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Abstract

In research addressing causal questions about relations between exposures and outcomes, confounding is an issue when effects of inter-
related exposures on an outcome are confused. For making valid inferences about cause-and-effect relationships, the biasing influence of con-
founding must be controlled by design or eliminated during data analysis. Consequently, researchers require a sound understanding of the
concept of confounding to adequately deal with this type of bias when setting up and conducting (clinical) epidemiological research. For ex-
plaining confounding on a conceptual level, the counterfactual framework for causal inference is invaluable but can be very complicated. In
this article, therefore, a nontechnical explanation of the counterfactual definition of confounding is presented. When considering confounding
in a counterfactual way, the principle of exchangeability plays a pivotal role. Causal effects of an exposure on an outcome can be evaluated only
when different exposure groups have comparable background risks of the outcome. Then, exposure groups are exchangeable and thus uncon-
founded. By providing a simplified explanation of the counterfactual principles of exchangeability, and consequences of nonexchangeability,
this article aims to increase understanding of confounding on a conceptual level as well as the rationale underlying design and analytic stra-

tegies for dealing with confounding in (clinical) epidemiological research. © 2020 Elsevier Inc. All rights reserved.
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1. Confounding biases the process of causal inference
about a target population

Confounding may well be one of the most frequently
discussed concepts in the (clinical) epidemiological litera-
ture. When confronted with the concept of confounding
for the first time, and perhaps also thereafter, it may be
difficult to fully grasp its meaning and underlying princi-
ples. A first step toward understanding confounding is a
clear definition. According to the Dictionary of Epidemi-
ology [1], confounding is defined as follows:

The distortion of a measure of the effect of an expo-
sure on an outcome due to the association of the
exposure with other factors that influence the
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occurrence of the outcome. Confounding occurs when
all or part of the apparent association between the
exposure and the outcome is in fact accounted for
by other variables that affect the outcome and are
themselves not affected by the exposure.

Central players in the definition of confounding are ex-
posures and outcomes and, particularly, their potential
causal relationship on which much (clinical) epidemiolog-
ical research is focused. In such research, an exposure is
broadly defined as being exposed to some kind of determi-
nant, either harmful (risk factor) or beneficial (protective
factor), or to a certain intervention or treatment. Like ex-
posures, outcomes of interest in (clinical) epidemiological
research are also broadly defined; for example, the occur-
rence or cure of a certain disease or health-related condi-
tion. In this article, unless stated otherwise, it is assumed
for ease of explanation that exposures and outcomes are
dichotomous and are positively related, meaning for
instance that exposure to a risk factor leads to more dis-
ease or exposure to a treatment leads to more cure of dis-
ease. However, the concepts to be explained also apply to
exposures and outcomes that are nondichotomous or
inversely related.
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What is new?

Key findings

e Confounding threatens the process of causal infer-
ence in (clinical) epidemiological research, yet its
underlying principles are complex and often
misunderstood.

e A sound understanding of confounding within the
counterfactual framework of causation enables bet-
ter anticipation and dealing with this source of bias
in research practice.

What this adds to what was known?

o A simplified explanation of the counterfactual defi-
nition of confounding is provided, based on a
nontechnical and graphical presentation of the cen-
tral role of exchangeable background risks.

What is the implication and what should change

now?

e This article can be used as a teaching tool for intro-
ducing researchers (and students) to the underlying
concepts of confounding explained from a counter-
factual viewpoint.

When conducting experimental and, especially, observa-
tional studies to address causal questions about exposure-
outcome relations in a certain target population, researchers
must always be on the lookout for the threat of confounding
that may bias causal inferences about the target population
under study [2]. Because the target population is defined by
the particular causal research question of interest, con-
founding is a target population-specific concept. The co-
occurrence of multiple exposures and their intertwined in-
fluence on an outcome within a specific target population
is an actual (biological) fact and in itself no bias. As a result
of existing interrelations between multiple exposures, how-
ever, it is not easy to disentangle the effect of the primary
exposure of interest (e.g., a risk factor or treatment) from
the effect of one or more other exposures that confound
the exposure-outcome relationship in the target population
under investigation. Consequently, when not appropriately
accounted for by design or in the analysis, confounding
biases study findings by distorting the association measures
used for quantifying the nature and magnitude of the rela-
tion between the primary exposure and outcome [3—8]. It
is a principal task of the researcher to attempt to eliminate
this bias or at the very least try to reduce it, by applying
either appropriate design or analytic strategies (or both).

