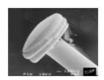
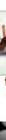
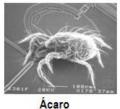


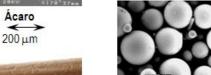
MICROUSINAGEM: AULA 1

DEFINIÇÕES

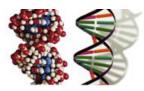

Prof. Assoc. Alessandro Roger Rodrigues


ESCALA



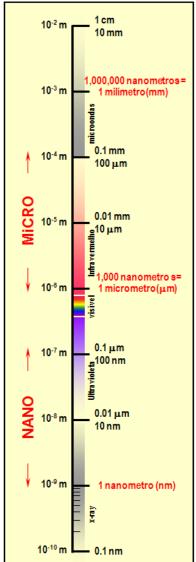


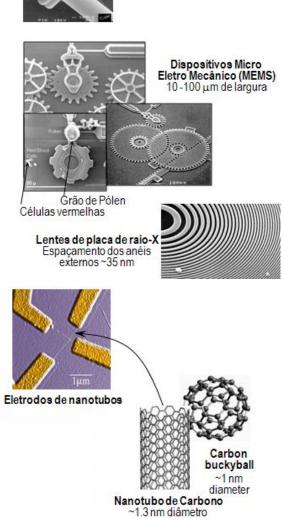
Cabeça de alfinete 1-2 mm


Cabelo humano ~60-120 µm wide

Partículas de fumaça ~10-20 µm

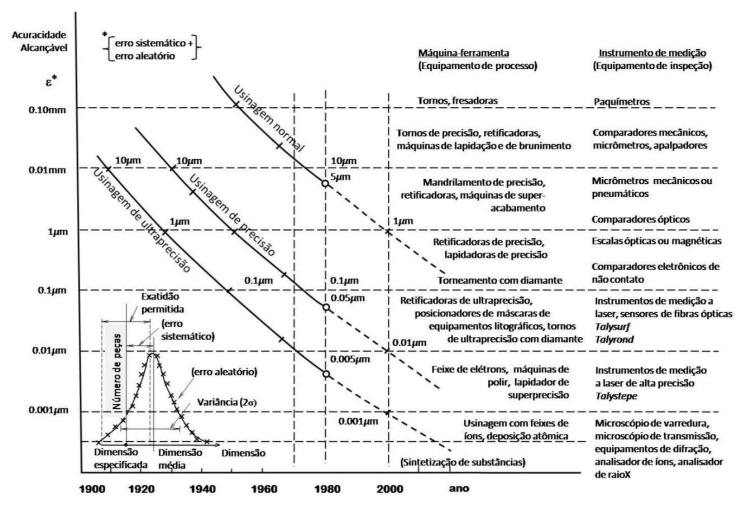
Células Vermelhas (~7-8 µm)





DNA ~2-1/2 nm diâmetro

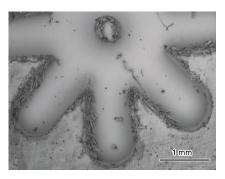
Átomos de silício espaçamento de 0.078 nm



PRECISÃO

TANIGUCHI, N. Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing. **CIRP Annals.** Vol. 32, n. 2, p. 573-582, 1983.

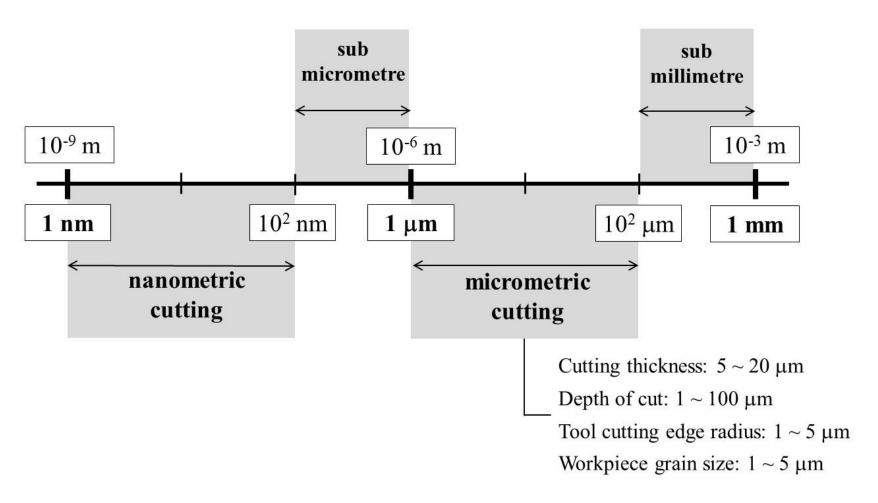
MICROUSINAGEM


Produtos que apresentam características funcionais ou, ao menos, uma dimensão na ordem micrométrica (Dinamarca).

Usinagem com dimensões entre 1 e 999 µm (Japão).

