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Preface

Nonlinear programming is a mature field that has experienced major de-
velopments in the last ten years. The first such development is the merging
of linear and nonlinear programming algorithms through the use of inte-
rior point methods. This has resulted in a profound rethinking of how we
solve linear programming problems, and in a major reassessment of how
we treat constraints in nonlinear programming. A second development,
less visible but still important, is the increased emphasis on large-scale
problems, and the associated algorithms that take advantage of problem
structure as well as parallel hardware. A third development has been the
extensive use of iterative unconstrained optimization to solve the difficult
least squares problems arising in the training of neural networks. As a
result, simple gradient-like methods and stepsize rules have attained in-
creased importance.

The purpose of this book is to provide an up-to-date, comprehensive,
and rigorous account of nonlinear programming at the beginning graduate
student level. In addition to the classical topics, such as descent algo-
rithms, Lagrange multiplier theory, and duality, some of the important
recent developments are covered: interior point methods for linear and
nonlinear programs, major aspects of large-scale optimization, and least
squares problems and neural network training.

A further noteworthy feature of the book is that it treats Lagrange
multipliers and duality using two different and complementary approaches:
a variational approach based on the implicit function theorem, and a convex
analysis approach based on geometrical arguments. The former approach
applies to a broader class of problems, while the latter is more elegant and
more powerful for the convex programs to which it applies.

The chapter-by-chapter description of the book follows:

Chapter 1: This chapter covers unconstrained optimization: main con-
cepts, optimality conditions, and algorithms. The material is classic, but
there are discussions of topics frequently left untreated, such as the be-
havior of algorithms for singular problems, neural network training, and
discrete-time optimal control.
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based on projection on the subdifferential and e-subdifferential, respec-
tively, were first proposed by Bertseckas and Mitter [BeM71], [BeMT73].
Bundle methods, proposed by Lemarechal [Lem74], [Lem75], and Wolfe
[Wol75], provided effective implementations of e-ascent ideas, and stimu-
lated a great deal of subsequent research on nondifferentiable optimization;
see e.g. the book by Hiriart-Urruty and Lemarechal [HiL93].

The texts by Auslender [Aus76], Shapiro [Sha79], Evtushenko [Evt85],
Shor [Sho85], Minoux [Min86], Poljak [Pol87], Hiriart-Urruty and Lemare-
chal [HiL93], and Shor [Sho98] give extensive accounts of subgradient meth-
ods that complement our treatment and give many references.

Cutting plane methods were introduced by Cheney and Goldstein
[ChG59], and by Kelley [Kel60]. For analysis of proximal cutting plane
and related methods, see Ruszczynski [Rus89|, Lemaréchal and Sagasti-
zébal [LeS93], Mifflin [Mif96], Bonnans et. al. [BGL95], Kiwiel [Kiw97h],
Burke and Qian [BuQ98], and Mifflin, Sun, and Qi [MSQ98|.

Central cutting plane methods were introduced by Elzinga and Moore
[EIM75]. More recent proposals, some of which relate to interior point
methods, are discussed in Goffin and Vial [GoV90], Goffin, Haurie, and
Vial [GHV92], Ye [Ye92], Kortanek and No [KoN93], Goffin, Luo, and
Ye [GLY94], Atkinson and Vaidya [AtV95], den Hertog et. al. [HKR95],
Nesterov [Nes95], Goffin, Luo, and Ye [GLY96]. For a textbook treatment,
see Ye [Ye97], and for a recent survey, see Goffin and Vial [GoV99].

Section 6.4: Three historically important references on decomposition
methods are Dantzig and Wolfe [DaW60], Benders [Ben62], and Everett
[Eve63]. The early text by Lasdon [Las70] on large-scale optimization was
particularly influential; see also Geoffrion [Geo70], [Geo74].

The theoretical and applications literature on large-scale optimization
and decomposition is quite voluminous. We provide a few references that
complement the material we have covered in this chapter: Stephanopou-
los and Westerberg [StW75], Kennington and Shalaby [KeS77], Bertsekas
[Ber79al, Meyer [Mey79], Cohen [Coh80], Fortin and Glowinski [FoG83],
Birge [Bir85], Golshtein [Gol85], Tanikawa and Mukai [TaM85], Spingarn
[Spi85], Minoux [Min86|, Ruszczynski [Rus86], Sen and Sherali [SeS86],
Bertsekas and Tsitsiklis [BeT89], Hearn and Lawphongpanich [HeL89],
Rockafellar [Roc90], Toint and Tuyttens [ToT90], Ferris and Mangasarian
[FeM91], Kim and Nazareth [KiN91], Rockafellar and Wets [RoW91], Tseng
[Tse91b], [Tse9lec], Auslender [Aus92|, Eckstein and Bertsekas [EcB92],
Fukushima [Fuk92], Gaudioso and Monaco [GaM92], Mulvey and Ruszc-
zynski [MuR92], Pinar and Zenios [PiZ92], Nagurney [Nag93], Patriksson
[Pat93al], [Pat93b], Tseng [Tse93], Eckstein [Eck94b], Migdalas [Mig94],
Pinar and Zenios [PiZ94], Mahey, Oualibouch, and Tao [MOT95], Mulvey
and Ruszczynski [MuR95], Zhu [Zhu95], Censor and Zenios [1997], Konto-
giorgis and Meyer [KoM98], Patriksson [Pat98], Zhao and Luh [ZhL1.98].

| APPENDIX A:
Mathematical Background

In this appendix, we collect definitions, notational conventions, and .several
results from linear algebra and analysis that are used extensively in non-
linear programming. Only a few proofs are given. Additional proofs can
be found in Appendix A of the book by Bertsekas and Tsitsiklis [BeT89],
which provides a similar but more extended summary of linear algebra and
analysis. Related and additional material can be found in thg books by
Hager [Hag88], Hoffman and Kunze [HoK71], Lancaster and Tismenetsky
[LaT85], and Strang [Str76] (linear algebra), and the books bbf Ash [Ash72],
Ortega and Rheinboldt [OrR70], and Rudin [Rud76) (analysis).

Notation

If Sis a set and x is an element of S, we write x € S. A set can be
specified in the form S = {z | z satisfies P}, as the set of all elements
satisfying property P. The union of two sets S and T is denoted by S.U T
and their intersection by S NT. The symbols 3 and V have the meanings
“there exists” and “for all,” respectively. The set of real numbers (also
referred to as scalars) is denoted by R.

If @ and b are real numbers or +00, —oco, we denote by [a, b] the set
of numbers z satisfying a < z < b (including the possibility = = —}—go or
x = —o0). A rounded, instead of square, bracket denotes strict inequa.l.hty. in
the definition. Thus (a,b], [a,b), and (a,b) denote the set of all z satisfying
a<z<ba<z<b anda <z <b, respectively. .

If f is a function, we use the notation f:A— Bto in§1cate the fa.ct
that f is defined on a set A (its domain) and takes values in a set B (its

range).
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A.1 VECTORS AND MATRICES

We denote by R the real line and by R» the set of n-dimensional real
vectors. For any z € R", we use z; to indicate its ith coordinate, also
called its ith component.

Vectors in ™ will be viewed as column vectors, unless the contrary
is explicitly stated. For any € R", z’ denotes the transpose of z, which is
an n-dimensional row vector. The inner product of two vectors z,y € R" is
defined by 'y = > ;. Z:yi- Any two vectors z,y € R satisfying z'y = 0
are called orthogonal.

If w is a vector in &, the notations w > 0 and w > 0 indicate that
all coordinates of w are positive or nonnegative, respectively. For any two
vectors w, v, the notation w > v means that w — v > 0. The notations
w > v, w < v, etc., are to be interpreted accordingly.

Subspaces and Linear Independence

A subset S of %" is called a subspace of R™ if ax + by € S for every z,y € S
and every a,b € R. A linear manifold in R™ is a translated subspace, that
is, a set of the form

y+S={y+z|z€S}

where y is a vector in #” and S is a subspace of ®*. The span of a finite
collection {z1,...,2m} of elements of R™ is the subspace consisting of all
vectors y of the form y = "7~ | axxk, where each ax is a scalar.

The vectors z1,...,Zm € R are called linearly independent if there
exists no set of scalars a1,...,am such that > .-, agzr =0, unless ax = 0
for each k. An equivalent definition is that x; # 0 and for every k > 1, the
vector z does not belong to the span of z1,...,zx_1.

