fractional
factorials, that is, use of a subset of the factor-level combinations in a facto-
rial treatment structure.

18.1 Why Fraction?

Factorial treatment structure has the benefits that it is efficient and allows us
to study main effects and interactions, but factorials can become really big.
For seven factors, the smallest factorial has27 = 128 treatments and units.
There are 127 degrees of freedom in such an experiment, with 7degrees
of freedom for main effects, 21 degrees of freedom for two-factor interac- Factorials have

many degrees of
freedom in
multi-factor
interactions

tions, 35 degrees of freedom for three-factor interactions, and 64 degrees of
freedom for four-, five-, six-, and seven-factor interactions. In many exper-
iments, we either don’t expect high-order interactions or we are willing to
ignore them at the current stage of experimentation, so we construct a surro-
gate error by pooling high-order interactions. For example, pooling fourth-
and higher-order interactions into error in the27 gives us 64 degrees of free-
dom for error.

What does a big factorial such as a27 give us? First, it gives us a large
sample size for estimating main effects and interactions; this is a very good
thing. Second, it allows us to estimate many-way interactions; this may or
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may not be useful, depending on the experimental situation.Third, the abun-
dant high-order interactions give us many degrees of freedom for construct-
ing a surrogate error.

Larger sample sizes always give us more precise estimates, but there are
diminishing returns for the second and third advantages. Insome experimentsHigh-order

interactions and
many error df
may not be worth
the expense

we either do not expect high-order interactions, or we are willing to ignore
them in the current problem. For such an experiment, being able to estimate
high-order interactions is not a major advantage. Similarly, more degrees
of freedom for error are always better, but the improvement in power and
confidence interval length is modest after 15 degrees of freedom for error
and very slight after 30.

Thus the full factorial may be wasteful or infeasible if

• We believe there are no high-order interactions or that theyare ignor-
ably small, or

• We are just screening a large number of treatments to determine which
affect the response and will study interactions in subsequent experi-
ments on the active factors, or

• We have limited resources.

We need a design that retains as many of the advantages of factorials as pos-
sible, but does not use all the factor-level combinations.

A fractional-factorial design is a modification of a standard factorial that
allows us to get information on main effects and low-order interactions with-Fractional

factorial looks at
main effects and
low-order
interactions

out having to run the full factorial design. Fractional factorials are closely
related to the confounding designs of Chapter 15, which you may wish to re-
view. In fact, the simplest way to describe a fractional factorial is to confound
the factorial into blocks, but only run one of the blocks.

18.2 Fractioning the Two-Series

A 2k factorial can be confounded into two blocks of size2k−1, four blocks of
size2k−2, and in general2q blocks of size2k−q. A 2k−1 fractional factorialA fraction is one

block of a
confounded
design

is a design withk factors each at two levels that uses2k−1 experimental units
and factor-level combinations. We essentially block the2k into two blocks
but only run one of the blocks. In general, a2k−q fractional factorial is a
design withk factors each at two levels that uses2k−q experimental units and
factor-level combinations. Again, this design is one blockof a confounded2k
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factorial. The principal block of a confounded design becomes theprincipal Principal and
alternate fractionsfraction, and alternate blocks becomealternate fractions.

We confound a2k factorial by choosing one or more defining contrasts.
These defining contrasts are factorial effects that will be confounded with
block differences. We construct blocks by partitioning thefactor-level com- Review of

confoundingbinations into2q groups according to whether they are±1 on the defining
contrasts, or equivalently by whether an even or odd number of factors from
the defining contrasts are at the high level in the factor-level combination or
by whether theL values are 0 or 1.

In the confounded2k, all possible plus/minus, even/odd, or 0/1 combi-
nations for the defining contrasts occur somewhere in the design, though in
different blocks. For example, with two defining contrasts,we will have plus
and plus, minus and plus, plus and minus, and minus and minus blocks. A
fractional factorial is a single block of this design, so only a single plus/minus q defining

contrasts
constant in a

fraction

combination of the defining contrasts occurs: for example, the plus and plus
combination. Thus a fractional factorial is a subset of factor-level combi-
nations that has a particular pattern of plus and minus signson the defining
contrasts, or equivalently a particular pattern of even/odd or 0/1 values.

The jargon and notation of fractional factorials are slightly different from
confounding. Recall the tables of plus and minus signs such as Table 15.1
that we used in two-series design. Augment such tables with acolumn of all
plus signs labeled I. Defining contrasts are the effects thatwe confound to Fractional

factorials have
generators and

defining relations

produce confounded factorials; we call these contrastsgeneratorsor words
when we work with just a fraction of the design. In a fraction of a two-series,
each generator for the design will always be plus or always beminus; thus
for each generating word W, eitherI = W or I = −W will be true on the
fraction. The statementI = W is called adefining relation. Note that if
I = W1 andI = −W2, thenI = −W1W2; that is, generalized interactions
of the generators also have constant sign that can be determined from the
defining relations.

Quarter fraction of a 25 design Example 18.1

Construct a25−2 fractional factorial using ABC and –CDE as generators;
I = ABC = –CDE = –ABDE is the full set of defining relations. Thisis the
same as confounding into four blocks using the generators ABC and CDE,
but then only using the block where ABC is plus and CDE is minus. Using
the even/odd rule, ABC is plus when a factor-level combination has an odd
number of factors A, B, or C high, and CDE is minus when a factor-level
combination has an even number of C, D, or E high.
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Table 18.1:Table of pluses and minuses for a
25−2 with I = ABC = –CDE.

A B C D E AB · · · ABCDE
ce – – + – + + · · · –
a + – – – – – +
b – + – – – – +
abce + + + – + + –
cd – – + + – + –
ade + – – + + – +
bde – + – + + – +
abcd + + + + – + · · · –

The eight factor-level combinations in our fraction are

a, b, ade, bde, ce, abce, cd, abcd .

In principle we find the fraction by confounding the full factorial and choos-
ing the correct block. However, we know that we can find alternate blocks
from the principal block, so we can find alternate fractions from principal
fractions. I found our fraction by first finding the principalfraction,

(1), ab, de, abde, ace, bce, acd, bcd

then finding a factor-level combination in the fraction of interest (a), and
multiplying everything in the principal fraction bya to get the alternate frac-
tion.

The natural way to estimate the total effect of factor A in a fractional
factorial is to subtract the average response where A is low from the average
response where A is high. For the25−2 of Example 18.1, this is the contrast

ya + yabce + yade + yabcd

4
− yce + yb + ycd + ybde

4
.

This amounts to taking the pattern of pluses and minuses for the A contrastTotal effect
contrasts as
before

from the complete factorial and just using the elements in itthat correspond
to the factor-level combinations that we have in our fraction. Part of this
reduced table of pluses and minuses is shown in Table 18.1. Using this table,
we can compute contrasts for all the factorial effects.

This sounds as if we’ve just gotten something for nothing. Weonly have
eight observations, but we’ve (apparently) just extractedestimates of 31 ef-
fects and interactions. The laws of physics and economics argue that you
don’t get something for nothing, and indeed there is a catch here. To see the
catch, look at the patterns of signs we use for the C main effect and the AB
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interaction. These patterns are the same, so our estimate ofthe C main effect Same contrast for
several effectsis the same as our estimate of the AB interaction. If we look further, we will

also find that the C contrast is the negative of the DE and ABCDEcontrasts.
We say that C, AB, –DE, and –ABCDE arealiases, or aliased to each

other. Another way of writing this is C = AB = –DE = –ABCDE, meaning
that these contrasts have equal coefficients on this fraction. When we apply Fractional

factorials have
aliased effects

that contrast, we are estimating the total effect of C, plus the total effect of
AB, minus the total effect of DE, minus the total effect of ABCDE, or C +
AB – DE – ABCDE. In a2k−q design, every degree of freedom is associated
with 2q effects that are aliased to each other. So aliases come in pairs for
half-fractions, sets of four for quarter-fractions, and soon.

There is a simple rule for determining which effects are aliased. Begin
with the defining relations, I = ABC = –CDE = –ABDE in our example. Treat Multiply defining

relation to get
aliases

I as an identity, multiply all elements of the defining relations by an effect,
and reduce exponents mod 2. For example,

C × I = C × ABC = C× –CDE = C× –ABDE
C = ABC2 = –C2DE = –ABCDE
C = AB = –DE = –ABCDE

We can continue this to find the complete set of aliases:

I = ABC = –CDE = –ABDE
A = BC = –ACDE = –BDE
B = AC = –BCDE = –ADE
C = AB = –DE = –ABCDE
D = ABCD = –CE = –ABE
E = ABCE = –CD = –ABD
AD = BCD = –ACE = –BE
BD = ACD = –BCE = –AE

It is very important to check the aliasing during the design phase of a Check to be sure
no important

effects are
aliased to each

other

fractional factorial. In particular, we do not want to have atwo-factor inter-
action as a generator (or generalized interaction of generators), because that
would imply that two main effects will be aliased. The more letters in the
generators and their interactions the better.

Aliases for more complicated designs follow the same pattern. The defin-
ing relation for the fraction will include I and all2q − 1 of the generators All effects have

2q − 1 aliases in
2k−q design

and their interactions. For example, consider a28−4 with generators BCDE,
ACDF, ABDG, and –ABCH; the defining relation is I = BCDE = ACDF =
ABEF = ABDG = ACEG = BCFG = DEFG = –ABCH = –ADEH = –BDFH =
–CEFH = –CDGH = –BEGH = –AFGH = –ABCDEFGH, which is found as
the generators, their 6 two-way interactions, their 4 three-way interactions,
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Table 18.2:Aliases for28−4 with generators BCDE, ACDF, ABDG, and
–ABCH.
I = BCDE = ACDF = ABEF = ABDG = ACEG = BCFG = DEFG = -ABCH =
-ADEH = -BDFH = -CEFH = -CDGH = -BEGH = -AFGH = -ABCDEFGH

A = ABCDE = CDF = BEF = BDG = CEG = ABCFG = ADEFG = -BCH =
-DEH = -ABDFH = -ACEFH = -ACDGH = -ABEGH = -FGH = -BCDEFGH

B = CDE = ABCDF = AEF = ADG = ABCEG = CFG = BDEFG = -ACH =
-ABDEH = -DFH = -BCEFH = -BCDGH = -EGH = -ABFGH = -ACDEFGH

AB = ACDE = BCDF = EF = DG = BCEG = ACFG = ABDEFG = -CH =
-BDEH = -ADFH = -ABCEFH = -ABCDGH = -AEGH = -BFGH = -CDEFGH

C = BDE = ADF = ABCEF = ABCDG = AEG = BFG = CDEFG = -ABH =
-ACDEH = -BCDFH = -EFH = -DGH = -BCEGH = -ACFGH = -ABDEFGH

AC = ABDE = DF = BCEF = BCDG = EG = ABFG = ACDEFG = -BH =
-CDEH = -ABCDFH = -AEFH = -ADGH = -ABCEGH = -CFGH = -BDEFGH

BC = DE = ABDF = ACEF = ACDG = ABEG = FG = BCDEFG = -AH =
-ABCDEH = -CDFH = -BEFH = -BDGH = -CEGH = -ABCFGH = -ADEFGH

ABC = ADE = BDF = CEF = CDG = BEG = AFG = ABCDEFG = -H =
-BCDEH = -ACDFH = -ABEFH = -ABDGH = -ACEGH = -BCFGH = -DEFGH

D = BCE = ACF = ABDEF = ABG = ACDEG = BCDFG = EFG = -ABCDH =
-AEH = -BFH = -CDEFH = -CGH = -BDEGH = -ADFGH = -ABCEFGH

AD = ABCE = CF = BDEF = BG = CDEG = ABCDFG = AEFG = -BCDH =
-EH = -ABFH = -ACDEFH = -ACGH = -ABDEGH = -DFGH = -BCEFGH

BD = CE = ABCF = ADEF = AG = ABCDEG = CDFG = BEFG = -ACDH =
-ABEH = -FH = -BCDEFH = -BCGH = -DEGH = -ABDFGH = -ACEFGH

ABD = ACE = BCF = DEF = G = BCDEG = ACDFG = ABEFG = -CDH =
-BEH = -AFH = -ABCDEFH = -ABCGH = -ADEGH = -BDFGH = -CEFGH

CD = BE = AF = ABCDEF = ABCG = ADEG = BDFG = CEFG = -ABDH =
-ACEH = -BCFH = -DEFH = -GH = -BCDEGH = -ACDFGH = -ABEFGH

ACD = ABE = F = BCDEF = BCG = DEG = ABDFG = ACEFG = -BDH =
-CEH = -ABCFH = -ADEFH = -AGH = -ABCDEGH = -CDFGH = -BEFGH

BCD = E = ABF = ACDEF = ACG = ABDEG = DFG = BCEFG = -ADH =
-ABCEH = -CFH = -BDEFH = -BGH = -CDEGH = -ABCDFGH = -AEFGH

ABCD = AE = BF = CDEF = CG = BDEG = ADFG = ABCEFG = -DH =
-BCEH = -ACFH = -ABDEFH = -ABGH = -ACDEGH = -BCDFGH = -EFGH
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and their four-way interaction. Thus every degree of freedom has sixteen
names and every effect is aliased to fifteen other effects. The full set of
aliases for this design is shown in Table 18.2. We see that no main effect is
aliased with a two-factor interaction—only three-way or higher. Thus if we
could assume that three-factor and higher interactions arenegligible, all main
effects would be estimated without aliasing to nonnegligible effects.

Every2k−q fractional factorial contains a complete factorial in someset
of k − q factors (possibly many sets), meaning that if you ignore theletters Full factorial in

k − q factors
embedded in

2k−q

for the otherq factors, all2k−q factor-level combinations of the chosenk− q
factors appear in the design. You can use any set ofk−q factors that does not
contain an alias of I as a subset. For example, the25−2 in Example 18.1 has
an embedded complete factorial with three factors. This design has defining
relation I = ABC = –CDE = –ABDE; there are ten sets of three factors, and
any triple except ABC or CDE will provide a complete factorial. Consider
A, B, and D. Rearranging the treatments in the fraction, we get

ce, a, b, abce, cd, ade, bde, abcd;

ignoring C and E, we get

(1), a, b, ab, d, ad, bd, abd,

which are in standard order for A, B, and D. We cannot do this with A, B,
and C; ignoring D and E, we get

c, a, b, abc, c, a, b, abc;

which is not a complete factorial.
As a second example, the factor-level combinations of the28−4 in Ta-

ble 18.2 are

h, afg, beg, abefh, cef, acegh, bcfgh, abc,

defgh, ade, bdf, abdgh, cdg, acdfh, bcdeh, abcdefg ,

which are in standard order for A, B, C, and D.
The embedded complete factorial is a tool for constructing fractional fac-

torials. Display 18.1 gives the steps. Essentially we startwith the factor-level Use embedded
factorial to build

fractions
combinations of the embedded factorial. Each additional factor is aliased to
an interaction of the embedded factorial, so we can determine the pattern of
high and low of the additional factors from the interactionsof the embedded
factors. Add letters to factor-level combinations of the embedded factorial
when the additional factors are at the high level.
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1. Chooseq generators and get the aliases of I.

2. Find a set ofk − q base factors that has an embedded com-
plete factorial.

3. Write the factor-level combinations of the base factors in
standard order.

4. Find the aliases of the remainingq factors in terms of inter-
actions of thek − q base factors.

5. Determine the plus/minus pattern for theq remaining factors
from their aliased interactions.

6. Add letters to the factor-level combinations of the base fac-
tors to indicate when the remaining factors are at their high
levels (plus).

Display 18.1:Constructing fractional factorials

Example 18.2 Treatments in a28−4 design
Consider the28−4 of Table 18.2 with generators BCDE, ACDF, ABDG, and
–ABCH. We can see from the aliases of I that this design has an embedded
factorial in A, B, C, and D. The remaining factors E, F, G, and Hcan be
expressed in terms of interactions of the base factors as E = BCD, F = ACD,
G = ABC, and H = –ABD.

Embedded E = F = G = H = Final
design BCD ACD ABD –ABC design

(1) -1 -1 -1 1 h
a -1 1 1 -1 afg
b 1 -1 1 -1 beg
ab 1 1 -1 1 abefh
c 1 1 -1 -1 cef
ac 1 -1 1 1 acegh
bc -1 1 1 1 bcfgh
abc -1 -1 -1 -1 abc
d 1 1 1 1 defgh
ad 1 -1 -1 -1 ade
bd -1 1 -1 -1 bdf
abd -1 -1 1 1 abdgh
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Embedded E = F = G = H = Final
design BCD ACD ABD –ABC design
cd -1 -1 1 -1 cdg
acd -1 1 -1 1 acdfh
bcd 1 -1 -1 1 bcdeh
abcd 1 1 1 -1 abcdefg

We can see that each factor-level combination has an even number of
letters from the sets BCDE, ACDF, and ABDG, and an odd number of letters
from ABCH.

18.3 Analyzing a2k−q

Analysis of a2k−q is really much like any2k except that we must always
keep the alias structure in mind. Most fractional factorials have only a single
replication, so there will be no estimate of pure error. We must either com- Analyze like 2k

but remember
aliasing

pute a surrogate error by pooling interaction terms, use a graphical approach
such as the half-normal plot, or use Lenth’s PSE. Keep in mindthat if we
pool interaction terms, we must look at all the aliases for a given degree of
freedom; some interaction terms are aliased to main effects! Similarly, a nor-
mal plot of effects may show that an interaction appears to belarge. Check
the aliases for that degree of freedom, because it could be aliased to a main
effect.

Notice that there is some subjectivity in the analysis of a fractional fac-
torial. For example, we could find that only the degree of freedom D = ABC
appears to be significant in a24−1 design with I = ABCD as a defining rela- Some subjectivity

in interpreting
aliases

tion. The most reasonable interpretation is that we are seeing the main effect
of D, not an ABC interaction in the absence of any lower-ordereffects. It is
possible that the ABC interaction is large when the A, B, C, AB, AC, and BC
effects are null, so we could be making a mistake ascribing this effect to D;
but lower-order aliases are usually the safer bet.

Welding strength Example 18.3

Taguchi and Wu (1980) describe an experiment carried out to determine fac-
tors affecting the strength of welds. There were nine factors at two levels
each to be explored. The full experiment was much too large, so a29−5 frac-
tional factorial with sixteen units was used. The factors are coded A though J
(skipping I); the generators are –ACE, –ADF, –ACDG, BCDH, ABCDJ. The
full defining relation is I = –ACE = –ADF = CDEF = –ACDG = DEG = CFG
= –AEFG = BCDH = –ABDEH = –ABCFH = BEFH = –ABGH = BCEGH =
BDFGH = –ABCDEFGH = ABCDJ = –BDEJ = –BCFJ = ABEFJ = –BGJ =
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Table 18.3:Design and responses for welding strength data.

A B C D E F G H J y

gj – – – – – – + – + 40.2
aef + – – – + + – – – 43.7
bgh – + – – – – + + – 44.7
abefhj + + – – + + – + + 42.4
ceh – – + – + – – + – 45.9
acfghj + – + – – + + + + 42.4
bcej – + + – + – – – + 40.6
abcfg + + + – – + + – – 42.2
dfh – – – + – + – + – 45.5
adeghj + – – + + – + + + 42.4
bdfj – + – + – + – – + 40.6
abdeg + + – + + – + – – 43.6
cdefgj – – + + + + + – + 40.2
acd + – + + – – – – – 44.0
bcdefgh – + + + + + + + – 46.5
abcdhj + + + + – – – + + 42.5

210-1-2-3

1

0

-1

Effect

N
or

m
al

 S
co

re

ABCD

BCD

Normal Probability Plot of the Effects
(response is y, Alpha = .10)

A: A
B: B
C: C
D: D

Figure 18.1: Normal plot of effects in welding strength data,
using Minitab.
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Figure 18.2: Main effects in welding strength data, using
Minitab.

ABCEGJ = ABDFGJ = –BCDEFGJ = AHJ = –CEHJ = –DFHJ = ACDEFHJ
= –CDGHJ = ADEGHJ = ACFGHJ = –EFGHJ; every effect is aliased to31
other effects. The design and responses are given in Table 18.3.

First note that this design has an embedded24 design. A check of the
defining relation reveals that ABCD is not aliased to I (nor isany subset of
ABCD), so we have a complete embedded factorial in those fourfactors.
The data in Table 18.3 are in standard order for A, B, C, and D, so we may
compute the main effects and interactions for A, B, C, and D using Yates’ al-
gorithm on the responses in the order presented. Figure 18.1shows a normal
plot of these effects. Only the BCD and ABCD interactions arelarge. Before
we interpret these, we must look at their aliases. We find thatBCD is aliased
to H, and ABCD is aliased to J, so we are probably seeing main effects of H
and J.

Alternatively, we may decide to fit just main effects in an Analysis of
Variance and pool all remaining degrees of freedom into error. This gives us 9
main-effects degrees of freedom and 6 error degrees of freedom. Listing 18.1
① shows the estimated effects, their standard errors, andp-values. Again,
only H and J are significant, which can be seen visually in Figure 18.2. Note
that Minitab also computes the low-order aliases of any terms in the model
②.
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Listing 18.1: Minitab output for welding strength data.

Fractional Factorial Fit

Estimated Effects and Coefficients for y (coded units)

Term Effect Coef StDev Coef T P

Constant 42.963 0.1359 316.18 0.000

A -0.125 -0.063 0.1359 -0.46 0.662 ①
B -0.150 -0.075 0.1359 -0.55 0.601

C 0.150 0.075 0.1359 0.55 0.601

D 0.400 0.200 0.1359 1.47 0.191

E 0.400 0.200 0.1359 1.47 0.191

F -0.050 -0.025 0.1359 -0.18 0.860

G -0.375 -0.187 0.1359 -1.38 0.217

H 2.150 1.075 0.1359 7.91 0.000

J -3.100 -1.550 0.1359 -11.41 0.000

Analysis of Variance for y (coded units)

Source DF Seq SS Adj SS Adj MS F P

Main Effects 9 59.025 59.025 6.5583 22.20 0.001

Residual Error 6 1.772 1.772 0.2954

Total 15 60.797

Alias Structure (up to order 3)

I - A*C*E - A*D*F + A*H*J - B*G*J + C*F*G + D*E*G ②
A - C*E - D*F + H*J - B*G*H - C*D*G - E*F*G

B - G*J - A*G*H + C*D*H - C*F*J - D*E*J + E*F*H

C - A*E + F*G - A*D*G + B*D*H - B*F*J + D*E*F - E*H*J

D - A*F + E*G - A*C*G + B*C*H - B*E*J + C*E*F - F*H*J

E - A*C + D*G - A*F*G - B*D*J + B*F*H + C*D*F - C*H*J

F - A*D + C*G - A*E*G - B*C*J + B*E*H + C*D*E - D*H*J

G - B*J + C*F + D*E - A*B*H - A*C*D - A*E*F

H + A*J - A*B*G + B*C*D + B*E*F - C*E*J - D*F*J

J + A*H - B*G - B*C*F - B*D*E - C*E*H - D*F*H

18.4 Resolution and Projection

Fractional factorials are classified according to theirresolution,which tells
us which types of effects are aliased. A resolutionR design is one in which
no interaction ofj factors is aliased to an interaction with fewer thanR − j
factors. For example, in a resolution three design, no main effect (j = 1)Resolution

determines how
short aliases can
be

is aliased with any other main effect, but main effects can bealiased with
two-factor interactions (R − j = 2). In a resolution four design, no main
effect (j = 1) is aliased with any main effect or two-factor interaction,but
main effects can be aliased with three-factor interactions(R − j = 3), and
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two-factor interactions (j = 2) can be aliased with two-factor interactions
(R − j = 2). In a resolution five design, no main effect is aliased with
any main effect, two-factor interaction, or three-factor interaction, but main
effects can be aliased with four-factor interactions. Two-factor interactions
are not aliased with main effects or two-factor interactions, but they may be
aliased with three-factor interactions.

A fractional factorial of resolutionR hasR letters in the shortest alias of Resolution equals
minimum number

of letters in
aliases of I

I, so we call theseR-letter designs. In fact, this is the easy way to remember
what resolution means. Resolution is usually written as a Roman numeral
subscript for the design. The28−4 design in Table 18.2 has 14 four-letter
aliases of I and an eight-letter alias, so it is resolution IVand is written28−4

IV .

We never want a resolution II design, because such a design would alias
two main effects. Thus the minimum acceptable resolution isIII. When
choosing generators for a2k−p factorial, we want to obtain as high a res- Maximize

resolutionolution as possible so that the aliases of main effects will be interactions with
as high an order as possible.

Resolution isn’t the complete picture. Consider three27−2 designs, with
defining relations I = ABCF = BCDG = ADCF, I = ABCF = ADEG =
BCDEFG, and I = ABCDF = ABCEG = DEFG. All four designs are res-
olution IV, but we prefer the last design because it has only one 4-letter alias, Minimize

aberrationwhile the others have two or three. Designs that have the minimum possi-
ble number of short aliases are calledminimum-aberrationdesigns. Thus we
want maximum resolution and minimum aberration.

Resolution III designs have some main effects aliased to two-factor inter-
actions. If we believe that only main effects are present andall interactions
are negligible, then a resolution III design is sufficient for estimating main
effects. Resolution III designs are calledmain-effects designsfor this reason. Main-effects

designsIf we believe that some two-factor interactions may be nonnegligible but all
three-way and higher interactions are negligible, then a resolution IV design
is sufficient for main effects.

Low-resolution fractional factorials are often used as screening designs,
where we are trying to screen many factors to see if any of themhas an Screening

experimentseffect. This is usually an early stage of investigation, so we do not usually
require information about interactions, though we would not throw away such
information if we can get it.

We have constructed fractional factorials by augmenting anembedded
complete factorial.Projectionof factorials is somewhat the reverse process,
in that we collapse a fractional factorial onto a complete factorial in a subset Projection onto

embedded
factorial

of factors. A2k−q fractional factorial of resolutionR contains a complete
factorial in any set of at mostR − 1 factors. IfR is less thank − q, then this
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Listing 18.2: SAS output for welding strength data.

Dependent Variable: Y

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 56.9925000 18.9975000 59.91 0.0001

Error 12 3.8050000 0.3170833

Source DF Type I SS Mean Square F Value Pr > F

H 1 18.4900000 18.4900000 58.31 0.0001

J 1 38.4400000 38.4400000 121.23 0.0001

H*J 1 0.0625000 0.0625000 0.20 0.6650

embedded factorial is replicated. There may also besomesets ofR or more
factors that form a complete factorial, but you are guaranteed a complete
factorial foranyset ofR − 1 factors.

For example, consider the27−2
IV design with defining relation I = ABCDF

= ABCEG = DEFG. This design contains a replicated complete factorial in
any set of three factors. It also contains a complete factorial in all sets of
four factors except D, E, F, and G, which cannot form a complete factorial
because their four-factor interaction is aliased to I.

Fractional factorials can be projected onto an embedded factorial during
analysis. For example, a half-normal plot of effects in a resolution IV design
might indicate that factors A, D, and E look significant. Projection then treatsProject onto

significant factors the data as if they were a full factorial in the factors A, D, and E and proceeds
with the analysis. Notice that thep-values obtained in this way are somewhat
suspect. We have put “big” effects into the model and “small”effects wind
up in error, so F-statistics and other tests tend to be too big, andp-values tend
to be too small.

Example 18.4 Welding strength, continued
We found in Example 18.3 that factors H and J were significant.This was
a resolution III design, so we can project it onto a factorialin H and J. List-
ing 18.2 shows an ANOVA for H, J, and their interaction. The main effects
are highly significant, as we saw in the earlier analysis. Here we also see that
there is no evidence of interaction.
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18.5 Confounding a Fractional Factorial

We can run a2k−q design in incomplete blocks by confounding one or more
degrees of freedom with block differences, just as we did forcomplete two- Confound

fractions using
defining contrasts

series factorials. The only difference is that each definingcontrast we con-
found is aliased with2q − 1 other effects. Similarly, the generalized interac-
tions of the defining contrasts and their aliases are also confounded.

28−4 in two blocks of eight Example 18.5
Example 18.2 has generators BCDE, ACDF, ABDG, and –ABCH, andthe
factor-level combinations of this fraction are

h, afg, beg, abefh, cef, acegh, bcfgh, abc,

defgh, ade, bdf, abdgh, cdg, acdfh, bcdeh, abcdefg .

We must choose a degree of freedom to confound, and Table 18.2shows
that all degrees of freedom have either main-effect or two-factor interaction
aliases. We don’t want to confound a main effect, so we will confound a
two-factor interaction, say AB and its aliases ACDE = BCDF = EF = DG =
BCEG = ACFG = ABDEFG = –CH = –BDEH = –ADFH = –ABCEFH =
–ABCDGH = –AEGH = –BFGH = –CDEFGH.

To do the confounding, we put all the factor-level combinations with an
even number of the letters A and B in one block, and those with an odd
number in the other block. These blocks are

h, abefh, cef, abc, defgh, abdgh, cdg, abcdefg

and
afg, beg, acegh, bcfgh, ade, bdf, acdfh, bcdeh .

We could have used any of the aliases of AB to get the same blocks. For
example, the first block has an even number of B, C, D, and F, andthe second
block has an odd number.

18.6 De-aliasing

Aliasing is the price that we pay for using fractional factorials. Sometimes,
aliasing is just a nuisance and it doesn’t really affect our analysis. Other times
aliasing is crucial. Consider the25−2 design with defining relation I = ABC = Check aliases to

interpret results–CDE = –ABDE. This design has eight units and 7 degrees of freedom. Sup-
pose that 3 of these degrees of freedom look significant, namely those as-
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sociated with the main effects of A, C, and E. We cannot interpret the re-
sults until we look at the alias structure, and when we do, we find that A =
BC = –ACDE = –BDE, C = AB = –DE = –ABCDE, and E = ABCE =
–CD = –ABD. The most reasonable explanation of our results isthat the
main effects of A, C, and E are significant, because other possibilities such
as A, C, and the CD interaction seem less plausible. Here aliasing was a
nuisance but didn’t hurt much.

Suppose instead that the 3 significant degrees of freedom areassoci-
ated with the main effects of A, B, and C. Now the aliases are A =BC =
–ACDE = –BDE, B = AC = –BCDE = –ADE, and C = AB = –DE =Aliasing can leave

unresolved
ambiguity

–ABCDE. There are four plausible scenarios for significant effects: A, B,
and C; A, B, and AB; B, C and BC; or A, C, and AC. All of these interpreta-
tions fit the results, and we cannot decide between these interpretations with
just these data. We either need additional data or external information that
certain interactions are unlikely to choose among the four.

Fractional factorials can help us immensely by letting us reduce the number
of units needed, but they can leave many questions unanswered.

The problem, of course, is that our fractional designs have aliasing. We
cande-aliasby obtaining additional data. Consider the four possible frac-
tions of a25 using ABC and CDE as generators:De-aliasing

breaks aliases by
running an
additional fraction

ABC CDE ABDE Treatments
– – + (1) ab acd bcd ace bce de abde
+ – – a b cd abcd ce abce ade bde
– + – ac bc d abd e abe acde bcde
+ + + c abc ad bd ae be cde abcde

Our original fraction is the second one in this table, where ABC is plus and
CDE is minus. If we run an additional fraction, then we will have a half-Aliasing in

common to all
fractions is
aliasing for full
design

fraction of a25 run in two blocks of size eight. The aliasing for the half-
fraction is the aliasing that is in common to the two quarter-fractions that we
use. The defining contrast for blocking is the aliasing that differs between
the two fractions.

Suppose that we run the third fraction as an additional fraction. The
only aliasing in common to the two fractions is I = –ABDE, so this is theAliases that

change between
fractions are
confounded

defining relation for the half-fraction. The aliasing that changes between
the two fractions is ABC = –CDE, so this is the defining contrast for the
confounding.

Note that if we knew ahead of time that we were going to run a second
quarter-fraction, we could have designed a resolution V fraction at the start.
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By proceeding in two steps, we wound up with resolution IV. The advantage
of the two-step procedure is that we might have been able to stop at eight
units if the three active factors had been any three other than ABC or CDE;
we were just unlucky.

18.7 Fold-Over

Resolution III fractions are easy to construct, but resolution IV designs are Use fold-over to
construct

resolution IV
designs

more complicated.Fold-overis a technique related to de-aliasing for produc-
ing resolution IV designs from resolution III designs. In particular, fold-over
produces a2k−q

IV design from a2(k−1)−q
III design.

Resolution III fractions are easy to produce. Choose a set ofbase factors Resolution III is
easyfor an embedded factorial, and alias every additional factor to an interaction

of the base factors. This will always be resolution III or higher.

To use fold-over, start with a2(k−1)−q
III design in the firstk−1 factors, and

produce the table of plus and minus signs for thesek − 1 factors. Augment Fold-over by
reversing all signsthis table with an additional column of all minuses, labeledfor factork. Now

double the number of runs by adding the inverse of every row. That is, switch
all plus signs to minus, and all minus signs to plus, including the column for
factork that was all minus signs. The result is a2k−q

IV . The generators for Odd-length
generators gain

last factor and
change sign

the full design are the generators from the2
(k−1)−q
III , with reversed signs and

factork appended to any generator with an odd number of letters. Notethat
even though we have constructed this with two fractions, thedesign is run in
one randomization.

Fold-over for a 215−10

IV Example 18.6

A 215−10
IV design is too big for most tables, and you will need to work hard

to find one by trial and error, but fold-over will do the job easily. Begin
with a 214−10 design. We will use the generators AB = E, AC = F, AD = G,
BC = H, BD = J, CD = K, ABC = L, ABD = M, ACD = N, BCD = O. This
just aliases ten additional factors to interactions of the first four. The factor-
level combinations and columns of pluses and minuses for themain effects
are in the top half of Table 18.4. This includes a column of allminuses for
the fifteenth factor P.

In the bottom half, we reverse all the signs from above to produce the
second half of the design. In this half, P is always plus. The generators
for the full design are –ABEP, –ACFP, –ADGP, –BCHP, –BDJP, –CDKP,
ABCL, ABDM, ACDN, BCDO; the odd-length generators for the resolution
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Table 18.4:Folding over to produce a215−10
IV .

A B C D E F G H J K L M N O P

efghjk – – – – + + + + + + – – – – –
ahjklmn + – – – – – – + + + + + + – –
bfgklmo – + – – – + + – – + + + – + –
abekno + + – – + – – – – + – – + + –
cegjlno – – + – + – + – + – + – + + –
acfjmo + – + – – + – – + – – + – + –
bcghmn – + + – – – + + – – – + + – –
abcefhl + + + – + + – + – – + – – – –
defhmno – – – + + + – + – – – + + + –
adghlo + – – + – – + + – – + – – + –
bdfjln – + – + – + – – + – + – + – –
abdegjm + + – + + – + – + – – + – – –
cdeklm – – + + + – – – – + + + – – –
acdfgkn + – + + – + + – – + – – + – –
bcdhjko – + + + – – – + + + – – – + –
abcdefghjklmno + + + + + + + + + + + + + + –

abcdlmnop + + + + – – – – – – + + + + +
bcdefgop – + + + + + + – – – – – – + +
acdehjnp + – + + + – – + + – – – + – +
cdfghjlmp – – + + – + + + + – + + – – +
abdfhkmp + + – + – + – + – + – + – – +
bdeghklnp – + – + + – + + – + + – + – +
adefjklop + – – + + + – – + + + – – + +
dgjkmnop – – – + – – + – + + – + + + +
abcgjklp + + + – – – + – + + + – – – +
bcefjkmnp – + + – + + – – + + – + + – +
aceghkmop + – + – + – + + – + – + – + +
cfhklnop – – + – – + – + – + + – + + +
abfghjnop + + – – – + + + + – – – + + +
behjlmop – + – – + – – + + – + + – + +
aefglmnp + – – – + + + – – – + + + – +
p – – – – – – – – – – – – – – +

III design (ABE, ACF, ADG, BCH, BDJ, CDK, and ABC) gain a –P in the
fold-over design. There are 105 four-factor, 280 six-factor, 435 eight-factor,
168 ten-factor, and 35 twelve-factor aliases of I in this fold-over design, a
complete enumeration of which you will be spared.
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18.8 Sequences of Fractions

De-aliasing makes routine use of fractional factorials possible, because we
can always use additional fractions to break any aliases that are giving us
trouble. In particular, one thing that makes fractional factorials attractive is
the ability to run fractions in sequence.

For example, suppose you have six factors that you wish to explore, and
money for 32 experimental units. You could use those 32 unitsto run a26−1

V I

design. Or you could use 16 of those units and run a26−2
IV design with ABCE Sequences of

fractions can save
money

and BCDF as generators and save the remaining 16. Why is the second ap-
proach often better? If three or fewer factors are active, then you have a
replicated complete factorial in those three factors (projection of a fraction).
In this case, these first 16 units may be enough to answer our questions. If
more factors are active—in particular if A, B, C, and E or B, C,D, and F
are active—we can always use the remaining 16 units to run an additional Use results of first

fraction to select
later fractions

fraction, and we can choose that fraction to break aliases that appear trouble-
some in the first fraction. The combined quarter-fractions are as good as the
original half-fraction (except for a single degree of freedom between the two
blocks), because we can choose our second quarter-fractionafter seeing the
first.

Thus by using a sequence of fractions, you can often learn everything
you need to learn with fewer units; and if you cannot, you can use the first
fraction to guide your choice of subsequent fraction for remaining units.

Sequences of fractions make sense when each experiment is ofshort du-
ration so that running experiments in sequence is feasible.If each experiment Sequences need

quick turnaroundtakes months to complete (for example, many agronomy experiments), then
a sequence of fractions is a poor choice of design.

18.9 Fractioning the Three-Series

Fractional factorials for the three-series are constructed in the same way as
the two-series: confound the full factorial into blocks andthen run just one
block. Three-series factorials are confounded into 3, 9, 27, and other powers
of three blocks, so three-series can be fractioned into fractions of one third,
one ninth, and so on.