In the literature, several definitions of confounding and
characteristics of confounders have been put forward
[8,9]. Traditionally, it was proposed that an extraneous

variable confounds an exposure-outcome association when
meeting three criteria [10,11]. The potential confounder
must be related to both the exposure and outcome of inter-
est but must be affected by neither of them. Although these
traditional criteria clarify essential properties of a con-
founding variable, they are considered inadequate because
looking for evidence of the separate criteria can be
misleading if one relies only on observed relations in study
data without properly minding the causal context within the
target population [9,12]. Therefore, relevant subject-matter
knowledge should always be used when identifying poten-
tial confounders of the exposure-outcome relation(s) under
study. A useful tool for this purpose are causal diagrams,
also called directed acyclic graphs [13,14].

Causal diagrams graphically depict theory-driven assump-
tions about causal relations between the exposure and outcome
variables in a target population under study and any other vari-
ables directly or indirectly related to the study variables.
Correctly specified causal diagrams based on appropriate
expert knowledge constitute a strong tool for identifying po-
tential confounding variables and for distinguishing con-
founders from nonconfounders. Fig. 1 shows how a
confounder is defined and can be identified in a causal dia-
gram. Furthermore, Fig. 1 also shows how causal diagrams
can be used to define other types of variables that should be
distinguished from confounders (i.e., mediators and colliders),
which is a particular strength of using carefully constructed di-
agrams. The concepts of mediator and collider variables are
beyond the scope of this article, however, and will therefore
not be explained further. Confounding can be introduced by
asingle variable or set of variables, which should be minimally
taken into account before drawing causal conclusions about an
exposure-outcome relation of interest. In that sense, a
confounder can be defined as a variable for which control by
design or analytical adjustment is required to obtain unbiased
estimates of the effect of an exposure on the outcome under
study [9]. Basically, confounding thus reflects a special kind
of triangular relationship between an outcome and two (or
more) interrelated exposures that both affect the outcome.
Which of the exposures is regarded as the primary exposure,
whose unbiased relation with the outcome is of interest, and
which one is treated as the confounder, whose biasing influ-
ence needs to be eliminated, depends mostly on the main
research questions and causal structures that have been hy-
pothesized a priori [15].

It is extremely important for researchers addressing
causal questions to master the principles of confounding
because it will enable them to better anticipate and deal
with this common type of bias. One way to gain a deeper
understanding of the concept of confounding is through
the counterfactual theory of causation [16—20]. Counter-
factual theory has gained popularity as a way to define
and statistically quantify cause-and-effect relations, as well
as the types of bias, including confounding, that threaten
the interpretation of these relations. Basic knowledge about
counterfactuals can help better understand how
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Cis a confounder.

Cis a common cause of E and D, thereby creating an alternative route (backdoor

path) fromEto D via C (E € C—> D)

C—> E——» D

B
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E—>» C——>» D

Mediation

Cintroduces bias in the observed E-D association, unless the analysis is adjusted for
C (conditioning on C).

Cis a mediator or intermediate variable.
Cis an effect of E and a cause of D, thereby being part of the total causal effect of E on
D that consists of a direct effect of E on D (E = D) and an indirect effect of E on D

mediated by C (E > C > D).
No bias is introduced by C and analysis of the E-D association needs no adjustment for
C, unless one is interested only in the direct effect of E on D.

Cc
Colliding
/\‘ Cis a collider.
E > D > C (E> C< D).

Cis a common effect of E and D, thereby blocking the path from E to D via C

C does not introduce bias in the observed E-D association, unless analysis is
adjusted for C (conditioning on C), which unblocks the path from E to D via C
and introduces collider bias.

Fig. 1. Causal diagrams showing possible triangular relationships between an exposure E, an outcome D, and a third variable C. Confounding of the
causal E-D relation occurs when variable C is a cause of both exposure E and outcome D (A). In case variable C is a cause of outcome D but an effect
of exposure E, then C is not a confounder but a mediator (B). If variable C is an effect of both exposure E and outcome D, then C is a collider instead

of a confounder (C).

confounding can bias the process of causal inference.
Therefore, the aim of this article is to present a nontech-
nical explanation of the definition of confounding within
the counterfactual framework.

