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Symbols and Acronyms

Symbol Description Unit(s)
Regular
Apw Moment arm of bobweight (see Figure 4.41) ft
a4 Moment arm of downspring (see Figure 4.41) ft
a, Tab spring moment arm ft
A Aspect ratio, also a combination function of
hingemoment coefficients: see Eqn (4.160) —_—
A B,C,D Coefficients-for control surface hingemoment rates ——
A, Inlet area ft2
Coefficient in denominator of longitudinal
Ay transfer function 8 ' fi/sec
- A Coefficient in denominator of lateral-directional ft/sec
2 transfer function '
Coefficient in numerator of angle—of--attack—to—
Ag elevator transfgr function gl ' ft/sec?
Coefficient in numerator of angle—of—sideslip to
Ag aileron or rudder transfer function P ftfsec?
Coefficient in numerator of s —to—elevator
Au transfer function - peed _ ft2/sec3
Coefficient in numerator of pitch—attitude—to—
Ag elevator transfer function P : ft/sec3
Coefficient in numerator of bank—angle to
A¢ aileron or rudder transfer function & - fi/secd
Coefficient in numerator of heading—angle to
Ay aileron or rudder transfer function £-ang ft/secd
[A] System matrix as defined in Eqn (4.228) See Eqn
(4.228)
{B) Column matrix as defined in Eqgn (4.228) See Eqn
(4.228)
b Span _ ft
Coefficient in denominator of longitudinal
B transfer function .g f/sec?
Coefficient in denominator of lateral-directional
B, transfer funcion - = R ft/sec2

— vii -



Symbols and Acronyms

Symbol Description Unit(s)
Regular (Continued)
2 oo Ay Rion o mele-of-atickto- ey
B, ST o AR, e TS s
B, Sgneggc?%ﬁ Cntll &iljmerator of speed—to—elcvator ft2/secd
By effiient in pumeraor of ich-attiudeto-  gygeca
By ailoron or ruader o+ 0" O Park-angle o fisecs
B, Ei?;gﬁtﬁ)ern;u i(rildléll}meratori of heading—angle to ft/secd
c - chord | ft -
c viscous damping constant lbs/ft/sec
T Mean geometric chord ft
C4 Section drag 'coc‘fﬁcient —_—
C Flap or control surface chord ft
C, gé’negé‘f-i%‘f, (I:Itll ggnominat()r of lpngitudinal ft/sec3
C, Inertia ratio defined by Eqn (5.180) -
C, ggnegif”ie?i%lrtl (l:ltfll ggno_lr_ninator'of lateral-directional ~ fy/ca03
Co oo mangay erator of anglo-of-attacko- fsccs
Cy Eﬂo;_tg':lcgg;u 1(111d pumerator of angle-of-sideslip to  fy/cocs
C, ggnegfﬂle?%ltl éltll (_1)1_Izllmerator of speed—to—elevator ft2/sec5
G Gieficent in numeratorof pitch-attitude—to- s
Cy gj?&%}fgnxtu igd%l;merator of bank~angle to ft/sech
Cy gﬂo&fg]cgernltu igdlélsmerator of heading-angle to ft/secs
Cp Drag coefﬁcient.(airplane) E  —
Cp Drag coefficient (airplane) for zero angle of attack ——

Symbols and Acronyms

— viii —



Symbols and Acronyms

Symbol Description Unit(s)

Regular (Continued)
Cp, Drag coefficient (airplane) for zero lift coefficient ——
Cp, = dCp/da Xnag:ligtg%x; t(g.c alicrplam: d;ag cocffic.ient with 1/rad
Co, = Co/6E/10)  Yrmien gl apme SE AU s
CDih = §Cp/diy 2{2&?&2? &t(‘: :ia{igllgggn d;zileg coefﬁcieﬂt with 1/rad
Cp,, = 9Cp/ 08, | ;{gg:tt(i)tr)% gft_‘l.g(i:{lpégn:n téigg coefficient with 1/rad
Cp, = 3Cp/d(qe/2U)) Xig;g?gﬁgsasig%gﬁgg@fﬁdiem with Uend
Cp, = 9Cp/d8(u/U,) Xiiarrll;tisci»ghclygs%igpplggg drag coefficient with Urad

Chﬂv = aChr/OB

Chﬂt = aCh/(J‘ﬁt

Cthat = aChl/aat

Cy, = 9Cy/8(u/U,)
Cy, = 3Cy/8(q5/2U))

ch&e = 3C,/3(dTe/2U))

Char = 8C,/3(8be/2Uy) "

|

Symbols and Acronyms

Airplane equivalent skin friction coefficient

Control surface hingemoment coefficient

Variation of control surface hingemoment coefficient 1/rad

- with angle of attack _
Variation of i'udder hingemoment coefficient 1/rad
with angle of sideslip
Variation of control surface hingemoment coefficient1/rad
with control surfacg deflection :

Variation of control surface hingemoment coefficient1/rad
with control surface tab deflection

Yariatidn of control surface tab hingemoment coef—
cient about the tab hingeline with respect to tab

deflection 1/rad

Variation of control surface hingemoment coefficient
with respect to speed '

Variation of control surface hingemoment coefficient 1/rad
with respect to pitch rate

Variation of elevator hingemoment coefficient 1/rad
with respect to elevator rate .
‘Variation of rudder hingemonient coefficient ~ 1/rad

with respect to rudder rate

Section lift coe_fﬁcient



Symbols and Acronyms

CL- = GCL/Bih
b

Symbeols and Acronyms

stabilizer incidénce angle

Symbo] Description Unit(s)
Regular (Continued)
¢, = dc;/da Variation of section lift coefficient with angle 1/rad
o of attack
¢, = dc;/3d Variation of section lift coeffi ient with control 1/rad
8 control surface deflection angle
C, Rolling moment coefficient (airplane) —
Clo Rolling moment coefficient for zero sideslip angle
and zero control surface deflections
C, =4dC)/d Variation of airplane rolling moment coefficient 1/rad
Iy /3P with angle ofalsriﬁcas[iip g
C, = aCy/ap Variation of airplane component rolling moment ~ 1/rad
coefficient with sideslip angle, but based on
component reference geometry
C,. = 9C,/a(Bb/2U)) Variation of airplane rolling moment coefficient
$ with dimensionless rate of change of angle of
sideslip —_
C,, = dC,/ad Variation of airplane rolling moment coefficient 1/rad
Ls, / - with aileron géﬁecti_on angle
C, = 9C/dd Variation of airplane rolling moment coefficient  1/rad
L, 1/ 90 w?tlill_ rudder deffection angle e '
C, = aC/oi Variation of airplang rolling moment coefficient  1/rad
L, 1/ Oy w?trtll diffcrcntig stabilizer a%nglc .
C, = 4C,/a(pb/2U)) Variation of airplane rolling moment coefficient
g | with dimensionless rate of change. of roll rate l/rad
C, = 4C,/d(tb/2U,) Variation of airplane rolling moment coefficient
' | with djmensim;fess rate of change of yaw rate 1/rad
C,. =3C, /d Variation of airplane rojling moment coefficient 1/rad
bty lT/ g due to thrustaélvlllt)h sideslip agngle
C. Lift coefficient (airplane) . _—
CL, Lift coefﬁcient' (airplane) for. zero-iangle of attack = ——
C., = aC, /aa ;/ng'g.t(i)(%naggc ali{l_'p}ane liﬁ coeff_icie_nt v\.fith ‘ Ilrad
Cp. = 9C/a(ac/2U,) Variation of airplane lift coefficient with
@ dimensionless rate of change of angle of attack *~  1/rad
Variation of airplane lift coefficient with 1/rad



Symbol  _ Description

Regular (Continued)
CLﬂe = BCL/aﬁc
CLq = aC./ a(qE/ZUI)

Cm

Ca,

Cm, = 9Cp/ 00t

Cm, = 3Cm/3(&T/2U))
Cum, = 3Cm/diy

Cnm,, = Cm/38¢

Conq
Cong,

Cm, = 3Cm/8(qE/2U))
Cin, = 3Ca/3(u/Uy)

Crm

T,

= dCp, /90t

Symbdls and Acronyms

Symbols and Acronyms

Unit(s)

Variation _of airplane lift coefficient with 1/rad

elevator deflection angle

Variation of airplane lift coefficient with

dimensionless pitch rate 1/rad

Variation of airplang lift coefficient with
dimens?onlcss l;%eed ' SR

Section pitching moment coefficient
Section pitching moment coefficient about the a.c.

Section pitching moment coefficient at zero angle
of attack S :

Section pitching moment coefficient at zero lift

Variation of tsection pitching moment coefficient
with angle of attack

Pitching moment coefficient (airplane)

Pitching moment coefficient (airplane) for zero
angle of attack

Pitching moment coefficient (airplane) for zero lift

Variation of tajé%llglll(e pitching moment coefficient  1/rad

with angle o

Vartation of airplane pitching moment coefficient
o dimensiont ching mon

with dimensionless rate of change of angle of attack 1/rad

Variatiop of airplane pitchin t coefficient  1/rad

een gL siplae pishing moment cooficent Vo

Variation of a.i?lane_ pitclﬂnlg‘moment coefficient  1/rad
e

with elevator deflection ang

Pitching moment coefficient due to thrust

Pitching moment coefficient due to propeller normal
force coefficient

Variation of airplane pitching moment coefficient -
with pitch rate b ProTing TOMEL . Vrad
Variation of airplane pitching moment coefficient

with dimensigﬁ)ess sr?éed" g mom —_
Variation of air itching moment coefficient  1/rad

ianeli
due to thrust with angle of attack - :



Symbols and Acronyms

Cry, = 3Cm,/8(u/U))

Cpy = 9Ca/0P

Cn, = 8Cn/3(Bb/2U))

Cu,, = 3Cn/00,

Cn = aCn/aardus

Btdrng
Ca, = 8Cy/diy
Cpy, = 0Ca/28;
Cp,, = 9Cn/385

Cp, = 9Cn/d(pb/2U )

Ca, = 9Cy/8(1b/2U )

C,,Tﬁ = 8C,, /op

Cr
Cr,, = 9Cr,/0(u/U))

CTIQ = BCTK/GG

Cr

Xy or z

Cr, = 0Cr,/8(u/U))

Symbols and Acronyms

Vanatlon of airplane pitching moment coefficient
due to thrustamt)h ensioniess speed _

- Yawing moment coefﬁcient (airplane) _

Yawing moment coefficient for zero sideslip angle
and zero control surface deflections 1/rad

Propeller normal force coefficient

Variation of lane yawin moment coefficient
with angle ofsauiﬁeshpy % 1/rad

- Variation of alrl;i)lane yawing moment coefficient

with dimensio
of sideslip

Variation of airplane yawing 'nioment coefficient 1/rad
with aileron dcﬂection_ angle

ess rate of change of angle Vrad

Variation of airplane yawing moment coefficient  1/rad
with drag rudder deflection angle

Variation of airplane yawing moment coefficient 1/rad
with differential stabilizer angle

Variation of airplane yawing moment coefficient l/rad
with radder deflection angle

Variation of airplane yawing moment coefficient  1/rad
with spoiler deflection angle

Variation of mrflane yawing moment coefficient '
with dimensionless rate of change of roll rate 1/rad

‘Variation of airplane yawing moment coefficient -

with dimensionless rate of change of yaw rate l/rad
ariation of wing moment coefficient  1/rad
X e to thrust suiesh aﬁ

 Thrust c'oefﬁcwnt —_—

Vanatlon of alrglane thrust coefficient in the X-axis
direction w.r.t. dimensionless speed

Variation of airplane thrust coefficient in the ~ 1/rad
X-axis direction with angle of attack

Thrust coefficient component in the X,Y or Z axis direction

‘Variation of airplane thrust coefficient in the Z—axis

direction w.r.t. dimensionless speed —_—

iption - - __Unit(s)



Symbot =~ Description Unit(s)
Regular (Continued)
Cr, = 8Cr /da Variation of airplane thrust coefficient in the 1/rad
*a Z-axis direction with angle of attack
Cr = 9Cr /3P Variation of airplane thrust coefficient in the 1/rad
'8 Y Y-axis direction with sideslip angle
Cy Force coefficient along the stability X-axis ~ -————
Cx = 9Cy/da Variation of airplane X-~axis force coefficient
o 4 with angl}e of algack o _ 1/rad
Cx, = 9Cx/3(qc/2U Variation of airplane X-axis force coefficient with
“ x/3(qc/2Uy) dimen’sionlesgup?itch rate 1/rad
Cx, = 9Cx/3(u/Uy) Variatign of airplane X-axis force coefficient with |
" dimensionless speed o e
Cy Side force coefficient (airplane) = 00—
Cy, Side force coefficient for zero sideslip angle
‘and zero control surface deflections ————
Cy = dCy/3p Variatjon of airplane side force coefficient 1/rad
d with sideslip arigle
Cy. = oCy/ a(Bb / 2Uy) Variation of airplane side force coefficient
P with dimensionless rate of change of angle Liad
of sideslip | T3
Cy, = 8Cy /39, xzi:ltlil;agi)g (;)E #;lrgllgne side force coefficient 1/rad
Cy, = 9Cy/dd; Variation of aifpiaﬁze side force coefficient 1/rad
b | with rudder angle _
C,, = dCy/d(pb/2U,) Variation of airplane side force boefﬁcient
7 ’ Y with dimensiﬁcss rate of change of roll rate 1/rad
Cy, = 9Cy/a(1b/2U,) Variation of airplane side foree coefficient _
with dimensionless rate of change of yaw rate 1/rad
C, Force coefficient along therstabi_lit'y Z-axis = 02—
C;. = dC;/d(aT/2U Va:iatiu n of airplane Z-axis force coefficient with :
% 2/ 3(0/2Uy) di;pgns?onlcss 1;rlg_ite of change of angle of attack = " 1/rad
C,, = 3C,/a(qt/2U Variation of airplane Z-axis force coefficient with
" /3(ae/2U) diar;lgnls?gnlessl%)itch Tate . 1/rad

C,, = 3C,/3(u/U,)

Symbols and Ac¢ronyms

Variation of airplane Z-axis force coefficient

dimensionless speed

-Symbols and Acronyms
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Symbols and Acronyms

Symbols and Acronyms

Symbeol Description Unit(s)
Regular (Continued)
dm Airplane mass element | slugs
Coefficient in denominator of longitudinal
D, transfer function - .. g ft/sec4
D, Inertia ratio defined by Eqn (5.180)
Coefficient in denominator of lateral-directional
D, transfer function ft/sec
Coefficient in numerator of angle—of-attack—to
Dq elevator transfer function . T ft/sec’
Coefficient in numerator of angle—of—sideslip to
D B aileron or rudder transfer funcgon P fi/sec’
- Coefficient in numerator of speed-to-elevator
D, transfer function - ft2/sect
Coefficient in numerator of heading—angle to
Dy, aileron or rudder - - neTang ft2/sect
D Drag (airplane) | 1bs
D, Denominator of longitudinal transfer functions ftrad4/sec
D, Denominator of lateral—directional transfer functions ftrad5/sec6
p Propéller diameter | ft
ds Airplane surface area element 4 ft2
dy Distance of a thrust line brojection onto the ft
XZ-plane to the ¢.g. - . _
dv Airplane volume element ft3
e = 27183 Napierian logarithm constant —_—
e Oswald’s efﬁciencj}: factor _
Coefficient in denominator of longitudinal
E, transfer function .: ) '8 ft/secS
- Coefficient in denominator of lateral—directional
E transfer function ft/secS
f Equivalent parasite area of the airplane ft2
f(t) Function of time Ibs



Symbols and Acronyms

Symbol D iti Unit(s)
Regular (Continued)
o Preload of downspring Ibs
F Force per unit area (aerodynamic and/or thrust) Ibs/ft2
F A Total acrodynamic force vector lbs
fa, » fa, » fa, Perturbed values of Fo ., F, and F, Ibs
F, ., F A, » Fa, Aerodynamic force components along XYZ Ibs
Forr Factor which accounts for drag induced yawing
moment B
Fa Aileron wheel or stick force ibs
Fr Rudder pedal force Ibs
F; Stick force (or wheel force) Ibs
fr, » fr, . fr, Perturbed values of Fr, , Fr and Frp, Ibs
Fr , FT, ,» Fr, Thrust force components along XYZ Ibs
F'T Total thrust force vector Ibs
g Acceleration of gravity - - ft/sec?
gx » By » Bz Acceleration of gravity components along XYZ ft/sec2
G Gearing ratio for a flight controel surface rad/ft
G(s) -Open loop transfer function varies
h Angular momentum vector for spinning rotor(s) slugft2/sec
hy , hy , h, Components of h along XYZ =~ slugft2/sec
HM Hinge moment about control surface hingeline ftibs
ic Canard incidence angle deg or rad
iy Horizontal tail (stabilizer) incidence angle deg or rad
iy Vertical tail (stabilizel.‘).incidencc aﬁgle _ deg or rad

Symbols and Acronyms



Symbols and Acronyms

Symbol Description S | Unit(s)
Regular (Continued)
i,j, k Unit vectors along XYZ —_—
L » Ly o I Airplane moments of inertia about XYZ, ~ slugsft2
Ly » Lz, Iy Airplane products of inertia about XYZ slugsft2
I Rotor moment of inertia about its spin axis slugsft2
J = U/nDp Propeller advance ratio —_
k Spring constant S Ibs/ft
ko , kq Feedback gain constant w.r.t. angle—of-attack '
or pitch rate deg/deg
K, through 7 Constants used- in Eqn (4.225) or (4.239) or (4.240) see Eqns
K Gearing constant between cockpit control wheel or
SWorsw. stick and aileron or spoiler"dcil’fgcti()n - rad/ft
K Downspring constant - Ibs/ft
Kea Angle—of-attack-to—elevator feedback gain - rad/rad
Kq Pitch-rate—to-elevator. feedbac;_k gain rad/rad/sec
K, Yaw-rate-to—rudder feedback gain rad/rad/sec
K, Tab spring constant o _ lbs/ft
K Zero frequency gain in the angle—of-attack—to
%o elevatorc%rans ergﬁmction gl
K Zero uency gain in the speed—to—elevator  ft/sec
e transfer nct_igng pe _
K Zero frequenc ain in the pitch-attitude—to—
O, elevator trans crgfunction P ‘ _—
K Zero uency gain'in the angle—of-sideslip to
Baaore ailerofr{ecg' rud erg transfer function P _—
K, Zero frcquenca/ gain in the bank-angle to
Baare aileron or rud

er transfer functior_l T _

Zero frequency gain in the heading—angle to
aileron or rudder transfer function _—

Symbols and Acronyms



Symbols and Acronyms

Symbols and Acronyms

Symbol Description Unit(s)::. .
Regular (Continued)

1 ~ Characteristic length , ft

l, , my , n, Perturbed valuesof L, , M, and N4 filbs

I Distance from the canard a.c. to the c.g.

l, sttancc from hor ta11 ac.to the c.g.

Ig Moment arm of stlck (see Flgure 4.41)

L © Lift e s

L also: overall airplane length ft

L, , M, , N, Aerodynamic moment components about XYZ, filbs

L. = 4,5bC, Roll angular acceleration per unit sideslip rad/sec?/rad
p Ty angle _

L. = q;Sb°Cy Roll angular acceleratlon per umt roll 1/sec
p 21U, rate

_ q;8b%C, Roll angular acceleration per unit yaw 1/sec

T 20U, rate

L q;50C, Roll angular acceleratlon pet unit mleron rad/sec2/rad
b, T angle ‘.

L. = q;5bCy,, Roll angular acceleration per unit rudder rad/sec2/rad
3, T angle _ . .

ly , mp, np Perturbed values of Lt , My and Ny ftlbs

Lt , My, Ny * "Thrust moment components about XYZ ftlbs

m Airplane mass {or just mass) - slugs

m' Mass flow rate through an engine slugs/sec

M ~ -Magh number —_

MM Maneuver margin fraction m.g.c.

MP Maneuver point fraction m.g.c.



Symbols and Acronyms

Symbol Description Unit(s) -
Regular (Continved)

M, = mSIECma gggltntaaélgular acceleratlon per unit angle 1sec2

yy
M = % Pitch angular acceleration per unit angle of attack  1/sec?
¢ Lyy (due to éru
q;STUChm, + 2Cn) '

M, = - . tch lar acceleration per unit chan ad/sec/ft

u I,0, E{ ;:peeaagu ar eratio; pe ge rad/sec

q;5¢(Cpy, + 2Cpm r) -

T = Pitch an dgu]ar acceleration per unit change rad/sec/ft

* IyU, in speed (due to thrust) :
2
M. = 4;5¢°Cn, Pich angular acceleration per unit rate of l/sec
¢ 2U, change of angle of attack
- 2 ;
= el P tc lerati t 1/

9] 21,1, 1tc£1 a atgular acceleration per uni sec

q;5¢Ch,_ '

5 = T fe%gt%?ga‘:xlgf acceleration per unit l/sep2
M, Aerodynamlc moment scalar ftlbs
M A Total acrodynamic moment vector - ftibs
M, Moment about tab hingeline due to spring pre-load ftlbs
M Total thrust moment vector filbs
M, ~ Tab moment about its own hingeline filbs
n ‘Real part of complex roat 1/sec
n Fraction number, also load factor, n = L/W
Njimie Limit load factor ' _
n Quantity defined in Eqn (4.218) _
i Quantity defined on page 283 S
ng = nfa = g—g Variation of load factor with angle of attack 1/rad
n; Number of jet engines per. airplane —_—
n, Number of propellers per airplane _—

Symbols and Acronyms
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Symbols and Acronyms

Symbel: Description _Unit(s)
Nprpm Propeller r.p.m. 1/min
Nprps Propelléi‘ I.p.s. 1/sec
Np Drag induced yawing moment due to O.EL ftlbs
Neutral point fraction m.g.c.
N; Inlet normal force lbs
Np Prbpeller normal force lbs
Ny " Numerator of speed-—to-elevator transfer function  ft2rad?/sec6
Ng Numerator of angle—of-attack—to—elevator
{ransfer function S ' ftrad2/sec5
e .
Ng Numerator of sideslip to aileron or rudder '
transfer function ftrad3/secb
Ng Numerator of pitch-attitude—to—elevator
transfer function : ftrad?/secd
Ny Numerator of bank angle to aileron or rudder ‘
transfer function ’ ftrad3/sec6
Ny Numerator of heading angle to aileron or rudder
transfer function ftrad 3/sect
— q,SbCn, Yaw angular acceleration per unit sideslip rad/sec?/rad
= qleC"Ts Yaw angular acceleration per unit sideslip rad/sec2/rad
LI angle (due to thrust) : '
N. = qIszcnp Yaw angular acceleration per umt roll 1/sec
A i rate o
N. = q;Sb%C, Yaw angular acceleration per unit Yﬁw 1/sec
T 21,5U, rate _
N. = 945G, - Yaw angular acceleration per unit aileron rad/sec2/rad
8, I, angle
N. = q,5bCn,, Yaw angular acceleration per unit rudder rad/sec2/rad
& Tz angle-. - . S L

Symbols and Acronyms
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Symbols and Acronymis’

Symbol Description Unit(s)
Regular (Continued)
P.q,r Perturbed values of P, Qand R ‘ rad/sec
P, Q R Airplane angular velocity components about XYZ  rad/sec
g = 0.50V3 = 1,4825M?2 Ibs/ft2

Airplane dynamic pressure

T Vector which connects the c.g. with a mass element ft
T Vector which connects the origin of X'Y’Z’ with  ft
an airplane mass element

T’ Vector which connects the origin of X’Y’Z’ with  ft

o airplane c.g. ' o
Ry = g—‘-&‘-’l— Reynolds number - '
Ry Dimensionless radius of gyration about the Y-axis ——
S Laplace domain variable rad/sec
S Area . ft2
SM Static margin . B - fraction mgc
Sp Propeller disk aréa R fi2
Sw, Flapped wing area ft2
S wet Airplane wetted area ft2
t Thickne_ss . ft
T Thrust | Ibs
T, /2 Time to half amplitude sec
T, Time to double amplitude sec
Te , Ty ¢ Time constant of spiral and roll mode respectively sec
Ty = 2x/wy Normalized time - sec
(t/C)max Maximum thickness ratio _—

* Symbols and Acronyms



Symbols and Acronyms

Symbols and Acronyms

Description Unit(s)

' Regular (Continued)

u, v, w Perturbed value of U, Vand W ft/sec

u, v, w Accelerations in X,Y and Z directions ft/sec2

u, Vv, w Component§ of Vpaloné XYZ ft/sec

U 'Forwﬁrd acceleration along the ground ft/sec?
Vo Horizohtai or vertiéal tail volume coefficient _

Ve Mlmmum control speed (engine out) ft/sec

Vp Airplane velocity (true airspeed) ft/sec

: Stall speed | fi/sec

. Stall speed with one engine inoperative ft/sec

w Airplane weight Ibs

Wiw Weight of bobweight _ Ibs

X, V¥V, 2 Components of T along XYZ B ft

X,y ., 7 Components of VP along X’Y'Z’ ft/sec

Xac A.C. location relatjve ;o le. of chord ft

Xac Aerodynamic center location as fraction of mgc _—

Xep C.P. location relative t6 le. of chord ft

Xp aieéfggrﬁgm' tt:f 3€4 mgc point on the wing to ft

Dm0 e

Xac,, Distance defined in Figuré 451

Xatyq, Distance defined in Figure 4.51.

Xcg, Distance defined in Figure 4.51 ft

- xxi —



Symbols and Acronyms

Symbol Description Unit(s)
Regular (Continued)
Xmg, Distance defined in Figure 4.51 ft
Xp Distance from the propeller normal force to the c.g. ft
measured along the X~stability axis
XT Distance from a thrust line a;tachinént point to the ft
¢.g. measured along the stability X-axis
Rac, - Acrodynamic center location as a fraction of the
mgc and measured from the leading edge
of the mggc, positive aft i
Xeg Center of gravity location as a fraction of the
mtgc and measured from the leading edge
of the mgc, positive aft -——
Xt Reference point location relative to Le. of chord ft
Xy, Distance between the vertical tail a.c. and the c.g.  ft
measured along the stability x-axis
—48(Cp - C) . _ __
.= o Forward acceleration per unit angle of attack ft/sec2/rad
= q;5(Cp, +2Cp) : Lo
Xy = ] Forward acceleration per unit change in speed 1/sec
1 “
I, 20 orward acceterat it changeinspeed 1/
= X orwara acceleration per unit change in spee sec
Ts mU, (due to thrust) P wee i sp
. - qlsCD v .
= 3 Forward acceleration per unit
X5 = m elevator angle pe ft/sec2/rad
Va Distance from aileron center of load to the ft
airplane centerline o
Ydr Distance between the dr?lg rudder Ccp-andthecg. ft
‘measured along the stability y-axis
yr Distance from a thrust line attachment point to the  ft
c.g. measured along the stability Y-axis
g = ‘hm d. Lateral acceleration per unit sideslip angle ft/sec2/rad
q,SbC : _
Y, = il Lateral acceleration per unit roll rate ft/sec/rad
2mU,

Symbols and Acronyms
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-Symbols and Acronyms

Symbe} Description Unit(s)
Regular (Continued)
Y: q%:ﬂj: L ~ Lateral acceleration per unit yaw rate ft/sec/rad
1
qlscy . H A . . ) . !
& i Lateral acceleration per unit allero;l angle ft/sec2/rad
q;SCy, : :
8 =T Lateral acceleration per unit rudder angle ft/sec2/rad
Zeg, - Distance defined in Figure 4.51 ft
Zp, Distanq; defined in Figure 4.51 ft
Zmg, Distance defined in Figure 4.51 ft
zr, “Distance defined in Figure 4.51 fit
Zy, Distance between the vertlcal tail a.c. and the ft
. stability x-axis
-qS(C, +Cp) | |
.= R Vertical acceleration per unit angle of attack ft/sec2frad
—q,S(Cp, + 2C |
Z, = % (mltl L) Vertical acceleration per unit change in speed 1/sec
1
B ﬁl.SECL.
2 =—— Vertical acceleration per umt rate of change of ft/sec/rad
@ 2mU, . - angle of attack _
— q;8¢Cy, : . o
Zy= B Vertical acceleration per unit pitch rate ft/sec/rad
1
= q;5C o
Z 8 = TR Vertical acceleration per unit elevator angle ft/sec?/rad
Greek
o Anglé of attack deg or rad
o Rate of change of angle of attack rad/sec
g Angle of attack at zero lift (section) deg or rad
0, Angle of attack at zero lift (planform or airplane)  deg or rad

Symbols and Acronyms



Symbol

Symbols and Acronyms

_Description

Unit(s) -

as = do,/3d

Clmax

Np: Mvs
"p

0

()

e

Symbols and Acronyms

Angle of attack value at end of linear range
Angle of attack effectiveness derivative
Angle of attack at maximum lift coefficient
Angle of sideslip

Flight path angle

Geometric dihedral angle

Control surface deflection angle:

Control surface tab deflection angle

Control surface tab deflection angle when up
against a mechanical stop

Determinant of a matrix or increment of a parameter

deg or rad

deg or rad
deg or rad
deg or rad
deg or rad
deg or rad
deg or rad
deg or rad

Shift in wing+fuselage aerod namic center from the

wing aerodynamic center in fractions of the m.g.c.

*a

Leading edge shape parameter
Downwash angle

Dowﬁwash anglé at zero "angle of attack
Upwash angle at iniet

Upwash angle at propeller disk

Twist angle

Spanwise station in fraction of b/2

Dynamic pressure ratio at h.t., v.t. or canard resp.

Propeller efficiency
Perturbed value of © _

Airplane pitch attitude angle (See Figure 1.6)

Angle in s—plane, see Fig. 5.7

deg or rad
deg or rad
deg or rad
dcg or rad |
&eg or rad |

rad
rad
rad



Symbols and Acronyms

Pi

Tc orr = aa/aae orr

+ $ymbols and Acronyms

Description Unit(s)
Taperratio - - e

- Root of charactéristic equatioil 1/sec
Sweeb angle | deg or rad :
Coefficient of viscosity - Ibs—sec/ft2.
Wheel-to-ground friction coefficient —
Dampingratio - adee
Damping ratio of an airplane free to oscillate
in pitch only | ' ————=
Damping ratio of an airplane free to oscillate
it yaw only ' e
3.14 —
Air density slugs/ft3
Airplane mass density slugs/ft3
Air density in inlet slugs/ft3
Sidewash angle deg or rad
Angle of attack effectiveness factor -
Perturbed value of @ | rad
Trailing edge angle deg
Airplane bank angle (See Figure 1.6) rad
Thrust line inclination anglé ;iv.r.'t.. YX-plane rad
Perturbed value of W | rad
Airplane heading angle (See Figure 1.6) rad
il sple O g s s v
Airplane angular velocity vector- rad/sec
Uﬁdamped nét'uréI frériﬁéncy rad/sec



Symbols and Acronyms

Description - ___Unit(s)

Subscripts

Undamped natural frequency of an alrplane'
free to osc1llate in pitch only

Undamped natural frequency of an a.lrplane
free to oscillate in yaw only

Angular velocity of rotor about its spin axis

Note: A, S, b and ¢ without a subscript indicates a wing property!

1

a
acora.c. or A.C.
artificial

A

B

c

cg

CI4 PR
cporc.p. or C.P.
CAP

Symbols and Acronyms

Steady state quan_tity

Aileron

Aerodynamic center

Quantity obtained artificially (for cxample in control forces)
Aerodynamic or airplane -

Body-fixed axes

Canard

Center of gravity

Relative to the quarter chord “n
Center of pressure '
Contro! anticipation parameter

Dutch roll

Drag rudder

Elevator

Fuselage

Fowler flap

Stick (or controls) fixed

Krueger flap

Stick (or controls) free

Fuselage

Gust

Quantity determined in ground effect
Horizontal tail :

Item number i .

Horizontal tail (stabﬂlzer) mc1dence angle
Inboard

Jet

rad/sec

rad/sec

rad/sec



Symbols and Acronyms

Subscripts (Continued)
max Maximum
mg Main gear, about or relative to main gear
min Minimum
1 Left
L Landing
LE Leading edge
M At some Mach number
M=0 At zero Mach number
MP Maneuver point
n Normal to
outb’d Outboard
OWE Operating weight empty
p Pylon, also: propeller
ph Phugoid
PA Powered Approach
'y Right or nidder
reqd Required
t Tip or tab
trim trimmed
T ‘Thrust
r Root or rudder or roll
18 Roll—splral
$ - Spiral, store or spoﬂer or stablhty axes
sp - Short period -
ss * Steady state
TO Takeoff
v Vertical tail
w Wing
wf Wing+fuselage
Xx,yorz In the x, y or z—direction
Acronyms
acora.c.or A.C, Aerodynamic center
BPR Bypass ratio
c.g. Center of gravxty
cporc.p.or CP. Center of pressure
EMP Electromagnetic pulse
FBL Fly-by-light
FBW Fly-by-wire

Symbols and Acronyms
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Symbols and Acronyms

Acronyms (Continued)

ht. Horizontal tail

irrev. Irreversible

le. Leading edge

ler. Leading edge radius (ft)

Lh.s. Left hand side

mgc or MGC Mean geometric chord (ft)

MM Maneuver margin

NP Neutral point

OEL One engine inoperative

PEC.S. Primary flight control system
rhs. Right hand side

L.p.s. Rotations per second _
S.AS. Stability augmentation system
SM Static margin

v.t. Vertical tail

W.Lt. With respect to

Symbols and Acronyms
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'INTRODUCTION

In this two—part textbook, methods are presented fot analjrsis and synthesis of the steady etate
and perturbed state (open and closed loop) stability and control of fixed wmg atrcraft

Part I contains Chapters 1-6 and Appendlces A-D. Part 1 contams Chapters 7—12 as well
as Appendix E, : _

The book is aimed at junior, senior and first level graduate students of aeronautical engineer-
ing. Aeronautical engineers working in the aircraft industry will also find this book useful.

Throughout this text the practical (desi gn):a-ppl;cauons of the theory-are stressed mthimany
examples. Aircraft stability and control characteristics are all heavily regulated by civil as well as
by military airworthiness authorities for reasons of safety. The role of these safety regulat:lons in
the application of the theory is therefore stressed throughout,

Many of the examples used to illustrate the application of the theory were generated with
the help of a computer program called: AAA (Advanced Aircraft Analysis). This program is com-
patible with most Apollo, Sun, Silicon Graphics, IBM and DEC work-stations as well as with certain
types of personal computers. The AAA program can be purchased from DARCorporatlon 120 East
Ninth Street, Suite 2, Lawrence, Kansas 66044, USA. L : g

In Chapter 1 the general equations of motion are developed forarigid au'plane These equa-
tions are then specialized into sets which apply to steady state and perturbed state flight conditions
respectively Before these equations can be used to help in the analysis and design of airplanes it
is necessary to develop mathematical models for the aerodynamic and thrust forces and moments
which act on an airplagse. : :

- Chapter 2_provides an overview of aerodynamic fundamentals needed to understand and use
aerodynamic force and moment models. Several important properties of airfoils and lifting surfaces
are reviewed. The effect of the fuselage on aerodynamic center is discussed and some fundamental
aspects of control surface and flap characteristics are covered.

~ The actual modelling of aerodynamic and thrust forces and moments is discussed in Chapter
3. The reader is introduced to the concept and use of stability and control derivatives. Physical ex-
planations and examples of signs and magnitudes of these derivatives are given.

Chapter 4 contains a discussion of the steady state equations of motion of airplanes. Solu-
tions and applications are presented particularly from a viewpoint of how this material is used in
airplane analysis and design. The relationship to handling quality regulations is pointed out. The
airplane trim problem, take—off rotation problem and engine—out control problem are given signifi-
cant emphasis.

Introduction : 1



Introduction

In Chapter 5 the perturbed equations of motion of airplanes are discussed. The reader is
introduced to the concept of airplane open loop transfer functions. The fundamental dynamic modes
of airplanes (phugoid, short period, roll, spiral and dutch roll) are analyzed. Approximations to these
modes are derived and typical ’drivers’ of good and bad dynamic stability properties are identified.
The idea of equivalent stability derivatives is introduced and the relation to automatic control of un-
stable airplanes is pointed out. Derivative sensitivity analyses are also discussed.

In Chapter 6 an introduction is given to the subject of airplane flying qualities. The reader
is introduced to the Cooper—Harper scale and to various civil and military regulations for ﬂymg qual-
ities. The relatmnshxp to airplane design is pointed out.

The subject of elastic airplanc stability and control is taken up in Chapter 7 (in Part II). Finite
element methods are used to determine stability and control coefficients and derivatives for elastic
airplanes. A method for determining the equilibrium and jig (i.e. manufacturing) shape of an elastic
airplane is alsopresented. Several numerical examples of the effect of aeroelasticity on stability and
control denvanves are g1ven for a subsonic and:for a supersonic transport

Chapter 8 presents an introduction to the construction and mterpretatmn of Bode plots with
open and closed loop aupla.ne applications. An 1mportant inverse application is also glven

In Chapter 9 an overview is given of so—called classmal control theory. The use of the root--
locus method and the Bode method are illustrated with examples ' :

It is shown in Chapter 10 that classmal control theory can be used to predict whether or not
an airplane can be controlled by a human pilot. This is done w1th the aid of human pilot transfer
functlons for compensatory 31tuanons ¥ \\
: In Chapter 11 the reader is mtroduced to various aspects of automatic control of alrplanes
It is shown why certain airplanes require stability augmentation. Pitch dampers, yaw dampers and
roll dampers are discussed. The reader is familiarized with the basic synthesis concepts of automatic
flight control modes such as: control-stick steering, various auto-pilot hold modes, speed control,
navigation modes and automatlc landmg modes. Applications to various alrplane types are also in-
cludcd :

In Chapter 12 a brief introduction to digital control systems using classical control theory
is provided. Applications of the Z—transformation method are also included.

Introduction ' 2



In this chapter, the general equations of motion for a rigid airplane are derived and the coordi-
nate systems in which these equations are written are discussed. Several assumptions must be made
along the way and these are carefully indicated. Apphcauons of these equations to various airplane
performance, stability and control problems are outliried. Lo

11 AT EMS AND EXTERNAL FOR

Flgure 1.1 depicts two axis systems, the earth fixed system X'Y’Z’ and the airplane body
fixed axis system XYZ. The earth fixed axis system will be regarded as an inertial reference frame:
one in which Newton’s laws of motion-are valid. This means that the rotational velocity of the earth
is neglected. Experience indicates this to be acceptable even for supersonic airplanes but not for
hypersonic vehicles. Reference 1.1 (pages 135-137) provides a detailed discussion of this assump-
tion with numerical examples.

The airplane in Flgure 1.1 is assumed to consist of a continuum of mass elements, dm. These
mass elements are kept track ofby the vectors T’ which connect the ongln of X’Y’Z’ with each mass

element. In the case of rigid airplanes these mass elements mamtaln theu' distance relative to.each
other except for mass elements which are part of rotatmg machinery (such as compressors turbines
and propellers) or which are part of a variable sweep wing.

Each mass element is subject to the acceleration of gravity, g . As seen in Figure 1.1 the
vector g is assumed to be oriented along the positive Z’ axis. This is the so—called flat earth assump-
tion. As aconsequence, aforce 0 gdv = gdm acts on each mass element. The quantity Q4 fepre-

sents the local mass density of the airplane. Those mass elements located at the surface of the air-
plane are also subjected to a combined aerodynamic and thrust force per unit area: F. Note that F

has the physical unit of pressure: lbs/ft2. The forces @ Agdv and Fds are assumed to be the only

external forces acting on the airplane.
1.2 D A F' E FM

At thls point Newton 8 Second Law will be applled to the mrplane of Figure 1. This law states
that the time dcnvauves of lmear and angular momenta are equal to the externally applied forces
and moments respectlvely Thls statement results in the voctor—mtegral form of the ‘equations of
motion as given in Equatxons Q. 1) and (1.2): '

dtI @A‘fﬁ'dv = I Qagdv + J Fds . - S (1.1)
v S

linear applied forces

momentum
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X - _.‘{'i'-"'dS‘ | dm

Notes: -
1) XYZ isa body—fixed (rotating) axis system =X’ %
2)X°Y’Z’ is an earth-fixed (non-rotating) axis system
3) Arrows indicate positive directions

zZ
dt] X 0p 5 v = Lr X gagdv + Lr_ X Fds (1.2)
angular applied moments
momentums

The integrals I and [ represent volume and surface mtegrals for the entn'e alrplane These

integrals can be evaluated only if the external geometry of the airplane is known Thls will be the
case if the airplane is rigid. If the airplane is elastic then an aeroelastic equilibrium must be estab-
lished from which the external shape of the airplane can be determined. Methods for accomplishing
this are discussed in Chapter 7.

The total mass of the airplane is found from:

m = ngdv : (1.3)
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At this point it will be assumed that the total mass of the airplane remains constant with time:

dm _

dt | | (1.4)

This assumption is justified as long as the mass change is sufficiently small over a time period
of 30 — 60 seconds. This time period is typical of the time duration over which airplane responses
are evaluated. If a mass change is within about 5% of the begin mass after a 60 second period, the
constant mass assumption is considered acceptable. Table 1.1 shows the mass change (but in lbs of
weight!) during a 60 second period for airplanes and rockets. It may be seen that the constant mass

assumption is reasonable for airplanes but not for rockets.

Type Takeoff Maximum  Cruise Fuel =~ Mass Change Mass Change
Weight Fuel Weight Consumption after 60 seconds ~ after 60 sec.
(Ibs) (Ibs) (Ibs/hr) (Ibs) as % of take~
S : off weight
SST 675000 291,000 90,000 1,500 022
Fighter 54000 17,600 5,940 99 0.18
~
GA Twin 6800 1,020 200 3.3 005
Saturn5 6,500,000 4,500,000 @ — 1,800,000 277
Delta '~ 112000 100,000 ~ —— 19,300 17.2

Another assumption which will be made is that the mass distribution is also constant with

time. This assumption infers that the center of gravity of the airplane stays in the same place during
~ a60second interval. Phenomena such as fuel sloshing, shifting payloads and wandering passengers
are therefore outside the scope of the equations which follow. Problem 1.1 requests that the reader
remove this assumption. : ‘

So far, all airplane mass elements were tracked in Figure 1.1 with the help of the vectors r

It is more convenient to use the vectors T and r'p. To that end the body—fixed coordinate system

XYZ is introduced. The selection of the orientation of system XYZ relative to the airframe is done
quite arbitrarily. In Figure 1.1 the X—axis has been drawn parallel to the fuselage centerline. The
origin of the X'YZ system is point P. Point P is now assumed to be the center of mass of the airplane.

The three position vectors are related as ft'jlloi;vs:“ - |
. r = IJP +? _ | . s
If point P is the center of mass the following relation must be satisfied:

I?@Adv =0 | -. (1.6)
v o ' o
As a consequence the following relation holds for r'p:
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r'p = %f pAPdv 1.7
v

It is now possible to rewrite the left hand side of the linear momentum Eqgn (1.1) as:

ddaf, @ o _dd 5 _ dVp "
~ dtdt LPA(I p+D)dv dtde T P T Mg | (18)
where;

L& | |

Vp =2 (19)

is defined as the velocity of the airplane center of mass. The right hand side of Eqn (1.1) can now
be written-as: | | | -

f p AEdv + [f?ds =mg+F, + Fp (1.10)
v 8 _ :
where F A Tepresents the total aerodynamic force vector and F‘T represents the total thrust force

vector. Equation (1.1) can now be expressed as:

——r

md—;%l_’ =mg + F, + Fp (1.11)

Equation (1.11) proclaims that the time rate of change of linear momentum, miifp is equal
to the sum of the externally applied forces on the airplane. j
Next, the angular momentum equation (1.2) needs to be further developed. Substitution of
Eqn.(1.5) into Eqn.(1.2) while accounting for Eqns (1.6) and (1.1) leads to:
A exdy av = | ¥x Bds = M, + M, N (1.12)
where: M aTepresents the total acrodynamic moment vector and 1\7IT represents the total thrust

moment vector.

Equation (1.12) proclaims that the time rate ~of change of angular momentum,
T X a—‘f PAdv is equal to the sum of the externally applied moments on the airplane. _

v
Reminder; The integrals J and I in Eqns (1.10) and (1.12) represent volume and surface inte-

grals for the entire airplane. These integrals can be evaluated only if the external geometry of the
airplane is known. This is the case if the airplane is rigid. If the airplane is highly elastic then an
aeroelastic equilibrium must be established before the external shape of the airplane can be deter-
mined. Methods for accomplishing this are discussed in Chapter 7.

Equation (1.12) implies that the volume integral (on the left hand side) is a time dependent
function. Such time dependent integrals are awkward to work with. To eliminate the time-depen-
dence a switch in coordinate systems will be made. It will turn out that by re-writing equations
(1.10) and (1.12) with respect to coordinate system XYZ instead of X*Y’Z’ (See Figure 1.1) the vol-
ume integral in Eqn (1.12) will no longer be time-dependent. A problem is that coordinate system

Chapter 1 : 6



Equations of Motion and Axis Systems

XYZ is a rotating (non-inertial) coordinate system. In such a system Newton’s Laws do not apply
‘as they were used earlier. ' However, by employrng the followmg vector transformatron relationship
Newton’s Laws can still be used:

dA  _  4A I S

dt et +oxA A+oxA | (1.13)
fixed rotating
XY'Z XYZ

-

~ The vector A represents any vector which is to be transformed. For proof of this vector

transformation relatignship the reader is referred to Ref. 1.1 (pages 132-133) or Ref.1.2 (pages
96-98). The vector ® inEqn (1.13)is the angular rotation vector of system X YZ relative to system

X’Y’Z’. This vector is also referred to as the angular velocity of the airplane relative to the earth.
~ 'The latter is realistic because system XYZ was assumed to be body—flxed ie. rlgldly attached to the
- “airplane and therefore moving with the airplane.

The transformation formula (1.13) will now be applied to the left hand side (1.h.s.) of both
equations (1. 11) and (1 12). First, for the Lh.s. of Eqn (1.11):

dv aVp = =
m dtP = m(—;" P it X Vp) ._ (1.14)
This leads to:
m(Vp + © X VP) = mg + F.A + f?T ' (1.15)

Second, for the Lh.s. of Eqn.(1.12):

digxd = ddr = ix4Ff+w =
dt[ dtpAd“ IvrxdtdtpAdv Jvrxdt.,(r-t-wx'r")pAdv

[?x{_i".+o)><"r’+2mx_r'"+(—r;x((_r;x‘f)]pAdv | (1.16)
v

: By assuming that all mass elements stay together and that there are no splrlm ng rotors in the
- airplane [this assumption will be corrected in Section (1 3)] it is recogmzed that r =1 = 0and

therefore Eqn (1.12) can now be written as:

j'r‘x[(bx?+r;x((; xi’)}pAdv=lﬁA+'1§7Lr (1.17)
v -

Note, that since the vector ® {(angular acceleration of axrs system XYZ relative to axis system

X'Y’Z’) = (angular acceleratlon of the arrplane relative to the earth)} i isa property of system XYZ
it can be taken outside the volume integral sign. That makes the volume integral time-independent
E ‘which was the objective of the proposed switch in coordinate system.

- Equations (1.15) and (1.17) represent the so-called vector forms of the airplane equations
of motion. These forms are useful in arriving at generally valid results and at physical interpreta-
L tions. However, these forms cannot be used to study the steady state equilibrium and time-history
- \response behavior of an au‘plane To accomplish the latter it is necessary to write the vector forms
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in their scalar (component) equivalents. Before this can be done it is necessary to define the compo-
nents of all vectors which appear in equations (1.15) and (1.17). These components are defined in
Table 1.2. The quantities i, j and k are defined as the unit vectors along the axes X; Y and Z respec-
tively. The positive sense and the physical meaning of these vectors are indicated in Figure 1.2.

By using Equations (1.18) it is possible to cast the linear momentum equation, Eqn (1.15),
in the following scalar format: .

m(U - VR + WQ) = mgy + F, + Fp, (1.19a)
m(V + UR — WP) = mg, + Fy + Fp, (1.19b)
- m(W-UQ + VP) = mg; + F, +Fr (1.19c¢)

Bccause: of the volume integration Eqn. (1.17) is more difficult to expand. The expansion
will be done in three steps. In Step 1 the Lh.s. of Eqn (1.17) is rewritten as follows with the help
of the so—called vector—triple-product—expansion:

['r'x '((_i; XT+® X (®XT))pdv = Ic_i;('r'-i-’)gAdv - [?ﬁ-&)gAm+
v \J

v

+ I T X (@ T dv — [ ] T X T(@r 1) odv = 0] (1.20)
v v

In Step 2 the first two terms of Eqn.(1.20) are expanded as follows:

] GEPenty = @+ 10+ KR) [ 07477+ oty
and: v v
MR A [ @3+ 1020+ 0 + g
v v
By combining these two expressions_they can be shown to yield:
| . r - |
i[P J (> + Z2)oadv - Q J

¥

xypdv — R[ x2Q odv] +

v

[Q | 62+ 2)gudv — P ] yxoadv — R f yzoAdv] +

KR | (x* + y})oadv - P f zxgpdv — Q J‘ ZyQ Adv] - (1.21)

Jy v
The volume integrals in expression (1.21) are referred to as the moments and products of inertia of
the airplane. Common symbols used for these integral quantities (inertias) are as follows:

[

(2 + 22)QpAdv = In
v
| 6@+ Peatv =1,
hj
r c

(x2 + YZ)QAdv = Iz
Jy

Chapter 1

XyAdv = Iry ] xzQ dv = Iy, (1.22a)
v

v
r S
yggAdv = Iy = I,_;y yzoadv = Iy, = Iy (1.22b)

v v

( |
j Zyoadv = Iy = Iy, (1.22¢)

v
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1.2 Definitions of Vector Components for Equations (1.15) and (1

; Fr = iFy + jPy + KFp, ' | (1.18b)
fg_l:: the thrust force components. '

| E=igx+igy + ke, | (1.18¢)
i Moments: | '

M, =iL, +jM, +kN, | (1.18d)
? . . .

a Mp=ilp+jMp+kNp | (1.18¢)
4

I femtiytee (1.18h)
| _ for the distance components whic i irp
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X

Z’ (Earth—fixed)

Acceleration of Gravity

Aerodynamic and Thrust Moments Linear and Angular (Rotational) Velocitids

In Chapter 6 it will be shown that manyl of these inertial properties have a very significant ihﬂue,_nce
on the response behavior of the airplane in flight as well as on the flying qualities of the airplane.
With the help of Eqns.(1.22) the expression (1.21) can be written as:

i(PIx — Qly — Rlg) + j(Qly — Ply — Rly;) + k(RI — Pl — Ql,y,) (1.23)

In Step 3 the third term in Eqn (1.20) yields: -
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. ] T X B(@T)odv = f [Gx +y + kz) x P +JQ + KR)(Px + Qy + Ra)jopdv =

i[IyPR + I(R? — Q%) — IxPQ + (Iz - I)RQ] +
jl(Ix — Iz)PR + Ix(P? ~ R?) — I,OR + I,,PQ] +
k[(Iyy — L)PQ + I;y(Q* — P?) + I,OR - I,,PR] (1.24)

At this point it is recognized that most alrplanes are symmetrical about the XZ plane. If that
is (even approximately) the case it automatically follows that Iy = Iy, = 0 . Figure 1.3 shows

examples of airplanes for which this mass symmetry assumption is not satisfied.

The reader is asked to observe that most missiles have two planes of symmetry (or approxi-
mately so): the XZ and the XY plane. For such vehicles I, = 0 is also satisfied.

All ingredients needed to cast the angular momentum equation (1 17) into its scalar compo-
nent form are now available. By using expressions (1.23) and (1.24) it is found that:

InP — IR ~ 1 <PQ + (I — I;y)RQ = L, + Ly (1.252)
yyQ + (In ~ 1,)PR ™I (P? — R2) = M, + My - (1.25b)

Equations (1.19) and (1:25) form six differential equations of motion with U, V, W, P, Q and
R as the dependent variables. Time is the independent variable. At this point it is not yet possible
to solve these equations for the time histories of motion U(t) through R(t). The reasons for this are:

1) The aerodynamic and threist forces and moments {r.h.s. in Eqns (1. 19) and (l ‘25)} vary
with time and with the dependent varlables U V,W,P,QandR. These dependenc1es will becxplored
and defined in Chapter 3. _

2) The gravity force components in Eqns (1.19) depend on the orientation of the airplane
relative to the earth—fixed coordinate system X*Y’Z’. This dependency will be derived and dis-
cussed in Section 1.6.

There is one problem which was introduced with the. assumptions: Ff=t=0on page 7.

These assumptlons also rule out any existence of spmmng rotors (such as propellers and turbines)
or a sweeping wing in the airplane. The effect of spinning rotors on the airplane equations of motion
will be discussed in Section 1.3. In the case of a sweeping wing it will be assumed that the wing
sweep motion is stow enough to be neglected. To account for the acrodynamic effect and the c.g.
shift effect the airplane will be studied at various intermediate sweep angles which will be fixed in
time. ' '

Examples of moment and product of inertia data for a range of airplanes are presented in

Appendix B. Rapid methods for estimating the moments and products of inertia airplanes are given
in Part V of Reference 1.3: pages 17 — 23.
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Pa_ssengér cabin
Cargo and baggage

Fuél
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Most airplanes are equipped with propellers and/or turbine engines which act like spinning
rotors. Such spinning rotors exert gyroscopic moments on the body to which they are attached. Fi g
ure 1.4 shows an example of an alrplanc where the rotor orlentatlon relative to the au'plane can in
fact be varied. : : -

ROTOR AXES M

In many airplanes these gyroscopic moments tend to be negligible (counter—rotating propel-
lers, twin spool turbines which rotate in opposite directions, etc.) but this is not always the case. The
gyroscopic moments due to spinning rotors can be accounted for by a simple addition to the angular
momentum equation (1.12). To accomplish this, it is assumed that an airplane‘is cqmpped with one
or more spinning rotors with a total angular momentum:

i=n
-

h; . - (1.26)
i=1 L : '

The rotor i is assumed to have a moment of inertia IR, about its-own spin axis. It is also

assumed that the rotor spins with angular velocity mR Eqn.(1 26) can thus be written as:

h= FZHIR(DR T | R (1.27)
i=1 SR .
Or, in component form:
h= 1hx + jhy + khz | (1.28)
It is now possible to rewntc Eqn (1 12) as follows o
gJ T X %@Adv + ‘é‘t‘ M, + M | )

/T " Angular momentum of mrplanc
. with rotors fixed.
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When the %‘i‘- terms in Eqn (1.29) are expanded by using Eqn (1.13) and by assuming that
all spinning rotors in the airplane operate at constant angular velocity ( (T’Ri = 0 ) the airplane angu-

lar momentum equations (1.25) become:

LoP — IR =~ 15PQ + (I — 1,,)RQ + Qh, — Rhy = L, + Ly (130a)

1yQ + (lx ~ Iz)PR + I(P? - R?) + Rhy — Ph, = M,, + M (1.30b)

14 ORIENTATION OF THE AIRPLANE RELATIVE TO THE EARTH
FIXED COORDINATE SYSTEM X*Y’Z’

e

To define the orientation of an airplane refative to the earth~fixed coordinate system X’Y’Z’
it suffices to define the orientation of its body-fixed axis system XYZ. Figure 1.1 shows the two
axis systems without defining their interrelation. Figure 1.5 shows axis system X’Y’Z’ translated
parallel to itself until its origin coincides with the center of mass, point P on the airplane. This trans-
lated system X*Y’Z’ has been renamed X1Y1Z4. The relative orientation of axis system XYZ to
axis system X 1Y1Z1 is defined with the help of three sequential rotations over the so—called Euler
angles: W, © and ®: , _ _

Rotation 1: Coordinate system X1Y1Z1 is rotated about its Z axis over an angle W
which is called the heading angle. The angle is positive as shown in Figure 1.5. After rotation over
‘the angle W the coordinate system is re~labeled: XoYoZo. ' o '

-~ - Rotatien 2: Coordinate system X2Y2Zjy is rotated about its Y axis over an angle ® which
is called the pitch attitude angle. The angle is positive as shown in Figpre 1.5. After rotation over
the angle © the coordinate system is re-labeled: X3Y3Z3. ™

Rotation 3: Coordinate system X3Y3Zj is rotated about its X3 axis over an angle @ which
is called the bank (or roll) angle. The angle is positive as shown in Figure 1.5. After rotation over
the angle ® the coordinate system is re-labeled: XYZ. Note: the notation X4Y4Z4 is not used in
favor of XYZ.

The reader should refer to Figure 1.6. This figure shows why the definition of the axes about
which the angular rotations are made is indeed important. As Figure 1.6 illustrates: finite angular
rotations do NOT behave as vectors which have the commutative property expressed as:

T A+B=B+A (1.31)
The reader should keep in mind that whereas finite angular rotations do not behave as vec-

tors, infinitesimally small angular rotations certainly de! A formal proof for these properties may
be found in Reference 1.1, pages 124—129,

A problem with the use of the Euler angles ¥, @ and @ is that for ® = 90) the bank angle,
® looses its meaning, In simulations where complete looping maneuvers may have to be performed
that is not acceptable. To overcome this the so—called quaternion method may beused. A good sum-
mary of the quaternion method may be found in Reference 1.4 (pages 47 - 50).
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X3 andX Y

Flight Path
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1.5 Airplane Qrie i i uler An

1.5 E AIRPLANE FLIGHT PATH RELATIVE TO THE EARTH

It is now possible to determine the flight path of an airplane relative to the fixed earth from
knowledge of the velocity compgménts U, V and W in the airplane body—fixed axis system XYZ and
the three Euler angles of Section 1.4. This will be done by establishing relationships between the
velocity components U, V and W (velocity components of Vp in XYZ) and the velocity compo-

nents X’,y’andz’ (velocity compopents of VP inX'Y’Z’). Because X1Y1Z1 and X’Y’Z’ are par-
allel to each other it follows that: . o
Uy =x Vi=y W, =2 (1.32)

Referring to Figure 1.7 it is possible to verify that the following relationships hold between
U4, V4, Wy and Ug, Vo, W7 (= velocity components of Vp in XoY2Z2): «

U, cosW —sin¥ O]fU,
Vi| = [sinW cosW Of| V, (1.33)

With a similar orthogonal transformation it is possible to relate Uz, V2 and W3 to U3, V3
and W3 (velocity components of Vp in X3Y3Z3):
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X; KA X7

Uy " Projection of Vp

onto the Xo2Yo-plane

1. Rotation over a heading
angle of ¥ about Z1
Note: W4 = W»

> Tt
Yo
2. Rotation ovér a pitch
angle of ® about Y7
‘ Note: Vo = V3
)] g
\ U2 ;’ P ©
) ] - @ o
1!
o
Projection of Vp ﬁ:‘::.:_ W3 W2
onto the X3Z3-plane ST
Z;

3. Rotation over a bank
angle of <I> about X3
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front view

Projection of Vp
onto the YZ~plane
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U, cos® 0 sin®][U;
74 QU 1 ol v; (1.34)
w2 —-sin® 0 cos® w3

Again, this relationship can be verified by feferring to Figure 1.7.

Finally, it is possible to relate U3, V3 and W3 to U, Vand W (velocity éomponents of' f/P
in XYZ) by the following orthogonal transformation: o ‘

Us 1 0 o[ U | .
Vit =0 cos® ~—sin®{ V - | (1.35)
W, 0 sind cos®|] W

e

This relationship can also be verified by referring to Figure 1.7.

By substituting Eqn (1.35) into Eqn (1.34) followed by substitution of Eqn (1.34) into Eqn
(1.33) the following relation is obtained between the earth axes veloeity components and the body
axes velocity components of the airplane: | "

U1 X
v,y = y =
Wl . z

cosW —sin¥W  O)fcos® - 0 sin®]f1 0 01 U
sin¥ . cosW 0]|0 1. 0 cos® —sin®|d V (1.36)
0 : 0 1l—sin® 0 cos®||0 sind cos®|| W

=)

N,
Eqn (1.36) provides the desired relationship between velocity components in the earth—fixed
system X"Y’Z’ and those in the body—fixed system XYZ. By proper pre—multiplication of the trans-
formation matrices it is always possible to invert Eqn (1.36).

The flight path of the airplane in terms 6f x(t), y'(t) and z’(t) can be found by integration
of Eqn (1.36). To perform this integration, the Euler angles ¥, © and ® must be known. However,
the Euler angles are themselves functions of time: the Euler angle rates _‘I‘, ©® and @ dependon

the body axis angulaf rates P, QandR. To establish_the__relationship':betwcen Y, @andd and
P, Q and R it is observed that the following equality must be satisfied:

— - —

®=iP+jQ+kR=W+0+ | | 2 (1.37)
Since W represents an angular rate about the Z1 axis it is seen from Figure 1.7 that;

¥ = k¥ =kW¥ (1.38)

Similarly, e represents an angular rate about t_hf_: Y axis and._therefore'may be seen with
the help of Figure 1.7 that:
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-

e —129 —139 | _ . (1.39)

_Fmally, (P represents an angular rate about the X3 axis and so it follows from Figure 1.7:
o = 13<I> id (1.40)

By substitution of Eqns (1.38) — (1 40) into: Eqn (1.37) it is seen that:

B = kW +j,0 +id | o (1.41)
T By now using transformations similar to those of Eqns (1.34) and (1.35) it can be shown that:
k, = - i3s§n® +kjcos@ = ~ isin® + cos_@)(jsing + kcos®) (1.42)
From a transforma;ion similar to Eqn (1.35) it can als§ be shown that: |

j3 = jeos® — ksin® | | (1.43)
After substituting Eqns (i.42) and (1.43) into Eqn (1 41)and soﬁle re—arrangefpent itis seen

= i(— ¥sin® + &) + j(¥cosOsin® + @cosd)) +
k(¥ cos@cosd — @)sm@) o o N - (144)

Comparison with Eqn (1.37) now yields the so—called airplane kinematic-equations:

P=®-¥sin® - . (1.45a)
Q = Gcos® + YcosOsin® (1.45b)
R = WcosB®cos® —-Osin® (1.45¢)

For the flight path integration problem it is desirable to invert these equations to yield:

& = P + Qsin®tan® + Rcos®tan© - (1.46a)
@ = Qcos® — Rsin® (1.46b)
¥ = (Qsin® + Rcos(b)_secQ - o - .  (1.46c)

The body axis rates P, Q and R are found by integration of the airplane equations of motion:
Eqns (1.25). By integrating Equations (1.46) the Euler angles ¥, © and & are obtained so that the
integration of the flight path equations (1.36) can be completed. The actual integration is performed
with numerical analysis methods. Reference 1.5 can be consulted for methods of integrating sets
of differential equations.

The following interpretation of Equations (1.45) is important to keep in mind:
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(1.45a): Body axis roll rate, P IS NOT THE SAME as rate of change of bank angle, ®.
(1.45b): Body axis pitch rate, Q IS NOT THE SAME as rite of change of pitch attitude angle, 0.
(1.45¢c): Body axis yaw rate, R IS NOT THE SAME as rate of change of heading angle; W.

Later, in Chapter 5 it will be shown that in the case of the small perturbatlon equations of
motion (relative to a wings level and horizontal steady state flight path) the approximations:

p=¢, q = 6and r=1y S (1.47)

are acceptable. The reader should keep in mind the fact that in general these approximations are not
correct!

b

1.6__THE COMPONENTS OF THE GRAVITATIONAL FORCE

The reader is-asked to rctum to Eqns.( 1.19) where it is seen t}l&i the foliowing three compo-
nents of the gravitational force appear: mgy, mgy, and mg,. By referring to Figure 1.2 the com-

ponents of gravitational acceleration can be written as follows:
€ =kg = kg = igx + jgy + ke, | - (148)
These components of gravitationél acceleration can be written as functions of the Euler
angles by recognizing that: k; = k, . Since k, was already expressed in terms of i, j and k by
Eqn (1.42) it follows that:

™.
i(— gsin®) + j(gsin® cos @) + k(gcos®cos®) = igy + jgy +kg; (1.49)

"From this in turn it is seen that:

gx = — gsin® | -~ (1.50a)
gy = gsin®cosO ' (1.50b)
g = gcosdcos © ' " (1.50c)

The reader should observe that the heading angle W does not appear in Eqns (1. 50). The
reason for this is the *flat earth’ assumption made in Section 1.1.
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At this point it is useful to review the airplane equations of motion as derived so far. There
are three sets of equations:

1. The force equations obtaine‘d by Subsﬁtuﬁng Eqns (1.50) into ‘Eq‘ns (1.19).

2. The moment equations as stated in Eqns (1.25). Note that the effect of spmnmg rotors
(Eqns (1.30) has been omitted!

3. The kinematic equations as expressed by Eqns (1.45).

These three sets are repeated here for convenience:

Force along X: m(U VR + WQ) = —mgsin® +Fy +Fr (1.51a)

Force along Y: m(V + UR — WP) = mgsin®cos® + Fo +Fr = (L51b)
Force along Z: m(W\r UQ + VP) = mgco_stbcos_@ +F,, +Fp, (1.51¢)

Rolling moment about X: IuP —IpR —IgPQ + (Iz —Ly)RQ =L, + L  (1.52a)
Pitching moment about Y: . IyQ + (Ix — Iz)PR + Ix(P2 — R?) = M, + My (1.52b)
Yawing moment about Z: IzzR - I,EP + (Iyy I,“)PQ + I,OR = N At Nnr (1.52¢c)

3. For the ki .- cquations:
Roll rate about X: P =& — Wsin® ' | (1.53a)
Pitch rate about Y: Q = @cos® + WcosOsind | (1.53b)
Yaw rate about Z: R = Wcos®cos® — Osind (1.53¢)

~ Equations (1.51) and (1. 52) are referred to as the general airplane equations of motion. That
is a rather generous description since many assumptions have been made in thexr derivation. Many
of these assumptions serve to reduce the *generality’ of these equations!

Equations (1.51) and (1.52) are as yet incomplete: the aérodynamic and thrust forces and
moments in their right hand sides must still be expressed in terms of the motion variables. That will
be doné in Chapter 3.

From a mathematical viewpoint the equations (1.51), (1.52) and (1.53) form a set of nine
differential equations in nine variables: the velocity components U, V and W, the angular rate com-
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ponents P, Q and R and the Euler angles ¥, © and ®. By a- process of elumnatmn of variables it
is also possible to think of these equations as a set of six differential equatlons of motion in six vari-
ables: either U, V, W,P,Qand Ror U, V, W, ¥, © and . ' :

In either case, general solutions to the equations can be obtained only by numerical integra-
tion. However, from an airplane design and from a handling qualities viewpoint there are two special
flight conditions for which solutions of these equations are of primary interest:

1. Steady state flight conditions 2. Perturbed ététc ;_ﬂight éondi_tipns :

The remainder of this text is primarily concerned with the study and applications of the *gen-
eral’ airplane equations of motion to these two sets of flight conditions. Before specializing the
equations of motion to these two sets of flight conditions it is useful to state the definition of these
flight conditions:

Definition 1: Steady State Flight R

A steady state flight condition is defined as one for which ALL motion varlables remain
constant with time relative to the body-fixed axis system XYZ. '

Mathematically speaking, steady state flight implies that:
Vp=0 and @&=0 S (1.54)

7 Equations (1.54) imply that i'/’P and @ are constant with time relative to axis system

XYZ. Figure 1.8 illustrates three typical steady state flight conditions,

It should be observed that (strictly speaking) the definition for steady state flight applies only
in an atmosphere of constant density. Since in reality the atmospheric density varies with altitude,
only flight at constant altitude (Example 2 in Figure 1.8) satisfies the definition of steady state flight.
The reason for this is the fact that aerodynamic forces and moments are all proportional to the dy-

namic pressure: { = ;QVZ . As the density varies, so do the aerodynamlc forces and moments

and that in turn would violate Eqn (1.54)!

Pragmatically speaking, as long as the density does not vary by more than about 5% during
a 3060 second time interval it is acceptable to assume that examples 1 and 3 in Figure 1.8 qualify
as steady state flight condmons Figure 1.9 shows that the flight path angles for which the steady
state assumption applies are not very steep!

A perturbed state flight condition is defined as one for which ALL motion variables are de-
fined relative to a known steady state flight condltion
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Perturbed state flight is mathematically described by considering the total state of each mo-
tion variable to be equal to the sum of a steady state (or reference, or equilibrium flight) quantity
and a perturbed state quantity. Figure 1.10 illustrates what this means for two. types of perturbed
flight conditions. Any flight condition which is not steady can be mathematically thought of as hav-
ing been perturbed away from some steady state. :

It is the purpose of Sectlons 1.8and 1.9to develop the specific mathematlcal models used
in the study of steady state and perturbed state flight conditions.

1.8 STEAD} T1

- When the definition of steady state flight of page 22 is applied to the equations of motlon
(1.51) and (1.52) the following general ste,ady state equations of motion ensue:

Force along X: m(- V,R; + W101) == mgsm@1 + FA‘ + FT o (1.55a)
Force along Y: m(U,R, — W,P;) = mgsin®, cos®1 +F a, t FTyl . (1.55b)
Force along Z: m(-—U,Q; + V,P,) = mgcos®;cosO, + FAH + FTI:1 ‘ (1.55¢)
Ro’ll_ing moment -about X: - IxP,Q; + (Ix— IW)RlQi_ = LAl + Lr, o (1.56a)
Pitching moment about Y: (Ix — Iz)PR; + Ix(P} — R} = M, + M (1.56b)
Yawing moment about Z: (Iyy —Ix)P;Q; + LQ Ry = N, + Np (1.56¢)

The subscri;it 1 has been added to all motion variables to indicate that the variable is now
a steady state variable. This notation will be consistently used unléss no confusion can result from
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droppmg the subscript. Since the kinematic equations (1.53) do net contain any acceleranons they
remain unchanged except for the addition of the subscnpt 1: :

Roll rate about X: P, =¢@; —W¥ sin® = | © (1.57a)
Pitch rate about Y: Q; =@;cos®, + ¥ cos@sin®, (1.57b)
‘Yaw rate about Z: R, = \I'lcoselcosd)l Glsxnd)l S (1.57c)

'The three steady state flight cases depicted in Figure 1.8 are of special interest:
Case 1) Steady state rectilinear flight (straight line flight)
" Case 2) Steady state turning flight (steady level turn)

- Case 3) Steady symmetrical pull-up

For each of these types of steady state flight conditions the general equations of steady state
motion, Eqns (1.55) through (1.57) take on special forms. These special forms will now be derived.
~ A detailed discussion of the, apphcatmn of these forms to the problems of steady state controllability
is presentcd in Chapter 4. N

Steady state rectilinear flight as suggested by Flgure 1.8 is characterized by the following
condition; ® = 0 wmchmtumlmphes that: P1 Q, =R, = 0 Therefore,thckmemauc equa-

tions (1.57) become trivial and the force and moment equations are;

Force along X: 0 = - mgsm@1 + FA. + Fp T,, (1.58a)
Force along Y: 0= mgsiﬁ@lcos(-)l +FA, + FTy _ - (1.58b)
Force along Z: 0 = mgcos®,cos0, + FAzl + FT_“1 ' (1.58c)
Rolling moment about X: V=1L, +Lp | (1.59a)
Pitching moment about Y: 0 = M At MTl ' | (1.59b)
Yawing moment about Z: 0 =N, +Np ' (1.59¢)

Equations (1.58) and (1.59) form the basis for studymg airplane controllability problems in
the following flight conditions:

* Cruise | * Engine(s) inoperative flight
* Shallow climbs, dives and glides * Steady state flight with certain failed systems

| Applications are discussed in Chapter 4.
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Steady state turning flight is characterized by the fact that @ is vertical in the earth-fixed
X'Y'Z’ axis system. From Figure 1.8, Case 2 it follows that:
@ =kW= k1‘*’ S : : (1.60)

Evidently, in a steady level turn only the hcadmg angle, W changes while the pitch attitude
angle, © and the bank angle ® remain constant. The kinematic equations (1.57) therefore become:

Roll rate about X: P, = — ¥, sin®, ' . (1.61a)
Pitch rate about Y: Q; =¥, cos0,sin®, - (1.61b)
Yaw rate about Z: R, = ‘-Plcos®1cos(l>1 _ | (1.61c)

The airplane force and moment equations of motion remain as stated in Eqns (1.55) and
(1.56) respectively. Equations (1.55), (1.56) and (1.61) are used to study airplane controllablllly
problems in the followmg condltlons

* Steady turning flight with all engines operatiﬁg
* Steady turning flight with one or more engines inoperative
* Ability to maintain steady state turning flight with certain failed systerns

Applications are discussed in Chapter 4.

Referring to Figure 1. 8 Case 3 it is seen that fora stcady, symmetrlcal pull-up maneuver
the following conditions apply:

®=kO, V;=P,=R;=0 and &, =0 ' (1.62)

The only non-zero rotational velocity component is therefore the pitch rate, Q. The force

and moment equations of motion (1.55) and (1.56) therefore become:

Force along X: mW,Q; = — mgsin®, + FA“1 + FT,:1 o (1.63a)
Force along Y: 0= FA?, + F-[-y1 | (1.63b)
Force along Z: - mU,;Q; = mgcos®, + FA + FT S | - (1.63c)
Rolling moment about X: 0=L, +Ly (1.64a)
Pitching moment about Y: 0=M At MTl (1.64b)
Yawing moment about Z: 0=N, +Np : - . (L64e)
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The kmematlc equatlons (1. 57) reduce to:

Q.= : Lo o (1.65)
Equations (1.63), (I .64) and (1. 65) are used to study mrplane controllability problems in the
. following conditions:

-* Symmetrical pull-up flight with all engines operating.

* Symmetrical pull-up flight with one or more engines 1noperat1ve

* Ability to perform pull-up flight with certain failed systems

Applications are discussed in Chapter 4.