Recall that the factor levels in a three-series are represented by the digits
0, 1, or 2, and that all degrees of freedom are partitioned into two-degree-
of-freedom bundles. The bundles are obtained by splitting the factor-level
combinations according to their values on a defining splitL. For example,
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the defining splitA1B1C2 separates the factor-level combinations into threeA fraction is a
single block from
a confounded
three-series

groups according to

L = 1 × xA + 1 × xB + 2 × xC mod 3 ,

wherexA, xB , andxC are the the levels of factors A, B, and C;L takes the
values 0, 1, or 2. The factor-level combinations that have value 0 for the
defining split(s) form the principal block, and all others are alternate blocks.
These become principal and alternate fractions. The defining splits are the
generators for the fraction.

In a 2k−q factorial, every degree of freedom has2q names, and every ef-
fect is aliased to2q − 1 other effects. It’s just a little more complicated for
three-series fractions. In a3k−1, the constant is aliased to a two-degree-of-
freedom split (the generator); all other two-degree-of-freedom bundles have3k−1 aliases

come in threes three names, and all other splits are aliased to two other splits. If W is the
generator, then the aliases of a splitP arePW andPW 2. (Recall that ex-
ponents of these products are reduced modulo 3, and if the leading nonzero
exponent is a 2, double the exponents and reduce modulo 3 again.) For ex-
ample, the aliases in a33−1 with W = A1B2C2 as generator are

W W 2

I A1B2C2

A A1B1C1 = A(A1B2C2) B1C1 = A(A1B2C2)2

B A1C2 = B(A1B2C2) A1B1C2 = B(A1B2C2)2

C A1B2 = C(A1B2C2) A1B2C1 = C(A1B2C2)2

A1B1 A1C1 = A1B1(A1B2C2) B1C2 = A1B1(A1B2C2)2

In a3k−2, the constant is aliased to four two-degree-of-freedom splits; all
other two-degree-of-freedom bundles have nine names, and all other splits
are aliased to eight other splits. Using two generatorsW1 andW2, the aliases
of I areW1, W2, W1W2, andW1W

2
2 . Which generator is labeled one or two3k−2 aliases

come in nines does not matter, becauseW1W
2
2 = W 2

1 W2 after reducing exponents modulo
3 and making the leading nonzero exponent a 1. The aliases of any other
split P arePW1, PW2, PW1W2, PW1W

2
2 , PW 2

1 , PW 2
2 , PW 2

1 W 2
2 , and

PW 2
1 W2. (Again, reduce exponents modulo 3; double and reduce modulo 3

again if the leading nonzero exponent is not a 1.) For a34−2 factorial with
generatorsA1B1C1 andB1C2D1, the complete alias structure is
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W1 W2 W1W2 W1W
2
2

I A1B1C1 B1C2D1 A1B2D1 A1C2D2

A A1B2C2 A1B1C2D1 A1B1D2 A1C1D1

B A1B2C1 B1C1D2 A1D1 A1B1C2D2

C A1B1C2 B1D1 A1B2C1D1 A1D2

D A1B1C1D1 A1C2D2 A1B2D2 A1C2

W 2
1 W 2

2 W 2
1 W 2

2 W 2
1 W2

I
A B1C1 A1B2C1D2 B1D2 C1D1

B A1C1 C1D2 A1B1D1 A1B2C2D2

C A1B1 A1C1D1 A1B2C2D1 A1C1D2

D A1B1C1D2 B1C2 A1B2 A1C2D1

Further fractions require more generators. A3k−q hasq generatorsW1

throughWq. The constant is aliased to1 + 3 + · · · + 3q−1 two-degree-
of-freedom splits; these splits aliased to I are of the formW i1

1 W i2
2 · · ·W iq

q

where the exponents are 0, 1, or 2, and the first nonzero exponent is a 1. All General 3k−q

aliasingother two-degree-of-freedom bundles have3q names, and all other splits are
aliased to3q −1 other splits. The aliases of a splitP are products of the form
PW i1

1 W i2
2 · · ·W iq

q , where the exponentsij are allowed to range over all3q

combinations of 0, 1, and 2. There are1+ 3 + · · ·+ 3k−q−1 sets of aliases in
addition to the aliases of I.

Resolution in the3k−q is the same as in the two-series: a fractional facto-
rial has resolutionR if no interaction ofj factors is aliased to an interaction Design resolution
of fewer thanR − j factors. And again like the two-series, the resolution of
a3k−q is the number of letters in the shortest alias of I.

We can construct a3k−q using embedded factorials as we did for two-
series. In the33−1 described above, recall the aliasingC = A1B2. Construct
a full factorial in A and B, and then set the levels of C according to theA1B2 Add levels of

aliased factors to
embedded

factorial

interaction; this will generate the fraction. Consider thefollowing table:

00 0 01 2 02 1
10 1 11 0 12 2
20 2 21 1 22 0

The pairs of digits form a complete32 design, and the single digits are the
values of

1 × xA + 2 × xB mod 3 ,
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theA1B2 interaction. These are also the levels of C for the principalfraction.
Group the triples together, and we have the principal fraction of a33−1 with
generatorA1B2C2. If we want an alternate fraction, useAdd 1 or 2 to get

alternate fraction
1 × xA + 2 × xB + 1 mod 3

or
1 × xA + 2 × xB + 2 mod 3

to generate the levels of C.

18.10 Problems with Fractional Factorials

Fractional factorials can be extremely advantageous in situations where we
want to screen factors, can ignore interactions, or have restricted resources.Fractions offer

many chances for
mistakes

However, the sophistication of the fractional factorial gives us many ways in
which to err, and fractional factorials are a bit more brittle than complete fac-
torials in the face of real-world data. Daniel (1976) discusses these problems
in detail.

Here are some common pitfalls that you must try to avoid when using
fractional factorials. During the design stage, you can make your fractional
factorial too large or too small. A design that is too small tries to estimate
too many effects for the number of experimental units used; this is called
oversaturation. Designs that are too small tend to be limited in how you canChoose fraction

size carefully estimate error, because all the degrees of freedom are tied up in interesting
effects, and resolution tends to be small. Designs that are too large are being
wasteful of resources; you may be able to estimate all terms of interest with
a smaller design. This ties in with power. Fractional designs have smaller
sample sizes and thus less power for a given set of effects anderror variance.
When planning the size of the design, we need to keep power in mind. All of
these design issues depend on having at least some prior knowledge or belief
of how the system works. This will allow us to decide what resolution and
replication is needed.

In the analysis stage, the most obvious problem is dealing incorrectly
with aliasing. You thus wind up with a misinterpretation of which effects
are important. You may also miss a need to de-alias. Finally,outliers and
missing data tend to cause more problems for fractional factorials than com-Check aliasing

and watch for bad
data

plete factorials. For example, consider an outlier in a2k−q. In the complete
two-series, an outlier can sometimes be detected by a pattern of smallish ef-
fects of about the same size, usually high-order interactions. In the fraction,
many degrees of freedom have a main effect or low-order interaction in their
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aliases, so there are few opportunities to see the flat pattern in effects that we
expect to be null.

18.11 Using Fractional Factorials in Off-Line Quality
Control

One of the areas in which fractional factorials and related designs have been
used with much success, profit, and acclaim is off-line quality control. Qual-
ity control has on-line and off-line aspects. On-line means“on the produc- Goal of off-line

quality control is
to make products

on target with
minimum
variation

tion line”; on-line quality control includes inspection ofmanufactured parts
to make sure that they meet specifications. Off-line qualitycontrol is off the
production line; this includes designing the product and manufacturing pro-
cess so that the product will meet specifications when manufactured. The
explicit goal is to have the product on target, with minimum variation around
the target.

Suppose that you manufacture exhaust tubing for the automotive industry.
Your client orders a tubing part that should be 2.1 meters long and bent into
a specific shape; parts from 2.09 to 2.11 meters in length are acceptable.
One step of the manufacturing process is cutting the tubing to length. On-
line quality control will include inspection of the cut tubing and rejection
of those tubes out of specification. Off-line quality control designs the tube
cutting process so that the average tube length is 2.1 metersand the variation
around that average is as small as possible.

Off-line quality control has become quite the rage under thebanner of
“Taguchi methods,” named for Genechi Taguchi, the Japanesestatistician
who developed and advocated the methods. The principle of off-line quality Taguchi methods
control is to put a product on target with minimum variation.This princi-
ple is absolutely golden, but the exact methods Taguchi recommended for
achieving this have flaws and inefficiencies in both design and analysis (see
Box, Bisgaard, and Fung 1988 or Pignatiello and Ramberg 1991). What we
discuss here is very much in the spirit of Taguchi, but the analysis approach
is closer to Box (1988).

Most manufacturing processes have many controllable design parame-
ters. For the exhaust tubes, design parameters include the speed at which
tubing moves down the line, the air pressure for tubing clamps, cutting saw
speed, the type of sensor for recognizing the end of a tube, and so on. These
parameters might influence product quality, but we generally don’t know
which ones are important. Manufacturing processes also have uncontrol-
lable aspects, including variation in raw materials and environmental varia-
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tion such as temperature and humidity. Some of these “uncontrollables” canInner noise
controllable,
outer noise
uncontrollable

actually be controlled under laboratory or testing conditions. Taguchi uses
the term “inner noise” for variation that arises from changes in the control-
lable parameters and the term “outer noise” for variation due to the uncon-
trollable parameters.

18.11.1 Designing an off-line quality experiment

We want to find settings for the controllable variables so that the product is
on target and the variation due to the outer noise is as small as possible. ThisStudy means and

variances implies that we need experiments that can study both meansand variances.
We are also explicitly considering the possibility that thevariance will not
be constant, so we will need some form of replication at all design points to
allow us to estimate the variances separately.

Replicated two- and three-series factorials are the basic designs for off-
line quality control. From these we can estimate mean responses as usual,
and replication allows us to estimate the variance at each factor-level com-
bination as well. There are often ten to fifteen or more factors identified asUse replicated

fractional
factorials

potentially important. A complete factorial with this manyfactors would be
prohibitively large, so off-line quality control designs are frequently highly-
fractioned factorials, but with replication.

Two situations present themselves. In the first situation, the outer noise
is at something of a micro scale, meaning that you tend to experience the full
range of outer noise whenever you experiment. One of Taguchi’s early suc-
cesses was at the Ina Tile Company, where there was temperature variation in
the kilns. This noise was always present, as tiles in different parts of the kilnIs outer noise

micro or macro
scale?

experienced different temperatures. In the second situation, the outer noise is
at a more macro scale, meaning that you tend to experience only part of the
range of outer noise in one experiment. In the exhaust tubing, for example,
temperature and humidity in the factory may affect the machinery, but you
tend not to get hot and cold, dry and humid conditions scattered randomly
among your experimental runs. It is hot and humid in the summer and cold
and dry in the winter.

These two situations require different experimental approaches. When
you have outer noise at the micro level, it is generally enough to plan an
experiment using the controllable variables and let the outer noise appearDesign plan

should include
macro-level outer
noise

naturally during replication. When the outer noise is at themacro level, you
must take steps to make sure that the range of outer noise is included in your
experiment. If the outer-noise factors can be controlled under experimental
conditions, then these factors should also be included in the design to ensure
their full range.
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Let’s return to the exhaust tube problem to make things explicit. Our
controllable factors are tube speed, air pressure, saw speed, and sensor type;
the outer-noise factors are temperature and humidity. Assume for simplicity
that we can choose two levels for all factors, so that there are sixteen combi-
nations for the controllable factors and four combinationsfor the outer-noise
factors. We need to include the outer-noise factors in our design, because we
are unlikely to see the full range of outer-noise variation if we do not.

There are several possibilities for this experiment. For example, we could
run the full26 design. This gives four “replications” at each combinationof
the controllable factors, and these replications span the range of the noise
factors. Or we could run a26−1 fraction with 32 points. This is smaller
(and possibly quicker and cheaper), but with a smaller sample size we have
less power for detecting effects and only 1 degree of freedomfor estimating
variation at each of the sixteen combinations of controllable factors.

18.11.2 Analysis of off-line quality experiments

Analysis is based on the following idea. Some of the controllable factors Design variables
affect mean and

variation,
adjustment

variables affect
only mean

affect the variance and the mean, and an additional set of controllable factors
affects only the mean. The factors that affect the variance and mean are
calleddesignvariables; those that affect only the mean are calledadjustment
variables. The idea is to use the design variables to minimize the variance,
and then use the adjustment variables to bring the mean on target.

This approach is complicated by the fact that mean and variance are often
linked in the usual nonconstant-variance sense that we check with residual
plots and remove using a transformation. If we have this kindof nonconstant
variance, then every variable that affects the mean also affects the variance,
and we will have no adjustment variables. Therefore we need to accom-
modate this kind of nonconstant variance before dealing with variation that
depends on controllable variables but not directly throughthe mean.

First, find a transformation of the responses that removes the dependence
of variance on mean as much as possible. This is essentially aBox-Cox Transform to

“constant”
variance

transformation analysis. On this transformed scale, we hope that there are
variables that affect the mean but not the variance.

Next, compute the log of the variance of the transformed dataat every
factor-level combination of the controllable factors. Treat these log variances Analyze log

variances to
determine design

variables

as responses, and analyze them via ANOVA to see which, if any,controllable
factors affect the variance; these are the design variables. Find the factor-
level combination that minimizes the variance. For highly-fractioned designs
we may only be able to do this by looking at main effects and hoping that
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Table 18.5:Variance of natural-log sample variances from
normal data for 1 through 10 degrees of freedom.

1 2 3 4 5 6 7 8 9 10

4.93 1.64 .93 .64 .49 .39 .33 .28 .25 .22

there are no interactions. One complication that arises in this step is that
once we have log variance as a response, there is no replication. Thus we
must use a method for unreplicated factorials to assess whether treatments
affect variances.

If we can assume that the (transformed) responses that go into each of
these variances are independent and normally distributed,then we can cal-
culate an approximateMSE for the ANOVA with log variances as the re-Variance of log

sample variance
is known for
normally
distributed data

sponses. Suppose that there aren experimental units at each factor-level
combination of the controllable factors; then each of thesesample variances
hasn − 1 degrees of freedom. The variance of the (natural) log of a sample
variance depends only on the degrees of freedom. Table 18.5 lists the vari-
ance of the log of a sample variance for up to 10 degrees of freedom. Note
that the variances in that table areverysensitive to the normality assumption.

Finally, return to the original scale. Analyze the responseto determine
which factors affect the mean response, and find settings forthe adjustmentPut response on

target using
adjustment
variables with
design variables
set to minimum
variance

variables that put the response on target when the design variables are at their
variance-minimizing settings. This step generally makes the assumptions
that the adjustment factors can be varied continuously and that the response is
linear between the two observed levels of a factor. Please note that adjusting
a transformation ofy to a targetT , say

√
y to

√
T , will result in a bias on the

original scale and thus a deviation from the target.

Example 18.7 Free height of leaf springs
Pignatiello and Ramberg (1985) present a set of data from a quality experi-
ment on the manufacture of leaf springs for trucks. The free height should be
as close to 8 inches as possible, with minimum variation. There are four inner
noise factors, each at two levels: furnace temperature (B),heating time (C),
transfer time (D), and hold-down time (E). There was one outer noise fac-
tor: quench oil temperature (O). A25−1 design with three replications was
conducted. We will analyze this as a24−1 design in the inner noise factors
with six replications, because quench-oil temperature is not easily controlled
in factory conditions. Table 18.6 shows the results.
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Table 18.6:Free height of leaf springs.

B C D E O low O high y s2

– – – – 7.78 7.78 7.81 7.50 7.25 7.12 7.54 .0900
+ – – + 8.15 8.18 7.88 7.88 7.88 7.44 7.90 .0707
– + – + 7.50 7.56 7.50 7.50 7.56 7.50 7.52 .0010
+ + – – 7.59 7.56 7.75 7.63 7.75 7.56 7.64 .0079
– – + + 7.94 8.00 7.88 7.32 7.44 7.44 7.67 .0908
+ – + – 7.69 8.09 8.06 7.56 7.69 7.62 7.79 .0529
– + + – 7.56 7.62 7.44 7.18 7.18 7.25 7.37 .0380
+ + + + 7.56 7.81 7.69 7.81 7.50 7.59 7.66 .0173
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Figure 18.3: Half-normal plot of dispersion effects for leaf
spring data, using MacAnova.

We first examine whether the data should be transformed. A plot of log
treatment variance against log treatment mean shows no pattern, and Box-
Cox does not indicate the need for a transformation, so we usethe data on
the original scale.

We now do a factorial analysis using log treatment variance as response.
(If we had transformed the data, the response would be the logof the variance
of the transformed data.) Figure 18.3 shows a half-normal plot of the disper-
sion effects, that is, the factorial effects with log variance as response. Only
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Figure 18.4: Half-normal plot of location effects for leaf spring
data, using MacAnova.

factor C appears to affect dispersion, and inspection of Table 18.6 shows that
the high level of C has lower variance.

Now examine how the treatments affect average response. Figure 18.4
shows a half-normal plot of the location effects. Here we seethat B, C,
and the BCD interaction are significant. Recalling the aliasing, the BCD
interaction is also the main effect of E. Thus heating time isa design variable
that we will set to a high level to keep variance low, and furnace temperature
and hold-down time are adjustment variables.

Listing 18.3 shows the location effects for these variables. We have set C
to the high level to get a small variance. To get the mean closeto the target
of 8, we need B and E to be at their high levels as well; this gives us 7.636
+ .111 – .088 + .052, or 7.711, as our estimated response. Thisis still a little
low, so we may need to explore the possibility of expanding the ranges for
factors B and E to get the response closer to target.

18.12 Further Reading and Extensions

Orthogonal-main-effects plans are resolution III designsconstructed so that
the main effects are orthogonal. Resolution III two- and three-series frac-
tion factorials are orthogonal-main-effects plans, but there are several addi-
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Listing 18.3: Location effects for the leaf spring data, using MacAnova.

component: CONSTANT

(1) 7.636

component: b

(1) -0.11062 0.11063

component: c

(1) 0.088125 -0.088125

component: e

(1) -0.051875 0.051875

tional families of designs that have these properties as well. Plackett-Burman
designs (Plackett and Burman 1946) are orthogonal-main-effects plans for
N − 1 factors at two levels each usingN experimental units when N is
an integer multiple of 4. When N is a power of 2, these are resolution III
fractions of the kind discussed in this chapter. Addelman (1962) constructs
orthogonal-main-effects plans for mixed factorials by collapsing factors. For
example, start with a34−2 fraction. Replace factor A by a two level factor
E, using the low level of E when A is 0 or 2, and the high level of Ewhen
A is 1. This produces a fraction of a2133 design in nine units. John (1971)
discusses these two classes, as well as some other mixed factorial fractions.
The aliasing structure of these designs can be quite complex.

Orthogonal arrays are a third class of orthogonal-main-effects plans that
are often used in quality experiments. An orthogonal array for k factors inN
units is described by anN by k matrix of integers; rows for units, columns
for factors, and integers giving factor levels. To be an orthogonal array, all
possible pairs of factor levels must occur together an equalnumber of times
for any pair of factors. Standard two- and three-series fractional factorials of
resolution III meet this criterion, but so do many additional designs. Hedayat
and Wallis (1978) review some of the theory and applicationsof these arrays.

Fractional factorials can also be run using split-plot and related unit struc-
tures. See Miller (1997).

18.13 Problems

Food scientists are trying to determine what chemical compounds make Exercise 18.1
heated butter smell like heated butter. If they could figure that out, then they
could make foods that smell like butter without having all the fat of butter.
There are eight compounds that they wish to investigate, with each compound
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at either a high or low level. They use a28−4 fractional factorial design with
I = ABDE = ABCF = -ACDG = -BCDH.

(a) Find the factor-level combinations used in this design.

(b) Find the aliases of I and A.

(c) If A, B, D, E, and AB look big, are there any unresolved ambiguities?
If so, which further fraction would you run to resolve the ambiguity?

Consider a26−2 fractional factorial using I=ABDF = -BCDE.Exercise 18.2

(a) Find the aliases of the main effects.

(b) Find the factor-level combinations used.

(c) Show how you would block these combinations into two blocks of size
eight.

Consider the28−4 fractional factorial with generator I = BCDE =Exercise 18.3
ACDF = ABCG = ABDH. Find the aliases of C.

Design a27−2 resolution IV fractional factorial. Give the factor-levelExercise 18.4
combinations used in the principal fraction and show how youwould block
these combinations into two blocks of size sixteen.

Design an experiment. There are eight factors, each at two levels. How-Exercise 18.5
ever, we can only afford 64 experimental units. Furthermore, there is consid-
erable unit to unit variability, so blocking will be required, and the maximum
block size possible is 16 units. You may assume that three-way and higher-
order interactions are negligible, but two-factor interactions may be present.

Find the factor-level combinations used in the principal fraction of a34−1Exercise 18.6
with the generatorA1B1C1D1. Report the alias structure, and show how you
would block the design into blocks of size nine.

Briefly describe the experimental design used in each of the follow-Problem 18.1
ing situations (list units, blocks, covariates, factors, whole/split plots, and
so forth). Give a skeleton ANOVA (sources and degrees of freedom only).

(a) We wish to study the effects of stress and activity on the production of
a hormone present in the saliva of children. The high-stresstreatment
is participation in a play group containing children with whom the sub-
ject child in unacquainted; the low-stress treatment is participation in a
play group with other children already known to the subject child. The
activities are a group activity, where all children play together, and an
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individual activity, where each child plays separately. Thirty-two chil-
dren are split at random into two groups of sixteen. The first group is
assigned to high stress, the other to low stress. For each child the order
of group or individual activity is randomized, and a saliva sample is
taken during each activity.

(b) Neighbors near the municipal incinerator are concernedabout mercury
emitted in stack gasses. They want a measure of the accumulation rate
of mercury in soil at various distances and directions from the inciner-
ator. They collect a bunch of soil, mix it as well as they can, divide it
into 30 buckets, and have a lab measure the mercury concentration in
each bucket. The buckets are then randomly divided into fifteen sets
of two; the pairs are placed in fifteen locations around the incinerator,
left for 2 years, and then analyzed again for mercury. The response is
the increase in mercury. The lab informed the activists thatthe amount
of increase will be related to the amount of carbon in the soil, because
mercury is held in the organic fraction; so they also take a carbon mea-
surement.

(c) We wish to discover the effects of food availability on the reproductive
success of anole lizards as measured by the number of new adults ap-
pearing after the breeding season. There are twelve very small islands
with anole populations available for the study. The islandsare man-
made and more or less equally spaced along a north-south line. The
treatments will be manipulation of the food supply on the islands dur-
ing peak breeding season. There are three treatments: control (leave
natural), add supplemental food, and reduced food (set out traps to de-
plete the population of insects the anoles eat). One potential source of
variation is that the lizards are eaten by birds, and there isa wildlife
refuge with a large bird population near the northern extreme of the
study area. To control for this, we group the islands into thenorthern
three, the next three, and so on, and randomize the treatments within
these groups.

(d) A fast-food restaurant offers both smoking and non-smoking sections
for its customers. However, there is considerable smoke “leakage”
from the smoking section to the non-smoking section. The manager
wants to minimize this leakage by finding a good division of the restau-
rant into the two sections. She has three possible divisionsof the tables,
and conducts an experiment by assigning divisions at randomto days
for 3 weeks (7 days per division) and surveying non-smoking patrons
about the amount of smoke. In addition, she monitors the number of
smokers per day, as that has an obvious effect on the amount ofleak-
age.
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Briefly describe the experimental design you would choose for each ofProblem 18.2
the following situations, and why.

(a) Asbestos fiber concentrations in air are measured by drawing a fixed
volume of air through a disk-shaped filter, taking a wedge of the fil-
ter (generally 1/4 of the filter), preparing it for microscopic analysis,
and then counting the number of asbestos fibers found on the prepared
wedge when looking through an optical microscope. (Actually, we
only count on a random subsample of the area of the prepared wedge,
but for the purposes of the question, consider the wedge counted.) We
wish to compare four methods of preparing the wedges for their ef-
fects on the subsequent fiber counts. We have available 24 filters from
a broad range of asbestos air concentrations; we can use eachfilter
entirely, so that we can get four wedges from each filter. We can also
use four trained microscopists. Despite the training, we anticipate con-
siderable microscopist to microscopist variation in the counts (that is,
some tend to count high, and some tend to count low).

(b) A food scientist wishes to study the effect that eating a given food will
have on the ratings given to a similar food (sensory-specificsatiety).
There is a pool of 24 volunteers to work with. Each volunteer must
eat a “load food” (a large portion of hamburger or potato), and then eat
and rate two “test foods” (small portions of roast beef and rice). After
eating, the volunteer will rate the appeal of the roast and rice.

(c) Scientists studying the formation of tropospheric ozone believe that
five factors might be important: amount of hydrocarbon present, amount
of NOX present, humidity, temperature, and level of ultraviolet light.
They propose to set up a “model atmosphere” with the appropriate
ingredients, “let it cook” for 6 hours, and then measure the ozone
produced. They only have funding sufficient for sixteen experimental
units, and their ozone-measuring device can only be used eight times
before it needs to be cleaned and recalibrated.

(d) A school wishes to evaluate four reading texts for use in the sixth grade.
One of the factors in the evaluation is a student rating of thestories in
the texts. The principal of the school decides to use four sixth-grade
rooms in the study, and she expects large room to room differences
in ratings. Due to the length of the reading texts and the organization
of the school year into trimesters, each room can evaluate three texts.
The faculty do not expect systematic differences in ratingsbetween the
trimesters.

(e) The sensory quality of prepared frozen pizza can vary dramatically.
Before the quality control department begins remedial action to reduce
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the variability, they first attempt to learn where the variability arises.
Three broad sources are production (variation in quality from batch
to batch at the factory), transportation (freeze/thaw cycles degrade the
product, and our five shipping/warehouse companies might not keep
the product fully frozen), and stores (grocery store display freezers
may not keep the product frozen). Design an experiment to estimate
the various sources of variability from measurements made on pizzas
taken from grocery freezers. All batches of pizza are shipped by all
shipping companies, but each grocery store is served by onlyone ship-
ping company. You should buy no more than 500 pizzas.

(f) Food scientists are trying to figure out what makes cheddar cheese
smell like cheddar cheese. To this end, they have been able toiden-
tify fifteen compounds in the “odor” of the cheese, and they wish to
make a preliminary screen of these compounds to see if consumers
identify any of these compounds or combinations of compounds as
“cheddary.” At this preliminary stage, the scientists are willing to ig-
nore interactions. They can construct test samples in whichthe com-
pounds are present or absent in any combination. They have resources
to test sixteen consumers, each of whom should sample at mostsixteen
combinations.

(g) The time until germination for seeds can be affected by several vari-
ables. In our current experiment, a batch of seeds is pretreated with one
of three chemicals and stored for one of three time periods inone of
two container types. After storage time is complete, the average time to
germination is measured for the batch. We have 54 essentially uniform
batches of seeds, and wish to understand the relationships between the
chemicals, storage times, and storage containers.

(h) The U.S. Department of Transportation needs to compare five new
types of pavement for durability. They do this by selecting “stretches”
of highway, installing an experimental pavement in the stretch, and
then measuring the condition of the stretch after 3 years. There are
resources allocated for 25 stretches of highway. From past experience,
the department knows that traffic level and weather patternsaffect the
durability of pavement. The department is organized into five regional
districts, and within each district the weather patterns are reasonably
uniform. Also within each district are highways from each ofthe five
traffic level groups.

Avocado oil may be extracted from avocado paste using the following Problem 18.3
steps: (1) dilute the paste with water, (2) adjust the pH of the paste, (3) heat
the paste at 98oC for 5 minutes, (4) let the paste settle, (5) centrifuge the
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paste. We may vary the dilution rate (3:1 water or 5:1 water),pH (4.0 or
5.5), settling (9 days at 23oC or 4 days at 37oC), and centrifugation (6000g
or 12000g). Briefly describe experimental designs for each of the following
situations. You may assume that the paste (prior to any of thefive steps
mentioned) may be used any time up to a week after its preparation. You
may also assume that the primary cost is the analysis; the cost of the paste is
trivial.

(a) We wish to study effects of the four factors mentioned on the extrac-
tion efficiency. Avocado paste is rather uniform, and we haveenough
money for 48 experimental units.

(b) We wish to study effects of the four factors mentioned on the extrac-
tion efficiency. Avocado paste is not uniform but varies fromindividual
fruit to fruit. Each fruit produces enough paste for about 20experimen-
tal units, and we have enough money for 48 experimental units.

(c) We wish to study effects of the four factors mentioned on the extrac-
tion efficiency. Avocado paste is not uniform but varies fromindividual
fruit to fruit. Each fruit produces enough paste for about 10experimen-
tal units, and we have enough money for 48 experimental units.

(d) We wish to determine the effects of the pH, settling, and centrifugation
treatments on the concentration ofα-tocopherol (vitamin E) in the oil.
Each fruit produces enough paste for about six experimentalunits, and
we have enough money for 32 experimental units. Furthermore, we
can only use four experimental units per day and the instruments need
to be recalibrated each day.

An experiment was conducted to determine the factors that affect theProblem 18.4
amount of shrinkage in speedometer cable casings. There were fifteen fac-
tors, each at two levels, but the design used only sixteen factor-level combina-
tions (215−11

III ). The generators were I = –DHM = –BHK = BDF = BDHO =
–AHJ = –ADE = ADHN = –ABC = ABHL = ABDG = –ABDHP, and the
factors were: liner OD (A); liner die (B); liner material (C); liner line speed
(D); wire braid type (E); braiding tension (F); wire diameter (G); liner ten-
sion (H); liner temperature (J); coating material (K); coating die type (L);
melt temperature (M); screen pack (N); cooling method (O); and line speed
(P). The response is the average of four shrinkage measurements (data from
Quinlan 1985).
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A B C D E F G H J K L M N O P y

– – – – – + – – – – – – – – – .4850
– – – – – + – + + + + + + + + .5750
– – – + + – + – – – – + + + + .0875
– – – + + – + + + + + – – – – .1750
– + + – – – + – – + + – – + + .1950
– + + – – – + + + – – + + – – .1450
– + + + + + – – – + + + + – – .2250
– + + + + + – + + – – – – + + .1750
+ – + – + + + – + – + – + – + .1250
+ – + – + + + + – + – + – + – .1200
+ – + + – – – – + – + + – + – .4550
+ – + + – – – + – + – – + – + .5350
+ + – – + – – – + + – – + + – .1700
+ + – – + – – + – – + + – – + .2750
+ + – + – + + – + + – + – – + .3425
+ + – + – + + + – – + – + + – .5825

Analyze these data to determine which factors affect shrinkage, and how
they affect shrinkage.

Seven factors are believed to control the softness of cold-foamed car Problem 18.5
seats, and an experiment was conducted to determine how these factors influ-
ence the softness. A27−4

III design was run with generators I = ABD = ACE =
BDF = ABCG. The response is the average softness of the seats (data from
Bergman and Hynén 1997)

A B C D E F G y

– – – + + – – 25.3
+ – – – – + + 20.6
– + – – + – + 26.7
+ + – + – + – 23.8
– – + + – – + 23.5
+ – + – + + – 24.0
– + + – – – – 23.5
+ + + + + + + 24.2

Analyze these data to determine how the factors affect softness.

Silicon wafers for integrated circuits are grown in a devicecalled a sus- Problem 18.6
ceptor, and a response of interest is the thickness of the silicon. Eight factors,
each at two levels, were believed to contribute: rotation method (A), wafer
code (B), deposition temperature (C), deposition time (D),arsenic flow rate
(E), HCl etch temperature (F), HCl flow rate (G), and nozzle position (H). A
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28−4
IV design was run with generators I = ABCD = BCEF = ACEG = BCEH.

The average thickness of the silicon follows (data from Shoemaker, Tsui, and
Wu 1991)

A B C D E F G H y

– – – – – – – – 14.80
– – – – + + + + 14.86
– – + + – + + + 14.00
– – + + + – – – 13.91
– + – + – + – + 14.14
– + – + + – + – 13.80
– + + – – – + – 14.73
– + + – + + – + 14.89
+ – – + – – + – 13.93
+ – – + + + – + 14.09
+ – + – – + – + 14.79
+ – + – + – + – 14.33
+ + – – – + + + 14.77
+ + – – + – – – 14.88
+ + + + – – – – 13.76
+ + + + + + + + 13.97

Analyze these data to determine how silicon thickness depends on the factors.

The responses shown in Problem 18.5 are the averages of sixteen indi-Problem 18.7
vidual units. The variances among those units were: 3.24, .64, 1.00, 2.56,
1.96, 1.00, 1.00, and 2.56 for the eight factor-level combinations used in the
design. Which factor-levels should we use to reduce variation?

We have a replicated23 design with data (in standard order, first replicateProblem 18.8
then second replicate) 6, 10, 32, 60, 4, 15, 26, 60, 8, 12, 34, 60, 16, 5, 37, 52.
We would like the mean response to be about 30, with minimum variability.
How should we choose our factor levels?

A product is produced that should have a score as close to 2 as possible.Problem 18.9
Eight factors are believed to influence the score, and a completely random-
ized experiment is conducted using 64 units and sixteen treatments in a28−4

IV
fractional-factorial treatment structure. Analyze thesedata and report how
you would achieve the score of 2. You may assume that the treatments are
continuous and can take any level between -1 (low) and 1 (high). Increasing
any factor costs more money, and factors are named in order ofincreasing
expense.
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y1 y2 y3 y4

(1) 2.50 2.85 2.80 2.92
aefg 1.83 1.87 1.87 1.70
befh 1.55 1.56 1.64 1.56
abgh 1.12 1.14 1.23 1.18
cegh 1.67 1.65 1.83 1.89
acfh 2.79 2.75 2.95 3.18
bcfg 1.15 1.19 1.18 1.16
abce 1.55 1.52 1.62 1.66
dfgh 2.95 4.05 2.73 2.13
adeh 9.41 4.37 5.06 4.20
bdeg 1.38 1.88 2.05 1.54
abdf 2.14 2.79 2.65 1.85
cdef 7.48 5.79 3.55 13.63
acdg 3.13 1.98 2.24 3.14
bcdh 2.48 1.87 2.92 2.21
abcdefgh 2.00 1.42 1.36 1.23

Suppose you have seven factors to study, each at two levels, but that you Problem 18.10
can only afford 32 runs. Further assume that at most four of the factors
are active, and the rest inert. You may safely assume that allthree-factor
or higher-order interactions are negligible, but many or all of the two-factor
interactions in the active factors are present.

(a) Design a single-stage experiment that uses all 32 runs. Show that this
experiment may not be able to estimate all effects of interest.

(b) Design a two-stage experiment, where you use 16 runs in the first stage,
and then use an additional 16 runs if needed. Show that you canalways
estimate the effects of interest with the two-stage design.

(c) Suppose that we had assigned the seven labels A, B, C, D, E,F, and G
to the seven factors at random. There are 35 (seven choose four) ways
of assigning the four active factors to labels, ignoring theorder. What
is the probability that you can estimate main effects and alltwo-factor
interactions in the active factors with your design from part (a)? What
is the probability that you can estimate main effects and alltwo factor
interactions in the active factors with your first 16-point design from
(b) and your full two-stage design from part (b)?

(d) What is the main lesson you draw from (a), (b), and (c)?

We wish to determine the tolerance of icings to ingredient changes and Problem 18.11
variation in the preparation. Ingredient changes are represented by factors C,
D, E, F, G, and H. All are at two levels. C and D are two types of sugars;
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E, F, and G are three stabilizers; and H is a setting agent. Thelevels of
these factors represent changes in the amounts of these constituents in the
mix. Variation in preparation is modeled as the amount of water added to
the product. This has four levels and is represented as the combinations of
factors A and B. The response we measure is (coded) viscosityof the icing.
A quarter-fraction with 64 observations was run; data follow (Carroll and
Dykstra 1958):

(1) 26 agh 6 bh 43 abg -3
cg 16 ach 10 bcgh 69 abc -5
dgh 12 ad 13 bdg 45 abdh -13
cdh 22 acdg 17 bcd 45 abcdgh -4
eh 29 aeg 13 be 54 abegh 4
cegh 30 ace 17 bceg 54 abceh 5
deg 29 adeh 16 bdegh 43 abde -2
cde 34 acdegh 16 bcdeh 67 abcdeg -3
fgh 32 af 19 bfg 64 abfh 6
cfh 30 acfg 18 bcf 57 abcfgh 6
df 27 adfgh 29 bdfh 50 abdfg 6
cdfg 35 acdfh 22 bcdfgh 53 abcdf 7
efg 53 aefh 29 befgh 74 abef 8
cef 46 acefgh 21 bcefh 73 abcefg 13
defh 35 adefg 23 bdef 69 abdefgh 20
cdefgh 42 acdef 27 bcdefg 69 abcdefh 10

Determine which factors affect the viscosity of the icing, and in what ways.
The response should lie between 25 and 30; what does the experiment tell us
about the icing’s tolerance to changes in ingredients?

Use the fact that the shortest alias of I in a resolutionR design hasR let-Question 18.1
ters to show that a2k−p design of resolutionR contains a complete factorial
in anyR − 1 factors.

Show that fold-over breaks all aliases of odd length.Question 18.2

Show that (1) there are1 + 3 + 32 + · · · + 3k−1 two-degree-of-freedomQuestion 18.3
splits in a3k factorial; (2) there are1 + 3 + 32 + · · · + 3k−q−1 two-degree-
of-freedom splits in a3k−q fractional factorial, each with3q labels; and (3)
there are1 + 3 + · · · + 3q−1 two-degree-of-freedom splits aliased to I in a
3k−q fractional factorial.



Chapter 19

Response Surface Designs

Many experiments have the goals of describing how the response varies as
a function of the treatments and determining treatments that give optimal
responses, perhaps maxima or minima. Factorial-treatmentstructures can be
used for these kinds of experiments, but when treatment factors can be varied
across a continuous range of values, other treatment designs may be more
efficient. Response surface methodsare designs and models for working Response

surface methodswith continuous treatments when finding optima or describing the response
is the goal.

19.1 Visualizing the Response

In some experiments, the treatment factors can vary continuously. When
we bake a cake, we bake for a certain timex1 at a certain temperaturex2;
time and temperature can vary continuously. We could, in principle, bake
cakes for any time and temperature combination. Assuming that all the cake
batters are the same, the quality of the cakesy will depend on the time and Response is a

function of
continuous

design variables

temperature of baking. We express this as

yij = f(x1i, x2i) + ǫij ,

meaning that the responsey is some functionf of the design variablesx1 and
x2, plus experimental error. Herej indexes the replication at theith unique
set of design variables.