Usinagem com espessura de corte variando de nanômetros a alguns micrômetros (Inglaterra).

Usa ferramentas menores que 1 mm, contendo aresta de corte com geometria definida (EUA).

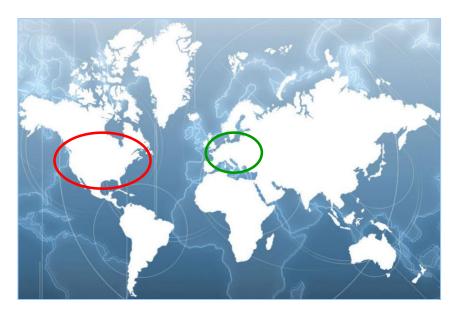


M.A. Câmara et al.: J. Mater. Sci. Technol., 2012, 28(8), 673-685.

ESCALA

Microfabrication and Precision Engineering. DOI: http://dx.doi.org/10.1016/B978-0-85709-485-8.00002-4

1960: Indústria de relógios

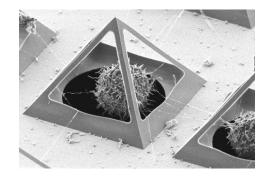

1970: Tendência à miniaturização de máquinas e dispositivos

1980: Mecânica de precisão (MEMS e MST)

1990: Usinagem química de Si

2000: Microusinagem mecânica

2010: Microfabricação subtrativa e aditiva



DEMANDA

Levantamento: Alemanha, China, Índia (2009-2012)

Micropirâmides para captura de células

Segmentos:

Aeroespacial

Biomédico **Produtos:**

Óptico Cabeças de impressora a jato de tinta

Eletrônico Sensores de injeção eletrônica de automóveis

Comunicações Cabeças de discos magnéticos de computadores

Automotivo Aparelhos portáteis de dosagem de colesterol no sangue

Conectores de fibras óticas

Filtros para telefones celulares



DEMANDA

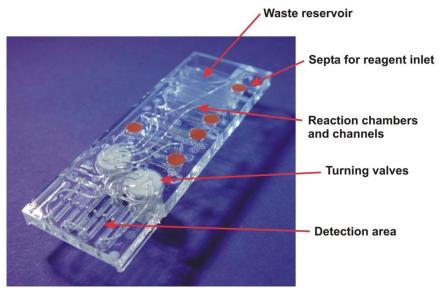
Fonte: NEXUS III

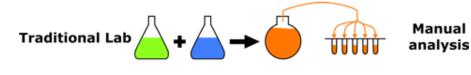
Mercado de alguns produtos MEMS/MST, 2004 - 2009

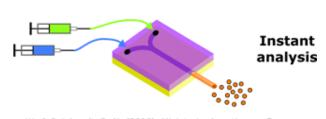
^{*}Outros: microreator, resfriador de chip, memória MEMS, lentes líquidas, microespectrômetro, wafer probe micro espelhos para processamento óptico, micro bombas, micro motores, sistemas de análise química

NEXUS. NEXUS MST/MEMS Market Analysis III 2005-2009. Disponível em:

http://www.nexus-mems.com/>. Acesso em 12 de outubro de 2007.

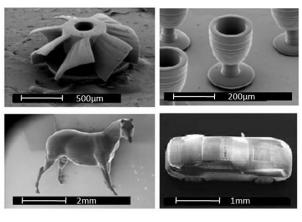


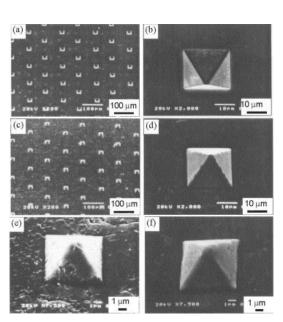

MINIATURIZAÇÃO



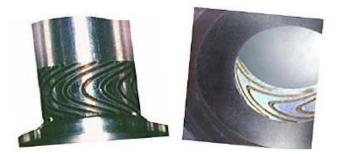
Redrawn from: Brivio, M., Verboom, W., & Reinhoudt, D. N. (2006). Miniaturized continuous flow reaction vessels: influence on chemical reactions. *Lab on a Chip*, 6, p. 329.

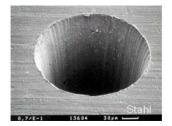
On-chip lab




Aditivos: microestereolitografia

Near-net-shape: microforjamento, microestampagem e microinjeção


Subtrativos: microusinagem (química, mecânica, ...)