2. Understanding the counterfactual framework in-
creases understanding of confounding

A starting point for explaining confounding on a concep-
tual level is imagining a situation in which it cannot occur.
Causal reasoning in hypothetical contrasts (counterfactuals)
can be very insightful for that purpose and thereby useful
for conceptually defining confounding [3,7,16—18]. In sim-
ple terms, the counterfactual theory of causation could be
called the ‘What if?’ theory. When thinking in a counterfac-
tual way about a causal, unconfounded effect of an expo-
sure on an outcome, the potential outcomes in two
situations with contrasting states of exposure are compared
(e.g., exposed vs. unexposed). One of these situations is
real (factual) and can potentially be observed, whereas
the other is unreal (counterfactual) and cannot be observed.
If for instance the actual observed situation is the exposed
state, then the sixty-four thousand dollar question about
causation is “What would the outcome have been if exposed
persons had been unexposed?’ Accordingly, an exposure
has a causal effect on an outcome in a specific target pop-
ulation if and only if the occurrence of the outcome in
exposed persons is different from the occurrence in the
same persons, when they would not have been exposed.
As only one of these two potential outcomes can obviously
be observed in reality, the theory of counterfactuals has

been criticized for lacking practical applicability [21,22].
However, in recent decades, the counterfactual way of
thinking has enabled the statistical quantification of causal
effects and has fueled, among other things, the development
of causal graph theory [23,24]. Therefore, understanding
how causal effects are defined according to counterfactual
theory facilitates understanding of what noncausal effects
due to confounding are.

2.1. A counterfactual scenario precludes confounding:
central role of the background risk

To answer the question how the concept of no confound-
ing is explained based on counterfactuals, one could ima-
gine a study scenario that precludes confounding. As a
thought experiment, suppose you perform a study on the ef-
fect of some exposure (e.g., a certain treatment) on the
occurrence of an outcome of interest, for instance the re-
covery from a certain disease. Imagine also living in the hy-
pothetical world of H.G. Wells and so having a time
machine at your disposal. You could then perform a true
counterfactual study. First, you expose a group of diseased
individuals (group A) to the treatment and, after some
follow-up time, determine the incidence of recovery from
disease as a measure of the risk of the outcome of interest.
Next, you travel back in time using your time machine and
select the same group of diseased individuals again (group
A’). Now, however, you do not expose them to the treat-
ment and, under the exact same conditions and after the
same amount of follow-up time, you determine the inci-
dence of recovery once more. Based on this counterfactual
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study, assuming the treatment increases the ‘risk’ of recov-
ery, you could determine two risks in one and the same
group of individuals: (1) the risk in the unexposed group
A’ that is independent of the treatment (the background
risk), and (2) the risk in the exposed group A, which is
the background risk plus the extra risk due to the treatment.

Comprehension of the meaning of the background risk
is crucial here. This risk is determined by person-, time-,
and place-related factors that constitute the causal context
for an individual or group of individuals. It is the risk of
the outcome of interest that is not related to the primary
exposure but caused by other exposures that are specific
to the individuals being studied. In the counterfactual
study, any absolute or relative difference in the ‘risks’ of
recovery between the exposed and unexposed situations
has to be caused by exposure to the treatment because
all other factors related to person, time, and place were
identical in these two situations. Consequently, confound-
ing by extraneous variables is impossible in the counter-
factual study since no factors whatsoever differed
between the exposure groups except for the treatment un-
der investigation. In other words, the causal contexts were
identical in group A and A’, which after all was one and
the same group. Any measure of effect, such as the risk
difference (RD), risk ratio (RR), or odds ratio (OR), will
thus be free of confounding and reflect the causal effect
of the exposure on the outcome, both at the level of the in-
dividual and the group of individuals. Fig. 2 depicts the
counterfactual situation of no confounding. In addition,
for a better understanding of how causal effects at the in-
dividual and at the population level are defined according
to counterfactual theory, a definition of causal subtypes
and how this relates to the concept of the background risk
is provided in a web-only appendix.