One common goal when working with response surface data is tofind
the settings for the design variables that optimize (maximize or minimize)
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Figure 19.1: Sample perspective plot, using Minitab.

the response. Often there are complications. For example, there may be
several responses, and we must seek some kind of compromise optimum that
makes all responses good but does not exactly optimize any single response.Compromise or

constrained
optimum

Alternatively, there may be constraints on the design variables, so that the
goal is to optimize a response, subject to the design variables meeting some
constraints.

A second goal for response surfaces is to understand “the lieof the land.”
Where are the hills, valleys, ridge lines, and so on that makeup the topogra-Describe the

shape of the
response

phy of the response surface? At any give design point, how will the response
change if we alter the design variables in a given direction?

We can visualize the functionf as a surface of heights over thex1, x2

plane, like a relief map showing mountains and valleys. A perspective plot
shows the surface when viewed from the side; Figure 19.1 is a perspective
plot of a fairly complicated surface that is wiggly for low values ofx2, andPerspective plots

and contour plots flat for higher values ofx2. A contour plot shows the contours of the surface,
that is, curves ofx1, x2 pairs that have the same response value. Figure 19.2
is a contour plot for the same surface as Figure 19.1.

Graphics and visualization techniques are some of our best tools for un-
derstanding response surfaces. Unfortunately, response surfaces are difficultUse models for f

to visualize when there are three design variables, and become almost im-
possible for more than three. We thus work with models for theresponse
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Figure 19.2: Sample contour plot, using Minitab.

functionf .

19.2 First-Order Models

All models are wrong; some models are useful.George Box

We often don’t know anything about the shape or form of the function f , so
any mathematical model that we assume forf is surely wrong. On the other
hand, experience has shown that simple models using low-order polynomial
terms in the design variables are generally sufficient to describe sections of Polynomials are

often adequate
models

a response surface. In other words, we know that the polynomial models
described below are almost surely incorrect, in the sense that the response
surfacef is unlikely to be a true polynomial; but in a “small” region, polyno-
mial models are usually a close enough approximation to the response surface
that we can make useful inferences using polynomial models.

We will considerfirst-order modelsandsecond-order modelsfor response
surfaces. A first-order model withq variables takes the form First-order model

has linear terms

yij = β0 + β1x1i + β2x2i + · · · + βqxqi + ǫij



512 Response Surface Designs

= β0 +
q∑

k=1

βkxki + ǫij

= β0 + x
′
iβ + ǫij ,

wherexi = (x1i, x2i, . . ., xqi)
′ andβ = (β1, β2, . . ., βq)

′. The first-order
model is an ordinary multiple-regression model, with design variables as pre-
dictors andβk ’s as regression coefficients.

First-order models describe inclined planes: flat surfaces, possibly tilted.
These models are appropriate for describing portions of a response surface
that are separated from maxima, minima, ridge lines, and other stronglyFirst-order

models describe
flat, but tilted,
surfaces

curved regions. For example, the side slopes of a hill might be reason-
ably approximated as inclined planes. These approximations are local, in
the sense that you need different inclined planes to describe different parts of
the mountain. First-order models can approximatef reasonably well as long
as the region of approximation is not too big andf is not too curved in that
region. A first-order model would be a reasonable approximation for the part
of the surface in Figures 19.1 or 19.2 wherex2 is large; a first-order model
would work poorly wherex2 is small.

Bearing in mind that these models are only approximations tothe true
response, what can these models tell us about the surface? First-order models
can tell us which way is up (or down). Suppose that we are at thedesignFirst-order

models show
direction of
steepest ascent

variablesx, and we want to know in which direction to move to increase the
response the most. This is the direction ofsteepest ascent. It turns out that
we should take a step proportional toβ, so that our new design variables are
x + rβ, for somer > 0. If we want the direction ofsteepest descent,then
we move tox − rβ, for somer > 0. Note that this direction of steepest
ascent is only approximately correct, even in the region where we have fit the
first-order model. As we move outside that region, the surface may change
and a new direction may be needed.

Contours or level curves are sets of design variables that have the same
expected response. For a first-order surface, design pointsx andx + δ areContours are flat

for first-order
models

on the same contour if
∑

βkδk = 0. First-order model contours are straight
lines forq = 2, planes forq = 3, and so on. Note that directions of steepest
ascent are perpendicular to contours.

19.3 First-Order Designs

We have three basic needs from a response surface design. First, we must
be able to estimate the parameters of the model. Second, we must be able
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to estimatepure error and lack of fit. As described below, pure error and
lack of fit are our tools for determining if the first-order model is an adequate Get parameters,

pure error, and
LoF efficiently

approximation to the true mean structure of the data. And third, we need the
design to be efficient, both from a variance of estimation point of view and a
use of resources point of view.

The concept of pure error needs a little explanation. Data might not fit a
model because of random error (theǫij sort of error); this is pure error. Data
also might not fit a model because the model is misspecified anddoes not Large lack of fit

implies model
does not describe

mean structure
adequately

truly describe the mean structure; this is lack of fit. Our models are approx-
imations, so we need to know when the lack of fit becomes large relative to
pure error. This is particularly true for first-order models, which we will then
replace with second-order models. It is also true for second-order models,
though we are more likely to reduce our region of modeling rather than move
to higher orders.

We do not have lack of fit for factorial models when the full factorial
model is fit. In that situation, we have fit a degree of freedom for every
factor-level combination—in effect, a mean for each combination. There can
be no lack of fit in that case because all means have been fit exactly. We can
get lack of fit when our models contain fewer degrees of freedom than the
number of distinct design points used; in particular, first-and second-order
models may not fit the data.

Response surface designs are usually given in terms ofcoded variables.
Coding simply means that the design variables are rescaled so that 0 is in Coded variables

simply designthe center of the design, and±1 are reasonable steps up and down from the
center. For example, if cake baking time should be about 35 minutes, give or
take a couple of minutes, we might rescale time by(x1 − 35)/2, so that 33
minutes is a –1, 35 minutes is a 0, and 37 minutes is a 1.

First-order designs collect data to fit first-order models. The standard Two-series with
center points for

first order
first-order design is a2q factorial with center points. The (coded) low and
high values for each variable are±1; the center points arem observations
taken with all variables at 0. This design has2q +m points. We may also use
any2q−k fraction with resolution III or greater.

The replicated center points serve two uses. First, the variation among the
responses at the center point provides an estimate of pure error. Second, the
contrast between the mean of the center points and the mean ofthe factorial Center points for

pure error and
lack of fit

points provides a test for lack of fit. When the data follow a first-order model,
this contrast has expected value zero; when the data follow asecond-order
model, this contrast has an expectation that depends on the pure quadratic
terms.
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Example 19.1 Cake baking
Our cake mix recommends 35 minutes at 350o, but we are going to try to find
a time and temperature that suit our palate better. We begin with a first-order
design in baking time and temperature, so we use a22 factorial with three
center points. Use the coded values –1, 0, 1 for 33, 35, and 37 minutes for
time, and the coded values –1, 0, 1 for 340, 350, and 360 degrees for temper-
ature. We will thus have three cakes baked at the package-recommended time
and temperature (our center point), and four cakes with timeand temperature
spread around the center. Our response is an average palatability score, with
higher values being desirable:

x1 x2 y

-1 -1 3.89
1 -1 6.36

-1 1 7.65
1 1 6.79
0 0 8.36
0 0 7.63
0 0 8.12

19.4 Analyzing First-Order Data

Here are three possible goals when analyzing data from a first-order design:

• Determine which design variables affect the response.

• Determine whether there is lack of fit.

• Determine the direction of steepest ascent.

Some experimental situations can involve a sequence of designs and all these
goals. In all cases, model fitting for response surfaces is done using multi-
ple linear regression. The model variables (x1 throughxq for the first-order
model) are the “independent” or “predictor” variables of the regression. TheMultiple

regression to
estimate βk ’s

estimated regression coefficients are estimates of the model parametersβk.
For first-order models using data from2q factorials with or without center
points, the estimated regression slopes using coded variables are equal to the
ordinary main effects for the factorial model. Letb be the vector of estimated
coefficients for first-order terms (an estimate ofβ).
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Model testing is done with F-tests on mean squares from the ANOVA
of the regression; each term has its own line in the ANOVA table. Predictor
variables are orthogonal to each other in many designs and models, but not in
all cases, and certainly not when there is missing data; so itseems easiest just
to treat all testing situations as if the model variables were nonorthogonal.

To test the null hypothesis that the coefficients for a set of model terms
are all zero, get the error sum of squares for the full model and the error
sum of squares for the reduced model that does not contain themodel terms
being tested. The difference in these error sums of squares is the improve- Test terms of

interest adjusted
for other terms in

model

ment sum of squares for the model terms under test. The improvement mean
square is the improvement sum of squares divided by its degrees of freedom
(the number of model terms in the multiple regression being tested). This
improvement mean square is divided by the error mean square from the full
model to obtain an F-test of the null hypothesis. The sum of squares for im-
provement can also be computed from a sequential (Type I) ANOVA for the
model, provided that the terms being tested are the last terms entered into
the model. The F-test ofβk = 0 (with one numerator degree of freedom) is
equivalent to thet-test forβk that is printed by most regression software.

In many response surface experiments, all variables are important, as
there has been preliminary screening to find important variables prior to ex- Test to exclude

noise variables
from model

ploring the surface. However, inclusion of noise variablesinto models can
alter subsequent analysis. It is worth noting that variables can look inert in
some parts of a response surface, and active in other parts.

The direction of steepest ascent in a first-order model is proportional to
the coefficientsβ. Our estimated direction of steepest ascent is then propor-
tional to b. Inclusion of inert variables in the computation of this direction Direction of

steepest ascent
proportional to
estimated β’s

increases the error in the direction of the active variables. This effect is worst
when the active variables have relatively small effects. The net effect is that
our response will not increase as quickly as possible per unit change in the
design variables, because the direction could have a nonnegligible compo-
nent on the inert axes.

Residual variation can be divided into two parts: pure errorand lack of
fit. Pure error is variation among responses that have the same explanatory Divide residual

into pure error
and lack of fit

variables (and are in the same blocks, if there is blocking).We use replicated
points, usually center points, to get an estimate of pure error. All the rest of
residual variation that is not pure error is lack of fit. Thus we can make the
decompositions

SSTot = SSModel + SSLoF + SSPE

N − 1 = dfModel + dfLoF + dfPE .
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The mean square for pure error estimatesσ2, the variance ofǫ. If the
model we have fit has the correct mean structure, then the meansquare for
lack of fit also estimatesσ2, and the F-ratioMSLoF /MSPE will have an F-Pure error

estimates σ2; lack
of fit measures
deviation of
model from true
mean structure

distribution withdfLoF anddfPE degrees of freedom. If the model we have
fit has the wrong mean structure—for example, if we fit a first-order model
and a second-order model is correct—then the expected valueof MSLoF is
larger thanσ2. Thus we can test for lack of fit by comparing the F-ratio
MSLoF /MSPE to an F-distribution withdfLoF anddfPE degrees of free-
dom.

For a 2q factorial design withm center points, there are2q + m − 1
degrees of freedom, withq for the model,m − 1 for pure error, and all the
rest for lack of fit.

Quantities in the analysis of a first-order model are not veryreliable when
there is significant lack of fit. Because the model is not tracking the actual
mean structure of the data, the importance of a variable in the first-orderAll bets off when

lack of fit present model may not relate to the variable’s importance in the meanstructure of
the data. Likewise, the direction of steepest ascent from a first-order model
may be meaningless if the the model is not describing the truemean structure.

Example 19.2 Cake baking, continued
Example 19.1 was a22 design with three center points. Our first-order model
includes a constant and linear terms for time and temperature. With seven
data points, there will be 4 residual degrees of freedom. Theonly replication
in the design is at the three center points, so we have 2 degrees of freedom
for pure error. The remaining 2 residual degrees of freedom are lack of fit.

Listing 19.1 shows results for this analysis. Using the 4-degree-of-freedom
residual mean square, neither time nor temperature has an F-ratio much big-
ger than one, so neither appears to affect the response①. However, look at
the test for lack of fit②. This test has an F-ratio of 31.5 andp-value of .03,
indicating that the first-order model is missing some of the mean structure.

The 2 degrees of freedom for lack of fit are the interaction in the factorial
points and the contrast between the factorial points and thecenter points.
The sums of squares for these contrasts are 2.77 and 5.96, so most of the lack
of fit is due to the center points not lying on the plane fit from the factorial
points. In fact, the center points are about 1.86 higher on average than what
the first-order model predicts.

The direction of steepest ascent in this model is proportional to (.40,
1.05), the estimatedβ1 andβ2. That is, the model says that a maximal in-
crease in response can be obtained by increasingx1 by .38 (coded) units for
every increase of 1 (coded) unit inx2. However, we have already seen that
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Listing 19.1: Minitab output for first-order model of cake baking data.

Estimated Regression Coefficients for y

Term Coef StDev T P

Constant 6.9714 0.5671 12.292 0.000

x1 0.4025 0.7503 0.536 0.620 ①
x2 1.0475 0.7503 1.396 0.235

S = 1.501 R-Sq = 35.9% R-Sq(adj) = 3.8%

Analysis of Variance for y

Source DF Seq SS Adj SS Adj MS F P

Regression 2 5.0370 5.0370 2.5185 1.12 0.411

Linear 2 5.0370 5.0370 2.5185 1.12 0.411

Residual Error 4 9.0064 9.0064 2.2516

Lack-of-Fit 2 8.7296 8.7296 4.3648 31.53 0.031 ②
Pure Error 2 0.2769 0.2769 0.1384

Total 6 14.0435

there is significant lack of fit using the first-order model with these data, so
this direction of steepest ascent is not reliable.

19.5 Second-Order Models

We use second-order models when the portion of the response surface that we
are describing has curvature. A second-order model contains all the terms
in the first-order model, plus all quadratic terms likeβ11x

2
1i and all cross Second-order

models include
quadratic and
cross product

terms

product terms likeβ12x1ix2i. Specifically, it takes the form

yij = β0 + β1x1i + β2x2i + · · · + βqxqi +

β11x
2
1i + β22x

2
2i + · · · + βqqx

2
qi +

β12x1ix2i + β13x1ix3i + · · · + β1qx1ixqi +

β23x2ix3i + β24x2ix4i + · · · + β2qx2ixqi +

· · · + β(q−1)qx(q−1)ixqi + ǫij

= β0 +
q∑

k=1

βkxki +
q∑

k=1

βkkx
2
ki +

q−1∑

k=1

q∑

l=k+1

βklxkixli + ǫij

= β0 + x
′
iβ + x

′
iBxi + ǫij ,
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Figure 19.3: Sample second-order surfaces: (a) minimum, (b) maximum, (c) ridge,
and (d) saddle, using Minitab.

where once againxi = (x1i, x2i, . . ., xqi)
′, β = (β1, β2, . . ., βq)

′, andB is
a q × q matrix with Bkk = βkk andBkl = Blk = βkl/2 for k < l. Note
that the model only includes thekl cross product fork < l; the matrix form
with B includes bothkl andlk, so the coefficients are halved to take this into
account.

Second-order models describe quadratic surfaces, and quadratic surfaces
can take several shapes. Figure 19.3 shows four of the shapesthat a quadratic
surface can take. First, we have a simple minimum and maximum. ThenQuadratic

surfaces take
many shapes

we have a ridge; the surface is curved (here a maximum) in one direction,
but is fairly constant in another direction. Finally, we seea saddle point; the
surface curves up in one direction and curves down in another.

Second-order models are easier to understand if we change from the orig-
inal design variablesx1 andx2 to canonical variablesv1 andv2. Canonical
variables will be defined shortly, but for now consider that they shift the ori-
gin (the zero point) and rotate the coordinate axes to match the second-order



19.5 Second-Order Models 519

surface; the second-order model is very simple when expressed in canonical Use canonical
variablesvariables:

fv(v) = fv(0) +
q∑

k=1

λkvk
2 ,

wherev = (v1, v2, . . ., vq)
′ is the design variables expressed in canonical

coordinates;fv is the response as a function of the canonical variables; and
λk ’s are numbers computed from theB matrix. Thex value that maps to0
in the canonical variables is called thestationary pointand is denoted byx0;
thusfv(0) = f(x0).

The key to understanding canonical variables is the stationary point of
the second-order surface. The stationary point is that combination of de-
sign variables where the surface is at either a maximum or a minimum in all Stationary point is

maximum,
minimum, or
saddle point

directions. If the stationary point is a maximum in all directions, then the
stationary point is the maximum response on the whole modeled surface. If
the stationary point is a minimum in all directions, then it is the minimum
response on the whole modeled surface. If the stationary point is a maximum
in some directions and a minimum in other directions, then the stationary
point is a saddle point, and the modeled surface has no overall maximum or
minimum. If a ridge surface is absolutely level in some direction, then it does
not have a unique stationary point; this rarely happens in practice.

The stationary point will be the origin (0 point) for our canonical vari-
ables. Now imagine yourself situated at the stationary point of a second-
order surface. The first canonical axis is the direction in which you would From stationary

point, response
increases as

quickly as
possible in first

canonical
direction (axis)

move so that a step of unit length yields a response as large aspossible (either
increase the response as much as possible or decrease it as little as possible).
The second canonical axis is the direction, among all those directions perpen-
dicular to the first canonical axis, that yields a response aslarge as possible.
There are as many canonical axes as there are design variables. Each addi-
tional canonical axis that we find must be perpendicular to all those we have
already found.

Figure 19.4 shows contours, stationary points, and canonical axes for
the four sample second-order surfaces. As shown in this figure, contours
for surfaces with maxima or minima are ellipses. The stationary pointx0 is Second-order

contours are
ellipses or

hyperbolas
centered at

stationary point

the center of these ellipses, and the canonical axes are the major and minor
axes of the elliptical contours. For the ridge system, we still have elliptical
contours, but they are very long and skinny, and the stationary point is outside
the region where we have fit the model. If the ridge is absolutely flat, then
the contours are parallel lines. For the saddle point, contours are hyperbolic
instead of elliptical. The stationary point is in the centerof the hyperbolas,
and the canonical axes are the axes of the hyperbolas.
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Figure 19.4: Contours, stationary points, and canonical axes for samplesecond-order
surfaces: (a) minimum, (b) maximum, (c) ridge, and (d) saddle, using S-Plus.

This description of second-order surfaces has been geometric; pictures
are an easy way to understand these surfaces. It is difficult to calculate with
pictures, though, so we also have an algebraic description of the second-order
surface. Recall that the matrix form of the response surfaceis written

f(x) = β0 + x
′β + x

′Bx .



19.5 Second-Order Models 521

Our algebraic description of the surface depends on the following facts:

1. The stationary point for this quadratic surface is at Two results from
linear algebra

x0 = −1

2
B−1β ,

whereB−1 is the matrix inverse ofB.

2. For theq × q symmetric matrixB, we can find aq × q matrix H such
thatH ′H = HH ′ = Iq andH ′BH = Λ, whereIq is theq× q identity
matrix andΛ is a matrix with elementsλ1, . . ., λq on the diagonal and
zeroes off the diagonal.

The numbersλk are theeigenvaluesof B, and the columns ofH are the
correspondingeigenvectors.

We saw in Figure 19.4 that the stationary point and canonicalaxes give us
a new coordinate system for the design variables. We get the new coordinates Get canonical

coordinatesv
′ = (v1, v2, . . ., vq) via

v = H ′(x − x0) .

Subtractingx0 shifts the origin, and multiplying byH ′ rotates to the canoni-
cal axes.

Finally, the payoff: in the canonical coordinates, we can express the re-
sponse surface as Response in

canonical
coordinatesfv(v) = fv(0) +

q∑

k=1

λkv
2
k ,

where

fv(0) = f(x0) = β0 +
1

2
x
′
0β .

That is, when looked at in the canonical coordinates, the response surface is a
constant plus a simple squared term from each of the canonical variablesvi. Signs of λk ’s

determine
maximum,

minimum, or
saddle

If all of the λk ’s are positive,x0 is a minimum. If all of theλk’s are negative,
x0 is a maximum. If some are negative and some are positive,x0 is a saddle
point. If all of theλk’s are of the same sign, but some are near zero in value,
we have a ridge system. Theλk ’s for our four examples in Figure 19.4 are
(.31771, .15886) for the surface with a minimum, (-.31771, -.15886) for the
surface with a maximum, (-.021377, -.54561) for the surfacewith a ridge,
and (.30822, -.29613) for the surface with a saddle point.

In principal, we could also use third- or higher-order models. This is
rarely done, as second-order models are generally sufficient.
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Figure 19.5: A central composite design in three dimensions,
showing center (C), factorial (F), and axial (A) points.

19.6 Second-Order Designs

There are several choices for second-order designs. One of the most popu-
lar is thecentral composite design(CCD). A CCD is composed of factorialCentral

composite (CCD)
has factorial
points, axial
points, and center
points

points,axial points, and center points. Factorial points are the points from
a 2q design with levels coded as±1 or the points in a2q−k fraction with
resolution V or greater; center points are againm points at the origin. The
axial points have one design variable at±α and all other design variables at
0; there are2q axial points. Figure 19.5 shows a CCD forq = 3.

One of the reasons that CCD’s are so popular is that you can start with
a first-order design using a2q factorial and then augment it with axial pointsAugment

first-order design
to CCD

and perhaps more center points to get a second-order design.For example,
we may find lack of fit for a first-order model fit to data from a first-order
design. Augment the first-order design by adding axial points and center
points to get a CCD, which is a second-order design and can be used to fit
a second-order model. We consider such a CCD to have been run in two
incomplete blocks.

We get to chooseα and the number of center pointsm. Suppose that we
run our CCD in incomplete blocks, with the first block having the factorial
points and center points, and the second block having axial points and cen-
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Table 19.1:Design parameters for Central Composite Designs with orthogonal blocking.

q 2 3 4 5 5 6 6 7 7
rep 1 1 1 1 1

2
1 1

2
1 1

2

Number of blocks in
factorial

1 2 2 4 1 8 2 16 8

Center points per
factorial block

3 2 2 2 6 1 4 1 1

α for axial points 1.414 1.633 2.000 2.366 2.000 2.828 2.366 3.364 2.828

Center points for axial
block

3 2 2 4 1 6 2 11 4

Total points in design 14 20 30 54 33 90 54 169 80

ter points. Block effects should be orthogonal to treatmenteffects, so that Choose α and m
so that effects are

orthogonal to
blocks

blocking does not affect the shape of our estimated responsesurface. We can
achieve this orthogonality by choosingα and the number of center points in
the factorial and axial blocks as shown in Table 19.1 (Box andHunter 1957).

Table 19.1 deserves some explanation. When blocking the CCD, factorial
points and axial points will be in different blocks. The factorial points may
also be blocked using the confounding schemes of Chapter 15.The table
gives the maximum number of blocks into which the factorial portion can
be confounded, while main effects and two-way interactionsare confounded
only with three-way and higher-order interactions. The table also gives the
number of center points foreachof these blocks. If fewer blocks are desired,
the center points are added to the combined blocks. For example, the25 can
be run in four blocks, with two center points per block. If we instead use two
blocks, then each should have four center points; with only one block, use all
eight center points. The final block consists of all axial points and additional
center points.

There are a couple of heuristics for choosingα and the number of center
points when the CCD is not blocked, but these are just guidelines and not
overly compelling. If the precision of the estimated response surface at some
point x depends only on the distance fromx to the origin, not on the di-
rection, then the design is said to berotatable.Thus rotatable designs do not α for rotatable

designfavor one direction over another when we explore the surface. This is reason-
able when we know little about the surface before experimentation. We get a
rotatable design by choosingα = 2q/4 for the full factorial orα = 2(q−k)/4

for a fractional factorial. Some of the blocked CCD’s given in Table 19.1 are
exactly rotatable, and all are nearly rotatable.
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Table 19.2:Parameters for rotatable, uniform precision Central
Composite Designs.

q 2 3 4 5 5 6 6 7 7
Replication 1 1 1 1 1

2 1 1
2 1 1

2

Number of center points 5 6 7 10 6 15 9 21 14

Rotatable designs are nice, and I would probably choose one as a default.
However, I don’t obsess on rotatability, for a couple of reasons. First, rotata-Rotatable designs

need five levels of
every factor and
depend on coding

bility depends on the coding we choose. The property that theprecision of
the estimated surface does not depend on direction disappears when we go
back to the original, uncoded variables. It also disappearsif we keep the same
design points in the original variables but then express them with a different
coding. Second, rotatable designs use five levels of every variable, and this
may be logistically awkward. Thus choosingα = 1 so that all variables have
only three levels may make a more practical design. Third, using α =

√
q

so that all the noncenter points are on the surface of a sphere(only rotatable
for q = 2) gives a better design when we are only interested in the response
surface within that sphere.

A second-order design hasuniform precisionif the precision of the fitted
surface is the same at the origin and at a distance of 1 from theorigin. Uni-
form precision is a reasonable criterion, because we are unlikely to know justm for uniform

precision how close to the origin a maximum or other surface feature maybe; (rela-
tively) too many center points give us much better precisionnear the origin,
and too few give us better precision away from the origin. It is impossible to
achieve this exactly; Table 19.2 shows the number of center points to get as
close as possible to uniform precision for rotatable CCD’s.

Example 19.3 Cake baking, continued
We saw in Example 19.2 that the first-order model was a poor fit;in partic-
ular, the contrast between the factorial points and the center points indicated
curvature of the response surface. We will need a second-order model to fit
the curved surface, so we will need a second-order design to collect the data
for the fit.

We already have factorial points and three center points. Looking in Ta-
ble 19.1, we see that adding three more center points and axial points at
α = 1.414 will give us a design with two blocks with blocks orthogonal to
treatments. This design is also rotatable, but not uniform precision.

Here is the complete design, including responses for the seven additional
cakes we bake to complete the CCD:
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Block x1 x2 y

1 –1 –1 3.89
1 1 –1 6.36
1 –1 1 7.65
1 1 1 6.79
1 0 0 8.36
1 0 0 7.63
1 0 0 8.12
2 1.414 0 8.40
2 –1.414 0 5.38
2 0 1.414 7.00
2 0 –1.414 4.51
2 0 0 7.81
2 0 0 8.44
2 0 0 8.06

There are several other second-order designs in addition tocentral com-
posite designs. The simplest are3q factorials and fractions with resolution V 3q designs
or greater. These designs are not much used forq ≥ 3, as they require large
numbers of design points.

Box-Behnken designs are rotatable, second-order designs that are incom-
plete 3q factorials, but not ordinary fractions. Box-Behnken designs are
formed by combining incomplete block designs with factorials. Forq fac- Box-Behnken

designstors, find an incomplete block design forq treatments in blocks of size two.
(Blocks of other sizes may be used, we merely illustrate withtwo.) Associate
the “treatment” letters A, B, C, and so on with “factor” letters A, B, C, and so
on. When two factor letters appear together in a block, use all combinations
where those factors are at the±1 levels, and all other factors are at 0. The
combinations from all blocks are then joined with some center points to form
the Box-Behnken design.

For example, forq = 3, we can use the BIBD with three blocks and
(A,B), (A,C), and (B,C) as assignment of treatments to blocks. From the
three blocks, we get the combinations:

A B C
x1 x2 x3

–1 –1 0
–1 1 0
1 –1 0
1 1 0

A B C
x1 x2 x3

–1 0 –1
–1 0 1
1 0 –1
1 0 1

A B C
x1 x2 x3

0 –1 –1
0 –1 1
0 1 –1
0 1 1

To this we add some center points, say five, to form the complete design.
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This design takes only 17 points, instead of the 27 (plus somefor replication)
needed in the full factorial.

19.7 Second-Order Analysis

Here are three possible goals for the analysis of second-order models:

• Determine which design variables affect the response.

• Determine whether there is lack of fit.

• Determine the stationary point and surface type.

As with first-order models, fitting is done with multiple linear regression, andUse regression
and F-tests testing is done with F-tests. Letb be the estimated coefficients for first-order

terms, and letB be the estimate of the second-order terms.
The goal of determining which variables affect the responseis a bit more

complex for second-order models. To test that a variable—say variable 1—
has no effect on the response, we must test that its linear, quadratic, andTest all

coefficients to
exclude a variable

cross product coefficients are all zero:β1 = β11 = · · · = β1q = 0. This is a
q + 1-degree-of-freedom null hypothesis which we must test using an F-test.

Testing for lack of fit in the second-order model is completely analogous
to the first-order model. Compute an estimate of pure error variability from
the replicated points; all other residual variability is lack of fit. Significant
lack of fit indicates that our model is not capturing the mean structure in
our region of experimentation. When we have significant lackof fit, we
should first consider whether a transformation of the response will improve
the quality of the fit. For example, a second-order model may be a good fit
for the log of the response. Alternatively, we can investigate higher-order
models for the mean or obtain data to fit the second-order model in a smaller
region.

Canonical analysisis the determination of the type of second-order sur-
face, the location of its stationary point, and the canonical directions. These
quantites are functions of the estimated coefficientsb andB computed in theCanonical

analysis for
shape of surface

multiple regression. We estimate the stationary point asx̂0 = −B
−1

b/2,
and the eigenvectors and eigenvalues ofB are estimated by the eigenvectors
and eigenvalues ofB using special software.

Example 19.4 Cake baking, continued

We now fit a second-order model to the data from the blocked central com-
posite design of Example 19.3. This model will have linear terms, quadratic
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Listing 19.2: Minitab output for second-order model of cake baking data.

Estimated Regression Coefficients for y

Term Coef StDev T P

Constant 8.070 0.1842 43.809 0.000 ①
Block -0.057 0.1206 -0.473 0.651

x1 0.735 0.1595 4.608 0.002

x2 0.964 0.1595 6.042 0.001

x1*x1 -0.628 0.1661 -3.779 0.007

x2*x2 -1.195 0.1661 -7.197 0.000

x1*x2 -0.832 0.2256 -3.690 0.008

S = 0.4512 R-Sq = 95.0% R-Sq(adj) = 90.8%

Analysis of Variance for y

Source DF Seq SS Adj SS Adj MS F P

Blocks 1 0.0457 0.0455 0.04546 0.22 0.651

Regression 5 27.2047 27.2047 5.44094 26.72 0.000

Linear 2 11.7562 11.7562 5.87808 28.87 0.000

Square 2 12.6763 12.6763 6.33816 31.13 0.000

Interaction 1 2.7722 2.7722 2.77223 13.62 0.008

Residual Error 7 1.4252 1.4252 0.20359

Lack-of-Fit 3 0.9470 0.9470 0.31567 2.64 0.186 ②
Pure Error 4 0.4781 0.4781 0.11953

Total 13 28.6756

terms, a cross product term, and a block term. Listing 19.2 shows the re-
sults. At① we see that all first- and second-order terms are significant,so
that no variables need to be deleted from the model. We also see that lack
of fit is not significant②, so the second-order model should be a reasonable
approximation to the mean structure in the region of experimentation.

Figure 19.6 shows a contour plot of the fitted second-order model. We
see that the optimum is at about .4 coded time units above 0, and .2 coded
temperature units above zero, corresponding to 35.8 minutes and 352o. We
also see that the ellipse slopes northwest to southeast, meaning that we can
trade time for temperature and still get a cake that we like.

Listing 19.3 shows a canonical analysis for this surface. The estimated
coefficients are at① (β̂0), ② (b), and③ (B). The estimated stationary point
and its response are at④ and⑤; I guessed (.4, .2) for the stationary point
from Figure 19.6—it was actually (.42, .26). The estimated eigenvectors and
eigenvalues are at⑥ and⑦. Both eigenvalues are negative, indicating a max-
imum. The smallest decrease is associated with the first eigenvector (-.884,
.467), so increasing the temperature by .53 coded units for every decrease in
1 coded unit of time keeps the response as close to maximum as possible.
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Figure 19.6: Contour plot of fitted second-order model for cake
baking data, using Minitab.

Listing 19.3: MacAnova output for canonical analysis of cake baking data.

component: b0 ①
(1) 8.07

component: b ②
(1) 0.73515 0.964

component: B ③
(1,1) -0.62756 -0.41625

(2,1) -0.41625 -1.1952

component: x0 ④
(1,1) 0.41383

(2,1) 0.25915

component: y0 ⑤
(1,1) 8.347

component: H ⑥
(1,1) -0.88413 -0.46724

(2,1) 0.46724 -0.88413

component: lambda ⑦
(1) -0.40758 -1.4152
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The results of a canonical analysis have an aura of precisionthat is often
not justified. Many software packages can compute and print the estimated
stationary point, but few give a standard error for this estimate. In fact, the
standard error is difficult to compute and tends to be rather large. Likewise,
there can be considerable error in the estimated canonical directions.

19.8 Mixture Experiments

Mixture experiments are a special case of response surface experiments in
which the response depends on the proportions of the variouscomponents,
but not on absolute amounts. For example, the taste of a punchdepends on Mixtures depend

on proportionsthe proportion of ingredients, not on the amount of punch that is mixed, and
the strength of an alloy may depend on the proportions of the various metals
in the alloy, but not on the total amount of alloy produced.

The design variablesx1, x2, . . ., xq in a mixture experiment are propor-
tions, so they must be nonnegative and add to one:

xk ≥ 0, k = 1, 2, · · ·, q

and
x1 + x2 + · · · + xq = 1 .

This design space is called asimplexin q dimensions. In two dimensions, Mixtures have a
simplex design

space
the design space is the segment from (1,0) to (0,1); in three dimensions, it
is bounded by the equilateral triangle (0,0,1), (0,1,0), and (1,0,0); and so on.
Note that a point in the simplex inq dimensions is determined by anyq−1 of
the coordinates, with the remaining coordinate determinedby the constraint
that the coordinates add to one.

Fruit punch Example 19.5
Cornell (1985) gave an example of a three-component fruit punch mixture ex-
periment, where the goal is to find the most appealing mixtureof watermelon
juice (x1), pineapple juice (x2), and orange juice (x3). Appeal depends on
the recipe, not on the quantity of punch produced, so it is theproportions of
the constituents that matter. Six different punches are produced, and eighteen
judges are assigned at random to the punches, three to a punch. The recipes
and results are given in Table 19.3.

As in ordinary response surfaces, we have some responsey that we wish
to model as a function of the explanatory variables:

yij = f(x1i, x2i, · · · , xqi) + ǫij .
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Table 19.3:Blends of fruit
punch.

x1 x2 x3 Appeal

1 0 0 4.3 4.7 4.8
0 1 0 6.2 6.5 6.3
.5 .5 0 6.3 6.1 5.8
0 0 1 7.0 6.9 7.4
.5 0 .5 6.1 6.5 5.9
0 .5 .5 6.2 6.1 6.2

We use a low-order polynomial for this model, not because we believe that
the function really is polynomial, but rather because we usually don’t knowModel response

with low-order
polynomial

what the correct model form is; we are willing to settle for a reasonable
approximation to the underlying function. We can use this model for various
purposes:

• To predict the response at any combination of design variables,

• To find combinations of design variables that give best response, and

• To measure the effects of various factors on the response.

19.8.1 Designs for mixtures

A {q,m} simplex latticedesign forq components consists of all design points
on the simplex where each component is of the formr/m, for some integer
r = 0, 1, 2, . . .,m. For example, the{3,2} simplex lattice consists of the six
combinations (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/2, 1/2, 0), (1/2, 0, 1/2), and
(0, 1/2, 1/2). The fruit punch experiment in Example 19.5 is a{3,2} simplexSimplex lattice

design lattice. The{3,3} simplex lattice has the ten combinations (1, 0, 0), (0, 1, 0),
(0, 0, 1), (2/3, 1/3, 0), (2/3, 0, 1/3), (1/3, 2/3, 0), (0, 2/3,1/3), (1/3, 0, 2/3),
(0, 1/3, 2/3), and (1/3, 1/3, 1/3). In general,m needs to be at least as large as
q to get any points in the interior of the simplex, andm needs to be larger still
to get more points into the interior of the simplex. Figure 19.7(a) illustrates
a{3,4} simplex lattice.

The second class of models is thesimplex centroiddesigns. These de-
signs have2q − 1 design points forq factors. The design points are the pureSimplex centroid

design mixtures, all the 1/2-1/2 two-component mixtures, all the 1/3-1/3-1/3 three-
component mixtures, and so on, through the equal mixture of all q compo-
nents. Alternatively, we may describe this design as all thepermutations of
(1, 0, . . ., 0), all the permutations of(1/2, 1/2, . . ., 0), all the permutations of
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Figure 19.7: (a){3,4} simplex lattice and (b) three variable
simplex centroid designs.

(1/3, 1/3, 1/3, . . ., 0), and so on to the point(1/q, 1/q, . . ., 1/q). A simplex
centroid design only has one point in the interior of the simplex; all the rest
are on the boundary. Figure 19.7(b) illustrates a simplex centroid in three
factors.

Mixtures in the interior of the simplex—that is, mixtures which include
at least some of each component—are calledcompletemixtures. We some- Complete

mixtures have all
xk > 0

times need to do our experiments with complete mixtures. This may arise
for several reasons, for example, all components may need tobe present for
a chemical reaction to take place.

Factorial ratiosprovide one class of designs for complete mixtures. This
design is a factorial in the ratios of the firstq − 1 components to the last Factorial ratios

vary xk/xqcomponent. We may want to reorder our components to obtain a convenient
“last” component. The design points will have ratiosxk/xq that take a few
fixed values (the factorial levels) for eachk, and we then solve for the actual
proportions of the components. For example, ifx1/x3 = 4 andx2/x3 = 2,
thenx1 = 4/7, x2 = 2/7, andx3 = 1/7. Only complete mixtures occur in a
factorial ratios design with all ratios greater than 0.

Harvey Wallbangers Example 19.6

Sahrmann, Piepel, and Cornell (1987) ran an experiment to find the best pro-
portions for orange juice (O), vodka (V), and Galliano (G) ina mixed drink
called a Harvey Wallbanger. Only complete mixtures are considered, because
it is the mixture of these three ingredients that defines a Wallbanger (as op-
posed to say, orange juice and vodka, which is a drink called ascrewdriver).
Furthermore, preliminary screening established some approximate limits for
the various components.
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Table 19.4:Harvey Wallbanger mixture experiment.