Given a subspace S of R containing at least one nonzero vector, a
basis for S is a collection of vectors that are linearly independent and whose
span is equal to S. Every basis of a given subspace has the same number
of vectors. This number is called the dimension of S. By convention,
the subspace {0} is said to have dimension zero. The dimension of a
linear manifold y + S is the dimension of the corresponding subspace S.
An important fact is that every subspace of nonzero dimension has an
orthogonal basis, that is, a basis consisting of mutually orthogonal vectors.

Matrices

For any matrix A, we use A;j, [A]ij, or a;; to denote its ijth entry. The
transpose of A, denoted by A’, is defined by [A’];; = aj;. For any two
matrices A and B of compatible dimensions, we have (AB) = B’A’.

Let A be a square matrix. We say that A is symmetricif A’ = A. We
say that A is diagonal if [A];; = 0 whenever ¢ # j. It is lower triangular

i ij = ver i < j. It is upper triangular if its transpose is lower
}sfri[zﬂgular? \‘)VV};eE:e Ito deynote the identity matrix. The determinant of A
° denEZ:dAb}l,)s e;rEATZL « n matrix. The range space of A is the set of all
vectors y € R™ such that y = Az for some x € R*. The null space or
kernel of A is the set of all vectors & € Rn such that Az = 0. It is seen
that the range space and the null space of A are subspaces. The rank of A
is the minimum of the dimensions of the range space of A and the range
space of the transpose A’. Clearly A and A’ have the same rank. We say
that A has full rank, if its rank is equal to min{m, n} It can.be seen that
A has full rank if and only if either the rows of A are linearly independent,
or the columns of A are linearly independent.

A.2 NORMS, SEQUENCES, LIMITS, AND CONTINUITY

Definition A.1: A norm ||| on ®" is a mapping that a§signs a scalar
||z|| to every z € R and that has the following properties:

(a) ||lz|| > O for all z € R

(®) llez|l = le| - |zl for every c € R and every z € R”.
(c) ||lz|| = 0 if and only if & = 0.

(@ [+l < 2l + gl for all 2,y € B

The Euclidean norm is defined by

n 1/2
Jall = (@z)1/2 = (z m\z) |

1=1

The space R, equipped with this norm, is called a Euclidean space. We
will use the Euclidean norm almost exclusively in this book. In particular,

in the absence of a clear indication to the contrary, |- || will denote the

Euclidean norm. Two important results for the Euclidean norm are:

Proposition A.1: (Pythagorean Theorem) If z and y are Or-

thogonal then
Iz + yl2 = llzll? + llyl-




Proposition A.2: (Schwartz inequality) For any two vectors z
and y, we have

="yl < |l - flull,

with equality holding if and only if x = ay for some scalar a.

Two other important norms are the mazimum norm |||/« (also called
sup-norm or {s-norm), defined by

Jolloo = max|z:],

and the #1-norm || - ||1, defined by

n

el = |-

=1

Sequences

We use both subscripts and superscripts in sequence notation. Generally,
we use superscript notation for sequences of vectors generated by iterative
algorithms whenever we need to reserve the subscript notation for indexing
coordinates or components of vectors and functions.

A sequence {zy | k =1,2,...} (or {zx} for short) of scalars is said to
converge to a scalar x if for every € > 0 there exists some K (depending
on €) such that |zx — z| < € for every k > K. A sequence {zx} is said
to converge to oo (respectively, —oo) if for every b there exists some K
(depending on b) such that zx > b (respectively, zx < b) for all £k > K.
If a sequence {x} converges to some z (possibly infinite), we say that z
is the limit of {ax}; symbolically, zx — x or limg_ o zx = . A sequence
{zi} is called a Cauchy sequence if for every € > 0, there exists some K
(depending on €) such that |zx — zm| < € for all £ > K and m > K.

A sequence {zx} is said to be bounded above (respectively, below) if
there exists some scalar b such that xx < b (respectively, zx > b) for all k.
It is said to be bounded if it is bounded above and bounded below. The
sequence {z:} is said to be nonincreasing (respectively, nondecreasing) if
Ti+1 < @k (respectively, zxi1 > xx) for all k. If {zx} converges to z and
is nonincreasing (nondecreasing) we also use the notation zx | = (zx T z,
respectively).

Proposition A.3: Every nonincreasing or nondecreasing scalar se-
quence converges to a possibly infinite number. If it is also bounded,
then it converges to a finite real number.

The supremum of a nonempty set A of scalars, denoted by sup A,
is defined as the smallest scalar = such that « > y for all y € A. If no
such scalar exists, we say that the supremum of A is co. Similarly, the
infimum of A, denoted by inf A, is defined as the largest scalar x such
that ¢ < y for all y € A, and is equal to —oo if no such scalar exists.
Given a scalar sequence {zx}, the supremum of the sequence, denoted by
supy Tk, is defined as sup{zx | k = 1,2,...}. The infimum of a sequence
is similarly defined. Given a sequence {zx}, let ym = sup{zk ] k> m},
zm = inf{zx | K > m}. The sequences {ym} and {zn} are nonincreasing
and nondecreasing, respectively, and therefore have a (possibly infinite)
limit (Prop. A.3). The limit of ym is denoted by lim sup,,,_, « T and the
limit of 2z, is denoted by liminfm—co Tm.

Proposition A.4: Let {zx} be a scalar sequence.

(a) There holds

inf zx < liminf 2, < limsupzx < sup Zg.
k k— o0 k—oo k

(b) {zx} converges if and only if liminfx— o zx = lim SUPk o0 Tk
and, in that case, both of these quantities are equal to the limit
of k-

(¢) If zx < yk, then

lim inf 2 < liminf yk,
k— o0 k—o0

limsup zx < limsup yk.
k—oo k—ro0

A sequence {xx} of vectors in ®" is said to converge to some T € R if
the ith coordinate of zj converges to the ith coordinate of x for every . We
use the notations xx — x and limg_o Zx = ¢ to indicate convergence for
vector sequences as well. The sequence {z} is called bounded (or a Cauchy
sequence) if each of its corresponding coordinate sequences is bounded (or
a Cauchy sequence, respectively).

Definition A.2: We say that a vector € R™ is a limit point of a se-
quence {zx} in R~ if there exists a subsequence of {zx} that converges
to z. Let A be a subset of ®7. We say that € R is a limit point
of A if there exists a sequence {zx}, consisting of elements of A, that
converges to x.
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Proposition A.5:

(a) A bounded sequence of vectors in R converges if and only if it
has a unique limit point.

(b) A sequence in R" converges if and only if it is a Cauchy sequence.
(c) Every bounded sequence in R has at least one limit point.

(d) .Let {z+} be a scalar sequence. If limsup,_, ., zx (liminfx o0 zx)
is finite, then it is the largest (respectively, smallest) limit point
of {.’Ek}

o(-) Notation

If p is a positive integer and h : R™ +— R™, then we write
h(z) = ofla]?)

if and only if

h(zy)
zx—0 ||zg P

for all sequences {zx}, with z) # 0 for all k, that converge to 0.

Closed and Open Sets

Definition A.3: A set A C R" is called closed if it contains all of its
limit points. It is called open if its complement (the set {z | z ¢ A})
is closed. It is called bounded if there exists some ¢ € R such that the
magnitude of any coordinate of any element of A is less than ¢. The
subset A is called compact if every sequence of elements of A has a
subsequence that converges to an element of A. A neighborhood of a
vector z is an open set containing z. If A C ®" and = € A, we say
that z is an interior point of A if there exists a neighborhood of = that
is contained in A. A vector z € A which is not an interior point of A
is said to be a boundary point of A.

For any norm || - || in R”, and any € > 0 and z* € R, consider the
sets

{z]llz-a| <€}, {z|llz—a*| <€}

The first set is open and is called an open sphere centered at z*, while the
second set is closed and is called a closed sphere centered at x*. Sometimes
the terms open ball and closed ball are used, respectively.

Proposition A.6:
(a) The union of finitely many closed sets is closed.
(b) The intersection of closed sets is closed.
(c) The union of open sets is open.
(d) The intersection of finitely many open sets is open.
(e) A set is open if and only if all of its elements are interior points.
(f) Every subspace of R" is closed.
(g) A subset of R” is compact if and only if it is closed and bounded.

Continuity

Let A be a subset of ®m and let f : A — R" be some function. Let x
be a limit point of A. If the sequence {f(zx)} has a common limit z for
every sequence {z} of elements of A such that limg_cc x = x, We write
limy—z f(y) = 2.

