PESO E BALANCEAMENTO

- O peso é um dos principais fatores para o projeto e operação de uma aeronave;
- Peso excessivo reduz a eficiência da aeronave assim como as margens de segurança caso ocorra uma situação de emergência.
- Problemas com peso excessivo: maior velocidade de decolagem (maior comprimento de pista); razão e ângulo de subidas menores; teto de serviço menor; menor velocidade de cruzeiro, menor alcance; manobrabilidade menor; maior velocidade de pouso (maior comprimento de pista); maiores carregamentos estruturais (principalmente para o trem de pouso e estruturas de suporte).

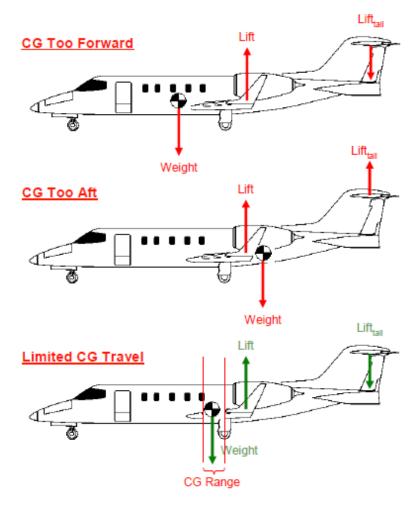
Pesos certificados:

MRW: Maximum Ramp Weight (impacta o projeto do trem de pouso e seus suportes estruturais)

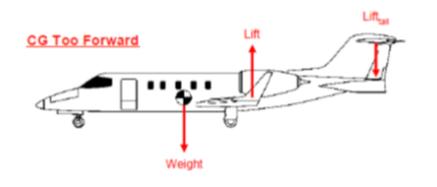
MTOW: Maximum Take-off Weight (projeto das asas)

MLW: Maximum Landing Weight (projeto do trem de pouso, flapes, fuselagem traseira e partes da asa)

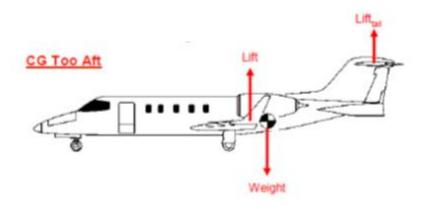
MZFW: Maximum Zero Fuel Weight (projeto da fuselagem central e da asa)


BOW*: Basic Operational Weight (peso básico operacional – comercial)