O/G V/G G V O Rating

4.0 1.2 .161 .194 .645 3.6
9.0 1.2 .089 .107 .804 5.1
4.0 2.8 .128 .359 .513 3.8
9.0 2.8 .078 .219 .703 3.8
6.5 2.0 .105 .211 .684 4.7
4.0 2.0 .143 .286 .571 2.4
9.0 2.0 .083 .167 .750 4.0

The authors used a factorial ratios model, with three levelsof the ratio
V/G (1.2, 2.0, and 2.8) and two levels of the ratio O/G (4 and 9). They also
ran a center point at V/G = 2 and O/G = 6.5. Their actual design included
incomplete blocks (so that no evaluator consumed more than asmall number
of drinks). However, there were no apparent evaluator differences, so the av-
erage score was used as response for each mixture, and blockswere ignored.
Evaluators rated the drinks on a 1 to 7 scale. The data are given in Table 19.4,
which also shows the actual proportions of the three components.

A second class of complete-mixture designs arises when we have lower
bounds for each component:xk ≥ dk > 0, where

∑
dk = D < 1. Here, wePseudocomponents

definepseudocomponents

x′
k =

xk − dk

1 − D

and do a simplex lattice or simplex centroid design in the pseudocomponents.
The pseudocomponents map back to the original components via

xk = dk + (1 − D)x′
k .

Many realistic mixture problems are constrained in some wayso that the
available design space is not the full simplex or even a simplex of pseudo-
components. A regulatory constraint might say that ice cream must containMany mixture

problems have
constrained
design spaces

at least a certain percent fat, so we are constrained to use mixtures that con-
tain at least the required amount of fat; and an economic constraint requires
that our recipe cost less than a fixed amount. Mixture designscan be adapted
to such situations, but we often need special software to determine a good
design for a specific model over a constrained space.
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19.8.2 Models for mixture designs

Polynomial models for a mixture response have fewer parameters than the
general polynomial model found in ordinary response surfaces for the same Mixture

constraints
reduce parameter

count

number of design variables. This reduction in parameters arises from the
simplex constraints on the mixture components—some terms disappear due
to the linear restrictions among the mixture components. For example, con-
sider a first-order model for a mixture with three components. In such a
mixture, we havex1 + x2 + x3 = 1. Thus,

f(x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3

= β0(x1 + x2 + x3) + β1x1 + β2x2 + β3x3

= (β1 + β0)x1 + (β2 + β0)x2 + (β3 + β0)x3

= β̃1x1 + β̃2x2 + β̃3x3

In this model, the linear constraint on the mixture components has allowed Canonical form of
first-order modelus to eliminate the constant from the model. This reducted model is called

thecanonical formof the mixture polynomial. We will simply useβ in place
of β̃ in the sequel.

Mixture constraints also permit simplifications in second-order models.
Not only can we eliminate the constant, but we can also eliminate the pure
quadratic terms! For example:

x2
1 = x1x1

= x1(1 − x2 − x3 − · · · − xq)

= x1 − x1x2 − x1x3 − · · · − x1xq .

By making similar substitutions for all pure quadratic terms, we get the
canonical form: Canonical form of

second-order
modelf(x1, x2, · · · , xq) =

q∑

k=1

βkxk +
q∑

k<l

βklxkxl .

Third-order models are sometimes fit for mixtures; the canonical form for the
full third-order model is:

Canonical form of
third-order model

f(x1, x2, · · · , xq) =
q∑

k=1

βkxk +
q∑

k<l

βklxkxl

+
q∑

k<l

δklxkxl(xk − xl) +
q∑

k<l<n

βklmxkxlxn .
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A subset of the full cubic model called thespecial cubicmodel sometimes
appears:Special cubic

model

f(x1, x2, · · · , xq) =
q∑

k=1

βkxk +
q∑

k<l

βklxkxl +
q∑

k<l<n

βklnxkxlxn .

Coefficients in mixture canonical polynomials have interpretations that
are somewhat different from standard polynomials. If the mixture is pure
(that is, contains only a single component, say componentk), thenxk is 1
and the other components are 0. The predicted response isβk. Thus theMixture

coefficients have
special
interpretations

“linear” coefficients give the predicted response when the mixture is simply
a single component. If the mixture is a 50-50 mix of components k and
l, then the predicted response isβk/2 + βl/2 + βkl/4. Thus the bivariate
interaction terms correspond to deviations from a simple additive fit, and in
particular show how the response for pairwise blends variesfrom additive.
The three-way interaction termβklm has a similar interpretation for triples.
The cubic interaction termδkl provides some asymmetry in the response to
two-way blends.

We may use ordinary polynomial models inq − 1 factors instead of re-
duced polynomial models inq factors. For example, the canonical quadratic
model inq = 3 factors isFewer factors as

an alternative to
reduced models y = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 .

We can instead use the model

y = β̃0 + β̃1x1 + β̃2x2 + β̃12x1x2 + β̃11x
2
1 + β̃22x

2
2 ,

which is the usual quadratic model forq = 2 factors. The models are equiv-
alent mathematically, and which model you choose is personal preference.
There are linear relations between the models that allow youto transfer be-
tween the representations. For example,β̃0 = β3 (x3 = 1, x1 = x2 = 0),
andβ̃0 + β̃1 + β̃11 = β1 (x1 = 1, x2 = x3 = 0).

Factorial ratios experiments also have the option of using polynomials in
the components, polynomials in the ratios, or a combinationof the two. The
choice of model can sometimes be determineda priori but will frequently be
determined by choosing the model that best fits the data.

Example 19.7 Harvey Wallbangers, continued

Example 19.6 introduced the Harvey Wallbanger data. Listing 19.4 shows the
results from fitting the canonical second-order model. All terms are signifi-



19.9 Further Reading and Extensions 535

Listing 19.4: MacAnova output for second-order model of Harvey Wallbanger data.

Coef StdErr t

g -518.14 41.143 -12.594

o -12.625 1.1111 -11.363

v 100.56 5.8373 17.226

og 812.73 55.472 14.651

vg 126.64 56.449 2.2435

ov -101.53 5.8706 -17.294

N: 7, MSE: 0.0042851, DF: 1, R^2: 0.99996

Regression F(6,1): 4344.4, Durbin-Watson: 2.1195

cant with the exception of the vodka by Galliano interaction(though there is
only 1 degree of freedom for error, so significance testing israther dubious).

It is difficult to interpret the coefficients directly. The usual interpreta-
tions for coefficients are for pure mixtures and two-component mixtures, but
this experiment was conducted on a small region in the interior of the design
space. Thus using the model for pure mixtures or two-component mixtures
would be an unwarranted extrapolation. The best approach isto plot the con-
tours of the fitted response surface, as shown in Figure 19.8.We see that
there is a saddle point near the fifth design point (the centerpoint), and the
highest estimated responses are on the boundary between thefirst two design
points. This has the V/G ratio at 1.2 and the O/G ratio between4.0 and 9.0,
but somewhat closer to 9.

19.9 Further Reading and Extensions

As might be expected, there is much more to the subjects discussed in this
chapter. Box and Draper (1987) and Cornell (1990) provide excellent book-
length coverage of response surfaces and mixture experiments respectively.

Earlier we alluded to the issue of constraints on the design space. These
constraints can make it difficult to run standard response surface or mixture
designs. Special-purpose computer software (for example,Design-Expert)
can construct good designs for constrained situations. These designs are
generally chosen to be optimal in the sense of minimizing theestimation
variance. See Cook and Nachtsheim (1980) or Cook and Nachtsheim (1989).
A second interesting area is trying to optimize when there ismore than one
response. Multiple responses are common in the real world, and methods
have been proposed to compromise among the competing criteria. See My-
ers, Khuri, and Carter (1989) and the references cited there.
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Figure 19.8: Contour plot for Harvey Wallbanger data, using
S-Plus. Letters indicate the points of Table 19.4 in the table order.

19.10 Problems
We run a central composite design and fit a second-order model. TheExercise 19.1

fitted coefficients are:

y = 86 + 9.2x1 + 7.3x2 − 7.8x2
1 − 3.9x2

2 − 6.0x1x2 .

Perform the canonical analysis on this response surface.

Fit the second-order model to the fruit punch data of Example19.5.Exercise 19.2
Which mixture gives the highest appeal?

The whiteness of acrylic fabrics after being washed at different deter-Exercise 19.3
gent concentrations (.09 to .21 percent) and temperatures (29 to 41oC) was
measured and the following model was obtained (Prato and Morris 1984):

y = −116.27 + 819.58x1 + 1.77x2 − 1145.34x2
1 − .01x2

2 − 3.48x1x2 .

Perform the canonical analysis on this response surface.
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Three components of a rocket propellant are the binder (x1), the oxidizer Problem 19.1
(x2), and the fuel (x3). We want to find the mixtures that yield coefficients of
elasticity (y) less than 3000. All components must be present and there are
minimum proportions, so the investigators used a pseudocomponents design,
with the following pseudocomponent values and results (data from Kurotori
1966 via Park 1978):

x1 x2 x3 y
1 0 0 2350
0 1 0 2450
0 0 1 2650

1/2 1/2 0 2400
1/2 0 1/2 2750
0 1/2 1/2 2950

1/3 1/3 1/3 3000
2/3 1/6 1/6 2690
1/6 2/3 1/6 2770
1/6 1/6 2/3 2980

Does this design correspond to any of our standard mixture designs?
Does it have an estimate of pure error? Fit the second-order mixture model.
Is the estimated maximum above 3000? Where is the estimated maximum,
and where is the region that has elasticity less than 3000?

Millers want to make bread flours that bake into large loaves.They need Problem 19.2
to mix flours from four varieties of wheat, so they run an experiment with
different mixtures and measure the volume of the resulting loaves (ml/100
g dough). The experiment was performed on 2 separate days, obtaining the
following results (data from Draper et al. 1993):

Day 1 Day 2
x1 x2 x3 x4 Volume x1 x2 x3 x4 Volume

0 .25 0 .75 403 0 .75 0 .25 423
.25 0 .75 0 425 .25 0 .75 0 417

0 .75 0 .25 442 0 .25 0 .75 388
.75 0 .25 0 433 .75 0 .25 0 407

0 .75 .25 0 445 0 0 .25 .75 338
.25 0 0 .75 435 .25 .75 0 0 435

0 0 .75 .25 385 0 .25 .75 0 379
.75 .25 0 0 425 .75 0 0 .25 406
.25 .25 .25 .25 433 .25 .25 .25 .25 439

Analyze these data to determine which mixture of flours yields the largest
loaves.
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An experiment is performed to determine how a gasoline engine respondsProblem 19.3
to various factors. The response of interest is CO emissionsin grams per
hour. The design factors are engine load, in Newton meters, range (30,70);
engine speed, in rpm, range (1000, 4000); spark advance, in degrees, range
(10, 30); air-to-fuel ratio, dimensionless, range (13, 16.4); and exhaust gas
recycle, in percent, range (0, 10). The experimental designhas 46 observa-
tions in two blocks of 23 each. The design factors have been coded to the
range (-1, 1) in the table below (data from Draper et al. 1994). Analyze these
data and describe how CO emissions depend on engine settings.

Load Speed Advance Ratio Recycle Block Response

–1 –1 0 0 0 1 81
1 –1 0 0 0 1 148

–1 1 0 0 0 1 348
1 1 0 0 0 1 530
0 0 –1 –1 0 1 1906
0 0 1 –1 0 1 1717
0 0 –1 1 0 1 91
0 0 1 1 0 1 42
0 –1 0 0 –1 1 86
0 1 0 0 –1 1 435
0 –1 0 0 1 1 93
0 1 0 0 1 1 474

–1 0 –1 0 0 1 224
1 0 –1 0 0 1 346

–1 0 1 0 0 1 147
1 0 1 0 0 1 287
0 0 0 –1 –1 1 1743
0 0 0 1 –1 1 46
0 0 0 –1 1 1 1767
0 0 0 1 1 1 73
0 0 0 0 0 1 195
0 0 0 0 0 1 233
0 0 0 0 0 1 236
0 –1 –1 0 0 2 100
0 1 –1 0 0 2 559
0 –1 1 0 0 2 118
0 1 1 0 0 2 406

–1 0 0 –1 0 2 1255
1 0 0 –1 0 2 2513

–1 0 0 1 0 2 53
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Load Speed Advance Ratio Recycle Block Response
1 0 0 1 0 2 54
0 0 –1 0 –1 2 270
0 0 1 0 –1 2 277
0 0 –1 0 1 2 303
0 0 1 0 1 2 213

–1 0 0 0 –1 2 171
1 0 0 0 –1 2 344

–1 0 0 0 1 2 180
1 0 0 0 1 2 280
0 –1 0 –1 0 2 548
0 1 0 –1 0 2 3046
0 –1 0 1 0 2 13
0 1 0 1 0 2 123
0 0 0 0 0 2 228
0 0 0 0 0 2 201
0 0 0 0 0 2 238

Briefly describe an experimental design appropriate for each of the fol- Problem 19.4
lowing situations.

(a) Whole house air exchangers have become important as houses become
more tightly sealed and the dangers of indoor air pollution become
known. Exchangers are used primarily in winter, when they draw in
fresh air from the outside and exhaust an equal volume of indoor air.
In the process, heat from the exhausted indoor air is used to warm the
incoming air. The design problem is to construct an exchanger that
maximizes energy efficiency while maintaining air flow volume within
tolerances. Energy efficiency is energy saved by heating theincoming
air minus energy used to power the fan. There are two design variables:
the pore size of the exchanger and the fan speed. In general, as the pore
size decreases the energy saved through heat exchange increases, but
for smaller pores the fan must be run faster to maintain air flow, thus
using more energy.

We have a current guess as to the best settings for maximum energy
efficiency (pore size P and fan speed S). Any settings with 15%of P
and S will provide acceptable air flow, and we feel that the optimum is
probably within about 5% of these current settings.

(b) Neuropeptide Y (NPY) is believed to be involved in the regulation
of feeding and basal metabolism. When rat brains are perfused with
NPY, the rats dramatically increase their food intake over the next 24
hours. Naloxone (NLX) may potentially block the effects of NPY. If
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so, it could be an important line of research in obesity studies. We
wish to test the effect of four treatments, the factorial combinations of
brain perfusion by either NPY or saline (as a control), and the sub-
cutaneous injection of either NLX or saline (as a control) on24-hour
post-treatment food intake. We have available 32 male inbred, essen-
tially similar rats.

(c) We are trying to produce a new cleaning solvent for circuit boards. We
anticipate that a combination of three standard solvents will work as
well as the specialty solvent currently in use, but beyond knowing that
we want each of the three to be at least 10% of the combination,we
don’t know how much of each to use.

(d) Child development specialists are interested in factors affecting the
ability of children to solve “ten questions” puzzles. In these puzzles
the child is given a set of pictures, one of which has been chosen by
the researcher. The child gets to ask questions that the researcher an-
swers either yes or no; on the basis of these answers the childtries to
determine which of the pictures has been chosen. The response the
researchers are looking at is the number of questions (ten maximum)
that the child asks before determining the chosen picture. Two factors
are under study: the number of pictures to choose from (either fifteen
or twenty), and the familiarity of the objects in the pictures (either
dinosaurs or birds, and oddly enough, I think the dinosaurs are the fa-
miliar objects!). The researchers have funds to study twelve children,
and they expect substantial child to child variation. All children will
do four puzzles, one of each type. They expect learning to take place,
so that the later puzzles will generally be solved more quickly.

(e) A fertilizer company is developing a rose fertilizer which consists of
a nitrogen compound N, a phosphorus compound P, a potassium com-
pound K, and an inert binder to hold it all together. (The binder can be
disregarded in the experiment.) The company believes that there are
optimum levels of N, P, and K to give best rose yield, and they believe
that their current settings N0 = 6, P0 = 6, and K0 = 4 (kg per 100 kg of
fertilizer) are pretty close to optimal; probably each is within 10% of
the optimal values. They want to find the optimal values.

Curing time and temperature affect the shear strength of an adhesive thatProblem 19.5
bonds galvanized steel bars. The following experiment was repeated on 2
separate days. Twenty-four pieces of steel are obtained by random sampling
from warehouse stock. These are grouped into twelve pairs; the twelve pairs
are glued and then cured with one of nine curing treatments assigned at ran-
dom. The treatments are the three by three factorial combinations of temper-
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ature (375o, 400o, and 450oF, coded -1, 0, 2) and time (30, 35, or 40 seconds,
coded -1, 0, 1). Four pairs were assigned to the center point,and one pair to
all other conditions. The response is shear strength (in psi, data from Khuri
1992):

Temp. Time Day 1 Day 2

-1 -1 1226 1213
0 -1 1898 1961
2 -1 2142 2184

-1 0 1472 1606
0 0 2010 2450
0 0 1882 2355
0 0 1915 2420
0 0 2106 2240
2 0 2352 2298

-1 1 1491 2298
0 1 2078 2531
2 1 2531 2609

Determine the temperature and time settings that give strong bonds.

For each of the following, briefly describe the design used and give a Problem 19.6
skeleton ANOVA.

(a) National forests are managed for multiple uses, including wildlife habi-
tat. Suppose that we are managing our multiple-use forest, and we
want to know how snowmobiling and timber harvest method affect
timber wolf reproductive success (as measured by number of pups sur-
viving to 1 year of age over a 5-year interval). We may permit or
ban snowmobiles; snowmobiles cover a lot of area when present, so
we can only change the snowmobile factor over large areas. Wehave
three timber harvest methods, and they are fairly easy to change over
small areas. We have six large, widely dispersed forest sections that we
may use for the experiment. We choose three sections at random and
ban snowmobiles there. The other three sections allow snowmobiles.
Each of these sections is divided into three zones, and we randomly as-
sign one of the three harvest methods to each zone within eachsection.
(Note that we do not harvest the entire zone; we merely use that har-
vest method when we do harvest within the zone.) We observe timber
wolf success in each zone.

(b) Some aircraft have in-flight deicing systems that are designed to pre-
vent or remove ice buildup from the wings. A manufacturer wishes
to compare three different deicing systems. This is done by installing
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the system on a test aircraft and flying the test aircraft behind a sec-
ond plane that sprays a fine mist into the path of the test aircraft. The
wings are photographed, and the ice buildup is estimated from inter-
pretation of the photographs. They make five test flights for each of the
three systems. The amount of buildup is influenced by temperature and
humidity at flight altitude. The flights will be made at constant tem-
perature (achieved by slightly varying the altitude); relative humidity
cannot be controlled, but will be measured at the time of the flight.

(c) We wish to study new varieties of corn for disease resistance. We
start by taking four varieties (A, B, C, D) and cross them (pollen from
type A, B, C or D fertilizing flowers from type A, B, C, or D), getting
sixteen crosses. (This is called a diallel cross experiment, and yes,
four of the sixteen “crosses” are actually pure varieties.)The sixteen
crosses produce seed, and we now treat the crosses as varieties for our
experiment. We have 48 plots available, 16 plots in each of St. Paul,
Crookston, and Waseca. We randomly assign each of the crosses to
one of the sixteen plots at each location.

(d) A political scientist wishes to study how polling methods affect results.
Two candidates (A and B) are seeking endorsement at their party con-
vention. A random sample of 3600 voters has been taken and divided
at random into nine sets of 400. All voters were asked if they support
candidate A. However, before the question was asked, they were ei-
ther told (a) that the poll is funded by candidate A, (b) that the poll is
funded by candidate B, or (c) nothing. Due to logistical constraints,
all voters in a given set (of 400) were given the same information; the
response for a set of 400 is the number supporting candidate A. The
three versions of information were randomly assigned to thenine sets.

Suppose we are fitting a first-order model using data from a2q designQuestion 19.1
with m center points, but a second-order model is actually correct. Show
that the contrast formed by taking the average response at the factorial points
minus the average at the center points estimates the sum of the quadratic
coefficients of the second-order model. Show that the two-factor interaction
effects in the factorial points estimate the cross product terms in the second-
order model.



Chapter 20

On Your Own

Adult birds push their babies out of the nest to force them to learn to fly. As
I write this, I have a 16-year-old daughter learning to drive. And you, our
statistical children, must leave the cozy confines of textbook problems and
graduate to the real world of designing and analyzing your own experiments
for your own goals. This final chapter is an attempt at a framework for the
experimental design process, to help you on your way to designing real-world
experiments.

20.1 Experimental Context

An individual experiment is usually part of a larger research enterprise; thus
planning an experiment takes place within this larger context. One way to
frame this larger context is hierarchically, with goals, objectives, and hy-
potheses. The (overall) goals are for the large research enterprise. For exam- Goals, objectives,

and hypothesesple, we might have the goal of developing artificial heated-butter aromas for
the food industry. The (immediate) objective is a refinementof the goals to
narrow the scope of investigation. Continuing the butter aroma example, we
might have the objective of determining which naturally occurring odorants
in heated butter influence the perceived butter aroma. Finally, hypotheses are
specific, answerable questions regarding an objective thatcan be addressed
in an experiment. We might ask, can human subjects detect thedifference in
aroma between heated butter and this particular mixture of compounds?

We design experiments to answer the questions raised in our hypotheses.
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20.2 Experiments by the Numbers

Many authors have presented guidelines for designing experiments. Note-
worthy among these are Kempthorne (1952), Cochran and Cox (1957), Cox
(1958), Daniel (1976), and Box, Hunter, and Hunter (1978). Ihave tried
to synthesize a number of these recommendations into a sequence of steps
for designing an experiment, which are presented below. Experimentation,
like all science, is not one-size-fits-all, but these steps will work for many
investigations.

I have two basic rules when planning an experiment. The first is “Use
all the information you have available to you.” Most of this information isInformation and

simplicity subject matter information (what you know about treatments, units, and so
on) rather than statistical tactics. The second is “Use the simplest possible
design that gets the job done.” Thus when designing an experiment I consider
the fancy tricks of the trade only when they are needed.

1. Do background research. At a minimum, you should

• Determine what is alreadyknownabout your problem. Researchers
know things that have been discovered by experiment and verified by
repeated experiments. You may wish to repeat a “known” experiment
if you are trying to verify it, extend it to a new population, or learn
an experimental technique, but more often you will be looking at new
hypotheses.

• Determine what other researcherssuspectabout your problem. Many
experiments are follow-up experiments on vague indications from ear-
lier research. For example, a preliminary experiment may have indi-
cated the possibility that a particular drug was effective against breast
cancer, but the sample size was too small to be conclusive.

• Determine what background or extraneous factors (for example, envi-
ronmental factors) might affect the outcome of your experiment. Here
we are looking ahead to the possibility that blocking might be needed,
so we identify the sources of extraneous variation on which we may
need to block.

• Find out what related experiments have been done, what typesof de-
signs were used, and what kinds of problems were encountered. There
is always room for innovation, particularly if earlier experiments en-
countered problems, but experimental designs that work well are worth
imitating.
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• Determine the cost or availability of experimental material such as an-
imals, equipment, and chemical stocks; determine your timeand mon-
etary budgets. Time and money are major constraints on experimenta-
tion. Determine these constraints early.

This research takes time, but it will save you time later.

2. Decide which question to address next, and clearly state your question.
This process should include:

• A list of hypotheses to be tested or effects to be estimated.

• An ordering of these hypotheses or effects by importance.

• An ordering of these hypotheses or effects by logical or timesequence
if some should be examined before others.

Your experiment is part of the research enterprise, so choose your hypotheses
to address your current objectives. Knowing if some hypotheses are more
important than others will matter for designs such as split plots, which are
more precise for split-plot factors than for whole-plot factors.

Remember, science is sequential, with new results buildingon old re-
sults. Unless you have an overwhelming argument to the contrary, plan for a
sequence of hypotheses and experiments anddon’t try to do everything in a
single experiment!

3. Determine the treatments to be studied, experimental units to be used,
and responses to be measured. These depend on the hypothesesbeing ad-
dressed and the population about which you wish to make inferences. Choice
of treatments includes the consideration of controls (probably needed) and/or
placebo treatments.

The type of experimental units you use will determine the population
about which you can make inferences and usually the size of your experi-
mental errors. Homogeneous units generally lead to smallerexperimental
errors and thus shorter confidence intervals and more powerful tests. On the
other hand, homogeneous units often represent a narrow subset of all poten-
tial units, and it can be difficult to argue that conclusions reached about a
homogeneous subset of a population hold for the entire population. If you
need to work with a heterogeneous population of units, you will probably
need to consider blocking the experiment.

The response or responses to be measured are usually determined by the
hypotheses, but you must still determine how they will be measured, what
the measurement units are, and whether blinding will be needed.
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4. Design the current experiment. Try simple designs first; if upon inspec-
tion the simple design won’t do the job for some reason, you can design
a fancier experiment. But at least contemplate the simple experiment first.
Keep the qualities of a good design in mind—design to avoid systematic er-
ror, to be precise, to allow esimation of error, and to have broad validity.

5. Inspect the design for scientific adequacy and practicality.

• Are there any systematic problems that would invalidate your results
or reduce their range of generalization? For example, does your design
have confounding that biases your comparisons?

• Are there treatments or factor-level combinations that areimpractical
or simply cannot be used? For example, you may have several factors
that involve time, and the overall time may be impractical when all
factors are at the high level; or perhaps some treatments are“a little
too exothermic” (as my chemistry T.A. described one of our proposed
experiments).

• Do you have the time and resources to carry out the experiment?

If there are problems in any of these areas, you will need to goback to step 4
and revise your design. For example, the simple design was a full factorial,
but it was too big, so we could move to a fancier design such as afractional
factorial.

6. Inspect the design for statistical adequacy and practicality.

• Do you know how to analyze the results?

• Will your experiment satisfy the statistical or model assumptions im-
plicit in the statistical analysis?

• Do you have enough degrees of freedom for error for all terms of in-
terest?

• Will you have adequate power or precision?

• Will the analysis be easy to interpret?

• Can you account for aliasing?

If you answer any of these in the negative, you will need to go back to step 4
and revise your design. For example, you might need to add blocking to re-
duce variability, or you might decide that a design with an unbalanced mixed-
effects model was simply too difficult to analyze. Study the design carefully
for oversights or mistakes. For example, I have seen split-plot designs with
no degrees of freedom for error at the whole-plot level. (Theinvestigator had
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intended to use an interaction for a surrogate error, but allinteractions were
at the split-plot level.)

7. Run the experiment.

8. Analyze the results. Pay close attention to where model ordistributional
assumptions might fail, and take corrective action if necessary. For example,

• Do factors assumed to be additive actually interact, or do treatments
act differently in different blocks?

• Is the error variance nonconstant?

• Are there outliers in the data?

• Do the random errors follow the normal distribution?

• Are there unmodeled dependencies in the data (for example, time de-
pendencies)?

Consider whether the experiment as run answers the questions, or if some
further observations are needed. For example, you might want to rerun sus-
pected outlier points, or you might need another fraction ofa factorial to
disentangle some aliases.

9. Draw conclusions, giving estimates of error or reliability. Assess this
experiment in relation to similar experiments. Reporting is crucial, and it is
only a slight exaggeration to say that an experiment not reported is an experi-
ment not conducted. I like to begin reports with a short “executive summary”
giving the conclusions, and then add sections on the experimental design and
analysis (many journals call such sections “Materials and Methods” and “Re-
sults”).

10. Consider what needs to be studied next. Research is ongoing and se-
quential, and one completed experiment leads to the design of the next.

It is clear that a carefully planned experiment requires a great deal of
effort. Many of the steps in planning an experiment are nonstatistical and re-
quire considerable background knowledge in the subject being studied, while
other steps require substantial statistical knowledge. Thus experimental de-
sign is often a team effort, with subject matter experts and statistical experts
working together. One goal of this book has been to make the statistical part
of the planning a little easier.
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20.3 Final Project

Design an experiment, run the experiment, analyze the results, and report
your findings.

This is not an overnight homework problem, but a project withseveral
stages. Stage one is the project proposal, which should include a description
of your hypotheses and proposed experimental design. This proposal should
be sufficiently complete that anyone could replicate your experiment given
just your proposal. Submit your proposal to your instructorfor approval
before conducting the experiment.

Stage two is running the experiment. Here you are on your own.
Stage three is analysis and reporting. Your report will typically be in the

five to ten page range and should include a summary giving the conclusions,
an introduction to the problem stating the background and hypothesis to be
tested, a description of the experimental design (similar to stage one), and a
description of the analysis. The description of the analysis should not be a
batch of unannotated computer output. It should say what youare doing, why
you are doing it, and what it tells you. Output and figures can be intermixed
or appended separately.

The subject of the experiment is up to you and your instructor. Those of
you in graduate school or at work in a research area may be ableto adapt your
own ongoing work to this project. Or just try something fun—food experi-
ments (particularly desserts!) are always attractive, as are the experiments of
youth such as rolling balls down inclined planes.
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Appendix A

Linear Models for Fixed Effects

Much of our analysis has used the Analysis of Variance, and wehave ap-
proached ANOVA in a classical way, with lots of sums over indicesi, j,
andk. This approach is valid, but does not give insight into why ANOVA
works or where the formulae come from. This appendix is meantas abrief
introduction and survey of the theory of linear models for fixed effects. We
can achieve a great deal of simplification and unity in our analysis approach
through the use of linear models. Hocking (1985) is a good book-length
reference for this material.

A.1 Models

Let y ∈ RN be a vector of lengthN ; y contains the responses in an experi-
ment. AmodelM is a linear subspace ofRN . For example, in a one-factor
ANOVA the hypothesis of zero treatment effects correspondsto a model in
RNwhere all the vectors inM are constant vectors:x ∈ M ↔ x = 1β,
where1 = (1, 1, . . ., 1)′ is a vector of all ones. In a one-factor ANOVA,
the hypothesis ofk separate treatment means corresponds to a model in
RNwhere for anyx ∈ M , the elements ofx corresponding to the same
treatment must all be the same, but the elements corresponding to different
treatments can be different. Such a model can also be described as the range
of a matrixXN×k, whereXi,j is 1 if the ith response was in thejth treat-
ment group, and zero otherwise. This means thatY ∈ M can be written as
Y = Xβ for ak-vectorβ with elements interpretedµ1, µ2, . . ., µk. If k = 3;
the treatment sample sizes were 2, 3, and 5; and the units werein treatment
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order; thenX could be written

X =




1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1




.

There are many other matrices that span the same space, including:

(a)




1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1




, (b)




1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1




,

(c)




1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1




, and (d)




1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 −0.4 −0.6
1 −0.4 −0.6
1 −0.4 −0.6
1 −0.4 −0.6
1 −0.4 −0.6




.

These matrices are shown because they illustrate the use of restrictions. For
matrix (a),Y ∈ M if Y = Xβ, whereβ is a 4-vector with elements inter-
preted(µ, α1, α2, α3). Recall that the separate means model is overparam-
eterized if we don’t put some kind of restrictions on theαi’s. This is what
happens with matrix (a); if we add 100 toµ and subtract 100 from theαi’s,
we get the sameY . Note that matrix (a) has 4 columns but only spans a
subspace of dimension 3; matrix (a) is rank deficient.
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To make the parameters unique, we need some restrictions. Some statis-
tics programs assume thatα1 is zero and useµ, µ + α2, andµ + α3 as the
treatment means. Thusα2 is the difference in means between groups 2 and
1. Matrix (b) reflects this parameterization if we interpretthe coefficientsβ
as(µ, α2, α3).

One standard set of restrictions is that the treatment effects sum to 0,
or equivalently, thatαg = −∑g−1

i=1 αi. Thus we may replace the lastαg

with minus the sum of the others. Matrix (c) reflects this parameterization.
For matrix (c),Y ∈ M if Y = Xβ, whereβ is a 3-vector with elements
interpreted(µ, α1, α2). The mean in the last treatment isµ − α1 − α2 =
µ + α3.

Finally, a fourth possible set of restrictions is that the weighted sum of the
treatment effects is 0, or equivalently, thatαg = −∑g−1

i=1 niαi/ng. Matrix
(d) reflects this parameterization. For matrix (d),Y ∈ M if Y = Xβ, where
β is a 3-vector with elements interpreted(µ, α1, α2). The mean in the last
treatment isµ − n1α1/n3 − n2α2/n3 = µ + α3. Notice that the last two
columns of matrix (d) are orthogonal to the first. This orthogonality is what
makes the weighted-sum restrictions easier for hand work.

We arrange models in a lattice. Alattice is a partially ordered set in which
every pair has a union and an intersection. For a lattice of models, the inter-
section is the largest submodel contained in both models (the intersection of
the two model subspaces), and the union is the smallest (or simplest) model
containing both submodels (the subspace spanned by the two models). The
role of lattices in linear models is that it is easy to comparemodels up and
down a lattice, but difficult to compare models if one model isnot a subset
of the other. Here is a sample lattice for a two-factor factorial:

Zero mean

Single mean

Row effects Column effects

Additive model

Interactive model

We can easily compare the “no row effects” model with the “interactive
model,” but it is more difficult to compare the “no row effects” model with
the “no column effects” model. It should also be rather clearthat lattice rep-
resentations of several models and Hasse diagrams are related.
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A.2 Least Squares

Suppose that we have a modelM which is spanned by a matrixXN×r; thus
M = C(X), whereC(X) is the column space ofX. We want to fit the
modelM to the datay ∈ RN . This means we want to find theY ∈ M
that is closest toy. We measure closeness by the sum of squared errors:
(y − Y )′(y − Y ). This is the same as finding the least squares regression of
y on ther independent variables given by the columns ofX. The minimum
occurs when

X ′ Xb = X ′y ,

(the normal equations), or when

X ′(y − Xb) = 0 .

The latter says that the residuals(y − Xb) are orthogonal toX, or equiva-
lently, toC(X). The observations are then decomposed into the sum of fitted
valuesY and residualsy − Y . This may be formalized as a theorem.

Theorem A.1 For anyy ∈ RN and any modelM = C(XN×r), there exists
a uniqueY ∈ C(X) such thaty−Y ⊥ C(X). ThisY is the least squares fit of
the modelM to y. Y may be written asXb for anyb that solves the normal
equations. IfX has full rank, thenb is unique andb = (X ′ X)−1X ′y. If M
is reparameterized toM = C(X⋆) whereC(X) = C(X⋆), thenY remains
the same, though the parameter estimatesb may change.

Look at Figure A.1; the triangle formed byY0, Y , andy will be a right
triangle for anyY0 in C(X), so the Pythagorean Theorem gives us the fol-
lowing for anyY0 ∈ C(X):

(y − Y0)
′(y − Y0) = (Y − Y0)

′(Y − Y0) + (y − Y )′(y − Y ) .

In particular, if we takeY0 to be zero, this tells us that we may decompose
the (uncorrected) total sum of squares iny into a model sum of squares
(Y −Y0)

′(Y −Y0) and a residual sum of squares(y−Y )′(y−Y ). If the vec-
tor 1 lies in M , then we may decompose the corrected total sum of squares
in y into a model sum of squares around the overall mean(Y −y1)′(Y −y1)
and a residual sum of squares(y − Y )′(y − Y ).

We may revise the usual ANOVA terminology to reflect this geometric
perspective. A source of variation is a model subspace. Variation of a certain
type is variation that lies in a particular subspace. The degrees of freedom
for a source or model is merely the dimension of the subspace.The sum
of squares for a model (source) is the squared length of the part of y that



A.2 Least Squares 567

M

Y0 Y

y

Figure A.1: Fitting a model.

lies in that subspace. The ANOVA table becomes (assuming that the model
subspace has dimensionr)

Source DF SS
Model subspace Dimension of subspace Squared length in subspace

Model r Y ′ Y
M

Deviations N − r (y − Y )′(y − Y )
M⊥

Total N y′y
RN

We can also construct an ANOVA table for observations corrected for the
grand mean, assuming that1 ∈ M , as is usually the case.
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Source DF SS
Subspace Dimension Squared length

Model corrected for r − 1 (Y − y1)′(Y − y1)
grand mean
M ∩ 1

⊥

Deviations N − r (y − Y )′(y − Y )
M⊥

Corrected total N − 1 (y − y1)′(y − y1)
RN ∩ 1

⊥

A.3 Comparison of Models

Suppose that we have two models withM1 ∩ M2 = M1. ThusM1 is
aboveM2 in the model lattice. If we haveM1 = C(X1) andM 2 = C(X2),
thenM1 ∩ M 2 = M1 is equivalent toC(X1) ⊂ C(X2). Let C(X1) have
dimensionr1, and letC(X2) have dimensionr2. Y1 is the fit ofM1 to y, and
Y2 is the fit ofM 2 to y.

Look at Figure A.2. Not only isY1 the fit ofM1 to y, Y1 is the fit ofM1

to Y2. We have right triangles everywhere we look.

Right angle Right triangle

(y − Y2) ⊥ M 2 (0, Y2,y)

(y − Y1) ⊥ M 1 (0, Y1,y)

(Y2 − Y1) ⊥ M1 (0, Y1, Y2)

Using these right triangles and the Pythagorean Theorem, wecan make a
variety of squared-length decompositions.

y′y = Y ′
2 Y2 + (y − Y2)

′(y − Y2)

y′y = Y ′
1 Y1 + (y − Y1)

′(y − Y1)

Y ′
2 Y2 = Y ′

1 Y1 + (Y2 − Y1)
′(Y2 − Y1)

y′y = Y ′
1 Y1 + (Y2 − Y1)

′(Y2 − Y1) + (y − Y2)
′(y − Y2)

(y − Y1)
′(y − Y1) = (Y2 − Y1)

′(Y2 − Y1) + (y − Y2)
′(y − Y2)
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M1

M2
0

Y1

Y2

y

Y2

Figure A.2: Comparing two model fits.