If Ais a subsct of ® and z is a limit point of A, the notation
limy 1, f(y) [respectively, limyo f(y)] will stand for the limit of f(zx),
where {z;} is any sequence of elements of A converging to x and satis-
fying zx < x (respectively, zx = z), assuming that the limit exists and is
independent of the choice of the sequence {zx}

Definition A.4: Let A be a subset of ™.

(a) A function f : A+ R is said to be continuous at a point x € A
if limy - f(y) = f(z). It is said to be continuous on A (or over
A) if it is continuous at every point = € A

(b) A real valued function f : A — R is called upper semicontinuous
(respectively, lower semicontinuous) at a vector x € A if f(z) =
lim supy_, o f () [respectively, f(z) < liminf e f(zk)] for ev-
ery sequence {z;} of elements of A converging to z.

(c) A real valued function f : A R is called coercive if

lim f(zx) =00
k—00




for every sequence {zx} of elements of A such that ||zx| — oo
for some norm || - ||.

(d) Let A be a subset of R. A function f : A — R7 is called right-
c'ontinuous (respectively, left-continuous) at a point z € A if
lim,, f(y) = f(z) [respectively, limyr, f(y) = f(z)].

_ It is easily seen that when A is a subset of R, a nondecreasing and
right-continuous (respectively, left-continuous) function f : A — R is upper
(respectively, lower) semicontinuous.

Proposition A.7:
(a) The composition of two continuous functions is continuous.
(b) Any vector norm on R is a continuous function.

(c) Let f :.Rm — R" be continuous, and let A C R™ be open
(respectively, closed). Then the set {x € R™ | f(z) € A} is open
(respectively, closed).

. An important property of compactness in connection with optimiza-
tion problems is the following theorem.

Proposition A.8: (Weierstrass’' Theorem) Let A be a nonempty
subset of R and let f : A — R be lower semicontinuous at all points
of A. Assume that one of the following three conditions holds:

(1) A is compact.
(2) A is closed and f is coercive.

(3) There exists a scalar « such that the level set

{ze A flz) <~}

is nonempty and compact.

Then, there exists a vector z € A such that f(z) = inf,ca f(2).

Proof: Assume condition (1). Let {zx} C A be a sequence such that
. _
Jm f(zx) = inf f(2).

Since A is bounded, this sequence has at least one limit point z [Prop.

A.5(c)]. Since A is closed, = belongs to A, while the lower semicontinuity
of f implies that f(z) < limk—oo f(2x) = inf e f(z). Therefore, we must
have f(z) = inf,ca f(2)-

Assume condition (2). Consider a sequence {zx} as in the proof of
part (a). Since f is coercive, {zx} must be bounded and the proof proceeds
like the proof of part (a).

Assume condition (3). If the given v is equal to inf.ea f(z), the set
of minima of f over A is {z € A | f(z) < ~}, and since by assumption
this set is nonempty, we are done. If v > infzca f(2), consider a sequence
{2} as in the proof of part (a). Then, for all k sufficiently large, zx must
belong to the set {zx € A| f(z) £ ~v}. Since this set is compact, {7k} must
be bounded and the proof proceeds like the proof of part (a). Q.E.D.

Note that with appropriate adjustments, the above proposition ap-
plies to the existence of maxima of f over A. In particular, if f is upper
semicontinuous at all points of A and A is compact, then there exists a
vector y € A such that f(y) = sup.ca f(z). Vectorsz € Aory € A
that attain the minimum or the maximum of a function f over a set A,
respectively, even if they are not unique, are denoted by

= argrznel/r{lf(z), y= a.I'gI:leaj‘(f(Z).

Proposition A.9: For any two norms |- and [|-[| on R~ there exists
some positive constant ¢ € R such that ||z|| < c||z||’ for all z € R".

Proof: Let a be the minimum of ||z||’ over the set of all z € R such that
llz|l = 1. The latter set is closed and bounded and, therefore, the minimum
is attained at some Z (Prop. A.8) that must be nonzero since |Z|| = 1. For

any € ®", z # 0, the || - || norm of /||z|| is equal to 1. Therefore,
1 7
_ el Yz # 0,

N E

which proves the desired result with ¢ = 1/a. Q.E.D.

0<a=lF< Hﬁ

The preceding proposition is referred to as the norm equivalence prop-
erty in . It shows that if a sequence converges with respect to one norm,
it converges with respect to all other norms. From this we obtain the
following.

Proposition A.10: If a subset of #n is open (respectively, closed,
bounded, or compact) for some norm, it is open (respectively, closed,
bounded, or compact), for all other norms.
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Matrix Norms

A norm || - || on the set of n x n matrices is a real-valued mapping that has
the same properties as vector norms do when the matrix is viewed as an
element of #7°. The norm of an 7 x n matrix A is denoted by ||A.

We are mainly interested in induced norms, which are constructed as

follows. Given any vector norm | - ||, the corresponding induced matrix
norm, also denoted by || - ||, is defined by
A= max |Az]. (A1)
zeR"|zj=1

The set over which the maximization takes place above is closed [Prop.
A.7(c)] and bounded; the function being maximized is continuous [Prop.
A.7(b)] and therefore the maximum is attained (Prop. A.8). It is easily
verified that for any vector norm, Eq. (A.1) defines a bona fide matrix
norm having all the required properties.
Note that by the Schwartz inequality (Prop. A.2), we have
1A = max || Az]| =

max ! Az|.
|| llyll=llzll=1 [y Az|

By reversing the roles of x and y in the above relation and by using the
equality v/ Ax = x’' A’y, it follows that

1A = {|A"]. (A.2)

A.3 SQUARE MATRICES AND EIGENVALUES

(v) There exists an n x n matrix B such that AB = I = BA.
(vi) The columns of A are linearly independent.
(vii) The rows of A are linearly independent.

(b) Assuming that A is nonsingular, the matrix B of statement )
(called the inverse of A and denoted by A~1) is unique.

(c) For any two square invertible matrices A and B of the same
dimensions, we have (AB)~1 = B—1A4-1,

Definition A.5: A square matrix A is called singular if its determi-
nant is zero. Otherwise it is called nonsingular or invertible.

Proposition A.11:

(a) Let A be an n x n matrix. The following are equivalent:
(i
(ii
(iid

(iv

The matrix A4 is nonsingular.
The matrix A’ is nonsingular,

For every nonzero & € R", we have Az # 0.

—_ — — —

For every y € ", there exists a unique € R” such that
Az =y.

Let A and B be square matrices and let C be a matrix of appropriate
dimension. Then we have

(A + CBC/)——I — A—l — A—lC(B—l + ClA—lC)—lC/Afli

provided all the inverses appearing above exist. For a proof, multiply the
right-hand side by A + CBC” and show that the product is the identity.
Another useful formula provides the inverse of the partitioned matrix

A B
w=]4 2]
There holds
M-t = Q —QBD-1
-D-1CQ D-!+ D-1CQBD-1|’

where
Q=(A- BD-1C)1,

provided all the inverses appearing above exist. For a proof, multiply M
with the given expression for M~1 and verify that the product is the iden-
tity.

Definition A.6: The characteristic polynomial ¢ of an n X n matrix
A is defined by ¢()\) = det(AI — A), where I is the identity matrix of
the same size as A. The n (possibly repeated and complex) roots of
¢ are called the eigenvalues of A. A vector z (with possibly complex
coordinates) such that Az = Az, where \ is an eigenvalue of A, is
called an eigenvector of A associated with A.




Proposition A.12: Let A be a square matrix.

(a) A complex number A is an eigenvalue of A if and only if there
exists a nonzero eigenvector associated with ).

(b) A is singular if and only if it has an eigenvalue that is equal to
zero.

Note that the only use of complex numbers in this book is in relation
to eigenvalues and eigenvectors. All other matrices or vectors are implicitly
assumed to have real components.

Proposition A.13: Let A be an 7 X n matrix.

(a) The eigenvalues of a triangular matrix are equal to its diagonal
entries.

(b) If S is a nonsingular matrix and B = SAS-1, then the eigenval-
ues of A and B coincide.

(¢) The eigenvalues of ¢cI + A are equal to ¢+ At,...,¢+ A, where
Al,..., A are the eigenvalues of A.

(d) The eigenvalues of A* are equal to A%, ... Ak, where Aoy An
are the eigenvalues of A.