0.4 ~ £
E
o 0.3 1
E
]
S
3
S 02 4
° Extra risk of outcome D,
£
22 caused by exposure E E
0.1 A E
Background risk of outcome D,
independent of exposure E
O -
E=0 E=1
Group A'  Group A

2.2. No confounding in research practice in case of
exchangeable background risks

Of course, in reality, one can never study an exposure-
outcome relation in the same group of individuals under
identical conditions at exactly the same time and place.
In the practice of (clinical) epidemiological research,
groups of different individuals are compared or groups of
the same individuals are compared at different times. An
observed association between an exposure and outcome
of interest based on a comparison of distinct study groups
is an estimate of the causal effect of the exposure on the
outcome in the target population of interest [5,6,17,18].
Because the primary exposure is not the only determinant
of the outcome of interest that can vary under such circum-
stances, the possibility of confounding by exposure to these
other determinants is introduced. In research practice, one
must therefore endeavor to mimic the counterfactual situa-
tion as much as possible by comparing exposure groups
comprised of individuals who have comparable background
risks of the outcome. This means that when studying for
instance two groups, exposed vs. unexposed, the unexposed
group should represent the counterfactual situation for the
exposed group if this group had not been exposed, and vice
versa. Ideally, the actual exposure groups thus need to be
valid substitutes of the counterfactual exposure groups
[17,18]. Otherwise, one would not only be estimating the
effect of the primary exposure on the outcome but also ef-
fects of other exposures that confound the exposure-
outcome relation under study, hampering the ability to draw
causal conclusions.

As an example of how the counterfactual situation of no
confounding could be mimicked in research practice, sup-
pose you perform a randomized study with two groups of

Target population A

(N=100)
D=1 D=0
20 80 —» Outcome distribution under exposure (factual)
10 90 —» Outcome distribution under non-exposure (counterfactual)

* Conversion of frequencies into
incidence proportions (=risks)

D=1 D=0
0.2 0.8
0.1 0.9

¢ Calculation of measures of
causal effects

RD=0.2-0.1=0.1
RR=0.2/0.1=2.0
OR =(0.2/0.8)+(0.1/0.9)=2.3

Fig. 2. The counterfactual situation of no confounding. The effect of an exposure E on the risk of outcome D in a single target population A is shown
in two contrasting conditions: exposed (A) and unexposed (A’). The absolute or relative difference in risk of outcome D between the two conditions
indicates the true (unconfounded) effect of exposure E on D, as expressed by causal measures of effect. (E = 1 and E = O indicate presence and
absence of exposure, respectively, and D = 1 and D = O indicate presence and absence of the outcome, respectively; RD, risk difference; RR, risk

ratio; OR, odds ratio).
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different individuals, one of which is exposed (group B)
and one which is not exposed (group C) to some treatment.
Assume that this study is performed in an infinitely large
population so that the probability of random imbalances be-
tween the study groups approaches zero. After a certain
period of follow-up, the frequency (risk) of the occurrence
of some outcome is determined in both randomly allocated
groups. Just as in the above-described counterfactual study,
two risks can now be distinguished: (1) the background risk
(group C), and (2) the background risk plus the extra risk
due to the treatment (group B). If the average background
risk of the outcome is the same in both study groups at
baseline (and remains the same during follow-up), any ab-
solute or relative risk difference between the two groups re-
sults from the effect that being exposed to the treatment had
on the outcome. Consequently, any measure of association
will not be biased by confounding (Fig. 3).

The crucial aspect in this example of no confounding is
again the background risk of the outcome that is not caused
by, and thus independent of, the exposure of interest
[5—7,17,18]. When comparing exposure groups of different
individuals, the background risk at the level of the individuals
is unlikely to be identical because different individuals likely
have different causal contexts and may represent different
causal subtypes [8,17,18]. However, if the average back-
ground risks are comparable between exposure groups of
different individuals, association measures based on a com-
parison of these groups will be valid estimates of the average
causal effect that the exposure has on the outcome. In case of
comparable background risks, exposure groups are said to be
exchangeable [3—5,7,18]. This means that if, by the flip of a
coin, the treatment allocation in the randomized study had
turned out to be the other way around (i.e., group C instead