ED ST, ATI

“According to the definition of perturbed state flight (page 22) the following substltutmns are
applied to all motion vanables and to all forccs and moments '

Motion Varigbles:
U=U, +u . V=Vt W=W, +w (1.66a)
P=P +p Q=Q;+q R=R;+r (1.66b)

W=y ty @=0,+0  ®=d,+4¢ (166
rces. : : ' :
Fp = FAm1 + £, Fp = FA]’1 + fA, Fuo,= FAZ1 + £, (1.67a)
Fr,=Fp +1g Fy, =Fr, +fp Fr, =Fr, +1, (1.67b)

Moments: _
LA=LA1+1A My =M, +my Ny =N, +n, " (1.68a)
Ly=Lp +1p Mr=Myp +mqg Np =Nr, + 171 (1.68b)

-

These substitutions are referred to as the *Perturbation Substitutions’. At this stage, the
magnitude of these perturbations is quite arbitrary! Carrying out these perturbation substitutions
into the general airplane equatiogs of motion (1.51) and (1.52) results in:

Force along X: m[u — (V; +vV)(R; +1) + (W, + w)(Q; + q)] =
— mgsin(@,; + 8) '+FA"1 + 15 + FT'i + fT,. ' (1.69a)

Force along Y: m[v + (U + u)(R; + r) (W1 + w)(P; + p)] =
mgsin(®; + ¢)cos(®; +8) + Fp +f, +Fr +fr  (169)

Force along Z: m[w — (Uy + u)(Q; + q) + (V; +v)(Py +p)] =
- migeos(®; + ¢)cos(@; + 0) + Fp +f, +Fr +fr  (169)

Chapter 1 ‘ 27



Moment about X: Inp — Lgf — Ig(P; + p)(01 + q) + (I - Iyy)(Rl )(Q; +q)

LA +1, + Lr + 1 - - (1.70a) |
Moment about Y: Iy + (I — Tz)(P; + P)(R; + r) + I,I,:[(P1 +p)? - (R, + )3
MA +my + My +mg - © (1.70b)

Moment about Z: Ini — Lop + (Iyy — 1,"',;)(151 +p)(Q; + @) + In(Q, + QR; +1)

ke

Na, *8a+Ng 40 o - (1.70¢)

- To allow for a simple expansion of the trigonometric quantitjes in Eqns (1.69) the first re-
striction to the allowable magnitude of the motion perturbations is no® introduced. The perturbation
values of 8 and ¢ are selected un such a way that the following approximations apply

cos8 = cos = 1.0_ . . sinB =06 sing = ¢ (1.71)

These approxmauons glvc qpxte acceptable results even for perturbed angles as large as 15
degreés. With these approximations it can be shown thas the fdllowmg expansions for the trigono-
metric quantities in Eqns (1 .69) can be used:

N SIH(GI + e) == Sln91+ BCOS@I . S : (1.72a) |

sin(®, + ¢)cos(®, + 6) =

sin®; cos®; — Bsin®;sin®, + pcosP, cosO, — ¢Bcos<1>_lsin61 | (1.72b)

cos(®; + d)cos(@; + 6) ~

cosfblcbsG')l — Bcos®;5in@; — ¢psin®,cosO; + $Osin P, sin O, | (1.72¢)

By expanding 'equations ( 1.69) and (1.70) while utilizing the aiaproximations (1.72) the force
and moment equations take on the form shown in Table 1.3: Eqns (1.73) and (1.74).

Observe that the thin underlined terms in Table 1.3 represent the genetalséte'ady. state eqlia-
tions of motion (1.55) and (1.56). Since the steady state equations of motion are assumed to be in-
herently satisfied they can be eliminated from Table 1.3 without loss of generality.

Observe that the fat underlmed terms in Table 1.3 all contain products-or cross products of

perturbed motion variables. These terms are also referred to as non-linear terms. At this point the
so—called small perturbation assumptlon will be made: the non-linear terms will be assumed to
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Force along X:

m(— Vi\R; + W,Q)) + m(u — Vir —R;v+ W g+ Q;w) + m(—vr + wq) =
L

— mgsin®, + FAx, + FT;, — mgbcos®; +f, + fr o (1.73a)

Force along Y:

m(U;R; — W,P;) + m(Vv + Ujr + Rju —W;p — P;w) + m(ur — wp) = mgsin®, cos®, +

Fy, +Fr, — mgbsin®,sin®, + mgpcos®cos®, + f, + fr — mgdBeos®,sin@® (1.73b)
. L]

m(— U,Q, + V|P}) + m(W — U;q — Qu + V;p + P;v) + m(— uq + vp) = mgcos®,cos®, +
] . L —

I-"'Azl + FTI1 - mgecoslh,\s‘in(al — mgdsin®,cos®; + f, + f; + mgpBsin®,sin@, (1.73c)

Moment about X:

— L P Qy + (I~ Iyy)RlQl + IxxP — Lot "".Ixz(qu + Q‘1_P) + (Izz = Iyy)(qu + er)_+
~Inpq + (I — kyy)rg = Ly '+ Ly +1, +1p | o (1.74a)
(Ixx — Iz)P Ry + L(P? — R + Iy + (Ixx — Iz)(Pir + Ryp) + L,(2P,p — 2Rr) +

(Ix = Idpr + Ixo(p? — 1) = M, + Mg + m, + mg (1.74b)
L] ————————

Moment aboyt Z; -

(Iyy - Ixx)P1Q1 + I,ng'lR]"-i- It —'Isz + (Iyy - Ixx)(qu + Q1p) + I;(z(Qlf + RIQ) +

(yy — IxOPq + Iyeqr = Ny + Np + 10, + np | (L7400
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be negligible compared with the linear terms. Therefore the fat underlined terms in Table 1.3 will
also be dropped. The result is Eqns (1.75) and (1.76): - -
m(u - V;r - Ry + Wiq + Q;w) = — mghcos 0, + fo + fo (1.75a)
ﬁ'l(\'/ +Uir+ Ru - Wlp - PIW) = — mgBsin®,sin®,; +
mgdcos®ycos @ + f, + fr | ~ (1.75b)

m(w -~ U;q—Qu+ Vip+Pyv) = - mgBcos P, sin@, +

e

- mg¢sin¢1cos®1 + fA, + sz o (1.75¢)
IxxI'JI“" .Iaxzf - I;rz(P1§ +Qp) + (Iz — Iy)(Rq + Q1fL= I, +1yp (1.76a)
Iyyq'+'('1n - izz)'(P;f +.Rlp) + I(2P;p — 2Ry1) = m, + Iﬁr (1.76b)
| It — Lgp + (Iyy — Le)(Pyq + le,) + In(Qqr + Ryq) = n, + _nT. | (1.76c)

The reader should realize that the small perturbation assumption limits the validity of Equa-
tions (1.75) and (1.76) to small perturbations only! Because airplanes are supposed to fly with as
much comfort to the passengers as possible (very small perturbations!) this assumption is not very
restrictive from a pragmatic viewpoint. Even fighter and attack igplanes operate mostly under
conditions where small perturbations are desired: ordnance delivery aecuracy partly depends on
that! Exceptions to this behavior are when airplanes are intentionally maneuvered to the edge of
their flight envelope and/or airplanes which are encountering gust upsets. .

_ The perturbation substitution must also be made in the kinematic equations (1.43). Doing
so results in; e

Py+p=(® +¢)— (¥, +Y)sin(@, +8)  a

Q; +q = (©; + B)cos(®y + ¢) + (¥, + p)cos(®; + B)sin(®, + ¢) (1.77b)
R; +r1= (¥ +¢)COS(®__1 + 9)°QS(¢1 +¢) - (@1 + E.’)Sin(‘l’i_ +0) (1.77¢)

- When these equations are expanded the equations of Table 1.4 are obtained.
Observe that the thin underlined terms in Table 1.4 represent the steady state kinematic equa-

tions of motion (1.57). Since the steady state kinematic equations are inherently satisfied they can
be eliminated from Table 1.4 without loss of generality. '
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Table 1.4 Perturbed Kinematic Equations |
P,+p=0®, +¢— W ;sin®, — ¥,0cosO, — {sin®, — 1]§9cos@1 | (1.78a)
Q, +q = 0,cos®, — ©,psin®, + Ocos P, — OPpsin®, + ¥, cos O, sin®; +
W pcos®,cos® — ¥ ,0sin®;sin®; — ¥,04sin®, cos®; + Ycos®,sin®; +
. R
Yodcos® cos®, — Bsin®,sin®,; — PO¢sin@,cos D, (1.78b)

R, +1 =W cos@ cos®, — ¥ dpcos®,sin®, — ¥,05in©,cos®, — ¥,0sin @, sin P, +

—— L]
Pcos @, cosP; — PPpcosO,sin®, — POsin®;cos P, + 0Psin®,sin®d; —
L ]
O,sin®, — ©,dpcos®, — Osin®; — Opcos P, (1.78¢c)
. N

Observe that the Tag underlined terms in Table 1.4 all contain products or cross products of
perturbed Euler angles or rates. These terms are also referred to as non-linear terms. At this point
the so—called small perturbation assumption will be made: the non-linear terms will be assumed
to be negligible compared with the linear terms. Therefore the fat underlined terms in Table 1.4 will
also be dropped. The result is Eqns (1.79):

p=¢— ¥ 0cosO; — Psin®, ‘ . | (1.79a)

q= ~©,0sin®, + Bcos®, + W,¢pcos®, cos®; +
— ¥,05in @, sin®, + cos O, sin®, | (1.79)

= — W pcosO®, sin®, — ¥ Bsmelcostbl + 1pcos®lcos¢1>1
- @)ld)cos(DI - Bsmtbl o S (1.79¢)

The combined equations (1.75), (1.76) and (1.79) are the nine perturbed equations of motion
relative to a very general steady state: i.e. one for which all motion variables are allowed to have
non-zero steady state values. It turns out that the rnajority of airplane dynamic stability problems
are concerned with perturbed motions relative to a wings level, steady state, straight line flight
condition with a relatively small ﬂlght path angle For such a steady state the followmg conditions
hold:

a) no initial steady state side veloc1ty exists: V1 =0 : (1.80)

b) no initial bank angle exists: ¢I>1 =0 . o | (1.80)
¢) no initial angular velocities exist: P,=Q, =R, =¥,=0,=0,=0 (1.80)
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" When the special steady state condmons (1.80) are introduced into Eqns (1.75), (1.76) and (1 79
these equations become:

m(i + Wyq) = — mgBoos®, + f,_ + fr. - (1.812)
m(v + U;r — W;p) = mgdpcos©, + fA, + ny : . (1.81b)
m(w — U;q) = — mgbsin®, + £, +fr | (1.81c)
Iop =~ I =l +lp - - - (1.82a)
Iyyq = m, + my | | (1.82b)
Izt — Igp = 0, + np - (1.82¢c)
p=¢-ysin® = - - : (1.83a)
q=16 o o (1.83b)
r=1ycos®; : D (1.83¢)

Equations (1.81), (1.82) and (1.83) form the basis for the airplane dynamic stability and re-
sponse discussion presented in Chapter 5. They also form the basis for the discussion of automauc
flight control theory and apphcat.:ons Wthh are prcsented in Chapter 8.

1.10 PTER

In this chapter the airplane equations of motion were developed*by applying the Newtonian
principles of conservation of linear and angular momentum. The equations were written for a body—
fixed axis system, XYZ which moves with the mrplane and which has its origin at the airplane center
of mass. First, the equations were written in a general vector—integral format: Eqns (1.14) and
(1.17). Second, these equations were expanded into a scalar format to yield Eqns (1.19) and (1.25).

To account for the motmn of the mrplane relatlve to an eanh—ﬁxcd coordinate system
X’Y’Z’ the so—called Euler angles were introduced: W for-heading, ® for pitch attitude and @ for
bank angle. A relationship was developed which relates the velocity components in the airplane
body—fixed axis system XYZ to those in the earth—fixed axis system X’Y’Z’; Eqns (1.36). These
equations are used to solve navigational problems. The Euler angles were also used to find expres-
sions for the components of gravitational acceleration along the airplane body—fixed axes. This re-
sulted in the six general equatlons of motion: (1.51) and (1.52). -

By relatmg the Euler angle rates to the au'plane body axis rates the So;ééﬂed airplane kihé-
matic equations were obtained: (1.53).

The equations of motion were next speciaiized to cope with two sets of flight conditions:

Equations (1.55) through (1.57) for steady state and Equatlons (1.81) through (1.83) for perturbed
state flight conditions.
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Before solutions of the various equations of motion can be discussed and interpreted it is nec-
essary to express the acrodynamic and thrust forces and moments in terms of pertinent motion vari-
ables. In Chapter 2, areview is presented of important acrodynamic effects which are used in obtain-
ing such relations. Expressions relating the aefodynamic for¢es and ;moments to the pertinent
motion variables are developed in Chapter 3.

1 CHAPTER 1

1.1 The following sketch shows a moving mass inside a cargo airplane. The mass, m; moves
along the airplane X-axis with constant velocity 8T, /3t (no friction). The total mass of the airplane

isnow: m = ] odv + m,;. Rewrite equations (1.1) and (1.2) to account for the effect of this
v .

moving payload mass.

-

12 Carry out the operations needed to demonstrate that Equaﬁon (1.12) is correct.
1.3 Carry out the operations,needed to demonétrate that Equations (1.19) are correct.

14  To what form do Eqns.(l.19) and (1.25) reduce if the-airplane is not rotating? ( EG =0)

1.5 Towhatformdo Equat.lons (1. 19) and (1.25) reduce 1f the auplane 15 restramed to move only
in a vertical plane? _ ' . R :

1.6  Rederive Equations (1.10) and (1.12) for the situation defincd _in Problem 1.1, :

1.7 This problem, assumes that Part V of Reference 1. 3 is available. Use the radius of gyration
method to predict the moments of inertia Ixx , Iyy and Iy for the following airplanes:

Boeing 737-100 and Boeing 737-400; McDonnell-Douglas DC-10-30 and MD-11;
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Cessna 208 and the Piaggio P-180. Use the appropriate issue of Jane’s All'the World Aircraft
(McGraw-Hill publication) to find three~views of these airplanes.

1.8 Show step-by-step that Equations (1.25) are correct.
1.9  Rewrite Equations (1.19) and (1.25) for a bullet.
1.10  Consider two imaginary airplanes which have the same weight.  One looks like-a Vickers

VC-10, the other looks like a Convair 880. State why and how their moments of
inertia Lx, Iyy and I differ.

1.11 =Using some sketches, explain= h.ow rolling and yawing moments due to thrust can arise on
airplanes configured like a Boeing 767 and like a Fokker F-50 after one engine has failed.

1.12  Anairplane has two jet engines, each with a positive angular momentum of Ir®g . Assume

that the rotor spin axes are oriented at an angle 30 degrees up'from the X-axis and 20 degrees
left and right from the XZ-plane of symmetry. Find expressions for hy , hy and h; .

1.13  Under what circumstances are the body axis angular rates P, Q and R equal to the Euler
angular rates W , @ and o ? . A y

1.14  Prove that for airplanes which have the XZ—plane as a plane of symmetry all products of
inertia which contain a dlstance y are equal to zero.

115 Tocheck how reaSonable the constant air density assumption is for use in stability and control
analyses compute the change in dynamic pressure for a 60 second, time interval for straight
line flight paths with flight path angles of ~0.5, -1.0, -2.0 and -4 degrees. Keep the Mach

number constant at 0.8 and start the calculations at 35,000 ft and repeat them for a start at
70,000 ft. _
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2: RE ODYNAMIC FUNDAMENTA

In this chapter a review is presented of those aerodynamic fundamentals which are important in un-
derstanding aircraft stability and control concepts. The assumption is made that the reader is reason-
ably famlhar with fundamental aerodynamic theory such as dlscussed in Reference 2.1.

2.1 'EF 1 FA

The following geometric airfoil parameters have been found to be important in affecting
aerodynamic characteristics of airfoils: ' :

1) maximum thickness ratio, (t/C)max

2) shape of the mean line (also referred to as camber). If the mean line is a straight line,
the an'foﬁ is said to be symmetrical.

3) leading e&gc shape or Ay parameter and leading edge radius (le.r.)
4) trailing edge angle, {qg

Figure 2.1 provides a geometric interpretation for these parametcrs

" The reader should consult Reference 2.2 for a detailed discussion of airfoil parameters and
airfoﬂ characteristics. Reference 2.2 also contains a large body of experimental data on a variety
of NACA (National Advisory Committee on Aeronautics, predecessor of NAS A, the National Aero-
nautics and Space Administration) airfoils. In addition, this reference contains explanations for the
numerical designations uged with NACA airfoils.

: : -

.A;_I'E | \ CTERISTI

Part VI of Reference 2.3 may be consulted for rapid empmcal methods used to predict sec-
tion lift, drag and pltchmg moment charactenstlcs from the basic geometric parameters seen in Fig-
ure 2.1. '

Figure 2.2 shows a typical graphical representation of those airfoil characteristics which are
of prime importance in the analysis of airplane stability and control properties. Table 2. 1 summa-
rizes the principal effect of the geometric parameters of Figure 2.1 on the acrodynamic characteris-
tics of Figure 2 2.

Because lifting surfaces (such as wings, tails, canards and pylons) can be thought of as span-
wise arrangements of airfoils, the basic charagteristics of airfoils have a major effect on the behavior
of lifting surfaces. It is therefore important to be aware of those airfoil characteristics which have
the potential of being driving’ factors in airplane stability and control.
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'|Geometric Airfoil Parameter Prmmpal Effect on Aerodynamic
- Characteqsucs other };han.D}'ag
;I—?;mum Thickness ratio, t/Cmax = -l\—/-[;-m;l—u-mnilft coefgg;_e;t:,;:m;“
| | | Aerodynamic center, Xac. = ’%‘c
|Shape of the mean fine Zero lift angle of attack, a

Maximum lift coefficient, ©i_,,

Pitching moment coefficient at
zero lift coefficient, Tm,

|Leading edge radius, Le.r. and leading Maxinum it coefficient, ¢, and
|{edge shape paramgter, Ay : _
| : N end of the linear angle of attack range, o *

| Trailing edge angle ¢TE | Aerodynannc center Koo = xc“

{Note: References 2. 2 and Part VI of 2 3 should be consulted for theoretlcal empmcal and exper-
: nnenta} detmls ' :

The following airfoil (two—dimensional) properties of Figure 2.2 will have a 31gmﬁcant ef-
fect on their lifting surface (three-dimensional) counterparts. Y

Mﬂt_,_ =" *angle of attack for zero lift: @
| * lift curve slope: ¢; _ _ _
* maximum lift coefficient: . | -(function of Reynolds Number, Ry )
“* angle of attack at Clos * %1 |
* end of the linear angle of attack range: o™
In Drag: * lift coefficient for muumum drag or design lift coefficient; cl@
| * minimum drag coefficient: ¢q,, (functionof Ryy) |
In Pitching Moment:  * pitching moment coefficient at zero lift coefficient: T,

* aerodynamic center (i.e. that point on the airfoil chord where the
variation of pitching moment coefficient with angle of attack is zero).
Figure 2.3 shows how the aerodynamlc center is located geometncally

. Xac

The followmg notation is normally used: Rac = <

‘\\‘.
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Table 2.2 gives an overview of typical numerical values associated with some of these quan-
tities. It will be noted that the airfoil lift-curve—slope, ¢; typically has a value of approximately

2m (roughly 6.3 per rad or 0.110 per deg). Note also that the location of airfoil acrodynamic center
is typically close to the quarter chord point: Xz = 0.25 . The reader should be aware of the fact

that most of these quantities are also a strong function of Mach Nﬁmber, M. The dependence on
Mach Number of the aerodynamic center location, X;. and the lift—curve—slope C, of airfoils

is of particular significance to airplane stability and control. For that reason these characteristics
are discussed in more detail in Sub—sections 2.2.1 and 2.2.2 respectively.

Definition: The aerodynamlc center of an a1rf011 is deﬁned as that point on its chord about
which the pitching moment coefficient is invariant with angle of attack. '

In other words: Xac = x%" is that point for which: ¢, = 0 The acrodynamic center of

an airfoil should not be confused w1th 1ts center of pressure.
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Airfoil ay Cm, oo ) O, ' ¢, =« *
(deg) - (l/deg) (deg) (deg)
0006 0 0 0.108 0250 .90 0.92 9.0
0009 0 0 0.109 0250 13.4 1.32 11.4
1408 08  -0023 0109 0250 14.0 135 10.0
1410 ~1.0 ~0.020 0,108 0.247 14.3 1.50 11.0
1412 ~1.1 0025 . 0.108. 0252 15.2 1.58 12.0
2412 ~2.0 —0.047 0.105 ~ 0.247 16.8 . 168 - 95
2415 2.0 0049 . 0106 0246 164 1.63 10.0
2418 2.3 —0.050 0.103 0241 14.0 1.47 10.0
2421 ~1.8 —0.040 0.103  0.241 16.0 1.47 8.0
2424 . 18 —0.040 0098 0231 - 160 129 8.4
23012 -14 0014 0.107  0.247 18.0 1.79 12.0
23015  -1.0 0007 0107  0.243 180 1.72 10.0
23018 -12 ~ -0.005  0.104 0243 16.0 1.60 1.8
23021  -1.2 0 0.103 0238 15.0 1.50 103
23024 0.8 0 0097 0231 15.0 1.40 9.7
64-006 0 0 0.109 0.256 9.0 0.80 7.2
64-009 0 0 0.110  0.262 11.0 1.17 10.0
641012 0 0 0.111 0262 14.5 145 11.0
641-212 -1.3 0027~ 0113 0262 150 1.55 11.0
641-412 2.6 —0.065" 0112 0267 150 1.67 8.0
64-206 1.0 —0.040 0.110 0253 120 1.03 8.0
64-209 —L1.5 —0.040 . 0107 0261 13.0 1.40 8.9
64210 -1.6 —0.040 0110 0258 14.0 1.45 10.8
64A010 O 0 0.110 0253 12.0 1.23 10.0
64A210 -1.5 0040 0105 0251 13.0 144 10.0
64A410 -3.0 —0.080  0.100 0254 15.0 1.61 10.0
641A212 20 -0.040 0.100  0.252 14.0 1.54 11.0

649A215 2.0 —0.040 0.095 0.252 15.0 1.50 120
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Definition: The center of pressure of an airfoil is that point on its chord where the resultant
of the pressure distribution (resultant aerodynamic force) acts.
_

- The lift distribution on any non-symmetrical (cambered) airfoil can be shown to be the sum
of two types of lift distribution: '

1.) the basic lift distribution which depends on the shape (camber) of the mean line. This
basic lift distribution has zero net lift but non—zero pitching moment: €y, < 0 for air-

foils with positive camber.

- 2.) the addjtional lift distribytion which depends linearly on the angle of attack, o.
The net lift of an airfoil is due to this additional lift distribution.

Apparently, the aerodynamic center of an airfoil can also be thought of as the centroid of the
additional lift distribution. Therefore, for a symmetrical airfoil the cgnter of pressure and the aero-
dynamic center coincide! ' o -

- Figure 2.3 presents two methods used to resolve the force and moment coefficients which
act on an airfoil. In this text the second method will be used. Expressing the center of pressure and
aerodynamic center locations relative to the leading edge of the airfoil as: Xac and’ X¢p respective-

ly it is found that for small angles of attack and for negligible drag contribution to the pitching mo-
ment: : '

Cmy = — C(Xep — Xac)/C . | 2.1

From this the location of the airfoil center of pressure can be sqlved:
R

Xcp = Xac — (Cm,)/(cp) 2.2)

Because the quantity cn,  is negative for positively cambered airfoils, the center of pres-
sure is behind the aerodynamic center. Note that:

cm, = T, . | o _ (2.“3)

Because a symmetrical airfoil has no net pitching moment at zero lift: Cm, =0 . As
symm.airfoil
aconsequence, for a symmetrical airfoil: X, = Xep - Donot forget that this property does NOT
apply to cambered (un—symmetrical airfoils).
| The data in Table 2.2 indicate that the aerodynamic center location for airfoils is roughly at
the quarter chord. Actually, the airfoil thickness ratio and trailing edge angle together define where

the aerodynamic center is located. Figure 2.4 (reproduced from Reference 2.4) shows this. Note
that the data in Figure 2.4 straddle the 25% chord location! -
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As the Mach Number increases from low sub sonic to transonic the airfoil center of pressure
and aerodynamic center tend to move aft (not necessarily at the same rate). For a thin, symmetrical
‘airfoil at exactly M=1 the center of pressure tends to be at the semi—chord (50%) position. Anexam-
ple of how the aerodynamic center moves aft with Mach Number is shown in Figure 2.5. This aft
shift of the aerodynamic center will be shown (Chapters 4 and 5) to have significant consequences
to the stability and controllability of airplanes.

. :
According to thin airfdﬂ'theory, the lift—curve slope of an airfoil, 'clu increases with Mach

Number in the subsonic speed range as follows:

clu . ’
cl = ____M=0 . ' ' ' : (2.4)

w o 1-m2 7

This in accordance with the so-called Prandtl-Glauert transformation as explained in detail
in-Reference 2.5 (pages 200-203). Figure 2.5 shows a graphical representation of Eqn.(2.4). Ac-
cording to Reference 2.6 (Chapter 3), in the supersonic speed range this relationship becomes:

=4 2.5
CluM MZ - 1 _ (2.5)

Note that both Equations (2.4) and (2.5) predict the lift-curve slope to extend to infinity
around M=1.0. This does not happen in reality because the theories used to derive these equations
become invalid in the Mach range around M=1.0. The ’fmred’ curve shown in Figure 2.5 represents
more closely what really happens.
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As indicated before, airfoils are integrated in a spanwise manner to form lifting surfaces such
as wings, tails, canards and pylons. The planform geometry of these lifting surfaces plays a major
role in determining their acrodynamic characteristics. In the following it is assumed that most of
these planforms can be approximated by a so—called straight tapered form as shown in Figure 2.6.
‘The following planform quantities are important in stability and control analyses:

=S

Taper ratio, A = rom _ (2.6)
i =b2__2b

Aspect ratio, A ST+ h 2.7

Area, S = %c,&(l-'-l{ ) | (2.8)

Mean geometric chord (mgc), T = %Cf(uﬁ“#) B 29
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Lateral locatipn of the mgc, ymge = %((11':_—2;)) (2.10)
Longitudinal location of the mgc, Xmge = Mtam\m 2.11)
6(1 + A)
~4n(l —A)

Sweep Angle of the n fraction locus: tanA, = tanA;g — (2.12)

Al + 1)

jion of the local chord

For a more general planform, the following integrals can be used to determine the length
andlocation of the mean geometric chord:

+b/2
Mean geometric chord: T = é - I cX(y)dy (2.13)
~b/2
. +b/2
Lateral location of the mgc, y,,;gc - %I yeydy (2.14)
~b/2
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+b/2

S
. b2

Longitudinal location of the mgc, Xmpg = 1 ] xc(y)dy (2.15)

Many lifting surfaces are equipped with trailing edge flaps and /or trailing edge control sur-
faces. The inboard and outboard stations of flaps and/or control surfaces are identified by semi-span
fractions called m; and v, respectively. Such flaps and/or control surfaces affect an area of the

planform called the flapped wing area, Sy, : -
S = s "My — 0~y + ng) @.16)
f 1+ M ! -

24 QQEFFIQIEN:[S AND REFERENCE GEQME!E S

In airplane stability and control, the following dlmensmnlcss aerodynamn: coefficients are
used frequently: :

Lift coefficient: C = é“_s S 2.17)

Drag coefficient: Cp = q—_% (2.18)
. .... L . FAy '

Side force coefficient: C, = S B 2.19)

Rolling moment coefficient: C, = qLﬁ . (2.20)

Pitching moment coefficient: Cp = f% ‘ (2.21)

Yawing moment coefficient: C, = ;T?) . (2.22)

It is important to always identify the reference geometries used when presenting and/or dis-
cussing aerodynamic data! For the moment coefficients, the location of the moment reference center
must also be identified! : : : : :
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2.5 ERODYNAMIC CHARACTERISTI F PLANFORM
AND FUSELAGE

~ Inthis section a very condensed discussion is presented of those acrodynamic characteristics

of planforms which are of major concern in the prediction and analysis of airplane stability and con-
trol behavior. These characteristics are:

2.5.1 Lift—curve slope, Cy |

2.5.2 Aerodynamic center, X,¢

'2.5.3 Zero-lift angle of attack, a;

254 Mbment 6oefficient about the aerodynamic center, Cr,,,

2.5.5 Downwash (and upwash), & and its rate of change with angle of attack; de /da

2.5.6 Effect of the fuselage on planform aeerynainic center,

All characteristics discussed in this section apply to a variety of lifting surfaces such as:

wings, horizontal tails, canards, vertical tails, pylons, etc. To distinguish the aerodyhamic charéicter-
istics of one lifting surfage from another, subscripts are used. The following subscripts are used:

A .
w for wing " 'h for horizontal tail ~ ~ p for pylon
¢ forcanard v for vertical tail : $ for store

The lift~curve slope of planforms, C;  has been found to depend primarily on the follow-
ing parameters: '

* Aspect ratio * Sweep angle ' * Taper ratio

* Section lift—curve slope | ' * Mach number

Part VI of Reference 2.3 contains methods for éstimating planfonn Cp, values (Pages

248-255). These methods have been programmed in the A_dvahced Aircraft Analysis (AAA) pro-
gram which is described in Appéndix A. Figure 2.7 shows how planform lift—curve slope varies with
Mach number, sweep angle and aspect ratio. Note the following behaviors:

In-the subsonic to transonic speed range:

* C.L“ increases with increasing ai\,fspect ratio
* Cp_ decreases with increasing sweep angle

*Cp,_ increases with increasing Mach number
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Observe that below M=1.0 the trend of CLU with Mach number follows the Prandtl-

Glauert transformation of Eqn (2.3).
In the supersonic speed range:

*Cp, increases with increasing aspect ratio
* CLu tends to follow the supersonic Prandtl-Glauvert transformation Eqgn (2.5). Note

that sweep angle does not matter very much in that speed range.

When estimating planform values for lift—curve slope it is a good idea to perform a "sanity’
check on the answers by comparing with Figure 2.7.

25.2 AERODYNAMIC CENTER

Definition: the acrodynamic center of a planform is defined as that point about which the
pitching moment coefficient with angle of attack is in variant: Cp,, = 0 .

The planform aerodynamic center will be assumed to be located on its mean geometric chord
(mge). For planforms with moderate sweep angle and moderate to high aspect ratios the acrodynam-
ic center is often close to the 25% chord point on the mge. For other points on the mgc, the variation
of pitching moment coefficient with angle of attack may be found from:

Cm, = Cp (Kper — xac)% = Cp, (Xrer — Xac) (2.23)
The geometric definition of the parameters X ., and X,c is given in Figure 2.8. This figure

also shows a simple geometric construction which can be used to determine the location of the mean
geometric chord (mgc).

The aerodynamic center of a planform has been found to be primarily a function of the fol-
lowing parameters:

* Aspect ratio * Sweep angle * Taper ratio
* Section lift—curve slope * Mach number

Methods for estimating planform aerodynamic center locations may be found in Part VI of
Reference 2.3 (pages 305-308). Figure 2.9 shows an example of how the a.c. location varies with
phanform geometry. Until compressibility effects begin to play a role, it is seen that the planform
aerodynamic center ranges from 25% to about 30% of the mgc. In the transonic speed range the
aerodynamic center tends to move aft. For very thin wings, at supersonic speeds, the aerodynamic
center moves close to the 50% chord point on the mgc. Figure 2.10 shows an example of how the
aerodynamic center moves with sweep angle, taper ratio and Mach number.

FFor a given center of gravity location Eqn (2.23) suggests that the variation of pitching mo-

ment coefficient with angle of attack is strongly influenced by the location of the aerodynamic cen-
ter. This will turn out to have a major influence on airplane controllability.

Chapter 2 47



Review of Aerodynamic Fundamentals

}‘ Cr ’{‘_ Cy

|
|
[
>

Figure 2.8 Definition of x_. and x,. and Construction of the MGC

N N

0
58 0.400 , ; | : |
,‘ t{A= .35 M = .15
g A
clo Ng/a
D 1
— 60 50
= °0.300] 40 30
- e 1
EO I / / 20
> © I s
T w i 0
E 1
@ 02001 ., , . . .
< e ' ' ‘ ' '
0 2 4 6 8 10
Aspect Ratio, A
Figure 2.9 Effect of Planform Geometry on Aerodynamic Center (Subsonic

Chapter 2



Review of Aerodynamic Fundamentals

:J 06 I I ) :,) 06 I I I
5 [IA =3 X= 0.5 I [ A =3MX\=0.0
i | 8
(3] + T o T
i /8wl
o “ LE O 60.0
o 0.5 16620 , O = 0.5T2001—"
,é g 1 -é g . 1 P4 R /
= 1 18.4 /? = 1l 184 —
£c {200 85 | s0p
) . -, s
T 40.0 T =
S o ;
@ o L
< <
0.4 0.4
1.0 2.0 3.0 1.0 2.0 3.0
Mach Number, M Mach Number, M
Figure 2.10 Effect of Planform Geometry on Aerodynamic Center (Supersonic)

2.5.3 ZERO-LIFT ANGLE OF ATTACK

The angle of attack of a planform is arbitrarily defined as the angle of attack of its root—chord.
As the wording implies, the zero-lift angle of attack of a planform is that angle of attack for which
the total planform lift equals zero. This quantity plays an important role in determining the required
wing incidence angle for cruise and/or for approach flight conditions. The following parameters
have been found to be instrumental in determining the zero-lift angle of attack of a planform:

* Aspect ratio * Sweep angle * Taper ratio
* Airfoil zero-lift angle of attack * Planform twist
The planform twist angle at a given spanwise station, y, &(y) is defined in Figure 2.11.

Note, that positive twist is defined as leading edge UP. Wings are typically twisted leading edge
down at outboard wing stations to prevent the tip from stalling before the root. Another reason for
wwisting wing planforms is to tailor the spanwise load distribution such as to achieve certain induced
drag or air—load distribution objectives.

The root angle of attack for which zero lift occurs at an intermediate span station, y is found
from:

Ar g, = %o(Y) — €7(y) (2.24)
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NOTE: Twist angles as Tip chord, y=b/2
shown are negative!

Intermediate chord, y=y

er ¥y =)

Root chord, y=0

Figur 2.11 Definition of Wing Twist

By integrating this quantity over the planform, the value of planform angle of attack for zero
planform lift is found as:

b/2
Gy, = % [ c(y)[ag(y) — ep(y)]dy (2.25)
—b/2

This equation applies only to wings without sweep. When flaps are present anywhere along
the span, their deflection can cause a significant shift in the planform angle of attack for zero lift.
Methods for computing the effect of sweep and flaps on Oy, are found in Part VI of Reference 2.3

(pages 245-247).

2.5.4 MOMENT COEFFICIENT ABOUT THE AERODYNAMIC CENTER

-

The pitching moment about the aecrodynamic center of a wing has significant consequences
for the trimmability of an airplane. In Sub—section 2.2.1 it was seen that positively cambered airfoils
tend to have negative pitching moments about their aerodynamic centers (See Table 2.2). A plan-
form consisting of positively cambered airfoils can therefore be expected to also have a negative
value for its pitching moment coefficient about the acrodynamic center: Cr, .. Methods for deter-

mining Cy,,, for various planforms and Mach numbers are found in Part VI of Reference 2.3. It is
noted that the value of Cy,,_ of a planform is the same as the pitching moment coefficient for zero
lift (not zero angle of attack!), "(jmu : see Eqn (2.3) where this is stated for airfoils. For a swept wing,
the value of Cy,,, is a strong function of the sweep angle, the spanwise twist distribution and the span-

wise variation of airfoil zero-lift angle of attack. This can be seen from the following equation:

b/2

b/2
Cm,, = g% J [Cm. (y)e(y)?]dy + m J [og, + ex(¥) — ag(]e(y)x, (y)dy| (2.26)
~-b/2 -b/2

Figure 2.12 shows the definition of the geometric terms in Eqn (2.26).
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Figure 2.12 Geometric Parameters for Computing  Cm

2.5.5 DOWNWASH, UPWASH AND DYNAMIC PRESSURE RATIO
(Adapted from Reference 2.4)

In Subsonic Flow

The downwash behind a wing is a consequence of the wing trailing vortex system. A typical
wing trailing vortex system is pictured in Figure 2.13. A vortex sheet is shed behind the lifting wing.
This vortex sheet is deflected downward (downwash) by the bound (or lifting) vortex and by the tip
vortices which together comprise the wing vortex system. In general, the vortex sheet will not be
flat although the curvature around the mid—span area is very small for large span wings. This is par-
ticularly true for high aspect ratio, low sweep angle wings. For such wings it has been found that
considering the vortex sheet to be approximately flat is a good approximation. Wings with consider-
able trailing edge sweep angles tend to produce a vortex sheet which is bowed upward near the plane
of symmetry. -

The tip vortices normally do not experience a vertical displacement of the same magnitude
as the central portion of the vortex sheet. In general they trail back comparatively close to the stream-
wise direction. Furthermore, as the vortex system moves downstream, the tip vortices tend to move
inboard. Also, with increasing distance behind the wing, the trailing—sheet vorticity tends to be
transferred to the tip vortices. This transfer of vorticity and the inboard movement of the tip vortices
takes place in such a way that the lateral center of gravity of the vorticity remains at a fixed spanwise
location. When all of the vorticity of the trailing—sheet has been transferred to the tip vortices, the
vortex system is considered top be fully rolled —up. In a non—viscous fluid this vortex system would
extend to infinity. This way of looking at the vortex system is consistent with the vortex laws formu-
lated by Helmholtz (See Ref. 2.5.).

Ahead of the downstream station of complete roll-up, the spanwise downwash distribution
is dependent on the spanwise lift distribution of the wing. However, when the roll-up is complete,
the downwash angles for all planforms of equal lift and equal effective span are identical!
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Figure 2.13 Geometry for Downwash Determination

~

As suggested by Figure 2.13, the shape of the vortex sheet will have a significant effect on
the downwash experienced by a horizontal tail placed in the flow field behind a wing. The location
of such a tail (vertical and horizontal) relative to the wing is therefore very important. Because the
wing-tip vortices are somewhat above the wing vortex sheet, the downwash above the sheet is some-
what larger than the downwash below the vortex sheet. The rate at which the downwash angle
changes with angle of attack is the so—alled downwash gradient, de/da . The numerical value of

this downwash gradient in the zero-lift plane ranges from 1.0 at the wing trailing edge to 2C; JaA
atinfinity. Figure 2.14 shows an example of how the downwash gradient varies for various horizon-
tal tail locations behind an unswept wing of different aspect ratios.

In stability considerations (as shown in Chapter 3) the parameter (1 — de/da)frequently oc-

curs. Figure 2.15 shows how this parameter varies for locations in front of and behind wings with
elliptical planforms. In front of the wing the term upwash is used instead of downwash. Upwash
is particularly important in the case of canard airplanes.

In subsonic flow the downwash gradient tends to vary with Mach number as predicted by the
Prandtl-Glauert transformation:
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Notes: 1. Valid only for straight, tapered wings at low Mach Numbers
2. For other aspect ratios, interpolate or extrapolate
3. See Part VI of Reference 2.3 for a more general method

_ Vertical distance of horizontal tail 0.25¢, above/below the wing zero lift line
b/2
P = Longitudinal distance of 0.25c. toward the horizontal tail 0.25¢, location
- b/2

Figure 2.14 Effect of Wing Aspect Ratio and Horizontal Tail Location on the
Downwash Gradient
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(de/da)y = (de/da)y;_ /(1 — M?) (2.27)

A method for calculating the downwash gradient behind arbitrary wings is given in Part VI
of Reference 2.3. Figure 2.16 shows an example of how the downwash gradient varies with Mach
number for several airplanes.

In the case of low aspect ratio wings and in the case of a canard configuration the tip vortex
of the wing or the canard may impinge on the the aft surface. Reference 2.7 contains a method to
account for that.

Upwash is induced ahead of a wing in a manner similar to that for downwash. To account
for the acrodynamic forces on propellers, nacelles and/or stores ahead of a wing due to this upwash
the design charts of Reference 2.7 may be used.

Dynamic Pressure Ratio

The aerodynamic forces on lifting surfaces are proportional to the local dynamic pressure
of the flow field. The reference (or free stream) dynamic pressure used in computing aerodynamic
forces and moments on the entire airplane is that based on airplane true air speed; q = O.SQV%.

The dynamic pressure in the downwash wake of a wing can be reduced by friction losses and/or by
separation phenomena. However, if an aft surface is mounted in the propeller wake it is possible
that (depending on engine power) the dynamic pressure is in fact larger than the free—stream dynam-
ic pressure. The change in local dynamic pressure is expressed in terms of a ratio of dynamic pressur-
es. For example, in the case of horizontal and vertical tails these ratios are expressed as:
Mh, = §;,/q and n, = q,/Tq respectively. Part VI of Reference 2.3 (Pages 269-271) contains

methods for estimating these dynamic pressure ratios.

In Transonic Flow

In transonic flow no accurate methods are available as yet to estimate downwash characteris-
tics. When estimates (or tunnel data) are available for wing lift—curve slope in the transonic region,
afirst order approximation for estimating the downwash gradient is to use the lift—curve slope ratio:

C
(de/dajy, = (de/da)yy g (2.28)

M=y

LAl

In Supersonic Flow

At supersonic speeds downwash is caused by two factors. First, the region behind the trail-
ing—edge shock or expansion wave is distorted by the wing vortex system in a manner similar to that
which occurs at subsonic speeds. Because of the variation of span load, a vortex sheet is shed which
rolls up with increasing downstream distance from the trailing edge. Tip vortices similar to their
subsonic counterparts are also present. At supersonic Mach numbers the entire flow field is swept
back and isolated regions of influence may exist over certain portions of the wing surface and in the
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flow field behind it. For instance, regions not affected by the wing tip are generally present.

Second, a change in flow direction occurs in the flow region between the leading edge shock
or expansion waves as shown in Figure 2.17. Since this region of the flow does not "see’ the wing
vortex system, numerical values for downwash can be calculated with shock—expansion theory. To
simplify the calculations it is standard practice to perform these calculations with the geometry of
the wing root and to assumne two—dimensional flow. For configurations where the tail span is less
than the wing span, this assumption is justified.

EXPANSION

EXPANSION

—— ——

W\ [ LINE OF
M = 2739 N\ VELOCITY
\  DISCONTINW (7Y

EXPANSION

.

YK
EXPANSION—\  \

Figure 2.17 Shock Distribution on a Wedge Airfoil in Supersonic Flow

2.5.6 EFFECT OF THE FUSELAGE ON WING AERODYNAMIC CENTER

When a fuselage is added to a wing, the aerodynamic center of the wing+fuselage shifts for-
ward compared to that of the wing alone. A physical explanation for this effect can be seen from
Figure 2.18. Considering the fuselage to be represented by a body of revolution placed in a potential
flow field the pressure distribution is roughly as indicated by the + and - signs in Figure 2.19.

In potential flow, at a given angle of attack, a the following observations can be made:

* net pressure drag is zero * net lift is zero * net pitching moment is positive.

As a consequence the fuselage will add a positively increasing pitching moment with each
increase of angle of attack: the fuselage adds an increment ACmﬂm > 0 to the wing. This increment
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Figure 2.18 A Body of Revolution in Potential Flow at Angle of Attack

in the static longitudinal stability derivative, Cr,, can be interpreted as a forward shift in aerody-
namic center: AX,c, ~ which is negative. This fuselage effect is also called the Munk effect (after

its discoverer, Max Munk). Part VI of Reference 2.3 contains a numerical integration method for
estimating the fuselage induced shift of the aerodynamic center. This method accounts for the effect
of wing up—wash and wing down—~wash on the fuselage. It is based on a method first developed by
Multhopp in Reference 2.10.

Figure 2.19 shows three numerical examples of this fuselage induced a.c. shift as computed
for different airplanes. It is shown in Part II of Reference 2.3 that typical center—of—gravity shifts
in airplanes range from 10%—25% of the mgc. The 4%, 14% and 32% fuselage induced shifts in
aerodynamic center location are therefore very important and must be accounted for in the design
of a new airplane! '

It has been found that the fuselage induced a.c. shift is essentially independent of Mach num-
ber for moderate to high fuselage slenderness ratios. Therefore, the aerodynamic center of a
wing+fuselage tends to shift aft-with Mach number more or less like that of a wing alone.

[t should be noted that nacelles and stores when mounted under a wing such that they pro-
trude forward from the wing leading edge, also cause a shiftin a.c. These shifts can also be predicted
with the Multhopp method.
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Piaggio P180
AXye,, = — 0.32

Cessna 172
Afacﬁls = —0.04

Learjet 24
Aiacf“s = - 0.].4

Figure 2.19 Numerical Examples of Fuselage Induced Shift in Aerodvnamic Center
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2.6 EFFECTIVENESS OF CONTROL SURFACES

The controllability of airplanes depends on the lift and moment effectiveness of flight con-
trol surfaces. Most control surfaces are designed as plain flaps (with open or closed gap) as illus-
trated in Figure 2.20. Closed gap configurations have greater effectiveness than open gap configura-
tions. Note that a control surface deflection is defined as positive when the trailing edge is down.

Hinge line

Open Gap
e N
| | ¢ -~ - +
| | . >
< -
Closed Gap

O

| Figure 2.20 Example of a Control Surface

The lift effectiveness of a control surface is designated by ¢ = % for an airfoil and
&

L= aa_%L for a planform. For an airfoil section, the magnitude of €y, depends primarily on the
(+]
following parameters:
* control surface chord ratio, cf/ c * section thickness ratio, t/c
* control surface deflection, & * Mach number

Figure 2.21 shows an example of how ¢, depends on the first two parameters. It is seen

that the chord ratio has primary influence while the thickness ratio has only secondary influence on
lift effectiveness. It will be shown in Chapter 3 that in most airplane control power derivatives the
lift effectiveness appears in product form with the moment arm of the control surface to the center
of gravity. Methods for estimating CL,, from ¢, are found in Part VI of Reference 2.3. Factors

which affect the numerical magnitude of CLa are, in addition to those mentioned for <,

+

* Sweep angle * Control surface inboard and outboard span stations, 1; and 1.

The latter two quantities are defined in Figure 2.6. Figure 2.22 shows a typical plot of plan-
form lift versus angle of attack, cross—plotted for control surface deflections. It is important to un-
derstand the graphical interpretation for CL;, :

oC
CL‘?j = ("Eglz)a=constant (2.29)
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This quantity can be viewed as the change in lift coefficient due to control surface deflection
at constant angle of attack. In many stability and control expressions in Chapter 3 the following
quantity (called angle—of-attack effectiveness) is also important:

d
Os = (a_g)C,_=constant (2.30)

This quantity can be viewed as the change in angle of attack due to control surface deflection
at constant lift coefficient. It may be seen that as long as ¢ < o * the following holds:

ay = A (2.31)

Figure 2.23 shows how a5 varies withcg/c. Itis seen that a control surface with a 30% chord

has 50% of the effectiveness of an all-moving (100% chord or variable incidence) planform. This
is the reason why hinged control surfaces have been used on so many airplanes: per unit chord length
they are very effective!
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Figure 2.23 Effect of Control Surface Chord Ratio on 04

i

For a three—dimensional control surface at very low sweep angles, a good approximation for

s IS:
5 b/2

%=% Jawmm@ (2.32)

-b/2
For variations with Mach number in subsonic flow, the Prandti—Glauvert transformation can
be used again to yield:
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Clanm = L
¢ = ——M=0_ and Cp = —M=0 (2.33)

Y1 - M2 ° J1 — M2

More general methods which account for the effect of sweep angle and for transonic and su-
per sonic flow are found in Part VI of Reference 2.3.

2.7 MODERN AIRFOILS COMPARED TO NACA AIRFOILS

o b

Since the advent of reliable computational methods for the prediction of airfoil behavior and
for the design of airfoils (for example, References 2.8 and 2.9) it is possible to develop airfoils with
lift, drag and pitching moment characteristics which are tailored to.specific applications and specific
flight conditions. Figure 2.24 shows a geometric comparison between older and newer airfoils.
Figure 2.25 show example data comparing modern airfoils with NACA type airfoils.

2.8 SUMMARY FOR CHAPTER 2

In this chapter the following airfoil, planform, fuselage and control surface aerodynamic
properties which are important to the stability and control of airplanes were reviewed:

* Lift—curve slope * Zero~lift angle of attack
* Zero-lift pitching moment coefficient * Aerodynamic center
* Fuselage induced aerodynamic center shift * Control surface lift effectiveness

In addition, a number of important geometric characteristics of planforms were introduced.

Most of the quantities mentioned in this chapter can be rapidly evaluated with the AAA pro-
gram described in Appendix A.
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Fi 2.24 Geometric arison of Modern and NACA Airfoils
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Figure 2.25 Comparison of Maximum Lift Capability of Modern and NACA Airfoils
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2.9

9 ___PROBLEMS FOR CHAPTER 2

2.1

22

23

2.4

2.5

For a thin airfoil, calculate and plot the theoretical section lift—curve slope for 0 <M < 2.0.

Using data from Reference 2.2 plot section lift—curve slope versus thickness ratio for NACA
44XX and 23YYY series airfoils.

Make accurate sketches of wing planforms, characterized by the following parameters:
Leading edge sweep angle: O degrees:
a) A=0 A=2,4,6,810 b)A=035A=2,4,6,8, 10
b)A=1.0 A=2,4,6,8,10 d)A=135A=2,4,6,8,10

Repeat this assignment for leading edge sweep angles of 30 and 60 degrees.

Consult recent and older versions of Jane’s All The World Aircraft to find examples of air—

- planes with wings which approximately fit some of the planforms sketched in Problem 2.3.

Calculate and plot the planform lift curve slope versus Mach number for the following two
families of wings:

Leading edge sweep angle: 0, 20, 40 and 60 degrees

Aspect ratio: 2, 6 and 10

Taper ratio: 0.35
Note: The method of Part V1 of Ref.2.3 or any other suitable method can be used.
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2.6 Calculate and plot the planform aerodynamic center location versus Mach number for the
following two families of wings:
Leading edge sweep angle: 0, 20, 40 and 60 degrees
Aspect ratio: 2, 6 and 10
Taper ratio: 0.35
Note: The method of Part VI of Ref.2.3 or any other suitable method can be used.
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CHAPTER 3: AERODYNAMIC AND THRUST FORCES
AND MOMENTS

The purpose of this chapter is to present approaches to the modelling of aerodynamic and
thrust forces and moments for the following two types of flight conditions:

1) Steady state: see Section 3.1 2) Perturbed state: see Section 3.2
Aerodynamic and thrust forces and moments can be determined in two ways:

* by experimental methods (flight test or tunnel test)
* by computational and/or empirical methods

Experimental methods have the great advantage of allowing rather accurate predictions of
full scale airplane aerodynamic behavior over a wide range of flight conditions, including nonlinear
effects. A disadvantage of experimental methods is that they tend to be very costly, both in calendar
time and money. For these reasons, experimental methods are used primarily in research and in de-
sign verification prior to committing to building flying hardware. In most preliminary design and
parametric design studies theoretical and/or empirical methods are used.

In this chapter, relatively simple mathematical models for aerodynamic and thrust forces and
moments are developed by means of a combination of theoretical and empirical methods. The main
emphasis is on the so—called component build—up method for modelling aerodynamic and thrust
forces and moments. In this method the airplane is assumed to be built up from a number of compo-
nents. The total forces and moments which act on the airplane are then assumed to follow from sum-
ming the forces and moments which act on these components. For example, in the case of the total
aerodynamic force the following type of expression will be used:

Fa

airplane

= FAwing + FAfuse]age + FAhur.tail + FAverT..lail + etC. (31)

Interference effects are accounted for by using empiricism. The number of components
which should be used depends on the airplane configuration and on the level of accuracy desired.
In the presentations which follow, emphasis is placed on gaining a physical understanding of the
fundamental mechanisms which cause forces and moments to act on airplanes.

The axis system used in modelling all forces and moments is a modification of the body-
fixed axis system: XYZ (See Figure 1.1), called the stability axis system XY sZ . Figure 3.1 shows

how the stability axis system is defined for an airplane in a steady state, wings level, straight line
flight condition with NO initial sideslip. Figure 3.2 shows how the stability axis system is defined
incase 1nitial sideslip is not zero. Note that the stability X--axis in that case is defined along the pro-
jection of the total airplane velocity vector onto the airplane XZ—plane.
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0, is the steady state angle — of — attack
X Y, is the steady state flight — path — angle

©®, is the steady state pitch — attitude — angle

horizon T~ TP e o

XYZ = arbitrary body—fixed axes

Note: @ =y, + o
XsYsZs = stability (body—fixed) axes

Figure 3.1 Definition of the Stability Axis System (Zero Sidesli

Y, Y, B, is the steady state sideslip — angle

Note 1: W, =0

W, _W¥
Vpcosfp U,

.V Vv .
Note 2: B, = arcsin o+ =~ —1 Note 3:a; = arcsin
Ve, U

Figure 3,2 Definition of the Stability Axis System for the Case of Nonzero Sidesli
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NOTE: the reader should not lose sight of the fact that the stability axis system still is a body-
fixed axis system. Therefore, the equations of motion developed in Chapter 1 can be applied directly
to the stability axis system. Note from Figures 3.1 and 3.2 that in the stability axis system:

In developing the mathematical models for aerodynamic and thrust forces and moments, in-
tensive use will be made of the idea of stability and control derivatives. Several of these were already
encountered in Chapter 2: C; and CL‘5 are typical examples. To illustrate typical magnitudes

and trends for airplane stability and control derivatives, example plots of derivatives (and their varia-
tion with Mach number) are presented. Figures 3.3 through 3.6 show three-views of four airplanes
for which data will be presented. These figures also present the reference geometries on which all
derivatives are based.

3.1 STEADY STATE FORCES AND MOMENTS

Since airplanes differ from one another in configuration, shape and size, it should be ex-
pected that it is not feasible to develop a mathematical model for airplane steady state forces and
moments which applies to alf airplanes. The approach taken here is to first list the forces and mo-
ments to be modeled. Second, those variables of motion which experience.shows to have a signifi-
cant effect on the forces and moments, are also listed. For the aerodynamic forces and moments,
this is done in the form of a table such as Table 3.1.

Table 3.1 Dependence of Steady State Aerodynamic Forces and Moments on Variables
Variable all = 0 1] B &, 8, &,
F drag at zero induced drag negligible for | negligible for | negligible for | negligible for
Axy value for all small: small: small: small:
variables B 6a Bc 6r
F negligible for | side force side force
Mg zero small: due to: Zero Zero due to:
1+ O '
lift at zero lift due to: negligible for L. lift due to: L
FA,1 value for all small: negligible 8. negligible
) variables &
rolling moment | rolling moment | rolling moment rolling moment
La, Zero due to sideslip | due to: due to: zero due to:
) is affected by: B 8, d.
o
pitching pitching negligible for pitching
MA] moment at moment due small: moment due
zero value to: negligible to: negligible
for all a ] 8.
variables
yawing moment| yawing moment| yawing moment yawing moment
Ny, ZeT0 due to sideslip | due to: due to: Zero due to:
* is affected by:
a p 3, 8,
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S = 1,560 ft? b = 106 ft T=15 ft
S, = 376 ft? Sy = 356 ft?
Wro = 152,000 Ibs W, = 135,000 Ibs Wowg = 88,000 lbs

Figure 3.3 Three—view and Reference Geometry for the Boeing 727--100

S = 232 fi? b = 34.2 ft T =704 ft

S, = 54.0 ft? Sy = 374 ft?
Wro = 13,500 lbs W, = 11,880 Ibs Wowe = 7,252 Ibs

Figure 3.4 Three—view and Reference Geometry for the Learjet 24B

H
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S = 175.0 ft? b = 250 ft = 7.27 fi?
Sp = 39.9 fi* Sv = 36.0 ft? L

Wio = 10,000 Ibs

ol

Fi 3.5Th view and Referen eometry for the Douglas D-558-11

S = 17222 fi? b = 46.04 ft T =408 ft
S, = 41.23 ft? Sv = 5091 ft? Sc = 24.22 fi?
W = 10,810 lbs W, = 10,270 Ibs Wowg = 7,370 1lbs

Figure 3.6 Three—view and Reference Geometryv for the Piaggio P-180
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Note: in the model of Table 3.1 it is assumed that all steady state angular rates,
P,;, Qu and R, are zero: in other words, the steady state is a straight line flight condition. The

effect of non—zero P;, Q; and R, (i.e. curvilinear steady state flight} on aerodynamic forces

and moments is discussed in Chapter 4.

Table 3.1 lists only the aerodynamic forces and moments. Also, Table 3.1 lists only three
types of flight control surfaces: 8,, O, and 8r. Most airplanes have more than three types of

flight control surfaces. Examples of other types of flight control surface are: flaps, spoilers, speééd-@
brakes, drag-rudders (as on the Northrop B-2) etc. Table 3.1 should be adjusted/expanded to fit any
particular airplanc which is being analyzed or designed.

Each box in Table 3.1 represents a cause—and—effect statement. The cause—and—effect state-
ments in Table 3.1 will apply to conventional airplanes most of the time. Such conventional air-
planes are said not to have any significant coupling between lateral-directional variables and longi-
tudinal forces and moments. The opposite also tends to be true for such airplanes. As is often the
case in agronautics: there are certainly exceptions. Some examples:

1) In fighter aircraft with very slender fuselages there may be significant side—forces, rolling
moments and pitching moments due to sideslip as a result of asymmetric vortex shedding from the
nose of the airplane. In fact, some configurations even have a side—force, rolling moment and yaw-
ing moment at zero sideslip!

2) If an airplane has a highly swept vertical tail and a highly swept rudder hinge line, there
may be a significant pitching moment due to rudder deflection. Such a moment would also be non-
linear because it is independent of the sign of the rudder deflection!

3)If an airplane is not symmetrical about its XZ—plane, significant coupling effects may pre-
vail. Figure 1.3 shows two example airplanes for which aerodynamic coupling effects are present.

In this text it will be assumed that the airplane aerodynamic force and moment models be-
have more or less as indicated by Table 3.1. In other words, in this text it will be generally assumed
that no significant coupling exists between lateral—directional variables and longitudinal forces and
moments. The opposite will also be assumed in most cases.

The thrust forces and moments which act on an airplane depend on the magnitude of the
installed thrust, Ti , of each engine.. The installed thrust, T; , is itself a function of:

* Altitude * Mach number * Temperature and humidity
* Thrust setting * Mixture setting * Propeller setting
* Inlet conditions * Installation losses * Angle of attack and sideslip

A detailed treatment of how to predict the magnitude of T, as a function of all these variables

is beyond the scope of this text. References 3.1, 3.2 and 3.3 may be consulted for such details. Part
VI of Reference 3.1 contains step-by—step methods for estimating these effects in the preliminary
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design stage. In this text it will be assumed that the magnitude of the installed thrust of each engine,
T; is known.

Depending on the placement of propellers and/or jet exhausts, there may be significant inter-
ference effects between aerodynamic and thrust forces and moments. These interference effects are
also considered to be beyond the scope of this text. The reader may wish to consult References 3.4
and 3.5 for further study of such interference effects.

Because it is assumed that little coupling between the longitudinal variables and the lateral—
directional variables exists, the modelling of forces and moments will be discussed in two indepen-
dent sets in the following Sub—sections:

3.1.1 through 3.1.6  Longitudinal Forces and Moments

3.1.7 through 3.1.12  Lateral-Directional Forces and Moments

3.1.1 LONGITUDINAL AERODYNAMIC FORCES AND MOMENTS

Figure 3.7 illustrates the longitudinal aerodynamic forces and moments which act on an air-
plane in a steady state flight condition. In the stability axis system, these forces and moments are

written as follows: *
FA = —D
J(ls
FAZIS = — L. (3.3)
MAls = My

In the development of models for drag, lift and pitching moment, the subscripts 1 and s will
be dropped for the remainder of this section. This can be done without ambiguity because it is under-
stood that the material deals only with steady state effects in the stability axis system!

The modelling of drag,Jift and pitching moment is discussed in Sub-sections 3.1.2 through
3.1.4 respectively.

3.1.2 AIRPLANE DRAG

-

Airplane drag, D, is non-dimensionalized as follows:

- D =Cy3S (3.4)
where: Cp, is the total airplane drag coefficient.

The steady state airplane drag coefficient depends on the following factors:

* airplane wetted area * airplane average skin friction coefficient

* angle of attack, o * control surface deflection(s), 8., 1, etc.
g h

* dynamic pressure, * Mach number and Reynolds number
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Figure 3.7 Steady State Aerodynamic Forces and Pitching
Moment in Stability Axes

For an airplane"equipped with an elevator and a variable incidence horizontal tail, the drag
coefficient, Cp, , is expressed with the help of a first order Taylor series:

CD = CDU + CDuG. + CD1h1h + cDﬁcée (35)

The coefficient and derivatives in Eqn (3.5) are to be evaluated at constant Mach number and
Reynolds number. The terms in Eqn (3.5) have the following meanings:

Cp

Cp, = dCp/ o is the change in airplane drag due to a change in airplane angle

. is the value of Cpy for: o = iy, = 8, = 0

of attack, o
Cp. = 3Cp/di, s the change in airplane drag due to a change in stabilizer

' incidence angle, iy , for: a = 8. = 0
CD&c = §Cp/dd.  is the change in airplane drag due to a change in elevator angle,
Oc ,forr a =i, =0
Figure 3.8 shows a graphical interpretation of CD0 and Cp, . Note that the numerical val-

ues for CDD and Cp, depend on the steady state itself! For most stability and control applications
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Linearized drag polar " Actual drag polar

/4

Range of linearity

e —— : Slope is aCp/da

/ Note: iy, = 8 = 0

Cp, —»Cp

Figure 3.8 Graphical Interpretation of Terms in Egn (3.5)
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Figure 3.9 Example Drag Polars for a Jet Transport and for a Fighter
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it has been found acceptable to neglect drag changes due to control surface deflections (one of sever-
al exceptions to this is the so—called minimum control speed problem to be discussed in Chapter 4).
Therefore, usually:

Cp = CDac = (3.6)

h

In performance problems where trim drag is important, Eqn(3.6) should NOT be used!

There is a notational problem with CDu in Eqn (3.5): the symbol CDO as used here is the

value of airplane drag coefficient for zero angle of attack, zero elevator deflection and zero stabilizer
incidence angle. In performance applications, the symbol CDU stands for the value of airplane drag

coefficient at zero lift coefficient, zero elevator deflection and zero stabilizer incidence deflection.,
To avoid confusion between these two physically different drag coefficients in this text, the notation
CD0 will be used for the zero-lift drag coefficient. Therefore, in this text the standard parabolic

form of the airplane drag polar will be written as:
C2

=T I
Cp = Cp, + % (3.7)

where: CD@ is the value of airplane drag coefficient at zero lift coefficient
A is the wing aspect ratio
e is Oswald’s efficiency factor

Examples of typical drag polars for a jet transport and a fighter are given in Figure 3.9.

It is usually acceptable to write éDu as follows:

CDU = {/§ (3.8)
where: {is the equivalent parasite area of the airplane, which in turn depends on total wetted
area Sy, and on the ajrplane equivalent skin friction coefficient, C; . Methods

for estimating equivalent parasite area, f, and wetted area, S, ,for any type airplane

are presented in Part I of Reference 3.1. With the help of those methods the value
of CDD for any airplane can be obtained. An example of the typical relationship be-

tween f, Sy and C; for jet propelled airplanes is given in Figure 3.10.

The derivative CDu is most easily estimated by differentiation of Eqn (3.7):

Cp, = (2C G, )/ (zAc) (3.9)
A method for estimating Cy _ is discussed in Sub—section 3.1.3. Figures 3.11 and 3.12 present
graphical examples of the variation of Cp, and Cp, with Mach number for several example air-

planes. The steady state model for the aerodynamic force in the stability X—axis direction is:

F A= D=~ Cpgs = — (CDO +Cp o + CDihih + CDacﬁe)qS (3.10)
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This figure was generated with the Advanced Aircraft Analysis {AAA) Program
described in Appendix A

103
© JET FIGHTERS
& JET TRANSPORTS |
o JET BOMBERS
Ci=0.00%
E-141 BBE6 L 5] /; CF=G.004
YB-49 > Cf=Q.003
102 - B~20 ™ \\ >S("}6/
AC-B - v LTS
<R 200 oI Pl W
O COMET o 5‘5\?'1/ o Bm7 G743
T— e ::Nn = Br?27-i1
Fr28 T e B-47
Fi14 i G-11 LA e e e~
BTl """"1-.__‘_‘__‘ A T / ﬁ"é_-ql:-—'—""'—"—'-_—
4
Fhaci | P T R Ll B-737-4100
P ey ""*—519 o
a-b-a i ‘“““Ho\ 2 0 keAOnt - B-58A (NG STORES)
10l = &2 06
Fill £ o o)
LAV ARV -205
D e, AT QG0
= A .—f"’iﬁé‘—?‘i——- —
T-28 1 A7 O3t rae . GRIFFON (TURBO-RAMJET)
SL—25 " A X-3
Z2 / b 7.4
ME-163 47 1L T s-zi
0 /’!i/'/ ///‘ ,.-"j
10~ :
102 103 10% 10°

WETTED AREA, S, ft2

737
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3.1.3 AIRPLANE LIFT

Airplane lift is non—dimensionalized as follows:
L =CgS (3.11)

where: C; is the total airplane lift coefficient.

The steady state airplane lift coefficient depends on the following factors:

* angle of attack, a * control surface deflection(s), e, 1, etc.

* dynamic pressure, Q * Mach number and Reynolds number
For an airplane equipped with an elevator and variable incidence horizontal tail (stabilizer)
the lift coefficient, C; , is expressed with the help of a first order Taylor series:
CL= CLO +Cra+Cp i+ CL{5 Qe (3.12)
[ e

The coefficient and derivatives in Eqn (3.12) are to be evaluated at constant Mach number
and Reynolds number. The terms in Egn (3.12) have the following meanings:

Cy,

Cp, = 8C, /aa is the change in airplane lift due to a change in airplane angle

is the value of C; for: o =iy = 0, =0

of attack, o.
Cp = aC,/ai, is the change in airplane lift due to a change in stabilizer
'h
incidence angle, iy for: o =9, =0
G, = 9C[ /a8 is the change in airplane lift due to a change in elevator angle,

d; for: o =1, =0

In the following, it will be shown how the coefficients and derivatives in Eqn (3.12) can be
estimated using the airplane component build—up philosophy. To keep the development simple, a
conventional (tail-aft) airplane will be used as an example. Figure 3.13 shows the definition of geo-
metric parameters to be used.

It will be assumed that the drag forces acting on the wing—fuselage and the horizontal tail
are negligible. The total lift which acts on the airplane is then found from:

L =L, + L,cose = L.+ L (3.13)
This can be written in coefficient form:

C. g = Cp_JS + CLq,S,, (3.14)
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. wa
Chordline
Mgc,, Note : this quantity is usually negative!

X

Notes:

l. 0w =0 + 1y

2.0y =a+i,—¢€

Note that the dynamic pressure at the horizontal tail, (), 1s potentially different from that
at the wing—fuselage, Q. Reasons for this difference can be that the tail is affected by propeller

slipstream, by jet exhaust effects and by fuselage boundary layer effects. The difference in dynamic
pressure is accounted for by the introduction of the so—called dynamic pressure ratio, N

My =§y/g  Note: g, = 0.50V?2 (3.15)

Eqn (3.14) c;an,»be rewritten as:

C.= Cwa + CLhnh% - (3.16)
The wing—fuselage lift coefficient, CLwr can be expressed as follows:

Cr,=Cr, + 6, 0 (3.17)
The wing—fuselage lift—curve slope, CL“wr differs from the wing lift—curve slope,

CLu because of the wing-to~fuselage interference effect. Methods for accounting for this effect

are presented in Part V1 of Reference 3.1. For airplanes with a wing span to fuselage diameter ratio
of six or higher it is usually acceptable to assume: C; =~ C; .
b g

Observe from Figure 3.13 that airplane angle of attack, o is not the same as wing angle of

attack, oy

Ow = O + Iy (318)
The wing incidence angle, iy is determined by factors such as cruise drag, maintaining a
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level cabin floor in cruise and/or visibility on approach to landing. PartIII of Reference 3.1 contains
more detailed discussions on this subject.

The horizontal tail lift coefficient, CLh , 1s determined from:

Cp, = Ci, + Cr, @+ Cp, Tede (3.19)

where: CLﬂ equals O for tails with symmetrical airfoils. It should be noted that many
h
airplanes have negatively cambered tails. For such airplanes CL0 is negative!
h

ay, is the horizontal tail angle of attack:
a, =a+i, — ¢ (3.20)

where: iy, is the horizontal tail incidence angle. In many high performance

airplanes this angle is controllable from the cockpit. It is defined as
positive, trailing edge down (=leading edge up!). Insuchan operating mode
the surface is referred to as a stabilator or variable incidence stabilizer.

£ is the average downwash angle induced by the wing on the tail and often

expressed as: ) L
_ de
E =gyt a-&a (3.21)

where: € is the downwash angle at zero airplane angle of attack
1. is the elevator angle of attack effectiveness

& is the elevator deflection angle, positive trailing edge down.

Methods for estimating the various quantities introduced here are found in Part VI of Refer-
ence 3.1. By substituting Eqns (3.17) through (3.21) into Eqn (3. 16) and rearranging it follows:

.

S ,
Cp=Cp, +Cp, 0+ Cp mygla— (o + 90) + iy +ede] + Cp (3.22)

By comparing this equation with Eqn (3.12) the following equations for the airplane coeffi-
cient and derivatives are found by partial differentiation:

S : :
G, = CLﬂwf - CLﬂhnhgh gg + CLOh = CLOWr in many airplanes (3.23)
S
Cp, = Cp,_+Cpmygl~ 58 (3.24)
Sh
CLih = CLuhnh§ (3.25)
Sy
CLac = CLuhnh§TC (3.26)
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The derivative CL“ is called the total airplane lift—curve slope. It is of major importance
to stability, controt and response to turbulence of airplanes.

Figure 3.14 shows how airplane lift coefficient is related to angle of attack and stabilizer inci-
dence angle for a flaps up and flaps down case. Typical magnitudes of the coefficient and derivatives

of Eqns (3.23) through (3.26) are presented in Figures 3.15 through 3.18. Observe that the only dif-
ference between C; and CLé is the elevator angle of attack effectiveness parameter, T, . This pa-
Ih I

rameter is called @ in Figure 2.23. For airplanes with roughly 30% chord elevators it is seen from
Figure 2.23 that C;  will therefore be about twice the value of Cy, - Note from Equation (3.24)
lh e

that the magnitude of airplane lift-curve slope can be significantly higher than the magnitude for
wing—fuselage lift-curve slope for airplanes with a large horizontal tail.

The steady state model for the aerodynamic force in the stability Z—axis direction is:

le

3.1.4 AIRPLANE AERODYNAMIC PITCHING MOMENT

The airplane aerodynamic pitching moment, M A 18 non—dimensionalized as follows:

M, = Cn3Sc (3.28)

where: Cp, is the total airplane aerodynamic pitching moment coefficient.

-

The steady state airplane aerodynamic pitching moment coefficient depends on the follow-
ing factors:

* angle of attack, a * control surface deflection(s), de, 1, etc.
* dynamic pressure, { * Mach number and Reynolds number

* moment reference center (usually the center of gravity) location

For an airplane with an elevator and a variable incidence horizontal tail, the aerodynamic
pitching moment coefficient Cy, is expressed in the form of a first order Taylor series as:

Cm = Cm, + Cm,& + Cry, iy, + Cin, 8e (3.29)

The coefficient and derivatives in Eqn (3.29) are to be evaluated at constant Mach number
and Reynolds number. The terms in Eqn (3.29) have the following meanings;

Cm

Ch, = 9Cp/ 00 is the change in airplane aerodynamic pitching moment coefficient

. is the value of Cr, for: o =i, = 8, =0

due to a change in angle of attack
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Cm, = aCq/0ai, is the change in airplane aerodynamic pitching moment coefficient
due to a change in stabilizer incidence angle, 1, for: a = d, = 0
Cm, = ¢Cp/dde  is the change in airplane aerodynamic pitching moment coefficient

due to a change in elevator angle, 0 for: a =1, = 0

In the following, it will be shown how the coefficient and derivatives in Eqn (3.29) can be
estimated using the airplane component build-up idea. To keep the development simple, the tail-afe
airplane geometry of Figure 3.13 will again be used. Point P in Figure 3.13 acts as the moment refer-
ence center (usually the center of gravity).

It will be assumed that the effect of wing-fuselage drag and tail drag on airplane pitching
moment is negligible. Referring back to Figure 3.13, it is seen that the airplane aerodynamic pitch-
ing moment about point P can be expressed as:

MA = Macwf + wa(XCg - Xacwf) COS(G + Iw) - Lh(Xach - Xcg) COS(G + iW - E) (3.30)

In most instances it is acceptable to set the cosines in Eqn (3.30) equal to 1.0. Doing that
and non-dimensionalizing yields:

(Xcg - Xacwf) Sh (Xach - Xcg)

Cm=Cn, +C ——"~ CLhnh§—5 (3.31)

At this point Equations (3.17), (3.19), (3.20) and (3.21) are substituted in Eqn (3.31) while
at the same time introducing the ’bar’ notation for the moment arms:

Cn= Cma;cw; ¥ (CLO f + Cp o)(Reg — Fac,) +
W U.wf
S :
-G Tlh?h(iach — Xeglo — (gg + 3—;(1) + iy + Tede] (3.32)
(lh

In this equation, the wing-fuselage aerodynamic center location, Xac, , is normally ex-

pressed as follows:
Xac,, = Xac, T AXacm5 (3.33)
where: AX,, is the shift in wing+fuselage aerodynamic center from the wing acrodynamic

center as caused by the so-called Munk effect discussed in Sub-section 2.5.6. Figure 2.19 gives
examples of the magnitude of this shift for three airplanes. Methods for computing this shift for any
configuration are given in Part VI of Reference 3.1.

By comparing Eqn (3.32) with Eqgn (3.29) the following equations for the airplane aerody-
namic pitching moment coefficient and derivatives are found by partial differentiation:

— —_— S v e
Cmo = C:mac + CL (Xcg - xacwf) + CL T]h h(xach o XCg)eO =
Wf D\Vf (Ih S

~ Cp,. ot Cp, (Reg — Xac,,) if € is negligible (3.34)
W wi
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_ _ Sy - -
Cr, = Cp, (Reg ~ Fae,) — CLathhgh(Xach — Xep)(1 — de/do) (3.35)
Sh — — -
C"‘ih = = CLuhnhg(Xach —Xeg) = — CLuhnth (3.36)
where : V, = (8,/S)(Rac, — Xeg) (3.36a)

is the horizontal tail volume coefficient. This volume coefficient is useful in
preliminary tail-sizing which is used in the early aircraft design process. A
detailed explanation is found in Part IT of Reference 3.1.

Cm = - CLuhnthte (3.37)

de

The derivatives Cr, and Cp,, are referred to as longitudinal control power derivatives.
h e

They are of major imnportance in airplane controllability considerations as will become clear in
Chapters 4 and 3.

Figure 3.19 shows how airplane aerodynamic pitching moment coefficient is related to angle
of attack and stabilizer incidence angle. Figures 3.20 through 3.23 present typical magnitude of the
coefficient and derivatives represented by Eqns (3.34) through (3.37). Several observations are in
order:

1) Note that the only difference between Cmih and Cmﬁc (Figures 3.22 and 3.23) is the angle
of attack effectiveness of the elevator, T, . For airplanes with roughly 30% chord elevators it is seen

from Figure 3.22 that Cmih will therefore be about twice the value of Cr, .