(e) If A is nonsingular, then the eigenvalues of A~1 are the recipro-
cals of the eigenvalues of A.

L (f) The eigenvalues of A and A’ coincide.

Definition A.7: The spectral radius p(A) of a square matrix A is
defined as the maximum of the magnitudes of the eigenvalues of A.

It can be shown that the roots of a polynomial depend continuously
on the coefficients of the polynomial. For this reason, the eigenvalues of a
square matrix A depend continuously on A, and we obtain the following.

Proposition A.14: The eigenvalues of a square matrix A depend
continuously on the elements of A. In particular, p(A) is a continuous
function of A.

The next two propositions are fundamental for the convergence theory
of linear iterative methods.

Proposition A.15: For any induced matrix norm ||-|| and any square
matrix A we have

Jim [ ARE = p(A) < [|A].

Furthermore, given any € > 0, there exists an induced matrix norm
|| - || such that

Al = p(A) + e

Proposition A.16: Let A be a square matrix. We have limg_, o, A* =
0 if and only if p(A) < 1.

A corollary of the above proposition is that the iteration zk+1 = Azk
converges to 0 for every initial condition z0 if and only if p(4) < 1.

A.4 SYMMETRIC AND POSITIVE DEFINITE MATRICES

Symmetric matrices have several special properties, particularly with re-
spect to their eigenvalues and eigenvectors. In this section, || - || denotes
the Euclidean norm throughout.

Proposition A.17: Let A be a symmetric n X n matrix. Then:
(a) The eigenvalues of A are real.

(b) The matrix A has a set of n mutually orthogonal, real, and
nonzero eigenvectors xi,...,ZTn.

(c) Suppose that the eigenvectors in part (b) have been normalized
so that ||z;|| = 1 for each z. Then

A= i AiTizs,

=1

where A; is the eigenvalue corresponding to z;.




Proposition A.18: Let A be a symmetric n x n matrix, let A\; <
- < A, be its (real) eigenvalues, and let z1,...,Tn be associated
orthogonal eigenvectors, normalized so that ||z;|| = 1 for all <. Then:

(a) ||4]l = p(A) = max{|Ai1|, [An|}, where || - || is the matrix norm
induced by the Euclidean norm.

(b) Allyl2 < v Ay < Anllyl2 for all y € R,

(¢) (Courant-Fisher Minimaz Principle) For all i, and for all i-dimen-
sional subspaces S; and all (n— i + 1)-dimensional subspaces S;,
there holds

min YAy < A < max _ y' Ay.
llyll=1,yes; llyli=1,y€S;

Furthermore, equality on the left (right) side above is attained
if S; is the subspace spanned by z;,...,zn (S; is the subspace
spanned by z1,...,x;, respectively).

(d) (Interlocking Eigenvalues Lemma) Let M1 < A2 < --- < X, be
the eigenvalues of A + bb’, where b is a vector in R*. Then,

M<Ah<h<h< <A < A

Proof: (a) We already know that ||A|| > p(A) (Prop. A.15) and we need
to show the reverse inequality. We express an arbitrary vector y € R»
in the form y = Y7 ; &xy, where each ¢; is a suitable scalar. Using the
orthogonality of the vectors z; and the Pythagorean theorem (Prop. A.1),

we obtain ||y||2 = >_7_, |& /% ||zi]|2. Using the Pythagorean theorem again,
we obtain

n 2 n
lAyl2 = |30 g = 30 iz 2 - 2 < p2(4) g2
=1 =1

Since this is true for every y, we obtain ||A|| < p(A) and the desired result
follows.

(b) As in part (a), we express the genericy € R as y = Y ., &zs. We
have, using the orthogonality of the vectors x,, i = 1,...,n, and the fact
]| = 1,

n n
YAy =D MilGl2llmil|2 = A&
i=1 =1

and . .
lylz =122 = > l&l
i=1 i=1

These two relations prove the desired result.

(c) Let X, be the subspace spanned by x1,...,%;. T.he subspaces X anfi
S, must have a common vector Zo with ||zo|| = 1, since the sum of their
dimensions is n + 1 [if there was no common nonzero vector, we could
take sets of basis vectors for X; and S, (a total of n + 1 in number),
which would have to be linearly independent, yielding a contradiction].
The vector o can be expressed as a linear combination xo = 22:1 &ixy,
and since ||zo]| = 1 and ||z;|| =1 for all i =1,...,7n, we must have

281
j=1

We also have using the expression A = > 7, X;z;T] [cf. Prop. A.17(c)],

spAzo =D NE <A | D&
i=1 j=1

Combining the last two relations, we obtain xzjAzo < A, which proves
the left-hand side of the desired inequality. The right-hand side is proved
similarly. Furthermore, we have zjAz; = \;, so equality is attained as in
the final assertion.

(d) From part (¢) we have

; = in 'Ay <max min y/(A+bb)y < X,
A T i ves, V=187 wi=1, ves,

so that A; < \; for all i. Furthermore, from part (c), for some (n —i+ 1)-
dimensional subspace S; we have

Xi= min _y(A+bd)y.
lyll=1,y€S;

Using this relation and the left-hand side of the inequality of part (c),
applied to the subspace {y |y € §;, b'y = 0}, whose dimension is at least
(n — 1), we obtain

M < min y(A+ b))y = min YAy < Aiya,
liyll=1,v€S;, b'y=0 lyll=1, y€S;, b'y=0

and the proof is complete. Q.E.D.




Pro;')osition‘ A.19: Let A be a square matrix, and let || - || be the
matrix norm induced by the Euclidean norm. Then:

(a) If A is symmetric, then [|A%]| = | A||* for any positive integer k.
(b) [|4]]2 = 44| = | A4,

(c) If A is symumnetric and nonsingular, then [[A=1]| is equal to the

reciprocal of the smallest of the absolute values of the eigenvalues
of A.

Proof: (a) If A is symmetric then AF is symmetric. Using Prop. A.18(a)
we.hav.e |A*|| = p(A*). Using Prop. A.13(d), we obtain p(A*) = p(A)k’
which is equal to ||A||* by Prop. A 18(a). ,

.(b) For any vector z such that ||z]] = 1, we have, using the Schwartz
inequality (Prop. A.2),

4z(|? = 2’ A Az < ||z - || A A|) < [la]| - [ A Al - ]| = || 4 A].
Thus, [|A]2 < [|4’AJ|. On the other hand,

47 A]l = 0% _ Iy A Az < i Ayl flAz]] = |lA]2.

Therefore, [A[|?2 = ||A’A|l. The equality [Al|2 = ||A’A|l is obtained by
replacing A by A’ and using Eq. (A.2).

(c) This follows by combining Prop. A.13(e) with Prop. A.18(a). Q.E.D.

pefinition A.8: A symmetric nxn matrix A is called positive definite
if zA:c >0 forall x € Rn, z # 0. It is called nonnegative definite or
posite semidefinite if 2’ Az > 0 for all z € fn.

. Through'out this book, the notion of positive and negative definiteness
applies exclusively to symmetric matrices. Thus whenever we say that a

matr@ 18 positive or negative (semi)definite, we implicitly assume that the
matriz is symmetric.

Proposition A.20:

(a) For any m x n matrix A, the matrix A’A is symmetric and non-
negative definite. A’A is positive definite if and only if A has
rank n. In particular, if m = n, A’A is positive definite if and
only if A is nonsingular.

(b) A square symmetric matrix is nonnegative definite (respectively,
positive definite) if and only if all of its eigenvalues are nonneg-
ative (respectively, positive).

(c) The inverse of a symmetric positive definite matrix is symmetric
and positive definite.

Proof: (a) Symmetry is obvious. For any vector z € R”, we have 2’/ A’ Az =
|Az||2 > 0, which establishes nonnegative definiteness. Positive definite-
ness is obtained if and only if the inequality is strict for every = # 0, which
is the case if and only if Az # 0 for every & # 0. This is equivalent to A
having rank n.

(b) Let A, z # 0, be an eigenvalue and a corresponding real eigenvector
of a symmetric nonnegative definite matrix A. Then 0 < 2/Ax = A2’z =
Allz]|2, which proves that A > 0. For the converse result, let y be an
arbitrary vector in ®”. Let A1,..., A\, be the eigenvalues of A, assumed to
be nonnegative, and let z;,...,z, be a corresponding set of nonzero, real,
and orthogonal eigenvectors. Let us express y in the form y = 7 | &,
Then y'Ay = (35| &) (Mi1eq &Xz,). From the orthogonality of the
eigenvectors, the latter expression is equal to Zf: L {ZzAi][:cZHZ > 0, which
proves that A is nonnegative definite. The proof for the case of positive
definite matrices is similar.