In an Analysis of Variance, these squared-length decompositions are usu-
ally arranged as follows:

Source DF SS
Subspace Dimension Squared length

Model 1 r1 Y ′
1 Y1

M1

Improvement of model 2 r2 − r1 (Y2 − Y1)
′(Y2 − Y1)

over model 1
M2 ∩ M⊥

1

Deviations N − r2 (y − Y2)
′(y − Y2)

M⊥
2

Total N y′y
RN

For example, consider model 1 to be the model of common means,M 1 =
C(1), and model 2 to be the model of separate treatment means in a one-factor
ANOVA. ThenM1 ⊂ M2, because the separate treatment means could all
be equal. We haver1 = 1, andr2 = g; thus the improvement in going from
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model 1 to model 2 is ag − 1 dimensional improvement. In the ANOVA,
model 1 is usually called the constant or grand mean, and the improvement
sum of squares going from model 1 to model 2 is called the between treat-
ments sum of squares.

The parameterization in matrix (d) above is easier for hand work. It arises
when we want to compute the sum of squares for the improvementof model
2 (g group means) over model 1 (common mean). This is the sum of squares
for the orthogonal complement of model 1 in model 2. However,for matrix
(d), the orthogonal complement of model 1 in model 2 is spanned by the last
two columns of matrix (d). The orthogonality is built in.

We can, of course, extend model comparison to a series of three (or more)
nested models:M1 ⊂ M2 ⊂ M3. This gives an ANOVA table as follows:

Source DF SS
Subspace Dimension Squared length

Model 1 r1 Y ′
1 Y1

M1

Improvement of model 2 r2 − r1 (Y2 − Y1)
′(Y2 − Y1)

over model 1
M2 ∩ M⊥

1

Improvement of model 3 r3 − r2 (Y3 − Y2)
′(Y3 − Y2)

over model 2
M3 ∩ M⊥

2

Deviations N − r3 (y − Y3)
′(y − Y3)

M⊥
3

Total N y′y
RN

A.4 Projections

The sumof two subspacesU1 andU2 of a vector spaceV is U1 + U2 =
{u1 +u2 : u1 ∈ U1, u2 ∈ U2}; U1 +U2 is also a subspace ofV . If U1∩U2 =
{0}, the sum is calleddirect and is writtenU1+̇U2. If V is the direct sum
of U1 andU2, thenv ∈ V may be written uniquely asv = u1 + u2, where
u1 ∈ U1 andu2 ∈ U2.
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U2

U1

v

P(v) = u1

Figure A.3: Projection ontoU1 parallel toU2.

If V is the direct sum ofU1 andU2 with v ∈ V written asv = u1 + u2

(u1 ∈ U1, u2 ∈ U2), then theprojection ofV ontoU1 parallel to U2 is the
linear mapP : V → U1 given byP (v) = u1. See Figure A.3. A linear
mapping is a projection if and only ifP 2 = P .

If two subspaces are orthogonal (U1 ⊥ U2), we write their direct sum as
U1⊕U2 to emphasize their orthogonality. IfV = U1⊕U2, then the projection
of V ontoU1 is called anorthogonal projection.

Suppose we have a spaceV = U1 ⊕ U2, with Pi being the orthogonal
projection ontoUi. ThenP1P2 = 0. (Figure out why!) Furthermore, we
have that sincev = u1 + u2, thenv = P1v + P2v, so that(I − P1) = P2.

Linear maps fromRN to RNcan be written asN by N matrices. Thus,
we can express projections inRNas matrices. TheN by N matrix P is an
orthogonal projection ontoU ∈ RN if and only if P is symmetric, idempo-
tent (that is,P 2 = P ), andC(P ) = U . If U = C(X) andX has full rank,
thenP = X(X ′ X)−1X ′.

What does all this have to do with linear models? IfM is a model and
P is the orthogonal projection ontoM , then the fitted values for fittingM
to y arePy. Least-squares fitting of models to data is simply the use of the
orthogonal projection onto the model subspace.

Suppose we have two modelsM 1 and M2, along with their union
M12 = M1+̇M 2. When does the sum of squares forM 12 equal the sum of
squares forM1 plus the sum of squares forM2? By Pythagorean Theorem,
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the sum of squares forM12 is the sum of the sum of squares forM1 and
the sum of squares forM12 ∩ M⊥

1 . This second model isM2 if and only if
model 2 is orthogonal to model 1, so the sums of squares add up if and only
if the two original models are orthogonal.

How do we use this in ANOVA? We will have sums of squares that add
up properly if we breakRNup into orthogonal subspaces. Our model lattices
are hierarchical, with higher models including lower models. Thus to get
orthogonal subspaces, we must look at the orthogonal complement of the
smaller subspace in the larger subspace. This is the improvement in going
from the smaller subspace to the larger subspace.

In the usual two-factor balanced ANOVA, the model of separate column
means (MC) is not orthogonal to the model of separate row means (MR);
these models have the constant-mean model as intersection.However, the
model “improvement going from constant mean to separate column means”
(MC ∩ 1

⊥) is orthogonal to the model “improvement going from constant
mean to separate row means” (MR ∩ 1

⊥). This orthogonality is not present
in the general unbalanced case.

When we have two nonorthogonal models, we will get differentsums of
squares if we decomposeM12 asM1 ⊕M12 ∩M⊥

1 or M2 ⊕M 12 ∩M⊥
2 .

The first corresponds to fitting model 1, and then getting the improvement
going toM12, and the second corresponds to fitting model 2, and then getting
the improvement going toM12. These have different projections in different
orders. See Figure A.4. These changing subspaces are why sequential sums
of squares (Type I) depend on order. Thus the sum of squares for B will not
equal the sum of squares for B after A unless B and A represent orthogonal
subspaces. The same applies for A and A after B.

A.5 Random Variation

So far, the linear models computations have not included anyrandom vari-
ation, but we add that in. Our observationsy ∈ RN will have a normal
distribution with meanµ and variance matrixΣ| . The meanµ will lie in
some modelM . We usually assume thatΣ| = σ2I, whereI is theN by N
identity matrix. Ify has the above distribution, thenCy (whereC is ap by
N matrix of constants) has a normal distribution with meanCµ and variance
matrixCΣ| C ′.

Let’s assume thaty ∼ N(µ, σ2I), whereµ ∈ M , andM = C(X) has
dimensionr. We can thus find aβ (possibly infinitely manyβ’s) such that
µ = Xβ. Let P be the orthogonal projection ontoM ; (I − P ) is thus the
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M2

M1

y

b

a

c

d

M12 ∩ M1⊥

M12 ∩ M2⊥

0

Figure A.4: Projecting in different orders.

orthogonal projection ontoM⊥. The fitted values Y have the distribution

Y = Py ∼ N(Pµ, σ2PP ′)

= N(µ, σ2P )

= N(Xβ, σ2P ) .

The residuals have the distribution

y − Y = (I − P )y ∼ N((I − P )µ, σ2(I − P )(I − P )′)

= N(0, σ2(I − P )) .

These derivations give us the distributions of the fitted values and the
residuals: they are both normal. However, we need to know their joint dis-
tribution. To discover this, we use a little trick and look attwo copies ofy
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just stacked into a vector of length2N , and we do separate projections on the
two copies.

(
y
y

)
∼ N

((
µ
µ

)
, σ2

(
I I
I I

))

(
P 0
0 (I − P )

)(
y
y

)
∼ N

((
µ
0

)
, σ2

(
P P − P 2

P − P 2 I − P

))

∼ N

((
µ
0

)
, σ2

(
P 0
0 I − P

))

This shows that the residuals and fitted values are uncorrelated. Because they
are normally distributed, they are also independent.

How are the sums of squares distributed? Sums of squares are squared
lengths, or quadratic forms, of normally distributed vectors. Normal vectors
are easier to work with if they have a diagonal variance matrix, so let’s work
towards a diagonal variance matrix.

Let H1 (N by r) be an orthonormal basis forM ; thenH ′
1H1 is ther by r

identity matrix. LetH2 (N by N − r) be an orthonormal basis forM⊥; then
H ′

2H2 is theN − r by N − r identity matrix. Furthermore, bothH ′
1H2 and

H ′
2H1 are 0. (The two matrices have columns that are bases for orthogonal

subspaces; their columns must be orthogonal.) Now letH be theN by N
matrix formed by joiningH1 andH2 by H = (H1 : H2). H is an orthogonal
matrix, meaning thatH ′H = HH ′ = I.

The squared length ofz andH ′z is the same for anyz ∈ RN , because

z′z = z′Iz = zHH ′z = (H ′z)′(H ′z)

So for sums of squares calculations, we may premultiply byH ′ before taking
the squared length without changing the value or distribution.

Let’s look at the residual sum of squares by looking atH ′(I − P )y.

H ′(I − P )y ∼ N

((
H ′

1
H ′

2

)
(I − P )µ, σ2

(
H ′

1
H ′

2

)
(I − P )(H1,H2)

)

∼ N

((
0
0

)
, σ2

(
H ′

1
H ′

2

)
(0,H2)

)

∼ N

((
0
0

)
, σ2

(
0 0
0 IN−r

))
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Thus the distribution of the sum of squared residuals is the same as the dis-
tribution of the sum ofN − r independent normals with mean 0 and variance
σ2. This is, of course,σ2 times a chi-square distribution withN − r degrees
of freedom. The expected sum of squared errors is just(N − r)σ2.

What about the model sum of squares? Look atH ′Py.

H ′Py ∼ N

((
H ′

1
H ′

2

)
Pµ, σ2

(
H ′

1
H ′

2

)
P (H1,H2)

)

∼ N

((
H ′

1µ
0

)
, σ2

(
H ′

1
H ′

2

)
(H1, 0)

)

∼ N

((
H ′

1µ
0

)
, σ2

(
Ir 0
0 0

))

Thus the distribution of the model sum of squares isσ2 times a noncentral
chi-square with noncentrality parameterµ′H1H

′
1µ/σ2 andr degrees of free-

dom. The noncentrality parameterµ′H1H
′
1µ/σ2 also equalsµ′µ/σ2, so the

expected model sum of squares isµ′µ + rσ2. We may test the null hypothe-
sisH0 : µ = 0 against the alternativeHa : µ 6= 0 by taking the ratio of the
model mean square to the error mean square; this ratio has an F-distribution
under the null hypothesis and a noncentral F-distribution under the alterna-
tive.

We can generalize these distributional results to a sequence of models.
Consider modelsM1 = C(X1) andM2 = C(X2) with M1 ⊂ M 2. Let P1

andP2 be the orthogonal projections ontoM 1 andM2. As usual,µ ∈ M2

is the expected value ofy; decomposeµ into P1µ and(P2 − P1)µ. These
are the parts of the mean that lie inM1 and that are orthogonal toM1. Work
with a pile of three copies ofy.




y
y
y


 ∼ N






µ
µ
µ


 , σ2




I I I
I I I
I I I









P1 0 0
0 P2 − P1 0
0 0 I − P2






y
y
y


 ∼ N






P1µ
(P2 − P1)µ

0


 ,

σ2




P1 0 0
0 P2 − P1 0
0 0 I − P2





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Thus the fitted valuesY1, the difference in fitted values between the two
modelsY2 − Y1, and the residuals are all independent. The sum of squares
for error is a multiple of chi-square withN − r2 degrees of freedom. The
improvement sum of squares going from the smaller to the larger model is a
multiple of a chi-square withr2 − r1 degrees of freedom if the null is true
((P2 − P1)µ = 0); otherwise it is a multiple of a noncentral chi-square.

A.6 Estimable Functions

Assume thaty = µ + ǫ, whereµ ∈ M = C(X) andǫ ∼ N(0, σ2I). Since
µ ∈ C(X), we have thatµ = Xβ for someβ. LetY = Xb be the projection
of y ontoM .

A linear combination of theβ’s given byh′β is estimableif there exists
a vectort ∈ RN such that

E(t′y) = h′β,

for all values ofβ. Note that estimability is defined in terms of a particular set
of parameters, so estimability depends on the matrixX, not just the model
spaceM . Forh′β to be estimable, we must have

h′β = E(t′y) = t′E(y) = t′Xβ

for all β, so that
h = X ′t .

Thush′β is estimable if and only ifh = X ′t, or in other words, ifh is a
linear combination of the rows ofX.

We estimateh′β by h′b, whereb is any solution of the normal equations.
There may be many solutions to the normal equations; ish′b unique? Yes, it
is unique because

h′b = t′Xb = t′Y ,

so the estimable function only depends on the fitted valueY . Note thatt′y
has the same expectation ash′b, but we will see below thatt′y can have a
larger variance.

What are the mean and variance of an estimable function? Lett⋆ be the
projection oft ontoM , and lett = t⋆ + tr. Then

E(h′b) = E(t′y)

= E(t⋆′y + t′ry)
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= t⋆′Xβ + t′rXβ

= t⋆′Xβ + 0β

= t⋆′Xβ

So the expected value oft′y only depends on the part oft that lies inM .
Variance is a bit trickier. If we directly attackh′b we get

Var(h′b) = Var(t′Y ) = σ2t′P t = σ2t⋆′t⋆ .

On the other hand, if we look att′y, we find

Var(t′y) = σ2t′t = σ2(t⋆′t⋆ + t′rtr) .

In the second version we only get minimum variance iftr is 0. Becausetr

does not affect expected value, we may restrict our attention to t’s that lie
entirely inM ; these will give us minimum variance no matter which way we
use them.

Consider a one-factor model withg treatments, parameterized byµ and
αi, for i = 1, 2, . . ., g. Theith treatment group hasni observations and mean
µ + αi. TheX matrix looks like

1
1
...
1

1
1
...
1





n1

0
0
...
0

· · ·

0
0
...
0

1
1
...
1

0
0
...
0

1
1
...
1





n2 · · ·

0
0
...
0

...
...

... · · · ...
1
1
...
1

0
0
...
0

0
0
...
0

· · ·

1
1
...
1





ng

For an estimable function given by a vectort ∈ M , the firstn1 elements oft
are the same, the nextn2 are the same, and so on. Call theseg unique values
s1, s2, · · ·, sg. An estimableh is of the formh = X ′t, and with thisX, X ′t
leads to
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hµ =
g∑

i=1

nisi

hα1
= n1s1

hα2
= n2s2

...
hαg

= ngsg

Thus forh′β to be estimable, we only need to have that

hµ = hα1
+ hα2

+ · · · + hαg
.

A.7 Contrasts

An estimable functionh′β for which the associatedt ∈ M satisfiest′1 =
0 is called acontrast. A contrast thus describes a directiont ∈ M that
is orthogonal to the grand mean. For the one-factor ANOVA problem, an
estimable function is a contrast if

0 = hµ =
g∑

i=1

nisi =
g∑

i=1

hαi
.

For contrasts, the overall mean must have a 0 coefficient, so we usually don’t
bother with a coefficient forµ at all, and denote thehαi

by wi.

Two contrasts areorthogonalif their correspondingt vectors are orthog-
onal:

t ⊥ t⋆ ⇔ 0 =
n∑

i=1

tit
⋆
i =

g∑

i=1

nisis
⋆
i =

g∑

i=1

wiw
⋆
i

ni
.

M hasr dimensions, soM ∩ 1
⊥ hasr − 1 dimensions. All contrasts lie

in M ∩ 1
⊥, so we can have at mostr − 1 mutually orthogonal contrasts in

a collection. These contrasts form an orthogonal basis forM ∩ 1
⊥, and of

course there are many such bases.

Every contrast determines a modelC(t), and we may compute a sum of
squares for this model via

SS(t) =
(t′Y )2

t′t
.
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We may do F-tests on this sum of squares exactly as we would on any model
sum of squares. For a complete set of orthogonal contrastst(k), we have

M ∩ 1
⊥ = C(t(1)) ⊕ C(t(2)) ⊕ · · · ⊕ C(t(r−1))

so that

SS(M ∩ 1
⊥) = SS(t(1)) + SS(t(2)) + · · · + SS(t(r−1)) .

Alternatively,t′y = h′b ∼ N(h′β, σ2t′t), so we may uset-style inference
with the error mean square estimatingσ2. If t′t⋆ = 0, thent′y andt⋆′y are
independent.

A.8 The Scheff́e Method

How large can the sum of squares for a contrast be? The sum of squares
for a contrast is the sum of squares forC(t), the model subspace spanned
by the contrast. All contrast subspaces lie inM ∩ 1

⊥, so we can make the
decomposition

SS(M ∩ 1
⊥) = SS(t) + SS(M ∩ 1

⊥ ∩ t⊥) .

Thus the maximum thatSS(t) could possibly be isSS(M ∩ 1
⊥), which

equals(Y − Y 1)′(Y − Y 1). We can achieve this maximum by takingt =
(Y − Y 1):

(t′Y )2

t′t
=

((Y − Y 1)′Y )2

(Y − Y 1)′(Y − Y 1)

=
((Y − Y 1)′(Y − Y 1))2

(Y − Y 1)′(Y − Y 1)

= (Y − Y 1)′(Y − Y 1) .

In a one-factor ANOVA, the maximum sum of squares for a contrast is the
between groups sum of squares. Under the null hypothesis of no treatment
differences, this sum of squares is distributed asσ2 times a chi-square with
g − 1 degrees of freedom. We do inference by comparing the F-ratioto the
F distribution. Notice, however, that the maximal contrastsum of squares is
equal to the treatment sum of squares. Thus we can do inference on arbitrarily
many contrasts by treating them as if they were the maximal contrast. This
is the basis for the Scheffé method of multiple comparisons.
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A.9 Problems

Let y be anN by 1 random vector withE y = Xβ, andV ar(y) = σ2IN ,Question A.1
whereX is N by p andβ is p by 1. Let Y = Py, whereP is a projection
(not necessarily orthogonal) onto the range ofX. (a) Find the mean and
(co)variance ofY andy − Y . (b) Prove that Cov(Y , y − Y ) is 0 if and only
if P is an orthogonal projection.

Let y = Xβ + ǫ, whereǫ is iid N(0, σ2); y is N by 1, X is N by p, andQuestion A.2
β is p by 1. Let g be anyN by 1 vector. What is the distribution of(g′y)2?
What, if anything, changes wheng′X is zero?

Consider a linear modelM = C(X) with parametersµ, β1, β2, andβ3,Question A.3
where X is as follows:

1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

Which of the following are estimable (give a brief reason): (a) µ, (b) β1, (c)
β2 − β3, (d) µ + (β1 + β2 + β3)/3, (e)β1 + β2 − β3.

Consider a two by three factorial with proportional balance: nij = ni•n• j/n••.Question A.4
Show that contrasts in factor A are orthogonal to contrasts in factor B.

Consider the followingX matrices parameterizing models 1 and 2.Question A.5

X1 X2

1 0 1 0
1 0 0 1
1 0 -1 -1
0 1 1 0
0 1 0 1
0 1 -1 -1

-1 -1 1 0
-1 -1 0 1
-1 -1 -1 -1

Let model 3 be the union of the models spanned by these two matrices.
Will the sum of squares for model 3 be the sum of the sums of squares for
models 1 and 2? Why or why not?
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In the one-way ANOVA problem, show that the three restrictions
∑

αi = Question A.6
0,
∑

niαi = 0, andα1 = 0 lead to the same values ofα1 −α2. Interpret this
result in terms of estimable functions.

Consider a one-factor model parameterized by the followingmatrix: Question A.7

1 1 0
1 1 0
1 0 1
1 0 1
1 –1 –1
1 –1 –1

The parameters areµ, α1, andα2. Which of the following are estimable: (a)
µ , (b) µ + α1, (c) α1 + α2, (d) µ − α1, and (e)α1 − α2?

Consider a completely randomized design with twelve treatments and Question A.8
24 units (allni = 2). The twelve treatments have a three by four factorial
structure.

(a) Find the variance/covariance matrix for the estimated factor A effects.

(b) Find the variance/covariance matrix for the estimated interaction ef-
fects.

(c) Show that thet-test for testing the equality of two factor A main effects
can be found by treating the two estimated main effects as means of
independent samples of size eight.

(d) Show that thet-test for testing the equality of two interaction effects
cannot be found by treating the two estimated interaction effects as
means of independent samples of size two.

Consider the one-way ANOVA model withg groups. The sample sizes Question A.9
areni are not all equal. The treatments correspond to the levels ofa quanti-
tative factor; the level for treatmenti is zi, and thezi are not equally spaced.
We may compute linear, quadratic (adjusted for linear), andcubic (adjusted
for linear and quadratic) sums of squares by linear regression. We may also
compute these sums of squares via contrasts in the treatmentmeans, but we
need to find the contrast coefficients. Describe how to find thecontrast coef-
ficients for linear and quadratic (adjusted for linear). (Hint: use thet andsi

formulation in Sections A.6 and A.7, and remember your linear regression.)
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Suppose thatYN×1 is multivariate normal with meanµ and varianceσ2I,Question A.10
and that we have modelsM1 andM2 with M1 contained inM2; M1 has di-
mensionr1, M2 has dimensionr2, andP1 andP2 are the orthogonal projec-
tions ontoM1 andM2.

(a) Find the distribution of(P2 − P1)Y .

(b) What can you say in addition about the distribution of(P2 − P1)Y
whenµ lies inM1?

Consider a proportionally balanced two-factor model withnij units inQuestion A.11
the ijth factor-level combination. LetMA be the model of factor A effects
(Eyijk = µ + αi) and letMB be the model of factor B effects(Eyijk =

µ + βj). Show thatMA ∩ 1⊥ is orthogonal toMB ∩ 1⊥.

If X andX⋆ aren by p matrices andX has rankp, show that the rangeQuestion A.12
of X equals the range ofX⋆ if and only if there exists ap by p nonsingular
matrixQ such thatX⋆ = XQ.



Appendix B

Notation

Symbol Page Meaning

Λ 521 A diagonal matrix of eigenvalues

Σ| 572 Variance (matrix) ofy

α 343 First level of third blocking factor in a
Graeco-Latin Square

α 522 Distance from origin for axial points in
central composite design

αi 38 ith treatment effect, or main effect of fac-
tor A

αi 254 A random treatment effect

αi 339 Direct effect of treatmenti in a residual-
effects model

α[i] 92 Effect for the treatment withith smallest
observed effect

α̂(i) 92 ith smallest treatment effect

α̂i 39 An estimator ofαi

α⋆
i 455 Effect of ith treatment in a covariate

model
α̃i 364 Interblock estimate ofαi in BIBD

α̃i 460 Treatment effect, not covariate adjusted
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Symbol Page Meaning

αβij 175 AB interaction

α̂βij 177 Estimate of AB interaction

αβγijk 183 ABC interaction

α̂βγijk 184 Estimated ABC interaction

αβγδijkl 183 ABCD interaction

αβδijl 183 ABD interaction

αγik 183 AC interaction

α̂γik 184 Estimate of AC interaction

αγδikl 183 ACD interaction

αδil 183 AD interaction

β 343 Second level of third blocking factor in a
Graeco-Latin Square

β 563 A vector of coefficients for the columns
of a matrixX which spans a model

β 455 Coefficient of the covariate in a covariate
model

β 512 Vector form of first-order model coeffi-
cients

βj 328 Effect ofjth row block in a Latin Square

βj 339 Residual effect of treatmentj in a resid-
ual effects model

βj 319 Effect ofjth block

βj 168 Main effect of factor B

β̂j 177 Estimate of main effect of factor B

βj(i) 280 Effect of B nested in A

β̂j(i) 283 Estimated effect for B nested in A

βj(l) 331 Effect ofjth row in lth Latin Square

βk 512 A first-order parameter in a response sur-
face model
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Symbol Page Meaning

βkk 517 A pure quadratic parameter in a response
surface model

βkl 517 A cross product parameter in a response
surface model

βklm 533 Coefficient of pure third order term for
mixture model

β̂ 128 Slope of log variances regressed on log
means

β̂ 456 Estimated coefficient (slope) of the co-
variate

βγjk 183 BC interaction

β̂γjk 184 Estimate of BC interaction

βγjk(i) 284 BC interaction nested in A effect

βγδjkl 183 BCD interaction

βδjl 183 BD interaction

γ 343 Third level of third blocking factor in a
Graeco-Latin Square

γ1 134 Skewness

γ2 134 Kurtosis

γk 328 Effect of kth column block in a Latin
Square

γk 339 Effect of subjectk in a residual-effects
model

γk 183 Main effect of factor C

γ̂k 183 Estimated main effect of factor C

γk(l) 331 Effect ofkth column inlth Latin Square

γδkl 183 CD interaction

δ 343 Fourth level of third blocking factor in a
Graeco-Latin Square

δ 222 Coefficient in a Johnson and Graybill in-
teraction
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Symbol Page Meaning

δ 512 A vector of offsets to the current design
variables in a response surface

δi 161 Mean for normal used in computing non-
centrality parameter

δk 512 Offset for thekth design variable in a re-
sponse surface

δkl 533 Coefficient of asymmetric term for third-
order mixture model

δl 331 Effect of lth square in replicated Latin
Square design

δl 339 Effect of periodl in a residual-effects
model

δl 183 Main effect of factor D

ǫij 37 Experimental error foryij

ǫijk 175 Experimental error foryijk

ǫijklm 183 Random error foryijklm

ǫk(i) 440 Subject effect in a repeated-measures de-
sign

ǫβjk(i) 440 Subject by trial-factor interaction in a re-
peated measures design

η 217 Coefficient of a Tukey interaction

ηj 364 Random error for the total of blockj re-
sponses in interblock analysis of BIBD

ηk(i) 421 Random error forkth whole plot atith
level of the whole-plot factor

η̂ 114 An intermediate quantity used in Land’s
confidence intervals for log-normal data

λ 442 Degrees of freedom adjustment for re-
peated measures designs that do not meet
the Huynh-Feldt conditions

λ 359 Number of blocks in which any pair of
treatments occurs in a BIBD
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Symbol Page Meaning

λ 128 Power in a power family transformation

λ 220 A transformation power in a Tukey one-
degree-of-freedom interaction

λi 371 Number of blocks in which two treat-
ments in associate classi of a PBIBD oc-
cur together

λk 519 Eigenvalue forith canonical variable

λ⋆ 129 Optimum Box-Cox transformation
power

µ 21 Mean of a normal distribution

µ 37 Common or overall mean

µ 572 Expected value ofy

µ0 21 A null hypothesis mean

µ1 25 Expected value of responses in first treat-
ment

µ2 25 Expected value of responses in second
treatment

µ•j 231 Equally weighted average of treatment
expectations for columnj

µi 37 Expected value for responses inith treat-
ment

µi• 231 Equally weighted average of treatment
expectations for rowi

µ̂i 39 An estimator ofµi

µij 167 Treatment expected value in a two-factor
factorial design

µi⋆ 244 A weighted average of treatment ex-
pected values for theith row
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Symbol Page Meaning

(µi⋆)⋆j 244 Column-weighted averages of row-
weighted means

µ⋆j 244 A weighted average of treatment ex-
pected values for thejth column

(µ⋆j)i⋆ 244 Row-weighted averages of column-
weighted means

µ̂ 39 An estimator ofµ

µ̂ 177 Estimate of overall mean in a factorial

µ⋆ 38 An overall expected value

µ⋆ 455 Overall mean or intercept in a covariate
model

µ̂⋆ 39 An estimator ofµ⋆

µ̃ 364 Interblock estimate ofµ in BIBD

µ̃ 460 Estimate of average intercept for centered
covariate

ν 85 Degrees of freedom, typically for error

ν1 262 Degrees of freedom for a mean square

ν2 262 Degrees of freedom for a mean square

ν3 262 Degrees of freedom for a mean square

νcrd 323 Error degrees of freedom for a CRD

νls 336 Error degrees of freedom for a Latin
Square

νrcb 323 Error degrees of freedom for an RCB

ν⋆ 262 Approximate degrees of freedom

ρ 127 Correlation coefficient

ρ 138 Serial correlation

ρi 371 Number ofith associates of a given treat-
ment in a PBIBD

ρ̂ 127 Sample correlation

σ2 21 Variance, often of experimental error



Notation 589

Symbol Page Meaning

σ2
α 254 Variance of the random effectαi

σ̂2
α 264 An estimated variance component

σ2
αβ 255 Variance of the random effectαβij

σ2
αβγ 256 Variance of the random effectαβγijk

σ̂2
αβγ 265 An estimated variance component

σ̂2
αβ 265 An estimated variance component

σ2
αγ 256 Variance of the random effectαγik

σ̂2
αγ 265 An estimated variance component

σ2
β 255 Variance of the random effectβj

σ2
β 364 Variance of block effects in interblock

analysis of BIBD

σ̂2
β 365 Estimate of block variance in BIBD

σ̂2
β 265 An estimated variance component

σ2
βγ 256 Variance of the random effectβγjk

σ̂2
βγ 265 An estimated variance component

σ̂2
γ 265 An estimated variance component

σ2
γ 256 Variance of the random effectγk

σ2
η 269 A variance component

σ2
bibd 363 Error variance in a BIBD

σ2
crd 323 Error variance for a CRD

σ̂2
crd 323 Estimate ofσ2

crd based on results of an
RCB

σ̂2
crd 337 Estimate of error variance in CRD based

on data from LS

σ2
ls 336 Error variance in a Latin Square
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Symbol Page Meaning

σ2
rcb 323 Error variance for an RCB

σ̂2
rcb 336 Estimate of error variance in RCB based

on data from LS

σ̂2 41 An estimator ofσ2

τ 269 An expected mean square

τd 260 A denominator expected mean square

τn 260 A numerator expected mean square

θ0 212 Intercept in a dose-response relationship

θ1 55 Linear coefficient in polynomial dose-
response model

θ2 55 Quadratic coefficient in polynomial dose-
response model

θAr 212 Coefficient ofzr
Ai in a dose-response re-

lationship

θAr0 215 Coefficient forzr
Ai averaged across all

levels of factor B

θArBs 212 Coefficient ofzr
Aiz

s
Bj in a dose-response

relationship

θArj 215 Coefficient forzr
Ai at thejth level of fac-

tor B

θBs 212 Coefficient ofzs
Bj in a dose-response re-

lationship

θβArj 215 Deviation from overall coefficient ofzr
Ai

for levelj of factor B

χ2
E,ν 268 UpperE percent point of a chi-square dis-

tribution with ν degrees of freedom

ξi 221 Coefficient in a column-model of interac-
tion

χ2
n 161 Chi-square distribution withn degrees of

freedom
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Symbol Page Meaning

χ2
n(ζ) 161 A noncentral chi-square withn degrees

of freedom and noncentrality parameter
ζ

ζ 154 A noncentrality parameter

ζ 364 A contrast in treatment effects

ζj 221 Coefficient in a row-model of interaction

ζl(ij) 429 A split-plot error

ζ̄ 365 Estimate of a contrast in BIBD after re-
covery of interblock information

ζ̂ 364 Intrablock estimate of a contrast in a
BIBD

ζ̃ 365 Interblock estimate of a contrast in a
BIBD

(1) 236 The treatment in a two-series design with
all factors at their low levels

1 563 AnN -vector of all ones

2k−q 472 A1/2q fraction of a2k factorial

A1C2 403 A two-degree-of-freedom split in a three-
series design

ArABrBCrCDrD 404 A generic two-degree-of-freedom split in
a three-series design

B 518 Matrix form of the second-order coeffi-
cients in a second-order model

B 526 An estimate ofB
B1C1D2 403 A two-degree-of-freedom split in a three-

series design

B(A) 281 Factor B nested in A

BF 133 Brown-Forsythe modified F-test

BIBD 358 A balanced incomplete block design

BSD 91 Bonferroni significant difference

BSDij 91 Unequal sample size form of BSD
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Symbol Page Meaning

C1 159 A fixed cost

C2 159 A cost per experimental unit

C3 159 A cost per measurement unit

Cp 100 Mallows’ criterion for minimizing pre-
diction error

C(AB) 282 C nested in A and B

CCD 522 A central composite design

CRD 31 A completely randomized design

C(X) 566 Column space of matrixX

D 88 A significant difference for all pairwise
comparisons

D 532 Total of component lower bounds in a
mixture design

Dij 87 A significant difference for a pairwise
test

Dmax 122 Maximum distance between units, used
in binning a variogram

DSD 102 Dunnett significant difference

DW 121 The Durbin-Watson statistic

E 140 Factor for determing effective sample
size with correlated data

E 43 Generic error rate for a test or confidence
interval

Eχ 270 Error rate for the chi-square portion of a
Williams’ confidence interval of a vari-
ance component

EBIBD:RCB 362 Efficiency of the BIBD relative to the
RCB

EF 270 Error rate for the F portion of a Williams’
confidence interval of a variance compo-
nent

EI 150 A Type I error rate
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Symbol Page Meaning

EII 150 A Type II error rate

ELS:CRD 336 Relative efficiency of a Latin Square to a
CRD

ELS:RCB 336 Relative efficiency of a Latin Square to
an RCB

EPBIBD:RCB 372 Average efficiency of PBIBD to RCB

ERCB:CRD 323 Relative efficiency of RCB to CRD

ÊRCB:CRD 323 Estimated relative efficiency of RCB to
CRD

ESL:RCB 375 Average efficiency of a Square Lattice to
an RCB

Ei 77 Type I error rate for hypothesisi

EMS 257 An expected mean square

EMS1 269 Expected value ofMS1

EMS2 269 Expected value ofMS2

EMSTrt 52 Expected mean square for treatments

FE,g−1,ν 85 UpperE percent point of an F distribution
with g − 1 andν degrees of freedom

H 521 An orthogonal matrix of eigenvectors of
B

H 574 Orthogonal matrix(H1 : H2)

H0 21 A null hypothesis

H01 78 First null hypothesis of a family

H0K 78 Last null hypothesis of a family

H0(i) 82 Null hypothesis corresponding toith
smallestp-value

H1 574 An orthonormal basis forM

H1 21 An alternative hypothesis

H2 574 An orthonormal basis forM⊥

Hij 114 Leverage foryij
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Symbol Page Meaning

HSD 90 Tukey’s honest significant difference

HSDij 91 Tukey-Kramer form of HSD

I 473 A column of all ones in the analysis of a
two-series

Iq 521 q by q identity matrix

K 78 Number of null hypotheses in a family

K 122 Number of bins in a variogram

L 390 Numerically evaluated defining contrast

L1 393 Numerically evaluated first defining con-
trast

L2 393 Numerically evaluated second defining
contrast

LS 325 A Latin Square design

LSD 97 Least significant difference

M 563 A model, that is, a linear subspace ofRN

M1 568 A model subspace

M12 571 Union of modelsM 1 andM2

M2 568 A model subspace

M3 570 A model subspace

MC 572 Model of separate column means

MR 572 Model of separate row means

M⊥ 567 Orthogonal complement of the subspace
M in RN

MCB 104 Multiple comparisons with the best pro-
cedure

MS1 262 A mean square

MS2 262 A mean square

MS3 262 A mean square

MSA 181 Mean square for factor A
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Symbol Page Meaning

MSAB 181 Mean square for the AB interaction

MSB 181 Mean square for factor B

MSCols 336 Mean square for columns in a Latin
Square

MSE 41 Mean square for error

MSLoF 516 Mean square for lack of fit

MSPE 516 Mean square for pure error

MSRows 336 Mean square for rows in a Latin Square

MSTrt 48 Mean square for treatments

MSw 69 Mean square for a contrast

N 18 Total number of units

NPP 115 Normal probablity plot

P 490 A two-degree-of-freedom split in a three-
series design

P 571 A projection mapping

P1 405 A defining split for a confounded three-
series

P2 405 A defining split for a confounded three-
series

PBIBD 370 A partially balanced incomplete block
design

PSE 241 Lenth’s pseudostandard error for unrepli-
cated two-series

P(p) 49 “Calibrated” p-value (lower bound on
Type I error probability)

Q 293 Representative element for a fixed term
in an EMS

R 482 Resolution of a fractional factorial

RN 563 N -dimensional Euclidean space

RCB 316 A randomized complete block design
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Symbol Page Meaning

REGWR 94 Ryan-Einot-Gabriel-Welsch Range test

SNK 96 Student-Newman-Keuls pairwise com-
parisons procedure

SPE 421 Split-plot error

SS1 56 Linear sum of squares

SS2 56 Quadratic sum of squares

SSA 167 Sum of squares for factor A

SSAB 168 Sum of squares for the AB interaction

SSABD 184 Sum of squares for ABD interaction

SSB 168 Sum of squares for factor B

SSE 40 Sum of squared errors

SSE(λ) 129 Sum of squared errors as a function of
Box-Cox transformation powerλ

SSLoF 515 Sum of squares for lack of fit

SSPE 515 Sum of squares for pure error

SSRows 328 Sum of squares for rows in a Latin Square

SST 46 Corrected total sum of squares

SSTrt 46 Treatment sum of squares

SSCols 328 Sum of squares for columns in a Latin
Square

SSlinear 56 Linear sum of squares

SSquadratic 56 Quadratic sum of squares

SSw 69 Sum of squares for a contrast

SS(B|1, A,C) 226 Sum of squares for B adjusted for 1, A,
and C

SSPE 430 Split-split-plot error

SSR 45 Sum of squared residuals

SSR0 53 Sum of squared residuals for a reduced
(null) model
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Symbol Page Meaning

SSRA 53 Sum of squared residuals for a full (alter-
nate) model

SSRk 56 Residual sum of squares for a polynomial
model including powers up tok

SS(t) 578 Sum of squares for the model spanned by
t

Type I 227 Sequential sums of squares

Type I 77 (Error) where the null is falsely rejected

Type II 228 A sum of squares with a term adjusted for
the largest hierarchical model that does
not include the term