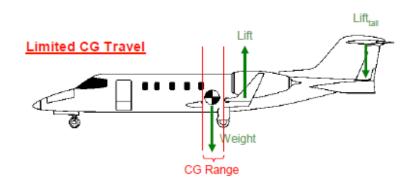
^{*}Não é certificado


• Impacto do CG no projeto estrutural

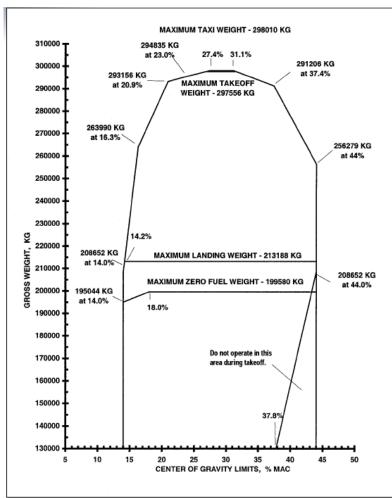
• Envelope longitudinal do CG

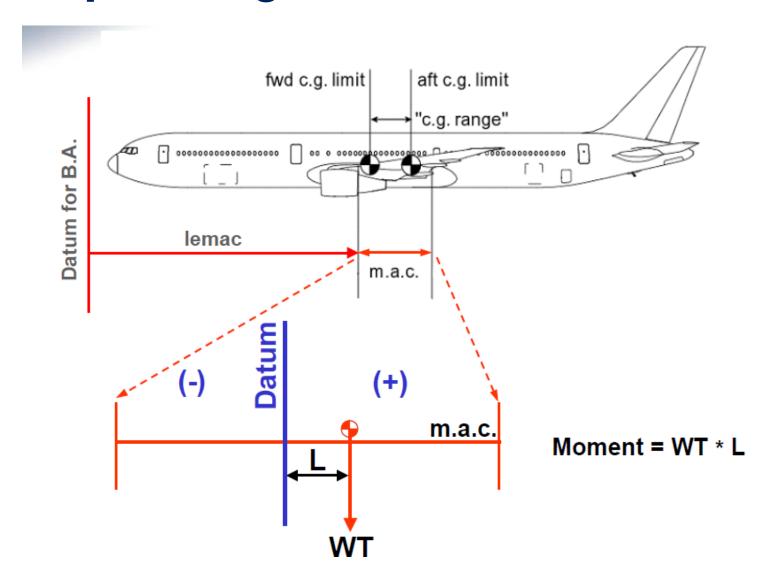


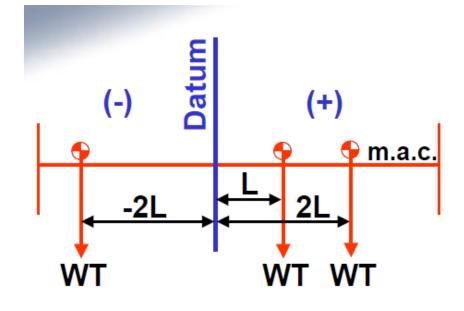
Envelope longitudinal do CG – CG dianteiro



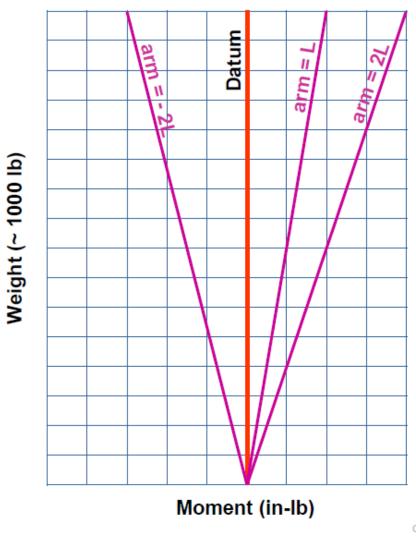
- Autoridade insuficiente do profundor: Nariz pesado no pouso e decolagem – Maior comprimento de pista.
- Aumento da estabilidade longitudinal: Maior margem estática.
- Baixo desempenho (a qualquer velocidade): Aumento da força para baixo do estabilizador horizontal (compensar a tendência de baixar o nariz) ocasiona aumento do ângulo de ataque para trimar a aeronave levando a um aumento do arrasto.
- Diminuição da velocidade de cruzeiro para uma dada potência.
- Aumento da velocidade de estol: O ângulo de ataque de estol ocorre com uma velocidade maior devido ao aumento da carga alar.
- Cargas excessivas no trem de pouso do nariz.
- Aumento da força para baixo do estabilizador vertical para manter o voo nivelado.