Aditivos

Microforjamento

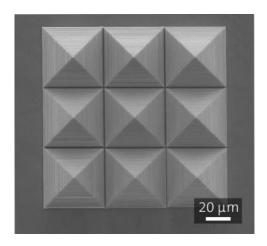
Microusinagem

CLASSIFICAÇÃO

Microusinagem (subtrativa):

Eletroerosão (micromoldes)

Laser (microfuros)

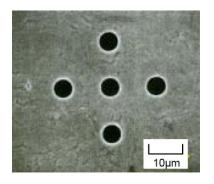

Ultrassom (micropenetrações em materiais frágeis)

Fotolitrografia (microparedes planas)

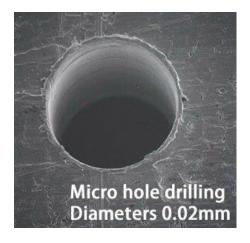
Eletroquímica (microssuperfícies lisas em metais)

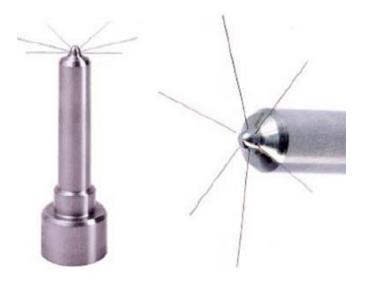
Torneamento (micropinos, microparafusos)

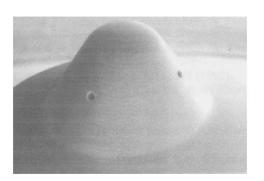
Fresamento (microestruturas 3D)