2) Note from Figure 3.20 that the zero—angle—of—attack pitching moment coefficient, Cy o

can be negative as well a posifive. From a trim point of view, a positive value is to be preferred.

3) Note from Figure 3.20 that Cmu tends to change in the negative (i.e. nose—down) direc-
tion with increasing Mach number. This phenomenon is referred to as ’tuck’. It can lead to handling
quality problems during recoveries from a high speed dive.

. - 4) Note the ’stable’ and ’unstable’ breaks in the pitching moment coefficient at high angle
of attack. Whether a stable or an unstable break occurs, depends on the detail design of the configu-
ration. For a detailed discussion, see Part III of Reference 3.1.

The derivative Cy,, is called the static longitudinal stability derivative. 1t is of major impor-

tance to airplane stability and control as will become clear in Chapters 4 and 5. By introducing the
idea of total airplane acrodynamic center it 1s possible to simplify Eqn (3.35).
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Definition: The aerodynamic center of an airplane is defined as that point on the wing mean geomet-
ric chord about which the variation of pitching moment coefficient with angle of attack is zero.

The location of airplane aerodynamic center on the wing mean geometric chord is normally
expressed as a fraction of the mge, X, , and is also referred to as the airplane (stick—fixed) neutral

point. The significance of the stick—fixed’ addition will be made clear in Chapter 4.

The definition of airplane aerodynamic center, when applied to Eqn (3.35), leads to the
condition: Cp, = 0 and Xcg > Xpc, so that:

C
Xaow t T “h SRl — §&
Xac, = C S (3.38)
by Swpq _ de .
S o Gl
The reader is asked to show that Equations (3.35) and (3.38) can be combined to yield:

wl

Cm, = Cr (Reg — Rac,) (3.39)

At this point the reader is reminded of two facts:
- =
1) Equations (3.38) and (3.39) do not include the pitching moment contribution due to the
propulsive installation. Particularly in propeller driven airplanes there can exist a significant shift
in aerodynamic center due to the so—called propeller normal force as well as due to propeller tilt
angle. See Part VI of Reference 3.1 for more details.

2) Equation (3.38) applies to tail-aft airplanes only. For canard and for three—surface air-
planes (such as the Beech Starship I and the Piaggio P—180 Avanti) Eqn (3.38) must be modified.
For airplanes where the canard does NOT SIGNIFICANTLY interfere with the wing (or tail) flow—
field it is posstble to show that Eqn (3.38) when applied to a three—surface airplane becomes:

_ C, «S,_ dey , Gy S
Xac,; CLL “Ne Scxac (1 + .diac) + = C Tlh Shf’(ach(1 3)
Xac, = - (340)
C.. S.,. . de CLu,, voq _ de
1+ C. c‘§(1 + ﬁ) + C.. fﬂh—s‘(l — %)

wi

For a pure canard airplane the horizontal tail term in Eqn (3.40) must be stricken. Figure
3.24 shows how X,c, 1s defined in relationship to X, for a three—surface airplane. The quantity
’ Ne represents the dynamic pressure ratio, qc/‘q, at the canard location. The angle €. is the up—
wash angle caused by the wing at the canard location. Methods for determining the various quanti-
ties in Eqn (3.40) are contained in Part VI of Reference 3.1.

The steady state model for the aerodynamic pitching moment about the stability Y-axis
(same as body—fixed Y-axis!) is:

My, =M, = CaGSE = (Cm, + Cm,@ + Cnm, iy + Cim, 85 (3.41)
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Figure 3.24 Definition of Canard and Horizontal Tail Aerodynamic Center Geometr

3.1.5 LONGITURINAL THRUST FORCES AND MOMENTS

Most airplanes are equipped with one or more engines. The number of engines and their
disposition over the airplane depends on many mission and airworthiness related factors. For a dis-
cussion of these factors, the reader may consult Parts IT and III of Reference 3.1. In this text it will
be assumed that the number and disposition of the engines over the airplane is given.

The effect of thrust on the airplane forces and moments will be assumed to be comprised of:
1) Direct thrust effects 2) Indirect thrust effects

1) Direct thrust effects can be modeled in the body—fixed XYZ axis system as illustrated in
Figure 3.25. The thrust output of each engine is referred to as the installed thrust. Installed thrust
1s computed from engine manufacturer’s thrust data by accounting for various installation losses as
described in Part VI of Reference 3.1. In this text it is assumed that the installed thrust for each en-
gine is a given.

2) Indirect thrust effects occur when propeller flow fields or jet exhausts interfere with lifting
surfaces, for example, by impinging on them. These effects will not be modelled in detail because
they tend to be strongly configuration dependent which makes a generalized modelling approach
of questionable value. Specific examples of indirect thrust effects are:
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T; = Ticosdr cosyr Y

1

Ti, = Tjcos ¢y sinPr.
T, = Tisinot)Ti

Figure 3.25 Location of Engine Thrust-line and Point of Thrust Application

-

Y

Note: The left nacelle has been
tilted up for clarity only!

Figure 3.26 Steady State Thrust Forces and Pitching Moment in Stability Axes
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a) propeller slipstream effect on a wing when the propeller is mounted in front of the wing

b) propeller slipstream effect on the downwash of a wing which in turn can affect the acrody—
namics of the horizontal and/or vertical tail

Indirect thrust effects are frequently modelled by the use of thrust coefficient derivatives.
The thrust coefficient of an airplane is defines as:

Cr = T/qS (3.42)

As was seen in Sub-section 3.1.1 the aerodynamic forces and moments are modelled using
the idea of stabitity and control derivatives. One such derivative was the static longitudinal stability
derivative, Cp, : see Eqn (3.35). The indirect thrust effect on this derivative can be accounted for

by using the following expression:

aCmu
Cn, = Cmch:O + E’C}"CT ‘ (3.43)

where: the derivative Cm“C , is in fact the same as Cp, of Eqn (3.35).
-
the derivative dCp, /3Cr can be most effectively evaluated using windtunnel

data on powered models. A detatled treatment of these effects is beyond the
scope of this text.

Part VI of Reference 3.1 (Sub~section 8.2.8) contains a more detailed discussion of several
corrections which may have to be made to acrodynamic derivatives as a result of thrust induced ef-
fects caused by praopeller installations.

L
b

Using the thrust line orientations of Figure 3.25 results in the following model for the longi-
tudinal thrust forces and moments:

i=n i=n
FTX1 = (Z T]-COSd)T]_ cosz]_) cosa, + (Z T.sin cpTi) sino (3.44a)
Ti=t i=1
i=n i=n
FTzl = (Z T; sin(bTi) cosay — (Z Ticos ¢ COSlpTi) sina, (3.44b)
S =1 i=1
i=n i=n
MTIS = Z TiCOS q)Ti CcOS wTiZTi + ZT] sinq)TixTi (344C)
i=1 i=1

Figure 3.26 shows the net thrust for the case where Y is negligibly small for ALL i en-

gines and where ¢ = ¢ forallengines. The thrust, T, then is the vector sum of the thrust vec-

tors of all 1 engines. This results in the following model for the longitudinal thrust forces and mo-
ment:
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Fr = Tcos(¢pr + ay) (3.45a)
x15

Fy, = — Tsin(or + a;) (3.45b)

MT]S = MTl = — TdT (3.450)

3.1.6 ASSEMBLING THE STEADY STATE LONGITUDINAL FORCES AND
MOMENTS

It is now possible to assemble all expressions for the longitudinal steady state forces and mo-
ments in matrix format. This is done in Table 3.2. Note that the acrodynamic forces and moments
are treated as linear. The thrust terms still contain transcendental terms. Later, in the discussion of
the equations of motion in Chapter 4, it will be shown that by the introduction of iteration schemes
or by using the small angle assumption this problem will fade away.

Table 3.2 Matrix Format for Steady State Longitudinal Forces and Moments

(— D) [— Cpas)

%FAZIJ-_-{_L*z%_CLqS} with:

My, M e
L [ A I CqucJ
CD(J CDu CD‘h CDﬁc o
C drag polar drag polar small  small !
D
a
C C CL Co
C L=t « L h o 3.46
16t (3.23) (3.24) (3.25)  (3.26) {ih o (346)
C
[~m Cm, Cm, Cmih Cm<Sc 8e
(334 © (335 (3.36) G3n| ° 7
h
" rFT*l.‘ [ Tcos(¢pr + )]
sFr, b =4 - Tsin(@r + @) | (3.46b)

My — Tdy

g " -
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317 LATERAI-DIRECTIONAL AERODYNAMIC FORCES AND MOMENTS

When an airplane is in a steady state flight condition suchthat V; # 0 |, theairplaneis said
to be side~slipping. The sideslip angle, ; is defined in Figure 3.27. As seen in Table 3.1 this

sideslip gives rise to an aerodynamic rolling moment, L A, »an aerodynamic side force, F A,

H 1s
and an acrodynamic yawing moment, N A, - In addition (as also suggested by Table 3.1), any lat-
eral-directional control surface deflections will contribute to this force and to these moments. Fig-
ure 3.27, where the subscript 1 has been deleted, shows how the side force, rolling and yawing mo-
ments are oriented relative to the airplane.

Y and Y, Z

Figure 3.27 Lateral-Directional Force and Moments in Stability Axes

In the stability axis system they are written as follows:

Ly, =La (3.47)
Fa, = Fa, (3.48)
Ny, = Na (3.49)

As indicated before, the stability axis system will be used and all force and moment expres-
sions are defined in the steady state and therefore, the subscripts 1 and s will be dropped without
ambiguity.
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3.1.8 AIRPLANE AERODYNAMIC ROLLING MOMENT

The steady state airplane aerodynamic rolling moment, L A+ 18 non—dimensionalized as:
L, = CgSh (3:50)

where: C; is the airplane aerodynamic rolling moment coefficient.

The steady state airplane aerodynamic rolling moment coefficient, C, . depends on the fol-

lowing factors:

* angle of sideslip, P * deflection of lateral control surface(s)
* angle of attack, a * deflection of directional control surface(s)
* dynamic pressure, q (see p.103) * Mach number and Reynolds number

* moment reference center (usually the center of gravity) location

For an airplane equipped with ailerons and rudder, the rolling moment cocfficient is ex-
pressed in first order Taylor series form: A

1Y

Ci=C,+CB+C, 8 +C8 (3.51)

The coefficient and derivatives in Eqn (3.51) are to be evaluated at constant Mach number
and Reynolds number. The terms in Eqn (3.51) have the following meanings:

CIﬂ isthevalueof C; forr f=08,=8,=0
Clﬂ = aC,/ap is the change in airplane rolling moment coefficient due to a change
in airplane sideslip angle, f
Claa = 9C,/0d, is the change in airplane rolling moment coefficient due to a change
in aileron deflection, 8,
Clar = 9C,/ 36, is'the change in airplane rolling moment coefficient due to a change
in rudder deflection, 0,
The coefficient Clﬂ tends to be equal to zero for symmetrical airplane configurations. Ex-

ceptions to this are found in airplanes (such as fighters) with very slender, long fore-bodies. In such
cases it is possible that the flow—field around the nose becomes dominated by asymmetrically shed
vortices which can cause Clo to have nonzero values. For asymmetrical airplanes such as those

shown in Figure 1.3, the coefficient C10 also tends to have a non— zero value.

The derivative C]‘3 is called the airplane dihedral effect. This derivative plays a major role
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in determining airplane stability. The control power derivative Cla 1s a dominant factor in the bank
angle maneuverability of airplanes. The control power derivative Cla is a so—called cross—control
derivative. The magnitude of this derivative should preferably be close to zero.

In the following, it will be shown how the derivatives in Eqn (3.51) can be determined by
using the component build—up philosophy.

Rolling Moment Coefficient Derivative Due to Sideslip, Cl{3 -

The rolling moment coefficient due to sideslip (dihedral effect) derivative, Clﬂ , may be esti-

mated by summing the individual dihedral effect of the airplane (;omponents. For a conventional
airplane this yields:

C, =G +C +C

(3.52)

b Ty, Iy,
For non—conventional airplanes the reader should adjust this equation accordingly. A physi-
cal explanation for the dihedral effect of the wing—fuselage, the horizontal tail and the vertical tail

will be given next.

Wing-fuselage Contribution, Cla
wf

The dihedral effect of the wing—fuselage combination is caused primarily by three factors:
1) Wing ge;ométric dihedral effect

2) Effect of wing position on the fuselage (high or low)

3) Effect of wing sweep angle

1) Wing geometric dihedral effect

Figure 3.28 illustrates how the geometric dihedral angle, I', of a wing, can cause a rolling

moment due to sideslip. Observe the right wing panel. As a result of the combination of angle of
attack and sideslip, a normal velocity, V;, is induced on that panel. This normal velocity is:

V,= WcosI' + Vsinl' = W + VI (3.53)

If I' > 0 (as shown in Figure 3.28) it is called positive. If I' < 0, it is called negative.

The latter is also referred to as "anhedral’. As a result of a positive dihedral angle, the right wing
sees a positive increase in angle of attack given by:

_—_— R — =

(3.54)

It is this increment in angle of attack which produces a corresponding increment in lift. This
in turn results in a negative rolling moment contribution. Note that the left wing panel experiences
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right wing

-
-

- /
- /
Vnormal’ /

left wing

Figure 3.28 Normal Velocities Induced by Angle of Attack and Sideslip due
to Geometric Dihedral on the Wing of an Airplane

Negative rolling moment

Ao < 0

\ JV/

v Positive rolling moment

Figure 3.29 Explanation for Rolling Moment due to Sideslip as Affected b
Wing Position on the Fuselage
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exactly the opposite effect which also results in a negative rolling moment. The rolling moment due
to sideslip due to geometric wing dihedral is therefore proportional to the geometric dihedral angle
itself! Part VI of Reference 3.1 contains detailed methods for estimating this contribution.

2) Effect of wing position on the fuselage (high or low)
In Figure 3.29 the flow-field in sideslip is split into two components: a symmetrical flow-
field along the X-axis (not shown) and a cross-flow field with velocity Up. This cross-flow is seen

to produce incremental angles of aftack near the wing-fuselage intersection. These incremental
angles of attack produce ultimately incremental rolling moments which are negative for a high wing
position and positive for a low wing position.

This is the reason why in high wing airplanes the wing has significantly less geometric dihe-
dral than in low wing airplanes. This effect can be clearly seen by studying three-views of airplanes
in Jane’s All the World’s Aircraft.

3) Effect of wing sweep angle

Figure 3.30 shows that aft (= positively) swept wings produce a negative rolling moment
because of a difference in velocity components normal to the leading edge between the left and right
wing panels. Consider two wing strips at distances +/- y; from the centerline. The local lift on each

strip may be approximated by:

AL; = €. g§; (3.55)
where: LT
3

q; = 0.5pVp, (3.56)

As shown in Figure 3.30, the velocity component normal to the leading edge 1s larger for the
right wing strip than for the left wing strip:

[Va, = Vpcos(Ag + B)] < [Va, = Vypoos(Arg — B)] (3.57)

41,5,

The two wing strips together cause a negative rolling moment which is:

2
ALa,.. = ~ YiCLi‘;lj pS;Vp lcos*(Arg = B) — cos*(Arg + B)] (3.58)

This result, when expanded for small values of sideslip angie yields:

i

The reader is asked to show that for forward swept wings the sign of Eqn (3.59) reverses!
It is of interest to note from Eqn (3.59) that:
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left strip i

right strip i Y

Figure 3.30 Differential Strip Velocities due to Sweep

a) rolling moment due to sideslip, due to sweep (aft) 1s negative

b) the rolling moment due to sideslip, due to sweep (aft) is proportional to lift
coefficient

c) the rolling moment due to sideslip, due to sweep (aft) is proportional to the sine

of twice the leading edge sweep angle

It will be shown later that the overall airplane dihedral effect, Clrj , s of major significance

to stability and controllability of airplanes. The fact that this important derivative itself, for swept
wing airplanes is proportional to the lift coefficient (and therefore dependent on wing-loading and
dynamic pressure) also has significant consequences to configuration design.

In Chapter 4, it will be shown that making the dihedral effect, Clﬁ , more negative will make
an airplane more spirally stable. At the same time, the dutch-roll damping ratio tends to decrease.

This presents a design conflict which must be resolved through some compromise.

Methods for predicting numerical values of Clrﬂ are found in Part VI of Reference 3.1.

w
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Horizontal Tail Contribution C]ﬁ
h

The explanations given for the various wing—fuselage contributions to Clﬂ can be directly

applied to the horizontal tail by merely considering the tail to be a lifting surface. Using the notation
CI'3 for the horizontal tail dihedral effect based on its own reference geometry it is possible to
h

write:

AL, =G, BGySyby, (3.60)

hsldcslip

From this it follows that:

_ = Gndby
c, =G, (ot (3.61)

The bracketed quantity in Eqn (3.61) tends to be small for most airplanes because the hori-
zontal tail area and span are normally significantly smaller than the wing area and span. However,
by endowing horizontal tail surfaces with large geometric dihedral angles it is possible to obtain rela-
tively large values for Elﬁ and thereby use the tail as a "tailoring device’ to achieve the desired

h

level of overall airplane dihedral effect. This type of design philosophy was employed on the
McDonnell F4 and the British Aerospace Harrier.

Yertical Tail Contribution C,ﬁ

Figure 3.31 stows that when an airplane is side—slipping, the vertical tail will *see’ a side—
force which causes a roﬁing moment. The sign and magnitude of this rolling moment depends on
the "vertical’ moment arm of the vertical tail.

First, consider the lift coefficient which acts on the vertical tail:

Cr = Cr B -0)=Cp, (1 - OB (3.62)

where: C; s the lift—curve slope of the vertical tail, based on its own reference geometry

O is the side-wash angle induced at the vertical tail by the fact that the wing—fuselage

combination will itself be generating a side—force which creates side—wash. This
effect is the aerodynamic equivalent of horizontal tail down—wash created by the wing.

The '1ift’ on the vertical tail causes a negative rolling moment which can be expressed by:

ALy, = —2,Cy, (B - 0)q,Sy (3.63)

By non-dimensionalizing and by using the notation of Eqn (3.62):

Chapter 3 160



Aerodynamic and Thrust Forces and Moments

FAy (— as shown!)
o ng(-}- as ShOWl’l!) Vertical tail a.c,

Zy
Z y X
Figure 3.31 Side~force on the Vertical Tail due to Sideslip
G, fasb = - z,C; (1 - B)Bq‘, (3.64)
From this it follows for the vertical tail contribution to airplane dihedral effect:
— VZVq
Cp, =~ G- [3) v Sh (3.65)

It is seen that the vertical tail contribution to the derivative CIB depends on five factors:

1) the geometry of the vertical tail: aspect ratio and sweep angle determine CLu

-

2) the side-wash derivative do/df which is normally rather small

3) the dynamic pressure ratio at the vertical tail, v, , which tends to have a value close to
1.0 except in the case of propeller driven airplanes with the vertical tail immersed in the
propeller slipstream

4) the vertical tail moment arm, zy, . Note in Figure 3.31 that this moment arm depends

on the steady state angle of attack! In extreme high angle of attack cases it is possible
for this moment arm to reverse sign!
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5) the size of the vertical tail in relation to the size of the wing: S,/S . An example of an
airplane with a large vertical tail relative to the wing is the Boeing 747-SP:
see Figure 3.31.

Examples of numerical trends for the airplane dihedral effect derivative, Clﬁ are given in

Figure 3.32.
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Figure 3.32 Fffect of Mach Number on Clﬁ for Several Airplanes

Roll Control Derivatives, C; _and C,

Lateral control (about the X—axis, body or stability) of airplanes can be accomplished with
a number of devices:

* ailerons, Cy * flaperons, C; * spoilers, C_

* differential stabilizer, C; * combination of previous devices * other devices
'h

Several generic properties of ailerons, spoilers and differential stabilizers will be discussed.
A mathematical model used when combinations of these devices are employed is also discussed.

Nearly all airplanes employ some form of directional (yaw) control, usually a rudder. Al-
though undesirable, rudders also tend to produce a rolling moment. This rolling moment must be
compensated for by either the pilot or some automatic mechanism. The generic properties of a rud-
der in generating an undesirable rolling moment are also discussed.
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Aileron Rolling Moment Coefficient Derivative, C;,

Figure 3.33 illustrates how ailerons produce a rolling moment. A positive aileron deflection
1s referred to as one which results in a positive rolling moment about the X—axis. Because ailerons
also produce an undesirable yawing moment (See Sub—section 3.1.8), most ailerons are deflected
differentially (i.e. one more than the other) to minimize this yawing moment. For that reason an
aileron deflection, 8, , is usually defined as:

aa = %(6al.h.s, + 6a’rh.s‘) (3‘66)
The derivative Cla depends on the following factors:

* aileron chord to wing chord ratio * aileron inboard and ouwtboard span location
* wing sweep angle * aileron deflection )

* Mach number

Increased lift
+ AL W

aileron chord

L~ Positive rolling
moment

aileron span

Decreased lift
— AL

Figure 3.33 Rolling Moment due to Aileron Deflection

When ailerons are deflected more than about 20-25 degrees flow separation tends to occur.
The ailerons then loose their effectiveness. Also, close to wing stall, even small downward aileron
deflections can produce separation and loss of control effectiveness. In addition, aileron control
power is very sensitive to dynamic pressure because of aecro—elastic effects. Most high performance
airplanes have a so—called aileron reversal speed beyond which the ailerons induce so much elastic
wing twist that the sign of the derivative reverses! This effect is discussed in detail in Chapter 7.
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At wing sweep angles beyond about 55 degrees, ailerons lose effectiveness because of out-
board flow which tends to become parallel to the aileron hinge lines.

In several airplanes, the flaps are moved differentially to act as ailerons. Such devices are
referred to as flaperons. They are analyzed as if they are ailerons.

Spoiler Rolling Moment Coefficient Derivative, C*a

-— 20

Figure 3.34 shows how a spoiler produces a rolling moment. Spoilers when used for roll
control are usually deflected on one side only.

-

The derivative CI‘5 depends on the following factors:

* spoiler chord to wing chord ratio * spoiler inboard and outboard span location
* spoiler hingeline Jocation * spoiler deflection
* wing sweep angle * Mach number

Maximum spoiler deflections range anywhere from 30-60 degrees.

At wing sweep angles beyond about 55 degrees spoilers loose effectiveness because of out-
board flow which tends to become parallel to the spoiler hinge lines.

Differential Stabilizer Rolling Moment Coefficient Derivative, C

h
Figure 3.35 i'Ilu.gtrates how a differentially deflected stabilizer generates a rolling moment,

The derivative C; depends on the following factors:
h

* stabilizer geometry: aspect ratio, sweep angle and taper ratio
* stabilizer size relative to the wing
* Mach number

Differential stabilizers, because of their relatively small moment arm to the X-axis tend to
be used mostly on fighter aircraft: the high wing sweep angle makes ailerons and/or spoilers less
effective. In addition, because most fighters have tail-span—to-wing-span ratios close to 1.0 the
relative rolling moment arm is still reasonably good. Add the fact that both stabilizer halves on fight-
ers are controlled separately for longitudinal control anyway and the ability for differential deflec-
tion (required for roll) comes at little additional weight penalty!

Many airplanes of today employ more than one of these lateral control devices, In airplanes
with a mixture of lateral control devices, it is necessary to *gear’ the various lateral control devices
together so that they are simultaneously activated when the cockpit controls ( lateral stick or left/
right wheel deflection are activated by the pilot.
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X

_~"\ Positive rolling
e moment

" Decreased lift — AL

Stabilizer Pivot

+ Alift

Left side stabilizer

Positive rolling moment

Figure 3.35 Rolling Moment due to Differential Stabilizer Deflection
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Anexample is the Boeing 747 which has three different types of roll control devices: inboard
ailerons, outboard ailerons and spoilers: see Figure 3.36.

These three roll control devices are "geared’ to the control wheel in the cockpit. The follow-
ing equation expresses this gearing:

Clawﬁw = KE“’Vomh'dClﬁEl bdaaﬁulb'd + Kawinb'dclsa hd6 inbtd + KSWC 6 (367)
outh’ inh’

where: C16 = 6C1/ 90w 1s the rolling moment coefficient derivative due to control wheel
deflection, Oy

Kaw,_,,, 18 the outboard—aileron—-to—control-wheel gearing ratio. In the 747 this gearing

ratio is driven to zero by flap position: when the flaps are retracted, the outboard
ailerons remain in place. The other gearing constants are similarly defined.

C, = aC, / aaam_ ; is the outboard aileron control power derivative due to out-
Aoutb'd

board aileron deflection, & The other control power

Buibid
derivatives are similarly defined.
is the outboard aileron deflection. The other control deflections are similarly

defined.

0a

outb'd

Cockpit wheel deflections are limited to about +/— 85 degrees by civil and military regula-
tions. By assuming 85 degrees for the maximum wheel deflection, Eqn (3.67) can be used to deter-
mine the numerical magmtude of the roll control power derivative Cl for airplanes with geared

roll control systeris. Eqn (3.67) has to be adjusted to the gearing used in any particular airplane.

Figure 3.37 shows examples of the Mach number trend for aileron control power derivatives
of several airplanes.

Rolling Moment Coefficient due to Rudder Derivative, C,,

r

Figure 3.38 shows how a rudder can generate a rolling moment. Note that the rudder deflec-
tion is defined as positive when a positive force along the Y—axis is generated. This positive force
can be expressed as:

Fo  =0CLqS (3.68)

yvruddcr
where:

Cp, = Cp, 00 (3.69)

where: Cp  is the lift—curve slope of the vertical tail

as s the angle of attack effectiveness of the rudder
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Note: For an explanation of the toe—in

angles, W see page 123. Outboard Aileron

Y Y Roll Control Spoilers

N )

Inboard Aileron

b 4

X
Y

Figure 3.36 Boeing Model 747 with Three Types of Lateral, Control
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Figure 3.37 Effect of Mach Number on C, for Several Airplanes
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F,
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Figure 3.38 Rolling Moment due to Rudder Deflection

The rolling moment due to rudder deflection can be written as:

»

‘r

= F,,__ 2, =C, 835h (3.70)

Aruddcr Yiudder

By combining equations (3.68) through (3.70) it is found that:

SyXv,

“Sb (3.71)

Clﬁr = CLuva:ar—q-v

Note that this derivative is normally positive. However, at angles of attack for which
Zy, becomes negative, so does Cl(3 . From a handling qualities viewpoint the derivative C, s

r &
a problem: particularly positive values of this derivative tend to interfere with a pilot’s ability to
carry out lateral-directional maneuvers. This is one reason why many airplanes have some type of
flight control interconnect between the roll and yaw axis to compensate for the rolling moment due

to rudder deflection.

Figure 3.39 shows how the rolling moment due to rudder derivative varies with Mach num-
ber for several airplanes.

The steady state model for the airplane aerodynamic rolling moment now is:

Chapter 3 108



Aerodynamic and Thrust Forces and Moments

LA] = LA = (Clﬁﬁ + Clbaaa + Clérér) (3.72)

For airplanes with a combination of roll control devices it is recommended to replace the
term G 8, with the term C; 8y as defined by Eqn (3.67).

Methods for predicting the magnitudes of the derivatives which appear in Eqn (3.72) can
be found in Part VI of Reference 3.1.
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Figure 3.39 Effect of Mach Number on C, for Several Airplanes

>

1.9 AER AMI DE-FOR:

The steady state airplane aerodynamic side—force, F A, > is non—dimensionalized as:

Fy, = GA5 (3.73)

where: Cy is the airplane aerodynamic side—force coefficient.

This steady state airplane acrodynamic side—force coefficient depends on the following fac-
tors:
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* angle of sideslip, 3 * deflection of directional control surface(s)

* deflection of lateral control surface * angle of attack
* Mach number and Reynolds number

For an airplane equipped with ailerons and rudder the side—force coefficient is expressed in
first order Taylor series form:

o

Cy =Gy, + Cyﬁ B+ cyéaaa + Cy%&r (3.74)

The coefficient and derivatives in Eqn (3.74) must be evaluated at constant Mach number
and Reynolds number. Mach number affects primarily the lift curve slope, side—wash and angle of
effectiveness terms which affect the coefficient and derivatives in Eqn (3.34). Reynolds number has
only a weak effect on the side—force derivatives. .

The terms in Eqn (3.74) have the following meanings:

Gy, is the value of Cy for: a = p =8, = 6, = 0
OF s = aC,/ap is the change in airplane side-force coefficient due to a change in

angle of sideslip (at constant angle of attack)
Cy, = 0C,/3d, is the change in airplane side—force coefficient due to a change in

aileron deflection
Cy, = 0C, /90, is the change in airplane side—force coefficient due to a change in
v Y

rudder deflection

The coefficient Cy, tends to be equal to zero for symmetrical airplanes. The discussion of

the coefficient Cln (page 95) also applies to Cy, .

The derivative Cyﬁ 1s an important derivative in dutch—roll dynamics (See Chapter 5). It

is also important in flight path control when making s—turns without banking at very low height
above the ground. The control derivative CYa,, is normally negligible. The side force control deriva-

tive Cy, is of major importance in determining the yaw control derivative, Cy, . as will be seen

in Sub-section 3.1.10.
Side-Force Coefficient Due to Sideslip Derivative, Cyﬂ

The side~force due to sideslip may be estimated by summing the effects of various airplane
components. For conventional airplanes this yields:
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Gy, = Gy, t Sy, * Cyﬁv (3.75)

Y,

Wing Contribution, Cyﬂ and Fuselage Contribution, Cy'3

f

The wing contribution fo Cyﬁ depends primarily on the geometric dihedral angle of the
wing. For small geometric dihedral angles the wing contribution is usually negligible.
The fuselage contribution depends strongly on the shape and size of the fuselage in relation

to the wing and on the placement of the wing on the fuselage. Methods for estimating the wing/fuse-
lage contributions to Cy“ may be found in Part VI of Reference 3.1. For most airplanes these con-

tributions tend to be small.

Vertical Tail Contribution, Cyﬂ

The vertical tail contribution to Cy,ﬂ was explained as part of the discussion of the rolling

moment due to sideslip contribution of the vertical tail in Sub-sub-section 3.1.8.1: see Figure 3.31.
With the help of Egn (3.62) it is seen that:

-
F., =C BaS=—C (1-%9s ‘
A, = G fas = —Cp ( Hﬁ)qv v (3.76)
From this it follows that:
. do, S,
Cva - CLuv(l B ag)nvg (377)

Note that the vertical tail contribution depends strongly on the vertical tail size in relation
to the wing as well as on the lift—curve slope of the vertical tail. The latter in turn depends mostly
on aspect ratio and sweep angle of the vertical tail.

Figure 3.40 shows how Cyﬁ varies with Mach number for several airplanes.

Fe

Side Force Control Derivatives, CYa and Cya
- - Aileron Side Force Coefficient Derivative, Cyﬁ

This derivative is normally negligible. However, in the case of airplanes where the rolling
moment controls are in close proximity to a vertical surface (fuselage or vertical tail) a side force
which is not negligible may well be generated. Figure 3.41 illustrates an example of how this can
occur in the case of a differential stabilizer which is located close to a vertical tail. Whenever this
is suspected to be the case windtunnel tests are the only reliable way of obtaining data.
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Figure 3.40 Effect on Mach Number on Cy 6 for Several Airplanes
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Figure 3.41 Side Force due to Differential Stabilizer Deflection
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Rudder Side-Force Coefficient Derivative, Cy,,

Figure 3.38 shows how a positive rudder deflection yields a positive side-force due to rudder
deflection. This side-force is written as:

Fo, =Cy,8: S (3.78)

Meudder

Now, by combining Eqns (3.78), (3.68) and (3.69) it is seen that:

S
Cy,, = Cr, a5, W3 (3.79)

Note that the side-force due to rudder derivative depends strongly on the vertical tail size
in relation to the wing as well as on the lift-curve slope of the vertical tail. The latter in turn depends
mostly on aspect ratio and sweep angle of the vertical tail. Figure 3.42 shows how Cy, varies with

Mach number for several airplanes.

40
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M
Figure 3.42 Effect of Mach Number on CYar for Several Airplanes

The steady state model for the airplane aerodynamic side force now is:

Fa, = Fa, = (Gyf + Gy, 84 + Cy, 8) (3.80)

Y]s

Methods for predicting the magnitudes of the derivatives which appear in Eqn (3.72) can
be found in Part VI of Reference 3.1.
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3.1.10 AJRPLANE AERODYNAMIC YAWING MOMENT

The steady state airplane aerodynamic yawing moment, N A » is non~-dimensionalized as:

N, = C,gSh (3.81)

where: C;, is the airplane aerodynamic yawing moment coefficient.

The steady state airplane aerodynamic yawing moment coefficient, Cp, , depends on the-fol-

lowing factors:

* angle of sideslip, f * deflection of directional control surface(s)

* angle of attack, o * deflection of lateral control surface(s)

* Mach number and Reynolds number * moment reference center (usually the c.g.)
location

For an airplane equipped with ailerons and rudders, the yawing moment coefficient is ex-
pressed in first order Taylor series form:

Co = Cp, + Cpy B+ Cp 80 + Co, Or (3.82)
The coefficient and derivatives in Eqn (3.82) are to be evaluated at constant Mach number
and Reynolds number. The terms in Eqn (3.82) have the following meanings:
Ch, B isthevalueof C, for: p=6,=8,=0
Ch s = aCy/ GE is the change in airplane yawing moment coefficient due to a change
in airplane sideslip angle, 3
Cn,, = 9Cn/88a s the change in airplane yawing moment coefficient due to a change

in aileron deflection, &,

O
5
&
i

= ¢Cp/ 06, is the change in airplane yawing moment coefficient due to a change

in rudder deflection, &;

The coefficient Cp, tends to be equal to zero for symmetrical airplanes. The discussion of
the coefficient CIO (page 95) also applies to Cy, . The derivative Crlﬁ 1S an important derivative
in dutch roll and spiral dynamics. The derivative C“ﬁ is referred to as the static directional stability
derivative. The control derivative Cnaa plays a nuisance role. Ideally its value would be zero or

perhaps slightly positive. As will be shown, for most ailerons its value is negative. For that reason
it is referred to as the adverse aileron-yaw effect. The control derivative Cn, isthe rudder control

derivative. Itis very important in coordinating turns and in helping to overcome asymmetric thrust
(or power) situations.
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Yawing Moment Coefficient Due to Sideslip Derivative, Cnﬁ

The yawing moment due to sideslip (directional stability) derivative, Cp , »Inay be estimated

by summing the effects of various airplane components. For conventional airplanes this yields:

Cpy = Gy, + Cnﬁf +C (3.83)

Mg,
Wing Contribution, C,,'3 and Fuselage Contribution, Cnﬁf

The wing contribution to Cnﬁ tends to be negligible, except at high angles of attack.

The fuselage contribution depends strongly on the shape of the fuselage and the amount of
projected side area forward and aft of the center of gravity. The so—called Munk effect discussed
in Sub—section 2.5.6 also applies to a fuselage in sideslip. For that reason the fuselage contribution
to directional stability tends to be strongly negative. Methods for computing the fuselage contribu-

tion to Cy, are presented in Part VI of Reference 3.1.
A

Yertical Tail Contribution Cnﬂ

A physical explanation for the directionally stabilizing effect of a vertical tail may be gleaned
from Figure 3.31. The yawing moment due to the vertical tail me be written as:

Ne= = FpXv = Gy, B350 (3.84)

where: F A, is the side—force due to sideslip as determined from Egn (3.76).

Xy, is the distance along the stability x—axis from the vertical tail aerodynamic

center to the airplane center of gravity.

By combining Eqn (3.76) and Eqn (3.84) it follows that:

Sy Xy,
Cry, = Co, (1 = g—g)“v S (3.85)

Note that the vertical tail contribution depends strongly on the vertical tail size in relation
to the wing as well as on the lift—curve slope of the vertical tail. The latter depends mostly on aspect
ratio and sweep angle of the vertical tail. Also, itis seen that the 'moment—arm’, Xy, , is important

to directional stability.

Figure 3.43 shows how Cnﬂ varies with Mach number for several airplanes.
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Figure 3.44 Yawing Moment Due to Aileron Deflection
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Yawing Moment Control Derivatives, Cy,, , Cp, , Cp, , Cp, and C,
a s h r

6rdrag

Nearly all airplanes employ some form of lateral control as discussed in Sub—section 3.1.8.
A problem is, that most roll control devices also introduce a yawing moment. The generic properties
of roll control devices which lead to generating yawing moments are now briefly discussed.

Aileron Yawing Moment Coefficient Derivative, Cy,

Figure 3.44 shows how conventional ailerons create a negative (calied adverse) yawing mo-
ment. Note that this yawing moment is caused by the differential induced drag which in tarn is
caused by the changes in local lift created by the ailerons. The reason the aileron induced yawing
moment is called adverse is because it tends to yaw an airplane out of an intended turn.

To eliminate the negative yawing moment due to aileron deflection, either Frise ailerons or
differentially deflected (or a combination of both) are used. Figure 3.45 illustrates the effect of Frise
ailerons as well as of differentially deflected ailerons. Note, that in both cases a differential profile
drag component is produced which is used to off-set the adverse (negative) aileron yaw.

Spoiler Yawing Moment Coefficient Derivative, C,,,

B

-

T

Figure 3.34 shows how a spoiler generates a rolling moment. Figure 3.46 shows how a
spoiler causes a positive yawing moment. This is referred to as proverse yaw. This is preferred over
adverse yaw unless it becomes too proverse!

Methods for computing the yawing moment due to ailleron and spoiler control derivatives
are found 1n Part VI of Reference 3.1.

Figure 3.47 shows how C;_ varies with Mach number for several airplanes.

n,
Differential Stabiliz& Yawing Moment Coefficient Derivative, CIlih

Figure 3.41 illustrates how a differentially deflected stabilizer generates a side force. Since
the center of gravity of the airplane is usually forward of the vertical tail, a yawing moment due to
differential stabilizer deflection will also be generated. If this is suspected to be significant, it is ad-
visable to run windtunnel tests to establish the magnitude.

Directional control (about the Z—axis, body or stability) of airplanes can be accomplished
with a number of devices:

* rudders ( Cnar ) * drag rudders ( C ) * other devices

Ig
drag

Some of the generic properties of rudders and drag rudders will now be discussed.
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Figure 3.45 Positive Yawing Moment Effect of Frise and Differentially Deflected Ailerons
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Figure 3.46 Yawing Moment due to Spoiler Deflection
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Rudder Yawing Moment Coefficient Derivative, C“ar

Figure 3.38 shows how the side-force due to rudder deflection generates a négative yawing
moment:

NAVIuddcr - Fayvrudderxvs - Cnﬁrar qu (3'86)

By combining Eqns (3.85), (3.68) and (3.69) it can be shown that: -

Sy X
= = Cp, %, g (3.87)

Co

8;

Note that the directional control derivative, Cy, , depends strongly on the vertical tail size

inrelation to the wing as well as on the lift—curve slope of the vertical tail. The latter in turn depends
mostly on aspect ratio and sweep angle of the vertical tail. Also, it is seen that the *moment—arm’,
Xy, , 1S important to directional control power. Finally, the size of the rudder in relationship to the

vertical tail size (as determined by S, ) is reflected by the angle—of-attack—effectiveness term o 5, -

The latter term was discussed in Section 2.6.

Figure 3.48 shows how Cp, varies with Mach number for several airplanes.

Drag Rudder Yawing Moment Coefficient Derivative, Chn,

Tdrag

Figure 3.49 sh5ws how a drag rudder generates a yawing moment. The particular drag rud-
der shown in Figure 3.49 was originally invented by Jack Northrop and is used today in the B-2
stealth bomber. The yawing moment generated by such a drag—rudder can be expressed as:

NAdr = ADdl’ Ydr = Cnérd ag 6rdrag qu (388)

The drag force due to the drag rudder can be modelled as:

AD, = " Pu 5 gs (3.89)
dr ™ aadr rtlrag q .

where: Oy g = 0.5(8, A + O; dragmwm) 1s the equivalent drag rudder deflection, positive on

the right wing and negative on the left wing.

09, is the incremental drag rudder drag due to drag rudder deflection. In subsonic
drag

o, _ 025 e Car 1/deg

flight this derivative may be approximated by: 5 S
rdrag

Chapter 3 120



Aerodynamic and Thrust Forces and Moments

~
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Cdragruddcr

ADdragrudder

[

Figure 3.49 Example of a Drag Rudder

where: by is the span of the drag rudder and,

C4 Is the chord of the drag rudder.

The drag-rudder yawing moment coefficient derivative can now be written as:

— 0‘OQ’Sbdrco:ir);dr
Cn,, =gt (3.90)

In Eqn (3.90) the assumption is made that at 60 degree deflection the drag rudder drag coeffi-

cient increment 1s 0.8 based on its own area. It is also assumed that the drag rudder drag increment
varies linearly with drag rudder deflection.

- .-

The steady state model for the airplane aerodynamic yawing moment now is:

N A, = N, = (Cpf + Cpy 82 + Gy, &) (3.91)

Methods for predicting the magnitudes of the derivatives which appear in Eqn (3.72) can
be found in Part VI of Reference 3.1.
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3.1.11 T ATERATL-DIRECTIONAL THRUST FORCES AND MOMENTS

Depending on airplane configuration, failure state of the propulsion system and on the cock-
pit thrust or power setting(s), there may also be a thrust induced rolling moment, Ly ,athrustin-

duced side force, FTy , and a thrust induced yawing moment, NT] , acting on the airplane. For
1y B

these force and moments, the subscripts 1 and s will also be dropped. Furthermore, it will be as-
sumed that the installed values of thrust are known for each engine.

Flight condition and design parameters on which the steady state installed thrust vec-
tors, T; , depend are defined on page 70.

As mentioned on page 92, whenever airplane components are affected by propeller slip-
stream and/or by jet exhausts, the aerodynamic, lateral force and moments are all affected. For the
lateral directional aerodynamic force and moments corrections for these propulsive installation ef-
fects can be made with models as suggested by Eqn (3.43). A more detailed discussion of these ef-
fects is beyond the scope of this text.

Figure 3.25 shows how the installed thrust vector for one engine is oriented in the airplane
body-fixed axis system. Figure 3.27 shows the orientation and sense of the lateral-directional thrust
force and moments. Therefore, the lateral-directional thrust force and moments can be written as:

1=n

Ly, =Ly = [ T{(~ 2zp cosop sinr, = yp sindy)] cosay +

Ts

i=0
. 1=n
© Y Ti(xg,cos gy, sintr, — yr. cos b, cos )] siner, (3.92a)
i=0
i=n
FTy] = FTy = ZTi(COS q)Ti sin wa) (392b)
i=0
Nr = Np = [Z Ti(x1, cos P, simpTi =~ Yr,cos ¢ cosYr )} cosa; +
| i=0
1=n
- [z Ti(— z1,cos ¢y, sinpy — yr sindr)]sina, (3.92¢)
i=0

It is to be noted that whenever the engine installation is symmetrical with respect to the air-
plane XZ-plane AND whenever the thrust output of the engine installation is also symmetrical with
respect the airplane XZ-plane, all lateral-directional force and moments are zero!

Assuming that for the case of a symmetrical engine installation, one engine is inoperative
(OEI), the lateral force and moments due to the one (asymmetrically) operating engine can be ex-
pressed as:

Lt = [Ti(zr,cos ¢, sinyy — yp singr)jcosay +
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+ [Ti(xy cos (pTi sin Y1, — Yr,€08 chi cos )] sina (3.93a)

FTY = Ti(COS ¢Ti sin le) (3.93b)
Np = [Ti(xy cos r siny, — yp cos G cospr)lcosa; +

= [Ti(zy,cos ¢ sinPy. ~ yp sindp)]sinay + ANp (3.93¢)

Whenever an engine or propeller is inoperative, some type of incremental drag arises on that
engine. That increase in drag results in an additional drag-induced side force, rolling moment and
yawing moment. In many instances only the drag induced yawing moment turns out to be significant
from a stability and control viewpoint. That is the reason for the appearance of the ANp, term in

Eqn (3.93¢). This extra drag due to the inoperative engine must also be accounted for in any climb
performance calculations with one (or more) engines inoperative. A method to account for ANp, is

presented on page 216.

The lateral thrust-line off-set angle, Y. , and the thrust-line incﬁngti-on angle ¢Ta , are

small, but not equal to zero in most modern transport airplanes. In such cases these angles are re-
ferred to as the engine toe—in angle and toe—up angles respectively. The reason for these angles is
to minimize engine nacelle drag in their local flow—field. Figure 3.36 shows the toe—in angles on
the Boeing 747. Assuming that the steady state angle of attack and both the toe—in and the toe—up
angles are small, equations (3.93) simplify to:

Ly = Tzt ¥r, — yro1) — Ty, (3.94a)
Fr, = Ty, (3.94b)
Np = Ti(xripr, — y1) + ANp, (3.94c)

3.1.12 ASSEMBLING THE STEADY STATE LATERA] -DIRECTIONAL FORCES AND
MOMENT

It is now possible to assemble all expressions for the lateral-directional force and moments
in matrix format. This is done in Table 3.3: Eqns (3.95a) and (3.95b). Note that the aerodynamic
force and moments are treated as linear terms. The thrust terms contain transcendental terms in the
steady state angle of attack. Later, in the discussion of the equations of motion in Chapter 4, it will
be shown that by introduction of iteration schemes or by using the small angle assumption this prob-
lem will fade away.
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Table 3.3 Matrix Format for Steady State Lateral-Directional Forces and Moments

s (L] ([C@Sh)
LAIS A 9

{FAYH o= 1P = J CyaS b with:

LA N, |CaSh] -
I C, C 7
(C) B S

: (352) (See p.104) (See p.106)|(p)

161’

C C C
&= o % o 5 3.95
17 (3.75)  (See p.111)  (Sec p.113)J'~“ (3.952)
Cnﬁ Cnba Cnﬁr LB,—J

? (3.82)  (See p.117) (See p.120)

2
r- ~

1=n
iEOTi(ZTi'LIJTj - YT‘:q)Ti) - Tini(ll

JFr,l= { = Tyr ! (3.95b)

Chapter 3 124



Aerodynamic and Thrust Forces and Moments

3.2 PERTURBED STATE FORCES AND MOMENTS

Since airplanes differ from one another in configuration, shape and size, it should be ex-
pected that it is not feasible to develop a mathematical model for airplane perturbed state force and
moments which applies to all airplanes. The approach taken here is to first list the forces and mo-
ments to be modeled. Second, those variables of motion which experience shows to have a signifi-
cant effect on the forces and moments are also listed. For the aerodynamic forces and moments, this
is done in the form of a table such as Table 3.4.

The meaning of several perturbed state variables is illustrated in Figure 3.50. This figure
should be used in conjunction with Table 3.4. In this table it is assumed that all perturbations are
defined relative to a steady state for which: V, = P, = R, = 0. If the various thrust vectors

which act on the airplane are symmetrical about the XZ-plane, this. also means that:
F,, =L, = N, = Oissatisfied. Practical experience shows that these are not very restric-
is H 5

tive conditions in terms of the validity of the resulting small perturbation equations. In other words,
when these conditions are not exactly satisfied, the basic structure of Table 3.4 still applies.

Notes:
1. Vp=U, +T+V+w ,
where Vp is the total velocity

in the perturbed state,
U, is the steady state velocity,

—»

U, v and w, arethe

perturbed velocities
2., =0

i Notes (Cont’d):
3. Vp = U in stability axes

4. = B
a arctanUI - - U'l
o
Z = Y. =Y
s 5. P arctanU1 Tl i

V2

Figure 3.50 Interpretation of Several Perturbed State Variables
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The basic structure of Table 3.4 is based on the following assumptions:

1) blanks in Table 3.4 indicate that a particular perturbed variable has NO effect on a
particular perturbed force or moment.

2) partial derivatives in Table 3.4 indicate the slope by which a a particular perturbed
force or moment is affected by a particular perturbed variable.

Whether or not these assumptions are satisfied depends largely on the symmetry (or lack
thereof) of the airplane configuration being considered. With the exception of airplanes such as

shown in Figure 1.3 the assumptions 1) and 2) are generally considered to be reasonable.

Next, an outline of the effect of the perturbed motion variables on the perturbed acrodynamic
forces and moments is given. -

Effect of a forward speed perturbation, u:

1The consequence of a forward speed perturbation is two—fold: the dynamic pressure,
q= EQV2 , and the Mach number, M = Vp/c , both change. As a result, the following longitu-

dinal aerodynamic forces and moment will change: F, ,F, and M, . ¥ hese changes are ex—

o dF dF ,
pressed with the help of the derivatives: _aﬁ.& - A oand 61:[_!3 inTable 3.4. Because the steady
u u u
state lateral-directional force and moments: F A, = La,_= N, = 0, there will be no changes
g 5 s

in F A, L, and N, dueto aforward speed perturbation, u. Therefore, the corresponding rect-

angles in Table 3.4 have been left blank.

Effect of a lateral speed (or side velocity) perturbation, v:

The effect of a side velocity perturbation, v, can be thought of as a perturbed sideslip angle,

f = Ul , as shown in Figure 3.50. The effect of v on dynamic pressure is considered negligible.
1

It was already shown in Section 3.1 that the effect of a change in sideslip angle is to change the later-

al—directional force and moments: F A, L, and N, . These changes are expressed through the

dF : dF

Tay g and Ny or 2 ola and 9N,y in Table 3.4. As long as the
dv v ov ap 7 B d

sideslip angle is small, its effect on the longitudinal forces and moment: F, ,F, and M, isas-

derivatives:

sumed to be negligible. That explains the corresponding blank rectangles in Table 3.4,
Effect of a downward speed (or downward velocity) perturbation, w:

The effect of a downward velocity perturbation, w, can be thought of as a perturbed angle

of attack, a = -g— , as shown in Figure 3.50. The effect of w on dynamic pressure is considered
1

to be negligible. It was already shown in Section 3.1 that the effect of a change in angle of attack
is to change the longitudinal forces and moment: F, ,F, and M,. These changes are ex-
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X

dF,  9F, M, dF, 0F, .

X z Or z A
w aw M oy Mo e ad 5
Table 3.4. As long as the angle of attack is small, its effect on the lateral—directional force and mo-

ments: F A, L, and N, is negligible. That explains the corresponding blank rectangles in
Table 3.4.

pressed with the aid of the derivatives:

Effect of a roll rate perturbation, p:

The effect of a small perturbation in roll rate, p, is to cause non—symmetrical changes in tocal
angles of attack over the wing, canard and tail surfaces. It is assumed that these changes take place
in an anti-symmetrical manner so that there are negligible effects on the longitudinal aerodynamic
forces and moment: F, ,F, and M, . Strictly speaking, this argument is not valid for a vertical

tail. However, in most conventional airplanes the vertical tail effect due to roll rate perturbations
is small anyway. The changes in the lateral-directional force and moments: F A, ,L, and Ny,
IFa, oL,

are accounted for through the derivatives: —A
ap ° Ip

and a_?_A”’as indicated in Table 3.4.
P

Effect of a pitch rate perturbation. q:

A pitch rate perturbation causes a symmetrical change 1n angles of attack over the wing, ca-
nard, horizontal tail and fuselage. The effect of this is to change the longitudinal aerodynamic forces
and moment: F, ,F, and M,. These changes are expressed with the help of the derivatives:

oF oF
p Ax 5 A and M, , as shown in Table 3.4. The effect of perturbed pitch rate on the lateral—
q q
directional force and moments: F = ,L, and N, is assumed to be negligible.
e

Effect of a vyaw rate perturbation, r:

A yaw rate perturbation causes a non—symmetrical change in the local velocities of the wing,
canard and horizontal tail. In addition, it causes a non—symmetrical change in local angles of attack
over the vertical tail. These changes will generally affect the lateral-directional force and moments:

) oF,, 4L
¥ A

oN
FAy ,L, and N, . This is expressed by the derivatives: —r o and a—rA in Table 3.4.

Effect of rate of change of angle of attack, ¢

When the angle of attack of an airplane changes with time, the wing produces a vortex field
which changes with time. That changing vortex field can have a significant effect on the aerodynam-
ics of the horizontal tail. Such an effect is accounted for by means of so—called o derivatives which

affect the longitudinat forces and moment: F, ,F, and M,. The corresponding derivatives:

oF dF .
a_f‘"‘x '3 A ond 61:[__*\ are also shown in Table 3.4. The effect of & on the lateral-directional
a a o

force and moments: I, ,L, and N, is considered negligible.
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Effect of rate of change of angle of sideslip, 3

When the angle of sideslip of an airplane changes with time, the wing—fuselage combination
produces a vortex field which changes with time. That changing vortex field can have a significant
effect on the vertical tail. Such aneffect is accounted for by means of so—alled 3 derivatives which

affect the lateral-directional force and moments, F A, »La and N, . The corresponding deriva-

oF
Ny ,E_]Zé d % are also shown in Table 3.4.

. = an
p 9B o
Effect of control surface perturbations, 6, J, &, and d;

tives:

It will be assumed that perturbations in longitudinal control surface deflections, such
as 0. and O; only affect the longitudinal forces and moment: F A, -Fa, and M, throughthe

aF,  dF, M,  F, oF, M

ivatives: —— and —— —2 2 apd —2 g
derivatives: 25, FrN 35, and 66f af)f an 661: . For other control surfaces,

similar derivatives should be substituted.

AL .
It will also be assumed that perturbations in lateral-directional control Surface deflections,
suchas &, and O, only affect the lateral--directional force and moments: F A, L,y and Ny .

dF oF
Ay 9L and NA ana A g and A are also

The corresponding derivatives: , ,—2
00, 30, 00, a0, ad; ad;

shown in Table 3.4.

Whether or not these explanations are applicable depends largely on the symmetry (or lack
thercof) of the airplane configuration being considered. With the exception of airplanes such as
shown in Figure 1.3 the explanations given before are considered to be reasonable.

Another important assumption which is made at this point is that all perturbed forces and
moments are a function of the instantancous values of the perturbed motion variables only. This
assumption is also known as the quasi-steady assumption. It has been pointed out by Etkin in Refer-
ence 3.6 that this assumption is not always realistic, depending on the motion frequencies of an air-
plane. Very roughly, for frequencies above about 10 radians per second the effect of motion frequen-
cy on the perturbed forces and moments does become important. In such cases, Etkin and Rodden
(References 3.6 and 3.7) have developed alternate formulations for the perturbed forces and mo-
ments. Experience has shown that the great majority of rigid airplane stability and control problems
can be adequately analyzed with the quasi—steady assumption.

Finally, it will also be assumed that higher order derivatives than the first derivatives ac-
counted for in this text are negligible.

Table 3.5 shows the mathematical model used to represent the perturbed aerodynamic forces

and moments, based on these explanations. Where applicable, the derived instead of the direct vari-
ables have been used.
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and Moments

Longitudinal;

aF aF,  dF,  dF, 9F dF 4.
e TR R e aq 17+ aan’aa S
dF , F 5 dF dF , BFA, aF ,
L L i ol 666+a§f6f
M,  aM,  aM, M, = aM, oM ,
MA~ G0 " 5q * T g @7 aqq+665+aﬁfaf
Lateral-Directional
0Fs ~ dF, . 9F,  OF OF 5, F,
fo = + — + —= -

N, N, oN
fa = aBB [3'3+ ap or 38, a6, !

Table 3.5 Dimensional Quasi-Steady Model for Perturbed Aerodvnamic Forces

(3.96a)

(3.96b)

(3.96¢)

(3.97a)

(3.97b)

(3.97¢)

The mathematical model of Table 3.5 has a problem: the variables have physical units rang-

ing from radians to radians/second and ft/sec. For reasons of uniformity it is preferred to make all

variables dimensionless. This is achieved as follows;

1) by dividing the speed perturbation u by: U,

2) by multiplying longitudinal perturbed angular rates by: %
1

3) by multiplying lateral-directional angular rates by: 2—%——
1

The effect of this is to alter the model of Table 3.5 to that of Table 3.6. That model will be

used in this text.
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Table 3.6 Non-Dimensignal Quasi-Steady Model for Perturbed Aerodynamic
Forces and Moments
Longitudinal:
A (—) 2o+ —=( + —= (=) + 2 + ——=0 (3.98a)
L3 da ac, 20 qc | 2U 30, 66
(U ) U 6(2U1) 1 a(m,l_) [
AT T (U ) + o ¢ + — (2U (2 ) + Qe + ——=0; (3.98b)
a( ) a(_zglt%) 1 a( ) U, 30, 00
oM, u oM , M, gE oM A qc aM 4 aM My
A e (ﬁ_) -+ *""é'——(]. + . Ly (2 ) 6 6 (3980)
Lateral-Directional
oF aF B aF aF aF A, 5 dF
f, = + b .
(2U ) - .
L, dL,  Pb oL, pb L A iy, Lag , Ta
1, = B+ — + Y + 6 6 (3.99b)
U,
_ Ny Bb N A pb ONA tby , WNag 9Ny
A =78 p 5 20, + ( ) ) * o )(2U1) 5. 8, TS 8  (3.99c)

rgr

Expressions for the partial force and moment derivatives in Table 3.6 will be developed in
Sub—sections 3.2.1 through 3.2.13.

3.2.1 PERTURBED STATE, LONGITUDINAL AERODYNAMIC FORCES
AND MOMENTS

- -

The perturbed state, longitudinal aerodynamic forces and moments are stated in Table 3.6
Eqns (3.98) and (3.99) in their dimensioniess form. It is seen that the partial derivatives of the longi-
tudinal forces and moment with respect to the dimensionless motion and control variables play the
key role. The purpose of Sub—sections 3.2.2 through 3.2.13 1s to show how these force and moment
derivatives may be determined with the help of various stability and control derivatives. The depen-
dence of these stability and control derivatives on airplane configuration design parameters will also
be discussed.
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3.22 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
FORWARD SPEED

According to Table 3.6, the following forces and moment are affected by changes in forward
speed,u: Fo , ¥, and M,. These forces and moment are non-dimensionalized as follows:

Fp. = C@S (3.100a)
Fy, = CS (3.100b)
M, = CngSc (3.100c)

The reader is reminded of the fact that F, , F, and M, are defined in the stability axis

system. Next, the partial differentiations implied by Table 3.6 will be systematically performed for
Equations (3.100a) through (3.100c).

Partial Differentiation of Equation (3.100a) with respect to /U4

Partial differentiation of Eqn (3.100a) with respect to (u/U,) , leads to:
OF 4, dCx _ aq
i e TN

U1 Ul Ul

(3.101)

At this point it should be recognized that the partial differentiations in Eqn (3.101) carry the
following significance:

Hp o OF
_. implies : —;
. a(ﬁl) a(ﬁ) 1

In other words, both partial differentiations and the coefficient Cy in Eqn (3.101) must be

cvaluated in the steady state flight condition for which all perturbed quantities are equal to zero!
For the partial differentiation of q this has the following consequence:

1
ag _ E _ 165@[([}1 + U)2 + v + Wz] _
B(ULI) toul) ou 1
= U,p(U, + u)I = QU% (3.102)
1

Before carrying out the partial differentiation of Cy it is necessary to refer to Figure 3.51

torelate Cx to Cp and Cp. By using the ’small angle’ assumption:

Cix= —Cp + Ca (3.103a)
Partial differentiation of Cy yields:

aC aC aC aC

a_Ui =_aLD) MevAT : I ""“a_q{_)) (3.103D)
(U]) 1 (U] 1 ( ) (UI
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Notes:
1) VPl = U,

2y C, as well as C, are

in stability axes

horizon

Figure 3.51 Determination of Cy and C, based on C; and C;

From Eqn (3.103a) it follows that in the steady state:

Cy, = — Cp, (3.104)
The following notation is now introduced:
aCp

Cp = 3.105
Pe 6([—}1-1)1 ( )

With this notation it is possible to rewrite Eqn (3.101) as:

oFy, _
Y
a

— (Cp, + 2Cp )q;S (3.106)

The derivative Cp, isreferredto asthe speed—damping derivative. The sign and magnitude
of Cp, depends on the steady state Mach number of the airplane. Figure 3.52 shows a typical plot

of the steady state drag coefficient versus Mach number (at constant angle of attack!}. Since:

_9Cp _UjaCy . Gy
Co, =3 =7 50 = Miom (3.107)
U, a

The quantity ’a’ represents the speed of sound for the steady state flight condition being con-
sidered. The numerical magnitude and sign of dCp/dM canbe determined from a figure like Figure

3.52. Note that 8Cp/8M is generally >0 for M<1 while it is <0 for M>1. Figure 3.53 gives exam-

ples of the variation of Cp,  with Mach number for several airplanes.
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Cp
M, 1 M/ 1 -
0 1.0 2.0 M
Figure 3.52 Example of Determination of:-3Cy,/dM

Partial Differentiation of Equation (3.100b) with respect to u/U

Partial differentiation of Eqn (3.100b) with respect to (u/U;) , leads to:

dF, _ aC g
ity CZS———a(_f}_) (3.108)
U, U, U,
Referring to Figure 3.51 it may be seen that (for small angle a):
CZ = - CL - CD(I (3109)
In the steady state this means:
Cy = — G, (3.110)
Differentiation of Eqn (3.109) yields:
aC aC aC
- T G111
Evaluated at the steady state, this condition produces:
Cp, = —Cp, (3.112)
Note that:
aC
Cp, = PYAE (3.113)
(Ul) 1
By using Equations (3.112) and (3.110) it follows for Eqn (3.108) that:
dF 4, B
o = — (G, +2C )q;S (3.114)
3(E)

The derivative Cy ~can be evaluated for high aspect ratio wings as follows. At subsonic

speeds, according to the Prandtl-Glauert transformation it is found that:
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Figure 3.53 Effect of Mach Number on Cp, for Several Airplanes
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Figure 3.54 Effect of Mach Number on C; _for Several Airplanes
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Cy +(C | o
C = — Crdy=o) (3.115)
(1-M?

This expression must now be differentiated with respect to M. For most airplanes, the fol-
lowing first order of approximation is reasonable:

aCy,
P (3.116)
@) o
In that case:
BCL o M .
M T 1 - ML (3.117)
Recalling Eqn (3.107) it follows that:
oCy U, aC aCy
L.~ 20y~ a ;o —- Ya3m (3.118)
ot oa
Therefore, it follows that:
M2
1 (3.119)

C,. =—-7>~L-C
Lu (1 — M%) L

Examples of the variation of C;  with Mach number for several airplanes are presented in

Figure 3.54.

kg

Partial Differentiation of Equation (3.100¢) with respect to u/U-

Partial differentiation of Eqn (3.100c) with respect to {u/U,) , leads to:

oM ICm — o _
) 5y 15T + CmSTQUT (3.120)
0,

By using the notation:

aC
sy = Cm (3.121)
U,
it follows that:
aM — o=
= (Cpy, + 2Cm})q150 (3.122)

a(U%)

For gliders, for power—off flight and for power—on flight in airplanes where there is no thrust
induced pitching moment about the center of gravity, the condition: Cm, = 0 is satisfied in steady

state flight. If thrust does contribute to pitching moment, the condition: Ch =~ CmTl applies
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and this term must be accounted for in Eqn (3.122).

For reasons similar to those leading to Eqn (3.118):

aC
Cm, = My 551
The change in pitching moment coefficient due to Mach number is caused by changes
in Cn, and by the aft shift in aerodynamic center (and center of pressure) which tend to occur in

(3.123)

the high subsonic speed range. If changes in Cy,, with Mach number are negligible, it is possible
to compute dCy,/dM from the following equation:

.
-—aCMm (AM) = — A%y, Cy. (3.124)

where: AXqc, is the aft shift in airplane aerodynamic center for a change in Mach number, AM .

In that case, using Eqn (3.123):

ax
Cm, = — M{Cp, 31" (3.125)

Note that in Eqns (3.124) and (3.125) an aft shift in a.c. is counted as positive! Shifts ina.c.
with Mach number can be determined theoretically (See Ref.1, Part VI) oz from windtunnel data.
It is seen from Eqn (3.125) that in the transonic speed range below M=1, Cp ~< 0 . This implies

that for an increase in Mach number, the airplane has a tendency to put the nose down. This phenom-
enon is referred to as transonic "tuck’. It can result in unacceptable handling quality behavior. Such
behavior can be corrected by careful attention to airfoil design, wing planform design and/or by the
introduction of Mach-trim systems.

Figure 3.55 presents examples of the variation of Cr,, with Mach number for several exam-
ple airplanes. Note that the D-558-1II "bucks’ the subsonic trend. The reason for this is not known
to the author.

3.2.3 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
ANGLE OF ATTACK

According to Table 3.6 the following forces and moment are affected by changes in angle
of attack, a: Fy , F, and M, . These quantities were non~dimensionalized in Eqns (3.100).

"Partial Differentiation of Equation (3.100a) with respect to o

Partial differentiation of Eqn (3.100a) with respect to @, leads to:

2 N To
aa daa

gs (3.126)

By invoking Eqn (3.103a) it folows that:
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Cxu = ﬁ = - W + ﬁa + CL (3127)

After evaluating this result in the steady state flight condition:

Cx, = — Cp, + €, (3.128)
And thus, Eqn (3.126) yields:

0F 5, _

a0 = (_ CDu + CLI)qIS (3.129)

where the dertvative Cpy  is obtained from Eqn (3.9).

Partial Differentiation of Equation (3.100b) with respect to «.

Partial differentiation of Eqn (3.100b) with respect to o, leads to:

0Fs,  aC,_
a9 qs (3.130)
From Egn (3.109) it is found that: X
_aC, . 9G, 4G
z, — —ﬁ = ?&“ WCC - CD (3.131)

After evaluating this result in the steady state flight condition:

Czu = - CLu - CDI (3.132)
And thus, Eqn (3.130) yields:

dF 5 ~

5o =~ (G, +Cp)asS (3.133)

where the derivative C; _ is obtained from Eqn (3.24).

Partial Differentiation of Equation (3.100c¢) with respect to o

Partial differentiation of Eqn (3.100c¢) with respect to a and evaluating the result in the steady
state flight condition leads to:

Ma _ C

A = SIS = Cp 5T (3.134)

The derivative Cp,_ is obtained from Eqn (3.35).

Examples of the variation of C , C and Cp,, with Mach number are presented in Fig-

ures (3.12), (3.16) and (3.21) respectively.
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3.24 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
ANGLE OF ATTACK RATE

According to Table 3.6 the following forces and moment are affected by changes in angle
ofattack rate: F, , F, and M,. These quantities were non—dimensionalized in Eqgns (3.98).

Introduction of angle of attack rate derivatives rests upon the assumption that, as a result of a change
in & the aerodynamic pressure distribution over the airplane adjusts itself instantaneously to q, .

This so-called quasi-steady assumption has been shown to be reasonable (Ref. 3.6) as long as the
following condition is satisfied:

reduced T )
[frequency] =k = ZGTC] < 0.04 (3.135)

An example of the ratio of unsteady lift to steady lift for a.thin airfoil which oscillates up
and down in subsonic flow is shown in Figure 3.56. The data in Figure 3.56 suggest that criterion
{3.135) is indeed reasonable.

Methods for computing the & effect for arbitrary airplane configurations are not yet avail-

able. In the mean time the so—called ’lag—of-downwash’ method can be used to obtain estimates
for the derivatives of F,  F, and M, with respect to ¢. In this method it is assumed that

downwash behind a wing (or other lifting surface) is dependent primarily on the strength of the trail-
ing vortices of the wing in the vicinity of the horizontal tail.

Because voi'tigity is transported with the flow, a change in downwash at the wing trailing
edge (due to a change in angle of attack) will not be felt as a change in downwash at the horizontal
tail until a time increment At = x, /U, has elapsed. The quantity X; is the distance from the

3/4 mgc point on the wing to the acrodynamic center of the horizontal tail.

Depending on overall airplane layout, the following approximation is often satisfied:

Xp = Xag, — Xeg (3.136)

It will be assumed that the downwash at the horizontal tail, € (t), equals that downwash
which corresponds to the wing angle of attack a(t — At) . Therefore, acorrection to the horizontal
tail angle of attack can be made as follows:

Ac = — ey = — de Koo — Xeg)

do do* U, (3.137)

Next, the partial derivatives of F A, Fa, and M, will be taken one-by one,
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Partial Differentiation of Equation (3.100a) with respect to (¢€/2U,)

Partial differentiation of Eqn (3.100a) with respect to (¢c/2U,) leads to:
oF 5
)

where it is assumed that the effect of downwash lag on drag can be neglected: Cp, = 0

= CygS = = CpTS =0 (3.138)

Partial Differentiation of Equation (3.100b) with respect to (cc/2U )

Partial differentiation of Eqn (3.100b) with respect to {6c/2U ), leads to:

oF aC
2 = —Lg;S = C, 0,8 (3.139)
a(ﬁj:) a( )
Since:
C,, = —Cp, (3.140)

A -
The derivative C;_ is found by observing the fact that Ae of Eqn (3.137) causes a change

in horizontal tail lift coefficient which can be expressed as follows:

AC,, = - C At = cLuhg—ga(xﬂﬁ_-lig) (3.141)
For the entire airplane this yields:

airplane, Ac(;llfsed byla = CLuhg_Za(x_a%fj_]—xcg‘)“Tlh"sgh (3.142)
Partial differentiation w.r.t (&¢/2U,) and using Eqn (3.140) produces:

C, = -C =~ 2C_Luhg§(i"‘°£%"g) h%ﬂ (3.143)

Introducing the concept of horizontal tail volume coefficient first used in Eqn (3.36):
- de
Cp, = 2C,, ﬂth da. (3.144)

Combining Eqn (3.139) with (3.140) and (3.144) resuits in:

9F

v de -
GE = - ZCLuhnth.ﬁqls (3.145)

Figure 3.57 shows how Cp _ varies with Mach number for several airplanes.
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Partial Differentiation of Equation (3.100c) with respect to (0c/2U))

Partial differentiation of Eqn (3.98c) with respect to (dE/ 2U,) and evaluation at the steady

state leads to:

oM e
— = Cn 7,5 (3.146)

oc
U5
The derivative Cp, is found from Eqn (3.144) by multiplying by the non-dimensional mo-

ment arm of the horizontal tail, (Xac, — X¢g) and accounting for the fact that up-lift on the horizon-
tal tail produces a nose-down pitching moment. This yields:

Cm, = = 2C; M VilFac, - szcg)gi ‘ (3.147)

[+

Figure 3.58 shows how C;, varies with Mach number for several airplanes.

3.2.5 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
PITCH RATE A

According to Table 3.6 the following forces and moment are affected by changes in pitch
rate, : F, , F5 and M, . These quantities were non-dimensionalized in Eqns (3.100).

Figure 3.59 shows that the effect of a pitch rate perturbation about the airplane center of grav-
ity is to create ’slewing’ velocities at all lifting surfaces. These slewing velocities induce local
changes in angle of attack which in turn create lift changes on all lifting surfaces. These lift changes
in turn cause increments in induced drag and in pitching moment. It is generally assumed that the
‘pitch rate effect on induced drag is negligible. The effect of pitch rate on lift is not always negligible.
The effect of pitch rate on pitching moment is nearly always very important as will be seen in the
following derivation for a conventional airplane (wing + tail aft).

Methods for determining pitch rate derivatives for an arbitrary airplane configuration are
presented in Part VI of Ref.3.1.

Partial Differentiation of Equation (3.100a) with respect to (q¢/2U,)

« - Partial differentiation of Eqn (3.100a) with respect to (qc/2U,)} , leads to:
dF o
= = Cx S = —CpgS =0 (3.148)
a(ﬂ) K
2U,

where it is assumed that the effect of pitch rate on drag can be neglected: Cp = 0 .

Chapter 3 143



Aerodynamic and Thrust Forces and Moments
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Figure 3.59 Physical Explanation for Effect of Pitch Rate on Lift and on Pitchin Moment

Partial Differentiation of Equation (3.100b) with respect to (q¢/2U,)

kot

Partial differentiation of Eqn (3.100b) with respect to (qt/2U,) , leads to:

oF 9

> = Cg 3,8 = C,q,S (3.149)

0 )

2U, 2U,
Since:
C, = = Cp, (3.150)

It is seen in Figure 3.59 that pitch rate, g, induces an angle of attack at the canard. Although
not shown in Figure 3.59, there is also an induced angle of attack at the horizontal tail:

qly
AC, = 3.151
h U, ( )

This induced angle of attack at the horizontal tail results in the following induced lift coeffi-
cient for the airplane:

ACp ql, S,
(airplane, caused by q) = CLuhU_lTIh‘S“‘ (3.152)

After partial differentiation with respect to (q€/2U,) , it follows:

Chapter 3 144



Aerodynamic and Thrust Forces and Moments

S
S

For conventional (i.e. no canard) airplanes, it is found that the center of gravity is located
close to the wing aerodynamic center. In that case, there is no canard contribution, the wing con-
tribution is negligible because of its small slew rate BUT, the horizontal tail contribution is important
because of its significant moment arm. For such cases it is acceptable to write:

I, = (Xa, = Xeg) (3.154)

The consequence of this for conventional airplanes is:

]
C, = 2(:,”“:‘“.1h (3.153)

oF

-_ Cqu]S = - ZCLuhnhvh(_le (3.155)

qc
G(ZUI)

Figure 3.60 shows trends of CLq with Mach number for several airplanes.

Partial Differentiation of Equation (3.100c) with respect to (q¢/2U,)

Partial differentiation of Eqn (3.100c) with respect to (qc/2U,) leads to:

oM aC i
A 0-q,S = Cnd;S . (3.156)

M) Iy

By using reasoning similar to what lead to Eqn (3.147), the reader is asked to show that:

Cm, = = 2C;, Ny Vn(Kag, — Xeg) (3.157)

Since in many conventional airplanes the wing contribution to Cp, is not entirely negligi-
ble, a 'fudge—factor’ is often used to produce for the entire airplane (conventional only!):

Cp, = — 2.2CLuhnth(iaCh — Xeg) (3.158)

It should be observed that the derivative, Cp, , is proportional to the square of the moment
arm of the horizontal tail. This is why this derivative is often rather large. The derivative, Cp, is

referred to as the pitch—damping derivative. Itis very important to the flying qualities of an airplane.
Figure 3.61 shows trends of Cp_ with Mach number for several airplanes.

3.2.6 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
- LONGITUDINAL CONTROL SURFACE AND FLAP DEFLECTIONS

According to Table 3.6 the following forces and moments are affected by changes in control
surface and flap deflections, 6. and 8¢ : F4, , F, and M,. These forces and moment were

non—dimensionalized in Eqns (3.100).

