
METHODOLOGY Series editors: T C Aw, A Cockcroft, R McNamee

EVect of measurement error on epidemiological
studies of environmental and occupational
exposures

Ben G Armstrong

Abstract
Random error (misclassification) in expo-
sure measurements usually biases a rela-
tive risk, regression coeYcient, or other
eVect measure towards the null value (no
association). The most important excep-
tion is Berkson type error, which causes
little or no bias. Berkson type error arises,
in particular, due to use of group average
exposure in place of individual values.
Random error in exposure measure-
ments, Berkson or otherwise, reduces the
power of a study, making it more likely
that real associations are not detected.
Random error in confounding variables
compromises the control of their eVect,
leaving residual confounding. Random
error in a variable that modifies the eVect
of exposure on health—for example, an
indicator of susceptibility—tends to di-
minish the observed modification of ef-
fect, but error in the exposure can create a
spurious appearance of modification.
Methods are available to correct for bias
(but not generally power loss) due to
measurement error, if information on the
magnitude and type of error is available.
These methods can be complicated to use,
however, and should be used cautiously as
“correction” can magnify confounding if
it is present.
(Occup Environ Med 1998;55:651–656)

Keywords: environmental; occupational; measurement;
error

An epidemiological study generally requires for
each study subject a measure of health
outcome and of one or more potential explana-
tory variables. Explanatory variables often
comprise one or a few variables of interest
(occupational or environmental exposure) and
potential confounders (smoking, age, etc). All
of these are usually measured with some degree
of error.

Should such error decrease our confidence
in the results? If so, in just what way? Does it
add to uncertainty in estimates of measures of
eVect? If so, is this extra uncertainty reflected in
the usual statements of uncertainty—such as
confidence intervals? Under what circum-
stances does it cause bias in a result, and can we

know the direction and extent of bias, or even
correct for it? Does it compromise the power of
the study?

The purpose of this article is to summarise,
in a manner accessible to the non-statistician,
what is known about the eVects of measure-
ment error on the results of a study. The main
text of the article is organised in three sections.
The first distinguishes diVerent types of error.
The second describes the eVects of error
according to its type, first qualitatively and then
where possible quantitatively. Finally there is
an overview of when and how corrections can
be made for the eVects of error in the statistical
analysis. To keep the article manageable, the
main focus is on error in explanatory variables.
The eVects of errors in the health outcome
(response variable), which are rather diVerent,
are mentioned briefly in the discussion.

Terms and notation
The term relative risk (RR) is used here in the
statistical tradition, generically to include rate
ratios, odds ratios, prevalence ratios, etc. (This
usage is standard in statistics. Some epidemiolo-
gists restrict the meaning of relative risk to be the
ratio of cumulitve incidence.) The term eVect
measure is used to denote a summary of the
association between exposure and outcome—for
example, relative risk or regression coeYcient.
The true exposure is denoted T and the
approximate measure X, and the error E, with:

X = T + E.

The SD of T, X, and E are written óT, óX, and
óE respectively .

Types of measurement error
The eVects of measurement error depend criti-
cally on its type.

ERROR IN MEASURING WHAT?

We distinguish three categories of explanatory
variable:
x Variable of interest (environmental or occu-

pational exposure)
x Potential confounder (for example, active

smoking or socioeconomic status)
x Potential eVect modifier (markers of vulner-

ability to the eVects of the variable of
interest—for example, age).
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DIFFERENTIAL OR NON-DIFFERENTIAL

x DiVerential error varies according to the
health outcome (recall bias in case-control
studies leads to diVerent error in cases and
controls)
x Non-diVerential error does not depend on

health outcome.

SCALE OF MEASUREMENT OF THE VARIABLE(S)

WITH ERROR

x Categorical (qualitative), comprising: di-
chotomous (exposed v not exposed); poly-
tomous (for example, high, medium, low)
x Numerical (concentration of particles in air

in mg/m3, number of cigarettes smoked per
day).

When occurring in categorical variables,
measurement error is termed misclassifi-
cation—study subjects may be classified incor-
rectly. Numerical variables can be made into
groups, and thus become categorical variables.
Conversely ordered polytomous variables can
sometimes be treated as numerical.