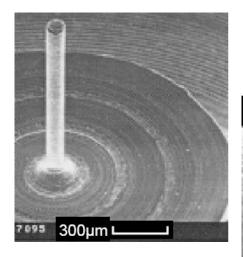


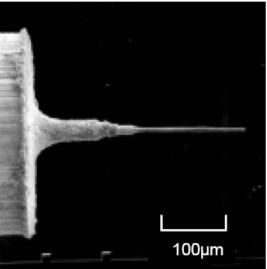
Usinagem a direct laser writing

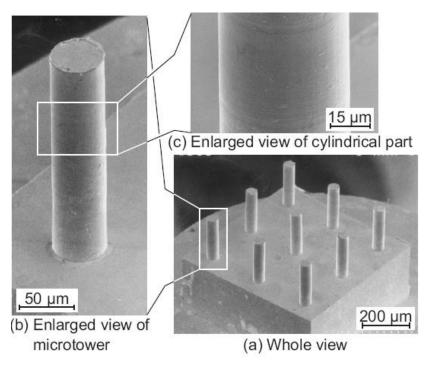



MICROFUROS

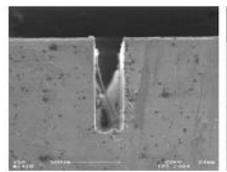




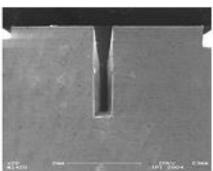


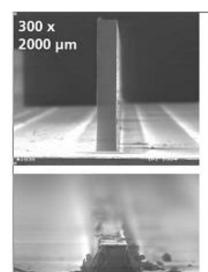


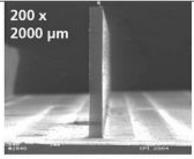
MICROPINOS

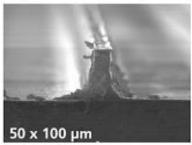


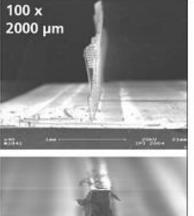




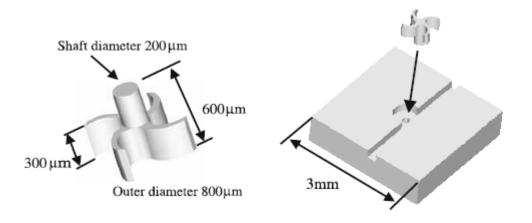

MICROCANAIS / MICROPAREDES

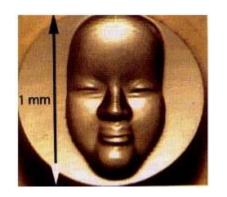


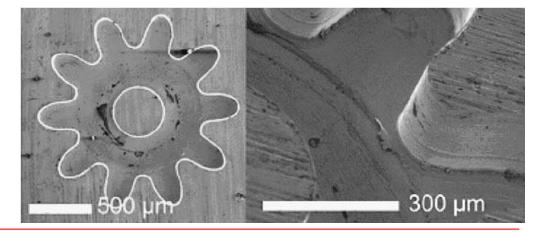


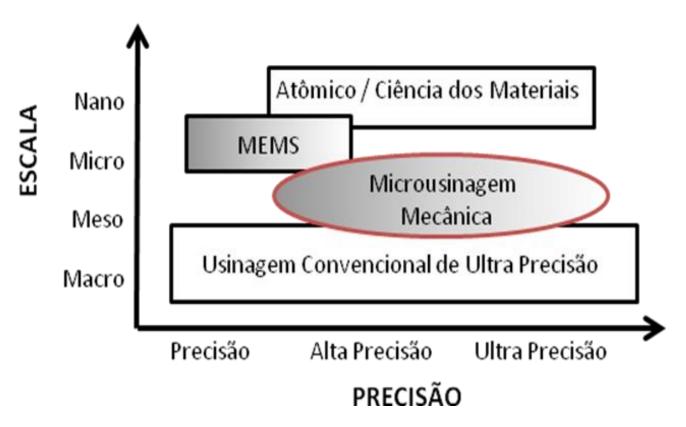


50 x 50 µm









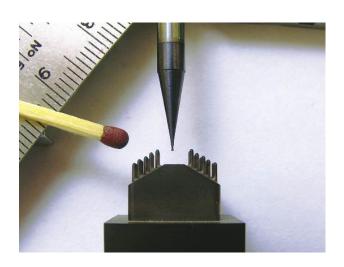
CHAE, J.; PARK, S. S.; FREIHEIT, T. Investigation of micro-cutting operations.

International Journal of Machine Tools and Manufacture. Vol. 46, n. 3-4, p. 313-332,

Mar. 2006.

MICROFRESAMENTO

Usina diversos materiais

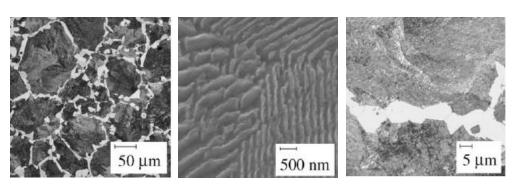

Peças com elevada razão de aspecto

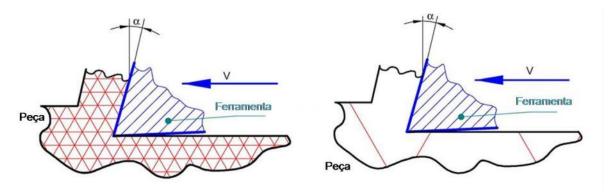
Complexidade geométrica

Produtos em mesoescala (1mm a 1 cm)

Maior taxa de remoção

Ferramentas inferiores a Ø1 mm





MATERIAL DA PEÇA

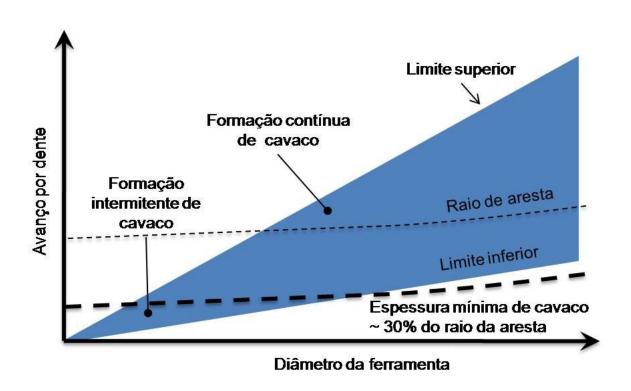
Aço 1045

BISSACCO, G.; HANSEN, H. N.; DE CHIFFRE, L. Micromilling of hardened tool steel for mould making applications. **Journal of Materials Processing Technology.** Vol. 167, n. 2-3, p. 201-207, Ago. 2005.

ESPESSURA MÍNIMA DE CORTE

ÖZEL, T.; LIU, X.; DHANORKER, A. Modeling and Simulation of Micro-Milling Process.

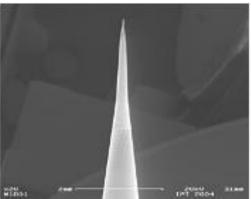
Proceedings of the 4th International Conference and Exhibition on Design and Production of Machines and Dies/Molds, Cesme, Turkey, 21-23 Jun. 2007.

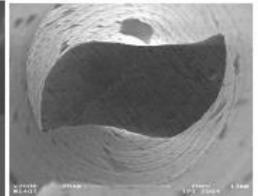

Material Removido Deformação Elástica h>hm h<hm h≅hm (a) (b) (c) Ferramenta **Ferramenta** Peça Peça

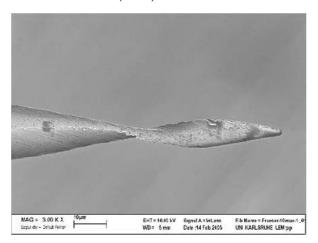
BISSACCO, G.; HANSEN, H. N.; DE CHIFFRE, L. Micromilling of hardened tool steel for mould making applications. **Journal of Materials Processing Technology.** Vol. 167, n. 2-3,

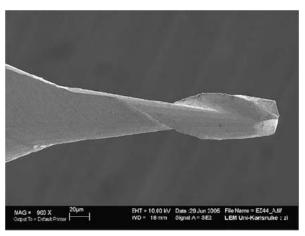
ESPESSURA MÍNIMA DE CORTE

KIM, C. J.; MAYOR, J. R.; NI J. A Static Model of Chip Formation in Microscale Milling. **Journal of Manufacturing Science and Engineering.** Vol. 126, n. 4, p. 710-718, Nov. 2004.