Partial differentiationof F, F, and M, withrespectto 8. and &; leadsto the fol-

lowing expressions:
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dFA,  aC,_ _ -

£ = 2208 = CodiS = — CpgyS (3.159)
dF,,  aC,_ — —~

Y a_ﬁqus = C,q;S = — CLg,S (3.160)
oM ICm_ s I

—5+ = 5 @S¢ = Cm,S¢ (3.161)

The subscripts used to indicate the control surface type were dropped from Eqns (3.159)
through (3.161). Expressions for the elevator and stabilizer control surface derivatives were derived
in Sub-sections 3.1.2, 3.1.3 and 3.1.4. For more general control surface derivatives and for flap
derivatives the reader may wish to consult Part VI of Ref.3.1.

3.2.7 ASSEMBLING THE PERTURBED LONGITUDINAL AERODYNAMIC FORCES
AND MOMENTS

At this point the perturbed, longitudinal aerodynamic forces and moment are assembled in

matrix format in Table 3.7. N

Table 3.7 Matrix Format for Perturbed State Longitudinal Aerodynamic Forces
and Moment

r_E‘_ ™
(£, ) [ (3.106) (3.128) (3.138)  (3.148) 361 [V
q,S —(Cp, +2C) (~Cp, +C) —Cp, —Cp=0 =~ Cop. | |
¢ (3.114) (3.132) (3.144) (3.153) (3.26) ot
. oac
L 2U, > (3.162
4 qlS - (CL., + ZCLl) (— CLu - CDI) - cL{-I - CLq - CLae i ] ( )
3.122 3.134 3.147 3.158 3.37 a©
m, { ) ( ) ( ) ( ) (3.37) 50,
qISE (Cmu + 2Cm]) Cmu Cm[-,_ Cmq Cmﬁ
- - 65
L S

Notes: 1) Airplanes may have more than one longitudinal control surface. Only the
elevator have been included in Eqn (3.162). Additional control surfaces
simply expand the size of the matrices.

2) Bracketed numbers refer to equations in the text.
3) All stability derivatives may be computed with the methods of Part VI of
Ref.3.1 and/or with the AAA program {Appendix A)
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3.2.8 PERTURBED STATE, LATERAL-DIRECTIONAL, AERODYNAMIC F ORCES
AND MOMENTS

The perturbed state, lateral-directional, aerodynamic forces and moments are defined in
Table 3.6 , Eqns (3.99) in their dimensionless form. It is seen that the partial derivatives of the later-
al-directional force and moments with respect to dimensionless motion and control variables play
the key role. The purpose of Sub-sections 3.2.9 through 3.2.14 is to show how these force and mo-
ment derivatives may be determined with the help of various stability and control derivatives.

PR

3.2.9 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO SIDESLIP

B

According to Table 3.6 the following force and moments are affected by changes in sideslip
angle, p: F A, » L and N,. These force and moments are non—dimensionalized as follows:

Fo = = Gy ) (3.163a)
L, = — CgsSb (3.163b)
N, = — C,gSh (3.163¢)

The reader is reminded of the fact that F A, » La and Ny are defined in the stability axis

system. Next, the partial differentiations implied by Table 3.6 will be systematically performed for
Equations (3.163a) through (3.163c). Partial differentiation of Eqns (3.163) with respect to sideslip
angle, p, leads to the following expressions:

B~ ap 15 T OniS (3169
oL aC

a_fJ'A = }TglqiSb = Clﬁqlsb (3.165)
dN dCh _

The stability derivatives C, , C, and C,, were already discussed in Sub—sections 3.1.9,
Y ¥p lﬁ B

3.1.8 and 3.1.10 respectively.

3.2.10 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO SIDESLIP RATE

According to Table 3.6 the following force and moments are affected by changes in sideslip,
p: F A, » La and N,. These force and moments were non—dimensionalized in Eqns (3.163).

Partial differentiation of Eqns (3.163) with respect to sideslip angle, 3, leads to the following
eXpressions:
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BFAY 8Cy _ 3
— =—q,S = Cy 0,8 (3.167)
pb pb
G GG,
oL, ac,
. = —1q,Sb = C,q,Sb 3.168
Bb Bb d; 1,91 ( )
5(2—Ul) a(ﬁ‘j‘“)
oN aC
A = " §,8b = C,q,Sb (3.169)
f
2yl

The stability derivatives Cyg’ les and C“B are physically analogous to the & —deriva-
tives which were discussed in Sub—section 3.2.4. Methods for numerically predicting these f —

derivatives are given in Part VI of Reference 3.1. Except for airplanes in the high subsonic speed
range, the  — derivatives are frequently considered negligible.

3.2.11 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO ROLL RATE

According to Table 3.6 the following force and moments are affected by changes in per-
turbed roll rate, p: F, , L, and Nj. These force and moments were non—dimensionalized in

Eqns (3.163).

Partial differentiation of Eqns (3.163) with respect to roll rate, p, leads to the following ex-
pressions:

aFA, aCy _
= —— @S = Cy,3,S (3.170)
( ) ( )
aLA ac, _ -
T T ob qISb C,,q,5b (3.171)
o ) S
TGN
A= "’C]; q,5b = C,,,Sb (3.172)
a(z—Ul (

A physical explanation for how the roll-rate derivatives Cy , C1p and Cp occurispres-

ented in the following.
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Side-force coefficient due to roll rate derivative, Cy,

This derivative is usually made up of two components:
Cy, =C + Cy, (3.173)

The contribution due to the wing—fuselage—horizontal tail, Cypwfh , 18 generally negligible for

ypwfh

conventional configurations, particularly when compared to the contribution due to the vertical tail,
Cy,, - A physical explanation for the aerodynamic mechanism responsible for Cy,, 1s presented

in Figure 3.62. It is seen that due to roll rate p, about the stability X—-axis, a force Fy,. is induced
on the vertical tail in the negative Y—direction. Note that this force acts at a point, a distance z,,

away from the X—stability axis. That point is assumed to be the vertical tail aerodynamic center due
to the additional pressure distribution caused by the roll rate, p. In principle, this distance Zy, is

not the same as the distance of the same name—tag in Figure 3.31. However, this difference is usually
ignored. Assuming z,,_ is known, the local angle of attack due to roll rate induced on the vertical

tail is: Aoy = pz,, /U, . Therefore, the side force on the vertical tail may be modelled as:

_ PZy, _
prv = CLaV(E—)qVSV (3.174)

The side—force due to roll rate on the entire airplane can be written as:

— P2y, _
Fy, = CygS = = Cp( U:’ )q,Sv (3.175)
- ob
From this, by partial differentiation w.r.t. C1il it follows that:
1
sz SV
Cy, = Cy = — 2CLuv(_b")n"(_§) (3.176)

Although Eqn (3.176) suggests that the sign of Cy, is generally negative, it is evident from
Figure 3.62 that the sign of the moment arm, zy, can reverse at high angles of attack. Figure 3.63

shows examples of the variation of Cy  with Mach number for several airplanes.

The derivative Cy_ is normally not a very important derivative in terms of its effect on air-

plane dynamic stability. However, in the synthesis of turn—coordination modes in auto—pilots, this
derivative should not be neglected.

Rolling moment coefficient due to roll rate derivative, Clp

This derivative is usually made up of three components:
C, = Clpwr + Clph +C. (3.177)
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Air velocity distribution over the vertical tail
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A physical explanation for the principal aerodynamic mechanism which is responsible
for Clp and C, isprovided in Figure 3.64. It is seen that, as long as the flow remains attached,
wf Pn

the effect of perturbed roll rate, p, is to create an asymmetrical lift distribution which opposes the
roll rate. That is why the derivative C]P is referred to as the roll-damping derivative.

The roll damping derivative, CIp » plays a very important role in determining the handling

qualities of an airplane, as will be seen in Chapter 5.

Methods for computing the C,, and C,p contributions to C, - are given in Part VI of Ref-
wf h

erence 3.1. From these methods it is clear that aspect ratio and sweep angle of the wing and the hori-
zontal tail are the dominating factors which determine roll damping. From these methods it is also
clear that unless the ratio of fuselage-width-to-wing~span is larger than about 0.3 the following
approximation applies:

G, =G (3.178)

Pw wi

To estimate the effect of the horizontal tail, it is treated as if it is a wing. The resulting value
of the horizontal tail damping derivative, based on the geometry of the horizontal tail is referred to
as C, . The value of C,, based on airplane geometry is then obtained from:

h h

Syb2

Clph = Clphm (3179)

An expression for Clp can be found with the help of Egn (3.176). The reader is asked to
show that:

Zyv, 5 S
Cp,, = — 20, HIM) (3.180)
Figure 3.65 shows examples of how Clp varies with Mach number for several airplanes.

Yawing moment coefficient due to roll rate derivative, Cp,

This derivative is normally made up of two components: N
. 1
Cn, = Cnpwf + Ch,, (3.181)

The horizontal tail contribution tends to be insignificant for conventional airplanes with tails
which are small compared to the wing. The wing—fuselage contribution is normally dominated by
the wing and is caused by three mechanisms:

1) wing drag increase 2) wing lift vector tilting 3) wing tip suction

A physical explanation for these three effects follows.
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p (positive as shown)
pb/2
A -
_ bpb
Aoy, = 2T,
pb/2

View AA: tip helix angle
Figure 3.64 Physical Explanation for Rolling Moment d ol te

0 (— p e

ﬁ CR, RANGE : —.\0 TO .80
/
- 60—t Y= T ]
C£P /
(Ra3™) z )
A ‘
- 40 L= —t =
r_//(\x/// -‘\.\
I R _K__‘-" g, ~
20
0 - '
0 5 (.0 1.5 20 25

M

Figure 3.65 Effect of Mach Number on C; for Several Airplanes

Chapter 3 N 153



Aerodynamic and Thrust Forces and Moments

1) wing drag increase

Figure 3.66 shows that as a result of the rolling motion of the wing the local angles of attack
over the wing span are altered. For a positive roll rate (right wing down) the right win g experiences
an increase in local angle of attack while the left wing experiences a similar decrease in local an gle
of attack. Figure 3.66 illustrates this for spanwise stations +y and ~y. These angle of attack changes
are seen 1o produce changes in local lift and drag. It is seen that the effect of the increase in drag
at spanwise stations +/—y is (o generate a positive increment in the yawing moment due to roll rate.

2) wing lift vector tilting

It is seen from Figure 3.66 that the changes in lift produced by roll rate at spanwise stations
+/—y result in a ’tilting” of the total local lift vectors in such a way as to produce a ne gative yawing
moment due to roli rate.

3) wing tip suction

The wing tip suction effect is illustrated in Figure 3.67. It is seen that if a wing is carrying
no net lift, there is no net side force due to roll rate. However, as soon as a wing carries a certain
amount of lift, the addition of a positive roll rate causes a net positive side force due to the effect
of wing—tip suction. Clearly the magnitude of this tip suction effect is a function of the win g geome-
try. Low aspect ratio wings with relatively large tip thickness tend to develop fairly significant net
suction forces due to roll rate. It all depends on where the center of this tip suction force is located
relative to the airplane center of gravity as to how much yawing moment due to roll rate this effect
will produce. The insert in Figure 3.67 shows that if the airplane c.g. is forward of this tip suction
center, a negative yawing moment contribution due to roll rate is produced.

The vertical tail contribution to C,_ is referred to as Cy,, . Itseffect is most easily seen by

referring back to Figure 3.62. The side force on the vertical tail is seen to produce a yawing moment
which tends to be positive at low to moderate angles of attack. The vertical tail contribution can be
estimated through the use of Eqn (3.180) to produce:

Zy, Xy, Sv
Cu,, = 20, GHCMY (3.182)

Methods for estimating all contributions to Ch, are given in Part VI of Referense 3.1. It

turns out that the correct prediction of even the sign of this contribution is difficult. It will be shown
in Chapter 5 that the effect of the derivative Cy, onairplane dynamic stability is frequently rather

weak. If such is the case, it may not matter whether or not the sign of Cy, is properly predicted.
In cases where the airplane is shown to be sensitive to sign and magnitude of Ch, ,itisusually neces-

sary to run 'roll-rate-model-tests’ in the windtunnel.

Figure 3.68 shows examples of how C, varies with Mach number for several airplanes.
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Right, down—going wing at +v Left, up—going wing at —y
Note: AL creates — AC,,
Note: AD creates + AC, +y
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igure 3.66 Explanation of Lift and Drag Vector Tilting on C,,
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Figure 3.67 Explanation of Tip Suction Effect on C,
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3.2.12 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO YAW RATE

According to Table 3.6 the following force and moments are affected by changes in per-
turbed yaw rate, r: ¥, ,L, and N, . These force and moments were non-dimensionalized in

Eqns (3.163). Partial differentiation of Eqns (3.163) with respect to yaw rate, 1, leads to the follow-
ing expressions:

aFA ac _
3,8 = Cyq,S (3.183)

050 ) ICoR )
aL ac

A = %S gsh - g8 (3.184)
o ) CTiR )
N

A = 66" gq,Sb = C,q,Sb (3.185)
ST ) atr )

A physical explanation for how the yaw-rate derivatives Cy, , C, and Cp occur is pres-

ented in the following.

Side-force coefficient due to yaw rate derivative, Cy,

This derivative is usually made up of two components:
Cy, = Cym T Cyn (3.186)
The contribution due to the wing-fuselage-horizontal tail, Cy, . is generally negligible for

conventional configurations, particularly when compared to the contribution due to the vertical tail,
Cy., - A physical explanation for the acrodynamic mechanism responsible for Cy,, is presented

in Figure 3.69. It is seen that the effect of yaw rate is to induce an angle of attack at the vertical tail
which gives rise to the following side force:

I'X
Fp, = CL_()0.S5v (3.187)
ay 1

In this expression, the side-wash due to yaw rate has been neglected. In terms of total air-
plane side force it is also possible to write:

Fa, = G388 (3.188)
By differentiating the coefficient Cy, with respect to rb/2Uj it is possibie to show:

2xy,. S,
Cy, = Cy, = Cp (M) (3.189)

Examples of the trend of C,, with Mach number are given in Figure 3.70.
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Rolling moment coefficient due to vaw rate derivative, C,,

This derivative is generally made up of the following contributions:

+C +C (3.190)

The contribution of the horizontal tail is frequently neglected. Figure 3.71 contains the
physical explanation for the occurrence of the wing—fuselage contribution, C; , and e vertical
Tod "

tail contribution, C, . Methods for estimating the numerical magnitude of C, are presented in
My l'wf

Part VI of Reference 3.1. The reader is asked to show that the vertical tail contribution can be ex-
pressed as:

X
C, = CL, (=M (3.191)

Observe that, depending on the magnitude of the airplane steady state angle of attack, a, ,

thesignof C; canbe either positive or negative. The wing—fuselage contribution, C, ,isalways
Ty o
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increased lift

decreased lift

postitive rolling moment

A +yr

AU, NOTE: The rolling moment due to
yaw rate is proportional to the wing
lift coefficient!

Fi .71 Physical Explanation for the Wing—Fuselage and Vertical

Tail Contributions to Rolling moment due to Yaw Rate
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positive for attached flow situations and normally outweighs the magnitude of the vertical tail con-
tribution. This makes the derivative C; usually positive. Figure 3.72 presents examples of

how C, varies with Mach number for several airplanes.

Yawing moment coefficient due to yaw rate d'erivative, Ch.

This derivative is generally made up of the following contributions:

Cn, = Cn + Ca, (3.192)
For most airplanes, the contribution of the horizontal tail to the derivative C,_ is quite negli-
gible. The wing—fuselage contribution, Cnrwf ,is dominated by the change in induced drag as aresult
of the differential velocity distribution induced by yaw rate. This may be seen from Figure 3.71.
Methods for computing the wing—fuselage contribution may be found in Part VI of Reference 3.1.
Figure 3.71 also illustrates how the vertical tail contributes to C,_ . It turns out, that for most

airplanes this contribution is very important, mostly because of the fact that it is proportional to the
square of the moment arm of the vertical tail. The reader is asked to show that:

2Xvsz S
Cp, = - CLu,,(_bz‘)“V§v (3.193)

The yaw damping derivative, C,, has an important effect on airplane flying qualities. Fig-

ure 3.73 shows examples of how C,_varies with Mach number for several airplanes.

3.2.13 AERODYNAMIC FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO LATERAIL-DIRECTIONAL CONTROL SURFACE DEFLECTION

According to Table 3.6 the following force and moments are affected by changes in aileron
and rudder deflections: F A, L, and N,. These force and moments were non—dimensional-

ized in Eqns (3.163). Partial differentiation of Eqns (3.163) with respect to any lateral—directional
control surface deflection, &, leads to the following expressions:

55 - a8 1S = G TS (3.194)
aL, aC,_ _
E = EqISb = ClanSb (3195)
oN 4aCy_ _

aéA _ a_anq'Sb = C,q,Sb (3.196)

The subscripts used to indicate which particular control surface type is used were dropped
from Equations (3.194) — ( 3.196). A discussion of the various lateral-directional control surface
derivatives is presented in Sub—sections 3.1.8 through 3.1.10.
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3.2.14 ASSEMBLING THE PERTURBED LATERAL-DIRECTIONAL AERODYNAMIC
FORCES AND MOMENTS

At this point the perturbed, lateral-directional aerodynamic force and moments are as-
sembled in matrix format in Table 3.8. This is the format used in the discussion of the perturbed
equations of motion in Chapter 5.

Table 3.8 Matrix Format for Perturbed State Lateral-Directional Aerodynamie
Force and Moments

A [(3.75)  (3.167)  (3.173) (3.186) (3.1.8) (3.1.8)] | pv
iy . 70,
q,s Cyﬁ Cyﬂ Cyp Cyr Cj,{..’u C”a,
(3.52)  (3.168) (3177 (3.190) (.18 (18| |22
fat - J2l (3.197)
q,5b Cip iy C, G, Ci, Ci,
b
I (3.84) (3.169) (3.181) (3.192) (3.1.8) (3.1.8) 2U,
A
=3 Chp € Cw Cu G G| |,
5,

Notes: 1) Airplanes may have more than one lateral-directional control surface.
Only the aileron and rudder have been included in Eqn (3.197).
For additional control surfaces simply expand the size of the matrices.
2) Bracketed numbers refer to equations and/or sections in the text.
3) All stability derivatives may be computed with the methods of Part VI of
Ref. 3.1 and/or with the AAA program (Appendix A)

3.2.15 PERTURBED STATE LONGITUDINAL AND LATERAI-DIRECTIONAL
THRUST FORCES AND MOMENTS x

Itis possible to make a case for the existence of perturbed thrust forces and moments as func-
tions of all perturbed motion variables: u, v, w, p, q and r. As it turns out, for most airplanes only
the variables u, v and w have significant effects on the perturbed thrust forces and moments. The
reader is cautioned however, not to take this for granted for all future configurations!

The consequence of assuming that only the perturbed motion variables u, v and w have sig-

nificant effects on the perturbed thrust forces and moments is the mathematical model given in Equa-
tions (3.198) through (3.203):
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9F ) o
fr = —2 (L) + —2g
e TR (3.198)
GFTZ u oFr,
sz = a(UL (ﬁl—) + W‘C& (3199)
Mr y . . My
— —) + —q .
oF
fr, = 55 (3.201)
Ly
dN
np = a—BT (3.203)

Detailed expressions for the perturbed thrust force and moment derivatives are developed
in Sub-sections 3.2.16 through 3.2.18.

3.2.16 THRUST FORCE AND MOMENT DERIVATIVES WITH RESPECT
TO FORWARD SPEED

Based on Sub—section 3.2.2 the perturbed longitudinal, thrust forces and moment are non—
dimensionalized as follows:

Fr. = CpaS (3.2042)
My = CpnGSC (3.204¢)

The reader is reminded of the fact that Fy ,Fy  and M are defined in the stability axis

system. Next, the partial differentiations implied by Equations (3.198) — (3.200) will be systemati-
cally performed for Equations (3.204a) — (3.204c).

Partial Differentiation of Equation (3.204a) with Respect to u/U,

Partial differentiation of Equation (3.204a) with respect to u/U,, leads to:

oF aC Ja
1= —5TS + CpS—p- (3.205)
a(ﬁl) a(ﬁl) (U_l)

Evaluation at the steady state, recalling Eqn (3.102) and using the following nota-
aC

wl.l_x
o)

tion: Cp = , it can be shown that:
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8F
'

= Cr, ;S + 2Cr, 3,8 (3.206)

The steady state thrust coefficient, Cy  is normally equal to the steady state drag coeffi-
*
cient because T=D in level steady state flight. The derivative Ct_ depends on the characteristics

of the propulsion system. Five cases will be considered:
Case 1: Gliders or power—off flight
Case 2: Airplanes equipped with rockets
Case 3: Airplanes equipped with pure jets and fan jets
Case 4: Airplanes equipped with variable pitch propellers
Case 5: Airplanes equipped with fixed pitch propellers

Case 1: Gliders or power—off flight

Since there is no thrust in this case: C; = Cy = 0, so that:
Xu X

aFTx B
o, -
A

(3.207)

Case 2: Airplanes equipped with rockets

The installed thrust output of a rocket engine does not (to a first order approximation) depend
on the flight speed: C_ = 0. Therefore:

GFTx
U
o)

= 2Cr, 4,8 (3.208)

Case 3: Airplanes equipped with pure jets and fan jets

In this case it is necessary to establish the variation of installed thrust with Mach number,
with altitude and with fuel flow (or throttle position). Methods for determining installed thrust from
engine manufacturer’s thrust data are found in Part VI of Reference 3.1,

Figure 3.74 shows an example of estimated installed thrust data for a small, single engine
fan-jet trainer. The slope dFr /dM may be measured directly from graphs such as presented in

Figure 3.74. Having done so, the following is obtained:
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_ M, aFT,‘

T. =g s 2om, (3.209)

With Eqn (3.206) it is now found that:

oF )

— = M| =5 3.210
6({_}1_1) 1 oM ( )

Case 4: Airplanes equipped with variablevpitch propellers

It will be assumed that the thrust inclination angle, ¢ , is negligible, so that the thrust axis

is aligned with the X-axis. It will also be assumed that for a variable pitch (= constant speed) propel-
ler, the thrust—horsepower output is essentially constant with small changes in forward speed. Thus:

T(U; + v} = Fy (U; + u) = constant (3.211)
Partial differentiation with respectto u/U; and evaluating the result at the steady state flight

condition (u=0} yields:

oF 1
- = —Fr, = —Crq;S (3.212)
a(ﬁ) ‘ !
Comparison with Eqn (3.206) shows that in this case:
Cr = — 3CTx] (3.213)

Xy

Case 5: Airplanes equipped with fixed pitch propellers

In general, only low cost, low performance airplanes are equipped with fixed pitch propel-
lers. The following assumptions will be made:
1) In the steady state flight condition, the propeller is operating at a known rpm, Nppm

This is expressed as Npeps = Nepm/60 rps (rotations per second).

2) A propeller performance diagram is available from which the variation of proﬁ‘éller effi-
ciency, "p , for a given propeller advance ratio, J = U, /(nppeDyp) | is known at constant propeller

blade angle. Examples of such propeller performance diagrams are found in Reference 3.9 (pages
298-329).

3) The engine is operating at a constant brake—horsepower level, BHP, as set by the throttle.

Assuming that the airplane has np propellers, the following relation holds for the total

installed thrust output for this case:
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Fo = np550n,BHP
T — U—1
Partial differentiation with respect to u/U, now yields after evaluating the result at the

(3.214)

steady state flight condition:

aFTX - — 550r|p(BHP)
u, P U
a(U,) 1

:
+ SS0(BHP) 2 (3.215)

The derivative anp/ du can be expressed as follows,:
au ( )( ) (3.216)
where: the prope[ler advanceratio, J = U;/(npmsDp), sothat 4J/ou = 1 /NprpsDp. There-

fore 1t is found that:

oF — 550m, (BHP)  550(BHP) 9
L o g - 22UBHE) T, (3.217)
U,
This can be rewritten as follows:
oF 1 T .U, &y
C = — Cp qS +— 2P :
B(UL) T, Np,NprpsPp 93 (3.218)

The derivative dnp/dJ can be obtained from the propeller performance diagram mentioned

before under 2). Comparison with Eqn (3.206) shows that:

Cp = = 3Cy + o 3.219
Tlu - T"I T]plnprpst 6] ( ’ )

Partial Differentiation of Equation (3.204b) with Respect to u/U,

Partial differentiation of Equation (3.204a) with respect to u/U, leads to:

aF 1

—- = Cr,T;S + 2C1 g,S (3.220)

a(ﬁ:) " !

The derivative C  and the coefficient C;  are negligible for most conventional air-
iy 24

plane configurations. It should be kept in mind that for airplanes with vectorable thrust this is defi-
nitely not the case! For conventional airplanes it will be assumed that:

8F 7
=0 | (3.221)
(ﬁ])
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Partial Differentiation of Equation (3.204c) with Respect to u/ U,

Partial differentiation of Eqn (3.204c) with respect to u/U, yields:

oM o — o=

a_("ﬁ—_) = Cm, 0;5¢ + 2CmT]qlsc (3.222)
U,

For conventional propulsive arrangements the derivative Cr,, Isobtained from the deriva-

tive Cp by multiplying with the non-dimensional moment arm of the thrust-line relative to the

center of gravity, d/C :

dT
Cry, = = Cp, = (3.223)

where: dr is defined in Figure 3.26. Note that d is counted as positive if the thrust-line

is above the center of gravity.

The value of the steady state thrust-pitching moment coefficient, Cp,. , depends on the air-
y Y g ™ Y

plane trim state. For pitching moment equilibrium in the steady state flight condition, the following
condition should be met:

Cmy + Cm, = 0 | (3.224)

Since the acrodynamic and the thrust pitching moment coefficients apparently cancel each
other in steady state flight, the total variation of airplane pitching moment with perturbed speed, u,
1s given by:

oM, + M
HMp + Myp) (Cm, + Cm, )q;5¢ (3.225)

L
GUI

The numerical magnitude of Cm,, is negligible for those airplane configurations where the

thrust-line passes close by the center of gravity.

3.2.17 THRUST FORCE AND MOMENT DERIVATIVES WITH RESPECT TO"
ANGLE OF ATTACK

The perturbed longitudinal, thrust forces and moment are non-dimensionalized as shown in
Equations (3.204). In the following, these expressions will be partially differentiated with respect
to the perturbed airplane angle of attack, o.

Partial Differentiation of Equation (3.204a) with Respect to o

Partial differentiation of Equation (3.204a) with respect to o leads to:
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Loy gy (3.226)

For the normal range of angles of attack and for most conventional airplanes the deriva-
tive Cy_ is negligible:

Cr_ =0 (3.227)

Xy

Partial Differentiation of Eguation (3.204b) with Respect to ¢

Partial differentiation of Equation (3.204b) with respect to o leads to:
— = Cyp qls (3228)

The physical cause of the derivative Cp_ is the so—alled propeller and/or inlet normal

force which occur as aresult of perturbations in angle of attack. The physical reason for such normal
forces is the change in flow momentum in a direction perpendicular to the spin axis of the propeller
or turbine. The corresponding flow geometry of these effects is illustrated in Figure 3.75. The mag-
nitudes of these normal forces are normally sufficiently small that they can be be neglected when
compared to changes in aerodynamic lift due to angle of attack perturbations. Therefore:

Cy =20 (3.229)

Zar

Partial Differentiation of Equation (3.204¢) with Respect to ¢

Despite the assumption which leads to Eqn (3.229), the pitching moment contribution due
to this derivative may not be negligible at all! Partial differentiation of Equation (3.204¢) with re-
spect to o leads to:

M o
—o = C, G, 5C (3.230)

In the following, expressions will be derived from which Cm, may be estimated. This will

be done for two cases:

. Case 1) Propeller driven airplanes
Case 2) Jet driven airplanes

Case 1) Propeller Driven Airplanes

Figure 3.75 shows the propeller normal force, Np , as well as the moment arm of this force

about the center of gravity. The propeller normal force, N, , may be expressed as:

Np = Cn3Sp (3.231)
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Figure 3.75 Propulsive System Normal Forces due to Angle of Attack and Sidesli
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The pitching moment coefficient due to the propeller normal force can be written as:

XpSp

Com TS

n, = DpCn (3.232)
Np P

where: n; is the number of propellers
Xp is the moment arm of the propeller disk

Sp = %Dpz is the propeller disk area

Dy, is the propeller diameter

For tractor propeliers, the propeller plane is usually in the wing up—wash field. Therefore,
the propeller normal force coefficient, CNp , is proportional to the propeller angle of attack, o,

(this is the angle between the propeller spin axis and the free stream velocity vector in the steady
state). Differentiating Eqn (3.232) with respect to a,, yields:
xpSp ICN, datp

Cmr, = M5 Sa, da (3.233)

Since:
some constant

ap = &+ €p + jpcidence X (3.234)

where: €, is the wing induced up—wash at the propeller

it follows that:

aap _ aep
e ¥ (3.235)
Therefore:
_ xpspaCNp 0€p
Cre, = 75 B0, ¢+ Fa (3.236)

Methods for determining 9Cy_ /o0 and the up—wash gradient, 9€,/da , may be found in

References 3.4, 3.5 and 3.10. The reader should keep in mind that the propeller flow downstream
of the propeller plane may in turn affect the downwash at the horizontal tail. Reference 3.4 contains
an apprgach for computing these effects.

Case 2) Jet Driven Airplanes

Figure 3.75 also shows the jet engine normal force, N; , and the moment arm of the jet en-

j ]
gine nacelle inlet about the center of gravity. The jet engine normal force, N; , may be expressed

as.

o : someconstant
Nj = m"V;sin(a + £ + incidence X ) (3.237)

Chapter 3 171



Aerodynamic and Thrust Forces and Moments

where: m’ is the mass flow rate through the engine
V; is the inlet flow velocity
€; is the wing induced up—wash at the inlet

The inlet flow velocity, V; , may be determined from:

vV, = X.r% (3.238)

where: A, is the inlet cross sectional area
Q; is the inlet air density
The pitching moment contribution due the normal forces from n; jet engines is:

(") 2x;

] some constant

my, = M A g qISE(a tet incidence X ) (3.239)
where: n; is the number jet engines
X; 1s the moment arm of the engine inlet
Upeon differentiation with respect to a, it follows that:
(m')2xj | dg;
Cm,, nJAi o qlSE( o (3.240)

Methods for determining the up~wash gradient de i /00 may be found in Part VI of Ref. 3.1.

The reader should observe that the derivative, CmTu {ofEqn (3.236) or (3.240)} when added
to the derivative, Cy, {of Eqn (3.35)} yields the so—called power—on value of the static longitudinal
stability derivative. It is suggested that the reader use the procedure of page 89 to redefine the aero-

dynamic center of an airplane with power on.

Note that Eqn (3.240) yields a positive (unstable) contribution to longitudinal stability. The
reader should observe that a tractor installation tends to reduce overall airplane longitudinal stability
whereas a pusher installation tends to enhance longitudinal stability.

3.2.18 THRUST FORCE AND MOMENT DERIVATIVES WITH RESPECT TO
ANGLE OF SIDESLIP

Based on Sub-section 3.2.9 the perturbed longitudinal, thrust forces and moment are non—
dimensionalized as follows:

Fr, = Crgs (3.241a)
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Ly = C,gSh (3.241b)

Np = C,gSb (3.241c)

The physical cause of the derivatives in Eqns (3.241) is the so-called propeller and/or inlet
normal force which occur as a result of perturbations in angle of sideslip. The physical reason for
such normal forces is the change in flow momentum in a direction perpendicular to the spin axis of
the propeller or turbine. The corresponding flow geometry of these effects is shown in Figure 3.75.
The magnitudes of these normal forces are normally sufficiently small that they can be be neglected
when compared to changes in aerodynamic side—force due to angle of sideslip perturbations.

The reader is reminded of the factthat Fy ,Ly and Ny are defined in the stability axis

system. Next, the partial differentiations implied by Equations (3.164) — (3.166) will be systemati-
cally performed for Equations (3.241a) — (3.241c).

Partial Differentiation of Equation (3.241a) with Respect to f3

Partial differentiation of Equation (3.241a) with respect to 3 leads to:

dF
66’ = Cr, 4,8 (3.242)

For the normal range of angles of attack and for most conventional airplanes the deriva-
tive Cy  is negligible:
B

Cr,, =0 (3.243)

Partial Differentiation of Equation (3.241b) with Respect to [

Partial differentiation of Equation (3.241b) with respect to f leads to:

oL
T_ ¢ q5h (3.244)
8{3 Tg

For the normal range of angles of attack and for most conventional airplanes the deriva-
tive ClT is negligible:
B

C, =0 (3.245)
g

Partial Differentiation of Equation (3.241¢) with Respect to 3

Partia! differentiation of Equation (3.241c) with respect to f leads to:
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Ny _
?ﬁ_ = CnTﬂqle (3246)

The reader is asked to show that, by analogy to the development in Sub-section 3.2.17 for

the pitching moment, it follows that the derivative Cn, may be written as:
C (M) ﬂ

o T T A p; q,5b (3.247)

Note the minus sign in Eqn (3.247). The reader should observe, that a tractor installation

tends to reduce overall airplane directional stability whereas a pusher installation tends to enhance
directional stability.

3.2.19 ASSEMBLING THE PERTURBED STATE LONGITUDINAL AND LATERAL-
DIRECTIONAL THRUST FORCES AND MOMENTS

At this point the perturbed, longitudinal and lateral-directional thrust forces and moments
are assembled in matrix format in Table 3.9.

Table 3.9 Matrix Format for Perturbed State Longitudinal and Lateral-
Directiopal Thrust Forces and Moments
[ (3.206) (3.227)]
f '
[ q% (Cr,, +2Cr,) 0
u
: it VR G (3.248)
q;S 0 0 a
my (3.225) (3.230)
q;S¢c
) : (CmTu + ZCmTl) CmTu
(3.243)) .
r f b L
T, 0
q;S
, (3.245)
T\ -
ot R P (3.249)
nr (3.247)
q,Sb C
) ’ { Ty ] Note: bracketed numbers refer to equations in the text
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3.3 OVERVIEW OF USUAL SIGNS FOR AERODYNAMIC
COEFFICIENTS AND DERIVATIVES

To enable the reader to quickly review the various sign conventions and "usual’ signs which
occur for the many aerodynamic coefficients and derivatives, Figures 3.76 through 3.79 are included
in this Section.

These figures also allow the reader to review the pertinent perturbations which are associated
with various aerodynamic derivatives. It is hoped that these figures will be useful when reviewing
the material presented in Sections 3.1 and 3.2.

34 SUMMARY FOR CHAPTER 3

To solve the airplane equations of motion developed in Chapter 1, it is necessary to have
available a set of mathematical models which relate the acrodynamic and thrust forces and moments
to the appropriate motion and control surface variables. The purpose of this Chapter was to develop
and discuss these models.

The equations of motion in Chapter 1 are divided into two sets: equations for steady state
and equations for perturbed state flight respectively. Similarly, the mathematical models for acrody-
namic and thrust forces and moments are also divided into steady state models (Section 3.1) and per-
turbed state models (Section 3.2).

In estimating the magnitudes of the various coefficients and derivatives, it is important to
account for the effect of major airplane components, such as: wing/fuselage, vertical tail, horizontal
tail, canard, nacelles etc. In all cases, physical explanations and derivations were presented to pro-
vide the reader with an appreciation for the relative contributions of these components. To acquaint
the reader with typical numerical magnitudes for these coefficients and derivatives, numerical ex-
amples for the most important stability and control derivatives are given for four different airplanes.

Finally, the propulsive installation of an airplane can have significant effects on several coef-
ficients and derivatives. The most important of these effects were also discussed.

Appendix B contains a listing of stability and control derivatives for several flight conditions
and for a range of different airplanes.

A question which always arises is: how important is any given stability and control derivative
to the in—flight behavior of a given airplane? That question is addressed in Chapter 5. It is shown
in Chapter 5, that by carrying out a so—called derivative sensitivity analysis, it is possible to deter-
mine the importance of any derivative and inertial parameter.
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i, > 0 as shown
CDi > 0
Y
Crm,
X
Z Z
i, > 0 as shown
Cm, >0 or Cpy, <0 Cme >0 or Cy, <0 Cmih<0
Y L(]
X + a X + a
Vp Ve,
Z V4
iy, > 0 as shown
C,>0 o G <0 C. >0 C. >0
0 o iy
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o, p > 0 as shown

Clﬁ<0

T.E. Left

ACy = Cyp < 0

o,p > 0 as shown

Cy, <0

AC, = Cof > 0

>
%

Y

Vp,

Z
o, >0 as shown

Cnﬁ>0

Cpy, <0

Derivatives

Fisure 3.77 Review of Signs of Steady State Lateral-Directional Force and Momen

t
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Y ACp = CDUUL1

X

ACp > 0
as shown

Cp,>0 or<0

Y ACp = cD
ACph > 0 T
as shown

qc
12U,

Y ACp = Cp

X

ACh > 0
as shown

CDu > 0 but,usually = 0

CDq > 0 but,usvally =0

= . =
Y A(:l'l"l CmuUl Y AC l'l'l 2U] Y Acm = Cmq..z_%_}
X +u X
ACp >0 AC, > 0 ACy > 0
as shown Z as shown as shown Z
Cpn, >0 or<o Cn, <0 Cmq<0
Y AC, = CLuﬁ"l' Y L~ 2U1 Y AC, = 3U,
X +u -
AC; >0 7 AC, > 0 AC; > 0
as shown as shown as shown
CL,>0 or<0 C,,>0 Cp, >0

Derivatives

Figure 3.78 Review of Signs of Perturbed State, Longitudinal Speed and Rate
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Y _ o Pb Y ~c Ib
AC, Clp i AC, CerUI
P
X X
r
AC; > O 7 AC, > 0 7
as shown as shown

C1p <0 Clr >0

Y ACy = Cy 5

X X
ACy >0 7z ACy > 0 7
as shown as shown
Cy, <0 Cy, >0
Y Ac, =c, 22 Y AC. = . b
n r1I’2U1 \ I “f2U]
X X
r
AC, > 0
Z Z
as shown AC, >0
as shown
Cp, <0 or >0 Cp <0

Fisure 3.79 Review of Signs of Perturbed State, Lateral-Directional Rate
Derivatives
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PROBLEMS FOR CHAPTER 3

3.5

3.1

3.2

3.3

3.4

3.5

Re—derive Eqns (3.24), (3.25) and (3.26) for a canard (like the Beechcraft Starship) and for
a three—surface airplane (like the Piaggio P-~180). Assume that the canard airplane has a

trailing edge control surface on the canard (called a canard—vator). Data on both airplanes
may be found in Jane’s All the World’s Aircraft of the 1991-1994 period.

Re—derive Eqns (3.35), (3.36) and (3.37) for a canard (like the Beechcraft Starship) and for
a three—surface airplane (like the Piaggio P—180). Assume that the canard airplane has a
trailing edge control surface on the canard (called a canard—vator).

An airplane has a wing and a horizontal tail with identical planform and airfoil geometry (i.e.
aspect ratio, sweep angle, camber, thickness ratio and taper ratio). Assume that the tail size
is 1/4 that of the wing. Assuming that the wing has 3 degrees of geometric dihedral angle,
how much anhedral angle must the tail have for the airplane to have zero dihedral effect?

Complete the following table.

Parameter to Quantity Fill in: Increase, decrease or no change. Also:
be increased Affected indicate the sense of the change (i.e. + or -)

Sy Cnﬁ Example: Increases positively.

Xy, Ch, 77

Xy, Co, 7?

C 27

CLﬂh m, 17
wing camber Cm, 27

Xeg Cum, 77

Sv C[ﬁ ?7

vy Ch, 7

Sy Ca, 7 K

Xy Ca 7?7

Explain why a conventional wing—fuselage combination with a vertical canard mounted at
the nose of the fuselage is always directionally unstable.

Note: The following problems require the availability of either Parts V and VI of
Reference 3.1 or of the AAA program described in Appendix A.

Chapter 3 180



3.6

3.7

3.8
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Find a three—view for the Fokker F-100 jet transport (see Jane’s All the World’s Aircraft of
the 1991-1994 period). Calculate all stability derivatives in Eqn (3.46a). Do this for the
following flight conditions:

* high altitude cruise at design cruise weight
* takeoff at sea—level and at maximum takeoff weight
* landing approach and at design landing weight

Perform sanity checks on your answers by comparing with suitable graphs in this chapter.
Find a three—view for the Fokker F-100 jet transport (see Jane’s All the World’s Aircraft of
the 1991-1994 period). Calculate all stability derivatives in Eqn (3.95a). Do this for the
following flight conditions:

* high altitude cruise at design cruise weight

* takeoff at sea~level and at maximum takeoff weight

* landing approach and at design landing weight
Perform sanity checks on your answers by comparing with suitable graphs in this chapter.
Find a three—view for the Boeing 777 jet transport (see Jane’s All the World’s Aircraft of
the 1993+ period). Calculate all stability derivatives in Eqn (3.162). Do this for the
following flight conditions:

* high altitude cruise at design cruise weight

* takeoff at sea—level and at maximum takeoff weight

* landing approach and at design landing weight
Perform sanity checks on your answers by comparing with suitable graphs in this chapter.
Find a three—view for the Boeing 777 jet transport (see Jane’s All the World’s Aircraft of
the 1993+ period). Calculate all stability derivatives in Eqn (3.197). Do this for the
following flight conditions:

* high altitude cruise at design cruise weight

* takeoff at sea—level and at maximum takeoff weight

* landing approach and at design landing weight

Perform sanity checks on your answers by comparing with suitable graphs in this chapter.

f St égj[]_/
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CHAPTER 4: STABILITY AND CONTROL DURING STEADY
STATE FLIGHT

Airplanes must have the following general flight characteristics:

1. The airplane must have sufficient control power to maintain steady state, straight
line flight throughout the design flight envelope.

2. It must be possible for the airplane to be safely maneuvered from one steady state
flight condition to another.

3. Cockpit control forces should be within acceptable upper and lower limits under
all expected conditions throughout the design flight envelope. This includes
changes in airplane configuration such as: flaps up/down, landing gear up/down,
weapons launch etc.

4. The airplane must be trimmable in certain flight conditions.

These four very general flight characteristics are a subset of the so—called ’flying or handling
qualities’ of the airplane. Requirements for good flying qualities of airplanes are qualitatively and
quantitatively specified in the so—called airworthiness requirements: FAR 23, FAR 25 and JAR-
VLA (for civil airplanes); Mil-F-8785C and Mil-Std-1797A (for military airplanes). These re-
quirements are given in References 4.1 — 4.4 and will be referred to as the ‘regulations’ in this text.

To predict whether or not an airplane meets the regulations, the airplane designer/analystem-
ploys mathematical models which are based on the equations of motion (as derived in Chapter 1)
and on certain relationships between aerodynamic and thrust forces and moments and the motton
variables (as discussed in Chapter 3). The purpose of this chapter is to combine the results of Chap-
ters 1 and 3 to form mathematical models from which the stability and control characteristics of an
airplane in steady state flight can be predicted. This will be done in such a way that it is clear what
design 'fixes’ the designer must make to ensure that the airplane meets the intent of the regulations.

Section 4.1 contains a derivation and discussion of static stability criteria for airplanes.

A discussion of the most important steady state stability and controllability characteristics
of airplanes in steady, straight line flight and in maneuvering flight is contained in Sections 4.2 and
4.3 respectively. The effect of airplane configuration on airplane trim is discussed in Section 4.4.

The effect of reversible flight control systems on stability and control is covered in Sections
4.5 and 4.6. A more general, matrix based approach to the steady state stability and control proper-
ties of airplanes is given in Section 4.7 and 4.8. In Section 4.9, the topic of airplane takeoff rotation
is taken up. Finally, Section 4.10 contains a brief discussion of irreversible flight control systems.
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4.1 INTRODUCTION TO STATIC STABILITY AND ITS CRITERIA

The following definitions are used for static stability and for static stability criteria;

Definition of Static Stability:

Static stability is defined as the tendency of an airplane to develop forces or moments
which directly oppose an instantaneous perturbation of a motion variable from a
steady—state flight condition.

Definition of Static Stability Criterion:

A static stability criterion is defined as a rule by which steady state flight conditions
are separated into the categories of stable, unstable or neutrally stable..

Figures 4.1 and 4.2 contain examples of what is meant by static stability, neutral stability and
static instability for a mechanical system and an airplane in pitch respectively.

The steady state motion of an airplane was defined in Chapter 1 as that motion for which the
linear velocity vector, Vp, , and the angular velocity vector, @ , remain constant with time in a

body-fixed axis system XYZ. In more common language, steady state flight is thought of as having
constant speed, constant rotational velocities and constant load factor. This type of flight condition
is encountered frequently in straight, wings level flight, in steady turns and in steady pull-ups or
push—overs.

It is observed that the momentary position of the airplane center of mass in inertial
space, Tp', is not important in determining stability behavior. The state vector components
X1 , Y ,Zl will therefore not be included in stability considerations and therefore, neutral stat-

ic stability with respect to changes in these motion variables is accepted. A similar statement can
be made with respect to the Euler angles ¥,,0,, @, : neutral static stability with respect to

changes in heading angle, pitch attitude angle and bank angle will also be accepted. All this makes
sense if it is recalled that no aerodynamic forces arise as a result of any changes in the motlon vari-
ables X,",Y,,Z;" and ¥,,©,,®, .

_.  For determination of static stability, it therefore suffices to consider only the components
of Vp and & which (in the steady statc) respectively are: U;, V,, W, and P,Q,R; . Theper-

turbations relative to these steady state motion variables are: u, v, w and P.q, T.
The definition of static stability will now be applied by using the instantaneous force and
moment behavior to these instantaneous perturbations. In determining which combinations of

forces , moments and perturbations are to be singled out, the following arbitrary rules have been
followed:
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Figure 4.1 Example of Stable, Neutrally Stable and Unstable Equilibrium
in a Mechanical System
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Figure 4.2 Example of Stable, Neutrally Stable and Unstable Airplane
Pitch Equilibrium
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1. Linear velocity perturbations are initially opposed only by forces.

2. Angular velocity perturbations are initially opposed only by moments.

3. Angle of sideslip and angle of attack perturbations obtained by interpreting the
velocity perturbations vand was p = v/U; and o = w/U; are initially

opposed only by moments.

By consistently applying these rules and the definition of static stability to the instantaneous
force and moment behavior of an airplane, a series of static stability criteria evolve. The results are
stated in Table 4.1 in the form of inequalities. To assist in the physical interpretation, each stability
statement in Table 4.1 is accompanied by a corresponding aerodynamic stability derivative state-
ment. An analysis which shows the connection between each general static stability statement and
its corresponding derivative is given in Sub—sections 4.1.1-4.1.4.

It should be noted that the stability criteria of Table 4.1 are expressions of local slope behav-
ior. For that reason these criteria also apply to situations where aerodynamic (and thrust) forces and
moments behave in a nonlinear manner.

From a flying qualities viewpoint the static stability criteria in Table 4.1 are not all equally
important. For example, the criterion Cr, < 0 is much more important than the criterion
Cy, <0 . Also, strictly speaking, the criterion Cm, > 0 does not belong in Table 4.1 because
it does not follow from rules 1-3, However, in the transonic speed range the effect of speed changes

(i.e. Mach number changes) on pitching moment is very important as will be seen later.

The reader should realize that the stability criteria of Table 4.1 are just that, stability criteria.
Whether or not an airplane should always meet these criteria is a matter of flying qualities. Pilots
can cope with certain mild static instabilities. The regulations of References 4.1 — 4.4 take this into
consideration.

4.1.1 STATIC STABILITY CRITERIA FOR VELQOCITY PERTURBATI
FORWARD SPEED STABILITY

From Table 4.1 it is seen that the static stability criterion for forward speed is:

dF, + Fr)
— ()

o Y 41)
In the stability axis system:
Fy + Fp = (- Cp + Cp)gs (4.2)
By application of criterion (4.1) to Eqn (4.2} it is found that:
(Cr,, — Cp) + (Cp, - CDI)U% <0 (4.3)
In the steady state, the following must be satisfied:
CTXI —Cp, =0 (4.9)
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Therefore, static stability criterion (4.1) reduces to:
(CTxu —Cp) <0 (4.5)

Intuitively, the stability criterion as expressed by (4.1) or (4.5) is a very desirable characteris-
tic. It means that an airplane which satisfies these criteria has the inherent tendency to return to its
equilibrium speed when perturbed in either direction. This behavior is considered particularly criti-
cal on final approach to landing.

Figure 4.3 illustrates the fact, well known to pilots, that airplanes tend to be speed—stable at
high speed (point A) but become speed—unstable at low speed (point B). Flying at point B is referred
to as flying on the "backside’ of the thrust-required (or power required) curve. /

(=)
F, +Fp) |BEs + Fr) Increased Thrust
As s A T 5 g (unstable)
du
Drag
A
B A
0 \/\ o
B N &) v Speed, Vp
—_—
v o(Fy, +Fp)
Thrust 6‘— < 0 (stable)
u
(+) Maximum Available Thrust
Figure 4.3 Example of Stable and Unstable Speed Behavior of Airplanes
X,

Consider what happens at point A, when the airplane is perturbed by a positive shear gust,
+u. Atconstant thrust, the drag will increase which tends to drive the airplane back to its equilibrium
speed at point A.

Next, consider what happens at point B, when the airplane is perturbed by a negative shear
gust, —u. Atconstant thrust, the drag will increase which in this case drives the airplane further away
from its equilibrium speed at point B. To recover from such a perturbation a pilot would have to
command added thrust. The success of that command depends on how much extra thrust is still
available AND on how rapidly the propulsive system reacts to a thrust command. In many jet en-
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gines, because of the relatively slow spool-up time, this can create problems.

Note that when flying at point B’ there no longer is added thrust available. If the speed corre-
sponding to point B’ is above the stall speed, the airplane will be driven into the stall. Recovery from
an impending stall is then possible only by pushing the nose of the airplane down (diving). However,
when flying close to the ground this may not be a viable alternative!

For a more detailed discussion of the derivatives Cy, and CTXU , see Sub—sections 3.2.2

and 3.2.16 respectively.

>

SIDE SPEED STABILITY

From Table 4.1 it is seen that the static stability criterion for side speed is;

d(F,, + Fr)

e <0 (4.6)
In the stability axis system:
FAy + Fp = (- Cy +Cy)as (4.7)

By application of criterion (4.1) to Eqn (4.7) while assuming that the side speed perturbation,
v, does not affect dynamic pressure in an appreciable manner, it is found that:

Cy, + Cr, <0 (4.8)

B

In most instances, the approximation CTY& = () is acceptable so that (4.8) reduces to:

Cy, <0 (4.9)

As long as the flow around an airplane is attached, this condition is satisfied by current con-
figurations. To meet the civil and military handling quality requirements in sideslip, condition (4.9)
must be satisfied. It also has two very practical side effects:

1) Whether or not an airplane is flying at or near zero sideslip angle is very difficult to per-
ceive by a pilot. Condition (4.9) increases the “visibility’ of sideslip by forcing airplanes to bank

in steady sideslips. References 4.1 (Subsection 3.6) and 4.2 (Sub—section23.177 and 25.177) specif-
ically require this characteristic.

2) Condition (4.9) allows pilots to perform skidding turns at very low altitude where bank
angle restrictions may have to be observed because of clearance to the terrain. This ability is particu-
larly important when performing so—called side—step maneuvers when misaligned with the runway

on f{inal approach.

For a more detailed discussion of the derivative Cy[j , see Sub—section 3.1.9.
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VYERTICAL SPEED STABILITY

From Table 4.1 1t is seen that the static stability criterion for vertical speed is:

d(F, + Fr)

gw <0 (4.10)
In the stability axis system:
Fa, + Fr, = (= Cp + Cp)gS - (4.11)

By application of criterion (4.1) to Eqn (4.11), while using the approximation: w = oU,
it is found that:

1 _
U_l(_ Cr, +Cr)as <0 (4.12)

The derivative C;_reflects the behavior of the inlet (or propeller) normal force with angle

of attack. These effects were discussed in Sub—section 3.2.17. For many airplanes and flight condi-
tions it is acceptable to assume: C;, <€ Cp  so that condition (4.12) can usually be written as:

C,>0 (4.13)

This condition states that the lift—curve slope of an airplane must be positive for static stabil-
ity against perturbations in vertical velocity. Aslong as the airplane angle of attack is below the stall
angle of attack, condition (4.13) is always satisfied.

A detailed discussion of the derivative Cp_ is provided in Sub—section 3.1.3. Airplane lift-
curve slope, Cr,, , has long been recognized as a very important derivative mostly because of two

effects on airplane behavior in flight:

1) When flying through turbulence, changes in angle of attack are continuously induced on
an airplane. The load factor, n, which an airplane experiences in flight is defined as:

[ (€, + Cpoygs
n =~ —— (4.14)

By differentiating this expression with respect to angle of attack it follows that:

an qCy,

go ~ "¢ T (W/S)

(4.15)

The derivative Do is referred to as the load—factor—due—to—gust—induced-angle—of—attack

effect. If its numerical value is large, an airplane wili give a rough ride through turbulence. If its
numerical value is small, an airplane will ride smoothly through turbulence. Observe that the deriva-
tive Cp_ plays akey role in the gust responsiveness of an airplane. From Figure 2.7 it is known that

wings with high aspect ratio and low sweep angle yield large value of Ci,, . Many low speed air-
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planes combine a high value of CLG with a low value of wing loading, W/S. As Eqn (4.15) shows,
that leads to a rough ride. For more information on the calculation of airplane ride characteristics
the reader should consult Part VII of Reference 3.

2) It will be shown in Chapter 5 that the derivative C L, alsoplaysanimportant role in deter-
mining the damping ratio of the so—called short period oscillation of an airplane. Relatively high
damping ratios in that oscillatory mode is also a flying quality requirement as seen in Ref. 4.1.

It will be shown in Chapter 7, that aeroelastic effects on the derivative Cy_ canbe very large.
In aft swépt wings the effect of aeroelasticity is to reduce Cy while in forward swept wings the
opposite is true.

4.1.2 STATIC STABILITY CRITERIA FOR ANGLE OF ATTACK AND SIDESLIP
ANGLE PERTURBATIONS

ANGLE OF ATTACK STABILITY

According to Table 4.1 the static stability criterion for perturbations in angle of attack is:

a(M, + My)
—A T <0 (4.16)

The physical significance of this stability criterion is that an airplane will *weathercock’ into
the new relative wind as a result of a perturbation in angle of attack. A certain amount of weather-
cocking behavior of airplanes is generally desirable,

In the stability axis system:

My + Mp = (Cy + Cpp )QST (4.17)

By application of criterion (4.16) to Eqn (4.17) it is found that:

Cm, + Cp;, <0 (4.18)

It is shown in Sub—section 3.2.17 that the sign and magnitude of CmTu depends not only on
the magnitude of C;_but also on the moment arm of the engine inlet (or propeller plane) from the
center of gravity. In cases where the derivative Cm,_is negligible compared with Cm, the static
stability condition (4.18) reduces to:

Cp, <0 (4.19)

Inequality (4.19) represents the familiar requirement for static longitudinal stability. From
Eqn (3.39) it is seen that this requirement is satisfied as long as the aerodynamic center is located
behind the center of gravity.

The reader should realize that as the c.g. of an airplane is moved aft toward the 'stability
boundary’ defined by Cm, = 0 nothing disastrous happens. What has been found from flight tests
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and simulator tests is that the precision of control over the airplane and the forgiveness of the airplane
to pilot mistakes in control input steadily decrease as the c.g. moves aft. As a result pilots are re-
quired to ’lead’ the airplane which causes a significant increase in pilot workload until the pilot is
no longer able to control the airplane. Then disastrous things can indeed happen!

Nevertheless, simulator studies have shown that flying slightly unstable airplanes with a very
large pitching moment of inertia is quite possible. This behavior can be connected to the idea of
‘time-to—double—amplitude—in—pitch’. Aslong as the time to double the amplitude in pitch is large,
pilots can control the airplane. Airplanes with a large pitching moment of inertia satisfy this condi-
tion. The Boeing 747 and the Lockheed C-5 are in this category of airplanes.

By incorporating certain automatic feedback control systems in an airplane it is possible to
develop airplanes with inherently unstable Cn, behavior. However, including the effects of the
feedback control system, such airplanes still behave as an inherently stable airplane as far as the pilot
is concerned. This will be referred to as "de—facto’ stability.

In Sections 4.4 and 4.5 as well as in Section 5.2 it will be shown that the derivative Cn, is

directly tied to several very important handling quality parameters.

Mach number and aeroelastic effects on the sign and magnitude of Cn, can be very impor-
tant and must be accounted for in airplanes where this is the case. For additional discussions of Cm,

see Sub-section 3.1.4,

ANGLE OF SIDESLIP STABILITY

From Table 4.1 it follows that the static stability criterion for perturbations in angle of
sideslip 1s:

(N, + Ny
Aa—[sT >0 (4.20)

The physical significance of this stability criterion is that an airplane will *weathercock’ into
the new relative wind as a result of a perturbation in sideslip angle. Because of the difficulties a pilot
has in identifying sideslip, this form of stability is very desirable. It is commonly referred to as direc-
tional stability, although that is a poor choice of words! Directional stability would seem to imply
stability in heading angle, ¥ . However, it was already stipulated that airplanes have neutral stabil-

ity in heading.
In the stability axis system:
N, + Np = (Cy + Cp )gSb (4.21)
By application of criterion (4.20) to Eqn (4.21) it is found that:
Cp, + C“'rﬁ >0 (4.22)

If the thrust contribution to directional stability is negligible ( CnTﬁ <€ Cy, ), then condition
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(4.22) reduces to the following requirement:
Cnﬁ >0 (4.23)

When an airplane is flying in symmetrical, straight and level flight, the steady state yawing
moment coefficient is zero. However, when an airplane is flying at a nonzero sideslip angle, the
steady state yawing moment coefficient is NOT zero: Cn, # 0 . In that case the requirement for

directional stability becomes:
(Coggeo > O (4.24)

This implies that the LOCAL slope of yawing moment coefficient with respect to sideslip
angle must be positive. This is in fact what is required by the military flying quality requirements
of Ref. 4.1. It is noted that the civil flying quality requirements as expressed by Ref. 4.3 in para-
graphs 23.177 and 25.177 also require this BUT in addition, require condition (4.23) to be met.

Note that condition (4.24) applies specifically to cases where the variation of yawing mo-
ment coefficient with sideslip angle is nonlinear. This occurs in many airplane configurations. The
XB-70 was a typical example.

Mach number and acroelastic effects on the sign and magnitude of Cn; can be very impor-

tant and must be accounted for in airplanes where this is the case. For additional discussions of Ch,

see Sub—section 3.1.10.

4.1.3 STATIC STABILITY CRITERIA FOR ANGULAR VELOCITY PERTURBATIONS

Static stability against the following angular velocity perturbations will be considered: roll
rate, p, pitch rate, q, and yaw rate, r.

ROLL RATE STABILITY
From Table 4.1 it follows that the static stability criterion for perturbations in roll rate is:

(L, + L)
—a <
op
The physical meaning of this criterion is that as a result of a change in roll rate, p, a rolling
moment must be generated which tends to oppose the increase in rolling velocity. In the stability
axis system:

L, + Ly = (C, + C,)gsh (4.26)

0 (4.25)

Neglecting the thrust term in Eqn (4.26) it follows that Criterion (4.25) implies that:
Clp <0 (4.27)
The derivative Clp is recognized as the roll damping derivative. For a rigid airplane in at-

tached flow conditions, this criterion is always satisfied. Mach number, aspect ratio, sweep angle
and aeroelastic effects all affect the roll damping derivative. For a discussion of which factors affect
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the magnitude of Clp , the reader is referred to Section 3.2.11.

Roli damping is an important handling quality parameter. Even though the magnitude
of Clp is not specified in any handling quality requirements, it will be seen in Chapter 5 that it plays

asignificant role in affecting the roll performance and sometimes even the Dutch roll characteristics
of an airplane.

PITCH RATE STABILITY

From Table 4.1 it follows that the static stability criterion for perturbations in pitch rate is:

(M, + My)
—S— <0 (4.28)

The physical meaning of this criterion is that as a result of achange in pitch rate, q, a pitching
moment must be generated which tends to oppose the increase in pitching velocity. In the stability
axis system:

M, + My = (Cy + C )GSC (4.29)
Neglecting the effect of thrust, criterion (4.28) implies that:

Cm, <0 (4.30)
The derivative Crm, is the pitch damping derivative which is discussed in Section 3.2.5. It

has a major effect on the short period damping ratio of airplanes as will be seen in Chapter 5.
Aeroelasticity and Mach number both affect this derivative. As long as the flow over the
airplane is attached this derivative is always negative so that criterion (4.28) is normally satisfied.

YAW RATE STABILITY

From Table 4.1 it follows that the static stability criterion for perturbations in yaw rate is:

(N, + Np)
— <0 (4.31)

The physical meaning of this criterion is that as a result of a change in yaw rate, r, a yawing
moment must be generated which tends to oppose the increase in yawing velocity. In stability axes:

N + Np = (Cq + Cp)gSh Y (4.32)
Neglecting the effect of thrust, criterion (4.29) implies that:

Cyp <0 (4.33)
The derivative Cp, is the yaw damping derivative which is discussed in Section 3.2.5. This

derivative has a very significant effect on the Dutch roll damping ratio of airplanes as will become
clear in Chapter 5. Aeroelasticity and Mach number both affect this derivative. Aslong as the flow
over the airplane is attached this derivative is always negative so that criterion (4.28) is normally
satisfied.
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4.1.4 DISCUSSION OF PITCHING MOMENT DUE TO SPEED AND ROLLING
MOMENT DUE TO SIDESLIP STABILITY

Under the adopted definition of static stability at the beginning of this chapter, the effect of
speed on pitching moment and the effect of sideslip on rolling moment do not qualify as static stabil-
ity effects. Nevertheless, experience shows that both are very important from a handling qualities
viewpoint. For that reason they will be discussed.

EFFECT OF FORWARD SPEED ON PITCHING MOMENT

According to Table 5.1 the desired behavior of an airplane when perturbed in forward speed,
u, 1s that:

d(M, + Mp) -
ou

The implication of this requirement is that when an airplane experiences an increase in speed,
u, relative toits steady state speed, U, , it should react with a positive increase (i.e. nose up) in pitch-

0 (4.34)

ing moment. Obviously, the latter would tend to slow the airplane down again, making it statically
stable. In the stability axis system:

Application of the stability criterion (4.34) now yields:
(Cm, + Cm;) + (Cm, + CmTl)--é—1 >0 (4.36)

Since in steady state flight (Cp,, + CmTl = () 1t follows that:

(Cm, + Cm,) > 0 (4.37)
In many airplanes the thrust contribution can be neglected so that:
Cm, >0 (4.38)

The derivative Cr, is the so—called tuck derivative discussed in Section 3.2.2. It tends to

have the value of zero in the low subsonic speed regime. However, as the subsonic Mach number
increases and the airplane center of pressure shifts aft, this derivative has a tendency to take on the
'wrong’ sign, giving some airplanes a Mach--tuck problem.

An unstable sign of Cm, can be acceptable if the airplane also has a steep drag—rise which

would tend to prevent large forward speed disturbances from developing. It turns out that the magni-
tude of an unstable Cn, depends strongly on airfoil and planform design parameters. Most of the

current generation of transports tend to have rather mild forms of tuck whereas the earlier genera-
tions of jet transports had fairly severe tuck.
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EFFECT OF SIDESLIP ON ROLLING MOMENT

According to Table 5.1 the desired behavior of an airplane when perturbed by a small sideslip
angle, f3 is:

d(Ly, + Lo

Tattr <o (4.39)

The physical significance is, that for a positive sideslip (nose left of the oncoming airspeed
vector), the airplane tends to roll away from the disturbance, i.e. roll to the left. By checking with
Figure 4.4 it is seen that in the extreme case, the sideslip angle disappears and becomes an angle of
attack: the effective sideslip angle is diminished by a roll to the left. For this reason, an airplane

which satisfies stability criterion (4.39) is referred to as having lateral stability. In the stability axis
system:

Ly + Ly =(C + CgsSh (4.40)
Neglecting the effect of thrust, application of criterion (4.39) results in:

Cl|3 <0 (4.41)
The derivative Clﬁ is also known as the airplane dihedral effect. It must be negative for air-

planes to meet the lateral stability requirements of References 4.1 4.4, However, as will be shown
in Chapter 5, if C]ﬂ takes on too large a negative magnritude it can result in lowering the damping

ratio of the Dutch roll mode. Which aspects of airplane configuration design affect the sign and mag-
nitude of Clﬁ is discussed in Section 3.2.9.

Figure 4.4 Example of Diminishing Sideslip Angle When Rolling About
the X— Stability Axis
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4.2 STABILITY AND CONTROL CHARACTERISTICS FOR STEADY
STATE, STRAIGHT LINE FLIGHT

To keep an airplane in a given steady state flight condition and to allow it to be maneuvered
from one flight condition to another, including the effect of certain configuration changes, it 1s neces-
sary that the following conditions be satisfied:

1. The airplane must have adequate control power

2. No extraordinary pilot effort must be required

t

The objective of this section is to analyze these conditions in sufficient detail so that the de-
signer can decide whether or not a given airplane design meets the pertinent civil and military han-
dling quality requirements. To carry out such an analysis the appropriate equations of motion must
be invoked. From Chapter 1, the steady state, straight line equations of motion (1.58) and (1.59)
and from Chapter 3 the corresponding aerodynamic and thrust force and moment equations (3.46)
and (3.95) are combined to give the following set of six equations:

mgsiny; = — (Cp + Cp oy + CDihihl + CDBEE)CI)QS + T, cos(Ppt + o) (4.42a)
— mgsing, cosy; = (Cy By + Cy, 8a, + Cy,8,)q;S + FyT] (4.42b)

mgcos Py cosy; = (Cp, + Cr oy + CLihihj + CLacﬁel)qIS + T, sin($pr + ;) (4.42c)

0= (C15|31 + Ciéﬂaa1 + Clﬁrarl)q]Sb + L, (4.42d)
0 = (Cm, + Cm,@ + Cry, iy + Cm, 8¢,)7,5C — Tydp (4.42¢)
0 = (Cy By + Cn, s, + Cn,y0r)q;Sb + Ny, (4.42f)

These equations are written in the stability axis system. Therefore, the steady state pitch atti-
tude angle, 0, , is set equal to the steady state flight path angle, ¥y . Assuming that the dynamic

pressure, (g , is known, these six equations have the following nine unknowns:
Y]a qJIs a]s Bl! 6319 ihla 6313 61'|5 and T]
Since there are only six equations, three of these variables will have to be specified before

the others can be solved for. In most applications, this is done by specifying the steady state bank
angle, ¢, , the steady state thrust, T , and the steady state stabilizer incidence angle, ih] .

It will be shown later, that in many situations the pilot will set the value of 1, suchastodrive
the cockpit control force (which is required to hold the elevator, 8¢ , at a deflection which guaran-

tees pitching moment equilibrium) to zero. Having selected any three of the nine variables, the equa-
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tions (4.42) can now be used to solve for the other six. This is typically done by using an iterative
matrix method. Such a method is used in Section 4.7 to solve the airplane force and moment equa-
tions adjoined by the stick force equation.

The reader will observe that by selecting the bank angle (which appears only in Eqns (4.42b)
and (4.42c) the six equations conveniently split into two independent sets:

1) The longitudinal equations: (4.42a), (4.42¢) and (4.42¢)
and:

2) The lateral-directional equations: (4.42b), (4.42d) and (4.42f)

Solutions to the longitudinal equations are discussed in Sub-sections 4.2.1 through 4.2.5 and
solutions to the lateral-directional equations are discussed in Sub-section 4.2.6.

4.2.1 LONGITUDINAL STABILITY AND CONTROL CHARACTERISTICS FOR
STEADY STATE, STRAIGHT LINE FLIGHT

Separating the longitudinal equations from Eqns (4.42) and assuming wings-level flight
yields:

mgsiny; = — (Cp + CDU[oz1 + CDihih] + CDa‘ée])qls + T, cos(¢pr + ;) (4.43a)
mgeosy; = (Cp, + Cpay + Cp iy + Cp e )q;S + Tysin(@r + ay) (4.43b)
0 = (Cm” -+ Cmual + Cmihihl + Cmacael)qISE - TIdT (4'43(:)

Observe that Eqns (4.43) pre-suppose that the bank angle, ¢, = 0. Assuming that T,
and iy, are pre-selected, the variables o, , v; and &, can be solved for using iterative matrix
techniques. Iterative techniques are required because of the non-linear nature of Eqns (4.43).

With the iterative solutions available, the engineer can form a judgment about the 'sanity’
of these solutions. For example, if one of the solutions is 45 degrees for the elevator deflection, there

is clearly a problem: tails with elevator deflections much beyond 25-30 degrees would stall. Al-
though a solution may be mathematically acceptable, it may not pass such a "sanity’ chegk.

What these iterative solutions do not allow the engineer to do is to obtain immediate insight
into what the "design drivers’ are which make the numerical solutions small or large, negative or

positive. Such insight can be obtained by introducing three assumptions:

a) assume that there is always sufficient thrust to balance the drag equation (4.43a),
making it superfluous

b) assume that the thrust-line passes through the center of gravity: d = 0 .
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¢) assume that the term T, sin(¢p + a;) is negligible in the lift equation (4.43b)

With these assumptions, Eqns (4.43) simplify to the following form which is also the form
applicable to power-off flight:

mgeosy, = (Cp, + Cpa; + CLihihl + CLacf)el)fIlS (4.44a)

O = (Cm[} + Cmu()'.l + Cmihihl + Cmacael)qlsa (4.44b)

When an airplane satisfies the pitching moment equation (4.44b) it is said to be in moment
equilibrium or in moment trim. It is useful to write Eqns (4.44) in a matrix format:

CLR Cr,, o, Cp, —C - CLihihl
- _ (4.45)
Cmu Cmac 631 - Cn’lo - Cmihlh]
mg . _ . : ..
where: CL] = Q—S’ if, cosy; = 1.0., which is the airplane steady state lift coefficient.
1
Solutions to matrix Eqn (4.45) are the following:
(CL, — €L, — Cp iy )Cm, + (Cim, + Cp, iy, )Cp
@ = — — (4.46)
' (CLucmﬁc - Cm"-CLﬁ.) .
6 i CLll(Cmn + Cmihihl) - Cm(z(CLl - CL(I - CLi;\ihl)
e = (C. Cay, — Co Cr) (4.47)
A very useful way of writing these solutions is the following:
. aa C
90,
B, = Beq, .+ 5 C1, (4.49)

‘The constant terms in Eqns (4.48) and (4.49) have the following physical significance:

Oc, =¢ is the angle of attack at which the airplane is trimmed with CLt =0
-1

6ecL _. is the elevator angle for which the airplane is trimmed with C; = 0
1

oo
Fren is the rate of change of trim angle of attack with lift coefficient
L .
ad
3 Ce is the rate of change of elevator trim angle with lift coefficient
.
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From Eqns (4.46) and (4.47) it can be deduced that:

ac o= 0 iy e h ol de (4 50)
Ly (CLquﬁe - Cm“‘CLﬁe) .

—_ CLQ(le) + Cmihih]) — Cmﬂ(_ CL” — CLihihl)

66(;[‘]:() = (CLquSE _ Cm“CLae) (4.51)
C

aa _ Ma

dCp. (CLquae - CquLac) (4.52)

0. = Cn,

0C,  (CLCum, — Cm,CL,) (4.53)

Figure 4.5 shows a graphical solution of Eqn (4.45) for the case of an airplane where the ele-
vator throw has been limited to arange of +10 deg to —20 deg. Note from the upper part of this figure
that trim (i.e. Cm = 0 ) occurs only for points A, B, C and D. Transferring points A,B,C and D
to the lower part of this figure (also labeled points A, B, C and D) results in the so-called *trimmed
lift coefficient versus angle of attack line’. The slope of this line corresponds to the inverse slope
of Eqn (4.52). The intercept with C;, = 0 in turn corresponds to Eqn (4.50).

Observe the insert plot in the lower part of Figure 4.5: the slope of that line corresponds to
Eqn (4.53) and the intercept of that line with C;, = 0 corresponds to Eqn (4.51).

Observe that at Point D in Figure 4.5 the lift coefficient is 1.0. Therefore, in this case, 1.0
is the maximum trimmable lift coefficient! The airplane can not be trimmed at a speed below that
corresponding to this lift coefficient value!

Observe that at Point A in Figure 4.5 the lift coefficient is 0.57. Therefore, in this case, 0.57
is the minimum trimmable lift coefficient! The airplane can not be trimmed at a speed above that
corresponding to this lift coefficient value! "

Two factors are primarily responsible for these findings:

first, the imposed elevator deflection range of +10 deg to —20 deg

and
second, the magnitude of control power which is proportional to the vertical
distances between the constant elevator lines in the upper part of Figure 4.5.

During the preliminary design of an airplane, both factors are under the control of the design-
er and must be selected in such a way that trim is not a limiting factor anywhere in the intended flight
envelope of the airplane!
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The elevator—versus-lift-coefficient gradient of Eqn (4.53) can be determined in flight test
as a function of center of gravity location. By plotting such data as shown in Figure 4.6 it is possible
by extrapolation to determine the location of airplane aerodynamic center. This point is also referred
to as the "neutral-point—stick—fixed’, or NP, .

An important interpretation of the derivative of elevator deflection with respect to lift coeffi-
D : mg
cient is given next. Since Cp = 3.8 1t 1s seen that:
I

9Cy, 4W
N T o (4.54)

This result is also referred to as the elevator—versus—speed—gradient. As long as compress-
ibility is not a factor, the elevator-versus—speed—gradient can also be expressed as:

aae . 4W Cmu
aUl (QSU?) (CLucmée B Cm(:CLac) (455)

From a point of view of flying qualities it is essential that the elevator—speed gradient of an
airplane be positive:

00,
U,

That means that to increase speed a push is required on the cockpit controls, leading to the
elevator moving trailing edge down. Remember that this was defined as a positive elevator deflec-
tion! To see whether or not condition (4.56) is satisfied, examine the sign of the various derivative
terms in Eqn (4.55). The reader is asked to do this and to show that for many current airplanes the
condition: ICp Cp, | > ICy, C|, . i satisfied. Since the derivative C,_ is generally positive be-

>0 (4.56)

low stall and since the control power derivative Cm +, 18 generally negative, it follows that condition
(4.56) is satisfied when:
Cnp, <0 (4.57)

For inherently stable airplane this condition is satisfied as long as the c.g. is ahead of the a.c.
as will be clear by examining Eqn (3.39) in Section 3.1.4.

Notice that when the c.g. is behind the a.c., condition (4.56) is violated. This cait be very
confusing to a pilot and in some cases can lead to a crash. As a general rule, pilots cannot detect
when the c.g. is behind the a.c. However, they most certainly can detect when the elevator—-speed
gradient reverses sign and condition (4.56) is no longer satisfied.