of B exposed to the treatment), the exact same measures of
association would have been observed (Fig. 3). To accom-
plish exchangeability of exposure groups, the most effective
strategy is randomization [3,7,18,25]. By randomly allo-
cating individuals into one group exposed and another group
not exposed to some treatment, the likelihood of the allocated
groups being exchangeable with regard to their background
risks is increased parallel to an increase in the sample size.
The larger the sample size, the larger the chance that the
randomization process balances the distribution of potential
confounders in different exposure groups [26], thereby
creating exchangeability of background risks. Another way
to increase the likelihood of exchangeability is through re-
striction of potential confounders, as a result of which only
individuals with certain predefined characteristics are
included in a study [3,7,23]. Homogeneous exposure groups
are created in this way to reduce the chance of confounding
by the restricted variables as well as correlates thereof.

2.3. Confounding occurs if background risks are
nonexchangeable between exposure groups

So when does confounding occur? As might be clear
from the aforementioned explanations of no confounding,
an exposure-outcome association will be confounded when
the background risks of the outcome of interest are dissim-
ilar between the exposure groups to be compared
[3—5,7,8,18]. Exposure groups are then not exchangeable
in a counterfactual sense, leading to a confounded, ’ap-
ples-and-oranges’ comparison. Another example will
clarify how nonexchangeability of background risks can
confound associations between an exposure and an

Situation A Situation B
o r 0.4
03 RD=0.1 RD=0.1
RR=2.0 < > RR=2.0

OR=2.3 Unbiased measures of association OR=2.3 L 0.3
g 0.3 A (association = causation) . g
o o
-] S
9 3
S 02 A - 02 2
2 Extra risk due Extra risk due 2
[}
-fé to exposure to exposure 2

0.1 - - 0.1

Background risk Background risk
of outcome - s of outcome
Exchangeable background risks
0 - (no confounding) - 0
E=0 E=1 E=1 E=0
Group C Group B Group C Group B

Fig. 3. The situation of no confounding in research practice. The effect of an exposure E on the risk of an outcome is studied by comparison of two
different groups (B and C). Two contrasting situations are depicted: group B exposed and group C unexposed (situation A) vs. group C exposed and
group B unexposed (situation B). The identical measures of association in the two situations indicate that exchangeability of background risks is a
prerequisite for observing unconfounded associations, showing that the causal effect of exposure E is identifiable in the absence of confounding
(association = causation). (E = 1 and E = O indicate presence and absence of exposure, respectively; RD, risk difference; RR, risk ratio; OR, odds

ratio).
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outcome in the practice of (clinical) epidemiological
research.

Once more, imagine performing a study. You now
conduct an observational study on the association between
exposure to some risk factor and the occurrence of some
disease. A cohort of individuals at risk of the disease is
enrolled and, after a certain follow-up period, the incidence
of the disease in both the exposed subcohort (group D) and
the unexposed subcohort (group E) is determined. If the
average background risk of the disease differs between
the exposed subcohort and the unexposed subcohort, any
measure of association between the risk factor and the dis-
ease based on a comparison of disease incidences will be
confounded by the factor(s) responsible for the different
background risks (Fig. 4). Confounding occurs because
when being exposed or not is related to other disease deter-
minants, the background risks in the subcohorts will not be
exchangeable anymore. This nonexchangeability means
that if exposure to the risk factor had been the other way
around for some reason (group E instead of D exposed),
the measures of association would change, indicating that
causal effects are not identifiable in the presence of con-
founding (Fig. 4).