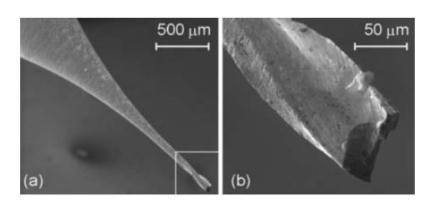


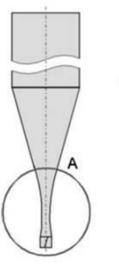


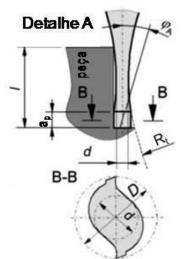


 $Ø = 50 \mu m (MD)$

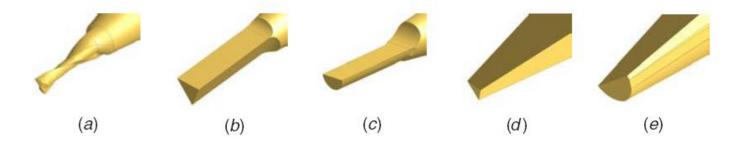
 $Ø = 7 \mu m (MD)$



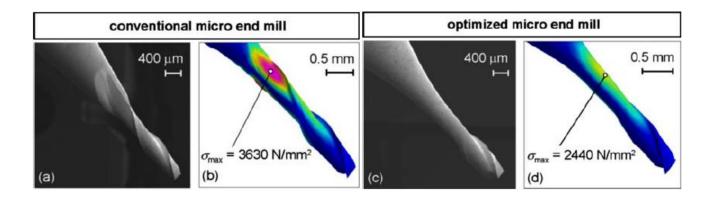

 $Ø = 40 \mu m (MD)$



MICROFRESAS

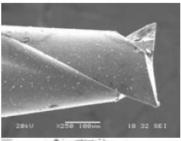


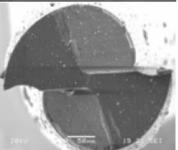
UHLMANN, E.; PILTZ, S.; SCHAUER, K. Micro milling of sintered tungsten-copper composite materials. **Journal of Materials Processing Technology.** Vol. 167, n. 2-3, p. 402-407, 2005.

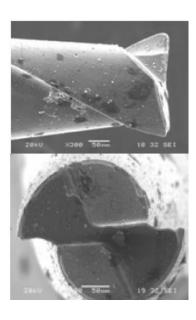


FANG, F. Z.; WU, H.; LIU, X. D.; NG, S. T. Tool geometry study in micromachining.

QUEBRAS


Diâmetro da fresa	Força para lascamento	Força para quebra
Ø 0,1 mm	0,06N	0,26N
Ø 0,2 mm	0,34N	1,54N


UHLMANN, E.; PILTZ, S.; SCHAUER, K. Micro milling of sintered tungsten-copper composite materials. **Journal of Materials Processing Technology.** Vol. 167, n. 2-3, p. 402-407, 2005.

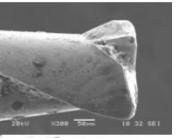


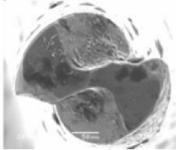
Ferramenta nova

$$Ø = 303 \, \mu m$$

$$r_p = 1.5 - 2 \mu m$$

Vol. usinado = 0




Ferramenta semi-nova

$$\emptyset = 296 \, \mu m$$

$$r_p = 5 - 7 \mu m$$

Vol. usinado = 0,2 mm³

Ferramenta usada

$$\emptyset = 284 \, \mu m$$

$$r_p = 14 - 20 \mu m$$

Vol. usinado = $1,2 \text{ mm}^3$

URIARTE, L.; ZATARAIN, M.; ALBIZURI, J.; LOPEZ DE LACALLE, L. N.; LAMIKIZ,

A. Effect of the tool wear in micro-milling cutting forces. Disponível em:

http://www.cim.pw.edu.pl/tewy_mgr/. Acesso em 20 de setembro de 2007.

MATERIAL DE MICROFRESAS

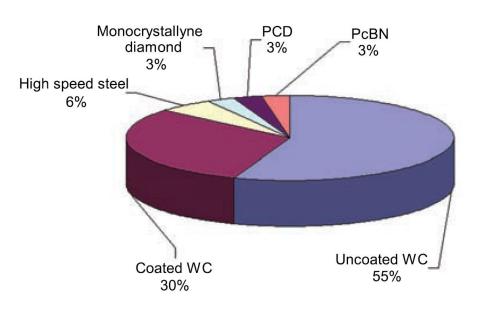
Microfresas a partir de 50 μm

Diamante

 $r_e = 0.1 \ \mu m$

Abrasivos (Si, compósitos)

Baixa flexão (alta rigidez)


Alta condutividade térmica

Metal duro

Esférica ou plana

2 arestas

Aço

Substrato

M.A. Câmara et al.: J. Mater. Sci. Technol., 2012, 28(8), 673-685.