Figure 4.7 shows an example of flight test data of elevator—versus—speed for the F-27 twin—
turboprop transport. Note that as the c.g. moves aft, the elevator-speed gradient decreases.

A problem with Eqn (4.55) is that it is valid only as long as compressibility effects are negli-

gible. When that is not the case any differentiation with respect to speed becomes more complicated
as the following example illustrates.
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Figure 4.8 Degradation of Control Power due to Aeroelasticity
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Consider Eqn (4.44b) and assume that the stabilizer incidence angle, 1y = 0 and that the

trimmed angle of attack, ¢ , is known. The elevator required to trim can now be written as:
_ (Cmn + Cmuatrim)

trim - Cma
|

=}

(4.58)

Partial differentiation with respect to speed while allowing for Mach number variations now
produces the following result:

868|rirn — laacmm
aVp @ aM
9C,, 9C,, O0 i
1M t M %eim + Cm, M) 1(Cm, + Crm Oyrim) 9Cm,,
-~ + = (4.59)
4 Cun,, T (Cp,)? M

Clearly, the sign of the elevator—speed—gradient no longer depends only on the c.g. location
but also on how strongly the various Mach number dependent terms change with Mach number. It
can be shown that another way of writing the tuck derivative, Cn, , (see Eqn (3.125) is:

) aC @
Cm, = g + = i) (4.60)

It is seen in Eqn (4.59) that a positive sign of Cp, will increase the elevator—speed gradi-
ent 3¢/dVp in the stable sense. However, if C, < 0 and if its magnitude is sufficiently large,
it is possible for the sign of 33./dV} toreverse. Thatis perceived by the pilot as "tuck—under’ and,

if severe, it can cause a significant speed upset. By careful airfoil design the effect can be delayed
to higher Mach numbers. In many older designs the tuck effect is masked from the pilot by the ap-
plication of a Mach~trim system. Such a system will be discussed in Chapter 11.

Finally, aeroelastic effects (primarily aft fuselage bending) can cause the control power de-
rivative C,  to decrease with speed at constant altitude. Figure 4.8 shows such a trend. Methods

for predicting aeroelastic effects on stability and control derivatives are presented in Chapter 7.
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4.2.2 THE AIRPLANE TRIM DIAGRAM
The graphical solution of Eqns (4.44) as depicted in Figure 4.5 changes with a shift in the
location of the center of gravity, X¢; . The Cry — versus — « lines on the top graph of Figure 4.5

could, of course, be re—drawn for each new c.g. location. To avoid such a cumbersome process, the
following (slightly different) form for Eqns (4.44) will be adopted:

CL = CL‘O + CLuCl + CLi ih + CLacae (4.613)
= dC
0'.:: Cm“ dcm CL + Cm lh + Cmaa (4.61b)

In this format it has also been assumed that the flight path angle, vy , is very small. Also, the

subscript 1 has been dropped even though the solutions are still meant to correspond to a steady state.

The derivative dC,/dC; is obtained by dividing Cp,, by Cr, . An airplane is said to
have a positive static margin, SM, if the derivative dCp,/dCp < 0 . Asaconsequence, by invoking
Eqgn (3.39):

_dCn _ _ Cme

]

ac, c_

o

SM = — (Reg — Xae) = (Xac — Keg) (4.62)

The static margin therefore is the non—dimensional distance (in fractions of the m.g.c) of the
a.c. behind the c.g.

The barred quantities in Eqn (4.61b) have the following meanings:

Cmy = Cimg, .y _gyeny  (Remember: Coy = Crn,_ ) (4.63a)
— aC
Cm,h (= Bl m)(constant C, and constant J,) (4.63b)
= aC
Cm.tse ( aﬁm)(constant C,, and constant i) (4'63C)

The reader is asked to verify that Cp, ., Cm, and Cmih are related to Cp,, , ﬁmae and

6mih in the following manner:
C

Cm, = Cm, — —é”LﬁcLﬂ (4.64a)
_ Cm

Can, = Cm, ~ IZ“CLih (4.64b)
Crmy, = Crmy, — cL =Cy, (4.64c)

Chapter 4 205



Stability and Control During Steady State Flight

The barred quantities (defined at constant lift coefficient) are equal to the unbarred quantities
(defined at constant angle of attack) for airplanes where: Cp, = CL, = CL = 0 is satisfied.
13 Th

Figure 4.9 presents a graphical solution of Eqns (4.61). Observe that the moment reference
point for the pitching moment coefficient is arbitrarily selected to be at the 0.25 mgc point. In the
form of Figure 4.9 the graph is referred to as an airplane trim diagram. Itis useful in determining:

1) whether or not an airplane can be trimmed at any center of gravity location with
reasonable control surface deflections '

2) whether or not tail stall is a limiting factor in trim
These features will now be illustrated with three examples.
Example 1: Trim at any c.g. location

Assume that the following question is asked: What is the range of trimmable lift coefficients
with the center of gravity moved forward to the 0.15 mgc point?

To answer this question, consider the fact that if the airplane is flying at a lift coefficient of
1.0 with the c.g. shifted over (0.25 — 0.15)c = 0.10¢ , an incremental pitching moment coeffi-
cient 1s introduced which is equal to —(1.0x0. 10) =—0.10. This must be ’trimmed’ (cancelled) with
an incremental pitching moment coefficient equal to +0.10.

Therefore, the new Cr, = 0 line with the ¢.g. at the 0.15 m.g.c point is the line so labeled
in Figure 4.10. Points A, B’, C’, D’ are used to find the values of trimmed lift coefficients for this
c.g. location.

The reader is asked to show that if the c.g. is moved aft to the 0.30 mgc point, a similar line
of reasoning can be used to find the C, = 0 line with the c. g. at the 0.30 mgc point. Points A, B”,
C”,D” (only A, B” and C” are shown) are now used to find the corresponding values of trimmed
lift coefficients for this c.g. location.

Example 2: The trim triangle

Consider Figures 4.11a and 4.11b.

In Figure 4.11a it is assumed that the stabilizer incidence angle, iy, is the primary control
surface. Lines for C, = 0 at forward and at aft center of gravity locations have been drawn in {us-

ing the procedure illustrated in Example 1. The trim triangle is defined as the triangular area (shaded
grey in Figure 4.11a) bounded by the forward and aft c. g. lines and by the maximum airplane angle
of attack line. An airplane must be trimmable inside this triangle with reasonable stabilizer inci-
dence values. That appears to be the case in Figure 4.11a.
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In Figure 4.11b it is assumed that the elevator with deflection angle, Oe , is the primary con-

trol surface. Again, lines for forward and aft center of gravity have been drawn in and again, the
trim triangle has been identified by grey shading. An airplane must be trimmable inside this triangle
with reasonable elevator deflections. That appears to be the case in Figure 4.11b.

One vital aspect of whether or not a control deflection is judged to be "reasonable’ is whether
or not the tail is stalled. How to determine the latter is discussed in Example 3.

Example 3: Tail stall as a limiting factor

Assume that the following question is asked: What is the locus of points in the trim diagram
along which the horizontal tail is stalled? To answer this question, consider the following equation
for the horizontal tail angle of attack:

This equation is obtained from Eqn (3.20) after combining with Eqn (3.21).
For any given horizontal tail planform, knowing the type of airfoil used, it is possible to pre-
dict that value for ay, for which the tail is stalled: ay - Itisalso possible to predict the numerical

values for de/dot and €, . All this can be done with the methods of Part VI of Reference 4.1.

Next, define the tail-stall-locus as that combination of values of airplane angle of attack, o,
and stabilizer incidence angle, i, , along which the tail is always stalled. The tail-stall-locus is

therefore given by:

d )
a, =al - é) + i, — g (4.66)

stall

This equation represents a straight line in the trim diagram. This line can be constructed by
selecting two arbitrary values for airplane angle of attack, o , and computing the corresponding val-

ue of i, . As an example, consider a case for which:

ap =+ 12deg , de/da = 035 and €, = Odeg, ©

stall
Substitution into Eqn (4.66) yields:

+ 12 = 0.650 + i,

The two corresponding tail stall loci are sketched in Figure 4.11a for this specific case. The
reason there are two such lines is, that tails can stall in the positive (tail lift up!) as well as in the
negative (tail lift down!) direction, depending on the tail trim load required,
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Next, assume that the stabilizer angle is fixed at an angle iy, , and that longitudinal control

is accomplished with an elevator. Since the elevator can be thought of as a plain flap attached to
the stabilizer, it may be assumed that to a first order of approximation, the tail stall angle is indepen-
dent of the elevator deflection. This assumption is acceptable up to about 25 degrees of elevator
deflection. In that case, Eqn (4.66) may be solved for the airplane angle of attack for which the tail
is always stalled: ;. o.; - That angle of attack is given by

(o, — iy + €g)

s1all

— de
=59

Qiail — stall =

(4.67)

%

As an example, consider the case where:

ap =+ 12deg , de/do = 035, i, = — d4deg and €, = Odeg

stall

The corresponding values for airplane angle of attack for which the tail is stalled are given
by: Opil—gan = — 12deg and g = 25 degespectively. Figure 4.11b shows only the neg-

ative tail stall locus because the positive locus is outside the diagram. Observe that the tail-stall loci
in this case are merely constant airplane angle of attack lines. The location of these lines depends
strongly on the fixed stabilizer incidence angle as seen from Eqn (4.67).

The triangular shapes shown in Figure 4.11 were referred to as trim triangles. Their bound-
aries were formed by three lines:

1) locus of zero pitching moment coefficient at forward c.g. (left boundary)
2) locus of zero pitching moment coefficient at aft c.g. (right boundary)

3) maximum allowable airplanc angle of attack locus ( & = 10deg)

The maximum airplane angle of attack locus is formed EITHER by the airplane stall angle
of attack locus OR by that angle of attack locus along which the airplane pitching moment becomes
unmanageable. The meaning of this will be discussed in Sub-section 4.2.3.

As indicated under Example 3, tail stall should not occur within the so-called trim triangle.
This trim-triangle is identified in Figure 4.11 by the filled~in area. If tail stall is predicted to occur
within the trim-triangle a design *fix’ is required. Three examples of potential design fixes’ which
move the location of tail-stall loci are:

a) Use of a negatively cambered airfoil in the tail.

This has the effect of increasing the negative magnitude of ay - Wwhile decreasing
the positive magnitude of a, . - Many current jet transports employ negatively

cambered tails for this reason.
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b) Use of a fixed slot in the leading edge of the tail.

This has the effect of increasing the negative magnitude of ., While decreasing
the positive magnitude of o, .+ The Cessna Cardinal is an example of an airplane

utilizing this type of "fix’.
c} Use of leading edge blowing.

This has the effect of increasing the negative magnitude of Qy , While decreasing

the positive magnitude of o, . This type of ’fix” was used on several early F—4 fighters.
p hsm]l y g

The trim diagrams discussed so—far suggest that the relationship between lift—coefficient,
pitching-moment—coefficient and angle—of-attack is a linear one. This does not correspond to real-
ity in most cases. The effect of nonlinear relations is briefly discussed in Sub—section 4.2.3.

Alltrim diagram examples discussed in this section, apply only to airplanes with convention-
al (i.e. tail-aft) configurations. Examples of trim diagrams for non—conventional airplanes are
shown on page 354 of Part VI of Reference 4.5. Mathods for constructing such trim diagrams are
also contained in Part VI of Reference 4.5. Several important aspects of trim associated with pure—
canard and with three—surface airplanes are discussed in Section 4.4.

4.2.3 STABLE AND UNSTABLE PITCH BREAKS

When flow separation starts to occur (usually first on the top surface of the inboard wing)
the assumed linear relations between lift-coefficient, pitching—moment—coefficient and angle—of—
attack no longer apply. Figure 4.12 shows an example of typical non—linear effects.

Note that when the pitching moment lines break to the right (i.e airplane nose down), this
is called a ’stable pitch break’. Conversely, when the pitching moment lines break to the left (i.e
airplane nose up), this is called an "unstable pitch break’. The maximum aliowable angle—-of—attack
of an airplane with an unstable pitch break can be significantly less than that of an airplane with a
stable pitch break. The difference in omax depends on pitch controllability in that region.

The reader should be aware of the fact that lower Oy values also imply higher geference

speeds and therefore longer field—lengths. That is because performance reference speeds are all
based on the higher of the stall speed or that minimum speed below which the airplane becomes un-
controllable.

Whether or not an airplane has a stable or an unstable pitch break and whether or not the air-
plane remains controilable in case of an unstable pitch break is strongly dependent on the details of
the configuration design of the airplane. Part III of Reference 4.5 (pages 263-270) contains more
detailed discussions of these effects.
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4.24 USE OF WINDTUNNEL DATA IN DETERMINING de/da

Many expressions dealing with airplane lift, pitching moment and longitudinal stability con-
tain the down—wash angle, £, and /or the rate of change of down-wash with angle of at-

tack, de/da . The reader will recall from Sub—section 2.5.5 that these quantities can vary signifi-

cantly over the span of the horizontal tail. Nevertheless, in all formulas where these quantities occur
in this text, they are assumed to be constant over the span of the tail. It is possible to think of these
as averages which, when treated as constants, represent the real physical effect of € and de/da for

a particular airplane. These average values of the downwash angle, € and the downwash gradi-

ent, de/da , can be determined from a wind-tunnel test.

Assume that the wind—tunnel model has a detachable wing as well as a variable incidence
stabilizer, the lift and pitching moment characteristics can be measured and plotted for two configu-
rations: WF (Wing+Fuselage) and WFH (Wing+Fuselage+Hor.Tail) respectively. For the WFH
configuration the tunnel tests are run with the stabilizer set at different incidence angles. Figure 4.13
shows an example of typical WF and WFH data.

Consider what happens at the intersection of the WF and WFH lines: the horizontal tail lift
must be equal to zero! For a tail with symmetrical airfoils, this means that the tail angle of attack
is zero: oy, = 0 . Therefore, at the points labelled A, B, C and D it follows that:

€= o+ i, (4.68)

By substituting the angle of attack and stabilizer incidence values corresponding to points
A,B,C and D into Eqn (4.68) it is possible to find the horizontal tail down-wash angle. The insert
plot in Figure 4.13 shows the corresponding magnitudes of &, and de/da .

4.2.5 EFFECT OF THRUST ON THE TRIM DIAGRAM

The reader will recall that Eqns (4.44) which form the basis of the trim diagram discussions
in Sub—section 4.2.2 were derived from Eqns (4.43) by dropping the thrust terms. At this point, the
effect of these thrust terms will be re—introduced into Eqns (4.61). The result is as follows:

CL=g5 = €+ CLo+ Gy + Cp o) + 3.5 (4.69a)
= o o = o Ty

The effect of the thrust term in the lift equation is negligible for most conventional airplanes.
The reader can convince himself of that fact by considering a typical cruise condition. Since T=D
and L=W is approximately satisfied, the thrust—term in Eqn (4.69a) can be approximated by:
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T sm(pr + a) _ 1
q]S L/D

sin(pp + a,) (4.70)

Assuming a typical cruise lift-to—drag ratio of 15 and a value of nine degrees for the sum
of thrust inclination angle and angle of attack, the thrust term can be thought of as a "change’ in lift
coefficient of 0.01. Compared to typical cruise lift coefficient ranges of 0.3 — 0.5, this is quite small!

If an airplane is cruising at a lift coefficient of 0.5 and a lift—to—drag ratio of 15, while the
ratio of thrust moment arm to m.g.c. is assumed to be 0.3, the change in pitching moment coefficient
due to the thrust moment effect is 0.01. In many instances this small change in pitching moment
coefficient can also be neglected.

Figure 4.14 shows an example of two trim diagrams: one with dp = O (thrust-line passes
through the c¢.g.), the other with dp = 3 ft (thrust-line above the c.g.). Because, with the thrust-

line above the c.g., a nose-down moment is generated, more negative stabilizer defiection is re-
quired to trim. The nonlinear character of the constant—stabilizer-angle lines in Figure 4.14b are
caused by the fact that thrust is not a constant in this figure. At each lift coefficient, the thrust is
assumed to be adjusted to satisfy T=D. Both trim diagrams of Figure 4.14 were generated with the
AAA program described in Appendix A..

4.2.6 LATERAI-DIRECTIONAL STABILITY AND CONTROIL CHARACTERISTICS
FOR STEADY STATE, STRAIGHT LINE FLIGHT

On page 198 it was seen that by assuming flight at a given bank angle, the steady state,
straight line equations of motion split into two mathematically independent sets of equattons. At
this point, the lateral directional equations of motion, Eqns (4.42b), (4.42d) and (4.42f) are recalled
and re-numbered:

— mgsing; cosy; = (Cy By + Cy, 3, + Cy, 0r)q,8 + Fy. (4.71a)
0= (C1ﬁ[31 + C]%‘Sa1 + Clarar.)qﬁb + Ly, (4.71b)
0= (Cnﬁ[j] + Cnaf’a. + Cnarérl)q]Sb + Np, (4.71c)

Equations (4.71) apply to flight situations with symmetrical as well as asymmetrical thrust
(or power). For flight situations with symmetrical thrust, the thrust terms in Eqgns (4.71) may be
omitted. The reader should be aware of the fact, that for flight situations with one engine inoperative,
a drag increase on the inoperative engine side usually results in an added yawing moment, ANp, .

This additional yawing moment is physically caused by the drag due to a stopped or wind—
milling propeller, a wind-milling jet engine and/or inlet spillage drag due to an expelled shock in
the case of a supersonic airplane. The additional yawing moment due to drag cvidently depends on
the type of propulsive installation used. It is usually acceptable to write:

where: Fqp is a factor, larger than 1.0, which may be determined from Table 4.2.
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Table 4.2 Effect of the Propulsive Installation on Fgop; Eqn (4.72)

Type of Fixed Pitch | Variable Pitch Low BPR High BPR
Powerplant
Fopr 1.25 1.10 1.15 1.25

Fora given thrust level, T, and for a given flight path angle, v, (both as used in the longitudi-
nal equations) the following variables remain in Eqns (4.71):

¢, B, 8, and &,

Since there are four variables and only three equations, one needs to be specified. This is
normally done by selecting one the following possibilities:

select: ¢ and solve for B, &, and O,

or select: B and solve for ¢ , &, and &,
or select: &, and solve for ¢ , P and &,
or select : &, and solve for ¢ , B and &,

In the following discussion the assumption is made that the bank angle, ¢ , will be selected.
This case is important because it is specifically required in the regulations that an airplane be control-
lable in a straight line flight with one engine inoperative (OEI) and a bank angle not to exceed five

degrees (into the operating engine) for speeds above 1.2 V.

It is customary to write Eqns (4.71) in matrix format: as shown in Egn (4.73) and to cast its
solutions in the form of ratios of determinants. This is done in Table 4.3.

Numerical solutions obtained from Eqns (4.74) through (4.76) are considered acceptable as
long as they are consistent with conditions of attached flow. For example, if a solution for aileron
and/or rudder deflection is 25 degrees or more, that would probably not be consistent with conditions

for attached flow on the wing or on the vertical tail. e
[ (mgsindcosy + FyTl)ﬁ
Cy, Gy, Col( B] qS
¢, ¢, o flsl - _ > (4.73)
fi &y By a qlsb .

Cn C, C o
L nﬁ nb" nhr_ \ rJ s NT] it AND]

q;Sb
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Chapter 4

Table 4.3 Solutions for the Steady State Lateral-Directional Equations of Motion
—(mgsin¢cosy + FYTI) CYaa CYa,
q,S
— G, C,
qlsb a r
—N, —AN
_qllTnl Cnﬁa Cnlbr
B; = (4.74)
A
Cyﬁ ~(mgsin¢dcosy + FyTl) Cy,
q,8 r
Cl B LTI Cl
i q,Sb N
Cn - NTI - AND Cnﬁ
p q]Sb r
O, = (4.75)
A
¢y, Gy, (mgsinpcosy + F’Tl)
] qS
C C __LT.I.
’ ba q.Sb
Cn Cn - NE - ANDI
f 8 q,Sb
&, = (4.76)
A
where: A = Clr3 Cléa Cla, (4.77)
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Another consideration in any existing airplane is the fact that all control surfaces have lim-
ited deflection ranges imposed by "hard’ mechanical stops.

A problem with the solutions given in Table 4.3 is that they are not very transparent in identi-
fying “design drivers’. To determine which aspects of a design are driven by OFEI considerations,
it is instructive to examine simplified forms of Eqn (4.73).

As a first example, consider the moment equilibrium about the Z-axis only, as represented
by Eqn (4.71c), but rewritten as follows:

Ny, + ANp
CnﬂB + Cnarér + —ql—s-b—-— =0 (478)

This equation can be solved for the amount of rudder deflection required to cope with a one-
engine-inoperative (OEI) flight condition:
N +AN,
i S
5, = c (4.79)

&

Figure 4.15 shows an unscaled plot of how the rudder deflection varies with speed and with
sideslip. Particularly at low speed, it is desirable to fly as close to zero sideslip angle as possible
because otherwise the drag of the airplane could compromise the ability to climb out on the remain-
ing engine(s). Assuming the sideslip angle to be negligible:

5 NT1 + AND1
= - |—) 4.80
r CnﬁrqISb ( )

It is seen from Eqgn (4.80) that as the speed of the airplane decreases, the amount of rudder
deflection required to control the OEI flight situation becomes very large. Conventional rudders
should not be deflected more than about 25 degrees or the vertical tail may stall. If the maximum
rudder deflection available is designated to be 8, , the minimum speed at which the OFEI condi-

tion can be controlled is:

2(Nr, + ANp )

Vo = ‘o (4.81
me PCh, 8, Sb v (481)

rmax

The regulations of References 4.1 through 4.4 require that this minimum control speed be
related to the stall speed of the airplane (in the applicable configuration) as follows:

Vme < 1.2V5, (FAR 23 and FAR 25)

4.82
Vime < highest of 1.1V or V, + 10 keas (Mil — F — 8785C) (+52)

For a given combination of takeoff speed, engine thrust and engine y~-moment arm, the abil-
ity to control the OEI flight condition is dependent on the magnitude of the rudder control power
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Figure 4.16 Effect of Bank Angle, Vertical Tail Size and Airspeed on the Rudder
Angle Required to Hold a One Engine Inoperative Flight Condition
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derivative Cp, . Equation (3.87) shows which design aspects of the vertical tail and rudder affect

this derivative.

It should be obvious that to attempt flight in a multi-engine airplane at speeds below the
minimum control speed is asking for trouble.

After an engine failure has occurred, a certain amount of time must be allowed to elapse be-
fore control action is taken. The reason for this is the fact that it takes some time before a pilot has
recognized which engine has failed and then it takes some time to initiate the appropriate action.
This amount of time is typically one to two seconds. During that time the airplane will begin to yaw
and, because of its dihedral effect, it will also begin to roll. Returning to Eqn (4.78) and assuming
no pilot action, the maximum amount of sideslip angle which will be reached is found from:

Bmax = — maﬁgb— (4.83)

Next, consider the equilibrium about the X-axis. To keep the wings level, the amount of
required aileron deflection is found from Eqns (4.73) and (4.83) as:

G
]V-J‘rl {C_ﬂ(NTl + ANDI) - LTI}
"p

= ~ 4.84
C, C,d,5b (484)

This amount of aileron deflection should not exceed that for which one wing stalls. Typical-
ly, no more than 25 degrees of aileron deflection should be required.

The amount of rudder required to hold an engine—out condition can be reduced considerably
by allowing the airplane to bank into the operating engine(s). Figure 4.16a shows an example of
this for the case of a small jet airplane with the right engine inoperative.

Clearly, the size of the vertical tail should be expected to have a large effect on this control
problem. Figure 4.16b shows this effect. The data in Figure 4.16 were obtained with the derivatives
listed in Table 4.4.

The solutions for sideslip angle and for aileron angle which correspond to the ﬂekample of
Figure 4.16 are not shown because their numerical magnitudes were quite small. The reader should
not draw the conclusion that this will always be the case!

The stability and control problems discussed in this Section have dealt only with steady state,

straight line flight. Section 4.3 will deal with steady state stability and control problems for maneu-
vering flight situations: pull-up ( and push—over} as well as turning flight.
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Table 4.4 Data Required to Produce Figures 4.16a and 4.16b
a) Flight Condition and Derivative Data Required to Produce Figure 4.16a:
W = 8,750 Ibs @ = 0.002378 slugs/ft> (S.L.) U, =270 fps S = 253 ft2
Ly = 1682 ftlbs Ny = 10,940 ftlbs ANp = 1,000 ftlbs ‘b = 38 ft
Cy, = — 0.0105 deg™! Cy, =0 deg™! Cy, = +0.0021 deg™!
C,, = —0.0029 deg ! C,, = +0.0024 deg™! C,, = +0.0002 deg™'
Cp, = +0.0018 deg! Cp, = +0.0005 deg™! Cp, = — 0.0010 deg ™"
b) Flight Condition and Derivative Data Required to Produce Figure 4.16b:
Re_Iati_ve Vertical Chn, deg ! Cys, deg ™! C]ar deg ™ Ca,, deg ™!
Tail Size
0.50 ~-0.00010 +0.00105 —0.00048 +0.00008
0.75 —0.00085 +0.00158 -0.00072 +0.00011
1.00 +0.00180 +0.00210 —0.00096 +0.00015
1.25 +0.00275 +0.00263 -0.00120 +0.00019
Note: For the wing—fuselage: Cp,. = —0.0020 deg™! is used with all tail sizes
WF
a @DDODDDDDDDDDD 0O 0 CJDCJDCE]DDDDDDDODOD DC00 E
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4.3 STABILITY AND CONTROL CHARACTERISTICS FOR STEADY
STATE, MANEUVERING FLIGHT

In transitioning from one steady state flight condition to another and in maneuvering to
change flight path or to avoid traffic, an airplane must be able to perform steady turning maneuvers
as well as pull-up and push—over maneuvers. The objective of this section is to develop mathemati-
cal models for such maneuvers and to discuss their application. The material is organized as follows:

4.3.1. Stability and Control for Steady State Turning Flight
4.3.2. Stability and Control for Steady Symmetrical Pull-ups (and Push—overs)

4.3.1 STABILITY AND CONTROI. CHARACTERISTICS FOR STEADY STATE
TURNING FLIGHT

The general, steady state equations of motion, including the effect of angular rates, were
derived in Chapter 1 as Eqns (1.55) and (1.56). These equations were written in the body fixed axis
system. By using the stability axis system as defined in Chapter 3 (Figure 3.1) it is found that the
component of velocity, W, disappears: W, = 0. It will be assumed that the turning maneuver

takes places in a horizontal plane. The consequence of this assumption is that the stability X-axis
will lie in the same horizontal plane. Since the rate—of—turn vector ), is perpendicular to this hori-

zontal plane (See Figure 1.8) it follows that the steady state roll rate, P, , also vanishes: P; = 0 .

The kinematic equations (1.57) written in stability axes (but without the subscript ’s’) now yield:

P, =0 (4.85)
Q; = 1, sing, (4.85b)
R, = 1, cos ¢, (4.85¢)

Figure 4.17 illustrates the relationship between the various terms in these equations.

A Y
-\“L

Horizon

Turn Radius, R,

Horizon

VA ol A S S S S S S
Figure 4.17 Geometry of the Steady, L.evel Turn

Chapter 4 224



Stability and Control During Steady State Flight

By combining Eqns (1.55) and (1.56) with the aerodynamic and thrust force and moment
equations (3.46) and (3.95), while at the same time observing that in this flight condi-

tion 8, = y, = 0 is satisfied, the equations of motion take the following form:
0=~ (Cp +Cpay+ CDihihl + Coaeéc])”@qls + T;cos(py + o)) (4.86a)
: R;b _
mU,Ry — mgsind, = (Cy 3, + CY"Z_U] + CyﬁaiﬁuaI + Cy, 8, )q,S (4.86b)
— mU,Q, — mgcosdp,; = — (CL(, + CL o+ CL SI} + CL lh + CL 0e )q;S +
Rb _
( ZZ y)R Ql (C[BBI + lez—[jl + Clauaal + Clﬁrar])qle (4.86d)
2 _ Qc e
= IRy = (Cp, + Cm,0q + Ch, 2U + Cphp, 1hl + Cmacéel)qISc (4.86¢)
R,b
IQR; = (Cnﬁ[?)1 + Cnr2U + Co,, O, + Cnaé Jq;Sb (4.86f)

Note the inclusion of a number of rate derivative forces and moments. This accounts for the
fact that in a steady level turn the pitch rate and the yaw rate are not zero: see Eqns (4.85). Therefore,
the corresponding aecrodynamic forces and moments must be included. It has been assumed in these
equations that there is no asymmetric thrust and that the net thrust line passes through the center of

gravity: Mt = L = Np = FTyl =0,

It will be observed, that these six equations are all coupled together because of the various
angular rate terms. Assuming that the dynamic pressure, 4; , is known, these six equations have

the following ten unknowns:
q)]s G‘], [311 6313 ihla 6613 61'1a Q]a R]a and T]

Since there are only six equations, three of these variable will have to be specified before
the others can be solved for. In most applications this is done by specifying the steady state
thrust, T, , and the stabilizer incidence angle, i, . Since the steady state pitch rate and the steady

state yaw rate, R, , are related to the steady state bank angle, ¢, , there are now six equations left,

with six variables. These equations can therefore be solved.

It is instructive to analyze the relationship between Q; , R, and ¢, . This is accomplished
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by referring to Figure 4,17 and observing that the following equilibrium conditions must hold:
2

CF. = mRap, = Lsind, (4.87a)
W = Lcos¢, (4.87b)
Observe that the following kinematic relationship must also be satisfied:

U, = Ray, (4.88)
From equations (4.87) and (4.88) it follows that the turn radius can be written as:

U,
Ry = (4.89)
gtan ¢, -

The corresponding turn rate, ¥, , is found by eliminating the turn radius from Eqns (4.88)
and (4.89). This yields:

_ gtan g,
1T U1

(4.90)

The turn radius and the turn rate of a military airplane are important performance parameters.
For civilian airplanes which must operate into and out of areas with physical obstructions (box can-
yons are one example!) the turn radius can be a matter of life or death.

At this point, the concept of load factor, n is introduced:

L = nW (4.91)
By referring to Equation (4.87b) it is seen that:

n = 1/cosd, (4.92)
By combining Eqns (4.85b,c with Eqns (4.90) and (4.91) it can be shown that:

gsin? ¢, g 1
! U, cos ¢, Ul( n (+53)
and ‘
R, =830 _ & g5 (4.94)

U, nU,
A

The steady pitch and yaw rate in this type of turning maneuver are therefore simple functions
of the load factor, n.

Another important property which can be deduced is that the left hand side of Eqn (4.86b)
is zero because:
mU;R; = mgsin¢, (4.95)

This can be seen from Eqn (4.94). This result implies that in a steady, level turn the aerody-
namic side force is equal to zero. The turn is said to be coordinated: no net lateral acceleration acts
on the airplane. From Eqn (4.86b), in such a coordinated turn:
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R,b
0 = (CyB; + cyrz—él + Cy, 8a, + Cy, 8:)7;S (4.96)

The reader should observe that this equation can be satisfied with a non—zero sideslip angle!

An important consequence of these developments is that the lateral-directional equations
(4.86b), (4.86d) and (4.86f) can be separated from the total set to yield:

[ bgsing )
- C)’r U ]
Sy G S} (B 1
" Iz — Lyy)g?sin3 i
G C G 0, = {( Z yy)f S0P _ G bgs1n2q) - (4.97)
P . o q,SbU, “cos ¢ " 20,
Cn. Cn C b
|t TR ] LT Log?sin’¢  _ . besing
q,SbU 2cosp 20>

The subscripts I have been dropped from Eqn (4.97), except in the steady state speed terms.
Solutions to these equations can again be written in determinant format as shown in Table 4.5.

The solutions as represented by Eqns (4.98)-(4.102) in Table 4.5 are considered "acceptable’
as long as they are consistent with conditions of attached flow. For example, if a solution for aileron/
rudder deflection is 25 degrees or more, that would probably not be consistent with conditions of
attached flow over the wing or vertical tail. In such a case, the aileron and/or rudder control power
would have to be increased to solve the problem.

The remaining longitudinal equations: (4.86a, c and e) can be rewritten as:

0=~ (Cp, + Cpgy + Cp, iy, + Cp, 8)T,S + T, cos(y + ay) (4.103a)
T8 _ _(cL +C CLip +C B L syqs
Toosg LT OLo Gl ¥ 12U 2cos ¢ T CL, 00005 +
2 ein2 = ein2
c 1 B P  (Cp  Conty F Gy B 0 o 8607,SC +
- : 2U,“cos ¢ o ‘
~ T,dy (4.103c)

These equations will be treated in a manner similar to what was done 1n Sub—section 4.2.1:
the stabilizer incidence angle, ih1 , and the bank angle, ¢, , are assumed to be known. Also, the

thrust, T ,is assumed to be sufficient to sustain the airplane in its steady state banked flight. This

implies that the drag equation (4.103a) is assumed to be satisfied. That leaves the lift and pitching
moment equations {4.103b) and (4.103c) to be considered.
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Table 4.5 Solutions for the Steady State Lateral-Directional Equations of Motion
for Turning Flight
(4.98)
(4.99)
(4.100)
CYB Csta Cyﬁr
4.101
where: A = Clg. Cla.,, Ch, ( )
Cnﬁ (:{1'5._l Cﬂar -. g,
bgsind
and: a;; = — Cy——=-
11 ¥r 2U12 (4.102a)
I; — Iyyg?sind '
A yy)zg e _ o gbsing (4.102b)
q,SbU; cos T 2U;
24in3 i
o\ = | s;n o Cnrgbsméb (4.102¢)
q,;SbU,"cos P 2U,
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It can be numerically verified, that the derivative Cy, in Eqn (4.103b) can nearly always be

neglected. Neglecting also the effect of thrust in Eqns (4.103b) and (4.103c¢) while writing:

sinfp =1 - L (4.104)

n2

|—=

mg
T =Cp cos¢p = 4

it is possible to cast the solutions to Eqns (4.103b) and (4.103c) in the following matrix form:

~

,CL,[ CLﬁ a‘l nCLlrim - CLO - CLihlhl
Cmu Cmac 661 = Cm, — Cm‘hlh' B Cmqm(n ) ﬁ)
Solutions to matrix Eqn (4.105) are the following:
(C, —C; —C; i, )Cm + {Cem + Cm iy + Cm —2-(a —Hlc
Lln'rn Lﬂ Lih l-11 mac m, mih h1 My 2U12 n Lac
o, = 4.106
1 (CL“Cmée Cm CLﬁe) ( )
—C {Ch + Cir + Co—2en -4} —CpaC, - C -G i)
L,| =My m; “h, my 2U,2 n m, Lyim Lo L "h
S, = (4.107)

1 (CLquﬁg - CmO‘-CLbe)

The reader should compare these solutions with those of Eqns (4.46) and (4.47) for steady
state, straight line flight. It is seen that flight in a steady level turn takes place at a higher angle of
attack and requires a larger (negatively speaking!) elevator deflection angle. Pilots are well ac-
quainted with this characteristic.

The reader should observe that the amount of elevator required to trim the airplane in a turn
is strongly dependent on the load factor, n, associated with the turn. Of particular interest is the so-
called elevator-versus-load-factor gradient, 98./dn . This gradient can be obtained by differen-

tiating Eqn (4.107):

cg 1
, —C Cn=E-1+Y -CnC
856 _ Lu M 2U12( Il) MLy (4 108)
an - CLquﬁc - CLacha .

For acceptable flying qualities, this gradient (which is also referred to as the ’elevator-
per-’g’-gradient’) must always be negative:

Be _ (4.109)

dan
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Figure 4.18 shows the result of flight test measurements of elevator required versus load fac-
tor carried out during a turning maneuver in a small single-engine, propeller driven airplane.

'[Mem LEFT TURNS »7
o / 53
-4 > RIGHT
I Jre 'rum.:J
X_ =0,348 '
2] cg=0,348¢ AUSTE R QE
J-5&
| 4 ) )
-02 0 Q2 04 ] 08
! 4 ,4n
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' Copied from Ref. 4.8 ’@M
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Figure 4.18 Variation of Elevator with Incremental Load Factor and Center of Gravit
in a Steady Level Turning Maneuver

It is of interest to consider the situation where the elevator-per-’g’ gradient disappears. This
would occur whenever the following condition is satisfied:

g 1
0= = CLln5(1+ 19— CnCy, (4.110)
1

Next, recall Eqn (4.62). By combining Eqns (4.62) and (4.110) it can be shown that the ele-
vator-per—"g’ gradient vanishes if the following condition is satisfied:

I
n2

Cnm
Xcg = Rac — 7 — =& 1+L

4.111
for: %Enc-z(] CL 2U [ ( a)

This particular ¢.g. location is referred to as the maneuver—point—stick—fixed, or MP;._, of

the airplane. The significance of the subscript *fix” will become clear in Section 4.5. Note that the
maneuver point is behind the aerodynamic center as long as the pitch damping derivative, Cm,»18

negative. Because C. = W/GS it is possible to rewrite Eqn (4.111a) as:

Cqu g

e P+ 4y @i

Reg = MPp = Koo = ——(1 + ;]1-) = NP, — o

From the latter it is seen that the distance between the maneuver point and the aerodynamic
center is a function of altitude: at high altitude the maneuver point tends to move toward the aerody-
namic center (also called: NP, on page 203).
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At this point, the concept of maneuver margin, MM is introduced by using as an analogy the
1dea of static margin, SM, of Eqn (4.62). The maneuver margin, MM is defined as:

An airplane will have the correct sign of the elevator—per—'g’—gradient {see: Eqn (4.109)}
if its maneuver margin is positive.

This sub—section has dealt with control and stability during turning {light. Turning can be
viewed as a way of re—orienting the flight path in a horizontal plane. Pilots also have to be able to
re—orient the flight path in a vertical plane. The maneuver which can accomplish this is the pull-up
{or push—over) maneuver. Sub—section 4.3.2 deals with stability and control properties for pull-ups.

4.3.2 STABILITY AND CONTROL CHARACTERISTICS FOR STEADY STATE,
SYMMETRICAL PULIL-UP (PUSH-OVER) FLIGHT

Figure 4.19 depicts an airplane in a steady symmetrical pull-up maneuver. In such a maneu-
ver the only angular rate present is the steady state pitch rate, Q, . The lateral-directional equations

Rloop

-t

_ \
U1 - QlRloop CF. = inleoop
W

Figure 4,19 Airplane in a Steady, Symmetrical Pull-up

are not needed in this case. The longitudinal (drag, lift and pitching moment) equations are obtained
from Eqns (1.55) and (1.56). These are adjoined by the aerodynamic force and moment equations
(3.46) and (3.93). The resulting equations are:

0= —(Cp, + Cpoy + CDihihl + CDGCBBI)E}‘IS + T, cos(pt + a;) (4.113a)
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C
B mUlQl - mgCOSY] - - (CLU + CLual + CL- th + CL Ql

X 30, + CLﬁcacl)qls +
— Ty sin(py + o) (4.113b)
0=(Cn, + Cho, +C %+C iy, + Cp, 0.)q,S¢ (4.113¢)

my, my* mq2U1 m; “h, mg Ye, q; .

For given values of: q, T, and ihl these equations can be solved for 0; Qp and O,
Consider again the case where the steady state thrust, T, , is selected to satisfy the drag equation.
Next, the effect of thrust in Eqns (4.113b) and (4.113c¢) and the derivative CLq will be neglected.
As a result, Eqns (4.113b) and (4.113c) become:

— mU,Q; — mgeosy; = — (C, + Cpa; + Cp,in, + Cp, 8e,)T;S (4.114a)
= Ac i q,S¢ 4.114b
O - (Cm[) + Cmual + Cmqm"]- + Cmihlhl + Cmﬁcacl)qlsc ( -].14 )

As indicated by Figure 4.19 when an airplane is in a steady symmetrical pull-up maneuver,
the flight path is a circle in a vertical plane. The velocity vector of the airplane is tangential to the
flight path and is related to the pitch rate and the loop radius by: U, = QIRI00p . At the "bottom’

of the loop the following relation must hold:

L =nW =W+ mU,Q; = mg + mU,Q, (4.115)
From this it follows that:

- & . _
Q] - U] (n 1)

(4.116)
The reader should compare this result with that of Eqn (4.93) for the steady level turn.
Introducing Eqn (4.116) into Eqns (4.114) and rewriting in a matrix format yields:

CLu CLEC al trim 0 [

. c (4.117)
Cu, Cm, [|% =~ Cm, = Cn, i, — cmqga%(n -1

1

The solutions to Eqn (4.117) can be written as:

. . C
(nCLlr‘im - CL’U o CLihlh])Cmﬁe + {Cmo + Cmihlhl + Cmq_z—fjg_Z(n - 1)}CL65
1
4.118
(CLquﬁe - CmuCLﬁe) ( )

(11=
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. C )
. CLQ[CI’H[) + Cmihlhl + Cmqﬁgz(n - 1)] - Cmu(nCme - CL[} - CLihlhl)
1

(CL.Crmy, = Cm,Cr,.)

S, = (4.119)

These equations represent the solutions for ¢; and & required to maintain the airplane

in a symmetrical pull-up. Of interest is again the change in elevator angle required as a result of
a change in load factor. By differentiation of Eqn (4.119) it is found that:

cg
— CLChp——=—CpC
® _ v MU e (4.120)
ap CLqu6¢ - CL6=Cmu .

Figure 4.20 shows the result of flight test measurements of elevator required versus load fac-
tor carried out during a pull-up maneuver in a small single—engine, propeller driven airplane.

The maneuver point for the pull-up maneuver is defined in a manner similar to that for the
steady turning maneuver: see Eqn (4.112). For the maneuver point in a pull-up maneuver it is found
that:

_ Cm,05cg Cm,0Scg
Xeg w = MPj, = %o = —z7— = NPix ~ 3w

n

(4.121)

The significance of the subscript ’fix” will become clear in Section 4.5. Comparison of Eqns
(4.111b) and (4.121) shows that the MP in a steady turn is aiways forward of the MP in a symmetrical
pull-up. In both cases the MP approaches the NP at very high altitudes.
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Figure 4.20 Variation of Elevator with Incremental I.oad Factor and Center of Gravity
in a Steady, Symmetrical Pull-up Maneuver
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44 TRIM COMPARISONS FOR CONVENTIONAL, CANARD AND
THREE-SURFACE CONFIGURATIONS

The discussion of stability and trim has so—far been limited to conventional (i.e. tail aft) air-
plane configurations. It is not difficult (albeit laborious) to rederive all equations of Sections 4.2
and 4.3 so that they apply to three—surface configurations. One example of such an equation is Eqn
(3.40) for the aerodynamic center location of a three—surface airplane. By striking the horizontal
tail terms in Eqn (3.40) it applies to pure canard airplanes.

A frequently asked question is: *To trim an airplane, is the lift on the tail (or canard) in the
up or down direction?” The answer to this question can be discerned from simple equilibrium cal-
culations. Examples will be given for a conventional, canard and a three—surface configuration in
Sub-sections 4.4.1 — 4.4.3 respectively.

44.1 TRIM OF A CONVENTIONAL CONFIGURATION

Figure 4.21 shows a wing-tail arrangement for a conventional airplane. The fuselage has
been omitted for clarity. The effect of the fuselage is accounted for by placing the wing-fuselage
lift vector at the wing—fuselage acrodynamic center. The following assumptions are made:

Cm < 0 and Crnach == ) (4.122)

oy,

wi Direction of Flight Ly
-

Tail
= Cp,,_GSCT

Xac,
i .

Figure 4.21 Wing-Tail Arrangement for a Conventional Airplane

For moment equilibrium about the center of gravity, the following condition must hold:

LyfXeg — Xac,,) + Mac,, — Ly(Xae, — X¢g) = 0 (4.123)

From this equation the tail load to trim is found as:

L, = Lyi(Xeg — Xac,) + Mg, (4.124)
(Kach = Xeg)
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It is observed that for a conventional airplane the following inequalities hold:

(Xac, — Xcg) > 0 My, < 0 Lyt >0 (4.125)

Therefore, the following conclusions for the "sign’ of the tail lift (load), L, , may be drawn,

depending on the location of the center of gravity:

Case 1;

Case 2:

Case 3:

Xcg > Xac,,  (unstable wing-fuselage combination) leads to:
L,>0or L, <0 ’up’loador ’down’ load,

depending on the negative magnitude of M,

Xcg = Xa,,  (neutrally stable wing-fuselage combination) leads to:

L, <0 ’down’ load

Xeg < Xg,,  (stable wing-fuselage combination) leads to:

Ly <0 down’ load

Conclusion: the tail load to trim will generally be in the *down’ direction, unless the wing-

fuselage itself is unstable AND at the same time:

|Macwf| < wa(xcg - Xacw[) is satisfied.

4.4.2 TRIM OF A CANARD CONFIGURATION

Figure 4.22 shows a canard-wing arrangement for a canard airplane. The fuselage has been

omitted for clarity. The effect of the fuselage is accounted for by placing the wing-fuselage lift vec-
tor at the wing-fuselage aerodynamic center. The following assumptions are made:

Cm,, <0 and Cqp, =0 (4.126)

W

For moment equilibrium about the center of gravity the following condition must hold:

Lc(xcg — Xae) + Macw, - wa(xacwf = Xcg) =0 (4.127)

From this equation the canard load to trim is found as:

L, = Duwtl¥aoy = Xeg) — Mac,, (4.128)
(Xcg — Xac)

It is observed that for a conventional airplane the following inequalities hold:

Chapter 4 235



Stability and Control During Steady State Flight
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Figure 4,22 Canard-Wing Arrangement for a Canard Airplape
(Xeg = Xac) > 0 Mg, <0 Lyt >0 (4.129)

Therefore, the following conclusions for the ‘sign’ of the canard-lift, L. , may be drawn,

depending on the location of the center of gravity:

Case 1: Xcg > Xac,,  (unstable wing-fuselage combination) leads to:
Lc>0or Le <0 ’up’ load or *down’ load,

depending on the negative magnitude of M.,

Case 2: Xcg = Xac,, (neutrally stable wing-fuselage combination) leads to:
Le>0 ’up’load
Case 3: Xcg < Xag,,  (stable wing-fuselage combination) leads to:

L:>0 ’up’ load
s

Conclusion: the canard load to trim will generally be in the "up’ direction, unless the Wingw
fuselage itself is unstable AND at the same time:

'Macwfl < wa(xcg - xacwf) is satisfied.

44.3 TRIM OF A THREE-SURFACE CONFIGURATION

Figure 4.23 shows a canard-wing-tail arrangement for a three—surface airplane. The fuse-
lage has been omitted for clarity. The effect of the fuselage is accounted for by placing the wing~fu-
selage lift vector at the wing-fuselage aerodynamic center. The following assumptions are made:
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Le Direction of Flight Lot Ly
Canard Tail
Xac,
et Xeg
il P Xach
el .
Figure 4.23 Canard-Wing-Tail Arrangement for a Three-Surface Airplane
Cmacwr <0 |, Crrlach = and Cmacc == () (4.130)

For moment equilibrium about the center of gravity the following condition must hold:
Le(xeg — Xac,) — LyflXac,, — Xeg) + Mac,, — L (Xae, — Xep) = 0 4.131)
In the case of three—surface airplanes the following inequalities are normally satisfied:

(Xeg = Xac) > 0 Mg, < 0 Lt >0 (Xac, = Xeg) > 0 (4.132)

H

In addition, Xac , — X¢g = O is usually satisfied in the case of a three—surface airplane.

Since there are now two different trim—loads to solve for in Eqn (4.10) one of the two must
be selected. Solving for the canard trim load:

f— Macwf + wa(Xanr - Xcg) + Lh(XaCh —_ xcg)
(Xeg — Xac)

L. = (4.133)

From Eqn (4.133) it may be concluded that as long as L, is positive (i.e. "up’) the canard

load to trim, L. , will also be positive (i.e. 'up’).

Note: if the answer to any of the trim solutions in Sub—sections 4.4.1 — 4.4.3 is that all trim
loads are in the "up’ direction, that does not imply that the airplane trim drag is minimized. The latter
depends on whether or not the net span loading of the trimmed configuration is elliptical!
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4.5 EFFECTS OF THE FLIGHT CONTROL SYSTEM ON STABILITY
AND CONTROL IN STEADY STATE FLIGHT

So—far, the manner in which the cockpit controls (wheel, stick or rudder) are physically con-
nected with the flight control surfaces (elevator, aileron or rudder) was not discussed. As will be
seen, this matter can have important consequences to the perception the pilot has of the flying charac-
teristics of an airplane.

There are many different ways in which the flight control surfaces of an airplane can be con-
nected with the cockpit controls. The system which connects the cockpit controls with the flight
controls is called the flight control system. For a discussion as well as for detailed examples of how
flight controls systems are arranged in various types of airplanes, the reader should consult Part IV
of Reference 4.5.

In this text, airplane flight control systems are classified in two basic types:
1) Reversible flight control systems 2) Irreversible flight control systems

In a reversible flight control system the cockpit controls are mechanically linked to the flight
control surfaces in such a way that any movement of the cockpit controls results in a movement of
the flight controls AND VICE VERSA! These mechanical systems typically consist of a system of
push-rods and/or cables. Figure 4.24 is an example of such a reversible, mechanical system.

It can be seen from Figure 4.24, that any changes in aerodynamic pressure distribution over
a flight control surface will result in a feedback to the cockpit controls. This feedback will be shown
to have important consequences to the flying characteristics of airplanes.

In an irreversible system any movement of the cockpit controls signals the flight control Sys-
tem to position the flight controls according to some control law. The flight control systems holds
the flight control surfaces at a deflection angle which is determined by the control law. Figure 4.25
shows an example of such an irreversible system. A detailed description of irreversible fli ght control
systems is beyond the scope of this text. Part IV of Reference 4.5 contains examples and discussions
of such systems, including the hydraulic system which is normally used to power such systems.

It can be seen from Figure 4.25, that any changes in acrodynamic pressure distribytion will
not result in a feedback to the cockpit controls.

Hybrid systems which possess some of the characteristics of either system also exist. The
effects such hybrid systems may have on airplane flying qualities are not discussed in this text.

Reversible, irreversible and hybrid flight control systems all serve to transmit pilot induced
forces or movements of the cockpit controls to the flight control surfaces. For a pilot to be able to
properly and predictably control an airplane, it is necessary that certain relationships between cock-
pit control forces and/or movements and flight control surfaces movements are satisfied.
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Figure 4.24 Example of a Reversible Flight Control System
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In some flight conditions the movement of the cockpit controls can be considerable. Exam-
ples are the movement of the lateral cockpit controls when maneuvering close to the ground in the
presence of severe turbulence. However, in most cases the movement of the cockpit controls is bare-
ly perceptible. For that reason, the cockpit control forces (rather than the cockpit control movement)
are the most important indication (to the pilot) of the severity of a particular maneuver. It follows
from this that there should be no reversal in these forces which might require the pilot to reverse his
thinking. This line of reasoning leads to the following general requirements for the longitudinal con-
trols:

a) A pull force (defined in this text as positive) on the cockpit controls should
always raise the nose and slow the airplane.

b) A push force on the cockpit controls should always lower the nose and speed
up the airplane.

Similar requirements exist for the lateral-directional flight controls. The reader should con-
sult the regulations of References 4.1 through 4.4 for the detailed requirements.

Control deflections should never reverse, at least not in a very perceptible manner. Itis noted
that this requirement certainly can be relaxed in those flight conditions where cockpit control move-
ment is not very perceptible. For example, if the cockpit control movement is negligibly small, a
pilot will sense that a pull is required to slow down. The pilot will be unaware that the cockpit control
may in fact have moved forward a slight amount.

To summarize, the flight control system must meet two requirements if a pilot is to have suit-
able command over an airplane:

1) The system must be capable of moving (repositioning) the flight control surfaces
2) The system must provide the pilot with the proper cockpit control force *feel’

In a reversible flight control system the cockpit control forces are in large part created by
feedback of the acrodynamic hinge moments. In an irreversible system there is no such feedback
and the appropriate "feel’ must be artificially provided. In some modern fly-by—wire systems when
equipped with appropriate flight envelope protection capability it is possible to eliminate the need
for such force feel requirement. The Airbus A-320 has such a system. .

In the remainder of this section several important analytical relationships between cockpit
control forces and flight variables will be derived and discussed.

4.5.1 CALCULATION OF STICK FORCE AND STICK-FORCE-SPEED-GRADIENT
To determine the relationship between cockpit control forces and aerodynamic hingemo-

ments, consider Figure 4.26. This figure illustrates a typical mechanical linkage between a control
stick and an elevator. Note the following very important sign conventions:
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1) A pull force on the control stick is called positive
2) A trailing edge up deflection of the elevator is called negative

3) The elevator hingemoment is called positive if it tends to drive the elevator trailing
edge down, which is called a positive deflection

Control Stick
~ Fs pull (+)
((} i > Elevator
" c f

d
— (+)
I HM
—>

%, 3

: f A TE.up
a ()
4_
=
palY!

f

Figure 4.26 Reversible Flight Control System and Sign Conventions

Neglecting control system friction, the amount of work performed by the pilot on the stick
must equal the amount of work performed by the aerodynamic hingemoment on the flight control
surface. By tracing through the example system of Figure 4.26 it is found that:

ac ¢
F.= —— ~_
" lybdf

The moment arms associated with the stick, the elevator and the various system bell-cranks
are lumped together in the quantity called the system gearing ratio, Ge :

HM = G.HM (4.134)

ac ¢
G. = —4—4m8M
© I, bdf (4.135)

Observe that because of the "equal work’ condition used in deriving Eqn (4.134) the physical
unit of the gearing ratio, G , is rad/ft. Typical values for control system gearing ratios may be found

on page 203 of Part [V, Reference 4.5. Because of ergonomic considerations, the designer does not
have much choice when selecting the numerical value of 1. Because of physical space limitations,
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the designer does not have much leeway in selecting a, b, ¢, d, e and f either. For these reasons the
magnitude of the gearing ratio is about the same for most airplanes: it ranges roughly from 0.7 to
1.7. This fact has important repercussions to the acrodynamic design of control surfaces. It should
be obvious that contro} stick forces can be neither too large nor too small. With the value of G,

limited to a narrow range, the designer must focus his attention on designing the control surface such

that the aerodynamic hingemoment about the control surface hinge line is consistent with a range
of allowable stick forces.

Figure 4.27 illustrates various aerodynamic pressure distributions over a stabilizer—eleva-
tor—tab combination. Each pressure distribution can be integrated to yield a hingemoment about
the elevator hingeline. There are four types of hingemoment to be considered:

1) Hingemoment for: o, = 8. = §_ =0 (Not shown in Figure 4.27 because of the

symmetrical airfoil used.)

2) Hingemoment for: o, = 0, 8. =0 and 8, =0
3) Hingemoment for: a, = 0, &, = 0 and o, =

4) Hingemoment for: o, =0, 6. =0 and 8§_= 0

Control surface hingemoments are expressed with the help of hingemoment coefficients.
For the case of an elevator:

HM = C,GSc (4.136)

The hingemoment coefficient, C, , itself is expressed as follows:

Cp=Cy, + Cp o + Chacéc + Chat O (4.137)

where: Cy is the elevator hingemoment coefficient for a, = 8, = o, =0
Cy, is the partial derivative of elevator hingemoment coefficient with angle of attack
C, 5, 1s the partial derivative of elevator hingemoment coefficient with elevator angle

Cy, s the partial derivative of elevator hingemoment coefficient with elevator¢ab angle

Te

By referring to Figure 4.27 it may be seen that the hingemoment derivatives will normally
be negative. The following parameters tend to affect the numerical value of the hingemoment coeffi-
cient and its derivatives for a flight control surface:

* Reynolds number * Mach number * Angle of attack

* Control surface deflection * Chord ratio * Overhang

* Nose shape * Gap * Trailing edge angle
* Horn geometry * Tab geometry
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Figure 4.27 Example of Pressure Distributions Responsible for Control
Surface Hingemoments
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Figure 4.28 presents a geometrical interpretation for these parameters. Hingemoments tend
to become nonlinear even at moderate angles of attack and control surface deflection.

Methods for estimating hingemoment coefficients and their derivatives are found in Part VI
of Reference 4.5 as well as in References 4.6 and 4.7.

Experience indicates that even with the best of prediction methods hingemoments can
often be predicted only to within +/- 30% accuracy! The reason for this poor state of affairs is
that the pressure distributions over the aft part of a control surface are strongly influenced by the
characteristics of the boundary layer. Therefore, Reynolds number effects play an important role.
If greater accuracy (than 30%) is required, it is recommended to run a windtunnel test, preferably
at full scale because of the strong Reynolds number effects.

Figure 4,29 shows typical windtunnel data for elevator hingemoments. Note the region of
linearity as well as the region of nonlinear behavior! The methods presented in this Section apply
only in the linear region of angle of attack and control surface deflection.

For the case of a stabilizer/elevator/tab combination, the angle of attack can be written as
follows: q
ah=a—e+ih=(x(l—d—§-)+ih—eo (4.138)

By combining Eqns (4.134) and (4.136) — (4.138) the stick force, for zero tab deflection, is
expressed as;

F, = theEch[Ch“ + Chu{a(l ~ ((i_:%) + i - 80} + Chaﬁﬁe] (4.139)

In a steady state, straight line flight condition, the corresponding values for airplane angle
of attack, o and O are those of Equations (4.46) and (4.47). Tt is convenient to write the latter in

the form of Eqns (4.48) and (4.49), where the constant terms are expressed by Eqns (4.50) through
(4.53). Carrying out the substitution of equations (4.48) and (4.49) into the stick force equation
(4.139) produces the following result:

- 5. Q.7 de aa
FS - thcCeGe{Chn + Ch“(l - ﬁ)(aczﬂ]_o + a—.C_LCLI)} +

— o= . a0
+ theccGe{Chu(lh — gy + Chéc(ﬁec,_]=u + ﬁCLI)] > (4.140)
Atthis point it should be remembered that: 1), = 4 and ¢ = ¢ = W Therefore
p h = g, L, Lun — S

that Egn (4.140) can be re—written as follows:

F, = nhﬁSeEch[Ch., + Chu(l - g—g)aql:o + Cp iy = 89) + Cp, 8c,, J +
_ da W, _ de 0. W
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Figure 4.28 Definition of Parameters which Affect Control Surface Hingemoments
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Figure 4.29 Example of Windtunnel Data for Control Surface Hingemoments
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The maximum allowable stick forces are defined in the regulations (References 4.1 — 4.4)
Typically, the regulations define all allowable cockpit control forces in terms of temporary and pro-
longed flight conditions.

A temporary flight condition is one which occurs shortly following a failure which requires
a major adjustment in cockpit control force to keep the airplane under control. Examples are:

* rudder pedal force required following a sudden outboard engine failure

* elevator stick force required following a sudden flap failure
A prolonged flight condition is one that occurs either in normal flight or after the airplane
has been re—trimmed by the pilot following some failure.

Table 4.6 defines the allowable cockpit control forces according to FAR 23 and FAR 25. The
military specifications have more extensive requirements, particularly for naval aircraft on final ap-
proach to a carrier.

Table 4.6 Maximum Cockpit Control Forces Allowed by FAR 23 and FAR 25

Cockpit control forces are given in
(pounds) Ibs as applied to the stick, Pitch Roll Yaw
control wheel or rudder pedal(s)

a) For temporary application:

Stick 60 30

Wheel (applied to rim) 15 60

Rudder pedal(s) 150
b) For prolonged application: 10 5 20

Detailed inspection of Eqn (4.141) reveals the fact that the stick force magnitude is strongly
dependent on the c.g. location. This can be seen by recalling Eqn (4.53) and Eqn (3.39). The stick
forces tend to be higher at forward c.g. and lower at aft c.g.

The reader should recognize the fact that the stick force equation (4.141) contains two terms:
* the first term is dependent on the dynamic pressure

and
* the second term is independent of the dynamic pressure.
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1
2
bolically with speed in a manner indicated in Figure 4.30. Observe that the stick force can be cast

in the following form:

In the steady state: q = 5oU, 2 and therefore, the stick force can be expected to vary para-

1 9F;

Fs = Fsvp=[, + EBVPVP (4.142)
where: FSVP:U is the stick force magnitude at zero speed. This quantity has meaning only during
flight. Clearly, on the ground and at zero speed, the stick force would be also zero.
ggs is the so—called stick—force—speed—gradient. This stick—force—speed—gradient is
P
very importantto a pilot. This gradient is obtained by differentiation of Eqn (4.141)
with respect to speed. At constant Mach number this vields:
pull +
Stick force, F Force induced by the pilot onto the stick

Sy,=0
Fg, Ibs £ —_——

A
0
AU Speed Vp, ft/sec or kis
—
_ _ Force induced by the stick onto the pilot
Trim point
push —

Figure 4.30 Variation of Stick Force with Speed

Ty

oF . d -
_aV; - thVPSeCeGe[Cho + Chu{O‘CL,=O(1 — ﬁ) + i, - 50} + Chﬁﬁecwn] (4.143)

The stick—force—speed—gradient is seen to depend on a large number of parameters. Most
prominent are the flight speed, Vp itself, the c.g. location (through d,_ which in turn depends
Ly

=0 ?

on Cm, , which in turn depends on the c.g. location!) and the various hingemoment coefficient deriv-

atives. All regulations require the stick—force—speed—gradient to be negative:
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oF
v, <0 (4.144)

As long as this gradient is negative, the airplane has what is referred to as speed—stability,
also known as return—to-trim-speed-stability. The latter characteristic can be deduced from Fig-
ure 4.30. Assume that the airplane is perturbed by a horizontal (or shear) gust of magnitude, AU .

As shown by point A and the corresponding pull-force on the stick, F, , the airplane is driven back
toward its trimspeed, Uy As shown in Chapter 6, the stick—force—speed—gradient may not be so
small as to become un—perceptible.

A typical minimum ailowable slope is 1 1bs per 6 knots of speed. Inspection of Eqn (4.143)
shows that the stick—force—speed—gradient becomes lower as the c.g. is moved aft. At some point

the flight path becomes difficult to control and the airplane develops a tendency toward speed diver-
gence. Such a characteristic can be dangerous,

The return—to—trim-speed—stability behavior of an airplane can be masked by friction in the
flight control system which causes the friction bandwidth shown in Figure 4.31.

pull +
Force induced by the pilot onto the stick

Stick force,
Fg, Ibs o

r v

| AU Speed Vp, ft/sec or kts
—_—

Friction] Bandwidth

Trim point

o

trim
push —

-

Figure 4.31 Effect of Friction Bandwidth on Return—to—trim—speed-stabilit

As a result of control system friction the airplane will not quite return to the original trim—
speed but to a speed dictated by the friction bandwidth. Clearly there must be limits on allowable
control system friction. These limits are expressed in the regulations as maximum allowable break-
out forces and are defined in Chapter 6. In addition, the return—to—trim—speed—stability behavior
of an airplane is expressed in terms of a percentage of the original trim-speed. Chapter 6 speci-
fies what these percentages should be.
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For long term (prolonged) flight it must be possible to maintain steady state flight with zero
stick force. To satisfy this requirement the pilot must be given control over a term in Eqn (4.141)
sothat Fs = 0 can be satisfied. In many airplanes, this stick force trim requirement is met by giv-

ing the pilot direct control over the stabilizer incidence angle, iy, , (trimmable stabilizer) or by giv-
ing the pilot direct control over a trim tab deflection angle, &; . Figure 4.32 shows a layout example

of an elevator trim tab system.

Using a trimmable stabilizer to set Fs = 0 , Eqn (4.141) in combination with Eqns (4.52)
and (4.53) yields:

. _ =1 d
ths=U = q{cho + Chu(l - é)aCH:O - Chue{] + ChbeaeCH:O} +
Cy, Cm, (1 = (‘11_;) = Cy, Cm,

-c (4.145)

1 Cha(CLaCmﬁc - CmﬂCLéc)

The reader should realize that the effect of deflecting a trim tab in Equation (4.141) can be
thought of as a change in the hinge moment coefficient C,, if the following substitution is carried

out:

Ch, = G, + G, 00 = Gy (4.146)

®trim

Eqn (4.141) can then be solved for that value of C; ~ required to satisfy Fs = 0. By
again invoking Eqns (4.52) and (4.53) this yields:

- _de .
Che = - {Cha(l da)aql:o + Gy (in — €g) + chacaew} +

C,, Cm, (1 — g—g - C;, Can,
— CL

4,147
! (CLO[Cm{,c - CmQCL5 ) ( )

5.
The hinpemoment derivatives C;, and C, are determined by the various parameters de-
g h, hy, Y p

fined in Figure 4.28. Once an airplane is in flight test, changing these quantities implies changes
in hardware design. However, with foresight, the hingemoment coefficient Cy, can be altered

quickly by changing the gearing ratio on a geared tab. This is particularly important during flight
testing because all other parameters are not easily changed once the airplane has reached the flight
test stage. Geared (or) balance tabs are discussed in Sub-section 4.5.5.

The reversibility of the flight control systems has a significant effect on static longitudinal
stability as will be shown in Sub-section 4.5.2
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Courtesy: Cessna Aircraft

perazL C

DETAIL A

Figure 4.32 Example Lavout of an Elevator Trim Tab Svstem

4.5.2 EFFECT OF CONTROL SURFACE REVERSIBILITY ON STATIC
LONGITUDINAL STABILITY

An important consequence of having a reversible flight control system is that the definition
of the airplane aerodynamic center (or neutral point), as given by Eqn (3.38) must be revised. The
reason 1s the ’floatation behavior’ of the elevator. To understand this floatation behavior, consider
an airplane to be in moment trim as well as in stick force trim. When a gust hits the horizontal tail,
the tail angle of attack will change. That causes the elevator to ’float’ to a new angle. The relation-
ship between tail angle of attack and elevator floatation angle is defined by the flotation condition:

Ch = 0 = Ch[) + Chﬂah + Chﬁeae (4.14‘8)
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The floatation relation between elevator angle and airplane angle of attack is found by par-
tially differentiating Eqn (4.148) with respect to the angle of attack. The reader is asked to show
that this results in:

0,  Cn o9, G,

_ — _ e _ de
e Co C, (1 o (4.149)

8 B

However, if the elevator floats to a new angle according to Eqn (4.148) then the force on the
horizontal tail will change and hence, the pitching moment contribution due to the tail will also
change. The consequence of that is a change in the apparent static longitudinal stability level of
the airplane. Recalling Eqn (3.35) the reader is asked to show that the derivative Cm_ (which now

corresponds to a stick-free situation) can be re-written as follows:

_ _ Sh _ _ d 38
Cm(lstick—t-rcc - CLuwr(Xcg - Xanf) - CLahnhg(xach B Xcg)[(l B é) * tea_(;] (4150)
Defining the neutral point, stick free as that c.g. location for which C, = 0, it fol-
“stick — Lree
lows that: C
L C.t
_ o _S_h— _ k _ hu e
Xac,, T “_CL Mh S Xac, 1 da 1 Ch!5
_ [[W_f €
Xcg = NPﬁ,ee = C (4151)
(for (:rn‘1 | - ) 1 + L“h TI §[l 1 _ E 1 . Chure
stick — lree CL h S da Chb
(l.wf (3

Observe that the neutral-point-stick-free is forward of the neutral-point-stick~fixed be-
cause, as a general rule:
Ch Te
1- C, < 1.0 (4.152)

is placesan additional restriction on the allowable most aft c.g. location of an airplane.

It can be shown with numerical examples that for most airplanes with reversible flight con-
trol systems and long tail moment arms, the following approximation holds for the denominator of
Eqn (4.151):

C C,t
L i h ‘e

h

—g_-E_ — “ = ==
1+CL Mhg (1 dO!)(1 C, )f=11=10 o (4.153)

(L [
sing the approximation suggested by Eqn (4.153) it is possible to cast Eqn (4.151) in the
following format:

CL C.t
— 1, S — hl!. ¢
NPfrce =~ Xac,, T hnh thach(I - de) 1- =

CLuwf da Chbe
CL h d Ch,Te
! - € u —
NPy, - ‘ﬂhs"ﬂh(1 a) o
l_lwf c
Cma Ch
= g — _Q_Q ks
NP+ (1 da)[ch (4.154)
[+ bp
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To justify Eqn (4.154), the equation for the elevator control power derivative, Cm, {see

Eqn (3.37)} has been written as follows:

— Sh,_ - Sho
Cmbc = — CLﬂhnthTe = - CLuh’th—Sh-(Xach - Xcg)Te = - CLathh?hxachTe (4155)

At this pomt the following definitions are introduced:

Definition 1:
Static Margin Stick Fixed = SMg, = NPy, — Xgp = Xae, — Xy (4.156)

Definition 2:

Static Margin Stick Free = SM; . = NP — Xeg (4.157)

By combining these two definitions with Eqn (4.154), it follows that:

Cmbc de Chu
SMgx — SMg,. = NPy, — NPg . = — ?(1 - E C, (4.158)
id [

These definitions will be used in Sub-section 4.5.3 to derive an alternate expression for the
stick-force-versus-speed-gradient and in Sub-section 4.5.4 to derive an expression for the varia-
tion of stick-force with load-factor.

4.5.3 ANOTHER LOOK AT THE STICK-FORCE-VERSUS-SPEED GRADIENT

With the help of Definition 2 in Sub-section 4.5.2 the stick force equation (4.141) can now
be approximated in the following manner:

= = Wchée
Fs = 1,GeSeCe(QA + ?CmﬁcSMfree) (4.159)
where:
A= I:Ch(, + Chu[(ih — €+ (1 - g—é)aclfo} + 5eCL1=uChJ (4.160)

Note from Eqn (4.160) that the stick force depends on the c.g. location, Xcg through two

. From a pragmatic viewpoint, the SMg,. term is the stronger effect.

=1l

terms: SMg.. and 6€cL
1

Figure 4.33 shows how the quantities A and SMy, . influence the variation of stick force with speed.

The stick-force-speed-gradient at any speed, Vp can be found by by differentiation of
Eqn (4.159):
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oF _
3V, = @MGeSLeVpA (4.161)

By carefully selecting acrodynamic balance of a flight control surface, the designer can in-
fluence the various hingemoment coefficients and derivatives which make up the quantity A, such
that the stick—force-speed—gradient is adequate and such that trim can be achieved within the ap-
propriate range of c.g. locations and within the required range of speeds. Aerodynamic balance of
the hingemoments is most often done with the help of tabs. The effect of several types of tabs is
discussed in Sub~section 4.5.5.

pull +
Ch
Stick force, 0,GeS eee%afa SM;,,
F,, Ibs =

inreasing the magnitude of A in Eqn (4.159)

T

SM,.. decreases: c.g. moves aft

Speed Vp, ft/sec or kts

Trimspeed, U

trim

push —

Figure 4.33 Effect of A and Static-Margin-Stick—Free on Stick—Force Versus Speed

4.54 CALCULATION OF STICK-FORCE-PER-’g’

e
Another way in which the pilot can ’feel’ the relationship between stick force and the severity
of a commanded maneuver is in the stick—force required to produce a change in load factor, n. This
relationship is referred to as the “stick—force—per—'g’ and is given the symbol dF;/an . The follow-

ing derivation shows how the ’stick—force—per—"g’ can be calculated. Two types of maneuver will
be considered: steady symmetrical pull-up and steady level turn.

Stick—force—per—’g’ in a steady, Ssymmetrical pull-up

The stick—force equation to be used here is re—written from Eqn (4.139) as follows:
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Fy = My@Se8eGe(Ch, + Cp oty + Cy, 80) (4.162)

In a steady symmetrical pull-up, the angle of attack of the horizontal tail can be written as:

_ Xae. — X
ap=0a—¢+1, + QI(‘E&"[TI—E) (4.163)

By using Eqn (4.116) and (3.21) this can be changed to:

- de . (Xac, — Xcg)
a, = a(l - @) —gg+ i, +(n— I)gU—12 (4.164)
The airplane angle of attack in such a maneuver can be written as:
rl(:Ltl'im
a= 0‘01_ + '—é-[:— (4165)

a

By combining Eqns (4.164) and (4.165), the horizontal tail angle of attack becomes:

. nCL_ (X — X )
oy = ap (1= 98 — gy + iy + (1 - &£ =t l)g*’"“U—z‘"‘g (4.166)
« i

The elevator angle required to trim in this case is obtained from Eqn (4.119) by also assuming
that C, Cy, <€ Cp Cr,, is normally satisfied:

2U]2) CmunCLtrim

il o
n=1and C ={h
el Litim Cmaz CLquﬁe

8, = (4.167)

By introducing Eqns (3.158) and (3.37) into Eqn (4.167) the latter can be re—written as:

Lum GM, (4.168)

1.18(Xac, — Xcg)] nC
+
Cm&e

66 = 6c(n=]:u1dCL_ - (l'l - 1)[ 2

TeUl

Next, substitute Eqns (4.166) and (4.168)} into Eqn (4.162), introduce the definition of static
margin, stick free of Eqn (4.157) and differentiate with respect to load factor to obtain the stick—
force—per—"g’ as follows:

C — 1.1C
oF, o= hy, E(Xac Xcg) hs,
sl [ fmslfe S

Because inherently stable airplanes must have a positive static margin, stick free it is seen
from Eqn 4.169) that the stick~force-per-"g’ gradient will have the proper sign aslong as the condi-
tion: (Chu - Ch5 /Te) > 0 is satisfied. In some cases it is found that this condition is difficult to

meet. In that case the stick—force—per—"g’ gradient can be artificially augmented with the help of
a bob—weight. The effect of a bob—weight 1s discussed in Sub—section 4.5.5.

Chapter 4 255



Stability and Contro]l During Steady State Flight

For an airplane with a reversible flight control system, the maneuver—point—stick—
free, MPy.. , is now defined as that c.g. location for which the stick—force-per—"g’ gradient,

dFs/on , vanishes. With Eqn (4.169) it can be shown that:

- g(Xac, — Xcg) l'lcha Cma
MP;.. = X = NP, + |————=|C,, — = (4.170)
free C8sp san=0 free ‘ CLIUIZ }[ hg Te Chae
or, after a slight re—arrangement while using Eqn (3.158):
_ ( Ch.%e |/ oSce '
MPfrce = Xegorgamen NPiree = {1 _l-lchb](-w)cmq (170

Comparing this result with that of Eqn (4.121) it is seen that the maneuver points stick fixed
and stick free differ by the bracketed term involving the elevator hingemoment derivatives. For the
usual negative sign of the hingemoment derivatives, the maneuver point stick free will be forward
of the maneuver point stick fixed! Therefore, the maneuver margin is reduced with the controls free
vis—a—vis controls fixed.

Figure 4.34 shows an example of how the stick~force—per—"g’ varies with incremental load
factor (relative to 1.0) for a light airplane. Note the strong effect of c.g. location. This is predicted
by Eqn (4.169) because the c.g. location affects the static margin stick free.