3. The nature of nonexchangeable background risks
determines the direction of confounding bias

Confounding due to nonexchangeable background risks
between exposure groups can bias measures of an
exposure-outcome relation in different directions. When
the average background risk of the outcome of interest is
lower among exposed persons than among unexposed per-
sons, the bias in the observed association between exposure

and outcome will be downward, resulting in underestimation
of the causal effect that the exposure has on the outcome (sit-
uation A in Fig. 4). By contrast, if the background risk among
exposed persons is higher than among unexposed persons,
the observed association will be biased upward, resulting in
overestimation of the causal effect of the exposure (situation
B in Fig. 4). Note that the above-described direction of the
bias holds true only for an exposure that increases the risk
of an outcome. In case an exposure decreases the risk of an
outcome, the direction of the bias resulting from nonex-
changeable background risks between exposure groups will
be the opposite. Moreover, if the nonexchangeability be-
comes too large, a true causal relation between an exposure
and outcome may be completely masked or even reversed.
The latter case of extreme confounding would result in bias
across the null (e.g., a true risk factor may spuriously appear
as a protective factor). To illustrate potential consequences of
nonexchangeability in the practice of (clinical) epidemiolog-
ical studies, two examples of confounding are presented in
Box 1.

4. Design and analytic strategies to combat confound-
ing are based on nonexchangeability principles

Confounding is always a possibility to be considered as
an alternative, noncausal explanation of observed exposure-
outcome associations in experimental and, especially,
observational studies. Researchers have the crucial task to
try to control confounding at the design stage of a study
and/or attempt to eliminate it at the data analysis stage.
As already mentioned, common design strategies to control
for confounding are randomization and restriction, which
aim to enhance exchangeability between exposure groups.

Situation A Situation B
_ r 0.4
04 RD=0.0 RD=0.2
RR=1.0 < > RR=3.0
OR=1.0 Biased measures of association OR=3.9 L 03
o 0.3 A (association = causation) T
g Extra risk due _| g
] to exposure §
5
2 02 - = - 0.2 g
g Extra risk due ~
= to exposure ) 2
Background risk _] L 01
0.1 4 . ingroup E :
Background risk ‘_/'
ngroup b Non-exchangeable backgroundrisks
0 - (confounding) - - 0
E=0 E=1 E=1 E=0
GroupE  Group D GroupE  Group D

Fig. 4. The situation of confounding in research practice. The effect of an exposure E on the risk of an outcome is studied by comparison of two
different groups (D and E). Two contrasting situations are depicted: group D exposed and group E unexposed (situation A) vs. group E exposed and
group D unexposed (situation B). The dissimilar measures of association in the two situations indicate that nonexchangeability of background risks
induces confounding of observed associations, showing that the causal effect of exposure E is not identifiable in the presence of confounding (as-
sociation # causation). Association measures in both situations are confounded by factors responsible for the difference in background risks be-
tween exposure groups. (E = 1 and E = O indicate presence and absence of exposure, respectively; RD, risk difference; RR, risk ratio; OR, odds

ratio).
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Box 1 Practical examples of confounding

Confounding in experimental research: confounding by indication

In nonrandomized controlled trials, or even in randomized controlled trials in which the random treatment allocation is not
adequately concealed, confounding can occur if the decision to allocate the treatment under investigation depends on a
factor that is also related to the outcome of interest. Imagine for instance an exper-
imental study in which the effect of anti-inflammatory medication (e.g., a drug) on
the occurrence of postoperative complications (e.g., wound infection) is evaluated. f
The surgeon decides who receives the drug after surgery and who does not. If the clinical decision
surgeon’s decision to prescribe the drug is influenced by specific patient character-
istics, such as a risk factor (e.g., advanced age) that is a clinical indication for
prescribing the drug to lower the risk of postoperative complications (see causal di-
agram), then confounding by indication will bias the effect of the drug on postop-
erative complications.

drug —— complications

risk factor

Suppose that the true effect of the drug is to lower the risk of complications by 20% and that the average background
risk of complications is 30% in the total study population. Further suppose that because the surgeon prescribed the drug
more often to patients with the risk factor than to patients without, the background risk of complications is 50% in the
patients receiving the drug and 10% in the patients not receiving the drug. The bar graphs show the situation of no
confounding (left) and the situation of confounding (right) due to the nonexchangeability of background risks induced
by the confounding by indication. Assuming that the true risk-lowering effect of the drug remains unchanged and thus
is independent of the risk factor responsible for the difference in background risks, the confounding by indication has
produced bias across the null (i.e., reversal of effect), leading to the false conclusion that the drug has resulted in an
increased risk of complications.