Two further distinctions apply to error in
numerical variables:

RANDOM OR SYSTEMATIC?

x Systematic: for example, all exposures over-
estimated by 2 units or by 20%
x Random: some exposures overestimated,

some underestimated
Error often has some systematic and some

random component.

CLASSICAL OR BERKSON?

This distinction is not well known and a little
tricky to understand, but it has major implica-
tions for the eVects of the error.
x Classical: The average of many replicate

measurements of same true exposure would
equal the true exposure.
x Berkson: The same approximate exposure

(proxy) is used for many subjects; the true
exposures vary randomly about this proxy,
with mean equal to it.

Example:
A study investigates the relation of mean

exposure to lead up to age 10 with intelligence quo-
tient (IQ) in 10 year old children living in the
vicinity of a lead smelter. The IQ is measured by a
test administered at age 10. Consider two study
designs for assessing exposure:
Design 1: Each child has one measurement
made of blood lead, at a random time during
their life. The blood lead measurement will be
an approximate measure of mean blood lead
over life. However, if we were able to make
many replicate measurements (at diVerent ran-
dom time points), the mean would be a good
indicator of lifetime exposure. This measure-
ment error is thus classical.
Design 2: The children’s place of residence at
age 10 (assumed known exactly) are classified
into three groups by proximity to the smelter—
close, medium, far. Random blood lead
samples, collected as described in design 1, are
averaged for each group, and this group mean
used as a proxy for lifetime exposure for each
child in the group. Here the same approximate

exposure (proxy) is used for all subjects in the
same group, and true exposures, although
unknown, may be assumed to vary randomly
about the proxy. This measurement error is
thus Berkson type error.

Another situation giving rise to Berkson
error is when exposures are estimated from
observed determinants of exposure with an
exposure prediction model. Often error has
both classic and random components, al-
though one usually predominates.

DESCRIBING THE MAGNITUDE OF ERROR

The likely extent of misclassification of cat-
egorical variables is usually specified as prob-
abilities of misclassification. For dichotomous
variables, it is conventional to express these
through the sensitivity (the probability of
correctly classifying a truly exposed subject as
exposed), and the specificity (the probability of
correctly classifying a non-exposed subject as
non-exposed) of the classification. Thus if sen-
sitivity is 0.8 and specificity is 0.7, the
probability of misclassifying an exposed subject
as non-exposed is 1−0.8=0.2, and the prob-
ability of misclassifying a non-exposed subject
as exposed is 1−0.7=0.3. For categorical
variables of more than two levels, many diVer-
ent sorts of misclassification can occur, which
can be specified in a matrix of misclassification
probabilities.

The average magnitude of errors (classical or
Berkson) in numerical variables can be de-
scribed by their SD (óE) or variance (óE

2).
Classical error is generally described by what is
termed its coeYcient of reliability, which is
defined as the correlation of independent
repeated measurements of exposure (ñXX). This
may be shown to be equal to the square of the
validity coeYcient, which is the correlation
between the true and approximate measure-
ments (ñXT), and also to the ratio of variances of
true and approximate exposures (óT

2/óX
2), or to

a function of the ratio of SDs of error and of
true exposures (1/(1+(óE/óT)2)). (ñXX = óT

2/óX
2

= óT
2/(óT

2+ óE
2) = 1/(1+óE

2/óT
2) = 1/(1+(óE/

óT)2).)
This usage of the term reliability is standard

in technical discussions of measurement error,
although it is used more generally among
epidemiologists as a synonym for reproduc-
ibility or precision.

EVects of measurement error
We begin by considering the eVects of
non-diVerential error or misclassification in the
exposure of interest, firstly on eVect measures,
then on the results of significance tests.

In general, random measurement error or
misclassification leads to bias in eVect meas-
ures (relative risks, regression coeYcients,
diVerences in means). This bias is usually
downwards (towards the null), but there are
important exceptions. With information on
magnitude of measurement error and exposure
variability (or prevalence), extent of bias can be
estimated.
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EXPOSURE MEASURED ON A DICHOTOMOUS SCALE

Non-diVerential error always biases the eVect
measure toward the null value (there is a tech-
nical but unrealistic exception when the sum of
sensitivity and specificity of exposure classifi-
cation is <1, implying measurement that tends
to reverse exposed and unexposed categories!)