Copied from Ref. 4.8
A (xg) R
AUSTER X g30,2888 | 2% ] .

I.-58 A,ay I

—]
42 /6; 75\
s q ﬁ '5 - .
Xog=03495, -04 -0.2 02 04 06 08
b | I ~T—A4n
M/n-q\ i Uﬂ =42,7mn [sec
l -4
Figure 4.34 Effect of Center—of—~gravity Location on the Variation of Stick
Force with Incremental Load Factor

Stick—force—per-"g’ in a steady, symmetrical turn

The reader is asked to modify Eqn (4.171) for the case of a steady, symmetrical turn. Hint:
start with Eqn. (4.163) and substitute the steady pitch rate corresponding to that in a turn.
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4.5.5 EFFECT OF CONTROL SURFACE TABS, DOWN-SPRING AND BOB-WEIGHT

To assist in achieving cockpit control force trim as well as in tailoring the gradients of cockpit
control forces with speed and with load factor, designers have introduced various types of control
surface tabs and other control system gadgets. The following types of tab will be considered:

* Trim Tab * Balance or Geared Tab
* Blow—down Tab * Servo Tab

In addition, two frequently used control system gadgets, the down-spring and the bob—
weight will also be discussed. For a discussion of other types of tabs, such as servo—tabs and spring—
tabs, the reader may wish to consult References 4.9 and 4.10.

4.5.5.1 Effect of Trim Tabs

Trim tabs are used primarily in reversible flight control systems for the purpose of achieving
moment trim with zero cockpit control forces. Figure 4.35 shows an example of three types of trim
tab arrangements. Figure 4.32 showed how such a tab can be controlled from the cockpit. When
the pilot is given control over tab position relative to the flight control surface to which the tab is
attached, this has the effect of the pilot controlling the term Cy,, in the stick force equation {as seen

from Eqns (4.159) and (4.160)}. At this point, the stick force Equation (4.159) is recalled:

Fy = 10,GeSeced (A + €, ) + W o g 4.172)
h h, m free

Tab Hinge Axls

_— 8_GROUND AJUSTABLE TAIM TAB
#- Adjustabie on
ground only

Hinge

A SIMPLE GROUND ADIUSTABLE TRIM TAB

Tah Hinge Axis

€ FLIGHT CONTROLLABLE TAIM Tap

Figure 4.35 Example of Three es of Trim Tab Installation
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where: A is defined by Eqn (4.160) with the understanding that the stabilizer incidence angle, 1}, ,

now is set at a fixed angle.
Cy, 1s the elevator hingemoment coefficient induced by the tab in accordance with:

Cp, = Cp, & (4.173)

Figure 4.27 illustrates how tab deflection is defined relative to the elevator. Note that the
effect of the tab in Eqn (4.172) is to change the speed—dependent term in the stick force equation.
The trim tab angle required for stick force trim can be solved from Eqns (4.173) and (4.172) by set-
ting the stick force equal to zero:

C,
Ot = T (4.174)
hé
where: to
c, =4-a-_1 wch§°SM (4.175)
hr,u_im q—tnm S Cmf)e free .

The stick force at any speed, U, other than the trim speed, Uy, , is found by substituting
Eqgn (4.175) back into Eqn (4.172):

= C C
~ s 4= dwW s W s,
FS nhGeSece{q[r]m S Cmae SMffﬂe + S Cmae SMfrce)} (4. 176)
and this can be re—arranged to yield:
C 2
_ N [W R, Vp
By = (nhGeSece)[g——Cmi ]SMfm 1 - (Umm) (4.177)

Figure 4.36 shows calculated examples for a WW-II propeller driven trainer airplane of the
variation of stick force with speed, with tab deflection and with center—of—gravity location, All fly-
ing quality regulations require that for speeds below the trim speed a pull force must be required
whereas for speeds above the trim speed a push force must be required. Equation (4.177) shows that
this requirement is satistied as long as the static margin, stick—free is positive! Clearly, this charac-
teristic is also satisfied by the example airplane data of Figure 4.36.

BS
The stick—force—versus—speed gradient through the trim speed, Ui » 18 found by differ-
entiation of Eqn (4.177) and setting Vp = U, . This yields:

C
dF, {2 _ [wCn,
{aVP}U _ - (Utrim)nhGesece{S Cma'3 SMfree} (4.178)

tnm

It is seen from Eqn (4.178) that the gradient at the trim speed is a function of the trim speed
itself: for higher trim speeds, the stick~force-versus—speed gradient will always diminish. This
means that all airplanes will have the tendency to ’loose’ return—to—trim—speed capability at high
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speed. This can be particularly critical at aft center of gravity because there the static—-margin—stick-
free will be least.

The trim function, therefore, serves two functions: 1) it provides the ability to zero—out the
stick forces and 2) it provides for speed stability at the trim speed. The reader is asked to show, that
if a variable incidence stabilizer is used for the purpose of setting the stick force equal to zero, the
stick~force—versus-speed gradient at the trim speed is identical to Eqn (4.178).

F (+)B ' - +8 [
kg 1 F, {kg) N =1
s :bt;_ﬂ/ [ Xag_-0,235c|
4 i Xog® 0,305¢ Rl e
+ +4 ~—
-4/ b, =-0§° Wl
U te 0/ X¢g =0,305%
o T T— e | [T -
N e” |
0 \\E\\ 0 >
~ | -
P
| -
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: \ aa” 0
-4 -1 Y. ) I
& =39 x.> NP |
; \ e cg’ NI-E ‘ 2
| \ |
-8 1 - -8 |
L] =
|u e |
I I
I - I
-2 L -12 L
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U ey ——— L (i)
a) Effect of tab angle, b) Effect of c.g. location,

6te = Xc.g.

Figure 4.36  Effect of Speed, Trim-tab Deflection and Center—of—gravity L.ocation
on Stick Force for the Harvard AT6--1IB (Copied from Ref. 4.8

4.5.5.2 Effect of Balance or Geared Tabs

It is clear from Eqn (4.178) that the stick—force—versus—speed gradient at the trim speed is
dependent on the product of the elevator hingemoment derivative, Ch6 , and the airplane static

margin, stick free, SMy,. . The latter itself is dependent on the ratio of the elevator hingemoment

derivatives, Chu/Ch&c :
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Observe, that an increase in Chﬁc (i.e. making it more negative) ’stiffens’ the stick—force—
versus—speed gradient while a decrease in Chise (i.e. making it less negative) "softens’ the stick—
force—versus—speed gradient. Also, note from Eqn (4.158) that increasing Ch.sc (1.e. making it more
negative} increases the static—-margin-stick—free, SM.. , which in turn would stiffen’ the stick—

force—versus—speed gradient. The opposite is also true.

Therefore, by ’tailoring’ the magnitude of the elevator hingemoment derivative, Ch€5 ,1tis

possible to achieve any desired stick—force—versus—speed gradient. A fairly simple method for tai-
loring Cha is to add a trailing edge tab to the elevator such that the tab deflection is proportional

to the elevator deflection. Such a tab is called a balance tab or geared tab.

By forcing the tab to move in the same direction as the elevator, the derivative Cp, s in-

creased (in the negative sense) which leads to a 'stiffening’ of the stick—force—versus—speed gradi-
ent. Such a tab is called a ’leading tab’.

By forcing the tab to move in the opposite direction as the elevator, the derivative Chl5 18

decreased (in the negative sense) which leads to a "softening’ of the stick—force~versus—speed gradi-
ent. Such a tab is called a ’lagging tab’.

Figure 4.37 shows examples of mechanical arrangements which cause a tab to either lead
or lag the elevator, By varying the length of the moment arms in the system, the so—called tab gearing
ratio can be quickly changed. That is a useful feature in flight testing to prevent lengthy down times
of a prototype.

Any balance tab can also be used as a trim tab by making the tab follower arm variable in
length and giving the pilot either mechanical or electrical control over that length. Frequently this
is accomplished with an electro-mechanical jackscrew in the tab follower arm. Figure 4.38 shows
an example of a balance-trim tab.

Expressions (4.178) and (4.169) for the stick—force—versus—speed gradient as well as the
stick—force—versus-load—factor gradient respectively show that the static-margin—stick—
free, SMg. , plays a dominant role in setting both gradients. As the center of gravity of dn airplane

is moved aft, the magnitude of SMg,,, eventually decreases to zero. Airplane centers of gravity have

atendency to always come out further aft than the designers intended. Therefore, it would be conve-
nient to have available a method to ’tailor’ the apparent magnitude of SM,.. - One methed for do-

ing this without introducing artificial stability through feedback is the so—called 'blow—down’ tab.
The effect of a blow—down tab is discussed in Sub—section 4.5.5.3.
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Stabilizer

.

Lagging Tab

Tab

Elevator

Stabilizer

C ® Leading Tab

Figure 4.37 Examples of Balance or Geared Tabs

Pilot operated mechanical or electro-mechanical jackscrew

Stabilizer

_

Elevator T Tab

Figure 4.38 Example of a Combined Balance and Trim Tab

4.5.5.3 Effect of a Blow-down Tab

Figure 4.39 shows an example of a typical blow—down tab installation. The tab link contains
a pre—loaded spring which pulls the tab against a hard stop on the elevator at zero speed. As speed,
and therefore dynamic pressure builds up, the air-loads on the tab will tend to deflect the tab away
from its stop. Note, that above the speed for which the tab moves away from its mechanical stop,
the aerodynamic hinge—moment due to the tab about the tab hingeline is balanced by the moment
due to the spring about the tab hinge line. By carefully selecting the magnitude of spring pre—load
and spring constant, it is possible to make the spring moment about the tab hingeline approximately
independent of the tab deflection. Assuming that the tab hingemoment derivatives about the tab hin-
geline and about the elevator hingeline are in a constant proportion to each other, the result is that
the blow—down tab creates a hingemoment about the elevator hinge line which is constant with
speed. That hinge moment is felt at the stick as a constant stick force with speed.
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Stabilizer

FElevator 7 |__Blow-down Tab

Figure 4.39 Example of a Blow-down Tab

As soon as the tab is away from its mechanical stop, its moment equilibrium about its own
hingeline is governed by the following equation:

My, =0= - M ~ K (8, — d;,) + Cthaﬁmhqstit (4.179)

where: My, is the total tab moment about its own hinge line in ft-1bs
M., is the moment about the tab hingeline due to the spring pre-load in ft-Ibs
K is the tab spring constant in lbs/ft
a; is the tab spring moment arm about the tab hinge line in ft
d; is the tab deflection angle relative to the elevator in deg or rad
8, is the tab deflection angle relative to the elevator when the tab is against its

mechanical stop in deg or rad
Cth6 is the hinge moment derivative of the tab about its own hingeline with respect
1

to tab deflection. Note that the previously introduced notation, Ch'5 , indicates

the hinge moment derivative of the tab about the elevator hingeline with respect
to tab deflection!
S is the tab area in ft2

C; is the tab mean geometric chord in ft

Eqn (4.179) can be solved for the equilibrium tab deflection at any dynamic pressure:

8 = M, — Ka?d,)
' (Cthanhqstﬁt - Katz)

(4.180a)

By selecting the magnitudes of the tab moment arm, a , and the spring constant, K, , suffi-

ciently small, such that their corresponding terms in the numerator and the denominator of Eqn
4.180) are negligible compared to their counterparts the following approximation holds:
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Mpl
& = B (4.180b)
C hanthtCt

Next, recall the the stick-force equation (4.172) and add the effect of the blow-down tab.
The result is:

W Cha M
Fs = 1,GeSeCes (A + Cp) + - —SM,, + C;, —F— (4.181)
v S Cny ‘5' Cthbnhstet

€bserve that this equation now contains two terms which are independent of speed. This
suggests the definition of an equivalent static margin, stick free according to:

SMfree - SMfree + ASMfreehlow —down —tab (4' 1 82)

equivalent

With the blow-down tab, the stick force equation (4.181) can therefore be written as:

Ch
FS = TIth:SCCe{q(A + Chl) + %C 8o SMfreecq“iwﬂml} (4.183)
Ms,
where: (Cm(5 Cha Mp})
SMfreecquiua,em = SMp, + : (4.184)
(Chaectha StEt(W/S))

The pilot therefore will experience the effect of the blow-down tab as an effective increase
in longitudinal stability! The speed independent increase in the stick force due to the blow-down
tab can be obtained from Eqn (4.181) as:

AF PV XA 4.185
Shivw — down — tab - & p] '_'S'—[a C[h ( * )
d\

Figure 4.40 illustrates the effect of a blow-down tab on a typical stick force versus speed
plot. Comparison with Figure 4.33 also indicates that the blow-down tab has an effect similar to
that of moving the center-of-gravity. The discontinuity in the stick force versus speed plot shown
in Figure 4.40 is not very desirable. The effect of this discontinuity can be ’softened’ by carefully
selecting the speed at which it occurs. The speed at which the discontinuity occurs is evidently a
function of the spring pre-load. Here is another reason to select a spring with a relatively small pre-
load.

One undesirable side effect of the blow-down tab is that a ’springy’ element is introduced
in the flight control system. That can lead to undesirable flight control system oscillations if the
system is poorly damped. By adding a viscous damper in the flight control system this effect can
be effectively eliminated. Flutter of the lifting surface to which the blow-down tab equipped control
surface is attached is also a potential problem. Finally, if the spring fails, the airplane could become
difficult to handle. Frequent inspections of the spring are therefore required. These inspections
should be easy to carry out!
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nQGeScCe(A + C, )
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Figure 4.40 INustration of the Effect of a Blow—down Tab

4.5.5.4 Effect of a Down-spring

Another control system gadget which is frequently used to assist in the tailoring of stick—
force—versus-speed gradients is the elevator down—spring. Such springs can be mechanically ar-
ranged almost anywhere in the flight control system but their effect is to pull the control stick for-
ward and therefore the elevator trailing edge down. Figure 4.41 illustrates an example arrangement
for adown-spring. InFigure 4.41 it is assumed that when the stick is at the forward mechanical stop,

the down-spring exerts a force through a pre-load.

n
bw N

Down—spring N\ Bob~weight AN
To Elevator To Elevator

Figure 4.41 Example of a Down-spring and a Bob-weight Installation
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The incremental stick force due to the down—spring at any stick deflection can thus be written

a 24,20
AF;, = fp;(f) + de( I S) (4.186)

as:

The gearing ratio, Ge , is used to relate the stick travel, 1,8, , to the elevator deflection, 8, :

de = Gl (4.187)
Therefore, Eqn (4.186) can be rewritten as:
a a.2d
AFg = f -Qﬁ) + Ky | 88— 4.188
Sds pl( ls ds( lszGe ( )

where: f; is the pre—load of the down—spring (stick against forward stop) in lbs
K s is the spring constant of the down—spring in Ibs/ft

O is the stick deflection in rad

[f the elevator down—spring is designed such that it has a large pre-load and a small spring
constant, the second term in Eqn (4.188) becomes negligible. The stick force due to the down—spring
in that case becomes independent of stick position and thus independent of elevator deflection. In
such a case Eqn (4.188) becomes:

a
AF, = fpl(_‘!é) (4.189)

Sds IS

In the stick—force—versus—speed diagram, this has the effect illustrated in Figure 4.42. Note,
that for a given trim—tab deflection, the addition of the down—spring increases the trim speed. By
re—trimming at the original trimspeed, before addition of the down—spring, it is seen that the down—
spring has the effect of ’stiffening’ the stick—force~versus—speed gradient.

Pull + ) _ .
. Note : AF;, is approximately constant with speed
s
T AFSdS atl
. Trim speed
with down—spring
0
Trim speed Uy, T —» Speed ~ V,
Push _ without down—spring
Figure 4.42 Effect of a Down-spring on Stick Force Versus Speed
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4.3.5.5 Effect of a Bob—weight

Bob-weights are used primarily to tailor the stick—force—per—'g’. Asa general rule, in small,
highly maneuverable airplanes, a light stick—force—per—"g’ is desired. On the other hand, in larger
airplanes where maneuvering may be limited for reasons of passenger comfort, a fairly high stick—
force—per—"g’ may be desired. A bob—weight as shown in Figure 4.41 can be used to increase the
stick—force—per—g’. The incremental stick force due to the bob~weight of Figure 4.41 at a load fac-
tor of n can be written as:

. nwaabw

Shw lg

AF (4.190)

This equation applies only for relatively shallow pitch attitude angles. At high pitch attitude
angles, the moment arm of the bob—weight will be affected by the pitch attitude of the airplane be-
cause the field of gravity is assumed to always act perpendicular to the earths surface.

Clearly, the bob—weight allows the designer to alter the stick—force-per~"g’ by an amount
equal to:

W, .a
A(%—FS) ~ e (4.191)
D/ bw 5
Note, that at n=1 (steady state straight line flight), the bob—weight introduces a constant (i.c.
speed independent) stick force increment which has the same effect as the down—spring illustrated
in Figure 4.42,

4.5.6 STICK FORCE EQUATION IN THE PRESENCE OF A TRIM TAB, DOWN-
SPRING AND BOB-WEIGHT

It should be evident to the reader that the actual stick force equation for a given airplane de-
pends on the detailed arrangement of the flight control system. For example, consider the case of
an airplane with the following type of flight control system:

* fixed stabilizer incidence angle ~ * elevator is primary control surface
* trim tab on the elevator * down—spring X
* bob—weight

For such an airplane, the total stick force would be the sum of the stick force equations as
expressed by Eqns (4.172 or 4.177), (4.188 or 4.189) and (4.190).

It is left as an exercise for the reader to develop this type of stick—force expression.

5t

=" [

(5
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4.6 LATERAL-DIRECTIONAL COCKPIT CONTROL FORCES

The effect of control surface hinge moments on flying qualities as perceived by the pilot
through the cockpit control forces is not limited to longitudinal cases. Clearly, rudder and aileron
control surfaces present similar problems. In this Section, three important lateral—directional con-
trol force problems will be discussed:

* Rudder pedal control forces

* Pedal free directional stability, pedal forces in sideslip and rudder lock

H

* Aileron wheel (or stick) control forces
4.6.1 RUDDER PEDAL CONTROL FORCES

The rudder pedal cockpit control force needed to deflect the rudder in the presence of sideslip
can be written by analogy to Eqn (4.139) and by considering the geometry of Figure 4.43:

Fr = GMGSE(Cy, 8¢ + Cy, 8, + Cy BV (4.192)

where: F; is the rudder pedal force. This force is counted as positive if it causes a negative

sideslip (i.e. trailing edge to right rudder = positive pedal force)

G is the rudder—pedal-to—rudder gearing ratio in rad/ft

1Nv 1s the dynamic pressure ratio at the vertical tail

S: is the rudder area in ft2

C; is the rudder mean geometric chord in ft

Char is the hinge moment derivative of the rudder about its own hingeline with respect

to rudder deflection, in 1/deg or 1/rad. This derivative is normally positive!
C116 is the hinge moment derivative of the rudder—tab about the rudder hingeline w.r.t.
the rudder—tab deflection, in 1/deg or I/rad. This derivative is normally positive!
ChIs is the hinge moment derivative of the rudder about the rudder hingeline with

respect to sideslip angle, in 1/deg or 1/rad. This derivative 1s normally negative!

Eqn (4.192) can be used to estimate the rudder pedal force required for a number of flight
situations. Some examples are:

* pedal force required to generate sideslip
* pedal force required to hold the rudder at a deflection required to meet the V¢

requirements discussed in Sub—section 4.2.6
* pedal force required to cope with a hard-over failure in the rudder tab drive mechanism
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+
l+ By = B—o b)
| Rudder a)
, angle, 9§,
' P
1‘/ Note:
V Cy > 0
- Cho <
y' o 0 Sideslip angle, f +
6rl'lnﬂl r_ _:__+
Figure 4.43 Example of a Floating Figure 4.44 Example of Rudder-Lock
Rudder

4.6.2 PEDAL-FREE DIRECTIONAL STABILITY, PEDAL FORCES IN SIDESLIP
AND RUDDER LOCK

In a directionally trimmed flight condition with the rudder pedals free (feet on the cockpit
floor), the rudder is free to float in accordance with the following condition:

O = Chorér + Chﬁvﬁv (4193)

In this equation, the rudder tab angle is assumed to be at zero deflection. The reader will
recognize the analogy with Eqn (4.148) for elevator floatation. The rudder float angle follows from
Egn (4.193) as:

qn { ) Chﬁvﬁv

T - Ch

B

(4.194)

A consequence of this rudder float is a reduction in the effective angle of attack of the vertical
tail. The latter can be expressed as:

Bvul’[umivc = [3 Y + Tra (4‘.195)

A

Toat

where: ¢ is the sidewash angle at the vertical tail

T, 18 the angle of attack effectiveness of the rudder (analogous to . of the elevator).

The effective stabilizing yawing moment coefficient due to the vertical tail can now be writ-
ten as follows:

Svx
Co, =CL (B -0+ 10, My—s

Sb

(4.196)

By employing Eqn (4.194) and differentiation with respect to sideslip, the directional stabil-
ity contribution due to the vertical tail with the pedals free is found as:
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C
_ Svxy, _ hy, aa Syxy, 40
Cay,.. = LS [1 G, (1 6—5)] "L Sh g *197)

&

The negative contribution to directional stability due to the wing-fuselage combination is

not affected by rudder floatation. Therefore, it is possible to write for the overall directional stability
of the airplane:

C
_— _ SVXVS hﬁv o0
Cnﬁfree - Cnf’ﬁx CLanV Sb [Ch6 (1 %)tr] (4‘.198)
With the help of Eqn (3.87) this can be also written as:
Ch
= —C, |l - &
Cnﬂ[ree - Cnf’ﬁx Cnﬁr[(:ha (1 aB)] (4-199)

When a pilot pushes on the rudder pedals to generate sideslip, the airplane yawing moment
equilibrium requires that the following condition is satisfied:

Cnia B+ Cpnd =0 (4.200)
fix T
Therefore, to produce a given sideslip angle, B, requires a rudder angle given by:
5 - Cnﬁr [3
e o (4.201)

by

Neglecting the side-wash angle, o, the rudder pedal force required to produce a given
sideslip angle, B, may be found from Eqns (4.192) and (4.201) as:

Cn

B
Fr = GmyaSedCy B — Cy, C‘;ﬁ* + Gy, 1) (4.202)
r 6|~ r‘

In the flying quality regulations it is required that the slope of rudder pedal force with respect
to sideslip angle must have the correct sign (right rudder = positive pedal force for negative sideslip)
and should not be too large. The rudder-pedal-force~versus-sideslip gradient can be obtained from
Eqn (4.202) by differentiation. Using Eqn (4.199) the reader is asked to show that:

G rn VEIS I'E]:-Ch‘5

C
Y a B Cl’l nﬁfree

B

(4.203)

Because neither directional stability, rudder control power nor the rudder hingemoment de-
rivatives are constant with sideslip, it is often difficult to meet this requirement. Because the bottom
of the rudder is often enveloped in a thick boundary layer of the fuselage (which at moderate to high
angles of attack may also separate), the rudder hingemoment derivatives are often severely nonlinear
with sideslip. This can give rise to the rudder lock phenomenon described next.

Consider curves a) and b) in Figure 4.44. Curve a) represents the rudder angle required to
produce any given sideslip angle. If this relationship were linear it would be represented by Eqn
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(4.201). Curve b) represents the rudder float angle at any given sideslip angle. If all derivatives were
linear, this curve would be represented by Eqn (4.194). The difference between curves a) and b)
at any given sideslip angle is that part of the rudder deflection for which the pilot must provide a
force to keep it there! Clearly, when the rudder moves beyond the intersection point P, the rudder
pedal force reverses and the rudder moves hard-over to its mechanical stop. That phenomenon is
known as "rudder-lock’. Itis clearly unacceptable within the normal flight envelope of an airplane.

Rudder—lock can and has caused the loss of airplane and crew. An example is the Bristol
Freighter (Type 170) which, during a certification flight test, experienced such large sideslip angles
following rudder lock, that the vertical tail broke off rendering the airplane uncontrollabie.

Since the rudder—lock problem is frequently associated with the boundary layer phenome-
non mentioned before, a solution is sometimes found in re-energizing the boundary layer over the
lower part of the rudder. That can be accomplished with a highly swept, sharp-edged dorsal fin as
illustrated in Figure 4.45. Such fins tend to generate a significant amount of vorticity which helps
in straightening—out the flow around the base of the vertical tail.

Pedal Force, Pedal Force,
+ Fp + F; Dorsal Fin
—a
P
0 + 0 +
—® Sideslip Angle, B —® Sideslip Angle, B
Figure 4.45 Effect of a Dorsal Fin on Pedal Force in Sideslip

4.6.3 AILERON WHEEL (OR STICK) CONTROL FORCES

Roll (or bank angle) performance capabilities of airplanes are essential for safe fYight and
in many military airplanes required as part of the mission. Whether or not airplanes can achieve the
roll performance is based on an assumption that a given required aileron deflection can indeed be
reached AND, when reached does not cause the wing to deform acro—elastically (see aileron reversal
phenomenon discussion in Chapter 7, Part IT of this text). Whether or not a given aileron deflection
can indeed be reached depends on the aileron wheel (or stick) force required and on any elastic com-
pliance in the flight control system itself. It will be assumed here, that the flight control system itself
has no significant aeroelastic compliance.

Figure 4.46 shows how the ailerons are assumed to move as a result of deflection of the cock-
pit control. A positive aileron deflection is defined as one which results in a positive rolling moment.
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The aileron deflection, &, , is defined as one half of the sum of the left and the right aileron
deflections:
0, = %(631 + 04 (4.204)

The left aileron is sometimes referred to as the down—going aileron and the right aileron as
the up—going aileron. Eqn (4.204) recognizes the fact that the left and right ailerons may not move
the same amount: remember the aileron-yawing moment problem discussed in Chapter 3. The aile-
ron wheel (or stick) force required to hold both ailerons at a certain angle can be written as follows:

Fa = = GalHMal + GarHMar (4.205)
where: Gy and G, are the gearing ratios for the left and right ailerons respectively, both counted

positive and both in rad/ft

HM;, and HM,, are the hingemoments for the left and right ailerons respectively. A hin—

ge—moment is defined as positive if it tends to drive the trailing edge of a
control surface down and vice—versa.

T.E. Up
aar
T.E. Down
Figure 4.46 Lateral Control Force, Aileron Deflection and Hinge Moments
The hingemoments of the left and right ailerons can be expressed as:
HM, = C; {S€, and HM, = C, GSC, (4.206)
& ar

where it is assumed that both ailerons have the same surface area, S, and surface chord, T, .

The hingemoment coefficients, C, and C, ,are assumed to be linear functions of angle
a dr

of attack and aileron deflection angles:

Ch“l = Chna + Chuaaa] + Chﬁﬂéai al’ld Char = Choa 4 Chuaaar + Chaaaaf (4_207)
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where: 8, and 8, are the left and right aileron deflection angles, in deg or rad
Oa and O, representthe’average’ angle of attack over the aileron span for the left and right
aileron respectively. These angles of attack are the sum of the wing angle of attack and the angle
of attack induced by steady state roll rate if the airplane is rolling. Figure 4.47 illustrates how the
average angle of attack at an aileron station is defined.
Two cases will be considered:

*4.,6.3.1 Steady State Roll Rate

*4.6.3.2 Steady State Straight Line Flight

Aa

geometric .~

Ao

Distance from center-line, y ——— b/2

Figure 4.47 Average Angle of Attack at Aileron Station

4.6.3.1 Steady State Roll Rate

Assuming that the aileron station, where the average angle of attack is to be considered, is
designated as y, and assuming that the steady state roll rate is ¢, the following holds fcn; the aver-

age aileron angles of attack:

and 0, = oy + %ﬂ (4.208)
1

where: (i)ss is the steady state roll rate which corresponds to a given aileron deflection, 8, .

An expression for the latter is derived in Chapter 5, Eqgn (5.134):

: Lsd&
by = ——_6“L: (4.209)

Chapter 4 272



Stability and Control During Steady State Flight

For definitions of Ly and Ly the reader should refer to Table 5.7 in Chapter 5.
The aileron wheel or stick force can therefore be written as:
F, = qsaaa{ - Ga](chna + Cy, @y + C, 631) + Gar(Ch“ + Cy, 0o, + G, 6ar)} 4.210)

or, with Eqns (4.208) and (4.209) as:

Fé —_ qsafal_ Ga_l{(:hna + Chun(aw - q)E;?Ia) + Chﬁnﬁal} +

+ anEaI:Gaf{Chn“ + Chua(aw + q)ls;?a) + Chﬁaﬁar} (4.211)

At this point a simplifying assumption will be made. Assume that the left and right ailerons
have the same gearing ratio: G, = G,, = G, . In that case, the left and right ailerons will move

overthe same angle: 8, = 8, = — &, . Remembering that the hingemoment due to aileron deflec-

tion is positive for the right aileron and negative for the left aileron, the aileron wheel or stick force
now yields:

2L
e 5Ya
F., = 95.,,G,0,4C —=_ | -2C (4.212
- nsnfe (25) ) >
This can be re—written as:
C L

Fa = - quaEaGaChﬁ 621{1 — Chaa( — ?}Tip)} (4213)

a hﬁ,

The reader should keep in mind, that the derivatives C; and Cy, apply to each aileron in-

dividually. That is the reason for the factor 2 in Eqn (4.213).

Equation (4.213) shows that the aileron floatation derivative, Cy , can have a significant

effect on the aileron control force in a steady state roll. If the ailerons are designed so that they float
trailing edge up (i.e. Cp_ islarge in the negative sense), the aileron control force in a steady state

roll will be lower than if the ailerons are designed with less up—float tendency.

It is also seen from Eqn (4.213) that, for a given set of hingemoment derivatives, the lateral
control forces increase with dynamic pressure. In airplanes with a reversible flight control system
the maximum force of which a pilot is capable can therefore become a limiting factor in achieving
certain roll rates. Figure 4.48 shows the generic effect of aileron wheel force on achievable roll rate
for a rigid airplane. If the airplane has significant aero—elastic effects (See Chapter 7 in Part II) the
achievable roll rates will be further reduced as suggested in Figure 4.48.
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4.6.3.2 Steady State, Straight Line Flight

Using the same assumptions about aileron gearing made in 4.6.3.1 the reader is asked to show
that in steady state straight line flight, the lateral control force equation is simplified to:

Fa = — quaEaGaChaaaa (4.214)

This is the aileron wheel force equation which should be used in conjunction with the mini-
mum control speed problem, one—engine—inoperative.

5 Constant Altitude

B:Nncreasing Aileron Deflection

da

Steady
state
roll
rate, Qg

!

Elastic Airplane

Speed = U, —»

Figure 4.48 _Effect of Lateral Control Force on Steady State Rol] Rate for Varyvin
Dynamic Pressure at Constant Altitude

= s
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4.7 A MATRIX APPROACH TO THE GENERAL LONGITUDINAL
TRIM PROBLEM

The procedure employed so—far in analyzing airplane trimmed flight situations has been:

1) determine the airplane force and moment equilibrium with Eqns (4.46) and (4.47) which
results in solutions for the trimmed angle of attack and for the trimmed elevator angle.

2) these solutions were used next in the stick force equation (4.141) to find the stabilizer or
tab angle {Equations (4.145) and (4.174) respectively} required to obtain stick force trim (zero
stick—force).

This procedure is simple and allows clear insight into where the "design drivers’ of a trim
problem are. Strictly speaking, this procedure is wrong because it neglects coupling between the
lift, pitching moment and stick—force equations. The correct way to analyze airplane trim is to take
the drag, lift, pitching moment AND stick—force equations and solve them simultaneously. A matrix
approach to do just that will now be presented.

In the mathematical model to be developed here, the following variables will be considered:

* Angle of attack, a * Flight path angle, v
* Stabilizer incidence angle, i * Elevator angle, 0.
* Elevator tab angle, 8, * Stick (or wheel) force, Fq

Thrust (or power) setting, speed and altitude are assumed to be pre—specified.

Because there are only four equations: drag, lift, pitching moment and stick force equations,
two of these six variables have to be specified. Typical cases which need to be considered in new
airplane design are:

Case 1: Specify flight path angle, v (level flight), and stick force, F (zero if trimmed)

Solve for: @ , i, , O, and 9§,

Case 2: Specify stabilizer incidence angle, i, , and stick force, Fy (zero if trimmed)

Solve for: o , vy , 0. and O,

Case 3: Specify stabilizer incidence angle, i, , and (run—away) tab angle, 3,

Solve for: @ , vy , 0. and Fy

Solutions to these problems must then be subjected to an ’acceptability check” similar to that
mentioned on page 227. Solutions make sense only if they are consistent with ’attached flow’ condi-
tions.
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The mathematical model for generalized trim should be sufficiently general to cover straight
line as well as maneuvering flight cases. For that reason, the general, steady state longitudinal equa-
tions (1.55a), (1.55¢) and (1.56b) will be invoked and renumbered:

Force along X: m(—- VR, +W,Q,) = —mgsin®, +F, + | (4.215a)
! 1
Force along Z: m(-U;Q, + VP,) = mgcos®,cos®, +F, + Fr (4.215b)
Zq 21 .
Pitching moment about Y: (I - I,)P;R; + LAP3 — R%) =M, + Mg (4.215¢)

For zero sideslip: V| = 0 . Also, in the stability axis system, ®, = y; and W, = 0. By

also invoking the standard forms for drag, lift and thrust, while using W = mg, Eqns (4.215) are re—
written as:

0=~ Wsiny, — D+ Tcos(a; + ¢p) (4.216a)
- %V‘UlQl = Wcos®, cosy; — L — Tsin(a; + ¢) (4.216b)
(I = T)P{Ry + Ly(P] — R} = M, — Td, (4.216¢)

The steady state angular rates in Eqns (4.216) were shown to be functions of the load factor,
n, see Eqns (4.85), (4.93) and (4.116):

For the steady level turn: For the steady symmetrical pull-up:
P, =0 P, =0 (4.217a)
_ g 1 _ &
Q =g - Q=g@-1 (4.217b)
R, = =2 /n2 - | R, = 0 (4.217¢)
I nU, : o
cosdp, = + cosd, = 1.0 (4.217d)

Equations (4.217) can be generalized by introducing the following notation:

Steady level turn:

=
==

Steady symmetrical pull —up: 2 =1  (4.218)

S =

The result is that Eqns (4.217) are re—written as:
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g

= =1
= U, L——=  cos¢y == (4.219)

g 1

Using the notation of Eqns (4.219) and by assuming small flight path angles, v , it follows
that Eqns (4.216) are wrilten as:

0= — Wy, =D+ Tcos(a; + ¢p) (4.220a)

— oW = — L - Tsin(a; + ¢) (4.220D)

,

_ Ing_z(l - #) = M, - Td; (4.220¢)
1

The drag, lift and pitching moment in Eqns (4.220) are modelled as follows by analogy to
Eqns (4.86a), (4.86c) and (4.86e) respectively:

D = CpgS = (Cp, + Cp o + (:Duza2 + Cp, iy + Cp, de + Cp )8 (4.221a)
_ Q,c . _
I. = CLq1S = (CL“ + CL“(I + CLqZ—IJl + CLihlh + CLau(Se + CLalét)qIS (4.221b)
T
= (Cm, + Crm 0 + (:mqZQTl + Cr, iy + Cm, 8¢ + Cp 807,5¢ (4.221c)
[#3 l h - t

To clarify some of the notation used, the symbol Cp, represents the drag coefficient for zero
angle of attack (as opposed to zero lift coefficient). The symbol Cp, represents the pitching mo-
ment coefficient at zero angle of attack, as usual.

In atrplanes with propellers which are mounted such that either the wing or the tails are em-
bedded in the propeller slipstream, it may be that several stability and control derivatives become

functions of the power dissipated by the propeller. If that is the case, one way to account for these
power effects is to substitute the following for all similarly affected derivatives:

power —on “nower - off GCT
where the thrust coefficient, Cy , is defined by:

=L 4223
Cr =35 (4.223)

The derivatives 8C; /dCy are difficult to predict theoretically. It is recommended to obtain

these derivatives from windtunnel data with a scaled, powered propeller.
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For the stick force, the following equation will be used:

Fs; = GeHM + F; (4.224)

artificial

where: G is the stick (or wheel) to elevator gearing ratio. This gearing ratio is assumed

to be a constant here. However, depending on the detail layout of the flight control
system, the gearing ratio can be a nonlinear function of elevator deflection.
HM  is the elevator hinge moment as expressed by Eqn (4.137)

Fs .., 1s the increment in stick—force caused by control system gadgetry such as:
down-spring, bob—weight etc. Clearly, Fs__ depends on the detail design
of the flight control system. The following expression will be used here:
Fs .. =nW K, + Gf,{K2 + K;8. + K4632 + KSih] (4.225)
where: n is the airplane load factor
Wy, IS the weight of the bob—weight in Ibs
K, is a proportionality constant which depends on the geometry of the bob—weight

installation. For the example of Figure 4.41: K| = a., /I .
K, is the hinge moment due to the down—spring pre—load, in ft-Ibs
K, is the hinge moment due to the down—spring as a result of elevator deflection,

in ft-lbs/rad
K, is the hinge moment due to the down—spring as a result of the square of elevator

deflection, in ft—Ibs/rad?
K is the hinge moment due to the down—spring as a result of stabilizer deflection,

in ft-1bs/rad

The hingemoment equation (4.137) contains the horizontal tail angle of attack, o, , which

in turn is affected by the pitch rate as shown in Eqn (4.164). By substituting Eqn (4.164) into Eqn
(4.137) and Eqn (4.225) into Eqn (4.224) the following stick force equation is obtained: <.

e — d . Q(Xae, — Xcg)
FS = ntheCeGeI:Chu + Chu{a(l - ae:‘) + lh - 80 + a‘ih}] Cg } -+ Chacae] +

—c = 2 .
+ ntheceGe[ChﬁtS[] + oW K, + GE{KZ + K;0. + K 0. + K51h} (4.225)

By substituting the pitch rate term of Eqn (4.219) and re-arranging to a format similar to that
of Eqns (4.221) this equation becomes:
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X — X
F, = ntheEcGe[Chn + Chu{_ gy + g(—m{}—z—i)(n - %)}‘I + W, K, + GK, +
i

+ ntheEeGe{Chu(l - g-g)}a + (NyASEGeCy, + GeKs i, +
+ {P"Ih-qhst:EeGeChae + Go(K; + K46e)}ae + (nhﬁSeEeGeChb )6t (4.226)

At this point, Eqns (4.220) with Eqns (4.221) substituted in them and Eqn (4.226) are cast
in the matrix format of Table 4.7.

Table 4.7 Matrix Format for Egns (4.221) and (4.226)

Cp, + Cp_@ qﬂs Cp, Cp, Co,| o a
— |y
Cp, 0| ¢ Cp, Co,| O iy
< =
Oe
_ O,
C, (1 — == 0|1C, +—=— ————— |C ———
=g | | . nthecel h T TN @S | [ myGSEGe] L Fs )

4x6 6x1

- Cp, t+ qlscos(a + ¢1)

mK—C - C g n——_l- ——lsina+
= < > (4.227)

PCNNPCR P (R L S S e R §
Cmu Cn‘lq Ulz(n ﬁ) + qSE IXZUIqu_C_(l ﬁ2)

+ g(Xach - xcg) (ﬂ _ ;) o (l’lele + GeKz)
Ulz n ntheEeGe <

4x1

LT Cht, - Chu{— €9

NOTE: Cp, , €, and Cp, are all defined at o =0 and NOT at C =0
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The reader will observe that Eqn (4.227) is not linear because the angle of attack and the

elevator angle also occur in matrices [A] and {B}. In most practical applications this does not turn
out to be a problem, as will be shown.

Equation (4.227) in Table 4.7 must be suitably modified to accommodate the typical user
scenarios, three of which were given on page 275. When specifying any two of the six variables,
the matrix equation (4.227) reduces to a conformal 4x4 set of the following general type:

[A]lix} = (B] (4.228)

where: [A] is now a 4x4 matrix
{x} is now a 4x1 matrix
{B} is now a 4x1 matrix

The variables in {x} follow from a simple inversion as:
(x} = [A]7!B] (4.229)
With the help of Eqn (4.229) it is possible to determine parameters such as:

) a6 .
* the elevator—versus—speed gradient, -7~ ; the stick—force—versus—speed
P g avp P

. an .
gradient, a_vp :

. : 90 :
* the stick—force—versus—load—factor gradient, a_ne , as well as any other gradient.

These gradients can be determined by using matrix differentiation. For the speed gradients
this is accomplished in Step 1, for the load—factor gradients this is done in Step 2.

STEP 1: The partial derivative: %% is obtained by first differentiating Eqn (4.228) with
P

respect to speed:
a[A] a{x}| _ 98{B}
v, X+ [A][—avp} =, (4230

With Eqn (4.229) this can be written as follows:

ax}| _ 8Bl _ 9[A] -1 Y
[A]{ avp} 3V, ~ v, (A1) (4.231)
The partial derivative 3{{;} is recovered from this by pre-multiplication of the entire equa-

tion by the matrix [A]

X3 _ raq—1)9Bl _ 9[AT, 4 -1
Any particular speed gradient is simply one of the four components of the 4x 1 matrix %{\);—} .
P
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STEP 2: The reader is asked to show by analogy to Step 1 that:

Axt] _ rar-1)9Bl _ 8lA] 11
{ 0 } = [A] {W o A1 (B) (4.233)
Any particular load—factor gradient is simply one of the four components of the 4x1
. o{x}
malrix “an -

IL%is left as an exercise to the reader to determine the differentiated matrices: % ,
oAl IB] 9B b

an > av, " on

Because of the non-linear nature of the matrices [A] and {B}, the following procedure is
suggested to find the correct solution of Eqn (4.228). From the approximate equations (4.105) or
(4.117), solve for the approximate values of angle of attack and elevator angle. Substitute those val-
ues in matrices [A] and {B}. Then calculate the solution {x} from Eqn (4.229). Next, re—substitute
the new values for angle of attack and elevator angle in [A] and {B} and iterate until the solutions
remain within 1%. Ithas been found that this procedure, for normal flight speeds, converges rapidly.
Warning: for speeds below normal flight speeds convergence is not assured.

The matrix method just described has been programmed as part of the AAA program de-
scribed in Appendix A. Figure 4.49 shows a screendump of this program for the case of a twin turbo-
prop commuter airplane. The flight situation is a power—on landing approach at aft c.g. Power is
set to result in a 3 degree glide angle. The assumption is made that the elevator tab angle is fixed
at zero degrees and that the stabilizer incidence angle is fixed at —0.677 degrees. This stabilizer set-
ting was determined so that the stick force would be zero Ibs. The airplane is therefore in complete
moment and stick—force trim.. This represents Case 3 on page 275. Note under output parameters
the following:

1) The static margin, stick fixed is 7.00%
2) The static margin, stick free is 2.15 %

The elevator floatation behavior therefore moves the apparent neutral
point forward by roughly 5% of the m.g.c.

3) The elevator angle required is 0.954 degrees.
4) The stick—force—versus—speed gradient is —0.57 Ibs/kt. This gradient has the correct
sign. Since the magnitude is more than 1 1bs/6—kts this gradient also has the correct

magnitude.

5) The stick—force—versus—load—factor gradient is 24.3 lbs/g. The minimum allowable
value for this type of airplane is 6.8 Ibs/g. This gradient is therefore also acceptable.
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4.8 A MATRIX APPROACH TO THE GENERAL LATERAL-
DIRECTIONAL TRIM PROBLEM

To determine the lateral-directional equilibrium of an airplane, the side—force, rolling mo-
ment and yawing moment equations were used in Sub—section 4.2.6. An important case was the
engine—out case leading to the amount of rudder and aileron deflection required at the minimum con-
trol speed. The method of Sub—section 4.2.6 does not account for the rudder—pedal and/or aileron—
stick force required to hold the rudder and the aileron at their required angles. To account for airplane
equilibrium and cockpit control forces simultaneously, clearly requires the simultaneous solution
of five equations: the side force, rolling moment and yawing moment equations, the rudder pedal
force equation and the aileron stick—force equation. In the remainder of this section, a matrix ap-
proach to solving these five equations simultaneously will be discussed.

The side—force, rolling moment and yawing moment equations are taken from Eqgns (1.55)
and (1.56) and re—numbered:

m(U;R; — W,P,) = mgsin®, cos®, + FAY1 + FTyl (4.234a)
(Iyy = IdP1Q; + LeQRy = Ny + (Fop)Nr, (4.234c)

where: (Fogp) follows from Eqn (4.72) to account for the added drag—induced yawing mo-

ment due to flying with one engine inoperative.

The corresponding kinematic equations (1.57) are specialized for the case of a steady, level
turn with the additional assumption that the steady state pitch attitude angle is small. This yields:

P, =0 (4.235a)
Q, = ¥;sin®, (4.235b)
R, = W, cos®d, (4.235¢)

The steady turn rate in Eqns (4.235) is given by Eqn (4.90) so that:

P, =0 (4.236a)

Q, = -g—ltanq)l sin ®, (4.236b)

R, = sin®, (4.236c)
1

To allow the mathematical model to be used for steady state straight line flight as well as for
steady level turning flight, the parameter n is introduced:

n =0 for steady state, straight line flight

=

= 1.0 for steady level turning flight

Chapter 4 283



Stability and Control During Steady State Flight

Incorporating the kinematic equations (4.236) and the parameter n in Eqns (4.234) while

also assuming that the steady state pitch attitude angle is small, yields:

nmgsin¢; = mgsing, + FAn + FTyl (4.2372)

~ g’ ")

n(l,, — Iw)Ftanq)lsm ¢; =L, + Lp (4.237b)
. :

~ 2 )

nI,{Z%tancplsmzq)1 =Ny + (FOEI)NT] (4.237¢)

1
Expressions for the side—force due to thrust and the rolling and yawing moments due to thrust

can be found in Eqns (3.93) — (3.95).

Expressions for the aerodynamic force and moments in Eqns (237) were previously devel-
oped as Eqns (3.197). These equations must be angmented by the appropriate tab terms in the aileron

and in the rudder. This yields:

nR;b
Fp, = (Cyf + Cy, 8 + Cy 0r + Gy, 8a + Cy, 8y, + G5y 2y (4.238a)
1 1
nR;b,
LAl = (Cl B+ C1 O, + C1 O + C1 6 Tt Cl Grt +C 50 —r—)4,Sb (4.238b)
1
anb

Nj = (CoB + Cnﬁaﬁa + Cnaﬁr + Cnaaéat + Cnesr O, + Cn;m-)qle (4.238¢)
1 1 1

Equations which account for the aileron wheel force and the rudder pedal force are similar
to those used in Section 4.6:

For the aileron wheel—force (at zero roll rate):
Fa == qlSaEaGa{ - 2Chaaa - Ché 6at} + GaK66r (4.239)

where: K is a constant which depends on the mechanical installation of a rudder—aileron

interconnect spring.

d,, is the aileron tab deflection angle. The assumption is made that the tab is

installed in the left aileron only and that the tab deflection is counted positive, trailing
edge down relative to the aileron.

Rudder-aileron (or aileron-rudder) interconnect springs are installed in many airplanes to
meet specific handling quality requitements. Examples are: compensating for excessive aileron yaw
and compensating for insufficient dihedral effect.
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The reader is reminded of the definition that a positive aileron wheel force is one which re-
sults in a positive rolling moment (i.e. airplane banks to the right).

For the rudder pedal force:

Cp,. Ng(Xac, = Xcg)
Fr = N, SEGHC, B1 — 20) — T 0

ap ik + Gy, O + Chaqért) + GK-8, (4.240)

where: K- is a constant which depends on the mechanical installation of a aileron—rudder

interconnect spring in ft-lbs

The reader is reminded of the definition that a positive rudder pedal force is one which results
in a positive yawing moment (i.e. airplane nose swings to the right).

Table 4.8 shows the matrix format for Equations (4.237), (4.239) and (4.240). This matrix
equation must be restructured into a [5x5]{5x1}={5x1} format before solutions can be found. This
requires that three of the eight variables be pre—specified. Practical examples are:

1. Specify bank angle, ¢ , aileron tab angle, 8, , and rudder tab angle, &,
Solve for: B, 8, 0, F, and F;

2. Specify aileron wheel force, Fa rudder pedal force, F; , and bank angle, ¢
Solve for: B, &, Or O, and d;

An example application will now be discussed. Figure 4.50 shows a AAA screendump of
the lateral—directional trim analysis of a commuter airplane. The flight situation is landing approach
and the assumption is that one engine is inoperative (the right engine). Three variables must be pre—
selected. In this case the aileron tab angle is set at zero degrees, the rudder tab angle is set at zero
degrees and the sideslip angle is assumed to be also zero. The reason for the latter is to keep the drag
as low as possible in this engine—out situation, just in case a climb is required.

Note under output parameters the following:

Phi = — 1.9deg. 8, = — l.6deg 0, = 10deg F, = — 10.1lbs F, = — 140.41bs

These output data indicate that for this example airplane there is no problem controlling an
engine—out situation at this speed. The rudder pedal force (although high) is less than the 150 lbs
altowed for temporary application. By using rudder trim this force would have to be reduced to the
allowable prolonged force level which is 20 Ibs. The reader is asked to size a rudder tab with which
this can be accomplished. Hint: find a value for Char which will reduce the rudder pedal force down

to 20 Ibs. Next, size the tab to produce that hingemoment derivative. Don’t use more than 20 degrees
of tab deflection!
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Table 4.8 Matrix Format for Lateral-Directional Trim Equations

[ (1 — fiyw , ACybg
q;5 i 2U, Cyy Cra, Cra | Crn | O, 0 °
ﬁ(lyy - Izz)gztanq)Sinq)
- 2 + Cla Clﬁa Clﬁr Clﬁa le’r 0 0
q,SbU, ‘ t
. nC, bg
20,2
— AL.o2tan d sin nCnb
x_zg (]2) ¢ + — zg Cnp Cmsat C“ar C“én Cnbr 0 0
g,SbU, 2U, ' t
K
0 0 - 2C — 6“ -C 0 = _—l 0
Poo | G SaCa| M, q;Sa€aGa
ﬁg(xacv = Xcg) 0Q Kq =
hf’r U]2 hﬂr( aB) nVQlSI'Crl By | hﬁ’ll T]VqISrCrGr
5x8
[ sing ] [~ FT,I/(qls) ]
p
— Lt /(@;Sb)
8,
d,
- J a |
X 9 - {(NT;)(FOEI)]/(qle) " 24D
3a,
&, 0
.
Fa
F, 0
. -~ ~ 7
8x1 5x1

Chapter 4

286




Stability and Control During Steady State Flight

TNUIUICY) € 10 UCTN[0S WIL], [BU0NJI3I(-[8I9I¥ ] € JOo dIMpudsang <<<

0s

p 2Insij

vSOs | EBE1 §Z 430 T Jalmuod s 4 i unp In-yoeouddy I UoRIOEI07 YameEaY pUR BIsAmUY ‘UBjsag

234818 IE21- = §Tx"] 06170 = 1M Bap 0 01 = S [ap

234818 9r¥109 = sTzzT[ ar_ ¥ orl-~ = 474 Bap @09 1- = eTrap

45d 28716 = seqh) ar 2'oi- = e~y Sap £5°1- z Tud

INAING P STAVIUVA 10HINOD
PEJ/340T Q070 = £ H PEJY/T 000k 0- = epryTy 8ap 000 = 17 Tsd] Bap pogto = B/,
L4341 00°0 = 37 pessT 0010 0- = ETptuT Bap 00‘0 = 17IHd [ k! = e
PeL/1 008G°0- = 374TpTYT) pes/] QOBL'OQ = TR 33/P8d 0571 = a7y 233 00'00E = "
PeJ/§ 001CG°0- = 3747pTum) PEJ/T 00QG"0 = e p~fimy 4 0L = J47aeq 234315 poog = g7IxT]
PE+/T 1006’0 = 3747"p71 7)) PEJ/T DOST O = a"u™) .14 Q90°02 = 475 214815 00009 = g§7227]
Pe4/T 0020°0 = 3~u"p~fi~y Pe4/] 0001 0- = 8717) 14/PBJ OB° G = erg 234318 0QOEK = g-hh~]
PEL/T 00800~ = 37eTpTY™y PEL/Y 000970~ = a7h7 3 0F'1 = e 4eq™) 214315 00061 = BT
PEJ/[ £000'0- = 17eTpuT] PEL/ T OQZZ 0= = “TUT) 2.3+ 00'02 = L Bap g9g'g = eydry
BEJ/T QOO0 = 17eTpTIT)) pedst 00gito = 4717) 14 02°8F = Bo—yx 97 (00091 = JuadanaTy
PEL/T DOOD'D = 3 e pfi™) ped/1 G0or"0 = w"fi— 34 00°99 = ATIRTY 534 00'G2} = 17y
pes/T QG0 "0~ = 17pY"g pet/T QOSOTD = ;B 0001 = AT 34 GOO1l = 9pn}flig
Fes/] 0060°0- = 47pTuTy S = 13074 2.3 00°0S8 = ATS 8ap o000 = 14T
PEJ/T 00200 = 4P QT _00oZ = 33571 1+ 00'9 = s Bap 00 0 = 1"B7p
FBusT 000270 = L it 00°9 = T 34 O0'F = nZ Bap 0ot = elag
SHILINVHV 1NdNT 2 FEHL TYNOLLS JHIG-TvHAI
| MYNLIH] SUILINVHVI LNIHd] 31V 1N01v 2]
[ NYAL13Y | I0H0I¥IQANY] 30604 NOHIIIv[ JONY HIAANH]  JTONY NOET IV
TIEVIHVA TOUINOD QUIKL 123138
f Nenl3y] = "3ouosuzanmd]  3ouod noud iy JEEIIIGRERRY  Sonv 5300ME]  T1ONY NONITIV] I3RS FIONV ANVE]
FIWVIUVA JOUINOD ANODIS 123138
NHM13Y ERIE Bv1 NOYINV | TIONY HIGANH ][ FTONY NOHTIY] dNS30IS | FIONY HNvE]
FIEVIHVA JOHINOD ISHId 127138
NHAL Yy L] T INIOd WHINAN] INSWOW JONIH] ERREESIE] WYHOVIC YL ] 155v 193]

ONIZIS FDYNNIIWI TOHLNOD ONV ALNIAVLS

[ GG Isve vival IOHINOD|[  S3AILVAINIO 29S| ISAIHL Q31IVISNI 14T HSH]
| dNLIS/d13H[ 7 SIEATYNY 1503 | SMVNAQ | SISATYNY "4d3d | JONVIVE 7 IHDIIM HY10d DYHA AJ1IMOFD |

ONIZIS Wd03d1d
DNIZIS. LHIIM

SISATYNY LAvHIHIY AIDNYAQY

287

Chapter 4



Stability and Control During Steady State Flight

4.9 THE TAKEOFF ROTATION PROBLEM

Most airplanes, to become airborne, must be rotated about the main gear rotation point to
achieve the angle of attack required for lift-off. Exceptions to this are airplanes like to B-52. To
provide an airplane with the ability to rotate at relatively low speeds (the rotation speed is normally
slightly above the stall speed) requires a significant down—load on the horizontal tail (for a conven-
tional airplane} or an up-load on the canard (for a canard airplane). In this text, only the case of the
conventional airplane will be addressed. For canard and three—surface airplanes the reader should
consult Part VII of Ref. 4.5,

The requirement to rotate an airplane at rotation speed often is the *designing’ requirement
for the horizontal tail: planform, airfoil, incidence and area must together be compatible with this
requirement. In the following, an analysis of the amount of tail area required to produce a given level
of pitch angular acceleration about the main gear contact point is given. The most important design
parameters are discussed and a numerical example is given.

Figure 4.51 shows the forces and moment which act on an airplane as it is accelerating down
the runway at the instant of rotation: no load on the nose—gear!.

The following three equations govern the airplane equilibrium at the instant of rotation:

T — Dy — pgRg = %—VU (4.242)
L, +L, +R,=W (4.243)
wi, h, g

- W(Xmgg - xcgg) + Dg(ZDg - ngg) - T(ZTg - ngg) + wag(Xmgg - Xacwfg) + hd:acwfgl +

— Ly (Xac, = Xmg,) + %U(zcgg — Zmg) = Ly, Omg (4.244)

The reader must keep in mind that all aerodynamic forces and moments in Figure 4.51 must
be evaluated in the presence of ground effect. That is the reason for the subscript *g’ associated with
most terms in Eqns (4.242-4.244). Suggested expressions for the aerodynamic forces and moments
in Eqns (4.242) — (4.244) are as follows.

L

For the drag, Dg - Dground:

D, = C S (4.245)

ngundq rotate

where: Cng 1s the airplane drag coefficient in ground effect

nd

Urotare 15 the dynamic pressure at the instant of takeoff rotation

Bmg  is the angular acceleration about the main gear rotation point in rad/sec?
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For the wing—fuselage lift:
(4.246)

wag = chfgmundq rotatcS

is the airplane lift coefficient in ground effect during the takeoff run

where: Cyp,
Wlaround
For the tail lift:
L, = CL, M TrogaeSh (4.247)
ground
where: Cp, s the horizontal tail lift coefficient in ground effect during the takeoff run.

ground
This tail lift coefficient will normally be negative (tail lift acting down) to affect
takeoff rotation. This lift coefficient depends on the following quantities:

* tail angle of attack which in turn depends on down—wash and on the

stabilizer incidence angle.

* tail airfoils
* tail planform parameters such as aspect ratio, sweep angle and taper ratio

The methods of Part VI of Ref. 4.4 may be used to estimate the value of the maximum
negative lift coefficient of the horizontal tail in ground effect. For purposes of
preliminary design it is often assumed that this lift coefficient has a value of 1.0.

For the wing—fuselage pitching moment:

Mae St (4.248)

= Cm” q
f ag, - rotate
We w'gmund

where: Cp ) is the airplane pitching moment coefficient about the wing-fuselage
w greund
aerodynamic center, in ground effect during the takeoff run. This coefficient will

normally be negative for a positively cambered wing. With flaps down, this coef—
ficient will be even more negative.

For the wheel-to—ground friction coefficient, pg , the reader should consult Table 4.9.
.

Table 4.9 Typical Values for Wheel-Ground Friction Coefficient

0.10 0.10-0.30

Wheel-Ground

Friction Coefficient . Ug 0.02 0.02 0.04 0.05

Type of terrain Concrete | Asphalt or | Hard Short Long Soft
Macadam | Turf grass grass ground

Chapter 4 290



Stability and Control During Steady State Flight

The angular acceleration about the main gear rotation point, émg , should have a value such
that the takeoff rotation process does not take more than 1-3 seconds. Suggested values in prelimi-
nary design are:

* For large transports: émg = 6-8 deg/sec?

* For small transports: Omg = 8-10 deg/sec?
* For light airplanes and fighters: émg = 10-12 deg/sec?

During prefiminary design it may be assumed that the airplane rotation speed is related to
the stall speed in the takeoff configuration as follows:

Vioue = Vg = 1.1V (4.249)

Stakeoft

During the early design of an airplane it is important to assure that the tail size is adequate
to achieve takeoff rotation. The amount of tail area needed for takeoff rotation at the rotation speed
can be solved from Eqns (4.242) — (4.244). The result is:

{W(Xcgg - Xmgg - ugzcgg + Mmegg) + Dg(ZDg - chg) + T(chg - ZTg)} +

Sh = + {wag(Xmgg - x.acwfg + MgZng - umegg) + Macwfg - Iyymge} (4.250)
(CL

Mh,rotare) Xac,, ~ Xmg, T MeZmg, — HeZcg,)

max
ground

The tail size required for takeoff rotation is quite often the requirement which sizes the hori-

zontal tail. An example application will now be discussed.

Table 4.10 provides the input data required to carry out a takeoff rotation analysis for a twin
engine commuter airplane. All pertinent input data are determined to include the effect of ground
proximity. Figure 4.52 shows typical results of a trade study performed to illustrate the effect of the
following parameters on the initial angular acceleration about the main gear:

Figure 4.52a shows the effect of tail area, Sy, and rotation speed, V rotate , On the initial angu-

lar acceleration about the main gear, Omg .

Figure 4.52b shows the effect of c.g. location, Xcg, , ground friction coefficient, fg, and

thrust—line location, Zy, ,on the initial angular acceleration about the main gear, émg )

It 1s seen that the tail are required to rotate is very sensitive to several important design pa-
rameters. Note the effect of ground friction: if an airplane must operate out of "soft’ fields, this has
a significant influence on the required tail area!
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Table 4.10 Input Data Required for Takeoff Rotation Calcuiation

W =16,0001bs  Cp, = 0.0800 o = 0.002377 slugs/f® T =573 ft
Xeg, = 38.5 ft Cp, =060 I,y,, = 58,000 slugft? Ny, = 1.0
Xmg, = 41.0 ft s
‘ Xac,, = 37.5 ft C,. = —080 Xa, = 65.0 f1
I.lg = 002 E hgrnund &
— = 2 - _
Zeg, = 10.0 ft S = 300 fi Cr,,, = = 0.150 |
Zmg, = 5.5 ft zp, = 9.5 ft zr, = 9.0 ft T = 5,000 lbs
07
 Rotation Speed (kis)
-~ 35 ; 100
S50 —
¢ 0T
2 E - 120
g2 : =
T L. -
gm =
2 f =T
3154 —— =
§ [ _--- —
o 10 +=
° :
E 5 L /
/
0 u . " : .
40 45 50 55 &0

Horizontol Tail Area (ft sq.)

Figure 4.52a Effect of Horizontal Tail Area and Rotation Speed on Initial
Angular Acceleration about the Main Gear

Xeg, =38 ft  zp =8 ft

. 30 -
emg ﬂ'- l.l.g = 0.02
deg/sec? / ug = 0.10
20 == = 2y, = 10 ft
L -—“'"
" 5,
10
=" € =573 ft
”
0'|||||1|_||1|||1|1||||
60
40 50 S, ft?
Figure 4.5 t of Center of Gravi tion, Ground Friction and T t

ne Location on Initial Angular Acceleration ab he Main
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4.10 INTRODUCTION TO IRREVERSIBLE FLIGHT CONTROL
SYSTEMS

The reversible control systems discussed in Sections 4.5 through 4.8 which feature com-
pletely mechanical connections between the cockpit controls and the flight controls, have the fol-
lowing advantages:

* reliability {through simplicity)

* relatively maintenance free

* relatively low cost
Disadvantages are:

* serious aerodynamic problems in the very high subsonic, transonic and supersonic
speed ranges

* relatively heavy
* limited to moderately sized airplanes because of magnitude of control forces

* difficult to integrate stability augmentation systems (an exception is the
Separate Surface System approach discussed in Chapter 11)

Several intermediate systems between purely reversible and completely irreversible systems
have been developed and flown. Reference 4.9 contains some examples of these intermediate forms.

An interesting example of an intermediate system is found in the Boeing 737 series. This
airplane is equipped with two hydraulic systems with mechanical signalling for the primary controls.
In case of dual engine failure and/or in case of complete hydraulic system failure the airplane has
complete reversibility in the pitch and roll axis. The yaw axis in the 737 series has a third indepen-
dent hydraulic system and no mechanical reversion.

The modern trend in flight control system design for high performance airplanes is to employ
irreversible systems. The most common method of actuating the flight control surfaces in an irre-
versible system is the hydraulic system. A detailed discussion of hydraulic systems is beyond the
scope of this text. Part IV of Reference 4.5 contains a chapter on hydraulic systems. For a more
detailed treatment the reader should consult Reference 4.11.

Primary advantages of irreversible systems are:
* Flexibility in combining pilot control commands with automatic control

and stability augmentation commands
* Ability to tailor handling qualities
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* Relatively low weight, particularly when combined with electric and/or
optical signalling

Among the disadvantages of irreversible systems are:
* Complexity * Reliability
* Redundancy * Cost: development and maintenance

Cost and reliability have been the main reason why irreversible systems have not yet been
used in low performance airplanes. The designer of an irreversible flight control system must prove
that the probability of catastrophic failure of the system is less than once per 1,000,000,000 flight
hours according to the existing airworthiness code. This is referred to as the so-called 109 criterion.
The reader should refer to Table 6.4 and Figure 6.4 in Chapter 6 of this text for additional guidelines
in regard to allowable failure rates.

In the case of electrically signalled systems, an additional disadvantage is the requirement
for hardening against lightning strikes and, in military airplanes, the requirement for hardening
against EMP (Electro—Magnetic Pulse).

The following general types of irreversible control systems have been developed:
* Irreversible systems with mechanical signalling

* Irreversible systems with electric (fly-by—wire) signalling

* Irreversible systems with optical (fly—by-light) signalling

Figure 4.53 shows an example of an irreversible system with mechanical signalling. In such
airplanes, the cockpit controls tend to be conventional: control wheel and column as well as rudder
pedals. Because there is no feedback from the aerodynamic surface controls to the cockpit controls,
some form of "artificial control force feel’ system must be included, adding to the complexity of the
system. Figure 4.53 shows the location of the variable feel unit.

Irreversible systems with electric signalling have been used for some time in several military
airplanes. The F-16, F-18 and F-117 are examples. The Airbus A-320 is the first commercially
certified transport with irreversible flight controls and fly~by-wire signalling through a digital com-
puter system. Figure 4.54 shows an example of a system with electrical signalling. Such a system
makes it possible to use side—stick controliers without force feedback as long as some form of *flight
envelope protection’ is provided. In the A—320 this is done by denying the pilot the ability to bring
the airplane outside aerodynamic or structural Jimits.

Irreversible systems with optical signalling are still under development. The Lockheed F-22

is scheduled to have such a system which was flown also on the YF-22 prototype. Such systems
have as an advantage the insensitivity to lightning and EMP strikes.
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A detailed discussion of the design of flight control systems is beyond the scope of this text,
Part IV of Ref. 4.5 contains detailed diagrams of various types of irreversible flight control systems.

Many airplane types which are currently in production and/or development use reversible
types of flight control systems. Table 4.11, taken from the 1992—1993 issue of Jane’s All The Worlds
Aircraft, shows examples of airplane types using reversible and irreversible flight control systems.
Table 4.12 shows detail examples of flight control system types used in several airplanes.

Further integration of flight controls, propulsion controls and guidance signals. with ad-
vanced cockpit displays, will likely lead to more and more automation of the flight management
tasks of the cockpit crew. Such developments will significantly affect the way airplane manufactur-
ers design and evolve flight control systems.

4.1 SUMMARY FOR CHAPTER 4

In this chapter the steady state equations of motion of an airplane were applied and solved
from a viewpoint of assuring satisfactory stability and control properties.

After discussing the longitudinal equilibrium equations and their general solutions, the read-
er is introduced to the use of the longitudinal diagram. With this diagram questions involving trim-
mability at forward and aft c.g. as well as questions about horizontal tail stall can be solved rapidly.
Practical applications of the trim diagram are given.

The lateral-directional equations are shown to become important in solving controllability
problems involving the failure of an engine. The minimum control speed problem in the case of
one-engine-inoperative was developed and discussed.

Airplanes can be equipped with two fundamentally different types of flight control systems:
reversible and irreversible. Generic difference between these systems are discussed. The widely
used reversible flight control system type has a significant effect on airplane controllability, stability
and trim. The effect of the flight control system on flying qualities was developed and discussed.
Definitions for stick—fixed neutral point and maneuver point as well as stick—free neutral point and
maneuver point are given. Important concepts such as:

* return—to—trim-speed stability

* stick—force versus speed gradient "

* stick force versus load—factor gradients

were analyzed, discussed and related to pertinent handling quality regulations.

Methods for predicting the stick, aileron and rudder cockpit control forces (force trim) were
also discussed. A coupled approach to longitudinal and lateral-directional trim problems (allowing

for certain non-linear effects) was also developed using a generalized matrix formulation.

In several cases the use of the theory is illustrated with applications using the AAA software
described in Appendix A.
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Table 4.11 Examples of the Use of Reversible and Irreversible Flight Control Svstems

Reversible P.F.C.S Reversible P.E.C.S Irreversible P.F.C.S
Beech F-33A  Beech M-58 EMB--120 Brasilia Boeing 747 all models
Beech King—Air all models except for irrev. rudder Boeing 757 all models
Beech M 1900  Beech Starship ] EMB-312 Tucano Boeing 767 all models
Beech M 400 DHC-8 Boeing 777 full FBW
Boeing E~3A (with power boost) |  except for irrev. rudder Cessna Citation 750
Cessna Caravan all models SOCATA TBM-700 Dassault Rafale
Cessna Citation 550, 525, 560 Dornier 228 Grumman A—-6
Commander 114 B Grumman F-14
Farohild Metro 23 G0 SAAB 340 Grumman E-2C

airchi etro 23, C-

: SAAB 2000 Lockheed F-16 full FBW
Learjet M 35 and M 36 except for irrev. rudder Lockheed F—117 full FBW
Learjet M 31 - Lockheed F-22 full FBL
Leal‘jet M 60 Pilatus PC-9 VoDD P15

C —

Mooney MSE and TLS Shorts 330 MeDD AV_SB
Piper Cheyenne Reversible/Irreversible | McDD MD-11
Piper Malibu PEC.S McDD C-17 full FBW
Swearingen SJ30 Boeing 737 all models Northrop B-2 full FBW
Taylorcraft F22 Cessna Citation 650 Airbus A-300-600

Airbus A-320 full FBW
Fokker F-50 _

s Gulfstream IV, €20 Airbus A-340 full FBW
Piaggio P-180 Lockheed P-3

B — SAAB JAS -39 Gripen
CASA-IPTN CN-235 Fokker F~100 full FBW

Aerospatiale/Alenia ATR 42
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4.12 PROBLEMS FOR CHAPTER 4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Take any example airplane in Appendix B. Calculate and plot the maneuver point stick-
—fixed as a function of altitude.

Derive an equation for the neutral point stick-fixed and stick-free for a canard airplane.
Assume that the canard is fixed in the first case and freely floating in the second case.

Describe how you would measure the side-wash-due-to-sideslip derivative, do/df

from windtunnel data. Indicate the type of runs needed to get this information.

Starting with Eqn (4.141) and using Eqn (4.145) derive an expression for the tab deflection
angle required to set the stick force equal to zero.

Starting with Eqn (4.141), show that Eqn (4.159) is a reasonable approximation for the stick
force.

Figure 4.55 represents windtunnel data for a small jet trainer. From these data determine the
following characteristics:

El) CL‘(: CLBL. CLU GOL

b) Cp, e (assume A = 5.1) CDa (L/D)max for 8. = 10deg
C) Cmbr__ Cmbc Cmu Cmn

d) determine Cmu for 0 < C; < 0.5 determine X, for 0 < C < 0.5

e) If Xep, = 0.15 and X = 0.32 determine CL, for both cg locations

For Airplanes E, F and G in Appendix B determine the minimum control speed with one

engine inoperative using the single degree of freedom approximation. Assume that the
maximum rudder deflection is 25 degrees.

Repeat problem 4.7 for the three—degrees—of-freedom case and find the minimum control
speed as function of bank angle. Use +10, +5, 0, -5 and - 10 degrees for the bank angle.

Refer to Eqn (4.92). For ¢, = 90° this equation leads to the absurd conclusion that the

load factor, n, becomes infinitely large. Explain what really happens in the case of an air-
plane flying at a bank angle of 90 degrees.

Modify Eqn (4.171) so that it applies to the case of a steady symmetrical turn,
Prove that Eqn (4.159) is correct.

Prove that Eqn (4.169) is correct.
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4.14

Stability and Control During Steady State Flight

A jet transport in the approach flight condition has the following geometric and
aerodynamic characteristics:

Cp =14 Cm, = — 046 rad™! Cp =46rad™! X, =020
S =2000ft> Tnm = —001deg™! Cp =001deg™ de =05
T =190 ft Cn, =0 Gmax = 10 deg

dp == 3ft* W=1250000bs  Cp =22

* The thrust line is 3 ft below the c.g. ap = +/— 15deg

a) Assume that the forward c¢.g. is at 12.5 % mgc and the aft c.g. is at 22.5%
of the mge. Assume that the stabilizer incidence can move in a range of
— 20 deg to + 10 deg only!. In the trim diagram plot your lines in increments of
10 deg. Label these lines!
Draw the ’trim triangle’ for this airplane without the effect of thrust.
b) Determine the maximum trimmable lift coefficients at forward and at aft c.g.
Compute the corresponding approach speeds. Discuss your results.
c¢) Draw in the positive and negative tail stall loci. Explain how you did that!
Is the answer to a) still valid? If not, what is the new answer and why?
d) Copy your trim diagram and now indicate the effect of thrust on that
trim diagram. Assume that the total approach thrust is T = 25,000 Ibs.

The following three equations represent the steady state lateral-directional equations of
motion for a twin-engine airplane with the engines mounted under the wings. The stall speed

of the airplane in the approach configuration is: Vj, . The minimum control speed for the

airplane is: Ve < 1.2Vy .
— Wsing = (CYBB + Cyarﬁr)?jS 0= (Clﬂﬁ + Clﬁaé‘a)qu
0= (Cnﬂﬁ + Cnﬁaéa + Cnﬁrér)qu + Tyt

a) Define each quantity in these equations and indicate its usual sign.

b) Assume that the right the engine has failed. Derive an expression for the allowable value

for: yq if the objective is to fly at a five* degree bank angle and at zero sideslip angle.
State the rationale behind your solution in a logical, step~by-step manner.

* Do you bank into the operating engine or into the inoperative engine? What is the
the desired sign for the bank angle in this case?
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CHAPTER 5 STABILITY AND CONTROL DURING
PERTURBED STATE FLIGHT

The purpose of this chapter is to examine the stability and response characteristics of air-
planes in terms of small motion perturbations relative to a given (and therefore completely defined)
steady state flight condition. These characteristics are also referred to as the dynamic stability and
response behavior of an airplane. Before proceeding, it is useful to define precisely what 1s meant
by dynamic stability and response.

Definition of Dynamic Stability

Dynamic stability is defined as the tendency of the amplitudes of the perturbed motion of an
airplane to decrease to zero or to values corresponding to a new steady state at some time
after the cause of the disturbance has stopped.

As an example, when an airplane is perturbed in pitch from a steady state flight condition
and the resulting motion is damped out after some time, while the new steady state is not significantly
different from the original one, the airplane is called dynamically stable.

This example and the definition indicate clearly that the subject of dynamic stability deals
with the behavior of the perturbed motion of an airplane relative to some steady state flight path.
The concepts of dynamic stability, neutral stability and instability (also called dynamic divergence)
are illustrated in Figures 5.1 and 5.2,

As a general rule, airplanes must have some form of dynamic stability even though certain

mild instabilities can be tolerated under certain conditions. The desired behavior of airplane motions
under dynamic conditions (i.e. non-steady—state) is formulated with dynamic stability criteria.