Type II 150 A Type II error, failing to reject a false
null hypothesis

U1 570 A subspace of the vector spaceV

U2 570 A subspace of the vector spaceV

V 570 A vector space

W 473 A generating word in a fractional facto-
rial

W1 473 A generating word in a fractional facto-
rial

W2 473 A generating word in a fractional facto-
rial

WPE 421 Whole-plot error

X 563 A matrix, the columns of which span a
model

X1 568 A matrix which spans modelM 1

X2 568 A matrix which spans modelM 2

Y 563 Fitted values when fitting a modelM to
datay

Y0 566 A point in the model spaceM

Y1 568 Fit ofM1 to y

Y2 568 Fit ofM2 to y



598 Notation

Symbol Page Meaning

Y3 570 Fit ofM3 to y

Y 579 Mean ofY

Z1 161 A standard normal random variable

a 175 Number of levels of factor A

b 358 Number of blocks in a BIBD or PBIBD

b 175 Number of levels of factor B

b 514 Estimated first-order coefficients in a re-
sponse surface

b 566 Least squares estimates of the parameters
β

bcd 236 A factor-level combination in a two-
series design

c 183 Number of levels for factor C

cj 220 A column effect in the derivation of
Tukey one-degree-of-freedom for inter-
action

d 183 Number of levels for factor D

d1 21 A difference in a pairedt-test

dE (g − 1, ν) 102 UpperE percent point of the two-sided
Dunnett distribution for comparingg − 1
treatments to a control

d′E (g − 1, ν) 102 UpperE percent point of the one-sided
Dunnett distribution for comparingg − 1
treatments to a control

di 133 A scaled sample variance used in the
Brown-Forsythe modified F-test

dij 119 Absolute deviation of response from
treatment mean, as used in the Levene
test

dk 532 Lower bound for a component in a mix-
ture design

d̄ 21 Mean of differences in a pairedt-test
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Symbol Page Meaning

dfLoF 515 Degrees of freedom for lack of fit

dfPE 515 Degrees of freedom for pure error

fv 519 Response surface as a function of canon-
ical variables

f(x1i, x2i) 509 A response function of variablesx1 and
x2

f(zi; θ) 55 A dose-response function

g 18 Number of treatments or groups

gk 263 A coefficient in a linear combination of
mean squares

h 576 A vector defining a linear combination
h′β

i 37 An index, usually the treatment number
or the level of the first factor

j 37 An index, usually the level of the second
factor or an indicator of replication

k 358 Number of units per block in a BIBD or
PBIBD

k 166 Index denoting level of replication in a
two-factor factorial or level of third fac-
tor

l 183 Replication in a three-factor factorial, or
level of factor D

m 331 Number of squares in a design with repli-
cated LS

m 371 Number of associate classes in a PBIBD

m 513 Number of center points in a response
surface design

n 421 Replication in a split plot, the number
of whole plots for each whole-plot factor
level

n 21 A sample size, for example, of at-test

n1 18 Number of units in first treatment
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Symbol Page Meaning

nc 160 Sample size for control treatment

ng 18 Number of units ingth treatment

ni 37 Sample size forith treatment

nij 364 Number of times treatmenti occurs in
blockj (0 or 1 in a BIBD)

nt 160 Sample size for noncontrol treatments

p 21 p-value of a test

p 100 Number of classes into which theg treat-
ments are partitioned for prediction

p(1) 82 Smallestp-value in a family

p(K) 82 Largestp-value in a family

pi 81 p-value for testingH0i

pi
jk 371 Number of treatments that arejth asso-

ciates of A andkth associates of B when
A and B areith associates in a PBIBD

q 511 Number of variables in a response sur-
face model

qE(g, ν) 90 UpperE percent point of the Studentized
range distribution forg groups andν er-
ror degrees of freedom

r 316 Number of blocks in an RCB

r 358 Number of times each treatment is used
in a BIBD or PBIBD

r 567 Dimension of a model space

r 512 A positive multiplier for steps in steepest
ascent

r1 288 Product of the number of levels of fixed
factors in a mixed term

r1 568 Dimension of modelM 1

r2 288 Product across fixed factors of the num-
ber of levels minus one in a mixed term

r2 568 Dimension of modelM 2
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Symbol Page Meaning

r3 570 Dimension ofM3

rab 288 Scaling factor for the variance of a mixed
effect in the restricted model

ri 220 A row effect in the derivation of Tukey
one-degree-of-freedom for interaction

rij 45 A raw residual

rk 121 Thekth residual in time order, used in the
Durbin-Watson statistic

s 21 A sample standard deviation, for exam-
ple, as used in at-test

s 41 Alternate notation for̂σ

s0 241 In a PSE computation, 1.5 times the me-
dian of the absolute values of the contrast
results

s1 577 An element of an estimable functiont

s2
i 132 Sample variance for treatmenti

sij 114 Internally Studentized residual foryij

s2
p 25 Pooled estimate of variance

t 21 A t test statistic

t 576 A vector inRN

tE/2,N−g 43 Upper E/2 percent point of a t-
distribution withN − g degrees of free-
dom

tij 115 Externally Studentized residual foryij

tij 132 t-test comparing treatmentsi andj

t(k) 579 One of a set of orthogonal contrasts

tr 576 Projection oft ontoM⊥

t⋆ 576 Projection oft ontoM

u 87 A critical value in a pairwise comparison
test



602 Notation

Symbol Page Meaning

u1 570 An element ofU1

u2 570 An element ofU2

u(E , ν) 97 A pairwise comparison critical value de-
pending onE and the error degrees of
freedom

u(E , ν,K) 91 A pairwise comparison critical value de-
pending onE , the error degrees of free-
dom, and the number of pairwise com-
parisons

u(E , ν, g) 90 A pairwise comparison critical value de-
pending onE , the error degrees of free-
dom, and number of treatments

u(E , ν, k, g) 94 A pairwise comparison critical value de-
pending onE , the error degrees of free-
dom, the length of the stretch, and the
number of treatments

uj 222 Column singular vector in a Johnson and
Graybill interaction

v 519 Vector form of canonical variables in a
second-order model

v 570 An element of vector spaceV

v1 518 A canonical variable in a second-order
model

v2 518 A canonical variable in a second-order
model

vi 222 Row singular vector in a Johnson and
Graybill interaction

vi• 363 Total for treatmenti of block-adjusted re-
sponses in a BIBD

vij 363 Data with block means subtracted in
BIBD

vk 519 A design variable in canonical coordi-
nates

wA 238 The contrast for factor A in a two-series
design
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Symbol Page Meaning

wAijk 238 Theijk element of thewA contrast in a
two-series design

{wi} 66 A set of contrast coefficients

wi 66 A contrast coefficient

w⋆
i 71 A contrast coefficient

wij 167 A two-factor arrangment of contrast co-
efficients

wijk 204 Contrast coefficients for a three-factor
factorial

wjk 208 Contrast coefficients for a BC interaction
contrast

{w⋆} 71 A set of contrast coefficients

w⋆({yi••}) 169 An observed contrast in the factor A av-
erage responses

w({αi}) 66 A contrast in treatment effects

w({α̂i}) 66 A contrast in observed treatment effects

w({µi}) 66 A contrast in treatment expected values

w({yi•}) 66 A contrast in observed treatment means

x 563 A vector in a modelM

x0 519 Stationary point of a response surface

x0 464 An intersection point in a separate slopes
model

x1 509 A continuously variable treatment factor

x2 509 A continuously variable treatment factor

xA 388 Level of factor A

xB 388 Level of factor B

xC 388 Level of factor C

x•• 456 The grand mean of the covariates

xi 512 Vector form of design variables forith
data point
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Symbol Page Meaning

xij 454 Covariate corresponding toyij

x̃ij 460 Covariate with treatment mean sub-
tracted

x′
k 532 A pseudocomponent in a mixture design

xi• 460 Average covariate in treatmenti

ẋ 456 A standard covariate value

y 563 AnN -dimensional vector of responses

y14 25 A response, here the fourth response in
the first treatment group

y•• 40 Total of all responses

y•j 364 Total of responses for blockj

yi• 40 Total of responses in theith treatment

yi• 40 Average of responses inith treatment

yij 319 Response for theith treatment in thejth
block

yij 37 jth response inith treatment

yijk 166 A response in a two-factor factorial ex-
periment

yijkl 339 In a design balanced for residual effects,
the response for thekth subject in thelth
time period; the subject received treat-
menti in periodl and treatmentj in pe-
riod l − 1

yijklm 183 Response in a four-factor factorial

ỹi 119 Median response in treatmenti

y(λ) 129 A Box-Cox transformation

y 566 Mean ofy

y1• 25 Mean of responses in the first treatment

y(1)• 92 Smallest treatment mean
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Symbol Page Meaning

y2• 25 Mean of responses in the second treat-
ment

yabc 238 The average response for treatmentabc in
a two-series design

y•• 40 Grand mean of the responses

y••• 177 Grand mean in a two-factor factorial

y••••• 183 Grand mean in a four-factor factorial

y••k•• 183 Mean response at levelk of factor C

y•j• 167 Observed mean at levelj of factor B

y(g)• 92 Largest treatment mean

yi•• 167 Observed mean at leveli of factor A

yij• 167 Observed mean in theij treatment

yijk•• 184 Marginal mean at leveli of factor A, level
j of factor B, and levelk of factor C

ẏ 128 Geometric mean of the data

z 574 A vector inRN

zAi 212 Dose for leveli of factor A

zBj 212 Dose for levelj of factor B

zE/2 114 UpperE/2 percent point of the standard
normal

zi 55 Dose for treatmenti
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Appendix C

Experimental Design Plans

C.1 Latin Squares

The plans are presented in two groups. First we present sets of standard
squares for several values ofg. These sets are complete forg = 3, 4 and
are incomplete for largerg. Next we present sets of up to four orthogonal
Latin Squares (there are at mostg−1 orthogonal squares for anyg). Graeco-
Latin squares (and hyper-Latin squares) may be constructedby combining
two (or more) orthogonal Latin Squares. All plans come from Fisher and
Yates (1963).

C.1.1 Standard Latin Squares

3× 3
A B C
B C A
C A B

4× 4
A B C D A B C D A B C D A B C D
B A D C B C D A B D A C B A D C
C D B A C D A B C A D B C D A B
D C A B D A B C D C B A D C B A
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5 × 5
A B C D E A B C D E A B C D E A B C D E
B A E C D B C E A D B D A E C B E A C D
C D A E B C D B E A C E D B A C A D E B
D E B A C D E A C B D C E A B D C E B A
E C D B A E A D B C E A B C D E D B A C

6 × 6
A B C D E F A B C D E F A B C D E F
B C A F D E B A E F C D B A E C F D
C A B E F D C F A B D E C F B A D E
D F E B A C D E B A F C D E F B C A
E D F A C B E D F C B A E D A F B C
F E D C B A F C D E A B F C D E A B

7 × 7
A B C D E F G A B C D E F G A B C D E F G
B E A G F D C B F E G C A D B C D E F G A
C F G B D A E C D A E B G F C D E F G A B
D G E F B C A D C G A F E B D E F G A B C
E D B C A G F E G B F A D C E F G A B C D
F C D A G E B F A D C G B E F G A B C D E
G A F E C B D G E F B D C A G A B C D E F

C.1.2 Orthogonal Latin Squares

3 × 3
A B C A B C
B C A C A B
C A B B C A

4 × 4
A B C D A B C D A B C D
B A D C C D A B D C B A
C D A B D C B A B A D C
D C B A B A D C C D A B
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5× 5
A B C D E A B C D E A B C D E A B C D E
B C D E A C D E A B D E A B C E A B C D
C D E A B E A B C D B C D E A D E A B C
D E A B C B C D E A E A B C D C D E A B
E A B C D D E A B C C D E A B B C D E A

7× 7
A B C D E F G A B C D E F G A B C D E F G
E F G A B C D F G A B C D E G A B C D E F
B C D E F G A D E F G A B C F G A B C D E
F G A B C D E B C D E F G A E F G A B C D
C D E F G A B G A B C D E F D E F G A B C
G A B C D E F E F G A B C D C D E F G A B
D E F G A B C C D E F G A B B C D E F G A

C.2 Balanced Incomplete Block Designs

The plans are sorted first by number of treatmentsg, then by size of block
k. The number of blocks isb; the replication for any treatment isr; any
pair of treatments occurs together inλ = r(k − 1)/(g − 1) blocks; and the
efficiency isE = g(k − 1)/[(g − 1)k]. Designs that can be arranged as
Youden Squares are marked with YS and shown as Youden Squares. Designs
involving all combinations ofg treatments takenk at a time that cannot be
arranged as Youden Squares are simply labeledunreduced.Some designs
are generated as complements of other designs, that is, by including in one
block all those treatments not appearing in the corresponding block of the
other design. Additional plans can be found in Cochran and Cox (1957),
who even include some plans with 91 treatments. Fisher and Yates (1963)
describe methods for generating BIBD designs. BIBD plans given here were
generated using the instructions in Fisher and Yates or de novo and then
arranged in Youden Squares when feasible.

BIBD 1 g = 3, k = 2, b = 3, r = 2,λ = 1, E = .75, YS

1 2 3
2 3 1

BIBD 2 g = 4, k = 2, b = 6, r = 3,λ = 1, E = .67

Unreduced
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BIBD 3 g = 4, k = 3, b = 4, r = 3,λ = 2, E = .89, YS

1 2 3 4
2 3 4 1
3 4 1 2

BIBD 4 g = 5, k = 2, b = 10, r = 4,λ = 1, E = .63, YS

1 1 4 5 2 5 3 3 4 2
2 3 1 1 4 2 4 5 5 3

BIBD 5 g = 5, k = 3, b = 10, r = 6,λ = 3, E = .83, YS

1 2 5 1 3 4 2 5 4 3
2 4 1 3 1 5 3 2 5 4
3 1 2 4 5 1 4 3 2 5

BIBD 6 g = 5, k = 4, b = 5, r = 4,λ = 3, E = .94, YS

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3

BIBD 7 g = 6, k = 2, b = 15, r = 5,λ = 1, E = .6

Unreduced

BIBD 8 g = 6, k = 3, b = 10, r = 5,λ = 2, E = .8

1 2 3 5 5 6 4 1 5 6
4 4 4 6 6 1 1 2 2 3
5 6 5 1 2 3 2 3 3 4

BIBD 9 g = 6, k = 4, b = 15, r = 10,λ = 6, E = .9

Unreduced

BIBD 10 g = 6, k = 5, b = 6, r = 5,λ = 4, E = .96, YS

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
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BIBD 11 g = 7, k = 2, b = 21, r = 6,λ = 1, E = .58, YS

1 1 1 5 6 7 3 4 2 2 2
2 3 4 1 1 1 2 2 5 6 7

3 3 6 7 5 4 4 5 7 6
4 5 3 3 4 6 7 6 5 7

BIBD 12 g = 7, k = 3, b = 7, r = 3,λ = 1, E = .78, YS

1 3 7 5 4 2 6
2 1 4 3 6 7 5
5 6 1 4 2 3 7

BIBD 13 g = 7, k = 4, b = 7, r = 4,λ = 2, E = .88, YS

3 1 2 7 6 5 4
4 2 7 1 5 6 3
6 7 4 5 3 1 2
7 6 5 3 2 4 1

BIBD 14 g = 7, k = 5, b = 21, r = 15,λ = 10, E = .93, YS

1 6 4 3 2 1 5 7 2 6 1 4 7 3 5
2 1 7 5 3 2 1 4 6 5 6 1 3 7 4
3 2 1 6 5 3 2 1 4 7 4 7 1 5 6
4 3 2 1 7 6 4 5 1 2 3 5 6 1 7
5 4 3 2 1 7 6 2 7 1 5 3 4 6 1

2 7 6 5 4 3
3 2 7 6 5 4
4 3 2 7 6 5
5 4 3 2 7 6
6 5 4 3 2 7

BIBD 15 g = 7, k = 6, b = 7, r = 6,λ = 5, E = .97, YS

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4
6 7 1 2 3 4 5
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BIBD 16 g = 8, k = 2, b = 28, r = 7,λ = 1, E = .57

Unreduced

BIBD 17 g = 8, k = 3, b = 56, r = 21,λ = 6, E = .76, YS

1 4 2 1 7 2 3 5 1 3 8 1 6 4 1
2 1 5 2 1 8 1 3 6 1 3 4 1 7 4
3 2 1 6 2 1 4 1 3 7 1 5 4 1 8

6 5 1 1 8 7 2 3 4 5 6 7 8 2 3
1 7 5 8 1 6 3 4 5 6 7 8 2 4 5
5 1 8 6 6 1 7 8 2 3 4 5 6 8 2

4 5 6 7 8 2 3 4 5 6 7 8 2 3 4
6 7 8 2 3 3 4 5 6 7 8 2 5 6 8
3 4 5 6 7 5 6 7 8 2 3 4 7 8 2

5 6 7 8 2 3 4 5 6 7 8
2 3 4 5 6 7 8 2 3 4 5
3 4 5 6 8 2 3 4 5 6 7

BIBD 18 g = 8, k = 4, b = 14, r = 7,λ = 3, E = .86

1 5 1 3 1 2 1 2 1 3 1 2 1 2
2 6 2 4 3 4 4 3 2 4 3 4 4 3
3 7 7 5 6 5 6 5 5 7 5 6 5 6
4 8 8 6 8 7 7 8 6 8 7 8 8 7

BIBD 19 g = 8, k = 5, b = 56, r = 35,λ = 20, E = .91, YS

1 6 4 3 2 1 5 7 2 6 1 4 7 3 5
2 1 7 5 3 2 1 4 6 5 6 1 3 7 4
3 2 1 6 5 3 2 1 4 7 4 7 1 5 6
4 3 2 1 7 6 4 5 1 2 3 5 6 1 7
5 4 3 2 1 7 6 2 7 1 5 3 4 6 1
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2 7 6 5 4 3 8 8 8 8 8 8 8 1 2
3 2 7 6 5 4 1 2 3 4 5 6 7 8 8
4 3 2 7 6 5 2 3 4 5 6 7 1 2 3
5 4 3 2 7 6 3 4 5 6 7 1 2 3 4
6 5 4 3 2 7 4 5 6 7 1 2 3 5 6

3 4 5 6 7 1 2 3 4 5 6 7 1 3 3
8 8 8 8 8 2 3 4 5 6 7 1 2 3 4
4 5 6 7 1 8 8 8 8 8 8 8 4 5 6
5 6 7 1 2 3 4 5 6 7 1 2 8 8 8
7 1 2 3 4 6 7 1 2 3 4 5 5 6 7

4 5 6 7 1 2 3 4 5 6 7
5 6 7 1 2 3 4 5 6 7 1
7 1 2 3 4 5 6 7 1 2 3
8 8 8 8 6 7 1 2 3 4 5
1 2 3 4 8 8 8 8 8 8 8

BIBD 20 g = 8, k = 6, b = 28, r = 21,λ = 15, E = .95

Unreduced

BIBD 21 g = 8, k = 7, b = 8, r = 7,λ = 6, E = .98, YS

1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1
3 4 5 6 7 8 1 2
4 5 6 7 8 1 2 3
5 6 7 8 1 2 3 4
6 7 8 1 2 3 4 5
7 8 1 2 3 4 5 6

BIBD 22 g = 9, k = 2, b = 36, r = 8,λ = 1, E = .56, YS

1 1 1 1 6 7 8 9 3 4 5 2 2 2 2 7 8 9
2 3 4 5 1 1 1 1 2 2 2 6 7 8 9 8 7 9

3 3 3 7 8 9 5 6 4 4 4 5 5 8 9 7 6 6
4 5 6 3 3 3 4 4 7 8 9 6 7 5 5 6 8 9
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BIBD 23 g = 9, k = 3, b = 12, r = 4,λ = 1, E = .75

1 4 7 1 2 3 1 2 3 1 2 3
2 5 8 4 5 6 6 4 5 5 6 4
3 6 9 7 8 9 8 9 7 9 7 8

BIBD 24 g = 9, k = 4, b = 18, r = 8,λ = 3, E = .84, YS

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1 4 5 6 7 8 9 1 2 3
3 4 5 6 7 8 9 1 2 6 7 8 9 1 2 3 4 5
5 6 7 8 9 1 2 3 4 9 1 2 3 4 5 6 7 8

BIBD 25 g = 9, k = 5, b = 18, r = 10,λ = 5, E = .9, YS

4 5 6 7 8 9 1 2 3 2 3 4 5 6 7 8 9 1
6 7 8 9 1 2 3 4 5 3 4 5 6 7 8 9 1 2
7 8 9 1 2 3 4 5 6 5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7 7 8 9 1 2 3 4 5 6
9 1 2 3 4 5 6 7 8 8 9 1 2 3 4 5 6 7

BIBD 26 g = 9, k = 6, b = 12, r = 8,λ = 5, E = .94

4 1 1 2 1 1 2 1 1 2 1 1
5 2 2 3 3 2 3 3 2 3 3 2
6 3 3 5 4 4 4 5 4 4 4 5
7 7 4 6 6 5 5 6 6 6 5 6
8 8 5 8 7 7 7 7 8 7 8 7
9 9 6 9 9 8 9 8 9 8 9 9

BIBD 27 g = 9, k = 7, b = 36, r = 28,λ = 21, E = .96, YS

3 4 5 6 7 8 9 1 2 2 3 4 5 6 7 8 9 1
4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3
5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
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2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2
5 6 7 8 9 1 2 3 4 4 5 6 7 8 9 1 2 3
6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5
7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6
8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

BIBD 28 g = 9, k = 8, b = 9, r = 8,λ = 7, E = .98, YS

1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 1 2
4 5 6 7 8 9 1 2 3
5 6 7 8 9 1 2 3 4
6 7 8 9 1 2 3 4 5
7 8 9 1 2 3 4 5 6
8 9 1 2 3 4 5 6 7

C.3 Efficient Cyclic Designs

Using this table you can generate an incomplete block designfor g treatments
in b = mg blocks of sizek with each treatment appearingr = mk times.
The design will be the union ofm individual cyclic patterns, with thesem
patterns determined by the firstm rows of this table for a givenk. See John
and Williams (1995).

kth treatment,g =
k r Firstk − 1 treatments 6 7 8 9 10 11 12 13 14 15
2 2 1 2 2 2 2 2 2 2 2 2 2

4 1 3 4 4 4 4 4 4 6 5 5
6 1 4 3 3 3 3 6 6 3 7 3
8 1 6 5 5 5 5 3 3 5 4 8

10 1 5 6 6 6 6 5 5 4 6 6
3 3 1 2 4 4 4 4 5 5 5 5 5 5

6 1 3 2 4 8 7 8 8 6 8 8 9
9 1 2 4 4 5 6 4 4 7 5 7 6

4 4 1 2 4 3 7 8 8 7 8 8 10 8 8
8 1 2 5 3 7 8 9 3 7 7 7 7 7
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kth treatment,g =
k r Firstk − 1 treatments 6 7 8 9 10 11 12 13 14 15
5 5 1 2 3 5 6 6 8 8 8 8 8 8 10 11

10 1 3 4 5 6 6 8 9 10 9
10 1 3 4 7 8 12 13 11

6 6 1 2 3 4 7 6 6 6 6 11 11 11 11 11
7 7 1 2 3 4 5 8 6 6 10 10 10 10 10 11
8 8 1 2 3 4 5 7 9 6 10 10 10 10 12 12
9 9 1 2 3 4 5 6 8 10 9 9 9 11 11 11

10 10 1 2 3 4 5 6 7 10 11 8 8 8 13 13

C.4 Alpha Designs

Alpha Designs are resolvable block designs forg = mk treatments inb =
mr blocks of sizek. These tables give the initial alpha arrays for5 ≤ m ≤
15, block sizes from 4 up to the minimum ofm and100/m, and up to four
replications. These tables are adapted from Table 2 of Patterson, Williams,
and Hunter (1978).

m = 5 m = 6 m = 7
4 ≤ k ≤ 5 4 ≤ k ≤ 6 4 ≤ k ≤ 7

1 1 1 1 1 1 1 1 1 1 1 1
1 2 5 3 1 2 6 5 1 2 4 3
1 3 4 5 1 4 3 6 1 3 7 5
1 4 3 2 1 3 4 2 1 5 6 2
1 5 2 4 1 5 2 3 1 4 3 7

1 6 2 4 1 6 2 4
1 7 5 6

m = 8 m = 9 m = 10
4 ≤ k ≤ 8 4 ≤ k ≤ 9 4 ≤ k ≤ 10

1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 7 1 2 9 8 1 2 10 6
1 4 8 2 1 4 7 5 1 4 7 10
1 6 4 5 1 8 3 4 1 6 8 3
1 3 6 4 1 3 4 6 1 5 6 7
1 5 2 7 1 5 2 7 1 7 4 2
1 7 1 3 1 6 8 3 1 8 3 5
1 8 7 6 1 7 6 2 1 9 5 8

1 9 5 8 1 10 9 3
1 3 7 4
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m = 11 m = 12 m = 13
4 ≤ k ≤ 9 4 ≤ k ≤ 8 4 ≤ k ≤ 7

1 1 1 1 1 1 1 1 1 1 1 1
1 2 7 8 1 2 3 4 1 2 5 11
1 5 9 2 1 8 6 2 1 4 9 12
1 10 8 6 1 10 7 5 1 10 3 2
1 3 4 7 1 5 12 9 1 13 11 7
1 6 2 4 1 12 4 11 1 9 6 13
1 7 6 11 1 11 5 8 1 7 8 9
1 4 10 5 1 6 2 7
1 8 5 2

m = 14 m = 15
4 ≤ k ≤ 7 4 ≤ k ≤ 6

1 1 1 1 1 1 1 1
1 2 9 11 1 2 9 8
1 10 11 8 1 4 13 15
1 12 14 3 1 8 3 6
1 3 7 2 1 11 14 12
1 6 12 13 1 15 4 9
1 4 2 12

C.5 Two-Series Confounding and Fractioning Plans

The table gives suggested defining contrasts for confounding a 2k design
into 2p blocks. It also gives the generalized interactions that areconfounded.
When only a particular block of the design is run, the resulting 2k−p frac-
tional factorial has aliases ofI the same as the defining contrasts and their
interactions. Other fractions have the same basic aliases,though the signs
differ.

k 2p Defining contrasts Generalized interactions

3 2 ABC
4 AB, BC AC

4 2 ABCD
4 ABC, AD BCD
8 AB, BC, CD AC, AD, BD, ABCD
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k 2p Defining contrasts Generalized interactions

5 2 ABCDE
4 ABCD, BCE ADE
8 ABC, BD, AE ACD, BCE, ABDE, CDE

16 AB, BC, CD, DE AC, ABCD, BD, AD, ABDE,
BCDE, ACDE, CE, ABCE, BE, AE

6 2 ABCDEF
4 BCDE, ABDF ACEF
8 ABCD, BCE, ACF ADE, BDF, ABEF, CDEF

16 CD, ACE, BCF, ABC ADE, BDF, ABEF, ABCDEF, ABD,
BE, BCDE, AF, ACDF, CEF, DEF

32 AB, BC, CD, DE, EF All other two-factor interactions,
plus all four-factor and six-factor
interactions

7 2 ABCDEFG
4 ADEF, ABCDG BCEFG
8 BCDE, ACDF, ABCG ABEF, ADEG, BDFG, CEFG

16 ABCD, BCE, ACF,
ABG

ADE, BDF, ABEF, CDEF, CDG,
ACEG, BDEG, BCFG, ADFG,
EFG, ABCDEFG

32 ADG, ACG, ABG,
ABF, CEF

CD, BD, BC, ABCDG, BDFG,
BCFG, ABCDF, FG, ADF, ACF,
CDFG, ACDEFG, AEFG, DEF,
ABCEFG, BCDEF, BEF, ABDEFG,
ABCE, BCDEG, BEG, ABDE,
CEG, ACDE, AE, DEG

64 AB, BC, CD, DE, EF,
FG

All other two-factor interactions,
plus all four-factor and six-factor
interactions

8 2 ABCDEFGH
4 ABDFG, BCDEH ACEFGH
8 BCEG, BCDH, ACDEF DEGH, ABDFG, ABEFH, ACFGH

16 BCDE, ACDF, ABDG,
ABCH

ABEF, ACEG, BCFG, DEFG,
ADEH, BDFH, CEFH, CDGH,
BEGH, AFGH, ABCDEFGH
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k 2p Defining contrasts Generalized interactions

8 32 ABD, ACE, BCF,
ABCG, ABCH

BCDE, ACDF, ABEF, DEF, CDG,
BEG, ADEG, AFG, BDFG, CEFG,
ABCDEFG, CDH, BEH, ADEH,
AFH, BDFH, CEFH, ABCDEFH,
GH, ABDGH, ACEGH, BCDEGH,
BCFGH, ACDFGH, ABEFGH,
DEFGH

64 AG, BF, BCE, AEF,
BDG, ADH

ABFG, ABCEG, CEF, ACEFG,
EFG, ABE, BEG, ABCF, BCFG,
AC, CG, ABD, DFG, ADF, CDEG,
ACDE, BCDEFG, ABCDEF,
ABDEFG, BDEF, ADEG, DE,
ACDFG, CDF, ABCDG, BCD,
DGH, ABDFH, BDFGH, ABCDEH,
BCDEGH, ACDEFH, CDEFGH,
DEFH, ADEFGH, BDEH,
ABDEGH, BCDFH, ABCDFGH,
CDH, ACDGH, ABGH, BH, AFGH,
FH, ACEGH, CEH, ABCEFGH,
BCEFH, BEFGH, ABEFH, EGH,
AEH, CFGH, ACFH, BCGH,
ABCH
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Appendix D

Tables
Table D.1 Random digits.
Table D.2 Tail areas for the standard normal distribution.
Table D.3 Percent points for the Student’st distribution.
Table D.4 Percent points for the chi-square distribution.
Table D.5 Percent points for the F distribution.

You may use the relationF1−E,ν1,ν2
= 1/FE,ν2,ν1

to determine lower per-
cent points ofF .

Table D.6 Coefficients of orthogonal polynomial contrasts.
Table D.7 Critical values for Bonferronit.
Table D.8 Percent points for the Studentized range.
Table D.9 Critical values for Dunnett’st.
Table D.10 Power curves for fixed-effects ANOVA.

For each numerator degrees of freedom, thin and thick lines indicate power
at the .05 and .01 levels respectively. Within a significancelevel, the lines
indicate 8, 9, 10, 12, 15, 20, 30, and 60 denominator degrees of freedom (8
df on the bottom, 60 on top of each group). The vertical axis ispower, and
the horizontal axis is the noncentrality parameter

∑g
i=1 α2

i /σ
2. The curves

for the .01 level are shifted to the right by 40 units.
Table D.11 Power curves for random-effects ANOVA.

For each numerator degrees of freedom, thin and thick lines indicate power
at the .05 and .01 levels respectively. Within a significancelevel, the lines
indicate 2, 3, 4, 6, 8, 16, 32, and 256 denominator degrees of freedom (2 df
on the bottom, 256 on top of each group). The vertical axis is power, and
the horizontal axis is the ratio of the numerator and denominator EMS’s.
The curves for the .01 level are shifted to the right a factor of 10 on the
horizontal axis.

All table values were computed in MacAnova.
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Table D.1: Random digits.

68094 23539 18913 86955 39327 02225 69423 06689 99791 76722
01909 10889 72439 61293 21529 36388 14555 95914 25254 38422
81253 33731 00873 30545 50227 94749 07761 77740 19743 21724
20501 57876 10081 07431 91817 25296 52198 75278 45922 19728
30557 32116 68368 18292 37433 27636 92360 74374 00155 19623
91740 24671 12987 73192 97251 12516 38695 12790 63529 58111
08388 48988 91806 24777 61809 84551 29619 26471 87362 05818
76006 06178 10765 76938 42086 66950 90720 88483 66611 19710
72600 85770 88793 66291 41081 61031 60104 02545 86041 62345
32209 77328 41324 68614 57322 94583 07415 27313 26322 93218
38420 57120 12268 15017 44456 90919 73640 69974 61200 82209
49690 34002 11553 49387 44354 92179 79960 61804 70374 71782
85210 59681 38002 41958 90125 02819 78165 44800 17792 96272
35229 78839 46776 00944 67288 59471 23715 05753 87214 06758
78568 94584 71728 81741 38433 59390 57344 27554 90465 95245
00679 26121 29667 83237 67154 10246 33005 72851 34876 29007
15398 98457 22406 30927 90111 14065 51246 18592 85397 92122
89014 44909 62227 24503 59774 69233 29556 14126 26810 67044
84538 98456 19149 54714 36332 89999 02248 26089 77989 98072
33618 91123 84227 34110 74523 73244 27365 89167 02035 90366
48194 17487 33892 64522 69065 98755 49765 90609 57786 31991
54929 29666 72716 59146 86232 38765 33335 35127 71464 69505
13639 16775 89564 73978 73321 63868 65447 15689 37789 22178
28420 16687 25081 99131 15641 59055 11472 31110 58669 49621
57905 96871 07126 01978 06563 18504 80138 96710 51019 13183
36490 13154 96356 90278 47401 47783 14283 47107 43874 73050
15852 60522 54438 97802 18869 06219 62244 67309 21556 62034
28614 54310 58953 24393 09880 69588 34399 19114 17086 19286
92594 10130 04030 12348 62118 35368 11032 28513 38832 49642
10119 22185 14692 59461 98941 51851 82728 60066 75060 48027
27970 68214 84216 82761 54280 98276 48123 50611 11562 44945
83423 24025 55539 30343 44943 79061 54400 09157 08448 81417
91821 56637 02232 65331 24585 58902 70981 84902 30673 66372
56385 90995 94482 90187 15461 78394 38276 07567 17556 42504
45081 92518 67475 26920 36524 67476 11973 65938 74470 80782
87655 77363 79749 74171 35109 51652 32671 47315 50862 24683
77287 08196 64511 04557 45941 87701 00805 64707 43178 32760
60633 66288 95791 18232 14346 80974 50836 21944 24407 95112
03089 42195 14802 55732 92821 48338 27293 61239 70050 83121
10570 71691 04943 33707 35118 06278 28534 79418 85857 52665
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Table D.1: Random digits, continued.
30263 25135 17075 56131 64430 43573 77506 09510 65985 17159
13811 98464 48063 98483 60748 07379 89540 07699 60560 93391
80280 46665 54480 90895 94555 77376 55074 69674 22124 86546
96302 09821 31198 06423 69016 71408 48673 22035 92401 40242
34922 65539 17012 69492 97661 66351 94296 00451 99255 98999
81090 48413 74876 24165 42912 58517 51494 80415 28758 96355
67224 24891 38160 78489 73226 95368 19123 78424 47010 44371
63204 25405 51831 00562 23640 97596 73613 31668 81299 13975
39678 79440 84900 06251 93120 57470 68970 82673 88484 93689
30374 19502 99804 25596 07763 02914 05334 52321 74595 47068
06813 76019 12479 03459 51078 44527 02086 01367 26591 69118
57097 14846 92151 95357 73479 53708 04442 30282 82320 99043
09521 48055 19823 82346 38890 31327 98995 37520 73670 48277
77991 19227 65802 92645 13378 06593 52303 15173 98557 43631
47605 33709 36996 22976 78611 39221 95962 06137 72056 44395
29969 01292 47429 28477 72881 83330 57842 96953 66190 29761
26978 10916 24087 68880 42657 93404 74540 22069 56907 53591
43115 41945 85148 43539 19452 69583 88827 22232 52494 19895
51493 62141 57091 26829 61899 03433 04983 85869 31376 31307
57731 27002 19954 12314 10234 99589 59101 28150 65083 85057
37816 75263 68459 32095 15844 20352 46919 82419 59487 78779
65009 90859 76655 46234 24073 93183 85770 60190 69870 44997
89443 17030 30366 18026 64815 64790 24439 24153 75360 85068
19978 11146 54195 18001 39458 50082 47801 79655 11199 00978
69137 35105 62192 60958 32109 00787 79202 74700 27231 39559
00102 19753 27900 16409 42548 81604 16881 03009 62624 94651
86465 06647 56974 45774 38612 54604 35113 14259 08609 86134
74692 64914 61361 55581 79265 85121 94402 66705 02455 63518
25531 67924 61704 95032 48824 40759 83063 89562 74811 42721
87057 63223 84910 27744 36979 00578 63738 47473 66356 59676
22723 61335 89609 98968 78238 94353 11790 62264 78866 86637
61837 60095 22904 83603 57362 85576 24298 25868 08558 17143
07208 30664 53006 15714 92246 91157 97898 43295 26162 85001
09265 97806 06556 70909 24791 81907 92463 80405 32493 57985
60079 09778 70500 69276 16192 39024 42519 69661 59750 15740
11620 30055 59498 63231 90667 12729 99405 17906 20684 65483
20210 31650 23408 32631 87779 62148 03322 98071 41217 03952
91935 61772 67324 44921 75176 32383 21611 23145 51109 13168
15449 91085 09246 06833 93677 60567 20180 59763 01650 41798
33759 00216 03782 18185 98508 07890 02365 50624 55194 85954
59706 03210 55372 71993 55247 40554 12783 36287 19884 58491



624 Tables

Table D.2: Tail areas for the standard normal distribution.

Table entries areE = P (Z > zE ) = 1 − Φ(zE).

zE .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 .50000 .49601 .49202 .48803 .48405 .48006 .47608 .47210 .46812 .46414
.1 .46017 .45620 .45224 .44828 .44433 .44038 .43644 .43251 .42858 .42465
.2 .42074 .41683 .41294 .40905 .40517 .40129 .39743 .39358 .38974 .38591
.3 .38209 .37828 .37448 .37070 .36693 .36317 .35942 .35569 .35197 .34827
.4 .34458 .34090 .33724 .33360 .32997 .32636 .32276 .31918 .31561 .31207
.5 .30854 .30503 .30153 .29806 .29460 .29116 .28774 .28434 .28096 .27760
.6 .27425 .27093 .26763 .26435 .26109 .25785 .25463 .25143 .24825 .24510
.7 .24196 .23885 .23576 .23270 .22965 .22663 .22363 .22065 .21770 .21476
.8 .21186 .20897 .20611 .20327 .20045 .19766 .19489 .19215 .18943 .18673
.9 .18406 .18141 .17879 .17619 .17361 .17106 .16853 .16602 .16354 .16109

1.0 .15866 .15625 .15386 .15151 .14917 .14686 .14457 .14231 .14007 .13786
1.1 .13567 .13350 .13136 .12924 .12714 .12507 .12302 .12100 .11900 .11702
1.2 .11507 .11314 .11123 .10935 .10749 .10565 .10383 .10204 .10027 .09853
1.3 .09680 .09510 .09342 .09176 .09012 .08851 .08691 .08534 .08379 .08226
1.4 .08076 .07927 .07780 .07636 .07493 .07353 .07215 .07078 .06944 .06811
1.5 .06681 .06552 .06426 .06301 .06178 .06057 .05938 .05821 .05705 .05592
1.6 .05480 .05370 .05262 .05155 .05050 .04947 .04846 .04746 .04648 .04551
1.7 .04457 .04363 .04272 .04182 .04093 .04006 .03920 .03836 .03754 .03673
1.8 .03593 .03515 .03438 .03362 .03288 .03216 .03144 .03074 .03005 .02938
1.9 .02872 .02807 .02743 .02680 .02619 .02559 .02500 .02442 .02385 .02330
2.0 .02275 .02222 .02169 .02118 .02068 .02018 .01970 .01923 .01876 .01831
2.1 .01786 .01743 .01700 .01659 .01618 .01578 .01539 .01500 .01463 .01426
2.2 .01390 .01355 .01321 .01287 .01255 .01222 .01191 .01160 .01130 .01101
2.3 .01072 .01044 .01017 .00990 .00964 .00939 .00914 .00889 .00866 .00842
2.4 .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639
2.5 .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
2.6 .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264
2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139
3.0 .00135 .00131 .00126 .00122 .00118 .00114 .00111 .00107 .00104 .00100
3.1 .00097 .00094 .00090 .00087 .00084 .00082 .00079 .00076 .00074 .00071
3.2 .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 .00052 .00050
3.3 .00048 .00047 .00045 .00043 .00042 .00040 .00039 .00038 .00036 .00035
3.4 .00034 .00032 .00031 .00030 .00029 .00028 .00027 .00026 .00025 .00024
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Table D.3: Percent points for the Studentt distribution.