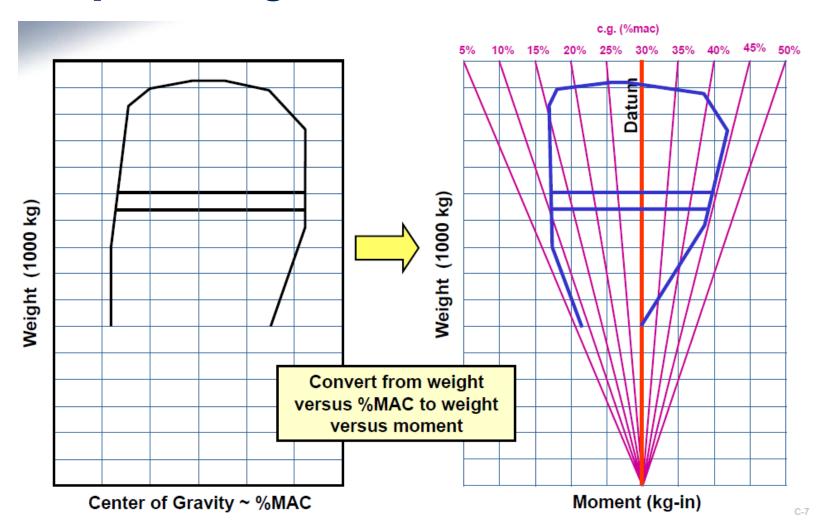

Envelope longitudinal do CG – CG traseiro

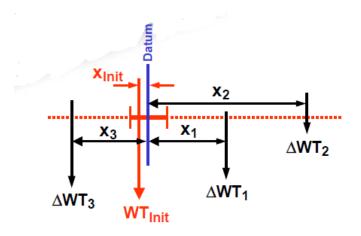



- Tendência par alevantar o nariz: No pouso pode ser necessário picar a aeronave. Na decolagem pode levantar o nariz prematuramente, levando a um aumento do arrasto e reduzir o desempenho de subida.
- Diminuição da estabilidade longitudinal: Menor margem estática.
- Aumento da possibilidade de ocorrência de um estol violento.
- Aumento da velocidade de cruzeiro: Menor ângulo de ataque e menor deflexão do estabilizador horizontal para estabilizar a aeronave.
- Recuperação de parafusos torna-se mais difícil a medida que o CG move-se para trás: Tendência de fazer um parafuso chato o que aumentando a dificuldade de se baixar o nariz e a saída da manobra.

O pouso estabelece o limite dianteiro do CG. Estabilidade e controle estabelece o limite traseiro do CG

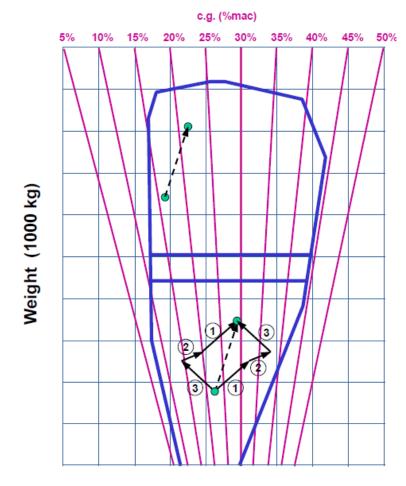





 $Moment_1 = WT * L$

 $Moment_2 = WT * 2L$

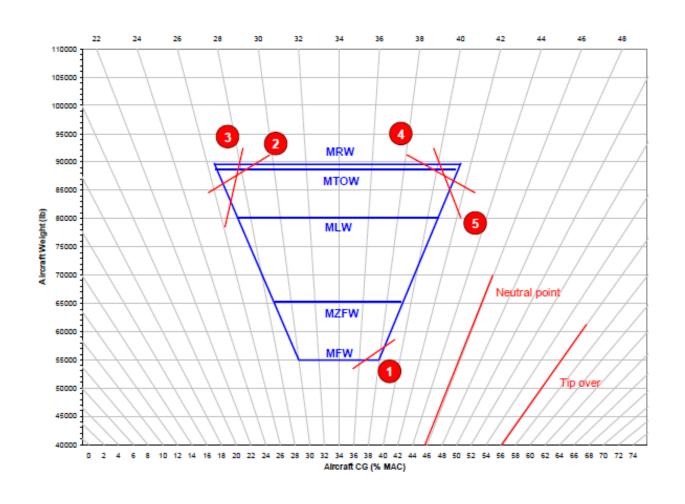
 $Moment_3 = WT * (-2L)$



Total Moment = $WT_{Init} * x_{Init} + (\Delta WT_1 * x_1) + (\Delta WT_2 * x_2) - (\Delta WT_3 * x_3)$

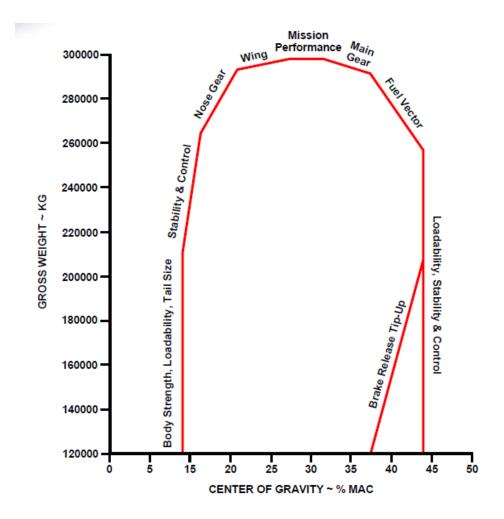
Total Weight = $WT_{Init} + \Delta WT_1 + \Delta WT_2 + \Delta WT_3$