(¢) The eigenvalues of A1 are the reciprocal of the eigenvalues of A [Prop.
A.13(e)], so the result follows using part (b). Q.E.D.

Proposition A.21: Let A be a square symmetric nonnegative defi-
nite matrix.

(a) There exists a symmetric matrix @ with the property @2 = A.
Such a matrix is called a symmetric square root of A and is de-
noted by Al/2.

(b) A symmetric square root Al/2 is invertible if and only if A is
invertible. Its inverse is denoted by A~1/2,

(c) There holds A~1/24-1/2 = A-1,
(d) There holds AAL/2 = A1/2A.

Proof: (a) Let Aj,..., A, be the eigenvalues of A and let z1,...,%n be
corresponding nonzero, real, and orthogonal eigenvectors normalized so




that ||zk|| = 1 for each k. We let
n
A2 =30 P,
k=1
where A}/? is th i
ere A,/ " is the nonnegative square root of Ax. We then have

n n n
B 1/241
A1/241/2 — E :2 :/\i/ /\k/zwix;wkrk = E Apzrz) = A.
i=1 k=1 k=1

Here the second equality follows from the orthogonality of distinct eigen-
vectors; the last equality follows from Prop. A.17(c). We now notice that
each one of the matrices zxz}, is symmetric, so A/2 is also symmetric.

(b) This follows from the fact that the eigenvalues of A are the squares of
the eigenvalues of A'/2 [Prop. A.13(d)].

(c) We have (A—1/2A-1/2)4 = A-1/2(A-1/2AV/2)AY/2 = A-1/2]AY/2 = [
(d) We have AAY/2 = AL/2A1/241/2 = A1/2A. Q.E.D.

. A symmetric square root of A is not unique. For example, let A1/2 be
as in the proof of Prop. A.21(a) and notice that the matrix —A/? also has
the property (—Al/2)(—AL/2) = A. However, if A is positive definite, it can
be shown that the matrix A1/2 we have constructed is the only sym,metric
and positive definite square root of A.

DERIVATIVES

Let f : R™ — RN be some function, fix some z € R*, and consider the
expression

o @+ 065) = £(3)

a—0 (8]

k)

where e; is the ith unit vector (all components are 0 except for the ith
component which is 1). If the above limit exists, it is called the ith partial
dem'vatiue of f at the point z and it is denoted by (8f/0z;)(z) or 8f(x)/dx;
(z; in this section will denote the ith coordinate of the vector ). Assumin ,
all of these partial derivatives exist, the gradient of f at z is defined as thi

column vector

8f(z)
ECE

Vfz) =

For any y € R, we define the one-sided directional derivative of f in
the direction y, to be

fi(a;v) = lim f—‘g"—i%)—'—@

provided that the limit exists. We noté from the definitions that
Floe) = —fllaz—e) = flzie)=(0f/0m:)().

If the directional derivative of f at a vector z exists in all directions
y and f/(z;y) is a linear function of y, we say that f is differentiable at
¢. This type of differentiability is also called Gateaux differentiability. It
is seen that f is differentiable at x if and only if the gradient V f(z) exists
and satisfies Vf(z)'y = f'(z;y) for every y € Rn. The function f is called
differentiable over a given subset S of R if it is differentiable at every
¢ € S. The function f is called differentiable (without qualification) if it is
differentiable at all z € R™.

If f is differentiable over a set S and the gradient V f(z) is continuous
at all z € S, f is said to be continuously differentiable over S. Such a
function is also continuous over S and has the property

— — !
lim Ja+y) -~ f@=VI@)Yy _o  yges, (A.3)
y=0 flyll
where || - || is an arbitrary vector norm. The above equation can also

be used as an alternative definition of differentiability. In particular, f
is called Frechet differentiable at z if there exists a vector ¢ satisfying
Eq. (A.3) with V() replaced by g. If such a vector g exists, it can
be seen that all the partial derivatives (9f /0x;)(z) exist and that g =
V f(z). Frechet differentiability implies (Gateaux) differentiability but not
conversely (see for example [OrR70] for a detailed discussion). In this book,
when dealing with a differentiable function f, we will always assume that
f is continuously differentiable over a given set [Vf(x) is a continuous
function of z over that set], in which case f is both Gateaux and Frechet
differentiable, and the distinctions made above are of no consequence.
Note that the definitions concerning differentiability of f at a point
only involve the values of f in a neighborhood of x. Thus, these definitions
can be used for functions f that are not defined on all of R7, but are defined
instead in a neighborhood of the point at which the derivative is computed.
Iff:Rr—R"isa vector-valued function, it is called differentiable
(respectively, continuously differentiable) if each component f; of f is dif-
ferentiable (respectively, continuously differentiable). The gradient matriz
of f, denoted V f(x), is the n xm matrix whose ith column is the gradient

sz(f) of fj. Thus,

Vi) = [VAE) Vi)




The tr.anspose of V f is called the Jacobian of f and is a matrix whose ijth
entry is equal to the partial derivative & Ji/0x;. ’

Now suppose that each one of the partial derivatives of a function
f: 3‘[‘.:” — R is a continuously differentiable function of z. We use the
nota.tlon (0% f/02:0z;)(z) to indicate the ith partial derivative of 8 f/dz; at
a point x € R". The Hessian of f is the matrix whose ijth entry is equajl to
(02f [0x:i0z;)(z), and is denoted by V2/(z). We have (0%f/0z:0z5)(z) =
(02f/8x;0z;)(zx) for every x, which implies that V2 f (2) is symmet]ric

If f . Rm4n — R is function of (z,y), where z = (z;,... 2 ) e.%m
and y = (y1,...,yn) € R, we write T

Af(z,y) Of(zy
oz oy
vzf(x:y) = ) Vyf(xyy) = : )
3f(z,y) 25 (z,y)
0Ty, Oyn

Viefwu) = (552 ), Vhsew) = (%),

Oz;0x j Ox; By]-

Vi (@) = (5L ).
If f:Rm4n o R f= (f1, foy .o, fr), we write
Vﬂtf(xay) = (vﬂ?fl(w7 y) T va"‘(x’y))7

Vyflz,y) = (Vyfl(xa Y) - Vyfrlz, y))

.Let S iR = Rmoand g : Bm — B be continuously differentiable
functions, and let k be their composition, i.e.,

h(z) = g(f(x)).
Then, the chain rule for differentiation states that
Vh(z) = Vi(x)Vg(f(z)), Ve Rk
Some examples of useful relations that follow from the chain rule are:
V(f(Az)) = A'Vf(Azx), V2(f(Az)) = A'NV2f(Az)A,
where A is a matrix,
Va(f (h(2),9)) = Vh(z)Vaf (h(z),y),

Va (f(h(z),9(x))) = V() f(h(z),9(z)) + V() Vg f(h(z), g(x)).

We now state the principal theorems relating to differentiable func-
tions that will be useful for our purposes.

Proposition A.22: (Mean Value Theorem) If f : R — R is
continuously differentiable over an open interval I, then for every z,y €
I, there exists some £ € [z, y] such that

fy) - fl&) = Vi) y - =)

Proposition A.23: (Second Order Expansions) Let f: % — R
be twice continuously differentiable over an open sphere S centered at
a vector z.

(a) For all y such that x+y € S,
f@+y) = f@) +y Vi@ + v (Jo (J V2@ +rydr) d)y.
(b) For all y such that z +y € 5, there exists an a € [0, 1] such that
f(z+y) = f(2) +y'VI(@) + 59 V2 (x + ay)y.

(c) For all y such that ¢ + y € S there holds

f@+y) = f(2) +y'V(z) + 30 V2f @)y + o([ly][?)-

Proposition A.24: (Descent Lemma) Let f: ®" — R be contin-
uously differentiable, and let  and y be two vectors in £*. Suppose

that
IVf(z+ty) - Vi)l < Lllyll, Vie[o,1],

where L is some scalar. Then

Pl +3) < 1) +yViE) + Sl




o - a

Proof: Let ¢ be a scalar parameter and let i
' 9(t) = f(z + ty). The cha
rule yields (dg/dt)(t) = v’V f(z + ty). Now ! "

S+ 0 =10 =90 00 = [ Loae= [*yvsio
< ' 'V ' O
_/0 y f(:r)dt+l/0 v(Vi+ty) - Vf(z)) at
1 1
< / YV () dt + / Iyl IV £z + ty) — V f(2) |t
<yVF@) + |y / Lty dt
= yVIE@) + LIyl

Q.E.D.