Table entries aretE,ν wherePν(t > tE,ν) = E .

E
ν .2 .1 .05 .025 .01 .005 .001 .0005 .0001

1 1.376 3.078 6.314 12.71 31.82 63.66 318.3 636.6 3183
2 1.061 1.886 2.920 4.303 6.965 9.925 22.33 31.60 70.70
3 .978 1.638 2.353 3.182 4.541 5.841 10.22 12.92 22.20
4 .941 1.533 2.132 2.776 3.747 4.604 7.173 8.610 13.03
5 .920 1.476 2.015 2.571 3.365 4.032 5.893 6.869 9.678
6 .906 1.440 1.943 2.447 3.143 3.707 5.208 5.959 8.025
7 .896 1.415 1.895 2.365 2.998 3.499 4.785 5.408 7.063
8 .889 1.397 1.860 2.306 2.896 3.355 4.501 5.041 6.442
9 .883 1.383 1.833 2.262 2.821 3.250 4.297 4.781 6.010

10 .879 1.372 1.812 2.228 2.764 3.169 4.144 4.587 5.694
11 .876 1.363 1.796 2.201 2.718 3.106 4.025 4.437 5.453
12 .873 1.356 1.782 2.179 2.681 3.055 3.930 4.318 5.263
13 .870 1.350 1.771 2.160 2.650 3.012 3.852 4.221 5.111
14 .868 1.345 1.761 2.145 2.624 2.977 3.787 4.140 4.985
15 .866 1.341 1.753 2.131 2.602 2.947 3.733 4.073 4.880
16 .865 1.337 1.746 2.120 2.583 2.921 3.686 4.015 4.791
17 .863 1.333 1.740 2.110 2.567 2.898 3.646 3.965 4.714
18 .862 1.330 1.734 2.101 2.552 2.878 3.610 3.922 4.648
19 .861 1.328 1.729 2.093 2.539 2.861 3.579 3.883 4.590
20 .860 1.325 1.725 2.086 2.528 2.845 3.552 3.850 4.539
21 .859 1.323 1.721 2.080 2.518 2.831 3.527 3.819 4.493
22 .858 1.321 1.717 2.074 2.508 2.819 3.505 3.792 4.452
23 .858 1.319 1.714 2.069 2.500 2.807 3.485 3.768 4.415
24 .857 1.318 1.711 2.064 2.492 2.797 3.467 3.745 4.382
25 .856 1.316 1.708 2.060 2.485 2.787 3.450 3.725 4.352
26 .856 1.315 1.706 2.056 2.479 2.779 3.435 3.707 4.324
27 .855 1.314 1.703 2.052 2.473 2.771 3.421 3.690 4.299
28 .855 1.313 1.701 2.048 2.467 2.763 3.408 3.674 4.275
29 .854 1.311 1.699 2.045 2.462 2.756 3.396 3.659 4.254
30 .854 1.310 1.697 2.042 2.457 2.750 3.385 3.646 4.234
35 .852 1.306 1.690 2.030 2.438 2.724 3.340 3.591 4.153
40 .851 1.303 1.684 2.021 2.423 2.704 3.307 3.551 4.094
45 .850 1.301 1.679 2.014 2.412 2.690 3.281 3.520 4.049
50 .849 1.299 1.676 2.009 2.403 2.678 3.261 3.496 4.014
60 .848 1.296 1.671 2.000 2.390 2.660 3.232 3.460 3.962
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Table D.4: Percent points for the chi-square distribution.

Table entries areχ2
E,ν wherePν(χ2 > χ2

E,ν) = E .

E
ν .995 .99 .975 .95 .05 .025 .01 .005

1 .000039 .00016 .0010 .0039 3.841 5.024 6.635 7.879
2 .0100 .0201 .0506 .1026 5.991 7.378 9.210 10.60
3 .0717 .1148 .2158 .3518 7.815 9.348 11.34 12.84
4 .2070 .2971 .4844 .7107 9.488 11.14 13.28 14.86
5 .4117 .5543 .8312 1.145 11.07 12.83 15.09 16.75
6 .6757 .8721 1.237 1.635 12.59 14.45 16.81 18.55
7 .9893 1.239 1.690 2.167 14.07 16.01 18.48 20.28
8 1.344 1.646 2.180 2.733 15.51 17.53 20.09 21.95
9 1.735 2.088 2.700 3.325 16.92 19.02 21.67 23.59

10 2.156 2.558 3.247 3.940 18.31 20.48 23.21 25.19
11 2.603 3.053 3.816 4.575 19.68 21.92 24.72 26.76
12 3.074 3.571 4.404 5.226 21.03 23.34 26.22 28.30
13 3.565 4.107 5.009 5.892 22.36 24.74 27.69 29.82
14 4.075 4.660 5.629 6.571 23.68 26.12 29.14 31.32
15 4.601 5.229 6.262 7.261 25.00 27.49 30.58 32.80
16 5.142 5.812 6.908 7.962 26.30 28.85 32.00 34.27
17 5.697 6.408 7.564 8.672 27.59 30.19 33.41 35.72
18 6.265 7.015 8.231 9.390 28.87 31.53 34.81 37.16
19 6.844 7.633 8.907 10.12 30.14 32.85 36.19 38.58
20 7.434 8.260 9.591 10.85 31.41 34.17 37.57 40.00
21 8.034 8.897 10.28 11.59 32.67 35.48 38.93 41.40
22 8.643 9.542 10.98 12.34 33.92 36.78 40.29 42.80
23 9.260 10.20 11.69 13.09 35.17 38.08 41.64 44.18
24 9.886 10.86 12.40 13.85 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 40.11 43.19 46.96 49.64
28 12.46 13.56 15.31 16.93 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 43.77 46.98 50.89 53.67
35 17.19 18.51 20.57 22.47 49.80 53.20 57.34 60.27
40 20.71 22.16 24.43 26.51 55.76 59.34 63.69 66.77
45 24.31 25.90 28.37 30.61 61.66 65.41 69.96 73.17
50 27.99 29.71 32.36 34.76 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 79.08 83.30 88.38 91.95
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Table D.5: Percent points for the F distribution.

Table entries areF.05,ν1,ν2
wherePν1,ν2

(F > F.05,ν1,ν2
) = .05 .

ν1

ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.63 8.62 8.59
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.52 4.50 4.46
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.83 3.81 3.77
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.40 3.38 3.34
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.11 3.08 3.04
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.89 2.86 2.83

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.73 2.70 2.66
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.60 2.57 2.53
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.50 2.47 2.43
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.41 2.38 2.34
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.34 2.31 2.27
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.28 2.25 2.20
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.23 2.19 2.15
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.18 2.15 2.10
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.14 2.11 2.06
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.07 2.04 1.99
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.02 1.98 1.94
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.00 1.96 1.91
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.97 1.94 1.89
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.88 1.84 1.79
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.78 1.74 1.69
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.73 1.69 1.63
75 3.97 3.12 2.73 2.49 2.34 2.22 2.13 2.06 2.01 1.96 1.88 1.80 1.71 1.65 1.61 1.55

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.85 1.77 1.68 1.62 1.57 1.52
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.80 1.72 1.62 1.56 1.52 1.46
∞ 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.51 1.46 1.40
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Table D.5: Percent points for the F distribution, continued.

Table entries areF.01,ν1,ν2
wherePν1,ν2

(F > F.01,ν1,ν2
) = .01 .

ν1

ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.8 13.7
5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.45 9.38 9.29
6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.30 7.23 7.14
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.06 5.99 5.91
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.26 5.20 5.12
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.71 4.65 4.57

10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.31 4.25 4.17
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.01 3.94 3.86
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.76 3.70 3.62
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.57 3.51 3.43
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.41 3.35 3.27
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.28 3.21 3.13
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.16 3.10 3.02
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.07 3.00 2.92
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 2.98 2.92 2.84
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.91 2.84 2.76
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.84 2.78 2.69
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.79 2.72 2.64
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.73 2.67 2.58
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.69 2.62 2.54
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.64 2.58 2.49
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.60 2.54 2.45
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.45 2.39 2.30
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.27 2.20 2.11
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.27 2.17 2.10 2.01
75 6.99 4.90 4.05 3.58 3.27 3.05 2.89 2.76 2.65 2.57 2.43 2.29 2.13 2.03 1.96 1.87

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.37 2.22 2.07 1.97 1.89 1.80
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.27 2.13 1.97 1.87 1.79 1.69
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.77 1.70 1.59
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Table D.5: Percent points for the F distribution, continued.

Table entries areF.001,ν1,ν2
wherePν1,ν2

(F > F.001,ν1,ν2
) = .001 .

ν1

ν2 1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40

2 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999
3 167 149 141 137 135 133 132 131 130 129 128 127 126 126 125 125
4 74.1 61.2 56.2 53.4 51.7 50.5 49.7 49.0 48.5 48.1 47.4 46.8 46.1 45.7 45.4 45.1
5 47.2 37.1 33.2 31.1 29.8 28.8 28.2 27.6 27.2 26.9 26.4 25.9 25.4 25.1 24.9 24.6
6 35.5 27.0 23.7 21.9 20.8 20.0 19.5 19.0 18.7 18.4 18.0 17.6 17.1 16.9 16.7 16.4
7 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3 14.1 13.7 13.3 12.9 12.7 12.5 12.3
8 25.4 18.5 15.8 14.4 13.5 12.9 12.4 12.0 11.8 11.5 11.2 10.8 10.5 10.3 10.1 9.92
9 22.9 16.4 13.9 12.6 11.7 11.1 10.7 10.4 10.1 9.89 9.57 9.24 8.90 8.69 8.55 8.37

10 21.0 14.9 12.6 11.3 10.5 9.93 9.52 9.20 8.96 8.75 8.45 8.13 7.80 7.60 7.47 7.30
11 19.7 13.8 11.6 10.3 9.58 9.05 8.66 8.35 8.12 7.92 7.63 7.32 7.01 6.81 6.68 6.52
12 18.6 13.0 10.8 9.63 8.89 8.38 8.00 7.71 7.48 7.29 7.00 6.71 6.40 6.22 6.09 5.93
13 17.8 12.3 10.2 9.07 8.35 7.86 7.49 7.21 6.98 6.80 6.52 6.23 5.93 5.75 5.63 5.47
14 17.1 11.8 9.73 8.62 7.92 7.44 7.08 6.80 6.58 6.40 6.13 5.85 5.56 5.38 5.25 5.10
15 16.6 11.3 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.81 5.54 5.25 5.07 4.95 4.80
16 16.1 11.0 9.01 7.94 7.27 6.80 6.46 6.19 5.98 5.81 5.55 5.27 4.99 4.82 4.70 4.54
17 15.7 10.7 8.73 7.68 7.02 6.56 6.22 5.96 5.75 5.58 5.32 5.05 4.78 4.60 4.48 4.33
18 15.4 10.4 8.49 7.46 6.81 6.35 6.02 5.76 5.56 5.39 5.13 4.87 4.59 4.42 4.30 4.15
19 15.1 10.2 8.28 7.27 6.62 6.18 5.85 5.59 5.39 5.22 4.97 4.70 4.43 4.26 4.14 3.99
20 14.8 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.82 4.56 4.29 4.12 4.00 3.86
21 14.6 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11 4.95 4.70 4.44 4.17 4.00 3.88 3.74
22 14.4 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99 4.83 4.58 4.33 4.06 3.89 3.78 3.63
23 14.2 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89 4.73 4.48 4.23 3.96 3.79 3.68 3.53
24 14.0 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 4.64 4.39 4.14 3.87 3.71 3.59 3.45
25 13.9 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71 4.56 4.31 4.06 3.79 3.63 3.52 3.37
30 13.3 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 4.00 3.75 3.49 3.33 3.22 3.07
40 12.6 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02 3.87 3.64 3.40 3.14 2.98 2.87 2.73
50 12.2 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82 3.67 3.44 3.20 2.95 2.79 2.68 2.53
75 11.7 7.58 6.01 5.16 4.62 4.24 3.96 3.74 3.56 3.42 3.19 2.96 2.71 2.55 2.44 2.29

100 11.5 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44 3.30 3.07 2.84 2.59 2.43 2.32 2.17
200 11.2 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26 3.12 2.90 2.67 2.42 2.26 2.15 2.00
∞ 10.8 6.91 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96 2.74 2.51 2.27 2.10 1.99 1.84
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Table D.6: Coefficients of orthogonal polynomial contrasts.

Coefficients
g Order 1 2 3 4 5 6 7

3 1 -1 0 1
2 1 -2 1

4 1 -3 -1 1 3
2 1 -1 -1 1
3 -1 3 -3 1

5 1 -2 -1 0 1 2
2 2 -1 -2 -1 2
3 -1 2 0 -2 1
4 1 -4 6 -4 1

6 1 -5 -3 -1 1 3 5
2 5 -1 -4 -4 -1 5
3 -5 7 4 -4 -7 5
4 1 -3 2 2 -3 1
5 -1 5 -10 10 -5 1

7 1 -3 -2 -1 0 1 2 3
2 5 0 -3 -4 -3 0 5
3 -1 1 1 0 -1 -1 1
4 3 -7 1 6 1 -7 3
5 -1 4 -5 0 5 -4 1
6 1 -6 15 -20 15 -6 1
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Table D.7: Critical values for the two-sided Bonferronit statistic.

Table entries aretE,ν wherePν(t > tE,ν) = E andE = .05/2/K .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 50

1 25.5 38.2 50.9 63.7 76.4 89.1 102 115 127 191 255 382 637
2 6.21 7.65 8.86 9.92 10.9 11.8 12.6 13.4 14.1 17.3 20.0 24.5 31.6
3 4.18 4.86 5.39 5.84 6.23 6.58 6.90 7.18 7.45 8.58 9.46 10.9 12.9
4 3.50 3.96 4.31 4.60 4.85 5.07 5.26 5.44 5.60 6.25 6.76 7.53 8.61
5 3.16 3.53 3.81 4.03 4.22 4.38 4.53 4.66 4.77 5.25 5.60 6.14 6.87
6 2.97 3.29 3.52 3.71 3.86 4.00 4.12 4.22 4.32 4.70 4.98 5.40 5.96
7 2.84 3.13 3.34 3.50 3.64 3.75 3.86 3.95 4.03 4.36 4.59 4.94 5.41
8 2.75 3.02 3.21 3.36 3.48 3.58 3.68 3.76 3.83 4.12 4.33 4.64 5.04
9 2.69 2.93 3.11 3.25 3.36 3.46 3.55 3.62 3.69 3.95 4.15 4.42 4.78

10 2.63 2.87 3.04 3.17 3.28 3.37 3.45 3.52 3.58 3.83 4.00 4.26 4.59
11 2.59 2.82 2.98 3.11 3.21 3.29 3.37 3.44 3.50 3.73 3.89 4.13 4.44
12 2.56 2.78 2.93 3.05 3.15 3.24 3.31 3.37 3.43 3.65 3.81 4.03 4.32
13 2.53 2.75 2.90 3.01 3.11 3.19 3.26 3.32 3.37 3.58 3.73 3.95 4.22
14 2.51 2.72 2.86 2.98 3.07 3.15 3.21 3.27 3.33 3.53 3.67 3.88 4.14
15 2.49 2.69 2.84 2.95 3.04 3.11 3.18 3.23 3.29 3.48 3.62 3.82 4.07
16 2.47 2.67 2.81 2.92 3.01 3.08 3.15 3.20 3.25 3.44 3.58 3.77 4.01
17 2.46 2.65 2.79 2.90 2.98 3.06 3.12 3.17 3.22 3.41 3.54 3.73 3.97
18 2.45 2.64 2.77 2.88 2.96 3.03 3.09 3.15 3.20 3.38 3.51 3.69 3.92
19 2.43 2.63 2.76 2.86 2.94 3.01 3.07 3.13 3.17 3.35 3.48 3.66 3.88
20 2.42 2.61 2.74 2.85 2.93 3.00 3.06 3.11 3.15 3.33 3.46 3.63 3.85
21 2.41 2.60 2.73 2.83 2.91 2.98 3.04 3.09 3.14 3.31 3.43 3.60 3.82
22 2.41 2.59 2.72 2.82 2.90 2.97 3.02 3.07 3.12 3.29 3.41 3.58 3.79
23 2.40 2.58 2.71 2.81 2.89 2.95 3.01 3.06 3.10 3.27 3.39 3.56 3.77
24 2.39 2.57 2.70 2.80 2.88 2.94 3.00 3.05 3.09 3.26 3.38 3.54 3.75
25 2.38 2.57 2.69 2.79 2.86 2.93 2.99 3.03 3.08 3.24 3.36 3.52 3.73
26 2.38 2.56 2.68 2.78 2.86 2.92 2.98 3.02 3.07 3.23 3.35 3.51 3.71
27 2.37 2.55 2.68 2.77 2.85 2.91 2.97 3.01 3.06 3.22 3.33 3.49 3.69
28 2.37 2.55 2.67 2.76 2.84 2.90 2.96 3.00 3.05 3.21 3.32 3.48 3.67
29 2.36 2.54 2.66 2.76 2.83 2.89 2.95 3.00 3.04 3.20 3.31 3.47 3.66
30 2.36 2.54 2.66 2.75 2.82 2.89 2.94 2.99 3.03 3.19 3.30 3.45 3.65
35 2.34 2.51 2.63 2.72 2.80 2.86 2.91 2.96 3.00 3.15 3.26 3.41 3.59
40 2.33 2.50 2.62 2.70 2.78 2.84 2.89 2.93 2.97 3.12 3.23 3.37 3.55
45 2.32 2.49 2.60 2.69 2.76 2.82 2.87 2.91 2.95 3.10 3.20 3.35 3.52
50 2.31 2.48 2.59 2.68 2.75 2.81 2.85 2.90 2.94 3.08 3.18 3.32 3.50

100 2.28 2.43 2.54 2.63 2.69 2.75 2.79 2.83 2.87 3.01 3.10 3.233.39
∞ 2.24 2.39 2.50 2.58 2.64 2.69 2.73 2.77 2.81 2.94 3.02 3.14 3.29
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Table D.7: Critical values for the two-sided Bonferroni t statistic, continued.

Table entries aretE,ν wherePν(t > tE,ν) = E andE = .01/2/K .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 50

1 127 191 255 318 382 446 509 573 637 955 1273 1910 3183
2 14.1 17.3 20.0 22.3 24.5 26.4 28.3 30.0 31.6 38.7 44.7 54.8 70.7
3 7.45 8.58 9.46 10.2 10.9 11.5 12.0 12.5 12.9 14.8 16.3 18.7 22.2
4 5.60 6.25 6.76 7.17 7.53 7.84 8.12 8.38 8.61 9.57 10.3 11.4 13.0
5 4.77 5.25 5.60 5.89 6.14 6.35 6.54 6.71 6.87 7.50 7.98 8.69 9.68
6 4.32 4.70 4.98 5.21 5.40 5.56 5.71 5.84 5.96 6.43 6.79 7.31 8.02
7 4.03 4.36 4.59 4.79 4.94 5.08 5.20 5.31 5.41 5.80 6.08 6.50 7.06
8 3.83 4.12 4.33 4.50 4.64 4.76 4.86 4.96 5.04 5.37 5.62 5.97 6.44
9 3.69 3.95 4.15 4.30 4.42 4.53 4.62 4.71 4.78 5.08 5.29 5.60 6.01

10 3.58 3.83 4.00 4.14 4.26 4.36 4.44 4.52 4.59 4.85 5.05 5.33 5.69
11 3.50 3.73 3.89 4.02 4.13 4.22 4.30 4.37 4.44 4.68 4.86 5.12 5.45
12 3.43 3.65 3.81 3.93 4.03 4.12 4.19 4.26 4.32 4.55 4.72 4.96 5.26
13 3.37 3.58 3.73 3.85 3.95 4.03 4.10 4.16 4.22 4.44 4.60 4.82 5.11
14 3.33 3.53 3.67 3.79 3.88 3.96 4.03 4.09 4.14 4.35 4.50 4.71 4.99
15 3.29 3.48 3.62 3.73 3.82 3.90 3.96 4.02 4.07 4.27 4.42 4.62 4.88
16 3.25 3.44 3.58 3.69 3.77 3.85 3.91 3.96 4.01 4.21 4.35 4.54 4.79
17 3.22 3.41 3.54 3.65 3.73 3.80 3.86 3.92 3.97 4.15 4.29 4.47 4.71
18 3.20 3.38 3.51 3.61 3.69 3.76 3.82 3.87 3.92 4.10 4.23 4.42 4.65
19 3.17 3.35 3.48 3.58 3.66 3.73 3.79 3.84 3.88 4.06 4.19 4.36 4.59
20 3.15 3.33 3.46 3.55 3.63 3.70 3.75 3.80 3.85 4.02 4.15 4.32 4.54
21 3.14 3.31 3.43 3.53 3.60 3.67 3.73 3.78 3.82 3.99 4.11 4.28 4.49
22 3.12 3.29 3.41 3.50 3.58 3.64 3.70 3.75 3.79 3.96 4.08 4.24 4.45
23 3.10 3.27 3.39 3.48 3.56 3.62 3.68 3.72 3.77 3.93 4.05 4.21 4.42
24 3.09 3.26 3.38 3.47 3.54 3.60 3.66 3.70 3.75 3.91 4.02 4.18 4.38
25 3.08 3.24 3.36 3.45 3.52 3.58 3.64 3.68 3.73 3.88 4.00 4.15 4.35
26 3.07 3.23 3.35 3.43 3.51 3.57 3.62 3.67 3.71 3.86 3.97 4.13 4.32
27 3.06 3.22 3.33 3.42 3.49 3.55 3.60 3.65 3.69 3.84 3.95 4.11 4.30
28 3.05 3.21 3.32 3.41 3.48 3.54 3.59 3.63 3.67 3.83 3.94 4.09 4.28
29 3.04 3.20 3.31 3.40 3.47 3.52 3.58 3.62 3.66 3.81 3.92 4.07 4.25
30 3.03 3.19 3.30 3.39 3.45 3.51 3.56 3.61 3.65 3.80 3.90 4.05 4.23
35 3.00 3.15 3.26 3.34 3.41 3.46 3.51 3.55 3.59 3.74 3.84 3.98 4.15
40 2.97 3.12 3.23 3.31 3.37 3.43 3.47 3.51 3.55 3.69 3.79 3.92 4.09
45 2.95 3.10 3.20 3.28 3.35 3.40 3.44 3.48 3.52 3.66 3.75 3.88 4.05
50 2.94 3.08 3.18 3.26 3.32 3.38 3.42 3.46 3.50 3.63 3.72 3.85 4.01

100 2.87 3.01 3.1 3.17 3.23 3.28 3.32 3.36 3.39 3.51 3.60 3.72 3.86
∞ 2.81 2.94 3.02 3.09 3.14 3.19 3.23 3.26 3.29 3.40 3.48 3.59 3.72
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Table D.8: Percent points for the Studentized range.

Table entries areq.05(K, ν).

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 50

1 18.0 27.0 32.8 37.1 40.4 43.1 45.4 47.4 49.1 55.4 59.6 65.1 71.7
2 6.09 8.33 9.80 10.9 11.7 12.4 13.0 13.5 14.0 15.7 16.8 18.3 20.0
3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 10.5 11.2 12.2 13.4
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.66 9.23 10.0 10.9
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.72 8.21 8.87 9.67
6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 7.14 7.59 8.19 8.91
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.76 7.17 7.73 8.40
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.48 6.87 7.40 8.03
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 6.28 6.64 7.14 7.75

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 6.11 6.47 6.95 7.53
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.98 6.33 6.79 7.35
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.88 6.21 6.66 7.21
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.79 6.11 6.55 7.08
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.71 6.03 6.46 6.98
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.65 5.96 6.38 6.89
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.59 5.90 6.31 6.81
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.54 5.84 6.25 6.74
18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.50 5.79 6.20 6.68
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.46 5.75 6.15 6.63
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.43 5.71 6.10 6.58
21 2.94 3.56 3.94 4.21 4.42 4.60 4.74 4.87 4.98 5.40 5.68 6.07 6.53
22 2.93 3.55 3.93 4.20 4.41 4.58 4.72 4.85 4.96 5.37 5.65 6.03 6.49
23 2.93 3.54 3.91 4.18 4.39 4.56 4.70 4.83 4.94 5.34 5.62 6.00 6.45
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.32 5.59 5.97 6.42
25 2.91 3.52 3.89 4.15 4.36 4.53 4.67 4.79 4.90 5.30 5.57 5.94 6.39
26 2.91 3.51 3.88 4.14 4.35 4.51 4.65 4.77 4.88 5.28 5.55 5.92 6.36
27 2.90 3.51 3.87 4.13 4.33 4.50 4.64 4.76 4.86 5.26 5.53 5.89 6.34
28 2.90 3.50 3.86 4.12 4.32 4.49 4.62 4.74 4.85 5.24 5.51 5.87 6.31
29 2.89 3.49 3.85 4.11 4.31 4.47 4.61 4.73 4.84 5.23 5.49 5.85 6.29
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 5.21 5.47 5.83 6.27
35 2.87 3.46 3.81 4.07 4.26 4.42 4.56 4.67 4.77 5.15 5.41 5.76 6.18
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 5.11 5.36 5.70 6.11
45 2.85 3.43 3.77 4.02 4.21 4.36 4.49 4.61 4.70 5.07 5.32 5.66 6.06
50 2.84 3.42 3.76 4.00 4.19 4.34 4.47 4.58 4.68 5.04 5.29 5.62 6.02

100 2.81 3.36 3.70 3.93 4.11 4.26 4.38 4.48 4.58 4.92 5.15 5.465.83
∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.80 5.01 5.30 5.65



634 Tables

Table D.8: Percent points for the Studentized range, continued.

Table entries areq.01(K, ν).

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 50

1 90.2 135 164 186 202 216 227 237 246 277 298 326 359
2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 35.4 38.0 41.3 45.3
3 8.27 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 18.5 19.8 21.4 23.4
4 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 13.5 14.4 15.6 17.0
5 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.2 11.2 11.9 12.9 14.0
6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.95 10.5 11.3 12.3
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 9.12 9.65 10.4 11.2
8 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.55 9.03 9.68 10.5
9 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 8.13 8.57 9.18 9.91

10 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.81 8.23 8.79 9.49
11 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.56 7.95 8.49 9.15
12 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 7.36 7.73 8.25 8.87
13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 7.19 7.55 8.04 8.65
14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 7.05 7.39 7.87 8.46
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.93 7.26 7.73 8.29
16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.82 7.15 7.60 8.15
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.73 7.05 7.49 8.03
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.65 6.97 7.40 7.92
19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.58 6.89 7.31 7.83
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.52 6.82 7.24 7.74
21 4.00 4.61 4.99 5.26 5.47 5.65 5.79 5.92 6.04 6.47 6.76 7.17 7.67
22 3.99 4.59 4.96 5.22 5.43 5.61 5.75 5.88 5.99 6.42 6.71 7.11 7.60
23 3.97 4.57 4.93 5.20 5.40 5.57 5.72 5.84 5.95 6.37 6.66 7.05 7.53
24 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.33 6.61 7.00 7.48
25 3.94 4.53 4.89 5.14 5.35 5.51 5.65 5.78 5.89 6.29 6.57 6.95 7.42
26 3.93 4.51 4.87 5.12 5.32 5.49 5.63 5.75 5.86 6.26 6.53 6.91 7.37
27 3.92 4.49 4.85 5.10 5.30 5.46 5.60 5.72 5.83 6.22 6.50 6.87 7.33
28 3.91 4.48 4.83 5.08 5.28 5.44 5.58 5.70 5.80 6.20 6.47 6.84 7.29
29 3.90 4.47 4.81 5.06 5.26 5.42 5.56 5.67 5.78 6.17 6.44 6.80 7.25
30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 6.14 6.41 6.77 7.21
35 3.85 4.40 4.74 4.98 5.17 5.32 5.45 5.57 5.67 6.04 6.29 6.64 7.07
40 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.96 6.21 6.55 6.96
45 3.80 4.34 4.66 4.89 5.07 5.22 5.34 5.45 5.55 5.90 6.14 6.47 6.88
50 3.79 4.32 4.63 4.86 5.04 5.19 5.31 5.41 5.51 5.85 6.09 6.42 6.81

100 3.71 4.22 4.52 4.73 4.90 5.03 5.14 5.24 5.33 5.65 5.86 6.166.51
∞ 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.45 5.65 5.91 6.23



Tables 635

Table D.9: Critical values for one-sided Dunnett’st.

Entries ared′.05(K, ν) whereP (maxK
j=1 t0j > d′.05(K, ν)) = .05 .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 40
1 9.51 11.6 13.1 14.3 15.2 16.0 16.7 17.3 17.9 19.9 21.3 23.2 24.5
2 3.80 4.34 4.71 5.00 5.24 5.43 5.60 5.75 5.88 6.38 6.72 7.18 7.50
3 2.94 3.28 3.52 3.70 3.85 3.97 4.08 4.17 4.25 4.56 4.78 5.07 5.27
4 2.61 2.88 3.08 3.22 3.34 3.44 3.52 3.59 3.66 3.90 4.07 4.30 4.46
5 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30 3.36 3.57 3.71 3.92 4.05
6 2.34 2.56 2.71 2.83 2.92 3.00 3.06 3.12 3.17 3.37 3.50 3.68 3.81
7 2.27 2.48 2.62 2.73 2.81 2.89 2.95 3.00 3.05 3.23 3.36 3.53 3.64
8 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92 2.96 3.14 3.25 3.41 3.52
9 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86 2.90 3.06 3.18 3.33 3.44

10 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81 2.85 3.01 3.12 3.27 3.37
11 2.13 2.31 2.43 2.53 2.60 2.67 2.72 2.77 2.81 2.96 3.07 3.21 3.31
12 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74 2.78 2.93 3.03 3.17 3.27
13 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71 2.75 2.90 3.00 3.14 3.23
14 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69 2.73 2.87 2.97 3.11 3.20
15 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67 2.71 2.85 2.95 3.08 3.17
16 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65 2.69 2.83 2.93 3.06 3.15
17 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64 2.67 2.81 2.91 3.04 3.13
18 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62 2.66 2.80 2.89 3.02 3.11
19 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61 2.65 2.79 2.88 3.01 3.10
20 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60 2.64 2.77 2.87 2.99 3.08
21 2.02 2.19 2.30 2.38 2.45 2.50 2.55 2.59 2.63 2.76 2.86 2.98 3.07
22 2.02 2.18 2.29 2.37 2.44 2.50 2.54 2.58 2.62 2.75 2.85 2.97 3.06
23 2.01 2.17 2.28 2.37 2.43 2.49 2.54 2.58 2.61 2.75 2.84 2.96 3.05
24 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57 2.60 2.74 2.83 2.95 3.04
25 2.00 2.17 2.27 2.36 2.42 2.48 2.52 2.56 2.60 2.73 2.82 2.94 3.03
26 2.00 2.16 2.27 2.35 2.42 2.47 2.52 2.56 2.59 2.72 2.81 2.94 3.02
27 2.00 2.16 2.27 2.35 2.41 2.47 2.51 2.55 2.59 2.72 2.81 2.93 3.01
28 1.99 2.15 2.26 2.34 2.41 2.46 2.51 2.55 2.58 2.71 2.80 2.92 3.01
29 1.99 2.15 2.26 2.34 2.40 2.46 2.50 2.54 2.58 2.71 2.80 2.92 3.00
30 1.99 2.15 2.25 2.34 2.40 2.45 2.50 2.54 2.57 2.70 2.79 2.91 2.99
35 1.98 2.13 2.24 2.32 2.38 2.44 2.48 2.52 2.55 2.68 2.77 2.89 2.97
40 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51 2.54 2.67 2.75 2.87 2.95
45 1.96 2.12 2.22 2.30 2.36 2.41 2.46 2.50 2.53 2.66 2.74 2.86 2.94
50 1.96 2.11 2.22 2.29 2.36 2.41 2.45 2.49 2.52 2.65 2.73 2.85 2.93

100 1.94 2.09 2.19 2.26 2.32 2.37 2.42 2.45 2.48 2.61 2.69 2.802.88
∞ 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42 2.45 2.57 2.65 2.75 2.83



636 Tables

Table D.9: Critical values for one-sided Dunnett’st, continued.

Entries ared′.01(K, ν) whereP (maxK
j=1 t0j > d′.01(K, ν)) = .01 .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 40

1 47.7 58.1 65.6 71.5 76.3 80.3 83.8 86.8 89.5 99.6 107 116 122
2 8.88 10.0 10.9 11.5 12.0 12.5 12.8 13.2 13.5 14.6 15.3 16.4 17.1
3 5.48 6.04 6.44 6.74 6.99 7.20 7.38 7.54 7.67 8.20 8.56 9.06 9.41
4 4.41 4.80 5.07 5.28 5.45 5.59 5.72 5.82 5.92 6.28 6.53 6.87 7.11
5 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03 5.11 5.39 5.59 5.87 6.06
6 3.61 3.88 4.06 4.21 4.32 4.42 4.51 4.58 4.64 4.89 5.06 5.30 5.46
7 3.42 3.66 3.83 3.96 4.06 4.15 4.22 4.29 4.35 4.57 4.72 4.93 5.08
8 3.29 3.51 3.66 3.78 3.88 3.96 4.03 4.09 4.14 4.35 4.49 4.68 4.81
9 3.19 3.40 3.54 3.66 3.75 3.82 3.89 3.94 3.99 4.18 4.31 4.49 4.62

10 3.11 3.31 3.45 3.56 3.64 3.72 3.78 3.83 3.88 4.06 4.18 4.35 4.47
11 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74 3.79 3.96 4.08 4.24 4.35
12 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67 3.71 3.88 3.99 4.15 4.26
13 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61 3.65 3.81 3.92 4.08 4.18
14 2.94 3.11 3.23 3.33 3.40 3.46 3.52 3.56 3.60 3.76 3.87 4.01 4.12
15 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52 3.56 3.71 3.82 3.96 4.06
16 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48 3.52 3.67 3.78 3.92 4.01
17 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45 3.49 3.64 3.74 3.88 3.97
18 2.84 3.01 3.12 3.21 3.28 3.33 3.38 3.43 3.46 3.61 3.71 3.84 3.94
19 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40 3.44 3.58 3.68 3.81 3.90
20 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38 3.42 3.56 3.65 3.78 3.88
21 2.80 2.96 3.07 3.15 3.22 3.27 3.32 3.36 3.40 3.53 3.63 3.76 3.85
22 2.79 2.94 3.05 3.13 3.20 3.25 3.30 3.34 3.38 3.51 3.61 3.74 3.83
23 2.78 2.93 3.04 3.12 3.18 3.24 3.28 3.33 3.36 3.50 3.59 3.72 3.81
24 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31 3.35 3.48 3.57 3.70 3.79
25 2.76 2.91 3.02 3.10 3.16 3.21 3.26 3.30 3.33 3.47 3.56 3.68 3.77
26 2.75 2.90 3.01 3.08 3.15 3.20 3.25 3.29 3.32 3.45 3.54 3.67 3.75
27 2.74 2.89 3.00 3.07 3.14 3.19 3.24 3.27 3.31 3.44 3.53 3.65 3.74
28 2.74 2.88 2.99 3.07 3.13 3.18 3.22 3.26 3.30 3.43 3.52 3.64 3.72
29 2.73 2.88 2.98 3.06 3.12 3.17 3.22 3.25 3.29 3.42 3.51 3.63 3.71
30 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.25 3.28 3.41 3.50 3.62 3.70
35 2.70 2.84 2.94 3.02 3.08 3.13 3.17 3.21 3.24 3.37 3.45 3.57 3.65
40 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18 3.21 3.34 3.42 3.54 3.62
45 2.67 2.81 2.90 2.98 3.03 3.08 3.12 3.16 3.19 3.31 3.40 3.51 3.59
50 2.65 2.79 2.89 2.96 3.02 3.07 3.11 3.14 3.18 3.30 3.38 3.49 3.57

100 2.61 2.74 2.83 2.90 2.95 3.00 3.04 3.07 3.10 3.22 3.29 3.403.47
∞ 2.56 2.69 2.77 2.84 2.89 2.93 2.97 3.00 3.03 3.14 3.21 3.31 3.38



Tables 637

Table D.9: Critical values for two-sided Dunnett’st, continued.