Example:
A study of lung cancer in relation to proximity of

residence to a coke oven classifies subjects (cases
and populations) by distance of residence from the
oven at the time of follow up—near=<4 km from
oven; far=4–10 km. The incidence is compared in
the two groups.Here there is misclassification due to
migration—not all people living near the oven at
the time of follow up will have lived there at the
aetiologically relevant time.Thus if the true relative
risk for subjects living in these areas throughout
their lives were 1.5, the observed relative risk would
tend to be less.

The extent of bias is dependent on sensitiv-
ity and specificity of the classification, and the
proportion of truly exposed people among
those not diseased, and may be calculated from
them1.

Suppose misclassification (migration) in the
above example was such that 10% of the near
group was in fact far at the time of relevant expo-
sure, and vice versa, and that 10% of the popula-
tion overall lived in the near area. The observed
relative risk would then be 1.26.

Further examples are given in table 1, taken
from Armstrong et al p 71.1

EXPOSURE MEASURED ON A POLYTOMOUS SCALE

Non-diVerential error biases downwards esti-
mates of trend across ordered groups, but
comparisons between specific categories can be
biased in either direction.

Example:
Assume that in the previous example the

near group was split into two: very near, and

quite near, with true relative risks, relative to
far, of 2.0 and 1.3. If there is migration from
very near to quite near, but not otherwise,
observed risks for the two near groups, relative
to the far group, will be closer together—for
example 1.6 and 1.4, as seen on table 2. Thus
here the quite near v far group relative risk is
increased by misclassification.

EXPOSURE MEASURED ON A NUMERICAL SCALE

Classic errors bias regression coeYcients (rela-
tive risks per unit exposure) towards zero. We
say the association is attenuated. In fact, for
linear regression the bias factor is equal to the
coeYcient of reliability (ñXX=ñXT

2=óT
2/óX

2);
with the observed regression coeYcient

âOBSERVED = ñXX × âTRUE

Lead-IQ example—design 1
Suppose that a regression of IQ on true lifetime

mean blood lead has a regression with coeYcient -2
(IQ reduced by 2 points per µg/dl blood lead).With
classic measurement error with coeYcient of
reliability 0.5, this would be attenuated, on
average, to 0.5×−2=−1.

From the alternative expressions for the
coeYcient of reliability (end of the section on
types of measurement error), we see that it
depends on the average magnitude of measure-
ment error relative to the average magnitude of
the true exposure (óE/óX). This implies that
measurement error will have less eVect if the
true exposures are more spread out (óX is
greater). Table 3 gives attenuation bias as func-
tion of the ratio of the SD of errors to that of
true exposures (óE/óX). This is quite
reassuring—error has to be relatively big to give
serious bias.

For logistic and log linear (Poisson) regression
coeYcients the same qualitative result is true,
and the quantitative one approximately so. Note
that for logistic and log linear regression relative
risk is linked to the regression coeYcient by the
formula RR=exp(â), thus:

RROBSERVED≅(RRTRUE)ñxx

If, in the children exposed to lead, we were to use
as an outcome a child having IQ <80, and if the
relative risk (odds ratio) increment per 10 µg/dl
true blood lead (from logistic regression) was 1.5,
then the observed RR is given by:

RROBSERVED≅1.50.5=1.22

Berkson errors, however, lead to no bias in
linear regression coeYcients, and little or no
bias in logistic or log linear regression coeY-
cients.

Lead-IQ example—design 2:
In this grouped design the error is of Berkson

type, so there is no bias in the regression
coeYcient. However, precision would be lost
(width of confidence interval would be wider),
and power would not be as great as without
measurement error, or as in the biased design 1.

Table 1 EVect of non-diVerential misclassification on RRs
in two groups

Non-diVerential misclassification: true RR=2.0

Exposure
sensitivity

Exposure
specificity

Proportion of
exposure in
the population

Observed
RR

0.6 0.9 0.1 1.34
0.6 0.9 0.5 1.42
0.6 0.99 0.1 1.79
0.6 0.99 0.5 1.54
0.9 0.9 0.1 1.48
0.9 0.9 0.5 1.73
0.9 0.99 0.1 1.89
0.9 0.99 0.5 1.82

Table 2 The eVect on non-diVerential misclassification on
RRs in three exposure groups (example)