Definition of Dynamic Stability Criterion

A dynamic stability criterion is defined as a rule by which perturbed motions of airplanes
are separated into the categories of stable, neutrally stable or unstable.

In another context, a dynamic stability criterion can be interpreted as a requirement for spe-
cific response characteristics or for meeting specific frequency/damping relations. This type of in-
terpretation is embodied by intent in many civil handling quality regulations and by numerical speci-
fication in many military requirements for flying qualities.
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Without friction:
Dynamic Neutral Stability

With Friction:

” Dynamic Stability, also

called Oscillatory

Convergence

(gravity)

11y J

Dynamic Instability, also called
Oscillatory Divergence

8

(gravity)

+ Dynamic Instability, also called ©“
° Pure Divergence

(gravity)

Figure 5.1 Examples of Dynamic Stability, Instability and Neutral Stability in a
Mechanical System
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The military flying quality requirements of Ref. 5.1 are viewed in this text as dynamic stabil-
ity and response criteria which, when met, assure that human pilots can safely fly an airplane. Sever-
al important aspects of these requirements are included in Chapter 6.

It will be shown that there are important connections between these handling quality criteria
(requirements) and purely mathematical definitions of dynamic stability. These connections will
be explored in this chapter so that an airplane designer can use these connections to assure that a
given design will possess adequate flying characteristics when flown by a human pilot.

The word ’response’ has been used several times in the discussion so far. A definition and
a discussion is given next.

Definition of Response

Airplane response 1s defined as the variation with time of motion variables relative to some
given steady state flight condition as a result of an externally or internally generated distur-
bance.

Examples of externally generated disturbances are changes in angle of attack or sideslip due
to atmospheric variations such as gust or turbulence. Examples of internally generated disturbances
are control surface deflections or engine failures.

It may already be evident from the discussion so far that the character of airplane response
to disturbances (such as a gust) and/or (o control surface deflections is intimately tied up with the
dynamic stability behavior. That this is indeed the case will become clear when the reader proceeds
to study the mathematical analysis of airplane dynamic stability and response in this chapter.

The static stability criteria for airplanes were shown in Chapter 4 to evolve directly from the
application of the definition of static stability to the instantanecus forces and moments which act
on an airplane. In the case of dynamic stability, such a development has not been found possible.
As stated, dynamic stability is associated with the response behavior of an airplane as a result of cer-
tain types of disturbances. This response behavior can be numerically predicted from the differential
equations of motion. These differential equations of motion were developed in Chapter 1. Equa-
tions (1.51), (1.52) and (1.53) are typical examples.

w

The differential equations of motion of an airplane can be cast in many different forms. The
particular form selected will depend on the similarity between the mathematical model and the real
physical problem being analyzed. In general, differential equations can be linear, nonlinear, autono-
mous and non—autonomous. Equations (1.51)—(1.53) are non-linear and autonomous.

Experience has shown that in many cases, the dynamic behavior of airplanes can be satisfac-
torily represented by assuming that the perturbations away from steady state flight are small. This
is in fact the way airplanes should behave from a point of view of comfort (in the case of passenger
transports} or from a point of view of weapons delivery accuracy (in the case of certain military air-
planes). In such cases the equations of motion can be approximated by a set of linear differential
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equations with constant coefficients. These equations are called the small perturbation equations
and their basic form (relative to an arbitrary steady state) was developed in Chapter 1 as Eqns (1.75),
(1.76) and (1.79).

By selecting the steady state, symmetrical, straight line flight as a special steady state condi-
tion, the perturbed equations of motion became those of Eqns (1.81) through (1.83). These equa-
tions must be augmented by using appropriate expressions for the perturbed aerodynamic and thrust
forces and moments as expressed by Eqns (3.162), (3.197), (3.248) and (3.249).

Since the stability axis system was selected as the coordinate system of choice, the term W,

(steady stats, velocity along the Z-axis) is by definition equal to zero. The resulting small perturba-
tion equations of motion of the airplane are presented in two independent sets: the longitudinal equa-
tions and the lateral-directional equations. Their corresponding kinematic equations are also given.

For the longitudinal equations:
1 v |

_[c
+ qls{ﬁ? ~(Cp, = Cp)a - Cnaﬁe} (5.1a)

m(w — U,q) = — mgsin8, + ‘qls{ —(C, + ZCLI)UL1 —(Cp_+ CDl)a} +

+ qls{— CL,;ZG—Ii - CquiS[ — CLaf’e} (5.1b)
yyq—qlSc{(C + 2Cn, )u + (Cm,, +2CmT)u +Cp o+ Cy a}

+ qISG{Cm 30, + Cm, 2‘113’1 + Cp a} (5.1¢c)

where: q = 6 and w = U (5.1d)

For the lateral-directional equations:
m(v + U;r) = mgdcosb; + QIS[CyﬂB + C

P ycy b+ 8+ 6](5.2a)

»20; T YU,
Lp—Tgf=aqSblCp+C L2+ L0 1 C 6, +C 8 (5.2b)
P T el = 4 s 20, k20, I, b T '

pb

b
+ Cr1r2Ul + C, 6 + C, 6 ] (5.2¢)

where: p = tb , T = w and v = U;p (5.2d)
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Equation sets (5.1) and (5.2) represent eight linear differential equations with constant coef-
ficients. The reader will note, that these equations split into two (mathematically independent) sets:

Set (5.1) the small perturbation longitudinal equations
and
Set (5.2) the small perturbation lateral-directional equations.

Because of the appearance of accelerations in six of these equations they are of the second
order. To solve these equations and to interpret their solutions the method of Laplace transformation
will be used. References 5.2 and 5.3 provide a good overview of the theory and applications of
Laplace transformation theory. Appendix C of this text contains a summary of those properties of
Laplace transforms which are essential for the reader to understand.

The Laplace transforms of Equation sets (5.1) and (5.2) will be formed in such a manner as
to vield the so-called open loop transfer functions of the airplane. The dynamic stability and re-
sponse behavior of the airplane will then be determined from these transfer functions. It will turn
out that these airplanc transfer functions have properties similar to that of a simple, mechanical
spring—mass—damper system. To understand airplane dynamics, it is essential that the reader under-
stand the stability and response properties of a spring-mass—damper system. The behavior of such
systems is discussed in Section 5.1.

The dynamic stability and response (to control inputs) of the airplane according to the small
perturbation longitudinal equations of motion is discussed in Section 5.2. The dynamic stability
and response (to control inputs) of the airplane according to the small perturbation lateral—direc-
tional equations of motion is discussed in Section 5.3.

It should be noted that equation sets (5.1) and (5.2) do not include a model of the dynamic
behavior of the flight control system itself. For that reason they are referred to as 'fixed control sur-
face’ equations: they apply to airplanes with irreversible flight control systems. They also apply to
airplanes with reversible flight control systems, provided the pilot (or auto—pilot) keeps the control
surfaces fixed at some initial position or moves them in accordance to some fixed schedule (step—in-
put, ramp input, sinusoidal input, etc. To account for the effect of freeing the controls (i.e. allowing
the control surface to float dynamically) a change in the mathematical model is required. Reference
5.4 contains a fairly detailed discussion of the dynamic effect of freeing the controls. A summary
of the required additional equations is given in Appendix D. .

During the early design phases of an airplane it is important for the designer to understand
the sensitivity of the dynamic stability and response behavior of an airplane to changes in various
aerodynamic, geometric and inertial parameters. These effects can be studied by performing so—
called sensitivity analyses. How this is done is discussed in Section 5.4.

Many high performance airplanes require an automatic feedback system to achieve accept-
able flying qualities. Itis possible to estimate the required feedback gains in such systems with the
help of so—called equivalent stability derivatives. An introduction to equivalent stability derivatives
and their role in early design is given in Section 5.5,
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Fighter airplanes in particular can encounter severe inertial coupling effects when maneu-
vered at high roll rates and/or high pitch rates. A method for evaluating the dynamic stability of
airplanes which undergo such maneuvers 1s discussed in Section 5.6.

Examples of how a designer might go about assuring that an airplane has certain pre—speci-
fied dynamic stability and response characteristics (such as specified in the regulations) are given
in Chapter 6, Section 6.6.

51 DYNAMICSTABILITY AND RESPONSE BEHAVIOR OF A SPRING-
MASS-DAMPER SYSTEM AND ITS STABILITY CRITERIA

Figure 5.3 shows an example of a mechanical spring—mass—damper system. The position
of the mass, x(t), is considered to be the "output’ of the system. The externally applied driving force,
{(t), 1s considered to be the *input’ to the system.

steady state position of mass, m

position of mass, m at time, t: x(t)

Figure 5.3 Example of a Spring-Mass—-Damper System

The equation of motion for the system of Figure 5.3 can be written as follows:
mx + ¢x + kx = {(t) (53.3)

It is useful to cast this equation in terms of accelerations rather than forces. This is done by
dividing by the mass, m:

el ft
ko Cx 4Ky = 1O (5.4)

The following two quantities will now be defined:

k

the undamped natural frequency : On = (3.5)

and:

ur
l\)II
?n

the damping ratio: (5.6}
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The physical significance of these quantities will be made clear later. Eliminating c, k and
m in Eqn ((5.4) in favor of T and wy results in:

% + 260k + wp2x = 1 = £ (1) (5.7)

Applying the Laplace transform for non—zero initial conditions yields:

s2x(s) + 2Cwpsx(s) + wa2x(s) = f,(s) + x(0) + sx(0) + 2Lwax(0) (5.8)

Where f,(s) is defined as the Laplace transform of f(t) . The output of this system in the

s—domain, x(s), can now be written as:

£,(s) + X(0) + sx(0) + 2Cwyx(0)
$2 + 2Cwps + Wy

x(s) = (5.9

If the input, £(t), is a step—input at t=0 with magnitude f(0) , its Laplace transform is: { f(0)}/s.

Therefore: f,(s) = E(nios—) . The ultimate position, x(t — o) of the mass, m, may be determined

from the final value theorem (See Appendix C) as follows:

f0) .
. _ _ < + x{(0) + sx(0) + 2Tw,x(0) £(0)
t — l == 1 ms - .1
tl_)lrg X0 o0 (sx(s) g s + 2Ewgs + 0,2 mmy,2 (5-10)

Observe that this answer 1s dimensionally correct because f(0) has the unit of force.

If the initial conditions are all equal to zero, it is possible to solve Eqn (5.9) for the ratio of
the output Laplace transform, x(s), to the input Laplace transform, f 1(8):

X(8) _ arq) — 1
fy(s) G(s) s2 + 2Lw,s + w,2 .11

This ratio is referred to as the open loop transfer function of the spring—mass—damper sys-
tem. The concept of open loop transfer function is very important to the study of airplane dynamics.

The response of any system with G(s) as the open loop transfer function is obtained by muiti-
plying the open loop transfer function of the system by the Laplace transform of the input to that
system. The application of this idea to the spring—mass—damper system of Figure 5.3 will now be
discussed. Assume that the forcing function f|(t) is a unit step as illustrated in Figure 5.4. The

Laplace transform of the unit step is:

fi(s) =1 (5.12)
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T | £,() =0 for t<0 and £,;(0 = 1.0 for t =0
1.0

f,(1)

time,t ——

Figure 5.4 Graphical Representation of a Unit Step Forcing Function
~

The output of the system, in the s—domain, can now be written as:

=1 1
x() S (s2 + 2Lw,s + wnz) (5.13)

To find the corresponding time domain response, x(t), it 1s necessary to find the inverse
Laplace transform of x(s). This is done with the method of partial fraction expansion. How this is
done is explained in detail in Ref. (5.2). The usual procedure is to first find the roots of the character-
istics equation:

s2 4+ 2Wwys + 0,2 =0 (5.14)

The roots of this characteristic equation will be called A; and A,. These roots are some-

times referred to as the ’eigen—values’ of the system. It is now possible to write:

2 4+ 2Lwgs + 0u2 = (5 — A(s — Ay) (5.15)

The system output in the s—domain can now be written as:

=1 L _A,_B C
x© S ((S — A)s — ?\2)) s * s — Ay * s — Ay (5.16)

The constants A, B and C may be determined with the theorem of residues (See Ref. 5.5).
It is found that:

1 _ 1 1
A=l B—_ 1 Ce— 1 5.17
hihg Ay =2 M(hy — A)) G17

It is now possible to rewrite Eqn (5.16) as:

1 1 1
X(S) — )“17\42 + )\'10\1 _;‘42) + (;\20“2_}"1) (5.18)
5 s — A s — Ay

The roots of Eqn (5.14), A; and A,, can be either both real or both complex. Both cases

will be considered.
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Case 1: Both roots of Egn (5.14) are real

The inverse Laplace transform of the s—domain functions in Eqn (5.18) can be found directly
from Table C1 in Appendix C. Doing so results in the following time—domain solution for x(t):

1 1 Mt 1 Aot
x(t) = + e+ —— e 5.19
R WYV NN W hp(hy = k) (5.19)

Three possibilities present themselves:

1) If bothroots, A, and A, , are positive, A; > 0 and A, > 0, it is seen that x(t) will di-
verge to infinity. Such a system is said to be divergent. Note that if only one root is positive the
system will still be divergent.

2) If both roots, A; and A,, are negative, A; < 0 and A, < 0, it is seen that x(t) will

converge toward the value x(t) = 1/(AA,) . Such a system is said to be convergent.

3) If bothroots, A, and X,,areequaltozero, A, = 0 and A, = 0, itis seen that x(t) be-
comes undetermined. This can be shown by application of I'Hopital’s Theorem. Such a system is
said to be neutrally stable. Note that if only one root is zero, the system is still neutrally stable.

Figure 5.5 shows the various time-domain responses for the case of all-zero, all-negative
and all-positive real characteristic equation roots.

f(t) for A, >0 and A, > 0
Tfl(t) (© for % :
]- ettt & T X ¥ T ¥ % L 1 X r 3 ¥ ¥ ]
Ahy
fi(ty for A, <0 and X, <O
fi(t) for A, =0 and A, =0
? "W
9 time,t ——3

Figure 5.5 Time Domain Responses of a Spring—Mass—Damper System
with Real Characteristic Equation Roots
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Case 2: Both roots of Eqn (5.14) are complex

In this case, the complex roots must be each others conjugate:

Ay =n+ jo Ay =1 — jo (5.20)

By substituting these forms of the roots into Eqn (5.19) it is found that:

X(t) _ 1 + e(n+ju))t _ e(n—jm)t
n? + w? (n+jow)2jo (- jw)2jo

(5.21)

With the help of De Moivre’s Theorem (See Reference 5.5, page 467) this in turn can be writ-
ten as follows:

— 1 _ ant _n.
x(t) —m{l e (cosoot LL)smmt)} (5.22)

Clearly the system response in this case is oscillatory in nature. The actual character of the
response depends on the real part, n, of the complex roots given by Eqns (5.20).

Again, three possibilities present themselves:

1) Itis seen from Eqn (5.22) that as long as the real part of the complex roots, n<0, the oscilla-
tory terms will subside and the system will reach a final position given by:

I 1

Such asystem is called oscillatory convergent (oscillatory stable). Note the similarity of this
result to that obtained for the case of all stable and real roots.

2) Similarly it is seen from Eqn (5.22) that when the real part of the complex roots is positive,
the amplitudes of the oscillations will tend to diverge. Such a system is called oscillatory divergent
(oscillatory unstable).

3) If the real part of the complex roots is zero, the system will oscillate at a constant ampli-
tude. Such a system is said to be neutrally stable.

Figure 5.6 shows examples of time-domain responses for the case of complex characteristic
equation roots.

The following properties of the characteristic equation roots and their characteristics in the
s-plane are to be noted. The reader is asked to refer to Figure 5.7.

First, the product of the characteristic equation roots is observed to be equal to the square
of the undamped natural frequency as defined in Eqn (5.5):

2
My =n? 4+ 0? = 0y (5.24)

Notice that in the s-plane (see Figure 5.7) the undamped natural frequency is equal to the
distance of each complex characteristic equation root (also called a pole) to the origin.
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fi(ty for n >0

s %
t\/‘\ ' e f(t) for n <O
-“_—_d-ﬁh-*-"--- : X K 3 . L]

[l ] \ -

0

time,t —¥

Figure 5.6 Time Domain Responses of a Spring—Mass—-Damper System

with Complex Characteristic Equation Roots
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Figure 5.7 Relationship Between Frequency, Undamped Natural Frequency

and Damping Ratio

Second, the sum of the characteristic equation roots is equal to twice the real part of each
root, n. The real part, n of each root is also equal to the negative of the product of damping ratio
{as defined by (Eqn 5.6)} and undamped natural frequency. This is seen by invoking Eqn (5.15):

Note from Figure 5.7 that the damping ratio also equals the cosine of the angle between the

: N

pole—vector from the origin and the negative real axis.

By combining Eqns (5.24) and (5.25) it is seen that:
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® = o, m (5.26)

From this result it can be observed that when the damping ratio becomes zero {this occurs
when ¢=0 in Eqn (5.3)} the frequency of oscillation equals the undamped natural frequency:

® =y = X (for ¢ = 0) (5.27)

The spring—mass—damper system output, x(t), as expressed by Eqn (5.22), can be castin a
format which reflects the system damping ratio and undamped natural frequency. The reader is
asked to show that the result of doing this is as follows:

x(t) = 12{1 -~ e_t‘”“t[cos((un,/l — 2t + ‘/%@Sin(w“‘” - Czt)]} -

Wn
_ 1 e hwt Y S
wnz{l —Jl__?sm((wm/l Cet) + w)} with : .(5.28)

Y = arcsin,/1 — {2

The time—domain behavior of a spring—mass—damper system is clearly a function of two pa-
rameters: the damping ratio, § , and the undamped natural frequency, ®n . The response of such

a system for damping ratios ranging from 0.1 to 1.0 is shown in Figure 5.8. Note that the scales have
been normalized. The reader would do well to keep the ten response plots of Figure 5.8 firmly in
mind. This will help in visualizing dynamic stability and response characteristics of airplanes as are
discussed in Sections 5.2 and 5.3.

From the presentations so far, it is evident that the stability character of the response of a
system such as shown in Figure (5.3) is determined entirely by:

a) the type of roots of the characteristic equation of that system
b) the sign of the real part of the roots of the characteristic equation
It can be shown that this is also the case for any system which can be modelied by one or more

linear differential equations with constant coefficients. The following stability criteria summarize
the stability characteristics of any system with a characteristic equation similar to Eqn (3.14).

Dynamic Stability Criteria

1} A linear system is stable if and only if the real parts of the roots of the characteristic
equation of the system are negative.

2) A linear system is convergent {stable) if the roots of the characteristic equation of
the system are real and negative.
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A linear system is divergent (unstable) if the roots of the characteristic equation of
the system are real and positive.

A linear system is oscillatory convergent (stable) if the real parts of the roots of the
characteristic equation of the system are negative.

A linear system is oscillatory divergent (unstable) if the real parts of the roots of the
characteristic equation of the system are positive.

A linear system is neutrally stable if one of the roots of the characteristic equation
of the system is zero or if the real parts of the roots of the characteristic equation of
the system is zero.
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Figure 5.8 Normalize Response of a Second Order System to a Unit Step Input
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3.2 LONGITUDINAL, DYNAMIC STABILITY AND RESPONSE

32.1 LONGITUDINAL EQUATIONS AND TRANSFER FUNCTIONS

The small perturbation, longitudinal equations of motion of the airplane are represented by
Eqns (5.1). Two observations are in order:
First, by using the substitution ¢ = 8 and w = U, the equations can be cast in terms of

the following variables: speed, u, angle — of ~ attack o, and pitch — attitude angle, 6

Second, the pitching moment of inertia, 1,y ,is normally computed in a somewhat arbitrarily

selected body-fixed axis system. Because the equations of motion are written in the stability axis
system, lyy , would have to be computed also in that system. Howevet, because the stability axis

system was obtained from any body-fixed axis system by rotation about the Y-axis, Iyy remains

the same. It will be seen in Section 5.3 that this will not be the case for the lateral-directional inertias.
Equations (5.1a~c) will now be rewritten in two steps:

Step 1: To obtain better insight into the physical characteristics of Equations (5.1) it is cus-
tomary to divide both sides of the lift and drag force equations by the mass, m, and to divide both
sides of the pitching moment equation by the pitching moment of inertia, lyy . Asaresult all terms

in the corresponding equations have the physical unit of linear or angular acceleration.

Step 2: To obtain better insight into the relative importance of the aerodynamic forces and
moments, the so-called dimensional stability derivatives of Table 5.1 are introduced. How these
derivatives come about is illustrated with one example. Consider the Cm, term in Eqn (5.1c). This

term will be re~written as follows:
G,;5¢cCp @ q;5¢Cn
—I—~_“—=Maa , Where : Mu=—I—~—°
Yy yy

The newly defined dimensional stability derivative, M, , has the following very important

(5.29)

physical meaning: it represents the pitch angular acceleration imparted to the airplané as aresult of
aunit change inangle of attack. This physical meaning can be generalized to apply to all dimensional
stability derivatives of Table 5.1 by using the following definition:

Definition:  Each dimensional derivative represents either the linear or angular accelera-
tion imparted to the airplane as a result of a unit change in its associated motion or control variable.

The numerical magnitudes of these dimensional derivatives therefore give numerical clues

about their relative importance. Their use in the equations of motion (5.1a—c) also results in a much
‘cleaner’ look for these equations. The resulting equations are presented as Eqns (5.30) in Table 5.2.
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Table 5.1 Definition of Longitudinal, Dimensional Stability Derivatives

x - _ 0;3(Cp, + 2Cp)) ft/sec?
’ mU, ft/sec
~4S(Cr,, +2Cr) ft/sec?
T ™ mU, ft/sec
)
< = ~4;8(Cp, — C) ft/sec?
o m rad
X = ~ 1SCp, ft/sec?
5 m rad
_ - q;3(Cp, +2C ) ft/sec?
' mU, ft/sec
—4S(C, + Cp) ft/sec?
Ly = m rad
7 T qSeC ft/sec?
a 2mU, rad/sec
T gSeCy ft/sec?
Zq = 2mU rad/sec
1
7 = - qlSCLg,c ft /sec?
& m rad

M. = q;5¢(Cn, + 2Cn)) rad/sec?
! I,,U, ft/sec
_ §S%(Cy, ¥ 2Cimy)  rad/sec?
T IjyU; ft/sec
_ 3,5, rad/sec?
Iyy rad
415t rad/sec?
Mr, = “ “rad
¢ Iyy ra
)
3 §;5¢Cr, rad/sec?
o 2I,,U, rad/sec
_ q,5¢°Cp, rad/sec?
T21,U, rad/sec
_ 4;5Cnm rad/sec?
3. Iy rad
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Table 5.2 Development of the Perturbed Longitudinal Equations of Motion
with Dimensional Stabilitv Derivatives in Matrix Format

u= —ghcost; + Xyu + Xpu + Xeo + Xéeée (5.30a)
Ujo — Uy = = gBsin0; + Zyu + Zo + Zy&t + Zg0 + Zy Bc (5.30b)
8 = Myu + Myu + Mo + My o + Mg + Mg + M; 8 (5.30c)

Laplace transforming Eqns (5.30) for zero initial conditions:

(s — Xy — Xq)uls) — X,0(s) geost;0(s) = Xp,0e(8)
(5.31a)

— Zau(s) (S(Uy = Zg) ~ Zofa(s) (= (Zq + U})s + gsinB,}6(s) = Z5 0e(s)
(5.31b)

= My + Mpu(s) = [Mgs + Mo + M Jats) (5% — Mg9)8(s) = M 8e(s)
(5.31¢)

Writing Eqns (5.31) in matrix and transfer function format:

Transfer Function Matrix

— - Y .
(s — Xy — X)) — Xo gcosB, u(s) (X5 )
8q(s) ' ‘
-7 (s(U; —Z) —Zo) [—@Zq+Ups+ sine}Ji@?:{Zm
u 1 a a q 1 g 1] Y 84(s) .
6(s) M
~ My +Mp) - (Mas + Mg + MTu) (s? — Mys) Be(s) | [0
-t System Matrix -

Control Power Matrix (5.32)
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Equations (5.30) are Laplace transformed for zero initial conditions. The new variables
are: u(s), a(s) and 0(s) respectively, while d¢(s) is the Laplace transformed elevator input. The

result is Eqns (5.31). Next, equations (5.31a—c) are divided by d.(s) . This gives rise to the so—
called open—loop airplane transfer functions: u(s)/8.(s), a(s)/de(s} and 6(s)/d.(s) . The open—

loop transfer functions can now be thought of as the new ’variables’. By casting the equations in
a matrix format the result is Eqns (5.32) which are also shown in Table 5.2. The airplane open-loop
transfer functions can be determined with matrix algebra. Each transfer function is then expressed
as a ratio of two determinants. The resulting determinant ratios are shown in Table 5.3 as Equations
(5.33), (5‘.36) and {5.38) respectively.

Note, that the speed—to—elevator transfer function, u(s)/d¢(s) , of Eqn (5.33) can be written

as the following ratio of polynomials in the independent Laplace variable, s:

Aus? + Bys? + Cys + Dy
Aist+Bis?+ Cis2+ Dys + E,

u(s) _

5e(s) (5.40)

Ny _
_D—l

Similarly, the angle—of—attack—to—elevator transfer function, a(s)/8.(s) , of Eqn (5.36) can

be expressed as:

a(s) _ Ng _ Ags? + BgsZ + Cgs + Dy, (5.41)

5(s) D, A;s*+B;s>+C;s2+Dys+E,

Finally, the pitch-attitude—-to—elevator transfer function, 0(s)/d.(s) , of Eqn (5.38) can be

written as:
6(s) _ E—Q _ Ags? + Bgs + Cy (5.42)
8(s) . At +B;s3+ Cs2+Dys + By

It is seen that all transfer functions have the same denominator. When this denominator is
set equal to zero the resulting equation is called the characteristics equation:

As*+Bs’+Cs?+Ds+E, =0 (5.43)

The roots of this characteristic equation determine the dynamic stability character of the air-
plane. These roots and how they are affected by flight condition, by airplane mass, by airplane mass
distribution (c.g. location and inertias), by airplane geometry and by the airplane aerodynamic char-
acteristics will be discussed in Sub—section 5.2.2 — 5.2.6,

It 15 also seen from Eqns (5.40)—(5.42) that the numerators are all different. The numerator
polynomiais affect the magnitude of the response of an airplane to a control surface input. Howev-
er, ONLY the denominators affect the dynamic stability character of the response (i.e. the fre-
quency or time—constant behavior).
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Table 5.3 Longitudinal Airplane Transfer Functions

o

+ (X, + XTu){(Ma + My XU, + Zg) - qua]
E, = gcosﬁl{(Ma + Mp)Zy - Z (M, + MTu)] +

+ gsinﬁl[(Mu + Mp)X, — (X + Xp )M + MTQ)}

X, - X, geosB,

Zs [s(U1 —Z)~ zu] [~ (Zq+ Ups + gsin®, }
o) M, —~ { Ms+ M, + MTu} (52 — Ms) N,
8e(s) (s — Xy — X1) - X geosd, B ﬁ‘_1

— Z, {S(Ul -Z)- Za} [— (Zq+Ups + gsin91] (5.33)

—(My+Mp) - [Mds +M_+ MTu] (s — Mgs)

D =As'+B;s®>+Cs?+D;s+E, , where: (5.34)
A =U, -7

C, = (Xu + XTU){Mq(Ul —Z)+Z, +M(U; + zq)] + MyZ, - ZuX, + M_gsin0, +

D]. = gSiIl BI[MG + MTa - Ma(Xu + XTu)] + gcos BI[ZuMa + (MU + MTU)(U]_ - Zu)] +

Ny = A +Bys?+ Cys + D, , where: (5.35)
BU = — XBL[(U]' - Za)Mq + ZD‘. + MG(U]‘ + Zq) + Zagxa}
CU = Xﬁc[Man + MGgSinel - (M(l + MTQ)(U]. + Zq)] +
+ Zéu[ - Mdg cosOq — Xan] + Méc{Xa(Ul +Zg) — (Uy — Zd)gcosﬁl]
D, = X&:(MOL + MTﬂ)gsinB1 - ZaeMmgcosB1 + M(,sc(ngcosB1 — X gsinb,)
Chapter 5 322



Stability and Control During Perturbed State Flight

Table 5.3 (Continued) Longitudinal Airplane Transfer Functions
(s = Xy — Xgp) Xs, gcosh
- Zy Zs, [~ (Zg + U)s + gsinb,}
2
a(g) _ — (MU + MT-,]) Mac (S _ qu) _ &
Sels = D
f:( ) D] 1
(5.36)
Ny = Ags® + Bgs? + Cos + Dy , where: (5.37)
Aa=Zs
Ba = X5 Zy + Zg |~ Mg = (Xu + Xp)| + M3 (U} + Zg)
Cu = Xac[(Ul + Z(M, + Mp) — quu] + Zy Mo(Xy + Xp) +
+ M, |~ gsinb; ~ (U} +Zg)(Xy + X7,)}
Do = = X (My + Mq)gsin®| + Z; (My + My )geost +
+ Méc[(Xu + X )gsin0, — ZugcosB]}
(S - Xu - XTu) - Xa Xﬁc
- Zy [s(U, = Zg) — Zq} Zs,
—~ M, +M — M. s+ My +M M
B(s) _ (M, Tu) { a a Ta} B _ & (5.38)
6€(S) Tj-] D]
Ng = A952 + Bgs + Cy , where: (5.39)
By = X5 {ZuMg + (U} = Z)(My + Mp)} + Zg {(Ma + Mp) = My(Xy + X1} +
+ M|~ Za — (U} — ZKa + X))
Cy = Xac[(Ma + Mp)Zy — Zo{M, + MTU)} +
+ Zs |~ Mg + My )Xy + X)) + Xo(My + M)} + Mg [Za(Xy + Xp) = XoZy]
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These statements about the way numerators and denominators affect airplane response, are
true only for the so—called open-loop response of an airplane. In closed—-loop situations (such as
the case with auto—pilots and/or stability augmentation systems) the numerators do affect the closed
loop stability of the airplane. This aspect of the significance of the numerator characteristic equa-
tions (i.e. numerator polynomials set equal to zero) will become clear in Chapters 9-11 where the
behavior of automatic control systems is discussed.

Figure 5.9 shows how the open—loop transfer functions can be used to determine the response
of an airplane to a given control input. The block diagram drawn in Figure 5.9 is used to help visual-
ize the inter—relationship between input, transfer function and output.

System Transfer Function

Input Output

de(s) u(s) u(s)
> Se(s) >

Output = Input x (Transfer Function), or: u(s) = 5¢(S)( El)l ((SS)))
e

Figure 5.9 Example of a Block Diagram to Illustrate the Use of Transfer
Functions in Determining System Response to a Known Input

It turns out that the transfer functions as derived in Table 5.3 can be used not only to deter-
mine the response to elevator control surface inputs but also:

1) to determine the response to inputs from other types of controllers
and
2) to determine the response of the airplane to gust.

This will be discussed next.

1) Response of the airplane to control surface inputs other than the elevator:

L
If the response of an airplane to another control surface input is required, the only change

that must be made is in the transfer function numerators, in particular in the control power terms.
The following substitutions must be made in the numerators N,, N, and Ng :

For response to a stabilizer input:

substitute Xih, Zih and Mih for Xae, Zs and My respectively.

For response to a canard input:

substitute X, Z. and M. for: Xs- Zs and My respectively.
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For response to an incremental thrust input, AT (thrust-line along X):

substitute (AT)/m, 0 and O for: Xss Zs, and My respectively.

For response to a step input gust angle of attack, Ao, :

The only change that must be made is again in the transfer function numerators, in particular
in the control power terms. The following substitutions must be made in the numera-
tors Ny, Ng and Ny :

sul_g"stitute Xo» Zg and Mg for: X5, Zs, and My respectively.

Figure 5.10 may be helpful in visualizing the calculation of airplane responses to various
types of control inputs. The reader should keep in mind, that responses to simultaneous inputs from
various input sources can be determined by SUMMING the responses to individual inputs. The rea-
son this procedure is correct is the fact that in a system which is described by linear differential equa-
tions, the principle of super—position holds!

Input System Transfer Functions Output
8¢(s) o e o)
6&(5) _
Oc(s O(s
e(8) . $0(s) (s) .
Oc(s)
dc(s u(s
«(9) 1 e ©
8c(s)
Aag(s)
g - a(s) as)
Aag(s)
6ﬂap(s) 6(5) B(S)
> 6ﬂap(s) >
Figure 5.10 __Example of a Block Diagram to Illustrate the Use of Transfer
. Functions in Determining System Response to a Known Input
From Various Sources

5.2.2 LONGITUDINAL CHARACTERISTIC EQUATION ROOTS AND THEIR
CONNECTION TO DYNAMIC STABILITY

Since the dynamic stability character of the airplane open loop transfer functions is deter-
mined by the roots of their characteristic equation, it is of interest to examine how these roots can
break down from a mathematical viewpoint. Because the characteristic equation (5.43) has four
roots, the following three possibilities arise:
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D All roots are real
I} Two roots are real and two are complex conjugates
III)  All roots are complex: two pairs of complex conjugates

Figure 5.11 illustrates all possible combinations of root locations (root break—downs) for a
fourth order characteristic equation. Even though all these root break—-downs can occur in the case
of airplanes, the usual root breakdown by far (for airplanes designed with inherent stability) is the
one labelled c1 in Figure 5.11. How other root break—downs arise will be discussed in Section 5.4.

Whether or not an airplane is dynamically, longitudinally stable is usually ascertained by in-
specting computer print—outs of the roots of the characteristic Equation (5.43) in accordance with
the stability criteria of pages 315-316. For stability, real roots must be negative and complex roots
must have negative real parts.

Stability can also be predicted from the coefficients A1 through Eq in the characteristic
Equation (5.43). This can be done by using the so—called Routh—Hurwitz stability criteria for the
roots of a polynomial equation. For a more detailed discussion of these stability criteria and their
applications the reader may wish to consult Refs 5.5 and 5.6. According to Routh—Hurwitz, the roots
of a fourth order polynomial are stable if and only if the following inequalities are simultaneously
satisfied:

A, B, C, D, E, >0
D,B,C,—AD)-B,’E, > 0 (Routh's Discriminant)

It is shown in Reference 5.7 that as the polynomial coefficients A through D1 are changed,
the dynamic stability behavior changes in the following manner:

(5.44)

A) Hf the "free’ coefficient E4 is changed from > 0 to < 0, one real root changes from
negative to positive. The time domain response will therefore contain a pure
divergence as a component. In Figure 5.11 this behavior corresponds to a change
from case al) to case a2) or from case bl) to case b2).

B) If Routh’s Discriminant changes from >0 to <0, the real part of a complex root
changes from negative to positive. The time domain response will therefore contain
an oscillatory divergence as a component. Examples of this behavior in Figure 5.11
are changes from case b1) to case b3) and changes from case c1) to case ¢2).

The reader should recognize the fact, that changes in the coefficients A+ throbgh E+ can
come about by changes in airplane flight condition, airplane mass, airplane mass distribution (c.g.
location and inertias), airplane geometry and airplane aerodynamic characteristics. By performing
so—called sensitivity analyses, it is possible to gain insight into how the airplane designer can or can-
not affect the dynamic stability and response behavior of an airplane. Sensitivity analyses are dis-
cussed in Section 5.4.

With the widespread introduction of digital computers, the usefulness of the Routh-Hurwitz
stability criteria (5.44) has declined. However, criterion A) still serves a useful purpose in that it
enables an interesting connection between static and dynamic longitudinal stability. That is dis-
cussed in Sub—section 5.2.3,
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jo jo jo
al) a2) a3) ;
’
x> M—Lx X s
(=) n(+) (=) n(+) (-) 7 n(+)
jw jw
ad) a5) a) All roots are real
(_)-I\ FA FA I\n(+) (_) ) P P /\n(+)
jo jw jw
bl) b2) i b3) i
X X [ g X
el A
O T T T T N w e YO TED
X | X | X
o . .
by P bs) P be) P
X | X X
¢ M f—¢ —x
(=) " n{+) {(—) ’ n(+) (—) “n(+)
X - X X
e 3 .
b) Two roots are real and two are complex
J0 0 j
cl) . ) 3 c3) g
X ( X - X
(—) X o) () n(+) () f n(+)
’i: ip‘-‘ X iu
X a X L F X
¢) All roots are complex
Figure 5.11  Illustration of Possible Root Break—Downs for a Fourth Order
Characteristic Equation
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5.2.3 CONNECTION BETWEEN DYNAMIC AND STATIC L
STABILITY

According to the stability criteria of inequality (5.44), one real root in the longitudinal char-
acteristic equation changes from stable to unstable when the coefficient E+ in Eqgn (5.43) changes
sign. An expression for this coefficient E4 is shown in Table 5.3. Because the steady state pitch
attitude angle, 8, is usually small enough to neglect the sinfy, term it follows that the stability

condition can be approximated as follows:
Mg + My )Zy = Zo(My + Mp) > 0 (5.45)
Neglecting the thrust contributions this becomes:
MyZy — Z My > 0 (5.46)
Division by ZqZy yields:

My . M,
7o 7. (5.47)

With the help of the definitions for the dimensional stability derivatives in Table 5.1 this in
turn may be written as:
Cmu > Cmu
Cp, +Cp, Cp, +2C,

(5.48)

It is now observed that typical magnitudes for lift—curve—slope, Cy,, - range from 3 to 6 per
radian while typical magnitudes for steady state drag coefficient, Cp,  range from 0.0150 to 0.0500

(exceptions are very high drag configurations). As a consequence and by invoking Eqn (3.39) it is
usually permissible to rewrite inequality (5.48) as follows:

Cm _ _ Cm
= = (xcg — Xac,) > /e (5.49)
CLu A CLU + QCL]

In the low subsonic Mach number range, the so~called ’tuck’ derivative Cn, is negligible.

Therefore, in that speed range an airplane will not have an unstable real root as long as:

Xeg < Xgc, (5.50a)

This will be recognized as the condition for airplanc static stability as expressed‘by inequality
(4.57) in Chapter 4.

In the high subsonic Mach number range, the derivative Cm, cannot be neglected because

of the tendency of the airplane aerodynamic center to shift aft { See Eqgn (3.125)}. Inthe case of early
subsonic jet transports when operating in an over—speed condition (above the normal operating
Mach number) a value of Cmn, = — 0.10 was not unusual. Assuming that CLu + 2CL, = 1.0,

it is seen that the requirement for prevention of tuck then is:
Xeg < Xy, — 0.10 (5.50b)
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How bad this type of divergence is depends on the rapidity with which the aerodynamic cen-
ter shifts aft and on where the c.g. is located. Most older subsonic transports displayed a mild, but
noticeable, divergence when operated at an over—speed condition. In modern transports, with im-
proved aerodynamic wing design procedures and with the help of so--called Mach—trim systems (See
Chapter 8), these tuck problems have largely disappeared.

524 EXAMPLES OF LONGITUDINAL TRANSFER FUNCTIONS

The following examples illustrate two types of transfer functions, one type associated with
a typical business jet, the other type associated with a typical jet fighter. The former was designed
as an inheently stable airplane, the latter as an inherently unstable airplane.

To determine the numerical values of the coefficients in the numerator and in the denomina-
tor polynomials of longitudinal transfer functions, the following steps are necessary:

Step 1: Determine the flight condition and corresponding airplane configuration

Step 2: Determine the airplane mass and mass distribution (pitching moment of inertia)
Step 3: Determine the dimensionless stability derivatives

Step 4. Determine the dimensional stability derivatives

Step 5: Determine the polynomial coefficients in the transfer function numerators
and denominator

The Advanced Aircraft Analysis program (See Appendix A) was used to perform these
steps. The results are summarized in Tables 5.4 and 5.5 for a business jet and for a jet fighter respec-
tively. At the top of Tables 5.4 and 5.5 are the required input data; these data are determined as part
of Steps 1-3. Below the input data are the output parameters in the form of dimensional stability
derivatives and the transfer functions (Step 4). Note that the transfer functions (Step 3) are given
in two formats: polynomial format and factored format. The significance of the results in Tables
5.4 and 5.5 will now be discussed.

By inspection of the denominator polynomials of the two airplanes in Tables 5.4 and 5.5, the
following (rounded off) values are found for the denominator polynomial coefficients:

DENOMINATOR POLYNOMIAL COEFFICIENTS

For the Business Jet: For the Jet Fighter:

A= 676 Ay= 871

By=1,359 Bi1= 608

C1=5,440 Cq =-9,065 (5.51)
Dy= 574 Di=- 431

Ei= 459 Ei1=- 433
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Table 5.4 Longitudinal Transfer Functions for a Typical Business Jet in Cruise

WEIGHT SIZING GEOMETRY DRAG_POLAR WEIGHT & BALANCE | PERF. ANALYSIS COST ANALYSIS HELP / SETUR
PERFORAM. S8IZING HIGH LIFT, STAB. & CONTROL _[INSTALLED THRUST | SAC DERIVATIVES | CONTROL DATA BASE auir

QFEN LOOPF DYNAMICS

IR /EFaorecT.  RowcouPung | RETURR ]

LONGITUDINAL ANALYSIS

LA f [SHOWTF.  _ [cHEcK MODEs [SENSTVITY TRETURN ]

[CALCULATE [ HecRY [FRINT PARAMETERS [ARETURAN |

COMPUTATION OF LONGITUDINAL TRANSFER FUNCTIONS - INPUT PARAMETERS

Bltitude = 40000 ft [c_m_1 = 0. 0070 C_m.T.a - 0.000D c.0_a = 0-3000 Lyrad
U_L1 = 40600 kts c_m_u = 0.0500 c_L_1 = 0.4183 c_D_u - G.0000
—gurrent = 13009.0 1ib c_m_a, = -0.6400 1/rad C_L_u = G.4000 C_T X 1 = 0.0330
S_w = 232,00 fx-z C.m_a.dot = —5.7000 1/rad cL_a = 5.8400 i/rad C_T X u = -0, 06U
Theta_] = .00 deg C_m_q = -15.5000 1/rad C_L_a.dot = 2.2000 1 rad C_L_d_e = 0.5360 Ll/rad
c_bar = 7.04 fr cm T_1 = —0.9070 c.i_q = §.7000 l/rad CDde = 0.0000 17rad
I vy B = 18800 slgfc2 c_m T u = C.0034 c_b_2 = 5.0230 Cund e = -1.5200 i/rad

OUTPUT PARAMETERS

M__1 = 0_E97 2_a = -445.7224 frsa~2 M_g = ~0.8387 1/s TC_long_2 = 383.234 s
T o 1.00 g Z_a_dot = -0.8705 ft/s w_n_SF = 2.68324 rad/s ITC_long_3 = 7 5
g bar = 133 B4 psf Z_4q = -1.8598 ft/= %z SP = 0.3535 ITC_lang_4 = ? Ll
(W/g)_TO = 56.03 paf M_u = 0.0031 1/ftis w_n_F = 0.2920 rad/s i_cdel_e = 0.0000 fr./g~2
X_u = =0.0074 1/s M_T_u = ~0.0002 1/1v/. Z_P = 0.0461 Z_del_s = -42.1968 ft/s"2Z
X_T u = 0.0000 i/= M_a = ~7.4416 1/8*2 w_rn_1 osc = 2 rad/s M_del_ e = -17.6737 L/is"2
XA = 8.9782 fr/e"2 [M_T_a = 0. 0040 1/s°2 z_3ird osc = ?
Z_u = ~0.13%0 L/w M_a_det = ~0.4062 1/8 'TC_ Tong_1 = 1,999 g

Dezign, Anatysis and Ressarch Corporation | Juserz]arvannbiesius det-book | Mov 13,1983 [ i1z

LONGITUDINAL TRANSFER FLUNCGTIONS

POCLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION

- 378.8510 S72 + 271B87.5562 S + 24032B.1472

+ 675.8945 574 + 1359.4138 S°3 + S5440.2580 S~2 + 57 .4413 8 + 45.8947

FACTORED SPEED TO ELEVATOR TRANSFER FUNCTION

-378.8510 (5 - 718.5464}) (S = 0.B8zZ8)

6€75.9945 (S72 + 2.0025 & + B.Q223}(S~2 + 0.0085 5 = 0.0085)

SPEED TCO ELEVATOR TRANSFER FUNCTION K_gain = 5236 _513881

POLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

- 42.1968 S°3 . 11932.0234 S"2 — 88.5773 S - Y9 .2981

+ 675.9945 S74 + 1359.4138 S~3 « 5440.2580 sS42 + 57 .4413 S5 + 45 .89947

FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION

-42.1968 (S + 282.9295) (S"2 + 0.0074 S5 4+ 0.0066)

€75 .9945 (S$*2 + 2.0025 & + 8.0223) (S"~2 + 0_.00BS5 5 <+ 0,0085;

ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTIGN E_gain = -l.7z27828
POLYNOMIAL PITCH ATTITUDE TCO ELEVATOR TRANSFER FUNCTIOCN

- 11330.1746 S~2 - 7652.0613 8 - 78.5229

+ B75.8545 =74 + 1359.4138 53 + S5440.2580 S°2 + 57.4413 S + 45 .8947

FACTCORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION

-11830.1746 (§ + 0.6310) (5 + 0.0104)

E€75.9945 {872 + 2.0025 5 - 8.0223) (5~2 + 0.0085 S -~ 0O.0CBS5)

PITCH ATTITUDE TC ELEVATOR TRANSFER FUNCTION X_gaim = —%.710937
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Table 5.5 Longitudinal Transfer Functions for a ical Jet Fighter in Cruise
WEIGHT SIZING GEOMETRY DRAAG POLAR WEIGHT & BALANCE | PERF. ANALYSIS COST ANALYSIS IHELP / SETUP ]
PERFORM. SIZING HIGH_LIFT STAB. & CONTROL INSTALLED THRUST | S4C DERIWATIVES CONTROL DATA BASE IQ uIT I

OPEN LOOP BYNAMICS
LATERAL-DIRECT. ROLL COUPLING BETURMN

LONGITUCHNAL ANALYSIS

[ a0 TTETRE | CHECGK MODES [ SENSIVITY [RETURN — ]

{CALCULATE [HEoRY | PRINT _PARAMETERS [RETURN

COMPUTATION OF LONGITUDINAL TRANSFER FUNCTIONS : INPUT PARAMETERS

hlritude = 45300 f£o C_m_1 = D.0000 c_m_T_a = 0.0000 c_D_a = 0.3621 l/rad
U_1 = 516.00 kts C_m_u = -0.0218 C_L_1 = 0.3022 s _D_u = §.0630
W_current = 16Q00.0 lb c.m_a = 0.3478 l/rad C_ L. u = 0.2442 T X_1 = C.0500
5w -t 302,00 £r-2 C_m_a.dot = T0.1150 l/rad Ci_a = 3.5704 ifrac C.T X a4 = 5.0000
Thata_1 = * 0.00 deg C_m g = -1.0050 1l/rad C L _a.dot = 0.1763 1/rad c_L_d_e = ©.3374 l/rad
c_bar = 13.49 ft c_m T 1 = 0.0000 C_Ll_g = 2.8245 1l/raq c_p_4d,_e = 0.0027 lfrad
I_vy B = 23575 algft2 - m_T_u = 0. 0000 c_ 01 = 0.0267 c m d_e x 0.3201 l/rad
OUTPUT PARAMETERS
m_1 = 090D Z_a = TCi77 6289 frset3 Mg - -0.2360 l/s TC_long 2 = —0.345 s
5 = 1.00 g Z_a_dot = -0.1434 ft/s w_n_EP = ? rad/g TC_long 3 = H 5
o _bar = 175.32 pst Z_gq = -2.2%73 fris Z_SF = H TC_long_4 = ? L]
W/ S _Th = £2.98 psf M_u - -0_0008 1/ft/s w. n_P = ? rad/s X_del_a = -0.2834 fr/e~2
X_u = -6.0140 1/= M_T u = 0.0000 1/ft/s z_P - ? z_del_e = -35.4206 fr/e"2
X_T u = ©.0121 1/s M_a = 10.5394 1/8°2 w_n_3 esc = 0.0691 rad/s M_del_e = 6. 6706 1/%°2
X_a = -6.2807 fr/s"2 M_T_a = 0.0009 1/8"2 2_3rd osc = 0.0367
Z_u = -0.1023 1/a8 M_a_dot = -0.0270 1/8 TC_leng_ 1 = Q0.278 8
asigh_Analyeis and Flssearch Corporation | aripan/45K/0.9 T Juserafian/anafilnafasds 1 Nov 13, 1993 1 1159
LONGITUDINAL TRANSFER FUNCTIONS
POLYNOMIAL SPEED TO ELEVATOR TRANSFER FUNCTION
- 246.8990 s5~3 + 50.8701 S5~2 - 2181%6.1871 5 - €8072.,610%
+ 871.0534 s=~4 + S£08.348% 35~3 - 5065.0155 S°2 - 43.05813 S - 43.3401
FACTORED SPEED TO ELEVATCOR TRANSFER FUNCTION
-346.B990 (5 + 9.3119}(8"2 +« —-0.5180 < + §83.90E4)
871 .0534 (& - 2.8992) (8 + 3.5925)(S~2 « 0.0051 5 + 0.0048)
SPEED TO ELEVATOR TRANSFER FUNCTION K_gain = 1570.659768
FPOLYNOMIAL ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION
- 35.4206 573 + 578%5.7867 S22 + 11 .5488 5 + 22355053
+ B71.0534 sS~4 + E608.3489 S~3 - 9065.0155 S72 - 432 .0913 5 - 43.3401
FACTORED ANGLE OF ATTACK TO ELEVATOR TRANSFER FUNCTION
=35.4206 {85 - 163 .3473){8~2 » 0.00Z20 S + 0.0039)
B71.0524 {8 - 2.8992)(s5 +, 3.58925){S~2 +~ 0.0051 5 + 0.0048)}
ANGLE OF ATTACK TC ELEVATOR TRANSFER FUNCTION K_gain = —0.519271
POLYNOMIAL FITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION
+« 5811.4238 5~2 + 2157.2826 5 + 0.1343
+ B71.0534 S5"4 + 60B.34B9 S~3 - 9065.015% S~2 - 43.0913 S — 43.3401
FACTORED PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION
S811.4238 (8 + 0£0.3712)Y(8 =+ D2.0001}
871.0534 (8 - 2.8992) {8 + 32.5925) (s"2 -+ 0.0081 & + {.0048)
PITCH ATTITUDE TO ELEVATOR TRANSFER FUNCTION K_g&ain = -0.0030%9
[ oK 1
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It is clear by inspection that the jet fighter is unstable because its coefficients A1-E1 have
differing signs. Note that the coefficients A1—E1 for the business jet all have the same sign. That
is a necessary (but not sufficient) condition for stability according to criteria A and B on page 275.

The characteristic equation roots for the two airplanes are given in Eqns (5.52). They follow
from the factored formats in Tables 5.4 and 5.5.

CHARACTERISTIC EQUATION ROOTS

For the Business Jet: For the Jet Fighter:
s;o=—1 £ j2.65) $; = + 2.90 S, = — 3.59 (5.52)
8340 = — 00043 £ j(0.092) s34 = —0.0026 £ j(0.0693) '

Ttis seen that the root break—down for the business jet is according tocase cl) in Figure 5.11.
There are two complex pairs of roots, one with a considerably greater frequency of oscillation than
the other. The root with the highest frequency is referred to as the short period mode. The one with
the lowest frequency is called the phugoid mode.

It is seen that the root break—down for the jet fighter is accordin g to case b2) in Figure 5.11.
The oscillatory root in this case is referred to as the *third’ oscillatory mode for reasons which will
become clear in Sub—section 5.4.1. The unstable real root would cause the airplane to diverge with-
out action from the pilot.

It has been found useful to compare the dynamic behavior of airplanes with that of the
spring—mass-damper system discussed in Section 5.1. Quadratic roots of characteristic equations
are cast in a format similar to that of Eqn (5.11), that is by using undamped natural frequency and
damping ratio as the parameters of choice. For a definition of undamped natural frequency and
damping ratio the reader should consult Section 5.1,

Real roots of characteristic equations are cast in the form of so—called "time—constants, T’
as illustrated in Table C1 in Appendix C. Note that a time constant is defined as the negative inverse

of the associated real root.

Introduction of these forms for the characteristic equation roots (using subscripts ‘sp’ for the
short period mode and subscripts "ph’ for the phugoid mode) vields the following characteristics:

For the Business Jet:
; 2 . 2
S12 = G1a0n,, & joon /1 — Cio or sy = Cspng, £ jwn, /1 — Lo (5.53)

with: Cgp = 0.35 and Wn,, = 2.83 rad/sec

and
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. / 2 . 2
S3,4 = z;3,40‘)“3.4 + an3.4 1 - Z3,4 or Sph = thwnph * "I(anh 1 - E;ph (5'54)

with: T = 005 and o, = 0.09 rad/sec

Observe that the short period mede is much better damped than the phugoid mode. Also
observe that the short period undamped natural frequency is more than an order of magnitude larger
than that of the phugoid mode.

For the Jet Fighter:
1 — 1
= — and s, = — 5.55
o1 T 2 T ( )

! 2
with: T, = 0.28sec and T, = — 0.35sec

—t . /1 2 . . 2
$34 = ©34Wn,, + JWn,, o t-'3,4 Or S3u = t-'3"-'(1"’“3ru * ang,rd\/] o ?;3“‘ (5.56)

with: {3 = 0.04 and Wy, = 0.07 rad/sec

and

The unstable real root will cause this airplane to diverge without compensating action from
either the pilot or from an automatic flight control system. As it turns out, in this instance an auto-
matic flight control system is required.

As will be shown in Chapter 6, the magnitudes of undamped natural frequencies, damping
ratios and time constant is intimately tied to acceptable or unacceptable flying quality behavior of
airplanes. For that reason, it is important for airplane designers to understand which airplane design
factors are the *design drivers’ which determine these dynamic stability parameters. The complete
transfer functions of the airplane, as presented in Table 5.3, because of their algebraic complexity,
do not afford such insight easily. It has been found that the short period and phugoid characteristics
of inherently stable airplanes can be more easily predicted from an approximation to the equations
of motion as listed in Table 5.2. These approximations and their applications will be discussed in
Sub-sections 5.2.5 and 5.2.6 for the short period and for the phugoid characteristics respectively.

5.2.5 THE SHORT PERIOD APPROXIMATION

Whether or not any approximation to the airplane equations of motion can be considered a
‘reasonable’ one can be ascertained with the help of a so—called modal {or eigen—vector) analysis.
An application of such an analysis to a business jet airplane will be discussed in Sub-section 5.2.9.

At this point the reader is asked to accept the fact that for inherently stable airplanes it is fre-
quently acceptable to assume that the short period mode of motion takes place at approximately
constant speed. If that is the case, the speed degree—of—freedom in Eqns (5.32) can be cast aside
which reduces the perturbed, longitudinal equations to the following form:
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- 1 [ a6 ] )
(U, = Zy) = Zof |~ Zq+ Ups +gsind)] | |5 [Zs,

J N ¢ (5.57)

= {Mgs + Mg + MT,J} (s2 = Mgs) S@%J )

In most instances it has also been found acceptable to introduce the following additional
approximations: Z, < U; , Z; < U, and 8, = 0 . Furthermore, by considering the thrust

contribution to static longitudinal stability as part of the total static longitudinal stability of the air-
plane and therefore by substituting My — M, + My, itis possible to write Eqn (5.57) as:

B Tf( C!.(S) A rza b

(sUy — Zg) - Us Oc(s) ©
% b = { > (5.58)
— [Mgs + Mg} (s® — Mgs) B(s) M
! R EXO) I

The approximate angle—of—attack and pitch—attitude transfer functions can now be explicitly
written as follows:

afs) _ {Zaf‘ + (M U - Mqu\,e)]

— (5.59)
66(8) 5 Z ZuMq
U,{s*— (Mq+ﬁ+Ma)s+( U, —Ma)
and
6(s) _ [(Ulesc +Zs My)s + MoZs — ZaMae)] (5.60)

8e(s)
sUl[s2 — (Mq + -IZJ—“ + Md)s + (ZEIM“ — Ma)}

The free s in the denominator of the pitch-attitude~to—elevator transfer function is an indica-
tion of neutral stability with respect to changes in pitch attitude. This is expected because there are
no restoring forces acting on an airplane as a result of changes in pitch attitude angle.

The denominator quadratic in Eqns (5.59) and (5.60) is in fact an approximation to the short
period quadratic form: (s? + 2§Sp(onsps + wnspz) - Itis now possible to write the following approxi-

mations for the shost period undamped natural frequency and damping ratio:

Zan
(-1-)11sp = U | - 14

(5.61)

and
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Z
Csp = o (5.62)

sp

To see how accurate these approximations are, the appropriate data from Table 5.4 will be
substituted into these two equations. It is found that:

Csp = 035 and @, = 2.84 rad /sec

These results compare very well to those of Eqn (5.53). In calculating the approximate short
period undamped natural frequency with Egn (5.61), the reader will have noticed
that (Z¢Mq)/U; <€ — Mg . This turns out to be generally correct as long as the c.g. is not too far

aft. Therefore, an approximation to the approximation of the short period undamped natural fre-
quency is:

Wy, == ¢ = Mg = — 1. (5.63)
yy

For the case at hand, this yields a frequency prediction of:

Wy, = 2.73 rad/sec

Eqn (5.63) does provide the following information about three factors which normally
"drive’ the magnitude of the short period undamped natural frequency of an airplane:
* Static longitudinal stability, Cp, = CLu(iCg — Xac,) » and therefore the c.g.
location relative to the airplane acrodynamic center. The frequency will
be higher at forward ¢.g. than at aft c.g.
* Dynamic pressure in the steady state, @; . The frequency at any given altitude

will be higher at high speed than at low speed.

* Pitching moment of inertia, Iy, . The frequency will be higher for airplanes with

a low pitching moment of inertia. The airplane mass configuration therefore plays
arole. All else being the same, an airplane with the engines mounted in the aft
fuselage would tend to have a lower frequency than an airplane with the engines
mounted under the wing.

It is instructive to compare the terms under the square root sign in Eqn (5.63) with the term
(k/m) in Eqn (5.5). Evidently, the term (Cp, §,S€) canbe thought of physically as a torsional spring,

wrapped around the airplane Y-axis!
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When examining Eqn (5.62), it is seen that for any given short period undamped natural fre-
quency, the derivative terms Mg, Zo/U; and M, determine the short period damping ratio. Of

these, the pitch-damping derivative, Mg, turns out to be the most important one. A theoretical prob-

lem with the approximation of Eqn (5.62) is that the damping ratio is predicted to be always positive.
Practical experience shows that this is in fact not correct.

It is also instructive to examine what happens if the term ( — Ma) in the denomina-

1
tor of Eqn (5.60) becomes zero. Multiplying both sides of Eqn (5.60) by s, the following is obtained:

D) B {(UlMéc + ZyJs + (MoZg, ZGM&)}
= = (5.64)
Bels) Oel(s) 7z
U {s? — Mg + 5 + Mg Js
!
This represents the pitch—rate—to—elevator transfer function of the airplane for the case that:

(Z%Mq - Ma) = 0. The roots of the characteristic equationare s=0and s = (Mq -LZJ—“ + Ma)
1 1

ZoM
Ul

respectively. Observe, that just because ( - Ma) = 0 1s satisfied in some case, the term

(Mq + % + M a) will, in general, not be zero! Therefore, one of the characteristic equation roots
1

is a stable, real root (which leads to a convergence) and the other is a neutrally stable root which
implies that the pitch rate response to elevator deflection will be constant! However, that in turn
implies that the airplane is in a pull-up maneuver, Now examine in detail the condition which led

ZM
to this result, namely that; ( % 4 _ Mu) = 0.
1
By using the definitions for dimensional derivatives of Table 5.1 and by making the same approxi-
mations which were made in the derivation of Eqn (5.49) it is found that the constant pitch rate solu-
tion corresponds to the following center of gravity location:
Cm 0S¢

Xeg = Xac, — AW (5.65)

This center of gravity location will be recognized as the airplane maneuver ‘point (stick
fixed), MPy,_, as defined in Eqn (4.121). This result establishes yet another connection between

static and dynamic stability.

To help the reader visualize how an airplane responds to an elevator pulse according to the
short period approximation, Figure 5.12 has been prepared. Note that the speed vector remains
constant, while angle of attack and pitch attitude vary.

This ends the discussion of the short period approximation. Section 5.2.6 contains a similar

discussion for the phugoid approximation.
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3.2.6 THE PHUGOID APPROXIMATION

Whether or not any approximation to the airplane equations of motion can be considered a
‘reasonable’ one can be ascertained with the help of a so—called modal (or eigen—vector) analysis.
An application of such an analysis to a business jet airplane will be discussed in Sub—section 5.2.9.

At this point the reader is asked to accept the fact that for inherently stable airplanes it is fre-
quently acceptable to assume that the phugoid mode of motion takes place at approximately constant
angle—of-attack. Inthatcase the pitching moment equation (5.3 1¢) should be cast aside. In addition,
the angle—of-attack terms in Equations (5.31a) and (5.31b) should be discarded. As a result the re-
maining perturbed, longitudinal equations take the following form:

[~ T [ us) ) v A
(s — Xy — X (+ gcosh)) 5.() Xs,

J =4t (5.66)
-7, {— (Zq+ Ups + gsin@l} BQE((S_S)) Zs,

In most instances it has also been found acceptable to introduce the following further approx-
imations Zy < U; and 0, =~ 0 . Furthermore, by considering the thrust contribution to the di-

mensional speed damping derivative, Xy , as part of the total speed damping effect of the airplane

and therefore by substituting X, — X, + X, it is possible to write Eqn (5.66) as follows:

T [ us) ) o
(S — Xu) +g 63(8) X(Sc
. . = { > (5.67)
_ _ 8
L Zo U]S i Be(s) ) \ZﬁgJ

The approximate speed and pitch—attitude transfer functions can now be explicitly written
as follows:

u(s) . (X{)CU]S + gzbc)

— (5.68)
Be(s) Z.
¢ UI(SZ—XUS—%—I)
and
Z-s—XZa +gX62

9c(s) U1(52 — X8 — g{?)

The denominator quadratic in Egn (5.68) and (5.69) is in fact an approximation to the
phugoid quadratic form (s? + 2?;phu)nphs + wnphz) . It is now possible to write the following

approximations for the phugoid undamped ratural frequency and damping ratio:
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(5.70)

and

Coh = 5 (5.71)

ph
To see how accurate these approximations are, the appropriate data from Table 5.4 will be
substituted into these two equations. It is found that:

Cp‘h =005 and o, =008 rad/sec

These results compare very well to those of Eqn (5.54).

To understand the design drivers in the case of phugoid undamped natural frequency and
damping ratio, Eqns (5.70) and (5.71) will be analyzed in more detail. Substituting the definition
for Z,, from Table 5.1 into Eqn (5.70) yields:

0gS
Wn,, = \/ 5—(C, +2CL) (5.72)

In the low subsonic speed range, the condition C; < €y, issatisfied. By recognizing that

Cp, = W/GS this can be further simplified to:

W, =~ /2 (5.73)

Equation (5.73) implies that the undamped natural frequency of the phugoid motion is inde-
pendent of the design of the airplane: it depends only on the steady state speed, U, .

Next, substituting X, + X > X, with the appropriate definitions from Table 5.1 into
Egn (5.71) yields:

e Kot Xr) /2(Cp, - Cr)
T T de,  4CL

(5.74)

The reader will recall from Sub—section 3.2.15 that the perturbed thrust—speed derivative,
Cr 18 dependent on the type of propulsive installation. Five different cases are discussed in Sub—

section 3.2.15. For the case of a jet powered airplane in the low subsonic speed range, it can be shown
that Eqn (5.74) further simplifies to:

)
t_'ph = m (5.75)

This result indicates that the phugoid damping ratio is inversely proportional to the airplane
lift—to—drag ratio. Therefore, airplanes with high lift—to—drag ratios can be expected to have poor
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phugoid damping. Poor phugoid damping makes the control of speed difficult. On final approach
this can be a problem. However, at low speed, with landing gear and flaps down, the lift—to-drag
ratio is decreased significantly and therefore the phugoid damping ration is improved.

To help the reader visualize how an airplane responds to an elevator pulse according to the
phugoid approximation, Figure 5.13 (sce Page 337) has been prepared. Note that the angle of attack
remains constant while speed and pitch attitude vary.

This ends the discussion of the phugoid approximation. Section 5.2.7 contains a discussion
of airplane responses to a step elevator input,

5.2.7 RESPONSE TO AN ELEVATOR STEP INPUT

The response of the airplane to an arbitrary elevator input can be obtained by following the
process suggested in Figure 5.9. To illustrate this process, consider the case of an elevator step input.
The final value theorem (Eqn (C6) in Appendix C) will be used to find the magnitudes of the ultimate
perturbation values of speed, u, angle- of-attack, o, and pitch—attitude—-angle, 8 . The reader should
verify the following expressions by referring to Table 5.3.

8e(Zs My + M Zo)
im u() = lim g2 Nul _ 8Dy _ 05 Ma ¥ MsZa (5.76)
[—x S_’O 5 D] El (Mazu _ ZaMu)
8e(Zy My — My Z,y)
fim a() = lim |s2eNa| _ 8Dy _ Ol My = My 7y (5.77)
N 8.D
lim 6(t) = lim Qo[ _ 0Dy
t—= o0 s—0 8 D} E]
86|, ~ MaXy + XaM) + My (ZaXy = XoZo)|
- (5.78)

(Mazu - ZocMu)

In obtaining Eqn (5.78) the additional assumption of negligible elevator
drag (X5 = 0) wasmade. The quantities represented by Eqns (5.76)—(5.78), when added to their

steady state counterparts, represent the new equilibrium (or trim) values for speed, angle-of—attack
and pitch-attitude following a step input clevator command of 8, radians. In the case of the air-

plane and flight condition of Table 5.4, the following numerical data are obtained for a step elevator
input of +1 degree (1/57.3 rad):

lim u(y) =~ (7D (2 42.2(= 7.44) + (= 17.7)(= 445.7)]

== [(~ 7.44)(— 0.139) — (— 445.7)(0.001 1) = 94 fps (5.79)
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im o) ~ T 42.D0.0011) = (= 17.7)(~ 0.139)

e 743(= 0.139) - (— #@smoooin) 02 des 80

h B = (1/57.3)[ = 42.2{—~ (— 7.44)(— 0.0074) + (8.98)(0.0011)}|
g © = [(— 7.44)(— 0.139) — (— 445.7)(0.0011)]

(1/57.3)[(~ 17.7)[(— 445.7)(— 0.0074) — (8.98)(~ 0.139)}}
* [(— 7.44)(— 0.0139) — (— 445.7)(0.0011)]

= — 0.9 deg (5.81)

In the next Sub—section the reader is introduced to standard transfer function formats.

5.2.8 STANDARD FORMAT FOR THE LONGITUDINAL TRANSFER FUNCTIONS

For reasons which will become particularly clear in Chapter 8, it has been found useful to
present airplane transfer functions in terms of their so—called ’standard formats’. In these standard
formats the numerator and denominator polynomials of Table 5.3 are assumed to break down in a
manner normally (but not always) found for any given (inherently stable) airplane. The stardard
format normally found for the open—loop transfer functions of mherently stable airplanes is given
in Table 5.6, Eqns (5.82).

Note from Eqns (5.82) that for s=0 all components of the transfer function which depend on
the Laplace variable s take on the value 1.0. Each transfer function at s=0 takes on a value given
by the ratio of the free coefficient in the numerator to the free coefficient in the denominator. These
values are referred to as the zero—frequency gains of the transfer functions. For the longitudinal
transfer functions these zero—frequency gains (with the help of Table 5.3) are found as:

D D Dy
us, E, 0, B, E, (5.84)

For the business jet example of Table 5.4 the corresponding values as indicated in Table 5.6
are:

Ky, = 35,2365 ft/sec/rad  Kq, = — 1.7278rad/rad Ko, = 1.7109rad /rad

As will be shown in Chapter 8, with these transfer function forms, the construction and inter-
pretation of airplane frequency response plots (also known as Bode plots) becomes easy.

5.2.9 THE LONGITUDINAL MODE SHAPES

In Sub-sections 5.2.5 and 5.2.6 the short period and phugoid approximations were
introduced by assuming that speed and angle of attack respectively were unimportant motion vari-
ables in those approximations. This begs the question: is it possible to predict whether or not one
or more motion variables can be neglected in the dynamic response of an airplane. Such a prediction
can be made with the help of a modal analysis as shown next.
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Table 5.6 Standard Format for the Longitudinal Transfer Functions

General Standard Format:

u@s) Ky, (Tus + D(Ty,s + 1)
Be(s)
4 ( Sz2 ZE"’S-I-I)( g2 ZCPS_‘_I)
O')n.sp (Dnsp mnp (Dn_gp

Ko, (Ta,s + 1)(55?—1 + ii + 1)

N N

(5.822)

a(s) _

Oe(s)

) £ 428 22+2C"S+1
wn\P (Dnsp wnp wnsp

Bs) _ Ky, (Tgs + D(Tgs + 1) (5520

)
o(s) ( s, 2 | 1)( g EE+1)
wn- U)n (Dn wn
sp sp p sp
Example Numerical Format for the Business Jet of Table 5.4:

) 5,236.5{(_—711-8__5)3 + 1”(0 o) T 1}

(5.82b)

(5.83a)
= Be(s) ( £, 2(0.3535)s )( g, 2(0.0461)s 1)
(2.8324)°  (2.8324) (0.0920)* *  (0.0920)
- 172 g2 2(0.0456)s )
afs) _ 7 78{(282 9)g ¥ 1](0.08122 00812 7! 5.8%)
Be(s) ( st 20.3535)s 1)( £ 2(0.0461)s | 1) '
(2.8324) ° (2.8324) (0.0920)* * (0.0920)
- 1 1
o) _ 1.7109[(0.6310)3 + 1”(0 0104)q + 1} -
Be(s) ( 5 2(0.3535)s 1)( g 2(0.0461)s 1) '
(2.8324) © (2.8324) (0.0920)* *  (0.0920)
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For a given elevator (or gust) input the response of an airplane can be thought of as consisting
of the simultaneous oscillatory response of the variables speed, u(t), angle-of-attack, a(t), and
pitch-attitude angle, 8(t). A longitudinal mode shape can be described by two quantities, one de-
scribes the relative magnitude of amplitudes in u, o and 8 and the other describes the phase angles
of these variables with respect to each other. The following analysis shows how such a mode shape
can be determined and how such amode shape can be used to decide whether or not an approximation
(by discarding one or more motion variables) is acceptable.

Consider the perturbed equations of motion (5.31) in Table 5.2 and assume that the elevator
terms are left out. This can happen by letting the elevator perturbation gradually approach the value

of zero. The remaining equations describe the dynamics of the un-perturbed system. These equa-
tions are given as Eqns (5.85):

(s — Xyu(s) — X,0(s) gecosB,0(s) =0
— Zau(s) [s(U1 ~Z)- Za]a(s) (= (Zq+ Ups + gsinBy}8(s) =0  (58)
— (My)u(s) - [Mds + Ma]a(s) (s* ~ M5)8(s) =0 -

To reduce the amount of algebra, the thrust derivatives in Eqn (5.85) have been assumed to
be included in their acrodynamic counterparts.

One of the variables in Eqns (5.85) is now selected as the one against which the others are
compared. The pitch attitude angle 1s arbitrarily selected to fulfill that role. Eqns (5.85) are now
written in terms of the mode shapes u(s)/0(s) and o(s)/0(s) in the following manner:

_ x 3 96) _x «) - _
(s — Xu) 0s) X, 5s) geosB,
o{s) :
— zugi(% [s(U1 -7 - Za}@ = == (Zg+ Up)s + gsin6,| (5.86)
_ us)  _[m oS _ _ (2 —
(MU)B(S) {Mas + Ma] o0 (s2 — Mgs)

To solve for the mode shapes, any two of the three equations (5.86) can be used. Using the
first and the third equation yields the following solutions:

— gcosb, - X,

— (s — Mgs —{M-s-I-M}
U_(S) _ ( q ) a a _ 31522+ bIS + ¢y (587)
0(s) (s — Xu) - X, as< + bs + ¢

— (M) - (Mc-ls + Ma)
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and:
(s — Xu) — gcosf,
— — (g2 —
afs) _ Ma (87 = Mqs) _ P +bys? tes +d, (5.88)
a(s) (s — Xy) - X, as®> + bs + ¢ '

The polynomial coefficients in Eqns (5.87) and (5.88) are found by expansion of the determi-
nants. The result is:

a=—M b=-M + XM c=XM —-X M,

a o o o o
ag=-X b = Mdgcos.E)1 +X Mg ¢ =M geostd (5.89)
a, = — 1 b, = Mg + X, ¢, =—-XMy d,= — M,gcost,

The solutions for the mode shapes are themselves ratios of s-domain polynomials. However,
s itself, will (in general) also be a complex number. Therefore, each mode shape can be represented
by the ratio of two complex numbers which in turn is a complex number. Any complex number,
X can be written as:

X = Xyl (5.90)

where: X, is the absolute magnitude of the complex number and ¢ isits phase angle. By
writing the mode shapes as a ratio of two complex numbers:

u(s) or Q(S) — Dpym + jwnum

G(S) B(S) Nge, T jwden

where: the subscript ‘num’ signifies numerator and the subscript *den’ signifies
denominator.

(5.91)

The magnitude of such a complex number can be found from:

2 2
n +w
Magnitude = —fim __fum ‘ (5.92)
ni + w2
en den
The phase angle of such a complex number is determined from:

Wnym

— arctan —den (5.93)

Phase 4 = arctan
num Dgen

The mode shapes corresponding to the short period mode can now be obtained from Eqns
(5.87) and (5.88) by substituting for s the short period root(s) of the characteristic equation as given
by Eqn (5.53). Similarly, the mode shapes corresponding to the phugoid root are found also from
Eqns (5.87) and (5.88) by substituting for s the phugoid root(s) of the characteristic equation as given
by Eqn (5.54).
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As anumerical example, such a substitution process has been carried out using the business
jetdata from Table 5.4 (See Input Parameters). The resulting complex numbers are depicted by pha-
sors and phase angles in Figure 5.14a for the short period mode and in Figure 5.14b for the phugoid
mode. It is clear from these figures that for this business jet example the assumptions of constant
speed in the short period mode and constant angle of attack for the phugoid mode are justified.