Entries ared.05(K, ν) whereP (maxK
j=1 t0j > d.05(K, ν)) = .05 .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 40

1 17.4 20.0 21.9 23.2 24.3 25.2 25.9 26.6 27.1 29.3 30.7 32.6 33.9
2 5.42 6.06 6.51 6.85 7.12 7.35 7.54 7.71 7.85 8.40 8.77 9.28 9.62
3 3.87 4.26 4.54 4.75 4.92 5.06 5.18 5.28 5.37 5.72 5.95 6.27 6.49
4 3.31 3.62 3.83 3.99 4.13 4.23 4.33 4.41 4.48 4.75 4.94 5.19 5.36
5 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97 4.03 4.26 4.42 4.64 4.79
6 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71 3.76 3.97 4.11 4.31 4.45
7 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53 3.58 3.78 3.91 4.09 4.22
8 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41 3.46 3.64 3.76 3.93 4.05
9 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32 3.36 3.53 3.65 3.82 3.93

10 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24 3.29 3.45 3.57 3.72 3.83
11 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19 3.23 3.39 3.50 3.65 3.76
12 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14 3.18 3.34 3.45 3.59 3.69
13 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10 3.14 3.29 3.40 3.54 3.64
14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07 3.11 3.26 3.36 3.50 3.60
15 2.44 2.61 2.73 2.82 2.89 2.95 3.00 3.04 3.08 3.23 3.33 3.47 3.56
16 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02 3.06 3.20 3.30 3.43 3.53
17 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00 3.03 3.18 3.27 3.41 3.50
18 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98 3.01 3.16 3.25 3.38 3.48
19 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96 3.00 3.14 3.23 3.36 3.45
20 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95 2.98 3.12 3.22 3.34 3.43
21 2.37 2.53 2.64 2.72 2.79 2.84 2.89 2.93 2.97 3.11 3.20 3.33 3.42
22 2.36 2.52 2.63 2.71 2.78 2.83 2.88 2.92 2.96 3.09 3.19 3.31 3.40
23 2.36 2.51 2.62 2.70 2.77 2.82 2.87 2.91 2.95 3.08 3.17 3.30 3.38
24 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90 2.94 3.07 3.16 3.29 3.37
25 2.34 2.50 2.61 2.69 2.75 2.81 2.85 2.89 2.93 3.06 3.15 3.27 3.36
26 2.34 2.49 2.60 2.68 2.74 2.80 2.84 2.88 2.92 3.05 3.14 3.26 3.35
27 2.33 2.49 2.59 2.67 2.74 2.79 2.84 2.88 2.91 3.04 3.13 3.25 3.34
28 2.33 2.48 2.59 2.67 2.73 2.78 2.83 2.87 2.90 3.03 3.12 3.24 3.33
29 2.32 2.48 2.58 2.66 2.73 2.78 2.82 2.86 2.90 3.03 3.11 3.24 3.32
30 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86 2.89 3.02 3.11 3.23 3.31
35 2.30 2.46 2.56 2.64 2.70 2.75 2.79 2.83 2.86 2.99 3.08 3.20 3.28
40 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81 2.84 2.97 3.05 3.17 3.25
45 2.28 2.43 2.53 2.61 2.67 2.72 2.76 2.80 2.83 2.95 3.04 3.15 3.23
50 2.28 2.42 2.52 2.60 2.66 2.71 2.75 2.79 2.82 2.94 3.02 3.14 3.22

100 2.24 2.39 2.48 2.55 2.61 2.66 2.70 2.74 2.77 2.88 2.96 3.073.15
∞ 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69 2.72 2.83 2.91 3.01 3.08



638 Tables

Table D.9: Critical values for two-sided Dunnett’st, continued.

Entries ared.01(K, ν) whereP (maxK
j=1 t0j > d.01(K, ν)) = .01 .

K
ν 2 3 4 5 6 7 8 9 10 15 20 30 40

1 87.0 100 109 116 122 126 130 133 136 146 154 163 169
2 12.4 13.8 14.8 15.6 16.2 16.7 17.1 17.5 17.8 19.1 19.9 21.0 21.8
3 6.97 7.64 8.10 8.46 8.75 8.99 9.19 9.37 9.53 10.1 10.5 11.1 11.5
4 5.36 5.81 6.12 6.36 6.55 6.72 6.85 6.98 7.08 7.49 7.77 8.15 8.41
5 4.63 4.97 5.22 5.41 5.56 5.68 5.79 5.89 5.97 6.29 6.51 6.81 7.02
6 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28 5.35 5.62 5.80 6.06 6.24
7 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89 4.95 5.19 5.35 5.58 5.74
8 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62 4.68 4.90 5.05 5.25 5.40
9 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43 4.48 4.68 4.82 5.01 5.15

10 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28 4.33 4.52 4.65 4.83 4.96
11 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16 4.21 4.39 4.52 4.69 4.81
12 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07 4.12 4.29 4.41 4.57 4.69
13 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99 4.04 4.20 4.32 4.48 4.59
14 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93 3.97 4.13 4.24 4.40 4.50
15 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88 3.92 4.07 4.18 4.33 4.43
16 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83 3.87 4.02 4.13 4.27 4.37
17 3.19 3.36 3.47 3.56 3.63 3.69 3.74 3.79 3.83 3.98 4.08 4.22 4.32
18 3.17 3.33 3.45 3.53 3.60 3.66 3.71 3.75 3.79 3.94 4.04 4.18 4.28
19 3.15 3.31 3.42 3.50 3.57 3.63 3.68 3.72 3.76 3.90 4.00 4.14 4.24
20 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69 3.73 3.87 3.97 4.11 4.20
21 3.11 3.27 3.37 3.46 3.52 3.58 3.63 3.67 3.71 3.85 3.94 4.08 4.17
22 3.09 3.25 3.36 3.44 3.50 3.56 3.61 3.65 3.68 3.82 3.92 4.05 4.14
23 3.08 3.23 3.34 3.42 3.48 3.54 3.59 3.63 3.66 3.80 3.89 4.02 4.11
24 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61 3.64 3.78 3.87 4.00 4.09
25 3.05 3.21 3.31 3.39 3.45 3.51 3.55 3.59 3.63 3.76 3.85 3.98 4.07
26 3.04 3.19 3.30 3.37 3.44 3.49 3.54 3.58 3.61 3.74 3.83 3.96 4.05
27 3.03 3.18 3.28 3.36 3.42 3.48 3.52 3.56 3.60 3.73 3.82 3.94 4.03
28 3.03 3.17 3.27 3.35 3.41 3.46 3.51 3.55 3.58 3.71 3.80 3.93 4.01
29 3.02 3.16 3.26 3.34 3.40 3.45 3.50 3.54 3.57 3.70 3.79 3.91 3.99
30 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52 3.56 3.69 3.77 3.90 3.98
35 2.98 3.12 3.22 3.29 3.35 3.40 3.44 3.48 3.51 3.64 3.72 3.84 3.92
40 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44 3.48 3.60 3.68 3.80 3.88
45 2.93 3.07 3.16 3.24 3.29 3.34 3.38 3.42 3.45 3.57 3.65 3.76 3.84
50 2.92 3.05 3.15 3.22 3.27 3.32 3.36 3.40 3.43 3.55 3.63 3.74 3.82

100 2.86 2.98 3.07 3.14 3.19 3.24 3.27 3.31 3.34 3.45 3.52 3.633.70
∞ 2.79 2.92 3.00 3.06 3.11 3.15 3.19 3.22 3.25 3.35 3.42 3.52 3.59
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Table D.10: Power curves for fixed-effects ANOVA.

10 20 30 40 50 60 70 80 90

Numerator df=1

Noncentrality parameter (+40 for .01 level)

P
o
w
e
r

.3

.4

.5

.6

.7

.8

.9

.95

.99

10 20 30 40 50 60 70 80 90 100

Numerator df=2

Noncentrality parameter (+40 for .01 level)

P
o
w
e
r

.3

.4

.5

.6

.7

.8

.9

.95

.99
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Table D.10: Power curves for fixed-effects ANOVA, continued.

20 40 60 80 100

Numerator df=3

Noncentrality parameter (+40 for .01 level)

P
o
w
e
r

.3

.4

.5

.6

.7

.8

.9

.95

.99

20 40 60 80 100 120

Numerator df=4

Noncentrality parameter (+40 for .01 level)

P
o
w
e
r

.3

.4

.5

.6

.7

.8

.9

.95

.99
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Table D.10: Power curves for fixed-effects ANOVA, continued.

20 40 60 80 100 120

Numerator df=5

Noncentrality parameter (+40 for .01 level)

P
o
w
e
r

.3

.4

.5

.6

.7

.8

.9

.95

.99

20 40 60 80 100 120 140

Numerator df=6

Noncentrality parameter (+40 for .01 level)

P
o
w
e
r

.3

.4

.5

.6

.7

.8

.9

.95

.99
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Table D.10: Power curves for fixed-effects ANOVA, continued.

20 40 60 80 100 120 140

Numerator df=7

Noncentrality parameter (+40 for .01 level)

P
o
w
e
r

.3

.4

.5

.6

.7

.8

.9

.95

.99

20 40 60 80 100 120 140 160

Numerator df=8

Noncentrality parameter (+40 for .01 level)

P
o
w
e
r

.3

.4

.5

.6

.7

.8

.9

.95

.99
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Table D.11: Power curves for random-effects ANOVA.

Numerator df = 1

Ratio of EMS (times 10 for .01 level)

P
o
w
e
r

1

.3

.4

.5

.6

.7

.8

.9

.95

.99

10

.3

.4

.5

.6

.7

.8

.9

.95

.99

100

.3

.4

.5

.6

.7

.8

.9

.95

.99

1000

.3

.4

.5

.6

.7

.8

.9

.95

.99

10000

.3

.4

.5

.6

.7

.8

.9

.95

.99

100000

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

Numerator df = 2

Ratio of EMS (times 10 for .01 level)

P
o
w
e
r

1

.3

.4

.5

.6

.7

.8

.9

.95

.99

3

.3

.4

.5

.6

.7

.8

.9

.95

.99

10

.3

.4

.5

.6

.7

.8

.9

.95

.99

30

.3

.4

.5

.6

.7

.8

.9

.95

.99

100

.3

.4

.5

.6

.7

.8

.9

.95

.99

300

.3

.4

.5

.6

.7

.8

.9

.95

.99

1000

.3

.4

.5

.6

.7

.8

.9

.95

.99

3000

.3

.4

.5

.6

.7

.8

.9

.95

.99

10000

.3

.4

.5

.6

.7

.8

.9

.95

.99

30000

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99
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Table D.11: Power curves for random-effects ANOVA, continued.

Numerator df = 3

Ratio of EMS (times 10 for .01 level)

P
o
w
e
r

1

.3

.4

.5

.6

.7

.8

.9

.95

.99

3

.3

.4

.5

.6

.7

.8

.9

.95

.99

10

.3

.4

.5

.6

.7

.8

.9

.95

.99

30

.3

.4

.5

.6

.7

.8

.9

.95

.99

100

.3

.4

.5

.6

.7

.8

.9

.95

.99

300

.3

.4

.5

.6

.7

.8

.9

.95

.99

1000

.3

.4

.5

.6

.7

.8

.9

.95

.99

3000

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

Numerator df = 4

Ratio of EMS (times 10 for .01 level)

P
o
w
e
r

1

.3

.4

.5

.6

.7

.8

.9

.95

.99

3

.3

.4

.5

.6

.7

.8

.9

.95

.99

10

.3

.4

.5

.6

.7

.8

.9

.95

.99

30

.3

.4

.5

.6

.7

.8

.9

.95

.99

100

.3

.4

.5

.6

.7

.8

.9

.95

.99

300

.3

.4

.5

.6

.7

.8

.9

.95

.99

1000

.3

.4

.5

.6

.7

.8

.9

.95

.99

3000

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99
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Table D.11: Power curves for random-effects ANOVA, continued.

Numerator df = 5

Ratio of EMS (times 10 for .01 level)

P
o
w
e
r

1

.3

.4

.5

.6

.7

.8

.9

.95

.99

3

.3

.4

.5

.6

.7

.8

.9

.95

.99

10

.3

.4

.5

.6

.7

.8

.9

.95

.99

30

.3

.4

.5

.6

.7

.8

.9

.95

.99

100

.3

.4

.5

.6

.7

.8

.9

.95

.99

300

.3

.4

.5

.6

.7

.8

.9

.95

.99

1000

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

Numerator df = 6

Ratio of EMS (times 10 for .01 level)

P
o
w
e
r

1

.3

.4

.5

.6

.7

.8

.9

.95

.99

3

.3

.4

.5

.6

.7

.8

.9

.95

.99

10

.3

.4

.5

.6

.7

.8

.9

.95

.99

30

.3

.4

.5

.6

.7

.8

.9

.95

.99

100

.3

.4

.5

.6

.7

.8

.9

.95

.99

300

.3

.4

.5

.6

.7

.8

.9

.95

.99

1000

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99
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Table D.11: Power curves for random-effects ANOVA, continued.

Numerator df = 7

Ratio of EMS (times 10 for .01 level)

P
o
w
e
r

1

.3

.4

.5

.6

.7

.8

.9

.95

.99

3

.3

.4

.5

.6

.7

.8

.9

.95

.99

10

.3

.4

.5

.6

.7

.8

.9

.95

.99

30

.3

.4

.5

.6

.7

.8

.9

.95

.99

100

.3

.4

.5

.6

.7

.8

.9

.95

.99

300

.3

.4

.5

.6

.7

.8

.9

.95

.99

1000

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

Numerator df = 8

Ratio of EMS (times 10 for .01 level)

P
o
w
e
r

1

.3

.4

.5

.6

.7

.8

.9

.95

.99

3

.3

.4

.5

.6

.7

.8

.9

.95

.99

10

.3

.4

.5

.6

.7

.8

.9

.95

.99

30

.3

.4

.5

.6

.7

.8

.9

.95

.99

100

.3

.4

.5

.6

.7

.8

.9

.95

.99

300

.3

.4

.5

.6

.7

.8

.9

.95

.99

1000

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99

.3

.4

.5

.6

.7

.8

.9

.95

.99



Index

0/1 rule, 390
23 in two blocks of size four, 389
24 in two blocks of eight, 390, 392
25 in eight blocks of four, 395
27 in 16 blocks of eight, 396
28−4 in two blocks of eight, 485
32 with A1B2 confounded, 404

Accelerated life tests, 33
Acid rain and birch seedlings, 32, 86
Addled goose eggs, 324
Adjustment variables, 495
Alfalfa meal and turkeys, 103
Aliases

in three-series, 490
in two-series, 475

Alpha designs, 376
tables of, 616

Alternate block, 391
Alternate fraction, 473, 490
Alternative hypotheses

fixed-effects F-test, 45
pairedt-test, 21
two-samplet-test, 25

Amylase activity, 195, 213, 226, 228,
233

Analysis of covariance, 454
see alsoCovariates39

Analysis of variance, 44
balanced incomplete blocks, 361
completely randomized design, 46,

48
confounded designs, 400

expected mean squares, 257
factorial treatment structure, 179,

180
Latin Square, 328
lattice designs, 376
linear subspaces, 567
partially balanced incomplete

blocks, 372
random-effects, 257
Randomized complete block, 321
repeated measures, 440
residual effects, 342
split-plots, 424
split-split-plots, 430
weighted, 131
Youden Square, 369

ANOVA, seeAnalysis of variance
Anxiety, tension, and memory, 426
Artificial insemination in chickens, 127
Associate classes, 371
Assumptions, 111–143

and factorial treatment structure, 185
assessing, 114–123
constant variance, 118, 126, 136
fixed-effects models, 111
independence, 120, 133, 138
normality, 115, 124, 134, 272
random-effects models, 271
role of residuals, 112

Autocorrelation, 120
Axial points, 522, 523

Balanced incomplete block designs,
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358–368
efficiency, 362
interblock information, 364
intrablock analysis, 360
model for, 360
randomization, 360
symmetric, 360
tables of, 609
unreduced, 360

Bartlett’s test, 118
Bayesian methods, 27, 28
Bioequivalence of drug delivery, 326,

329, 333, 337
Blinding, 6
Blocking, 315

complete, 316
confounding, 387
do not test blocks, 321
incomplete, 357–379, 387
initial, 373
reused in Latin Squares, 330
Split plot designs, 417

Bonferroni methods, 81–84
BSD, 91
for factorials, 205

Bootstrapping, 28
Box-Behnken designs, 525
Brown-Forsythe modified F, 133

Cadmium in soils, 17
Cake baking, 514, 516, 524, 526
Canonical analysis, 526
Canonical variables, 518, 521
Carbon monoxide emissions, 330, 331
Carcinogenic mixtures, 77
Cardiac arrhythmias, 11
Carton experiment three, 263,

266–268, 270, 271, 273
Causation, 2, 3
Center points, 513, 522
Central composite designs, 522

orthogonal blocking, 523

rotatable, 523
uniform precision, 524

Cheese tasting, 284, 287, 298
Chi-square distribution, 59, 161, 260

noncentral, 161, 575
table of, 626

Chick body weights, 173
Cloud seeding, 117, 125
Complete mixtures, 531
Completely randomized designs,

31–60
analysis of variance, 46, 48
degrees of freedom, 39, 41
expected mean squares, 52
factorial treatment structure,

165–196
model for, 37–39
parameter estimates for, 40, 41
parameters of, 37
randomization, 31
sample sizes, 31
sums of squares, 40

Components of variance,seeVariance
components

Confidence intervals
and skewness, 135
for contrasts, 68
for intraclass correlation, 269
for means, 43
for ratios of variances, 269
for variance components, 267
Scheffé method, 85
variance components and

nonnormality, 272
Williams’ method, 270

Confident directions, 100
Confounded designs, 387–410

analysis of, 397, 408
complete confounding, 400
double confounding, 402
fractional factorials, 485
guidelines, 394
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partial confounding, 400
replication of, 399
three-series factorials, 403–409
two-series factorials, 388–403
two-series plans, 617

Confounding, 7
in split plots, 418

Confounding a33 in nine blocks, 405,
407

Confounding a35 in 27 blocks, 408
Connected designs, 358
Contour plots, 510
Contrasts, 65–75, 578

and empty cells, 234
for factorial treatment structure, 169,

203
in two-series factorials, 237
interaction, 170
main-effects, 169
orthogonal, 71–73, 578
polynomial, 67, 73–74, 213
table of orthogonal, 630

power, 158
Scheffé method, 85
variances in mixed effects, 298–303

Control
of an experiment, 7

Control treatment,seeTreatments,
control

Correlated errors, 138
Covariances of means, 302
Covariates, 453–466

affected by treatments, 460
and split plots, 466
centered, 460

CPU page faults, 187, 218
Crossover designs, 326, 441
Cyclic designs, 372

initial block, 373
tables of, 615

Data

advertising, 469
air cells, 251
alfalfa meal and turkeys, 353
alpine meadows, 62
amylase activity, 194
anticonvulsants, 251
bacteria in abused milk, 312
barley sprouting, 166
beer retained in mouth, 313
big sagebrush, 202
bioequivalence, 333
bird bones, 467
book ratings, 28
bread flours, 537
caffeine and adenine, 63
cake baking, 514, 525
car seats, 505
cardiac relaxants, 144
cisplatin, 224
cloud seeding, 117
CO emissions, 538
cockroaches, 29
coffee yields, 354
contaminated milk, 278
cracks in pavement, 345
cytokinin, 351
disk drive access, 380
disk drives, 347
fat acidity, 223
fillings, 310
free alpha amino nitrogen, 198
free amino acis in cheese, 313
fruit flies, 62
fruit punch, 530
gel strength, 224
gentleness, 144
graininess, 346
growth hormones, 354
gum water-binding, 250
highly unbalanced factorial, 230
ice creams, 249
icings, 508
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impregnated cows, 29
interchanges, 448
irrigation, 444
Japanese beetles, 380
keyboarding pain, 456
laundry detergent, 449
leaf angles, 61
leaf springs, 497
leucine, 252
locations of good and bad chips, 123
long-distance quality, 446
mealy bugs, 317
melatonin, 143
memory errors, 426
mercury in soils, 470
milfoil, 415
milk chiller, 401
milk filtration, 381
milk production, 339
odor intensities, 414
oleoresin, 354
one-cell interaction, 211
orange pulp silage, 61
pacemaker delamination, 200
pacemaker substrate lengths, 353
page faults, 187
particleboard, 199
pediatricians, 252
pine oleoresin, 201
plates washed, 359
polypropylene concrete, 63
potato chips, 355
product scoring, 507
quack grass, 147
rat deaths, 193
rat liver iron, 172
rat liver weights, 60
resin lifetimes, 33
rocket errors, 352
rocket fuel, 537
ruffe, 451
runstitch times, 20

serial dilution, 144
serum lithium, 369
shear strength, 541
softness of clothes, 382
solder joints, 61
soybean herbicides, 350
soybean rotations, 350
speedometer casings, 504
State exams, 382
tensile strength, 278
thermocouples, 121
thickness of silicon, 506
tire wear, 276
total free amino acids, 178
tropical grasses, 201
two-series design, 246
vegetable oil, 276
Verapamil, 248
Visiplume, 30, 147
visual perception, 398
weed control in soybeans, 105
weight gain, 197
weight gain of calves, 275
welding strength, 480
wetland snowmelt, 29
wetland weeds, 432
white leghorns, 223
whole plant phosphorus, 25
work baskets, 349
yogurt odors, 415
yogurts, 248

Data snooping, 78, 85, 186
De-aliasing, 485
Defective integrated circuits on a

wafer, 123
Defining contrast, 389
Defining relation, 473
Degrees of freedom

approximate, 132, 262
factorial treatment structure, 177,

183
for error, 41
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for treatments, 39
heuristics for, 51
interaction, 177, 183
main-effect, 177, 183
nested design, 281

Design of experiments,see
Experimental design

Design variables, 495
Deviations, 37
Dish detergent, 359, 361, 365
Doses, 55
Dunnett’s procedure, 101
Dunnett’st distribution

table of, 635
Durbin-Watson statistic, 121, 142

Edge effects, 9, 159
Effect sparsity, 241
Effects

carryover, 339
confounded, 393, 407
covariate, 454
covariate-adjusted, 454
direct, 339
dispersion, 497
fixed, 254
interaction, 168, 176, 183
location, 497
main, 168, 175, 183
mixed, 285–288
nested design, 283
random, 253–275
residual, 339
simple, 205
standard errors of, 44
total, 238, 474
treatment, 38

Efficiency
Alpha design, 378
balanced incomplete block design,

362
confounded design, 387

cyclic design, 373
Latin Squares, 335
partially balanced incomplete block

design, 372
randomized complete block, 322
split-plots, 419
square lattice, 375

Eigenvalues, 521
Eigenvectors, 521
Embedded factorial, 477
Empty cells, 233
Entries

self-referencing, 651
Error

design to estimate, 5
experimental, 6, 37
systematic, 5

Error rates, 78–81
comparisonwise, 79, 98
conditional, 106
experimentwise, 79, 97
false discovery rate, 79, 96
simultaneous confidence intervals,

80, 90
strong familywise, 79, 92

Estimable functions, 75, 576
Estimates

see alsoindividual designs39
of variance components, 264–266
unbiased, 39, 41, 272

Ethics, 4
Even/odd rule, 390
Exchangeability, 28
Expected mean squares, 258–260, 272,

274
completely randomized designs, 52
nested design, 281
random effects, 257
rules for, 293

Expected mean squares in the
restricted model, 293
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Expected mean squares in the
unrestricted model, 294

Expected mean squares
unbalanced mixed-effects, 304

Experiment design, 4
Experimental designs, 4

alpha, 376
balanced incomplete block, 358–368
Box-Behnken, 525
central composite, 522
completely randomized, 31
confounding, 387–410
context, 543
cross-nested factors, 283
crossed factors, 280
crossover, 326
cyclic design, 372
factorial ratios, 531
factorial treatment structure, 165
fractional factorials, 471–499
generalized randomized complete

block, 344
goals, 543
Graeco-Latin Square, 343
hyper-Latin Square, 344
hypotheses, 543
Latin Square, 324–342
lattices, 374
main-effects, 483
mixtures, 529
nested factors, 280
objectives, 543
orthogonal-main-effects, 498
partially balanced incomplete block,

370
Plackett-Burman, 499
Randomized complete blocks, 324
randomized complete blocks, 316
repeated measures, 438–441
residual effects, 338
response surfaces, 509–535
row orthogonal, 369, 373

split block, 435
split plot, 417–428
split-split plot, 428–434
staggered nested, 306
strip plot, 435
with covariates, 453–466
Youden square, 368

Experimental error,seeError,
experimental

Experimental units,seeUnits,
experimental

Experiments
advantages of, 2
components of, 2
randomized, 13

Exploratory analysis, 33
Eyedrops, 357

F distribution, 59
noncentral, 153, 575
table of, 627

F-tests
p-value, 48
approximate, 260–264, 295
Brown-Forsythe modification, 133
completely randomized design, 48
factorial treatment structure, 181
for contrasts, 69
mixed-effects, 290
random-effects, 258–260
Scheffé method, 85

Factorial contrasts, 205
Factorial ratios designs, 531
Factorial treatment structure, 165–196

advantages of, 170
analysis of variance, 179, 180
balanced, 166
confounding, 387–410
contrasts, 169, 203
degrees of freedom, 177, 183
empty cells, 233
expected mean squares, 257
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F-test, 181
fractional factorials, 471–499
hierarchical models, 192
interaction effects, 168, 176, 183
main effects, 168, 175, 183
mixed effects, 285
models and weighting, 193
models for, 175
models of interaction, 209
noncentrality parameter, 235
pairwise comparisons, 204
parameter estimates for, 177
pooling terms, 191
power, 235
random effects, 255
single replicates, 186, 240, 397
sums of squares, 180, 184
transformations and interactions,

185
unbalanced data, 225–234
unweighted tests, 230

Factors, 7
coded, 513
continuous, 509
crossed, 280
grouping, 438
nested, 279–283
noise, 515
random, 255
split-plot, 418
split-split plot, 429
trial, 438
whole-plot, 417

Finding mean squares for an
approximate test, 262

First-order designs, 512
Fish

flopping, 340
Fold-over, 487
Fold-over for a215−10

IV , 487
Fractional factorials, 471–499

aliases, 475, 490

analysis, 479
confounding, 485
de-aliasing, 485
fold-over, 487
in quality experiments, 493
minimum aberration, 483
motivation for, 471
pitfalls, 492
projection, 482
resolution, 482, 491
sequences of, 489
three-series, 489
two-series, 472
two-series plans, 617

Free amino acids in cheese, 91, 94, 96,
97

Free height of leaf springs, 496
Fruit punch, 529
Functional magnetic resonance

imaging, 80

Generalized interactions, 394, 407,
475, 490

Generalized linear models, 142
Generating array, 376
Generator, 473
Goals, 543
Graeco-Latin Squares, 343
Greenhouse-Geisser adjustment, 442
Gum arabic, 284, 287

Haphazard, 13, 14
Hartley’s test, 118
Harvey Wallbangers, 531, 534
Hasse diagrams, 289–298

and expected mean squares, 293
and test denominators, 290
construction of, 296

Huynh-Feldt adjustment, 442
Huynh-Feldt condition, 439
Hyper-Latin Squares, 344
Hypotheses, 543
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Index plot, 120, 122
Inefficiency

of incomplete blocks, 357, 387
Inner noise, 494
Interaction

column-model, 221
dose-response, 212
Johnson-Graybill, 222
one-cell, 210
polynomial, 212
row-model, 221
slopes-model, 221
Tukey one-degree-of-freedom, 217,

220
Interaction plot, 171–174, 209
Intermediate array, 376
Interpolation, 56
Intraclass correlation, 254

confidence interval for, 269

Keyboarding pain, 453, 456, 461, 464
Kurtosis, 134

Lack of fit, 513, 516
Land’s method, 114, 126
Latin Squares, 324–342

analysis of variance, 328
estimated effects, 332
incomplete, 368
model for, 327, 331
orthogonal, 343, 374
randomization, 327
relative efficiency of, 335
replicated, 330
standard, 327
tables of, 607

Lattice designs
balanced, 375
cubic, 374, 375
efficiency of, 375
rectangular, 374, 375
simple, 374

square, 374
triple, 374

Lattice Squares, 378
Leaflet angles, 74
Least squares, 45, 58, 566
Lenth’s PSE, 241, 479
Levels, 7
Levene’s test, 119
Leverage, 115
Lithium in blood, 369

Machine shop, 434
Mallows’ Cp, 59
Masking, 118
Mauchly test, 439
Mealybugs on cycads, 316, 321, 323
Means

and transformations, 113
covariate-adjusted, 456
variances in mixed effects, 298–303

Measurement units,seeUnits,
measurement

Milk chiller, 401
Milk yield, 340
Minimum aberration design, 483
Mixture designs, 529

constrained, 532, 535
factorial ratios, 531
first-order model, 533
pseudocomponents, 532
second-order model, 533
simplex centroid, 530
simplex lattice, 530
third-order model, 533

Models, 34
additive, 171, 322, 328, 343, 360
analysis of covariance, 454
assumptions for mixed-effects, 286
balanced incomplete block design,

360
canonical form, 533
comparison of, 44, 226, 455, 568
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completely randomized design,
37–39

cross-nested factors, 284
dose-response, 55–58, 212
factorial treatment structure, 175
first-order, 511, 533
fixed-effects, 254
for errors, 36
for interaction, 209
for means, 36
for mixtures, 533
full, 37
hierarchical, 192, 213, 227, 255
Latin Squares, 327
lattice of, 565
linear subspaces, 563
overparameterized, 38
parallel-lines, 455
parameters of, 34
polynomial, 55–58, 212, 511, 517,

530, 533
randomized complete block, 319
reduced, 37
repeated measures, 440
replicated Latin Squares, 331
restricted assumptions, 286, 288
second-order, 517, 533
separate means, 37
separate-intercepts, 455
separate-lines, 464
separate-slopes, 464
single-line, 455
single-mean, 37
split-plot, 421–423
split-split-plot, 429
steps for building, 285, 288
strip plot, 436
third-order, 533
Tukey one-degree-of-freedom, 217,

220
unrestricted assumptions, 286, 288

Multiple comparisons, 77–108

see alsoSimultaneous inference77
see alsoPairwise comparisons77
with best, 104

Nesting, 279–283
Noncentrality parameter, 154

in factorial treatment structure, 235
in mixed effects, 293

Nonstarter bacteria in cheddar cheese,
178, 181

Normal distribution, 36, 572
table of, 624

Normal probability plot, 115, 118
Normal scores, 115
Null hypotheses

and transformations, 113
family of, 78
fixed-effects F-test, 45
interactions, 181
main-effects, 181
overall, 78
pairedt-test, 21
random-effects, 255
randomization test, 22, 26
two-samplet-test, 25
unbalanced factorials, 230, 244

Objectives, 543
Observational study, 2

advantages and disadvantages, 3
Occam’s razor, 45
Off-line quality control, 493
One-at-a-time designs, 170
One-cell interaction, 210, 211
Optimal design, 344, 379, 535
Orthogonal-main-effects designs, 498
Outer noise, 494
Outliers, 116, 124, 136, 141
Overall mean,seeParameters, overall

mean

p-values, 48
calibrated, 49
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F-test, 48
pairedt-test, 21
randomization test, 22, 24, 26, 27

Pacemaker substrates, 240, 241
Pairwise comparisons, 66, 87–101

BSD, 91, 205
confident directions, 100
DSD, 101, 107
Duncan’s multiple range, 99
Dunnett’s procedure, 101
for factorial treatment structure, 204
LSD, 98, 107
MCB, 104
predictive methods, 100
protected LSD, 97
REGWR, 94, 107
SNK, 96, 107
step-down methods, 92
Tukey HSD, 90, 107, 205
Tukey-Kramer, 91, 108
with best, 104
with control, 101

Parameters
interaction effects, 176, 183
main effects, 175, 183
noncentrality, 154
of CRD, 37
of factorials, 175, 183
overall mean, 38, 175, 183
restrictions on, 38

Partially balanced incomplete blocks,
370

associate classes, 371
randomization, 371

Particle sampling, 287
Permutation tests, 27
Perspective plots, 510
Placebo, 7
Plackett-Burman designs, 499
Planning an experiment, 544
Polynomials

see alsoModels, polynomial55

see alsoContrasts, polynomial55
Power, 150

curves, 154, 273
factorial effects, 235
for a contrast, 158
random effects, 272
software, 156

Power curves
fixed-effects, 639
random-effects, 643

Practical significance, 49
Precision, 5
Prediction, 59
Principal block, 391, 404
Principal fraction, 473, 490
Profile plot, 171–174
Projection

of fractional factorials, 482
onto linear subspace, 570
orthogonal, 571

Proportional balance, 244
Proportions, 529
Protein/amino acid effects on growing

rats, 318
Pseudo-standard error, 241
Pseudocomponents, 532
Pseudorandom numbers, 19
Pure error, 513
Pure interactive response, 171

Quarter fraction of a25 design, 473

Random digits
table of, 622

Random effects,seeEffects, random
Randomization, 6, 13–28

completely randomized design, 31
determines design, 16
inference, 19–27
lack of, 15
Latin Squares, 327
of balanced incomplete block

design, 360
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partially balanced incomplete
blocks, 371

performing, 17–19
repeated measures, 438
restricted, 315, 418, 430
to determine design, 318

Randomization tests, 126
and standard inference, 26
subsampled distribution, 24

Randomized complete blocks, 316–324
generalized, 344
model for, 319
relative efficiency of, 322
unbalanced, 324

Rank-based methods, 124, 141
Rankits, 115
Rat liver iron, 172
Rat liver weights, 69
Regression, 56, 60, 455
Repeated-measures designs, 438–441

model for, 440
randomization, 438
univariate analysis, 439

Residual plot, 119, 120
Residuals, 45, 112, 573

externally Studentized, 115
internally Studentized, 114
raw, 114

Resin lifetimes, 32, 34, 42, 50, 57, 119,
130, 133

Resistance, 136
Resolution, 482, 491
Resolvable designs, 358
Response surface designs, 509–535

Box-Behnken, 525
canonical analysis, 526
canonical variables, 518, 521
central composite, 522
first-order analysis, 514
first-order designs, 512
first-order models, 511
second-order analysis, 526

second-order designs, 522
second-order models, 517

Responses, 2, 6
audit, 11
multivariate, 439
predictive, 11, 453
primary, 10
surrogate, 10

Ridge surface, 518, 521
Robust methods, 124, 136, 141
Robustness of validity, 112, 136
Rotatable designs, 523

Saddle point, 518, 519, 521
Sample size

choosing, 149–161
effective, 140, 363
fixed-effects power, 153
for a contrast, 158
for comparison with control, 160
for comparisons with control, 103
for confidence intervals, 151
for random effects, 273

Satterthwaite approximation, 262, 274
Scheffé method, 85–86, 579
Second-order designs, 522
Seed maturation on cut stems, 243
Seed viability, 215
Sensory characteristics of cottage

cheeses, 83
Serial dependence, 120
Side-by-side plots, 54
Signficance level, 48
Significant differences, 88
Simplex, 529
Simultaneous inference, 77–108

Bonferroni, 81, 117
false discovery rate, 82
for factorial treatment structure, 234
Holm procedure, 82
Scheffé method, 85

Skewness, 134
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Spanking, 2
Spatial association, 122
Split plot examples, 421–423
Split-block designs, 435
Split-plot designs, 417–428

analysis of, 420
analysis of variance, 424–428
and covariates, 466
blocked, 420, 423
generalized, 434
models for, 420
randomization of, 418

Split-split plot examples, 429
Split-split-plot designs, 428–434

analysis of variance, 430–431
randomization of, 430

Staggered nested designs, 306
Standard order, 237
Stationary point, 519
Steepest ascent, 512, 515
Step-down methods, 92
Strip-plot designs, 435
Structures,seeModels
Student-Newman-Keuls procedure, 96
Studentized range, 89

table of, 632
Subsampling, 256
Sums of squares

balanced incomplete block design,
363

completely randomized designs, 40
error, 46
factorial treatment structure, 180,

184
for contrasts, 69
for residuals, 45
fully adjusted, 232
linear, 56
model, 575
nested design, 282
polynomial, 56
quadratic, 56

residual, 53, 574
sequential, 56, 227
total, 46
treatment, 46
Type I, 227
Type II, 228
Type III, 232

t distribution, 21
table of, 625

t-tests
for contrasts, 69
paired, 20–25
Scheffé method, 85
two-sample, 25–26
Welch, 132

Tables
Bonferronit distribution, 631
chi-square distribution, 626
Dunnett’st distribution, 635
F distribution, 627
fixed-effects power, 639
normal distribution, 624
orthogonal polynomial contrasts,

630
random digits, 622
random-effects power, 643
Studentized range, 632
t distribution, 625

Taguchi methods, 493
Temperature differences, 121
Test denominators in the restricted

model, 291
Test denominators in the unrestricted

model, 292
Three-series factorials

confounding, 403–409
fractioning, 489

Total effect, 238
Transformable nonadditivity, 217, 220
Transformations, 113–114, 141

and interactions, 185
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Box-Cox, 128–131, 495
logarithmic, 124, 125
power, 124
power family, 128
variance stabilizing, 126, 127

Treatment design, 4, 471
Treatment effects,seeEffects,

treatment
Treatments, 2, 6

control, 7
placebo, 7
quantitative, 55
split-plot, 418
whole-plot, 417

Treatments in a28−4 design, 478
Tukey HSD, 90
Tukey one-degree-of-freedom, 217,

220, 322
Two-degree-of-freedom bundles, 403
Two-series factorials, 236–243

confounding, 388–403
contrasts, 237
fractioning, 472
single replicates, 240

Unbalanced data, 225–234
empty cells, 233

Unbalanced data puzzle, 229, 232
Unbalanced expected mean squares,

304
Underline diagram, 88
Unequal weights, 193
Units

allocation of, 9
costs of, 159
crossed, 435
experimental, 2, 5, 6, 8, 158
independence of, 9
measurement, 6, 8, 158
nested, 435
nested and crossed, 437
size of, 9

split plots, 418
split-split plots, 429
strip plots, 435
whole plots, 417

Validity, 5
versus precision, 5, 315

Variance
estimate of, 41
in quality experiment, 494
negative estimate of, 266
of contrasts, 68
of means, 300
pooled estimate of, 25

Variance components, 254
confidence intervals for, 267
estimates in nested designs, 282
estimates of, 264–266, 275
standard error of estimates, 267
Williams’ method, 270

Variance reduction designs,see
Experimental designs

Variogram, 122
Viruses and variances, 36
Visual perception, 397
VOR in ataxia patients, 150, 152, 155,

156, 158

Washout period, 10, 338
Weed biomass in wetlands, 432
Weed control in soybeans, 104
Welcht-test, 132
Welding strength, 479, 484
Whole plots, 417
Williams’ method, 270

Yates’ algorithm, 239
Youden squares, 368

Zero-sum restrictions, 38, 176, 183,
564

Zinc retention, 174