RR

Very near Quite near Far

True 2.0 1.3 1.0
Misclassified 1.6 1.4 1.0

Table 3 Attenuation bias due to exposure measurement error in linear regression

Error óE/óX 0.0 0.1 0.2 0.3 0.4 0.5 0.75 1.0 1.5 2.0
Attenuation* 1.0 0.99 0.96 0.92 0.86 0.80 0.64 0.50 0.31 0.20

*Attenuation is the factor by which the naive regression slope will underestimate the true slope.
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EFFECT ON SIGNIFICANCE TESTS

All types of non-diVerential random measure-
ment error or misclassification reduce study
power—the chance that a study will find a sig-
nificant association if one is truly present. The
extent of power loss can be measured if magni-
tude of measurement error and exposure vari-
ability (or for a dichotomous measure preva-
lence) are known. The approach to measuring
power loss is essentially the same for dichoto-
mous or numerical variables, being based on
the result that the eVective loss in sample size is
equal to the coeYcient of reliability of the
measure2.

Example:
A study is designed to have 80% power to detect

a relative risk of 1.7 between truly exposed and
truly unexposed people (80% of similar sized stud-
ies would find the association). If approximate
measurements were used, the power would be less. If
the measure of exposure has sensitivity=
specificity=0.7 (50% controls exposed), then power
would be just 20%. Thus exposure eVects may be
missed because of measurement error.

Despite the bias and power loss noted above,
the p values obtained with the usual methods
on data subject to random error or misclassifi-
cation are valid. Spurious “significant” results
(where there is in fact no association) are no
more likely with than without measurement
error.

Example:
A study finds an association between dust and

loss of lung function, with p=0.02, but dust meas-
urements were known to be subject to error. Provid-
ing that the error is non-diVerential, the low p value
cannot be attributed to the measurement error.

CONFOUNDERS

The general rule is that errors in confounders
compromise our ability to control for their
eVect, leaving residual confounding. The effect
measure adjusted with the approximate con-
founder will on average lie between the crude,
unadjusted eVect measure and the eVect meas-
ure adjusted with the true (unknown) con-
founder. The validity of significance tests on
the eVect of exposure are compromised.

A study of the relation of lung cancer to air
pollution adjusts for smoking with a crude esti-
mate of pack-years for each subject. Any
confounding of the relative risk for lung cancer
versus air pollution will be only partially
controlled.

Example:
If crude RR(crude)=1.50 (95%CI 1.20-1.88;

p<0.001),and RR (adjusted for true pack-years)=1.04 (95%CI
0.86-1.24; p=0.67), then the partially adjusted
RR (adjusted for approximate pack-years) will in general lie between
1.50 and 1.04 and the partially adjusted p value
will lie between 0.001 and 0.67.

The degree of residual confounding depends
on the coeYcient of reliability of the measure of
the confounder. A coeYcient of reliability of
0.5 will imply that about half the confounding
present will be controlled, in the sense that the
observed log(RR) (more generally the
regression coeYcient) will on average lie about
halfway between the crude unadjusted log(RR)
and the fully adjusted log(RR).

Continuing the same example:
If the coeYcient of reliability of measured pack-

years is 0.5,then log (RR(adjusted for approximate pack-years)) will
lie about half way between log (RR(crude)) and log
(RR(adjusted for true pack-years)),which gives RR(adjusted for approxi-

mate pack-years)=1.25 (95% CI 1.03 to 1.52; p=0.03).
There are a few exceptions. Entirely system-

atic error (everyone underreporting their
smoking by 20%) will not usually compromise
control of confounding. In special situations
(when the eVects of the confounder and the
exposure of interest are additive) Berkson error
(for example, use of group mean rather than
individual pack-years of smoking) also leaves
no residual confounding. Most importantly, if
the variable suspected of confounding is in fact
not associated with the exposure of interest
(smoking is not associated with air pollution)
then there is no confounding or residual
confounding, however strongly the variable is
associated with the outcome (however bad the
data on smoking, the observed association of
lung cancer with air pollution is not biased).

Having to control for confounders, whether
measured with error or not, increases some-
what the eVect of error in the variable of inter-
est on the relative risk of interest.

EFFECT MODIFIERS

An eVect modifier is a variable that modifies
the eVect of the exposure of interest—for
example, identifying subgroups vulnerable or
resistant to the exposure. In statistical terms,
we say that there is an interaction between the
eVect modifier and the exposure. Error in
measuring eVect modifiers tends to diminish
eVect modification. Vulnerable subgroups are
thus made harder to identify.

