Aula 02 - Estatística Descritiva

quinta-feira, 27 de agosto de 2020 15:15

Descrição Tabular e Gráfica

Uma tabela deve conter:

- Título
- Corpo
- Cabeçalho
- Coluna indicadora

O título explica o conteúdo da tabela

O corpo da tabela é composto pelos dados, organizados em linhas e colunas que se cruzam

Célula é a interseção de uma linha com uma coluna

Linha é uma série de células organizadas horizontalmente

Coluna é uma série de células organizadas verticalmente

O cabeçalho especifica o conteúdo das colunas

A coluna indicadora especifica o conteúdo das linhas

Tabela: Título da tabela

rótulo da 1ª col rótulo da 2ª col

...

Tabela de distribuição de frequências

Tabela de distribuição de frequências

é constituída, basicamente, de duas colunas, uma contendo os possíveis valores que a variável assume e outra contendo o número de vezes (frequência) que cada um desses valores ocorre.

Exemplo: Conceito em relação à qualidade da comida do Rucas

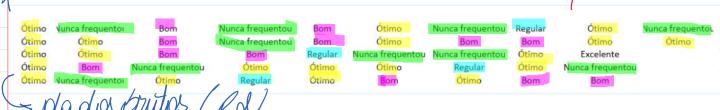


Tabela: Distribuição de frequências da variável conceito em relação à qualidade da comida do Rucas

Conceito (x_i)	Frequência (f _i)
Excelente	1
Ótimo	20
Bom	12
Regular	4
Nunca frequentou	10
Total	47

Nas tabelas de distribuição de frequências, é usual fornecer, além das frequências, as frequências relativas.

Frequência relativa =
$$\frac{\text{Frequência}}{\text{Total}}$$
.

Tabela: Distribuição de frequências da variável conceito em relação à qualidade da comida do Rucas

Conceito (x_i)	Frequência (f _i)	Freq. Relativa (f'i)
Excelente	1	0,021
Ótimo	20	0,426
Bom	12	0,255
Regular	4	0,085
Nunca frequentou	10	0,213
Total	47	1,000

Perguntas:

- Qual o conceito mais frequente?
- Qual é a porcentagem dos alunos que acham a comida ruim ou razoável?
- Qual é a porcentagem dos alunos que acham a comida pelo menos boa?

Tabela: Distribuição de frequências da variável conceito em relação à qualidade da comida do Rucas

Conceito (x_i)	Frequência (f _i)	Freq. Relativa (f' _i)	Freq. Acumula da (F _i)	Freq. Acumulad a Relativa (F' _i)	Freq. Acumulad a Inversa (F*i)	Freq. Acumulada Inversa Relativa (F' _i)
Excelente	1	0,021	1	0,021	47	1,000
Ótimo	20	0,426	21	0,447	46	0,979
Bom	12	0,255	33	0,702	26	0,553
Regular	4	0,085	37	0,787	14	0,298
Nunca	10	0,213	47	1,000	10	0,213
frequentou						
Total	47	1,000				

Exercício: Considere os dados a seguir referentes ao número de brotos deixados em cepas de *Eucalyptus grandis* após o primeiro corte.

2	1	2	2	0	3	3	2	1	1	2	2	0	1	1	3	1	2	1	1
2	0	0	3	2	1	2	2	3	0	2	3	3	0	3	2	2	0	1	1

Tabela: Distribuição de frequências para a variável número de brotos deixados em cepas de *Eucalyptus Grandis* após o primeiro corte

Número de					~ v	11K
brotos	f_i	f_i'	F_i	F'_i	Fi	Fi
0	7	0.175	7	095 -	40	1,000
1		0,276	18	0.450	33	0,825
2	14	0,350	32	0,800	22	0,550
3	8	0,200	40	1,000	8	0,200
Total	40	1000	-	_	~	

Número de valores diferentes muito grande

Agrupamento dos dados em classes

Características:

- as classes devem abranger todas as observações
- o extremo superior de uma classe é o extremo inferior da classe subsequente
- cada valor observado deve estar presente em apenas uma classe

Procedimento para a construção de uma tabela em classes de frequências:

Número de classes (K)

A escolha do número de classes é arbitrária, existindo, no entanto, duas regras que podem ser utilizadas:

•
$$K = \sqrt{n}$$

• Fórmula de Sturges:

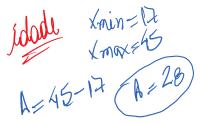
$$K = 1 + \log_2 n = 1 + 3,32 \log_{10} n.$$

n corresponde ao número de dados.