COBERTURA DE MICROFRESAS DE WC

TINAI

Melhor adesão

Aumenta a dureza

Deposição rápida

Al_2O_3

Excelente resistência ao desgaste

Dissipa melhor o calor

Deposição dificultada

Diamante

ABC Itamarati (importa EUA)

Arsystem (importa Coréia do Sul)

Guhring (fabrica)

Iscar (importa Israel)

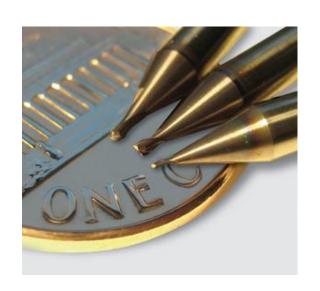
Mitsubishi (fabrica)

Ontime (importa Itália)

OSG (fabrica e importa Japão)

Ventec (importa Holanda, EUA)

Walter (fabrica)


YG1 (fabrica e importa Coréia do Sul)

Sandvik

Seco Tools

Tungaloy

Kyocera

Precisão de posicionamento: 0,1 µm

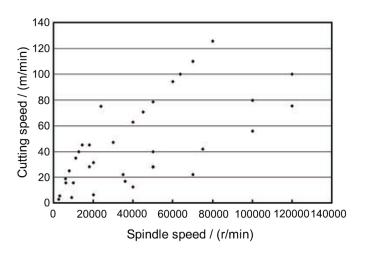
Alta rotação do *spindle* (turbinas a ar)

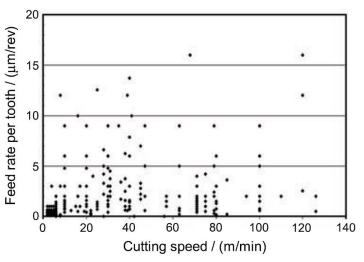
Maioria de 3 eixos

Estabilidade térmica

Alta resolução linear e rotacional

Alta rigidez estática e dinâmica

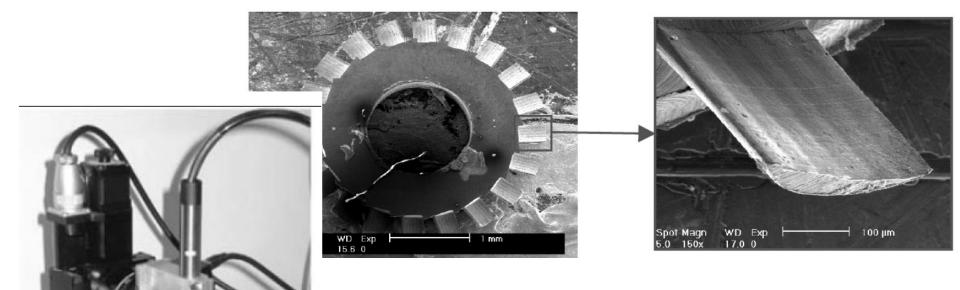

Sistemas de controle rápidos e precisos


Eixos com motores lineares

Batimento do *spindle* < 1 μm

Mancais magnéticos no spindle

Variação de temperatura < 0,1 °C



Bancada ou mesa

BANG, Y.; LEE, k.; OH, S. 5-axis micro milling machine for machining micro parts.

International Journal of Machine Tools and Manufacture. Vol. 55, n. 9-10, p. 888-894, Mai. 2005.

Fanuc

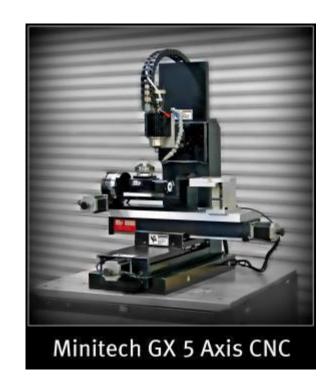
Kern

Makino

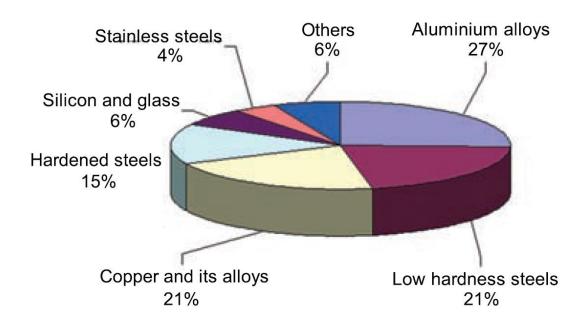
Mori Seiki

Tornos

MikroTool



Willemin-Macodel


Minitech

MATERIAL DA PEÇA

M.A. Câmara et al.: J. Mater. Sci. Technol., 2012, 28(8), 673–685.