Proposition A.25: (Implicit Function Theorem) Let f: Rn+m
™ be a function of z € R and y € R™ such that:

(1) f(=.7) =0.

(2) fis c.:ontinuous, and has a continuous and nonsingular gradient
matrix Vy f(z,y) in an open set containing (Z,7).

Then there exist open sets Sz R and Sy C R™ containing T and
Y, respectively, and a continuous function ¢ : Sz — Sy such that
y: ¢(T) and f (a:, ¢(x)) = 0 for all z € Sz. The function ¢ is unique
in the sense that if z € S5, y € Sy, and f(z,y) = 0, then y = &(z).
Furthermore, if for some p > 0, [ is p times continuously differentiable
the same is true for ¢, and we have

Vo(z) = -V f(z,6(2)) (Vo f(z,6(2)) ', VYaels

As a final word of caution to the reader, let us mention that one can
easily get confused with gradient notation and its use in various formulas
such as for example the order of multiplication of various gradients in thej
chaig rule and the implicit function theorem. Perhaps the safest guideline
to minimize errors is to remember our conventions:

(a) A vector is viewed as a column vector (an n x 1 matrix).

(b) The gradient V£ of a scalar function [ R? — R is also viewed as a
column vector.

R e e s :
.

(c) The gradient matrix Vf of a vector function f : R" — R™ with
components fi,..., fm is the n x m matrix whose columns are the

(column) vectors V fi,...,Vfm.

With these rules in mind one can use “dimension matching” as an effective
guide to writing correct formulas quickly.

A.6 CONTRACTION MAPPINGS

Many iterative algorithms can be written as
J:"“:g(a:k), k=0,1,...,
where g is a mapping from a subset X of R” into itself and has the property

lg(z) =gl <vllz—yl, VzyeX (A4)

Here || - || is some norm, and 7 is a scalar with 0 < -y < 1. Such a mapping
is called a contraction mapping, or simply a contraction. The scalar v
is called the contraction modulus of g. Note that a mapping ¢ may be a
contraction for some choice of the norm || - || and fail to be a contraction
under a different choice of norm.

Let there be given a mapping g : X — X. Any vector z* € X satis-
fying g(z*) = z* is called a fized point of g and the iteration zk+1 = g(zk)
is an important algorithm for finding such a fixed point. The following is
the central result regarding contraction mappings.

Proposition A.26: (Contraction Mapping Theorem) Suppese
that g : X — X is a contraction with modulus v € [0,1) and that X
is a closed subset of R™. Then:

(a) (Ezistence and Uniqueness of Fized Point) The mapping g has
a unique fixed point z* € X.

(b) (Convergence) For every initial vector 0 € X, the sequence {z*}
generated by zk+1 = g(z*) converges to z*. In particular,

|zF — z*|| < k(|20 — 2=, Y k>0

£

Proof: (a) Fix some 2 € X and consider the sequence {z*} generated by
zktl = g(zk). We have, from inequality (A.4),

okt — k|| < |z — k=L,




for all £ > 1, which implies

lz5+1 = zk|| < ykflzt — 20|, vk >o0.

It follows that for every k > 0 and m > 1, we have

m
[|wk+m — k|| < Z [|wh+i — ghti-1)|
i=1
< A/k(l +y 4+ 4 fym—l)Hxl _ .Z'OH
~k

<
= 1—~

[zt = 20].

Therefore, {z*} is a Cauchy sequence and must converge to a limit

z* (Prop. A.5). Furthermore, since X is closed, z* belongs to X. We have
forall k > 1,

lg(a*) = 2= < lg(z*) — a¥|| + [|ak - z*|| < ylla* — 2k=1]| + ||a* — |
and since z* converges to z*, we obtain g(z*) = z*. Therefore, the limit

z* of z* is a fixed point of g. It is a unique fixed point because if y* were
another fixed point, we would have

lz* = y*Il = llg(z*) = g(y)Il < Alle* - v,

which implies that z* = y*.
(b) We have

o =+ = [lg(a¥' 1) - gla)]| < Alle¥~1 - o],

for all k" > 1, so by applying this relation successively for k' = k, k-1,
--+,1, we obtain the desired result. Q.E.D.

} APPENDIX B:

Convex Analysis

Convexity is a central concept in nonlinear programming. In this appendix,
we collect definitions, notational conventions, and several results from the
theory of convex sets and functions. A classical and extensive reference
on convex analysis is Rockafellar’s book [Roc70]. Related and additional
material can be found in Stoer and Witzgall [StW70], Ekeland and Te-
man [EkT76], Rockafellar [Roc84], Hiriart-Urruty and Lemarechal [HiL93],
and Rockafellar and Wets [RoW97]. A discussion of generalized notions
of convexity, including quasiconvexity and pseudoconvexity, and their ap-
plications in optimization can be found in the books by Avriel [Avr76],
Bazaraa, Sherali, and Shetty [BSS93], Mangasarian [Man69], and the ref-
erences quoted therein.

CONVEX SETS AND FUNCTIONS

The notions of a convex set and a convex function are defined below and
are illustrated in Figs. B.1 and B.2, respectively.

Definition B.1: Let C be a subset of ®*. We say that C is convez
if

ar+(1—a)y €C, Vz,yeC, Yacl0]l] (B.1)
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ax+(1-a)y, O<a<1

Convex Sets Nonconvex Sets

Figure B.1. Nlustration of the definition of a convex set. For convexity, linear
interpolation between two points in the set must yield a point within the set.

Definition B.2: Let C be a convex subset of ®7. A function f:Cw—
R is called convez if

flaz+(1- a)y) < af(x) + (1 - a)f(y), Vz,ye C, Vae|0,1].

_ (B.2)
The function f is called concave if —f is convex. The function fis
called strictly conves if the above inequality is strict for all r,y € C
with z # y, and all o € (0,1). For a function f : Rn — R, we also say
that f is convex over the conver set C if Eq. (B.2) holds.

. The following proposition provides some means for verifying convexity
of a set.

Proposition B.1:

(a) For any collection {C; | i € I} of convex sets, the set intersection
NierC; is convex.

(b) The vector sum {z1 + 2 | 21 € C, 22 € Ca} of two convex sets
C1 and C; is convex.

af(x) + (1 - a)f(y)

f(z)

O3] S,
[5-3 [PSY

Figure B.2. Illustration of the definition of a convex function. The linear inter-
polation af(z) + (1 — a)f(y) overestimates the function value f(azx + (1 — a)y).
Note that the domain of the function must be a convex set.

(c) The image of a convex set under a linear transformation is con-
Vex.

{d) If C is a convex set and f : C — R is a convex function, the level
sets {zx € C | f(z) < a} and {z € C | f(z) < a} are convex for
all scalars a.

Proof: The proof is straightforward using the definitions (B.1) and (B.2).
For example, to prove part (a), we take two points z and y from N;erCs,
and we use the convexity of C; to argue that the line segment connecting
z and y belongs to all the sets C;, and hence, to their intersection. The
proofs of parts (b)-(d) are similar and are left as exercises for the reader.
Q.E.D.

We occasionally deal with convex functions that can take the value of
infinity. A function f : C' — (—o0,00], where C is a convex subset of R",
is also called convex if condition (B.2) holds. (Here the rules of arithmetic
are extended to include 0o+ co =00, 0- 00 =0, and @ - 0o = 00 if @ > 0.)
The effective domain of f is the convex set

dom(f) = {z € C| f(z) < x}.

By restricting the definition of a convex function to its effective domain we
can avoid calculations with oo, and we will often do this. However, in some
analyses it is more economical to use convex functions that can take the
value of infinity.
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The epigraph of a function f : C +— (—oc0, 0], where C' is a convex
subset of R, is the subset of R2+1 given by

epi(f) = {(z,w) |z € C, we R, f(z) <w}.

It can be seen that f is convex if and only if epi(f) is a convex set. This is
a useful property, since it allows us to translate results about convex sets
into results about convex functions. Another useful property, obtained
by repeated application of inequality (B.2), is that if z1,...,2m € C,

a1, 0m >0,and 30 a; =1, then
m m
f (Z aizi) < Zaif(xi). (B.3)
i=1 i=1

This is a special case of Jensen’s inequality and can be used to prove a
number of interesting inequalities in applied mathematics and probability
theory.