Lead-IQ example:
Suppose diet modified the eVect of lead on IQ,

children with vitamin deficient diets having a
regression slope of -3,and others a slope of -1. If diet
is measured with error (misclassified), the apparent
modification will tend to be less—for example the
slope in vitamin deficient children might be -2.5,
and that in others -1.5.

Even if the putative eVect modifier is
measured without error, error in the variable of
interest can distort eVect modification, and
even create spurious modification. This may
happen because the magnitude of error, and
hence bias due to it, depends on the putative
modifier. Even if this is not the case, the varia-
tion of exposure may depend on the putative
modifier, in which case the bias due to
measurement error will again depend on the
putative modifier.

Example:
Suppose now that we investigated for a

modification of the eVect of lead on IQ by sex,
which is measured without error, but lead is again
measured with (classical) error. Suppose also that
although the average error was the same for boys
and girls, boys had more varied lead exposures than
girls (óT is higher in boys than girls). In this case, if
the true regression slope of IQ on lead is −2 for both
boys and girls, the estimated slope will tend to be
more attenuated for girls (say to −0.5) than for
boys (say to −1.5). ( For girls the SD óT is lower,
and hence the attenuation bias óE

2/óT
2 is greater.)
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Thus sex seems to modify the eVect of lead on IQ,
but does not in fact do so.

DIFFERENTIAL ERROR

DiVerential error can cause bias in the eVect
measure either upwards or downwards, de-
pending on whether adverse outcomes are
associated with overestimation or underestima-
tion of exposure. Significance tests are not valid
in the presence of diVerential error. For
dichotomous exposure, the bias can be
measured if the sensitivity and specificity of the
approximate classification are known.

Example:
The association of exposure to use of a video dis-

play unit (VDU) with spontaneous abortion is
investigated by means of a case-control study in
which women are interviewed after a live birth or
abortion, and asked about the number of hours a
week that they spent using a VDU.The relative risk
of spontaneous abortion in women using VDUs for
>15 hours a week was 1.20 (95% CI 1.06 to
1.34). Due to media attention to the hypothesised
association,women who had experienced spontane-
ous abortions may have been more likely to recall
their VDU use fully. In this case, some or all of the
excess of VDU users in the cases relative to the con-
trols would be spurious, so that the true relative risk
would be less than 1.20, possibly 1.00.

Correcting for measurement error
If there is information on the magnitude and
type of error it is possible (but not always easy!)
to allow for it in estimating the eVect measure, at
least for reasonably simple forms of measure-
ment error. Sometimes, it is suYcient to invert
the formulae already shown for deriving the
eVects of measurement error—for example:

âTRUE=âOBSERVED/ñxx, RRTRUE=(RROBSERVED)(1/ñxx).

In the lead-IQ study:
If we had found a regression coeYcient

(âOBSERVED) of -1, and known that the coeYcient of
reliability of measurement (ñxx) was 0.5, then we
could estimate

âTRUE = -1/0.5 = -2

Other methods are available which refine this
rather crude approach. The aim of these more
complex approaches is usually to more exactly
eradicate bias, use other sorts of information
on measurement error, or to reflect in the esti-
mate and confidence intervals uncertainty as to
the magnitude of the error.

To obtain information on measurement error
magnitude reliability studies (a sample of
repeated independent measurements) or valid-
ity studies (a sample of gold standard measure-
ments in parallel with the approximate meas-
urements) are needed. These are not often
available, and even if they are, much uncertainty
remains unless they are large. If corrections are
carried out on the basis of incorrect information
on error magnitude, bias may be increased,
rather than decreased. Corrections for attenua-
tion can also magnify confounding or other
information bias, rather than a true association.
It may be sensible for researchers to always give
the naive eVect measure (using the approximate
exposure in a regular analysis), even when

including eVect measures corrected for
measurement error. Also worth considering is
calculating corrections under various assump-
tions, in the spirit of a sensitivity analysis.

Corrections will not in general aVect the p
value of a test of the null hypothesis of no
association, nor will the power of the test be
improved. Confidence intervals will in general,
however, get wider.