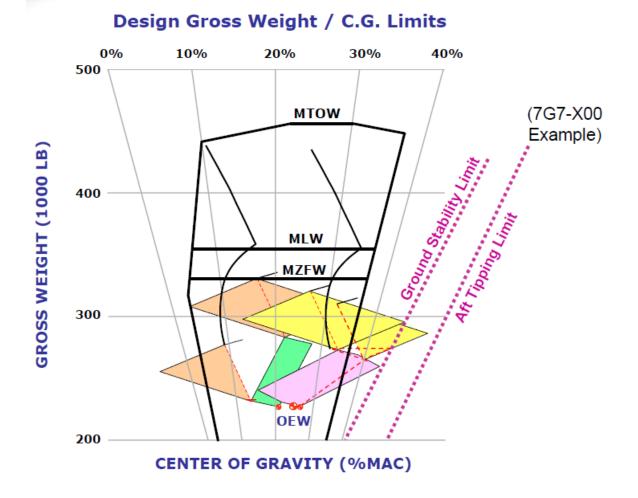
A vantagem de se utilizar o diagrama de momentos vs peso é que se pode adicionar vetores graficamente.


OBS:

A ordem de aplicação dos carregamentos não afeta o resultado final;
O ponto inicial não afeta o incremento de peso e o incremento de momento.

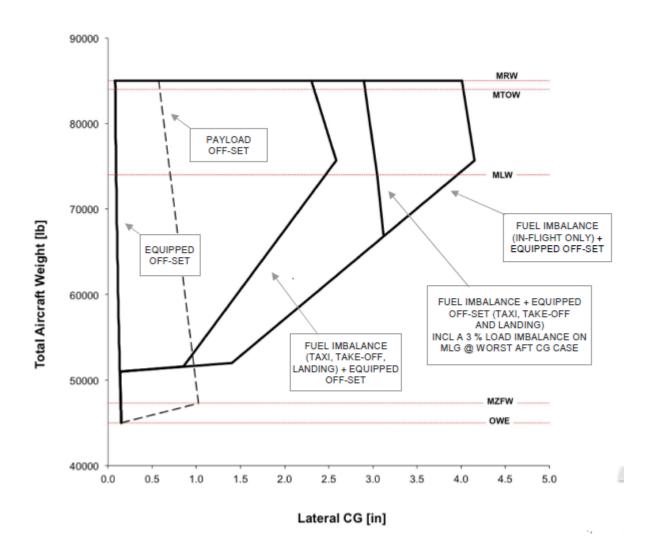
Determine a posição inicial do CG para a aeronave vazia:


- 1-Determine o momento index para o trem de pouso principal (peso líquido x distância para a referência)
- 2-Determine o momento para o trem de pouso de nariz (peso líquido x distância para a referência)
- 3-Determine o peso total somando os pesos do trem principal com o do nariz e também para os momentos
 - 4-Divida o momento total pelo peso total (Posição inicial do CG).
- 5-Determine a distância do CG em relação ao bordo de ataque da corda média aerodinâmica (EWCG=Distância do CG-Distância do bordo de ataque em relação à referência)
 - 6-Determine o EWCG em % da corda média aerodinâmica



Cortes no diagrama:

- 1-Peso mínimo no trem de pouso do nariz (operação da aeronave no solo)
- 2-Carga no trem de pouso do nariz (limitação estrutural do trem de pouso do nariz e suportes)
- 3-Trimagem do estabilizador horizontal para decolagem (força máxima no estabilizador horizontal)
- 4-Carga no trem de pouso principal (limite estrutural do trem de pouso e das estruturas de suporte)
- 5-Limite para combustível (depende da configuração da aeronave)


Envelope Lateral do CG

A maioria das aeronaves não são simétricas para a distribuição de peso em relação ao plano de simetria (portas são normalmente colocadas em um lado da fuselagem, distribuição dos sistemas, configuração de cabine, o carregamento não é colocado de forma simétrica e pode haver assimetria de combustível). Em geral as assimetrias são pequenas!