5 ¢ 0.90 risk-lowering effect S 2 0.90

-t

@ '% 0.70 of the drug _é % 0.70 risk-lowering effect

- S

g = exchangeable background é %_ 0.50 of the drug

€ g risks of no complications € g non-exchangeable background

— O — © risks of no complications
nodrug drug nodrug drug

Unconfounded measures of the effect of medication: Confounded measures of the effect of medication:

RD=0.10-0.30=-0.20 RD=0.30-0.10=0.20

RR=0.10/0.30=0.33 RR=0.30/0.10=3.00

OR =(0.10/0.90) + (0.30/0.70) = 0.26 OR =(0.30/0.70) + (0.10/0.90) = 3.86

Confounding in observational research: spurious association induced by confounding

. . . .. alcohol use lung cancer
Confounding can induce spurious (noncausal) associations between an exposure

and outcome that are not causally related but share a common cause. Suppose that /
the relation between alcohol and lung cancer is studied within a prospective cohort ”’;::t‘;";’“
study. Alcohol use is not causally related to lung cancer, but smoking is a strong risk

factor for developing lung cancer. Because alcohol use and smoking are associated,
probably linked by some unknown factor (e.g., a certain personality trait) that causes

both alcohol use and smoking (see causal diagram), an association between alcohol

use and lung cancer can be observed because of confounding by smoking.

smoking
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of lung cancer.

5 no causal effect of alcohol
= § use on lung cancer %5
% ° %
= ¥ 0.05 o
S exchangeable background
risks of lung cancer

no alcohol alcohol

Unconfounded measures of the effect of alcohol use:
RD =0.05-0.05 = 0.00

RR=0.05/0.05=1.00

OR =(0.05/0.95) + (0.05/0.95) = 1.00

Suppose that the average background risk of lung cancer in the study population is 5% and that in reality alcohol use
does not causally affect the risk of lung cancer. This means that the risk of lung cancer in alcohol users and nonusers is
equal to the background risk, which is determined by factors other than alcohol use, including smoking. Further sup-
pose that smoking is positively related to alcohol use (i.e., alcohol users are more likely to also smoke compared to
nonusers) and that smoking increases the risk of lung cancer. The bar graphs show the situation of no confounding (left)
and the situation of confounding (right) due to nonexchangeability of background risks resulting from confounding by
smoking. Assuming that alcohol has no causal effect on lung cancer in the absence and in the presence of smoking (no
interaction between alcohol and smoking), the true measures of effect are null. However, if the confounding by smoking
is disregarded, the background risk of lung cancer in alcohol users is increased relative to nonusers because the former
group contains more smokers. As a result, the confounding by smoking then produces a spurious association between
alcohol and lung cancer that does not exist in reality, leading to the false conclusion that alcohol use increases the risk

lung cancer

Confounded measures of the effect of alcohol use:
RD =0.08 - 0.02 = 0.06

RR =0.08/0.02 = 4.00

OR =(0.08/0.92) + (0.02/0.98) = 4.26
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In effect, analytic strategies to deal with confounding are
also based on exchangeability principles, including multi-
variable regression modeling, stratification, standardization,
inverse probability weighting, and propensity score
methods [23]. How does analytical adjustment for con-
founding work from a counterfactual perspective? Take,
for example, a stratified analysis, which is a simple method
to adjust for an imbalanced distribution of confounders be-
tween exposure groups. The goal of stratification is to
create homogeneous subgroups (strata) within the study
population, in which confounder distributions are balanced
between exposure groups. Stratification eliminates the rela-
tion between the confounder and exposure of interest,
thereby ensuring conditional exchangeability of back-
ground risks within confounder strata (Fig. 5). Conse-
quently, differences in risks of the outcome between
stratified exposure groups are unconfounded and can thus
be attributed to the exposure of interest. The same principle
basically applies to the other analytic strategies mentioned
above, which aim to create conditional exchangeability
through conditioning on one or more confounders. It is
important to note that when applying analytical methods
to adjust for confounding, issues such as incomplete adjust-
ment (residual confounding) or adjusting for mediators
(overadjustment bias) [27] must be avoided as much as
possible and should always be considered when drawing in-
ferences about unconfounded causal effects of an exposure
on an outcome in a target population of interest.