In the lead-IQ study:
Suppose the regression coeYcient of −1 had

a 95% CI (−1.8 to −0.2), with p=0.01. Assum-
ing a coeYcient of reliability 0.05, the cor-
rected coeYcient is −2, the 95% CI (−3.6 to
−0.4), and p=0.01, as before.

Discussion
For simplicity of presentation some assump-
tions and points of interpretation have been
passed over. The most important of these are:
xMany of these results concern bias, which is

an average eVect if the study were to be
repeated many times. In a large study the
eVect of measurement error will be close to
the mean. However, in a single small
sample, the eVect may diVer appreciably
from this mean3. In these cases random
error can sometimes even lead to an eVect
measure estimated from approximate
exposures—that is, more extreme than that
with the true exposure. It remains more
likely, however, that if true exposure has an
aVect it is stronger than the estimate with
the approximate measurement.4

x Correcting for bias due to measurement
error is occasionally possible, but it is almost
never possible to regain lost power by statis-
tical fixes. Having more accurate exposures
(or several approximate ones) is the only
way this can be done.
x Increasing the sample size does not reduce

measurement error bias—although it does
increase power.
xWe have assumed here that it is the relation

between the true exposure and health
outcome that is of interest. Sometimes this
is not the case. If you wish to use the study
to predict risks in subjects using the same
approximate measure of exposure and
drawn from the same population, then the
naive regression estimate âOBSERVED is appro-
priate.
xMultiplicative error (proportional to the

true exposure), with lognormal distribution
of true exposures, is common in environ-
mental and occupational epidemiology.
Here measurement error changes the shape
of the regression—for example, from a
quadratic curve to a straight line.
x Random error in numerical measurements

of health outcomes—for example, lung
function—unlike random error in exposure
outcomes, does not in general cause bias in
eVect measures, although it diminishes
power. However, misclassification in di-
chotomous outcomes—for example, disease
or no disease—does cause bias in eVect
measures, as well as diminishing study
power. The bias is towards the null if
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misclassification is not dependent on the
exposure (non-diVerential with respect to
exposure).

The impact of random non-diVerential expo-
sure measurement error on inference about the
size of an eVect is fairly clear once a causal rela-
tion is assumed—the true eVect of exposure is
most likely to be greater than that estimated.
The impact of measurement error on the
evidence that such a study brings on whether a
causal relation exists is more problematic. The
following points should be considered:
x You should usually be more cautious, if

there is measurement error, in concluding
from a negative study that no causal associ-
ation exists. The reduced power implies that
missing a true underlying association is
made more likely.
x You should not use the (uncorrected) confi-

dence interval for relative risk (or other
measure of eVect) to indicate the highest
risk that is compatible with the data. For
example, an uncorrected confidence inter-
val for a relative risk of (0.80 to 1.25)
suggests that relative risks in excess of 1.25
can be excluded. With exposure measure-
ment error, however, the true uncertainty is
greater, so that a higher relative risk is pos-
sible.
x The results reviewed here are less helpful in

deciding how measurement error should
influence assessment of the evidence for a
causal relation brought by a positive associ-
ation. It is clear that such error should not
lead us to discount entirely an observed
association of exposure with disease. On the
other hand, it cannot be assumed that a
small non-significant or even significant
estimated eVect of exposure would be larger
and more significant in the absence of
exposure measurement error. Such small
associations could be due to chance or to
uncontrolled bias or confounding, in which
case they would be no larger, on average, in
the absence of measurement error.

Further reading
Most textbooks on epidemiology discuss the
eVect of misclassification of exposure on
estimates of relative risk, and some give meth-
ods for calculating and correcting for bias due
to measurement error. The book by Armstrong
et al1 (no relation!) on exposure measurement
in epidemiology is the most accessible source
for most of the results discussed in this article.
There are an enormous number of articles on
this topic published recently in the journals. A
simple MEDLINE search showed 185 articles
published since 1981 with the words
“measurement error” and “epidemiology” in
the title or abstract—most in the past 5 years.
For statisticians, Carroll et al5 have provided an
excellent review monograph with a particular
focus on logistic regression, and with most
examples from epidemiology. More limited but
more accessible reviews are given by
Armstrong6 (especially useful for further dis-
cussion of and references on Berkson errors
and errors in confounders) and de-Klerk et al7

(especially useful for results on the impact of
error on comparisons of risk in quantiles of the
exposure distribution).
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