O impacto da assimetria do para o CG lateral na qualidade de vôo é tipicamente analisado por ensaios de desbalanceamento de combustível e falha de um motor. A combinação de ambos os casos resulta no momento de rolamento máximo da aeronave (dimensionamento dos ailerons e spoilers).

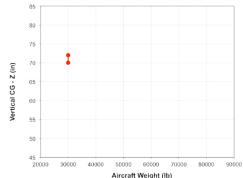
A assimetria lateral também afeta o projeto dos trens de pouso.

Envelope Lateral do CG

Envelope Vertical do CG

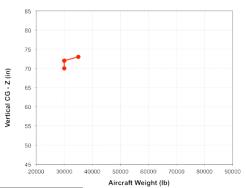
A posição vertical do CG impacta tanto a estabilidade longitudinal quanto a latero-direcional

Estabilidade Lateral: Um CG elevado leva a uma redução da estabilidade para os modos de espiral, dutch roll e na manobrabilidade de rolamento.


Estabilidade Longitudinal: Afeta principalmente a estabilidade estática. A eleveção do CG (mantendo constante a sua posição longitudinal) diminui a estabilidade longitudinal estática em subida. Quanto maior o ângulo de ataque, maior é o efeito desestabilizante

Envelope Vertical do CG

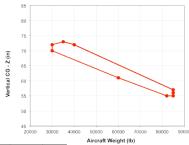
Vertical CG Envelope


OWE + max payload

OWE + max payload + fuel to ramp

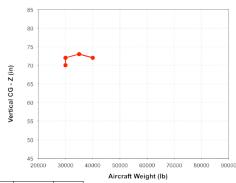
	85					
Vertical CG - Z (in)	80					
	75					
	70	Ī				
	65					
	60					
	55					
	50					

Vertical CG Envelope


Description	Gear	Weight [lb]	Z CG [in]
Min. OWE	Down	30000	7
Min. OWE	Up	30000	7
OWE	Up	35000	7
OWE + max payload	Up	40000	7
OWE + max payload + fuel to ramp	Up	85000	5
OWE + max payload + fuel to ramp	Down	85000	5
OWE + full fuel + payload to ramp	Down	85000	5
OWE + full fuel	Down	82000	5
OWE + 1/2 fuel	Down	60000	6
Back to Min. OWE	Down	30000	7

85000 OWE + max payload + fuel to ramp Down Down OWE + full fuel + payload to ramp 85000 Back to Min. OWE

Gear Weight [lb] Z CG [in]


85000

Description	Gear	Weight [lb]	Z CG [in]
Min. OWE	Down	30000	70
Min. OWE	Up	30000	72
OWE	Up	35000	73
OWE + max payload	Up	40000	72
OWE + max payload + fuel to ramp	Up	85000	57
OWE + max payload + fuel to ramp	Down	85000	56
OWE + full fuel + payload to ramp	Down	85000	55
OWE + full fuel	Down	82000	55
OWE + 1/2 fuel	Down	60000	61
Back to Min. OWE	Down	30000	70

Vertical CG Envelope

Description	Gear	Weight [lb]	Z CG [in]
Min. OWE	Down	30000	7
Min. OWE	Up	30000	7
OWE	Up	35000	7
OWE + max payload	Up	40000	7
OWE + max payload + fuel to ramp	Up	85000	5
OWE + max payload + fuel to ramp	Down	85000	5
OWE + full fuel + payload to ramp	Down	85000	5
OWE + full fuel	Down	82000	5
OWE + 1/2 fuel	Down	60000	6
Back to Min. OWE	Down	30000	7

Referências Bibliográficas

- [1] Center of Gravity Limitations, Boeing Company
- [2] Aircraft CG Envelopes-Longitudinal, Lateral, Vertical, SAWE
- [3] Aircraft Weigth and Balance Handbook FAA-H-8083-1A, U.S. Department of Transportation, FAA, 2007.