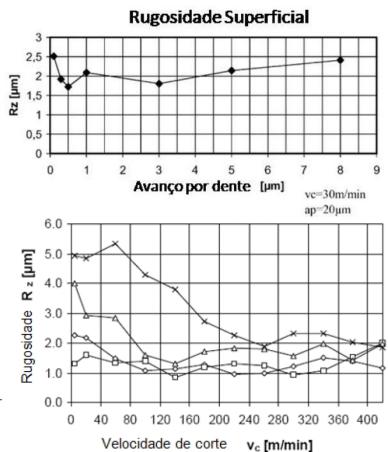
ACABAMENTO DA PEÇA

TAKÁCS, M.; VERÖ, B.; MÉSZÁROS, I. Micromilling of metallic materials, Journal of Materials Processing Technology. Vol 138, n. 1-3, p. 1-4, Jul. 2003.

Rugosidade

Flexão + Desbalanceamento

Avanço por dente


Velocidade de corte

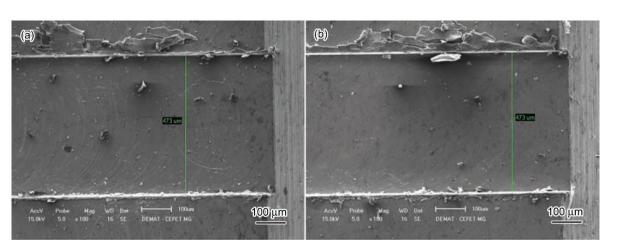
 $R_a = 0.1 \text{ a } 1 \mu\text{m}$

SIMONEAU A.; NG E.; ELBESTAWI M.A. Surface Defects During Microcutting.

International Journal of Machine Tools and Manufacture. Vol. 46, n. 12-13, p. 1378-1387, 2006b

WEULE, H.; HUNTRUP, V.; TRITSCHLER, H. Micro-cutting of steel to meet new requirements in miniaturization. Annals of CIRP. Vol. 50, n. 1, p. 61–64, 2001.

ACABAMENTO DA PEÇA


Rebarba: Principal problema

Para diminuir Para aumentar

Revestimento Corte concordante

Fluido Plowing

Maior avanço Desgaste

Al 6262-T5 com 50 e 25 μ m/z

M.A. Câmara et al.: J. Mater. Sci. Technol., 2012, 28(8), 673-685.

CENÁRIO NACIONAL

Peças Ø 5 x 50 mm e 50 x 50 x 50 mm

Máquinas em geral: 16%

Transportes: 12% Outros: 35%

Moldes e matrizes: 11%

Máquinas agrícolas: 10% Metalurgia Indústria de fertilizantes

Energia hidrelétrica: 3% Alimentos Modelismo

Aeronáutica: 3% Sensores Defesa

Açúcar e álcool: 3% Caldeiraria Ferramentarias

Siderurgia: 2% Automotivo Fundições

Petróleo e gás: 2% Linha branca Manutenção em geral

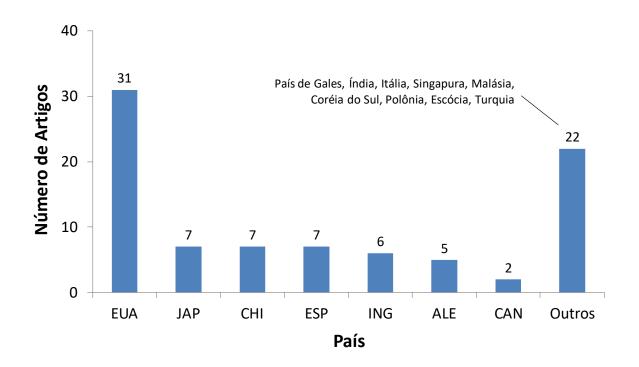
Naval: 2% Ferramentas elétricas Construção civil

Energia eólica: 1% Gráficas

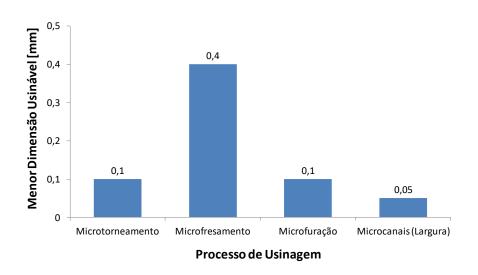
Revista Máquinas e Metais (ano 48, n° 560, set/2012)