The following proposition provides some means for recognizing convex
functions.

Proposition B.2:
(a) A linear function is convex.
(b) Any vector norm is convex.

(c) The weighted sum of convex functions, with positive weights, is
convex.

(d) If I is an index set, C C " is a convex set, and f; : C — R
is convex for each ¢ € I, then the function A : C — (—00,00]
defined by

h(z) = sup fi(z)

is also convex,

Proof: Parts (a) and (c) are immediate consequences of the definition of
convexity.

Let || - || be a vector norm. For any z,y € " and any « € [0,1], we
have

ez + (1 = a)y| < [lez| + (1 - o)yl = allz] + (1 - a)lyl,

which proves part (b).
For part (d), let us fix some z,y € C, a € [0,1], and let z = oz +
(1 - a)y. For every i € I, we have

fi(z) < afi(z) + (1 — ) fi(y) < ah(z) + (1 - a)h(y).

Taking the supremum over all i € I, we conclude that h(z) < ah{z)+ (1 -
a)h(y), so h is convex. Q.E.D.

Characterizations of Differentiable Convex Functions

For differentiable functions, there is an alternative characterization of con-
vexity, given in the following proposition and illustrated in Fig. B.3.

Proposition B.3: Let C' C R be a convex set and let f: R*— R
be differentiable over C.

(a) The function f is convex over C if and only if

f(z) > f(x)+ (z — 2)V f(x), Vaz,2eC. (B.4)

(b) If the inequality (B.4) is strict whenever x £ z, then f is strictly
convex over C.

Proof: (a) Suppose that f is convex. Let z € C and z € C. By the
convexity of C, we obtain z+a(z—x) € C for every € [0, 1]. Furthermore,

I CRR Chtk)) d IO/ N Y0 (B.5)

a0 &

Using the convexity of f, we have
f(x—»—a(z—w))Saf(z)—f—(l—a)f(w), vV ael0,1],
from which

flotole=D) =J@ _ ) f@), vacll

«a

Taking the limit as « | 0 and using Eq. (B.5), we obtain Eq. (B.4).

For the proof of the converse, suppose that inequality (B.4) is true.
We fix some z,y € C and some o € [0,1]. Let z = azx + (1 — aJy. Using
inequality (B.4) twice, we obtain

J(@) > f(z) +(z - 2)'V[(z),
fy) = f(2) + (y = 2)'Vf(2).

We multiply the first inequality by «, the second by (1 — ), and add them
to obtain

af(z)+ (1 —a)f(y) > f(2) + (az + (1 — &)y — 2) V(2) = f(2),
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f(2) + (z- X)'V(X)
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Figure B.3. Characterization of convexity in terms of first derivatives. The
condition f(z) > f(z) + (z — )’V f(z) states that a linear approximation, based
on the first order Taylor series expansion, underestimates a convex function.

which proves that f is convex.

(b) The proof for the strictly convex case is almost identical to the proof of
the corresponding statement of part (a) and is left for the reader. Q.E.D.

. For twice differentiable convex functions, there is another characteri-
zation of convexity as shown by the following proposition.

Proposition B.4: Let C C R" be a convex set, let f : R? — R be

twice continuously differentiable over C, and let @ be a real symmetric
n X n matrix.

(a) If V2 f(z) is positive semidefinite for all z € C, then f is convex
over C.

(b) If V2f(x) is positive definite for every x € C, then f is strictly
convex over C.

(¢) f C =R» and f is convex, then V2f(z) is positive semidefinite
forall z € C.

(d) The 'qua.dratic function f(z) = z’'Qz, where @ is a symmetric
matrix, is cenvex if and only if @ is positive semidefinite. Fur-
thermore, f is strictly convex if and only if @ is positive definite.

Proof: (a) By Prop. A.23(b) of Appendix A, for all z,y € C we have
W) =f@) + (y—2)V(@)+ 30y —2)V2f(z +aly —2))(y - z)

for some a € [0,1]. Therefore, using the positive semidefiniteness of V2§
we obtain ,

fly) > f(z)+ (y — )V f(x), Y z,y € C.

From Prop. B.3(a), we conclude that f is convex.

(b) Similar to the proof of part (a), we have f(y) > f(z) + (v — z)'V f(x)
for all ¢,y € C with = # ¥, and the result follows from Prop. B.3(b).

(c) Suppose that f : ®n — R is convex and suppose, to derive a con-
tradiction, that there exist some r € R~ and some z € R" such that
2/V2f(z)z < 0. Using the continuity of V2f, we see that we can choose
the magnitude of z to be small enough so that 2/V2f(x + az)z <0 for ev-
ery € [0,1]. Then, using again Prop. A.23(b) of Appendix A, we obtain
flz +2) < f(x)+2'Vf(z), which, in view of Prop. B.3(a), contradicts the
convexity of f.

(d) An easy calculation shows that Vv2f(z) = 2Q for all z € R". Hence,
from parts (a) and (c), we obtain that f is convex if and only if @ is positive
semidefinite.

If Q is positive definite, then strict convexity of f follows from part
(b). For the converse, suppose that f is strictly convex. Then part (c)
implies that @ is positive semidefinite and it remains to show that @ is
actually positive definite. In view of Prop. A.20(b) of Appendix A, it
suffices to show that zero is not an eigenvalue of Q. Suppose the contrary.
Then there exists some z # 0 such that Qz = 0. It follows that

(@) + f(~=z)) = 0= f(0),
which contradicts the strict convexity of f. Q.E.D.

The conclusion of Prop. B.4(c) also holds if C is assumed to have
nonempty interior instead of being equal to R; see Exercise B.1.2. The
following proposition considers a strengthened form of strict convexity char-
acterized by the following equation:

(Vf(z) - ViW) (@-y) 2 ale -yl Vz,yeR (B.6)

Convex functions with this property are called strongly convezr.

Proposition B.5: (Strong Convexity) Let f : R — R be con-
tinuously differentiable and let o be a positive scalar. If f is strongly
convex then f is strictly convex. Furthermore, if f is twice contin-
uously differentiable, then strong convexity of f is equivalent to the
positive semidefiniteness of V2f (z) — al for every z € R, where I is
the identity matrix,

Proof: Fix some z,y € ®R" such that = # ¥, and define the function
h:R— R by h(t) = f(z+ty —z)). Consider some t,t" € R such that
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¢t <t'. Using the chain rule and Eq. (B.6), we have
dh dh
iy - 28 -
(dt ®) dt (t)> =)

= (Vf(av-#t’(yfx)) — Vf(er t(y ~z)))l(y —z)(t' —t)

2ot — 1)z —y|2 > 0.

Thus, dh/dt is strictly increasing and for any ¢t € (0,1), we have

h(t)—h(0) 1 [tdh ! —

Equivalently, th(1) + (1 — t)h(0) > h(t). The definition of A yields tf(y) +

(1 - t)f(z) > f(ty +(1- t)x). Since this inequality has been prove(i for

arbitrary ¢t € (0,1) and = # y, we conclude that f is strictly convex.
Suppose now that f is twice continuously differentiable and Eq. (B.6)

htc))lds. Let ¢ be a scalar. We use Prop. A.23(b) of Appendix A twice to
obtain

Fa+ew) = F@) + Vi) + Sy ves + ey,
and
1@) = fo+ ) = ey V(e + ) + Sy vesa + sy,

for some ¢ and s belonging to [0,1]. Adding these two equations and using
Eq. (B.6), we obtain

%y’(Vz f(@tscy)+V2f (z+icy))y = (V(z+ey) -V (@) (cy) > ac|y|2.

We divide both sides by ¢2 and then take the limit as ¢ — 0 to conclude
that y'V2f(x)y > o y|2. Since this inequality is valid for every y € R~ it
follows that V2 f(z) — ol is positive semidefinite. ’

For the converse, assume that V2f (z) — al is positive semidefinite
for all z € ®". Consider the function g : R — R defined by

96 =Vf(tz+ (1 -t)y) (z —y).
Using the mean value theorem (Prop. A.22 in Appendix A), we have

o )2 40 0 = ] o

d
&0 =E -0Vt + (1 - )z - ) > ale -yl

where the last inequality is a consequence of the positive semidefiniteness
of V2f(tz + (1 - t)y) — al. Q.E.D.