U/Ul J Jw

e 0.53ei<n/2/— %= 1.24ej(0'06)<—

1.0
L 2 L 4
g/ M 10 9/ "™
% = xelt
u/ Uy
not visible 8 = xel®
not visible
a) Phugoid Mode Shape b) Short Period Mode Shape

Figure 5.14 Examples of I.ongitudinal Mode Shapes for a Business Jet in Cruise

44 12"

6.4’
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DIAMETER
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5.3 1LATERAL-DIRECTIONAL, DYNAMIC STABILITY
AND RESPONSE

53.1 LATERAL -DIRECTIONAL EQUATIONS AND TRANSFER FUNCTIONS

The small perturbation, lateral-directional equations of motion of the airplane are repre-
sented by Eqns (5.2). Two observations are in order:

First, by using the substitution p = ¢, r = and v = U, the equations can be cast in

terms of the variables: sideslip angle, B, bank angle, ¢ and heading angle,

Second, the rolling moment of inertia, I, , the vawing moment of inertia, I, , and the
product of inertia, Iy, are normally computed in a somewhat arbitrarily selected body-fixed axis

system. Because the equations of motion are written in the stability axis system, these three inertia
parameters will have to be computed also in that system. Because the stability axis system was ob-
tained from any body-fixed axis system by rotation about the Y-axis over the steady state angle of
attack, a, , (See Figure 3.1) a transformation involving this angle of attack is required. This trans-

formation is given by Eqn (5.94).

rIxx‘ﬁ B 2 . 2 . ] rlxxB.\
: cos“q, sin“a — sin20y
J Iz, p = sinzoz1 c052a1 sin2a S Lz ¢ (5.94)
1 _ 1 I
LIxsz | 5sin2a, 3sin2a, cos20 | |z

The numerical effect of this axis transformation on the lateral-directional inertias is illus-
trated in Figure 5.15. For small angles of attack the effect tends to be weak on Iy andon 1,, . How-

ever, the effect on 1, can be important even for small angles of attack.
Equations (5.2a-c) will now be rewritten in two steps:
Step 1: To obtain better insight into the physical characteristics of Equations (5.2) it is cus-

tomary to divide both sides of the side force equation by the mass, m, and to divide both sides of
the rolling and yawing moment equations by the moments of inertia, I, , and I, , respectively.

As aresult all terms in the corresponding equations have the physical unit of linear or angular accel-

eration.

Step 2: To obtain better insight into the relative importance of the aerodynamic forces and
moments, the so-called dimensional stability derivatives of Table 5.7 are introduced. How these
derivatives come about is illustrated with one example. Consider the Cnﬁ term in Eqn (5.2¢). This

term will be re-written as follows:
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ﬁ horizon

—

Zy Note: all inertias in slug—ft?
a, 0 deg 10 deg 20 deg 30 deg
Ixx, = 28,000 28,000 28,111 29,355 31,581 -1,
Iz, = 47,000 47,000 46, 889 45,645 43,419 -],
Ixz, = 1,350 1,350 - 1,981 — 5,072 - 7,552 -1,

Figure 5.15 Effect of Steadv State Angle of Attack on the Lateral-Directional
Inertias in Stability Axes

i,

q,SbCh,

IZZ

=Nr3{3 , where: N|3 = (5.95)

The newly defined dimensional stability derivative, Ny, has the following very important

physical meaning: it represents the yaw angular acceleration imparted to the airplane as a result of
a unit change in angle of sideslip. This physical meaning can be generalized to apply to all dimen-
sional stability derivatives of Table 5.7 by using the following definition:

Definition:  Each dimensional derivative represents either the linear or angular accelera-
tion imparted to the airplane as a result of a unit change in its associated motion or control variable.

The numerical magnitudes of these dimensional derivatives therefore give numerical clues
about their relative importance. Their use in the equations of motion (5.2a—c) also results in a much
“cleaner’ look for these equations. The resulting equations are presented as Eqns (5.96) in Table 5.8.

Equations (5.96) are Laplace transformed for zero initial conditions. The new variables
are: (s), ¢(s) and 1y(s)respectively, while 8(s) is the Laplace transformed aileron or rudder
input. The result is Eqns (5.97). Next, equations (5.97a—) are divided by 8(s) . This gives rise
to the so—called open loop airplane transfer functions: B(s)/d(s), ¢(s)/8(s) and p(s)/d(s).

These open loop transfer functions can now be thought of as the new ’variables’. By casting the
equations in a matrix format, the result is Eqns (5.98) which are also shown in Table 5.8. The air-
plane open loop transfer functions can be determined with matrix algebra. Each transfer function
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Table 5.7 Definition of Lateral-Directional, Dimensional Stability Derivatives
Y. = q,8Cy, ft/sec? L. = q,5bC; rad/sec?
B~ T m rad & I, rad
_ q;SbCy, ft/sec? N, = q,;SbCh, rad/sec?
" 2mU, rad/sec B I, rad
v = q,SbC,y, ft/sec? Ne = qleC“Tﬁ rad/sec?
" 2mU, rad/sec T I, rad
v, = q;5Cy,, ft/sec? N. = q;Sb2Cy, rad/sec?
% T m rad P 21,,U, rad/sec
v. = q;5Cy,, ft/sec? N = q,Sh2C,, rad/sec?
8, m rad ' 21,,U, rad/sec
Lo q,5bCy rad/sec? N. = q;SbCy, rad/sec?
B T I, rad & . rad
Lo qlsbzclp rad/sec? N. = q;5bCp, rad/sec?
P 21U, rad/sec Or I,, rad
_ q;SbIC;, rad/sec?
' 21U, rad/sec
L= q;SbC, rad/sec?
6;1 - IXX I‘ad

348
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Chapter 5

Table 5.8 Development of the Perturbed Lateral-Directional Equations of
Motion with Dimensional Stability Derivatives in Matrix Format
UB + Uy = ghoosh, + YgB + Yob + Yop + Y, 8, + Y, 8, (5.96a)
b — Ap = L+ Lodp + Loy + L, 8, + L, 8, (5.96b)
v - B¢ = NgB + Ny + Npp + Ny + N 8, + N, §, (5.96¢)
™ Ixz T — Ixz
NOTE: A, =+ and B, = 2%
IXX IZZ

Laplace transforming Egns (5.96) for zero initial conditions:

(sUy — Yﬁ)ﬁ(S) — (8Yp + gcos0)d(s) s(Up = You(s) = Y,3(s) (5.97a)
— LB + (2 = Lps)d(s) — (s"A; + sLyy(s) = Ld(s) (5.97b)
- (Ng+ NTﬂ)B(S) — ("B + Nps)d(s) (s* — sNow(s) = N0(s) (5.97¢c)

Writing Eqns (5.97) in matrix and transfer function format:

Transfer Function Matrix
B 0 Y ] rﬁ_!s)w Y 1
(sU; — Yﬁ) - (SYp + gcos0,) s(U, — Y)) 5(s) 5
— ¢(s)
- 2 _ _ (52 S JL L
L, (% — L;s) (s*A, + sLy) { 56 [ 5
— Y(s) N
_ _ g2 2 h et 5
| NB NTn (s°B; + Nys) (s SN} ___ 3() 9]
-« System Matrix >
Control Power Matrix (5.98)
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is then expressed as aratio of two determinants. The resulting determinant ratios are shown in Table
5.9 as Equations (5.99), (5.102) and (5.104) respectively.

Note, that the sideslip-to—aileron (or —rudder) transfer function, B(s)/8(s) , of Eqn (5.99)

can be written as the following ratio of polynomials in the independent Laplace variable, s:

S(AﬁS3 + BBS2 +Cps + Dg)
S(A,5% + Bys? + Cys2 + Dys + E,)

g(s) (5.105)

b _ Dp
(s) D,

Similarly, the bank-angle-to-aileron (or —rudder) transfer function, d(s)/8c(s) , of Eqn

(5.102) can be expressed as:

(s o s(Aq)s2 +Bys + Cy)
(5) D, (Ags*+Bys3+ Cys? + Dys + Ey)

<
Z.

(5.106)

o

Finally, the heading—to-aileron (or —rudder) transfer function, W(s)/8(s) , of Eqn (5.104)

can be written as:

3 2
Ny Aws + Bws + Cws + D‘JJ
d(s) D, s(A,st+ Bys® + Cys? + Dos + E,)

<
=
Z

(3.107)

Note that in the sideslip and bank—angle transfer functions the free s in the numerator and
denominator cancel each other. This cancellation does not occur in the heading transfer function.
The physical significance of this is that the airplane is neutrally stable in heading because of the
associated s=0 root in the characteristic equation.

Itis seen that all transfer functions have the same denominator. When the polynomial in the
denominator is set equal to zero the resulting equation is called the characteristics equation:

At + Bys? + Cys2 + Dys + By = 0 (5.108)

The roots of this characteristic equation determine the dynamic stability character of the air-
plane. These roots and how they are affected by flight condition, by airplane mass, by airplane mass
distribution (c.g. location and inertias), by airplane geometry and by the airplane aerodynamic char-
acteristics will be discussed in Sub-sections 5.3.2 — 5.3.7.

It is also seen from Eqns (5.105)—(5.107) that the numerators of all transfer functions are all
different. The numerator polynomials affect the magnitude of the response of an airplane to a con-
trol surface input. However, ONLY the denominators affect the dynamic stability character of
the response (i.e. the frequency or time—constant behavior).

These statements about the way numerators and denominators affect airplane response are
true for the so—called open—loop response of an airplane. In closed loop situations (such as the case
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Table 5.9 Lateral-Directional Airplane Transfer Functions

Yy, — (sYp + gcosB)) s(U; — Yp
L (s — Lps) — (s?A, + sLy)
B(s) N — (s’B; + Nps) (s? — sNp) Ny
S = = — (5.99)
(s) (sU, — Yﬁ) — (sYp + gcosB ) s(U; — Yo D,
- L, (s2 — Lps) — (s?A| + sLy)
— (N + Np) — (s?B; + Nys) (s — sNp)
D, = s(A,s* + B,s® + Cps2 + Dys + E,) where : (5.100)

A, =U,(1 - AB))

B, = — Yg(l — A;B)) —~ Uy(Lp + Nr + ANp, + B{Ly)

Cy = U(LpNr = LNp) + Y(N; + Lp + A|Np + ByLp) — Yp(Ly + NgA; + NpAp) +
+ Uy(LgB, + Ng + Np) — Y(LgB, + Ny + Np)

Dy = — Yp(LpNr — LNp) + Yy(LgN; — NgL — Ny L) — geos6,(Lg + NgA| + Np A)) +
+ U (LgNp — NgLp = N Lp) = Y(LgNp — NgL — N Ly)

Ng = s(Ags® + BBsz + Cpgs + Dp) where : (5.101)

Byg= — YN, + L, + AN, + B{L) + Yp(Ly + NJA)) + Y(LB, + Ng) +

p

— U (LgNp — NiLp)

Dy = gc0s0(NgL; — LgN;)
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Table 3.9 (Continued) Lateral-Directional Airplane Transfer Functions
(sU; — YB) Y, s(Uy; = Yo
— (N, + N N (s> — sNy)
OB ° — N 50
&(s) D, D,
Ny = s(Aq)sz +Bys + Cp) where (5.103)
A, = ULy + NsA))
B¢ = U (NgLr — LNy — Yﬁ(Lb + NaKl) + YB(LB + NﬂKI + NTBKI)
C¢ = - Yﬁ(NaLr — LgNp) + Y{)(LrNﬁ + LFNTﬁ — NrLB) +
+ (U, - Yr)(NBL5 + NTﬂLa — LﬁNa)
(sU; = Yp) — (sY, + gcosB)) Yy
— L, (s* — Lps) Ls
— (N, + N — (s?B, + Ngs N
o) _ 1~ Np TN G5 * %) : N (510
d(s) D, D,
Ny = (Ays? + Bys? + Cys + D) where : (5.104)
Ay = U;(Ng + LB
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with auto—pilots and/or stability augmentation systems) the numerators do affect the closed loop sta-
bility of the airplane. This aspect of the significance of the numerator characteristic equations (i.e.
numerator polynomials set equal to zero) will become clear in Chapters 9, 10 and 11 where the be-
havior of automatic control systems are discussed.

Figure 5.16 shows how the open—loop transfer functions can be used to determine the re-
sponse of an airplane to a control input. The block diagram drawn in Figure 5.16 is used to help
visualize the inter-relationship between input, transfer function and output.

System Transfer Function

Input Output

(s) d(s) P(s)
o YS) -

Output = Input x (Transfer Function), or:  ¢s) = &(s) (%)

Figure 5.16 Example of a Block Diagram to Illustrate the Use of Transfer
Functions in Determining System Response to a Known Input

It turns out that the transfer functions as derived in Table 5.9 can be used not only to deter-
mine the response to aileron (or rudder) control surface inputs but also:

1) to determine the response to inputs from other types of controllers
and
2) to determine the response of the airplane to gust.

This will be discussed next.
1) Response of the airplane to control surface inputs other than the aileron or rudder:

If the response of an airplane to another control surface input is required, the only change
that must be made is in the transfer function numerators, in particular in the control power terms.
The following substitutions must be made in the numerators Ng Ny and Ny :

For response to a vertical stabilizer input:

substitute Yiv, L.

y

and N; for: Yz Lg and Ny respectively.

For response to a vertical canard input:

substitute Yiv . L

1

and Nivc for: Yg, Lg and Ny respectively.

Ve
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For response to an incremental, differential thrust input, with rolling moment, ALy ,

and yawing moment, ANy , consequences only:
substitute 0, ALy and ANy for: Y, L, and Ny respectively.

2) Response of the airplane to gust:

If the response of the airplane to a step input angle-of-sideslip gust, AB, , is required, the

only change that must be made is again in the transfer function numerators, in particular in the con-
trol power terms. The following substitutions must be made in the numerators N 5 N o and Nw :
substitute Yﬁ, Lﬁ and N 8 for: Y s L and N, respectively.

Figure 5.17 may be helpful in visualizing the calculation of airplane responses to various
types of control inputs. The reader should keep in mind that responses to simultaneous inputs from
various input sources can be determined by SUMMING the responses to individual inputs. The rea-
son this is correct is the fact that in a system which is described by linear differential equations the
principle of superposition holds!

Input System Transfer Functions Output
8a(s) . $(s) ¢S o
63(8) A
04(8) P(s)
ol 500) -
da(s) _
s S
S TS b
3:(s)
ABg(s)
)’ & B(S) ),
Af’g(s)
6asymmetric ﬂap(s) P(s) Y(s)
¥ S y s
asymmetric ﬂap(S)
Figure 5.17 Example of a Block Diagram to Illustrate the Use of Transfer
Functions in Determining System Response to a Known Input
From Various Sources
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53.2 LATERAIL-DIRECTIONAL CHARACTERISTIC EQUATION RQOTS AND
THEIR CONNECTION TO DYNAMIC STABILITY

Since the dynamic stability character of the airplane open loop transfer functions is deter-
mined by the roots of their characteristic equation, it is of interest to examine how these roots can
break down from a mathematical viewpoint. Because the characteristic equation (5.108) has four
roots, the following possibilities arise:

D All roots are real
1) Two roots are real and two are complex conjugates
IIT)  All roots are complex: two pairs of complex conjugates

Figure 5.11 illustrates all possible combinations of root locations (root break—downs) for a
fourth order characteristic equation. Even though all these root break—downs can occur in the case
of airplanes, the usual root breakdown for the lateral--directional case 1s that represented by either
Case B1 or Case B2 in Figure 5.11. How other root break—downs can arise will be discussed in Sec-
tion 5.4.

Whether or not an airplane is dynamically, laterally—directionally stable is usually ascer-
tained by inspecting computer print—outs of the roots of the characteristic equation (5.43) in accor-
dance with the stability criteria of page 265. For stability, real roots must be negative and complex
roots must have negative real parts.

Stability can also be predicted from the coefficients A, through E, in the characteristic

equation (5.108). This can be done by using the so—called Routh—-Hurwitz stability criteria for the
roots of a polynomial equation. For a more detailed discussion of these stability criteria and their
applications, the reader may wish to consult Refs 5.5 and 5.6. According to Routh—Hurwitz the roots
of a fourth order polynomial are stable if and only if the following inequalities are simultaneously
satisfied:

A,, B, C,, D, E, > 0

9 , o (5.109)
D,B,Cy — AyDy) —B,E, > 0 (Routh’s Discriminant)

It is shown in Reference 5.7 that as the polynomial coefficients A, through E, are

changed, the dynamic stability behavior changes in the following manner:

A) If the ’free’ coefficient E, is changed from >0 to <0, one real root changes from

negative to positive. The time domain response will therefore contain a pure
divergence as a component. In Figure 5.11 this behavior corresponds to a change
from case al) to case a2) or from case bl) to case b2).

B) If Routh’s Discriminant changes from >0 to <0, the real part of a complex root
changes from negative to positive. The time domain response will therefore contain
an oscillatory divergence as a component. Examples of this behavior in Figure 5.11
are changes from case b1) to case b3) and changes from case c1) to case c2).
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The reader should recognize the fact that changes in the coefficients A, through E, can

come about by changes in airplane flight condition, airplane mass, airplane mass distribution (c. g.
location and inertias), airplane geometry and airplane aerodynamic characteristics, By performing
so—called sensitivity analyses it is possible to gain insight into how the airplane designer can or can-
not affect the dynamic stability and response behavior of an airplane. Sensitivity analyses are dis-
cussed in Section 5.4,

With the widespread introduction of digital computers, the usefulness of the Routh- Hurwitz
stability criteria (5.109) has declined. However, criterion A) still serves a useful purpose in that it
enables an interesting connection between static and dynamic longitudinal stability. That is dis-
cussed in Sub—section 5.3.3.

3.3.3 CONNECTION BETWEEN DYNAMIC AND STATIC LATERAI-DIRECTIONAL
STABILITY

According to the stability criteria of in equality (5.109), one real root in the lateral-direction-
al characteristic equation changes from stable to unstable when the coefficient E, in Eqn (5.108)

changes sign. An expression for this coefficient E, is shownin Table 5.9. Because the steady state
pitch attitude angle, 0, and the acceleration of gravity, g, are both positive it follows that the re-

quirement for stability is:

(LN = NgLe = Np Ly) > 0 (5.110)

Neglecting the thrust contribution, this can be written as:

(LgNe = NgLo) > 0 or: (€, Ca, = CpCp) > 0 (5.111)

By referring to Chapter 4, the reader can verify that the derivatives Ch, ,Cnﬁ and C,, must
normally satisfy the following sign conditions: Cp, <0 +Cny > 0 and C, >0 . As a conse-

quence, to satisfy the dynamic stability criterion (5.111) it is necessary that the condi-
tion CIB < 0 be satisfied. The reader will recognize this as the requirement for lateral stability, as

expressed by Eqn (4.41) discussed in Chapter 4. This establishes yet another connection between
static and dynamic stability.

3.34 EXAMPLES OF LATERAL-DIRECTIONAL TRANSFER FUNCTIONS

The following examples illustrate two types of transfer functions: one type associated with
a typical business jet, the other type associated with a typical jet fighter. The former was designed
as an inherently stable airplane, the latter as an inherently unstable airplane.

To determine the numerical values of the coefficients in the numerator and in the denomina-
tor polynomials of lateral-directional transfer functions the following steps are necessary:
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Step 1: Determine the flight condition and corresponding airplane configuration

Step 2: Determine the airplane mass and mass distribution (lat.-dir. inertias)

Step 3: Determine the dimensionless stability derivatives

Step 4. Determine the dimensional stability derivatives

Step 5: Determine the polynomial coefficients in the transfer function numerators
and denominator

The Advanced Aircraft Analysis program (See Appendix A) was used to perform these
steps. The results are summarized in Tables 5.10 and 5.11 for a business jet and for a jet fighter re-
spectively. At the top of Tables 5.10 and 5.11 are the required input data; these data are determined
during Steps 1-3. Below the input data are the output parameters in the form of dimensional stability
derivatives and the transfer functions (Step 4). Note that the transfer functions (Step 5) are given
in two formats: polynomial format and factored format., The significance of the results in Tables
5.10 and 5.11 will now be discussed.

By inspection of the denominator polynomials of the two airplanes in Tables 5.10 and 5.11,
the following (rounded off) values are found for the denominator polynomial coefficients:

DENOMINATOR POLYNOMIAL COEFFICIENTS

For the Business Jet: For the Jet Fighter:

A, = 675 A, = 861

B, = 427 B, = 830

C, = 1,968 C, =1,574 (5.112)
D, = 964 D, = 1,744

E, = 0973 E, = 49.6

It is clear by inspection of the factored denominators in Tables 5.10 and 5.11, that the busi-
ness jet is dynamically stable while the fighter is dynamically unstable.

The characteristic equation roots for the two airplanes are given in Eqn (5.113). They follow
from the factored formats in Tables 5.10 and 5.11.

CHARACTERISTIC EQUATION ROOTS

For the Business Jet: For the Jet Fighter:
s12 = — 00653 + j(1.69) s = +0.0502 + j(1.38)
sy = — 0.0010 sy = — 0.0292 (5.113)
sq = — 0.5003 sq = — 1.0357

It is seen that the root break—down for the business jet is according to case B1) in Figure 5.11.
There is one complex pair of roots, and there are two real roots. The complex pair is referred to as
the dutch roll mode, the real root closest to the origin (in the s-plane) is called the spiral root and
the other real root is called the roll root.
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Table 5.10 Lateral-Directional Transfer Functions for a Business Jet in Cruise

’7 IGHT SIZING GECMETRY DRAG POLAR WEIGHT & BALANCE | PERF. ANAL Y5iS COST ANALYSIS HELP( SETUP
PERFORAM. SIZING HIGH LIFT STAB & CONTROL INSTALLED THRUST | SAC DERIVATIVES CONTROL DATA BASE aulT

OPEN LOOP DYNAMICS

LONGITUDINAL L ROLL COUPLING [RETUAN 1

LATERAL-DIRECTIOMAL ANALYSIS :

IR o T - [cHECK MDDES [SENSTIVITY [RETURN ]

[CALCULATE [THEORY [PRINT PaRAMETERS [RETURN |

COMPUTATION OF LATERAL-DIRECTIONAL TRANSFER FUNCTIONS : INPUT PARAMETERS

W_current = 13000.90 lb I_xx_B = 28000 slgft2 C_n_T_B = 00000 c_ 1 d T = £.0172 1/rad
lAlbitude = 40000 ft I_2z_ B = 47000 sigft2 c_n.p = 0.Q080 lirad C n 4 _a = -0.0172 1/1ad
5_w = 232.00 ft"2 I_xz_B = 1350 =sigfrl C_n_r = -0.2010 l/rad C_n_d_r = -0.0747 I/rad
u_1 = 400.00 kts c_1.8 = —0.1100 i/rad C_v B = -0.7300 l/rad C vy da = 0.0000 1/rad
[Thera 1 = D.00 deg C_1_p = -0.4530 l/rad C_ ¥y _©p = 0.0030 1/Taa C_v d_r = 09.1380 L. rad
(Alpha = Z.70 dey c_1_x = C.1630 l/rad C_y_r = 0.40200 l/rad

b_w = 34.20 fc c._n_B = 0.1270 l/rad [ 1_d a = 0.1780 l/rad

OUTPUT PARAMETERS

(W/S)_TO = 56.03 psf L_EB = -4.1B45 1l/5°2 z_D = G.0387 TC_latd _§ = r 5

1 bar = 131.84 pst L_m = -0.43865 1/s w_1_LatP = 7 rad/s [¥_cel_a = C_QROQ ft/s~2
I_xx_5 = 27515 slgtc2 L.r = 0.1571 1/= z_LatP = H ¥ _del_r = 10.4733 fr/s~2
I_zz_5 = 47085 sigfez N_B = 2.8843 l/=*2 [TC_SPIRAL = 389.234 & L. del_a = 6.7714 1/5°2
I_xz_5 = 450 sigfe2 N_T_B = 0.0000 1/5°2 TC, ROLL = 1.935 g L_del_r = 0.6543 1/35°2
Y_B a ~55.4022 fr/s~2 N, & a 0.0046 1/s TC_lacd 1 = ? S N_del _a = -0.1B7% 17572
Y_p = 0.00QQ ft/s N_r = ~0.1148 1/s TC_lard_Z = 2 = N_del r = -1.€847 1/s5"72
Y_r = G.768% fr/s w_n [ n 1.6882 rad/s TC_latdé_3 = ? 5

| Dnlgn Mlgln and Resaarch Comnraiian T ] Jusers/jan/aaalilealsarei-book [ iNov 13, 1983 [ 1382

LATERAL TRANSFER FUNCTIONS

POLYNOMIAL RCLL TC AILERON TRANSFER FUNCTIOQN

+ 4567 .Z8B05 S°3 + 858.5747 S~2 + 12024.2371 s

+ &75.0200 S5 + 426.85285 S5 4 + 1968.3877 S~3 + 964.4216 S~2 + O 872 =
FACTOGRED ROLL TO AILERON TRANSFER FUNCT IO
4567 .2B0S S(S"2 + 0.1880 & + 2Z.6327)

&75.0200 Si{S$ + 0.5003) (S + 0.0010){S"2 +~ 0U.1306 S + 2_.8501)

ROLL TO AILERON TRANSFER FUNCTION K_galn =1235%_081577

POLYNOMIAL SIDESLIP TO AILERON TRANSFER FUNCTION

~ 675.0200 8575 + 426.52858 =S4 + 1969.3877 S°3 + DE4.4216 S~2Z + 0.9729 S

FACTORED SIDESLIF TC AILERON TRANSFER FUNCTIGON

217 _95865 S(s + 1.3262 {8 + 0.0782)

675 .0200 S(5 + 0.5002)(¢(5 +« 0.0010) (52 « 0.1306 S + 2.B501)

SIDESLIP TG AILERCON TRANSFER FUNCTTION ¥K_gain = 22.402697

Il CONTINUE ] CANGEL ]
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Table 5.10 (Continued) Lateral-Direct

onal Transfer Funct

in Cruise

ons for a Business Jet

LATERAL TRANSFER FUNCTIONS

POLYNOMIAL HEADING TO AILERON TRANSFER FUNCTION
-~ 218 2050 "3 - 111.3266 =5-~2 - 7.6663 S + 564.6921
+~ 875.0200 575 + 426.5285 5~4 + 1968.3877 S°3 + 9564.4216 572 + 0.9729 S

FACTORED HEADING TC AILERON TRANSFER FUNCTION

—-218.2050 (5 - 1L.2147)($72 + 1.7249 S + 2.1304)

675 .0200 5(5 + 0.50062)(8 + 0.0010)(S"2 + 0.1306 S + 2.8501)

HEADING TO AILERON TRANSFER FUNCTION K_gain = S53830.417389

POLYNOMIAL ROLL TC RUDDER TRANSFER FUNCTION
~ 423.40681 S73 = 136.5132 85~2 -~ 3501.1104 S

+ 675.0200 S°5 + 426 .5285 574 + 1968.3877 53 + 964 .4216 352 - 0.872% 35

FACTCRED ROLL TO RUDDER TRANSFER FUNCTION

423 .4061 S8 - 3.0413)(S + 2.7189)

&75.0200 S(S + 0.5003)(S + 0.0010)(sS"2 + 0.1306 s + 2.8501)

ROLL TO RUDDER TRANSFER FUNCTION K _gailn =-3598.607460

PCLYMCMIAL SIDESLIP TO RUDDER TRANSFER FUNCTION

+ 10.4717 S*4 + 1137 €563 5"3 + S514.3222 S~2 - £.0204 S

+ 675.0200 575 + 426.528B5 574 + 1968.3877 S~3 + 964.4216 S7Z + 0.9729 S

FACTORED SIDESLIFP TO RUDDER TRANSFER FUNCTION

10.4717 S{S - 0.0114) (5 + 108.1871) (8 + 0,4655}
€75.0200 S(S5 + 0.5003)(S + 0.00:10)(8"2 + 0.1306 S + 2.8501}
SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = -6.18B00&

POLYMNOMIAL HEADING TO RUDDER TRANSFER FUNCTICON

- 1133 .1894 S5°3 - 557.8529 S"2 - 27.68l1l4 & - 164.4570

+ €75.0200 S5°5 + 426.5285 54 + 1968.38B77 S5"3 + 964 .421l€¢ S°2 + 0.8725 S

FACTORED HEADING TO RUDDER TRANSFER FUNCTION
—1132.18454 (5 + 0.7307)({8"2 + -0.2384d S + O.1986)

675.0200 S(5 + 0.5003) (5 + 0.0010){s5"2 + 0.1306 S + 2.8501)

HEADING TO RUDDER TRANSFER FUNCTION K_gain = -155.036887
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Table 5.11 Lateral-Directional Transfer Functions for a Jet Fighter in Cruise

WEIGHT SIZING GEOMETAY DRAG POLAR WEIGHT & BALANCE | PERF, ANALYSIS COST ANALYSIS THELP / SETUP _|
PERFORM, SIZING HIGH LtFT STAB & CONTROL INSTALLED THRUST [ SAC DERIVATIVES CONTROL DATA BASE fousT
OPEM LOOFP DYNAMICS
LONGITUDINAL |ATTFAL {IIHE () ROLL COUPLING TRETURRK ]
LATERAL-DIRECTIOMAL ANALYSLES
T o [cHECK MODES [ SENSITIVITY [RETURN ]
[eacuLate [THEORY [ PRINT PARAMETERS [RETURN
OMPUTATION OF LATEHAL-DIRECTIONAL TRANSFER FUNCTIONS : INPUT PARAMETERS
W_current = 16000.0 1k I _xx_B 6127 mlgft2 cCnTB = 0.0000 C. 1 d.r 0.0061 1/7ad
[plEitude = 45000 fo 1_zz B 33985 slgfr2 C.np = ~0.0338 1/rad C_n_d_a -0.0057 1/rad
S_w = 302.90 fr~2 T_xz_B 0 slgft2 C_n_r = -0.1897 1/rad c_n_d r ~0.0146 1l/rad
u_1 - 516.00 ks c_1_B -0.134% I/rad c_y b = -0.4007 i/rad C_y_d_a 0.0080 1/rad
Thata 1 = 0.00 deg c_1.p -0.2458 l/rad C_y.p = -0.0636 1,/raa c v _d_r 0.0469 l/rad
[Alpha = 3.25 deg c_1_r 0.1260 1/rad C_y_r - 0.2259 l/rad
b _w a 26.3¢6 ft c_n B 0.0075 Ll /rad C_1_d_a = Q.0830 1/rad
OUTPUT PARAMETERS
(W/5)_TO = 52.98 pstf L_B -30.2744 Ll/s~2 z_D = -0.C363 [Tc_1nta_s ? ]
q_bar = 175.32 psf L. p -0.8350 1l/s w_n_LatP = H rad/s Y _dal_a 0.0000 fr/s*2
T_xx_8 = €216 slgft2 L_r 0.4279 1/s z_LatP = B Y _del r 4.9234 ft/a~2
I_zz_5 = 33865 slgfrl N_B 0.3092 1/8°2 TC_SPIRAL = 34.277 = L_del_a 18.6385 1l/a~2
I_xz.5 = -1573 slgtr2 N T 8 0.0000 1/s72 TC_ROLL = 0965 ® L _del_r 1.3615 1,82
Y_B = -42.0650 ft/a"2 N o -0.0211 1/s e latd_1 - B s N_del_a -0.2334 1/8"2
v = -0.1328 ft/s v -0.0553% 1,= Tc_latd_2 = B 5 N_del_r -0.6018 1/&8°2
[y_= = 6.3588 fois w_n_ D 1.3504 rad/s TC latd_3 = ? =
Desit, Anatysis and Rasearch Corporation gripar/asi/o.n | Jussrafan/asnlilnnfaadg T Nov 13, 1983 | ETE T

860 .6745

860 .6745

+ BEO.6745

162B3 .9016

+ 954 .3628 sS~3

S{8 =+

8°35

+ 1164 .8075 s-~2

LATERAL TRANSFER FUNCTIONS

ROLL TO AILERON TRANSFER FUNCTION K_gain =

1.1299) (S + 0.0277)

L CONTHNUE

—

POLYNOMIAL ROLL T AILERON TRANSFER FUNCTION

FACTORED ROLL TO ATLERON TRANSFER FUNCTION

+ 29 _.909¢€ =

SIDESLIP TO AILERON TRANSFER FUNCTION K_gain

+ 16283 .8016 573 + 1607.6574 S~2 - 1128.0173 s

+ B830.1730 54 + 1574.1509 S~3

-

POLYNOMIAL SIDESLIP TO AILERDON TRANSFER FUNCTION

-22.761102

«0.1004 = + 1.8056})

0.603516

1.0357) (8 + 0.0292) (52 =+

1743 9844 S~2 + 49.5590 5

1004 5 + 1.9056)

CANCEL I
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Table 5.11 (Continued) Lateral-Directional Transfer Functions for a Jet Fighter
in Cruise

LATERAL TRANSFER FUNCTIONS

POLYNOMIAL HMEADING TO ATLIFRAON TRANSFER FUNCTION

- 957 .2401 8~3 - 558.19B1 S~2 - 24.5519 =8 - 42 .5533

+ BE60.6745 575 + B8320.1730 =~4 + 1574.1508 S"3 + 1743.9844 572 + 45.5590 =5

FACTORED HEADING TO AILERON TRANSFER FUNCTION
~-957.2a017 {5 + 0.6491) (52 = -0.08&80 5 + 0.0585}

860.6745 S{S + 1.0357} (S + 0.0292) (S~2 + -0.1004 S + 1.9056)

HEADING TCO AILERON TRANSFER FUNCTION K_gain — -0 .858640

POLYNOMIAL ROLL TO RUDDER TRANSFER FUNCTION
+ 1318.7562 573 - 243 .6487 52 -~ 15512 .2427 =5
+ BE0D.6745 575 + B30Q.1730 S574 + 1574.1509 S°3 + 1743.9B44 572 + 4%.5590 5

FACTORED ROLL TO RUDDER TRANSFER FUNCTION

1318.7562 S{S — 3.5233)(S + 3.3386)

860.86745 S{sS + 1.0357){s + 0.0282)(S™2 + -0.1004 5 + 1.90585)

ROLL TO RUDDER TRANSFER FUNCTION K_gain = -313.005603

POLYNOMIAL SIDESLIP TO RUDDER TRANSFER TFUNCTION

+ 4.48656 574 + 5832 .2384 £~3 + 510.8B035 s°2 - 5.7525 s

+ BED.B745 575 + 830.1730 54 + 1574.1509 S-3 + 1743.98944 S5~2 + 49.%%90 S

FACTORED SIDESLIF TO RUDDER TRANSFER FUNCTION

4.B&656 S{S - 0.0111) (S + 1L1IB.9EBBS5) (S + 0.8935)
B60.6745 S{s + 1.0357)(8 + 0.0292)(5"2 + -0.1004 S + 1.9056}
SIDESLIP TO RUDDER TRANSFER FUNCTION K_gain = -06.116073

POLYNOMIAL HEADING TO RUDDER TRANSFER FUNCTION
- 575 .2200 S73 ~ 4BZ2 _1%8% 572 - 15.5793 5 - 564.7495
+ BE&0.6745 S5 +- B30.1730 sS74 + 1574.150% S~3 + 1743 .9844 =S"2 + 49 _5%80 5

FACTORED HEADING TC RUDDER TRANSFER FUNCTION

-579.2200 (5 +

860.65745 S(S + 1.035%7) (S + 0.Q0292){(3~2 + —-0.1004 S = 1.9056)

HEADING TO RUDDER TRANSFER FUNCTION K_gain = -11.395500
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It is also seen that the root break—down for the jet fighter corresponds to the case labelled
B3) in Figure 5.11. The unstable oscillatory root in this case is again referred to as the dutch—roll
mode. The other real roots are called the spiral and roll roots respectively.

It has been found useful to compare the dynamic behavior of airplanes with that of the
spring—mass—damper system discussed in Section 5.1. Quadratic roots of characteristic equations
are cast in a format similar to that of Eqn (5.11), that is by using undamped natural frequency and
damping ratio as the parameters of choice. For a definition of undamped natural frequency and
damping ratio the reader should consult Section 5.1.

Real roots of characteristic equations are cast in the form of so—called 'time—constants, T’
as illustrated in Table C1 in Appendix C. Note that a time constant is defined as the negative inverse
of the associated real root.

Introduction of these forms for the characteristic equation roots (using subscripts *d’ for the
dutch roll mode the subscript "1’ for the roll mode and the subscripts ’s” for the spiral mode) yields

the following characteristics:

For the Business Jet:

. 2 . 2
S12 = Cl,zwnl,z *jon, /1 =8, or sy = Catn, £ JOn,y/ - Ty

(5.114a)
with: G4 = 0.039 and w,, = 1.69 rad/sec
and
s3= =L with: s; = — 0.0010 sec™! and T, = 989 sec
T (5.114b)
54 = — L with: s4 = — 0.5003 sec™! and T, =20 sec

Observe that the dutch roll mode is very lightly damped. A yaw damper will be required to
improve this. The dutch roll frequency is of the same order of magnitude as the short period {sce
Eqn (5.53)}. The spiral root is located almost at the origin while the roll root is located to the left
of the origin.

For the Jet Fighter:

) 2 . 2
S1p = Cl,z‘”nl.g * jwg,, /1 — C1,2 or sy = @dwnd + jon, /1 — G4

(5.115a)
with: Ty = —0.036 and w, = 1.38 rad/sec
and
S5 = — 1 with : §; = — 0.0292 sec™! and Ty = 34.3 sec
T (5.115b)
Sy = Tfl with: sy = = 1.0357 sec™! and T, = 0.97 sec

The unstable dutch roll root will cause this airplane to diverge in an oscillatory manner with-
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out compensating action from either the pilot or from an automatic flight control system. As it turns
out, in this instance a yaw damper is required.

As will be shown in Chapter 6, the magnitudes of undamped natural frequencies, damping
ratios and time constant are intimately tied to acceptable or unacceptable flying quality behavior of
airplanes. For that reason it is important for airplane designers to understand which airplane design
factors are the "design drivers’ which determine these dynamic stability parameters. The complete
transfer functions of the airplane, as presented in Tables 5.10 and 5.11, because of their algebraic
complexity, do not afford such insight easily. It has been found that the dutch—roll, spiral and roll
characteristics of inherently stable airplanes can be more easily predicted from an approximation
to the equations of motion as listed in Table 5.2, These approximations and their applications will
be discussed in Sub—sections 5.3.5 through 5.3.7 for the dutch-roll, spiral and roll mode characteris-
tics respectively.

53.5 THE DUTCH-ROLL APPROXIMATION

For airplanes with relatively small dihedral effect, the dutch-roll mode manifests itself as
a motion which consists primarily of sideslipping and yawing. Even though rolling motions are
also present in most dutch-rolls it has been found that a good approximation to the frequency of the
dutch roll mode can be obtained by assuming negligible participation of the rolling degree of free-
dom. Eliminating the rolling degree of freedom from Eqns (5.98) in Table 5.8 yields the following
approximate equations:

B N [ B(s) ] R
(sU, - Yl5) s(U; —Y) g?s-)— Yé

— Ng (s> — sNyp) Y(s) N,

| _ ! 6(5) ) J

In these equations, the substitution (Nﬁ + NTﬁ) — NB has also been made. The approxi-

mate sideslip and heading angle transfer functions can now be explicitly written as follows:

gﬁ _ [Ygs + (NgY = NgU; — YNy 1)
s Y
[52 ~ (N, + Uf) + {Nﬁ + T}T(YBNr — NﬁYr)”
and
, N (sU, — Yg) + N.Y
a(s)

Y
The s=0 root in the denominator of the heading angle transfer function is again indicative
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of the fact that an airplane has neutral stability in heading. The quadratic in the denominator shquld
be interpreted as an approximation to the dutch roll quadratic form (s? + 204008 + Wy, ) .

Therefore, it is possible to write the following approximations for the dutch roll undamped natural
trequency and damping ratio:

- 1 _
Wp, = ‘/[NB + Ul(YﬁNr NBYr)] (5.119a)
and
Yrs
- (Nr + ﬁ)
?;d ~ Tl (5.119)
20y,

To see how accurate these approximations are, the appropriate data from Table 5,10 are sub-
stituted into these two equations. It is found that:

@y, = 1.69 rad/sec and T, = 0.058 (5.120)

These results should be compared with those of Eqn (5.114a). The frequency compares very
well but the damping ratio differs by about 50%. However, it is doubtful whether a pilot can tell
the difference between a dampingratio of 0.039 and 0.058. From that viewpoint the dutch roll damp-
ing ratio prediction appears more reasonable. However, the reader will observe that Eqn (5.119)also
predicts that as long as the derivatives N, and Yﬁ are both negative, the dutch-roll damping ratio

will always be positive. The reader should check with the jet fighter example that this is not correct!
The reason is the fact that the elimination of the rolling degree of freedom in the dutch-roll approxi-
mation results in also neglecting the effect of L p On dutch roll damping. As will be seen in Section

5.4 (sensitivity analyses section) the derivative L g can have an important effect on the damping of

the dutch roll mode,

While checking the dutch-roll frequency approximation of Eqn (5.118) the reader will have

noticed the fact that [(1/ Ul)(YBNr - NBY’")] <€ NB . This turns out to be the case for most air-

planes. Therefore, an approximation to the approximation for the dutch-roll undamped natural fre-
quency is:

Cn ;5D

wnd _—

(5.121)

For the case at hand, this yields a frequency prediction of:
Wy, = 1.69 rad/sec

Eqn (5.120) provides the following information about the three factors which usually “drive’
the magnitude of the dutch-roll undamped natural frequency:
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* Static directional stability, C, o and therefore the size, shape and moment arm of

the vertical tail as well as the size and shape of the fuselage in its side projection
are important. For a given fuselage shape and vertical tail shape and for a given
vertical tail moment arm, the frequency will be higher for airplanes with a larger
vertical tail.

* Dynamic pressure in the steady state, G, . The frequency at a given altitude will
y p y 4 q y g

be higher at high speed than at low speed.

* Yawing moment of inertia, I, . The frequency will be higher for airplanes with

a low yawing moment of inertia. The airplane mass configuration therefore plays
arole. All else being the same, an airplane with the engines mounted in the aft
fuselage would tend to have a lower frequency than an airplane with the engines
mounted close to the center of gravity.

It is instructive to compare the terms under the square root sign in Eqn (5.120) with the term
(k/m) in Eqn (5.5). Evidently, the term (C, q;Sb) can be thought of as a torsional spring, wrapped

around the airplane Z—axis!

Eqn (5.119) shows that for a given frequency, the damping ratio is determined by the deriva-
tives Ny and Y[3 . Both contribute to damping although the yaw—damping derivative, N , usval-

ly provides the most important contribution to dutch—roll damping.
Figure 5.18 shows what a dutch—roll mode looks like to an outside observer.

5.3.6 THE SPIRAL APPROXIMATION

In the spiral mode, all three lateral degrees of freedom, B, ¢ and 1 tend (o participate

although the sideslip angle participation is generally weakest. Despite this fact, the sideslip angle
cannot be neglected because the aerodynamic moments which dominate the spiral mode are not
caused by ¢ and 1p butby B, ¢ and 1 . Of the latter, the moments due to 3 and 1 are usu-

ally by far the most important. The spiral approximation is thus formed by neglecting the side force
equation as well as by neglecting the roll rate terms in the remaining rolling and yawing moment
equations. Carrying out these approximations in Eqns (5.98) in Table 5.8 yields:

B . 1 [ Bs) ) fr
- L, — s(sA, + Ly % L
1 c=1 ot (5.122)
— Ng (s = sN)) Y(s) N,
| | L 6(8) | L
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11)

10)

9)

8)

7)

6)

5)

4)

3)

2)

1y

Etcetera ......

Inclined lift starts translation to the left
Increasing time ‘

Weathercock reaction of the vertical to translation to
the right starts a yaw to the right %

Right wing moving forward develops lift and induced
drag increment: roll to the left and yaw to the right

Inclined lift starts translation to the right :h%
=]

Weathercock reaction of the vertical tail to translation to ﬂg%r

the left starts a yaw to the left

Left wing moving forward: roll to right and yaw to left éﬁﬁ’
Inclined lift starts translation to the left %

Right wing moving forward develops lift and induced
drag increments: this starts a roll to the left and a yaw

to the right

Sharp gust from the left (as viewed by pilot) causes a gﬁ&:b

translation to the right and a yaw to the left

Sharp gust

Figure 5.18 Dutch Roll Mode as Seen by an Qutside Observer
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The approximate sideslip and heading angle transfer functions can now be written as:

B(s) _ S[S(Lé B NBK]) — (LgN; — Nf_,Lr)]

(5.123)
8(s) s[— S(Lg + NpA ) + (LgN; — NBLr)}

and

W(s) (— LﬁNa + L6N|3)

) (5.124)
d(s) S[_ s(Lg + NgAy) + (LgN; = NﬁLr)]

The free s’ terms in the sideslip transfer function cancel each other. The s=0 root in the head-
ing transfer function again indicates neutral stability in heading. The approximate spiral root can
be determined from the remaining first order term in the denominator as:

Scniral — —
Splfdl (LB + NBA l)

s, = (5.125)

To see how accurate this approximation is, the appropriate data from Table 5.10 are substi-
tuted into this equation. The result 1s:

S3 = S = — 0.0074 sec™! and T, = 135 sec (5.126)

Comparison with Egn (5.114b) shows that the spiral approximation differs from the actual
spiral root by a factor of 7. However, both methods predict the spiral root to be essentially at the
origin. An interesting aspect of the spiral approximation of Eqn (5.125) is the following: assuming
that the inertia ratio A, is so small as to be negligible, the criterion for spiral root stability is that:

(LBNr — N[_:,Lr) >0 (5.127)

This stability criterion is seen to agree exactly with the stability criterion due to Routh as
found in Eqn (5.111).

Figure 5.19 shows what a spiral mode (stable and unstable) looks like to an outside observer.

5.3.7 THE ROLL APPROXIMATION

In the roll approximation the assumption is made that the only important degree of freedom
is the bank angle, ¢ . Eliminating all but the rolling equation of motion from Eqns (5.98) yields:

o) _ Ly,
Oa(s) (8% = sLp) (5.128)

The characteristic equation of the rolling approximation contains two roots:
s3=0 and s, = s, =L, and therefore: T,= — 1/L, (5.129)

The s3=0 root can be thought of as a degenerate spiral mode root. The other root is the roll-
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X, ft
Convergent spiral | 15,000
Divergent spiral
10,000
Direction of disturbance 3,000
-y, ft | | |
-15,000 -10,000 -5,000 0
-Y
Aft view of an unstable spiral mode
Figure 5.19 Spiral Mode as Seen by an Qutside Observer
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mode root. To see how accurate the latter is, the data of Table 5.10 yield:

s, = — 04365 sec™! and T, = 229 sec (5.130)

According to Eqn (5.114b) the actual roll-mode time constant is 2.0 seconds. The roll mode
approximation therefore gives a fair approximation in the case of the business jet.

The physical significance of the roll-mode time constant will become clear in the following.
Itis instructive to see how an airplane responds in roll to a step input aileron deflection. In that case
Eqn (5.128) yields:

63 Lad

¢s) _ L, Oa b
N s s(s — Lp)

5.8 (7= SL,) and therefore: ¢(s) =

(5.131)

The reader is asked to show that by using Table C1 in Appendix C the time domain inverse
for the bank angle response to a unit step input aileron deflection can be written as:

Ly 8, Ly 8,
o) = — { ,‘i }t + {%}(e'ﬂ" — 1) (5.132)
P L,

The predicted bank angle response is seen to consist of two parts: the first term is linear with
time and the second term is exponential with time but will disappear for infinite time. Therefore,
ultimately the bank angle will vary linearly with time. This, however, means that the airplane is in
a constant roll rate maneuver. Figure 5.20 depicts how bank angle responds to a step aileron input
and how roll rate responds to an aileron step input. Figure 5.21 shows what the roll mode looks like
to an outside observer.

The roll rate is seen eventually to become constant. That eventual roll rate is called the maxi-
mum steady state roll rate for the particular magnitude of step aileron input. Itis seen by differenti-
ation of Egn (5.132) that:

: Lsd
o) = — [ 2 a}(l — el (5.133)
Ly
From this equation it follows that the maximum steady state roll rate is given by:
Ls0
. _ . - bu a

{q)(t)]s[eady state B [q)]ss [ Lp ] (5'134)

Observe that when t = T, = 1—1 is substituted into Eqn (5.133) the result is:
P

ot
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Figure 5.20 Example of Roll Mode Time Histories
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Figure 5.21 Roll Mode as Seen by an Qutside Observer
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It is clear from Figure 5.20 that an airplane with a small roll-mode time

constant, T, = 1—1 , will develop its commanded steady state roll rate quicker than an airplane
P

with a large roll-mode time constant.

The bank angle response and roll rate response of airplanes 1s of prime concern to pilots.
This is recognized by very strict minimum requirements for:

* bank angle reached in a gtven time as specified in civil flying quality regulations
and
* bank angle reached in a given ttme combined with a certain roll-mode time constant
as spectified in military flying quality regulations.

53.8 RESPONSE TO AILERON AND RUDDER STEP INPUTS

The response of the airplane to an arbitrary aileron or rudder input can be obtained by follow-
ing the process suggested in Figure 5.17. To illustrate this process, consider the case of an aileron
step input. The final value theorem (Eqn (C6) in Appendix C) will be used to find the magnitudes
of the ultimate perturbation values of sideslip angle, [3, bank angle, ¢, and heading angle, ¢ . The
reader should verify the following expressions by referring to Table 5.9,

N d,D d.e(Ns L, — L:N,)
lim f(t) = lim 55_12;_[3 It U Tl O~ (5.136)
t—» o §—0 5 D, E, (LBNr N NﬁLr B NTBLr)
N 3,C
lim @) = lim {s2 2l =20
t— o s—() 3 D2 Ez
6'“‘{ ~ YNy Lr =L No) + (Uy — Yo(NgLg, + NpLs — LgN ﬁa)} (5.137)
- geosB (LgNy — Ngb, — N, L) .
. ) 8, Ny
| a=1 SaMvl _ 5.138
A o =i {D} >

To arrive at Eqn (5.136), the assumption 0, = 0 was made. To arrive at Eqn (5.137), the
assumption Yz = 0 was made. The reason for the infinite heading angle is the fact that the free
’s” in the denominator polynomial of the heading—to—aileron transfer function is not cancelled as is
the case in the sideslip and bank angle transfer functions.

It is observed that for airplanes with exactly neutral spiral stability ( i.e. E, = 0 ), the ulti-

mate sideslip and bank angle response is infinite.
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5.3.9 STANDARD FORMAT FOR THE IATERAL-DIRECTIONAL TRANSFER
FUNCTIONS

For reasons which will become particularly clear in Chapter 8, it has been found useful to
present airplane transfer functions in terms of their so~called “standard formats’. In these standard
formats the numerator and denominator polynomials of Table 5.9 are assumed to break down in a
manner normally found for any given airplane. The standard format normally found for the lateral-
directional transfer functions of inherently stable airplanes is given in Tables 5.12 and 5.13 in terms
of Eqns (5.139) and (5.141) respectively.

It will be observed that the sideslip-to-aileron transfer function numerator breaks down into
two first order terms. The sideslip-to-rudder transfer function numerator breaks down into three
first order terms. The reason for the difference is that in the aileron casc the assumption Y, =0

(i.e. no side~force due to aileron} was made. The consequence of this is to eliminate the coefficient
A[3 in the corresponding numerator polynomial. As a consequence the order of that numerator is

reduced from three to two.

Numerical examples of these transfer functions for the case of the business jet are shown as
Eqns (5.140) and (5.142) respectively. Note that for s=0 all components of the transfer function
which depend on the Laplace variable s take on the value 1.0. Each transfer function, at s=0 takes
on a value given by the ratio of the free coefficient in the numerator to the free coefficient in the
denominator. These values are referred to as the zero-frequency gains of the transfer functions. For
the lateral-directional transfer functions these zero—frequency gains (see Table 5.9) are found as:

D C D
K, =L K =-2 K =_Y (5.143)
By Ea ¢ Ez Vs Ea

For the business jet example of Table 5.10 the corresponding values as indicated in Tables

5.12 and 5.13 are:

K, =234 rad/rad K, = 12359 rad/rad K, =5804 rad/rad
3 8y B

and

KB = — 6.188 rad/rad Kq> = — 3,599 rad/rad Kw = = 169.04 rad/rad
Oy oy

Ur

3.3.10 THE LATERAL-DIRECTIONAL MODE SHAPES

In Sub-sections 5.3.6 through 5.3.8 the spiral. roll and dutch roll approximations were
introduced by assuming that various degrees of freedom were unimportant motion variables in those
approximations. This begs the question: is it possible to predict whether or not one or more motion
variables can be neglected in the dynamic response of an airplane. Such a prediction can be made
with the help of a modal analysis.

For a given aileron, rudder or tateral gust input, the response of an airplane can be thought

of as consisting of the simultaneous first and second order response of the variables sideslip angle,
(1), bank angle, §(t), and heading angle, y(t). A lateral~directional mode shape can be described
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Table 5.12 Standard Format for the Lateral-Directional Transfer Functions
for Aileron Input
General Standard Format:
6;1(8) i 52 QCds .
(T + IXTs + 1) o, + _U_JT +1
P(s) _ b i (5.139b)
04(s) _ §2 2 s
(Tgs + I)N(Ts + 1) W+ﬁ + 1
Ky, (Tyys + 1)(——52, L8y 1)
- 8 : mn‘i]; (‘Un,‘.“
LIS (5.139¢)
Sd(S) - SE 2C(is
s(Ts + 1)(Tys + 1) F + o, + 1
Example Numerical Format for the Business Jet of Table 5.10:
23.4 ( I ) + 1}[( 1 ) + 1}
B _ [ 0.0782/° 13362/° (5.1400
Oals) [( | )H IH( 1 )H_ 1}( £, 200.0387)s 1)
0.0010 0.5003 (1.6882)" (1.6882)
12,359( g, 20.0579)s | 1)
P(s) _ 1.62267 (1.6226) (5.140b)
Oals) [( | )H ]H( I )H 1}( © __, 2000387)s 1)
0.0010 0.5003 (1.6882) (1.6882)
| 580.4{(—-—' _ )s + 1]( sty 200.5909)s 1)
Pis) _ —1.2147 1.4596°  (1.6226) (5.1400)
" o+ Moo+ N » 2025
0.0010 0.5003 (1.6882) (1.6882)
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Table 5.13 Standard Format for the Lateral-Directional Transfer Functions
for Rudder Input
General Standard Format:
Bls) _ Kﬁal_(Tﬁr]s + 1)(T5r2s + 1)(TBr3s + 1) 5141
d(s) 2 '
s L 2s
(Tys + 1)(T,s + 1)(%2 + o, + 1)
¢(s) _ K¢a..(T¢r.S + l)(T%S D (5.141b)
Os) s? 208
Ky, (Tys + 1)( s 4 2KuS 1)
b ’ u)n‘l‘rh mn‘\'r
él)((z)) _ (5.141¢)
' st 28
s(Tss + 1)(Ts + l)(andz + o, + 1)
Example Numerical Format for the Business Jet of Table 5.10:
_ 6.188[(—1-—)s + 1}{( L )s + 1}{( 1 )s + 1}
B(s) _ —0.0114 108.2 0.4655 (5.1422)
8s) {( 1 ) } {( 1 ( . 2(0.0387)s '
s+ 1 ) + 1} S + + 1)
0.0010/ 05003/ (1.6882)°  (1.6882)
-3 599[(—4—)3 + 1]{( 1 )s + 1}
ds) _ ’ —3.0413 2.7189 (5.142b)
3:(s) {( ) ) } [ ] 2 2(0.0387)s '
s+ 1 ( ) + 1}( 8 + + 1)
0.0010/° 0.5003/° (168827 | (1.6882)
2 2(—0.2675)s
—169.04( 1 )s+l}( s 4 +1)
Y(s) _ { 0.7307 0.4456° (0.4456) (5.1420)
d(s) {( 1 ) } {( 1 }( 2 2(0.0387)s ) '
s+ 1 )s +1 3 + + 1
*|\o.0010/* 0.5003 (1.6882)°  (1.6882)
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by two quantities: one describes the relative magnitude of amplitudes in 8, ¢ and 1 and the other
describes the phase angles of these variables with respect to each other. The following analysis
shows how such a mode shape can be determined and how such a mode shape can be used to decide
whether or not an approximation (by discarding one or more motion variables) is acceptable.

Consider the perturbed equations of motion (5.96) in Table 5.8 and assume that the control
power terms are left out. The remaining equations describe the dynamics of the unperturbed system.
These equations are given as Eqns (5.144).

(sU, - Yﬁ)ﬁ(s) — (sY, + gcosB))d(s) s(U; — You(s) =0
= LgB(s) + (s — Lps)d(s) — (s*A; + sLoy(s) = 0 (5.144)
— (Np)B(s) — (8"By + Nps)i(s) (s* — sNJW(s) = 0

To reduce the amount of algebra, the thrust derivative, NTﬂ , has been included in N .

One of the variables in Eqns (5.144) is now selected as the one against which the others are
compared. The sideslip angle is arbitrarily selected to fulfill that role. Eqns (5.144) are now written
in terms of the mode shapes ¢(s)/p(s) and 1(s)/B(s) in the following manner:

— (sY, + geosB, )%’E ; s(U; = Yy) }g’((s; = (U - Yp
(s2 )gési — (s?A, + sL)‘é’((*)) = L, (5.145)

To solve for the mede shapes, any two of the three equations (5.145) can be used. Using the
second and third equations yields:

L, — (s*A, +sLy)
Ny (s? — sN))
$6) ' - _Asth (5.146)
B(s) (32 — Lps) _ (52K1 + sL,) s(as? + bs + ¢)
~ (s7B; + Nys) (s — sN;)

and

Chapter 5 275



Stability and Control During Perturbed State Flight

(s* — Lps)

— (s°B; + Nys)

Ly

Ny

O
B(s)

(s2 — Lps)

— (s?B; + Nps)

(52 — sN))

azs + bz

- s(as? + bs + ¢)

(5.147)

The polynomial coefficients in Eqns (5.146) and (5.147) are found by expansion of the deter-
minants. The result is:

a=(1-AB) b=(-N-Ly~BL -NA) c¢=(LN —LN,)
a; = (L + ANy by = (NLr = LNy (5.148)

For the business jet example of Table 5.10 the following numerical values are found for these
coefficients:

a = 0.9998 b = 0.5497 ¢ = 0.0494
a; = — 4.1383 b, = — 0.0304 (5.149)
a, = 2.8243 b, = 1.2310

The mode shapes corresponding to the spiral, roll and dutch roll can now be computed by
substituting the spiral. roll and dutch roll roots from Eqns (5.114) into Eqns (5.146} and (5.147).
The following results are obtained:

P(s) = 1.40]ci(166.4/57.3) (@) = 0.9965¢i(—0.5/57.3)

BE) / gt o B / guich ron

P(s) — 4537 (9@_) = — 25,142 (5.150)
BG) / ica BE) / gpira

*& ) L 1es (E@ = + 147

BsY) BE)/ o

These mode shapes are visualized in Figure 5.22 by using phasors and phase angles. The
following conclusions are drawn relative to the actual mode shapes and the modal approximations
discussed in Sub-sections 5.3.5 - 5.3.7:

1) For the dutch roll mode it is clear that none of the motion variables are negligible. The

heading angle is scen to be of the same magnitude as the sideslip angle and lags 1 degree behind,
It appears that the bank-angle lags 166.4 deg (about 180 deg.) behind the sideslip angle. The bank
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angle magnitude is 1.4 times the magnitude of the sideslip angle. The latter ratio (known as the
¢/B-ratio) plays an important role in airplane handling qualitics. Dutch rolls are particularly objec-
tionable if the ¢/B-ratio is large!

2) For the spiral mode it is clear that the sideslip angle appears to be negligible. Bank angle
is 180 degree out of phase with the heading angle. The spiral approximation therefore is reasonable.

3) For the roll mode, the sideslip angle participation is negligible. The heading angle partici-
pation is also small. The roll mode approximation is therefore reasonable.

Y= 0.711¢ej(1_65.9/57.3)

] Dutch Roll Mode Shape
¢ Note: in the Dutch Roll, all three variables
\ are important!
B = 0.710(1)6_]'(166.4/57.3)

¢ = — 00214y Spiral Mode Shape
f = — 0.00004y (not visible on this scale)
Y
¥ =~ 008919 Roll Mode Shape
B = —0.0061¢ (not visible on this scale)
P

Figure 5.22 Examples of Lateral-Directional Mode Shapes for a

Business Jet in Cruise
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3.4 CENTER-OF-GRAVITY AND DERIVATIVE ROOT-LOCI AND THE
ROLE OF SENSITIVITY ANALYSES

The purpose of this Section is to present and discuss the effect of varying the center—of—grav-
ity location , the mass distribution and the stability derivatives on the dynamic stability characteris-
tics of airplanes. A plot of frequency, damping ratio and/or inverse time constant versus any of these
parameters is referred to as a sensitivity analysis. Such sensitivity analyses play an important role
in the design and analysis of airplane dynamic stability. All numerical examples in this Sub—section
are based on the business jet examples of Tables 5.4 and 5.10.

3.4.1 EFFECT OF CENTER OF GRAVITY AND MASS DISTRIBUTION ON
LONGITUDINAL DYNAMIC STABILITY

Effect of C.G. Location

The location of the airplane center of gravity has a major effect on the static longitudinal sta-
bility derivative, Cp,_, as may be seen from Egn (3.39):

Cma = CLH(icg - KacA) (5.151)

Ataftc.g., inherently stable airplanes are designed for static margins ranging from 5%—10%.
A typical center of gravity travel range for airplanes is about 20% of the mean geometric chord
(m.g.c.) of the wing. The effect of ¢.g. location on Cy,, is therefore of major significance. It was

shown in Sub-section 5.2.5 {Eqns (5.63) and (5.62)} that the derivative Cm, hasa dir¢ct effecton

the frequency and damping ratio of the short period mode of an airplane. Figure 5.23 shows a root
locus diagram indicating how the longitudinal dynamics of an airplane is affected by the c.g. location
through the derivative Cp,,.

Note, that as the c.g. is moved forward (i.e. increasing static, longitudinal stability) the short
period moves in a direction generally parallel to the imaginary axis (see Figure 5.23a). The short
period undamped natural frequency is seen to increase while its damping ratio decreases.

According to Figure 5.23b, as the c.g. is moved forward, the phugoid poles move downward,
toward a pair of finite zeros which are defined by the following equation:

(U, + Zg)s* — {gsine] + (Xy + Xp)(U; + zq)]s +
+{— gZucosB + g(X, + XTU)sinB]} =0 (5.152)

In Problem 5.15 the reader is asked to prove this by considering the longitudinal characteris-
tic equation with the derivative M, as the variable.

Note also that as the ¢.g. is moved aft, the short period poles are moving toward the real axis
thereby lowering the undamped natural frequency and increasing the damping ratio. At the same
time, the phugoid poles move upward along the imaginary axis. After crossing this axis, the phugoid
poles (now unstable!) turn toward the real axis and eventually split into two real roots. There exists
a value for Cy, for which the longitudinal characteristic equation has four real roots.
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By continuing to move the ¢.g. further aft, one real root moves toward positive infinity (di-
vergence}, one toward negative infinity (convergence) while the other two roots recombine into an
oscillatory pair which is called the "third oscillatory mode’. Asthe c.g. is moved aft toward infinity,
these 3rd oscillatory poles move toward the same zero’s given by Eqn (5.152). Most of this very
aft c.g. root locus behavior is of academic interest only because airplanes develop unacceptable
pilot-in—the-loop flying qualities long before such an extreme aft c.g. location is reached.

In Chapter 3, the center of gravity location was seen to affect the moment arms of a number
of lifting surfaces such as canard, horizontal tail and vertical tail. This implies that the center of
gravity location affects all stability and control moment derivatives since all contain expressions for
moment arms. In transport type airplanes, the moment arm of a lifting surface is typically 3-5 (or
more) m.g.c. lengths away from the c.g. Therefore, a change in c.g. location from most forward to
most aft amounts to a 6% to 4% change in moment arm in such airplanes. The effect of ¢.g. location
on all other longjtudinal stability and control derivatives is quite small. An exception is formed by
airplanes with very short tail moment arms (several fighters!) and by pure flying wing airplanes.

Effect of Mass Distribution: Pitching Moment of Inertia

The effect of mass distribution is felt in the pitching moment of inertia. Figure 5.24 shows
the effect of varying the pitching moment of inertia, I,y , on the longitudinal dynamics, It is clear

that there is a strong effect on the undamped natural frequency of the short period mode {as predicted
from Eqn (5.63)} bul no appreciable effect on short period damping, nor on the phugoid dynamics,

5.4.2 EFFECT OF STABILITY DERIVATIVES ON LONGITUDINAL DYNAMIC
STABILITY

During the preliminary design of new airplanes, in analyzing potential modifications for ex-
isting airplanes and in analyzing a competitor’s airplane it is often desirable to understand which
derivatives have a significant effect on airplane dynamics and which do not. The effect on dynamic
stability of varying any derivative over a certain range can be represented by a plot of undamped
natural frequency, damping ratio and/or inverse time constant as a function of variations in that de-
rivative. Such a plot is referred to as a derivative sensitivity plot. Several examples will now be
discussed.

Figure 5.25 illustrates the effect of the derivative, Cy,, (airplane lift-curve slope). It is
noted that Cy has no appreciable effect on the phugoid nor on the undamped natural frequency of

the short period. There is an appreciable effect on the short period damping ratio. This can be ex-
pected on the basis of Eqn (5.62) which contains CL, inside the dimensional derivative, Z,, .

Figure 5.26 depicts the effect of the derivative, Cp, (induced dragderivative). Ttis seen that

this derivative has an effect only on the damping ratio of the phugoid.

Figure 5.27 presents the effect of the derivative, Cy,_ (static longitudinal stability deriva-

tive). It was already concluded that because of its dependence on the c.g. location, this derivative
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has an important effect on longitudinal dynamic stability. Figure 5.27 bears this out again. The read-
er is asked to show the connection between Figures 5.23 and 5.24!
Figure 5.28 illustrates the effect of the derivative Cp . Clearly, this derivative has no appre-
ciable effect on any of the longitudinal modes. This information is useful in itself for two reasons:
1) spending much time and effort trying to estimate this derivative may not be worthwhile
2) feeding back pitch-rate to a control surface which affects lift only is not effective.

Figure 5.29 shows the powerful effect of the derivative Cr, on the damping ratio of the

short period mode. This effect is predicted by Eqn (5.62). Many high performance airplanes tend
to develop poor short period damping which has a very negative effect on handling qualities. For
that reason, pitch rate is often fed back to the elevator (or canard or stabilizer) to artificially enhance
the damping. Such a system is called a pitch damper. Figure 5.29 clearly shows that if the sign
of Cm, reverses, the short period damping ratio becomes undamped. In actual pitch damper instal-

lations this can happen if either the gyro input or the pitch~damper-computer output are mis-wired.
The synthesis of pitch dampers is discussed in Sub-section 5.5.1 and in detail in Chapter 11.
Figure 5.30 shows the effect of the tuck derivative, Cp,, , onlongitudinal dynamics. Clear-

ly, there is no effect on the short period dynamics but an important effect on the phugoid, both damp-
ing ratio and frequency. If an airplane develops transonic tuck (Cy,, becomes negative) it is seen

that the phugoid splits into two real roots, one of which represents a divergence (the tuck mode !).
Many high performance airplanes are equipped with a Mach-trim system to prevent such tuck.

543 EFFECT OF CENTER OF GRAVITY AND MASS DISTRIBUTION ON
LATERAL-DIRECTIONAL DYNAMIC STABILITY

Effect of C.GG. Location

The location of the airplane center of gravity has an effect on the vertical tail contribution
to the static directional stability derivative, Cn” , as may be seen from Eqn (3.85). In addition, the
c.g. location does have an effect on the fuselage contribution to directional stability. The more aft
the ¢.g. is the more unstable the fuselage contribution becomes.

For airplanes with large vertical tail moment arms the effect of c.g. location on Cnﬂ is negli-
gible. For airplanes with small vertical tail moment arms this effect may not be negligible.

In transport type airplanes, the moment arm of the vertical tail is typically 3-5 (or more)
m.g.c. lengths away from the c.g. Therefore, a change in c.g. location from most forward to most
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aft amounts to a 6% to 4% change in moment arm in such airplanes. The effect of ¢.g. location on
directional stability 1s therefore quite small. An important exception is formed by airplanes with
very short tail moment arms (several fighters!) and by pure flying wing airplanes.

It was shown in Sub-section 5.3.5 {Eqns (5.119a) and (5.119b)} that the derivative Cnﬁ has

a direct effect on the frequency and damping ratio of the dutch roll mode of an airplane. It was also
shown in Sub-section 5.3.6 that Cnﬁ affects the spiral mode directly.

Effect of Mass Distribution: Rolling Moment of Inertia, Yawing Moment of Inertia
and Product of Inertia

The effect of mass distribution is felt in the rolling moment of inertia, Iy, , the yawing mo-
ment of inertia, 1, , and the product of inertia, Iy, . Figure 531 shows the effect of varying the
rolling moment of inertia, Ix , on the lateral-directional dynamics. It is clear that there is a strong
effect on the roll mode time constant (as predicted from Eqn (5.129) but no appreciable effect on
the spiral or dutch roll modes.

Figure 5.32 shows the effect of varying the yawing moment of inertia, I, , on the lateral—
directional dynamics. Itis clear that there is a strong effect on the dutch roil mode undamped natural
frequency (as predicted from Eqn (5.121) but no appreciable effect on the spiral or roll modes.

Figure 5.33 shows the effect of varying the product of inertia, Iy, , on the lateral-directional

dynamics. It is clear that there 1s no effect on the spiral mode and only a modest effect on the dutch
roll mode undamped natural frequency as well as on the roll mode time constant. There is also an
appreciable effect on the damping ratio of the dutch roll mode.

544 EFFECT OF STABILITY DERIVATIVES ON LATERAL-DIRECTIONAL
DYNAMIC STABILITY

In preliminary design of new airplanes, in analyzing potential modifications for existing air-
planes and in analyzing a competitor’s airplane it 1s often desirable to understand which derivatives
have a significant effect on airplane dynamics and which do not. The effect on dynamic stability
of varying any derivative over a certain range can be represented by a plot of undamped natural fre-
quency, damping ratio and/or inverse time constant as a function of variations in that derivative.
Such a plot is referred to as a derivative sensitivity plot. Several examples will now be discussed.

The effect of the sideslip derivatives, Cyu . Clls and Crlﬁ on the lateral-directional dynam-

ic stability of a business jet is illustrated in Figures 5.34 through 5.36 respectively.

Figure 5.34 shows that the side-force-due-to-sideslip derivative, CY.s , has an effect only

on the dutch roll damping ratio. The reader will recall that this was predicted from the dutch roll
approximation of Eqn (5.119b). A physical explanation for why the derivative Cyﬁ should be ex-
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Figure 5.35 Effect of Rolling Moment due to Sideslip Derivative on Lateral—
Directional Dynamic Stability Characteristics
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pected to contribute to dutch roll damping follows from realizing that side—force due to sideslip can
be thought of as a side-force which opposes the lateral velocity component v = U,3. A force

which opposes a velocity clearly qualifies as a damping force.

The effect of the airplane dihedral effect, C]ﬁ , on lateral-directional dynamic stability is

shown in Figure 5.35. For the business jet example it is seen that increasing the dihedral effect (i.e.
more negative Clﬁ ) has the following consequences:

1) Increased spiral stability
2) Decreased dutch roll damping ratio
3) Decreased roll time constant

Equation (5.127) shows that consequence 1) is predicted by the spiral mode approximation.
Consequences 2) and 3) are not predicted by the dutch roll nor the roll approximation. The rolling
moment due to sideslip term was neglected in both these approximations. This serves as a warning
against assuming that modal approximations are acceptable for most airplane configurations!

The reader 1s reminded of the fact that the derivative C,ﬁ depends strongly on the geometric
wing dihedral angle, 'y, , and on the wing sweep angle, Ay, . The wing sweep angle is usually

determined by performance considerations (critical Mach number!). However, the wing dihedral
angle can sometimes be used as a "tailoring’ device to achieve some desirable value of Clﬁ ,inturn

to attain some balance between dutch—roll damping and spiral stability.

Figure 5.36 shows aderivative sensitivity plotindicating how the lateral-directional dynam-
ics of an airplane is affected by the derivative C,, . This effect can be interpreted as a change in

either c.g. location, as a change in vertical tail size or as a change in vertical tail lift—curve slope,
through a change in the shape of the vertical tail (aspect ratio and sweep angle!). It is clear
that Cp ; has a significant effect on the undamped natural frequency of the dutch roll. With the verti-

cal tail gone (this makes Cnﬁ negative).

The etfect of the directional stability derivative, C, , on dynamic lateral—directional stabil-

ity is depicted in Figure 5.36. It is clear that increased directional stability (i.e. increased vertical
tail effectiveness) has a strong effect on the dutch roll undamped natural frequency as predicted by
Eqn (5.119a) in the dutch roll approximation. For positive directional stability there is no effect on
the other lateral-directional dynamic stability parameters. However, as C, ; becomes negative, the

dutch roll mode becomes negatively damped and then splits into two real roots: one is divergent,
the other moves toward s=0. The spiral root becomes very stable while the roll mode time constant
increases: the roll root moves toward the origin. This latter effect and the divergent root cause the
flying quality behavior of the airplane to be unacceptable.
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The effect of the roll rate derivatives, Cy, . Cl,, and Cnp on the lateral—directional dynamic

stability of a business jet is shown in Figures 5.37 through 5.39 respectively.

Figure 5.37 indicates that the side—force—due—to-roll-rate derivative, Cy_,hasno apprecia-
ble effect on dynamic stability. This derivative is also difficult to estimate accurately. This is not
usually a problem because it is of very little consequence to dynamic stability.

The effect of the roll-damping derivative, Clp , on lateral—directional dynamic stability is

shown in Figure 5.38a. Under attached flow conditions this derivative is always negative. It has a
strong effect on the roll mode time constant as predicted from the roll mode approximation {see Eqn
(5.129)}. Evenunder attached flow conditions, it is possible that the equivalent roll damping deriva-
tive, Cl,, , of an airplane can be artificially driven positive by a mis—wired roll damper. In that case,

as seen in Figure 5.38b (which is an enlargement of the area around the origin in Figure 5.38a}, the
roll mode and the spiral combine into a so—called lateral phugoid which becomes undamped
as C]p becomes more positive and which eventually splits back into two real roots, one of which

gives rise to a pure divergence,

The effect of the yawing-moment—due—to-roll-rate derivative, Cy , on lateral-directional

dynamic stability is illustrated in Figure 5.39. This derivative appears to have no effect on the spiral
mode, no effect on the dutch roll undamped natural frequency and a weak effect on the dutch roll
damping ratio and the roll mode time constant.

The effect of the yaw rate derivatives, Cy, , C, and C,_onthe lateral-directiona