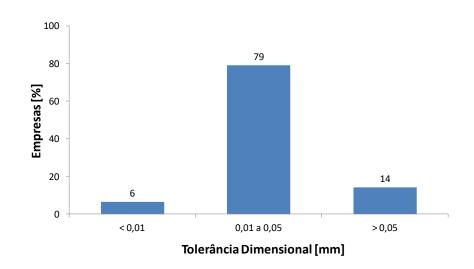
EMPRESAS PESQUISADAS

Insegurança do mercado interno
Transferência de tecnologia
Mão-de-obra
Início no segmento
Procura de clientes

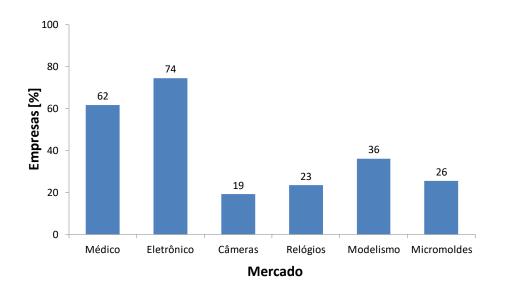


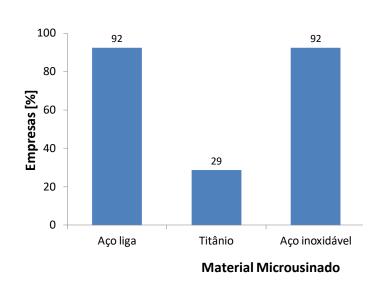
PESQUISAS


China, EUA, Índia, Canadá, Turquia, Espanha, Itália, Alemanha, Japão, outros.



PROCESSOS E TOLERÂNCIAS





MERCADO E MATERIAL DA PEÇA

MERCADO NACIONAL

Empresa Telefone	Dime das p rotaciona		Dimensões das peças prismáticas (mm)			Operações de microfuração e microusinagem de canais (mm)			Máquinas utilizadas									rcad que	4 - 1	Materiais que usina					
	Menor diâmetro	Menor comprimento	Menor comprimento da peça	Menor largura da peça	Menor altura da peça	Menor diâmentro de furo	Menor largura de canal	Tolerância dimensional: +/-	Tornos do tipo suíço	Tornos automáticos	Tornos CNC	Centros de usinagem horizontais	Centros de usinagem verticais	Eletroerosão por penetração	Eletroerosão a fio	Outras	Indústria médica/odontológica	Componentes eletrônicos	Modelismo	Micromoldes	Outros	Aços-liga	Titânio	Aços inoxidáveis	Outros
AJW (11) 4032-1845	2	1	1	1	1	0,5	0,5	0,01			×		×		×			×			×	×	×	×	×
Fermam (47) 3350-3900	2	1	2	2	1	1	1	0,01			×		x	x	×	x					×	x		×	
Gross (47) 3521-7294	0,3	0,4	0,4	0,1	0,1	0,4	0,4	0,01							×						×	x	×	×	×
Imeca (31) 3355-2566	5	5	5	5	5	1	0,5	0,05			×	×		x		×					×	×		×	×
Liessi (11) 2304-5240	2	1	8	8	8	0,25	0,5	0,005			x		×			×	×	×			×	×		×	×
Rapid (11) 5548-0199	3	2	4	4	4	0,5	0,5	0,02		×	x						×					×		×	×
ReiBrag (11) 4032-6481	1	5	3	2	5	0,5	0,5	0,005						x	×	×	×	×		×		×		×	×
Usilab (41) 3023-1486	0,2	0,2	0,5	0,5	0,5	0,2	0,3	0,01		×	x		x				×	x			x	×	×	×	×
Usitim (47) 3312-2000	1	2	3	2	2	0,4	0,3	0,005	×	×	×					×	×	×			×	×		×	×
Vianatool (11) 2606-5910	1	1	1	1	1	0,3	0,3	0,02						×	×		×	×	×	×	×	×	×	×	×
W.J.A. (11) 99852-7889	2	5	2	3	3	0,5	0,6	0,02		×				×	×			×		×	×	×		×	×
Zavatin (14) 3452-1872	4	10	10	5	5	1	1	0,01			×		×				×				×	×		×	×

FORNECEDORES DE MICROFERRAMENTAS

Sandvik Coromant: segmento promissor no país (catálogo exclusivo)

Walter do Brasil: potencial de crescimento no país (microbrocas e microfresas)

Seco Tools: lançou microfresas

Tungaloy Brasil: lançou microbarras antivibratórias para torneamento interno

Kyocera do Brasil: faturamento dobrou até 2014

Mitsubishi: mercado mundial significativo e em desenvolvimento do Brasil

PERSPECTIVAS NO BRASIL

Tecnológico

A produção em larga escala de microcomponentes nos próximos anos tem sido apontada como um desafio na indústria

Escolas profissionalizante têm recém adquirido equipamentos e acessórios para microusinagem (SENAI)

Científico

Universidades: pesquisa (UFRJ, UFU, UNICAMP, USP-São Carlos)

Centro de pesquisa: soluções tecnológicas (IPT, CTI)