$$60 = 47$$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$
 $60 = 47$

outro caso: N=100 K=5100=100 $K=1100=7,64 \neq 80$ $K=113,32. \log(10)=7,64 \neq 80$ $K=113,32. \log(10)=7,64 \neq 80$

$$K = \sqrt{1000} = 31,62 = 32 \text{ down}$$
 $K = 1 + \log_{10} (1000) = 10,96 = 13 \text{ down}$
 $K = 1 + 3,32 \cdot \log(1000) = 10,96 = 31 \text{ down}$


Procedimento para a construção de uma tabela em classes de frequências:

Amplitude total (A)

Limite inferior: X_{mínimo}

Limite superior: X_{máximo}

Amplitude total: $A = X_{\text{máximo}} - X_{\text{mínimo}}$

Amplitude das classes (h)

$$h = \frac{A}{K}$$
.

Exemplo:

Tabela: Distribuição de frequências para uma variável contínua

Altura	fi	f_i'	Fi	F'_i
$x_{min} \vdash x_{min} + h$				
$x_{min} + h \vdash x_{min} + 2h$				
$x_{min} + 2h \vdash x_{min} + 3h$				
Total				

Exemplo: Construir a tabela de distribuição de frequências para a variável diâmetro das árvores em uma floresta.

Rol

10,2	10,3	11,6	12,0	12,6	12,6	13,0	13,2	13,5 14,0	
15,2	15,8	16,2	18,1	18,3	18,4	18,7	19,6	19,9 20,3	

1=40

10,2 1	.0,3 11,6	5 12,0	12,6	12,6	13,0	13,2	13,5	14,0
15,2 1	5,8 16,2	2 18,1	18,3	18,4	18,7	19,6	19,9	20,3
20,3 2	21,9 22,4	4 23,5	24,6	24,9	31,7	33,1	40,0	40,7
48.3 5	0.0 50.8	3 52,4	53.2	61.0	63.2	72.4	78.8	92.5

$$k = \sqrt{40} = 6.32 = 700000$$
 $k = \sqrt{40} = 6.32 = 700000$
 $k = \sqrt{40} = 7000000$
 $k = \sqrt{40} = 700000$
 k

Tabela: Distribuição de frequências para a variável diâmetro das árvores em uma floresta.

Classes (diâmetro árvores)	f _i	f'i	Fi	F'i
10,2 - 22,0	del	0,550	22	0,550
22,0 -33,8	φ	0,150	20	0,700
33,8 - 45,6	2	0,050	3()	0,750
45,6 - 57,9	5	0,125	35	0,875
574 - 69,2	2	0,050	37	9,925
69,2 - 81,00	Z	9,050	39	9775
810 - 923	1	0,025	40	1,000
Total	40	I_{j} 000		

Instalação do R

Link para a instalação do R: <u>https://cran.rstudio.com/</u>

The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, **Windows and Mac** users most likely want one of these versions of R:

- Download R for Linux
- Download R for (Mac) OS X
- ➤ Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the

R for Windows

Subdirectories:

base

Binaries for base distribution. This is what you want to install R for the first time.

contrib

Rtools

Binaries of contributed CRAN packages (for R >= 2.13.x; managed by Uwe Ligges). There is also information on third party software available for CRAN Windows services and corresponding environment and make variables.

old contrib

old collino

To

Binaries of contributed CRAN packages for outdated versions of R (for R < 2.13.x; managed by Uwe Ligges). Tools to build R and R packages. This is what you want to build your own packages on Windows, or to build R itself

R-4.0.2 for Windows (32/64 bit)

Download R 4.0.2 for Windows (84 megabytes, 32/64 bit)

<u>Installation and other instructions</u> <u>New features in this version</u>

Faça o download e instale em seu computador.

Link para a instalação do RStudio: <u>https://rstudio.com/products/rstudio/download/</u>

Role a página mais para baixo e faça o download.

RStudio Desktop 1.3.1073 - Release Notes

- 1. Install R. RStudio requires R 3.0.1+.
- 2. Download RStudio Desktop. Recommended for your system:

Requires Windows 10/8/7 (64-bit)

Instale em seu computador.

Execute o RStudio e vamos testar:

brotos <- c(2, 2, 1, 0, 2, 0, 2, 3, 0, 2, 3, 1, 3, 2, 2, 2, 1, 3, 1, 1, 1, 0, 2, 2, 2, 3, 0, 3, 1, 0, 1, 3, 3, 2, 1, 2, 2, 0, 1, 1)

brotos

Espero que tenha dado certo.

Até a próxima aula.