Of note, next to dealing with the lurking threat of con-
founding by mixing up effects of two or more exposures,

researchers must also consider the possibility of interplay be-
tween effects of exposures on some outcome of interest
[28—32]. This refers to the concepts of effect modification
and interaction, which are related to the concept of con-
founding and can complicate interpretation of data analyses
because of scale dependency. In fact, as can be noticed from
the example of the stratified analysis shown in Fig. 5, the
relative association measures (RR and OR) were not uniform
across confounder strata, whereas the absolute association
measure (RD) was. The heterogeneity of the exposure-
outcome association when expressed on the risk-ratio or
odds-ratio scale may indicate that the effects of the exposure
and the stratification variable on the outcome are interdepen-
dent because it appears that the exposure effect is somehow
modified by the stratification. A relevant question is whether
this represents causal effect modification or interaction, that
is, whether the causal effect of the exposure is truly changed
under the influence of the stratification variable. Although in
principle this could be a possibility, as a confounding vari-
able can also be a modifier of the effect that an exposure
has on an outcome, the answer is no in the particular
example shown in Fig. 5 because the effect of the exposure
on the risk-difference scale is homogeneous within the strata.
The magnitude of the absolute exposure effect thus remains
unchanged, but because the magnitude of the background
risks differs between the strata, the stratified relative expo-
sure effects also differ as they incorporate the background
risk. This algebraic phenomenon is the reason why effect
modification is sometimes called effect-measure modifica-
tion to refer to the scale-dependency that complicates the
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Fig. 5. Example of a stratified analysis to account for confounding of crude measures of association between exposure E and an outcome due to non-
exchangeability of background risks caused by variable C. Stratification creates conditional exchangeability of background risks between exposure
groups within strata based on categories of confounder C. As a result, stratified association measures are unconfounded, reflecting that the causal

effect of exposure E is identifiable after conditioning on confounder C. (

= 1 and E = O indicate presence and absence of exposure, respectively,

and C = 1 and C = O indicate the presence and absence of the confounder, respectively; RD, risk difference; RR, risk ratio; OR, odds ratio).

evaluation and interpretation of effect modification or inter-
action [32,33]. For example, in case of a stratified analysis, if
stratified association measures are uniform on an absolute
(additive) scale, they will automatically not be on a relative
(multiplicative) scale, and vice versa. Measures of associa-
tion cannot be homogeneous on both scales, except for the
situation when the exposure of interest is not causally related
to the outcome and all measures of effect are truly null.
Finally, when evaluating confounding based on a com-
parison of crude (unadjusted) and stratified (adjusted) effect
estimates, an important issue to consider is the crucial
distinction between so-called collapsible effect measures
such as the RD and RR and noncollapsible measures such
as the OR. Caution is warranted if the OR is used to eval-
uate confounding because the definition of confounding
based on noncollapsibility principles (i.e., confounding in
case crude and adjusted effect estimates differ meaning-
fully) does not necessarily converge with the definition of
confounding based on exchangeability principles (i.e., con-
founding in case of nonexchangeable background risks be-
tween exposure groups) [19]. Indeed, under certain specific
conditions, described in detail elsewhere, noncollapsibility
of the OR can occur in the absence of confounding and
collapsibility of the OR can occur in the presence of

confounding [5—7,10]. It is therefore generally not recom-
mended to use noncollapsible effect measures to evaluate
confounding based on a comparison of crude and adjusted
effect estimates, as any nonrandom difference can be the
result of confounding, noncollapsibility, or both.

5. Summary

Researchers performing (clinical) epidemiological studies
must anticipate and eliminate confounding, either through
control by design or adjustment during data analysis. At
the very least, the influence that confounding could have
had on observed study findings needs to be considered in
the process of drawing causal inferences about observed as-
sociations between some exposure and outcome in a target
population of interest. For the difficult task of trying to inter-
pret how study findings could have been biased by confound-
ing, researchers require a sound understanding of the
underlying principles of confounding, as well as familiarity
with methods for identifying potential confounders, such
as causal diagrams, and adequate design and analysis strate-
gies for combatting confounding. The aim of this article was
to explain in a comprehensible manner the concept of con-
founding within the counterfactual framework. It may be
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helpful as a teaching tool about the basic principles of con-
founding and the rationale for common design and analytic
strategies to handle confounding.
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