Convex and Affine Hulls

Let X be a subset of R. A convezr combination of elements of X, is a vector
of the form Y " | osxi, where z1,...,Zm belong to X and oy, ..., am are
scalars such that

a; >0, i=1,...,m, ZW=L

The convezr hull of X, denoted conv(X), is the set of all convex combina-
tions of elements of X. In particular, if X consists of a finite number of
vectors x1, ..., Zm, its convex hull is

m T
conv({wl,...,xm}) - {Zaimi a;>20,i=1,...,m, Zai - 1}.
i=1

i=1

1t 1s straightforward to verify that conv(X) is a convex set, and using this,
to assert that conv(X) is the intersection of all convex sets containing X.

We recall that a linear manifold M is a set of the form z + 5 = {z |
z—x € S}, where S is a subspace, called the subspace parallel to M. If S is
a subset of %", the affine hull of S, denoted aff(.9), is the intersection of all
linear manifolds containing S. Note that aff(S) is itself a linear manifold
and that it contains conv(S). It can be seen that the affine hull of S and
the affine hull of conv(S) coincide.

The following is a fundamental characterization of convex sets.

Proposition B.6: (Caratheodory’s Theorem) Let X be a subset
of ®~. Every element of conv(X) can be represented as a convex
combination of no more than n + 1 elements of X.

Proof: Let z € conv(X). Then, we can represent = as .-, coa; for some
vectors z; € X and scalars a; > 0 with > . a; = 1. Let us assume that
m is the minimal number of vectors for which such a representation of x is
possible; in particular, this implies that a; > 0 for all 7. Suppose, in order
to arrive at a contradiction, that m > n + 1, and let S be the subspace
parallel to aff(X). The m —1 vectors 2 —1,...,%Zm — 21 belong to S, and
since m — 1 > n, they must be linearly dependent. Therefore, there exist
scalars Az, ..., Am at least one of which is positive, such that

iAi(.'L‘i - 1‘1) =0.
=2
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Letting ps = Ai fori=2,...,m and py = — 37", \;, we see that

m m
Zuﬂ?i =0, Z,U«i =0,
i=1 =1

while at least one of the scalars puo, ..., im is positive. Define
Q= Oy — Y, i=1,...,m,

where ¥ > 0 is the largest v such that a; —yp; > 0 for all . Then, since
S iz = 0, we see that z is also represented as > .- @zi. Further-
more, in view of the fact > 7*, 4; = 0 and the choice of 7, the coefficients
@; are nonnegative, sum to one, and at least one of them is zero. Thus, z
can be represented as a convex combination of fewer that m vectors of X,
contradicting our earlier assumption. Q.E.D.

Closure and Continuity Properties

We now explore some generic topological properties of convex sets and
functions.

Let C be a convex subset of . We say that x is a relative interior
point of C, if x € C and there exists a neighborhood N of z such that
Nnaff(C) C C, that is, if = is an interior point of C relative to aff(C). The
relative interior of C, denoted ri(C), is the set of all relative interior points
of C. For example, if C is a line segment connecting two distinct points in
the plane, then ri(C') consists of all points of C' except for the end points.

Proposition B.7:

(a) (Nonemptiness of Relative Interior) If C is a nonempty convex
set, ri(C) is nonempty and has the same affine hull as C.

(b) (Line Segment Principle) If C is a convex set, z € ri(C) and
Z € C, then all points on the line segment connecting x and T,
except possibly Z, belong to ri(C), i.e., az + (1 — a)Z € ri(C) for
all o € (0, 1].

Proof: (a) By using a transformation argument if necessary, we assume
without loss of generality that 0 € C. Then, the affine hull of C, aff(C),
is a subspace with dimension denoted by m. If rn = 0, then C and aff(C)
consist of a single point, which satisfies the definition of a relative interior
point. If m > 0, we can find m linearly independent vectors z1,...,zm
from C; otherwise there would exist a set of r < m linearly independent

vectors from C, whose span contains C, contradicting the fact that the
dimension of aff(C) is m. Thus x1,...,%m form a basis for the subspace

aff(C). It can be seen that the set

S={x‘x:2ami,2ai<1, ai>0,i=1,...,m}
i=1 i=1

is open relative to aff(C); that is, if z € S, there exists an open s?t N
such that = € Ny and N, Naff(C) ¢ S. [To see this, note that S is the
image of the open subset of ™

{(al,...,amw Zai<1,ai>0,z’:1,...,m}

i=1

under the invertible linear transformation from ®™ onto aff(C) t‘hat maps
(a1,-..,am) into 37", i3 openness of sets is preserved jby invertible
linear transformations.] Since S C C, it follows that all points of S are
relative interior points of C.

(b) See Fig. B.4. Q.E.D.

=X+ (1-0)X

Figure B.4. Proof of the line segment principle. Since z € ri(C), there exists a
sphere § = {z | ||z — z|| < €} such that SN aff(C) c C. For all a € (0,1], let
Zo =az+ (1 — )T and let Sa = {2 | ||z - Zol| < ae€}. It can l{)e seen that each
point of Se N aff(C) is a convex combination of T and some point of § N aff(C).
Therefore, S« N aff(C) C C, implying that T« € ri(C).

The closure of a set X C ®7, denoted cl(X), is the set of all limit
points of sequences from X. It is not generally true that the closedness of
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convex sets is preserved by taking vector sums, applying linear transforma-
tions, or forming convex hulls (for examples, see the subsequent Fig. B.8).
We have, however, the following:

The following result will also be very useful to us.

Proposition B.8:

(a) The closure cl(C) and the relative interior ri(C) of a convex set
€ are convex sets.

(b) The vector sum of two closed convex sets at least one of which
is compact, is a closed convex set.

(¢) The image of a convex and compact set under a linear transfor-
mation is a convex and compact set.

(d) The convex hull of a compact set is compact.

Proposition B.9:

(a) If f : R» — R is convex, then it is continuous. More generally, if
C ¢ R~ is convex and f : C — R is convex, then f is continuous
in the relative interior of C.

(b) Let X* be the set of minimizing points of a convex function
f: ®" — R over a closed convex set X, and assume that X* is
nonempty and bounded. Then the level set

L,={zeX| f(z) <a}

is compact for each scalar a.

Proof: (a) Let Sc = {z+2z | z € C, ||z — z|| < €¢}. Then cl(C) =
Ne>08e, and since each set Se can be seen to be convex, the same is true

of cl(C). The convexity of ri(C) follows from the line segment principle
[Prop. B.7(b)].

(b) Let Cy and C- be closed convex sets and suppose that C; is compact.
Their vector sum C = {z1 + 22 | z1 € C1, z2 € Ca} is convex by Prop.
B.1(b). To show that C is also closed, consider a convergent sequence
{z¥ + 25} C C with {z¥} C C; and {z§} C C2. Then {2%} is bounded,
since Cy is compact, and since {z¥ + =5} converges, it follows that {z¥}
is also bounded. Thus, {(z¥,2%)} is bounded, and {(z¥, %)} has a limit
point (£1,Z2) with Z1 € C; and &3 € Cy, since C; and C» are closed. The
vector &1 + &2, which is the limit of {z¥ + 2§}, must therefore belong to
C, proving that C is closed.

(c) Let C be a convex and compact set, A be a matrix, and {Azx} be a
sequence with {zx} C C. Then, {zx} has a convergent subsequence {zx}x
and the subsequence {Axy}k is also convergent. Therefore, the image of
C under A is compact. It is also convex by Prop. B.1(c).
(d) Let X be a compact subset of ®72. By Caratheodory’s theorem (Prop.
B.6), a sequence in conv(X) can be expressed as {27:11 afzf}, where for
all k and 4, of > 0, 2 € X, and Y1} o = 1. Since the sequence

{(of, .ok o, )}
belongs to a compact set, it has a limit point {(a1 ooy Ong1, L1y oo ,xn+1)}
such that Z?:ll o; =1, and for all 4, o; > 0, and z; € X. Thus, the vector
Z?:ll o;x;, which belongs to conv(X), is a limit point of the sequence
{Z?:ll afxf}, showing that conv(X) is compact. Q.E.D.

Proof: (a) Restricting attention to the affine hull of C and using a trans-
formation argument if necessary, we assume without loss of generality, that
the origin is an interior point of C' and that the unit cube S = {z | |zlloo <
1} is contained in C. Let e;, i =1,...,2%, be the corners of S, that is, each
e; is a vector whose entries belong to {—1,1}. Itnis not difficult to see that
any = € S can be expressed in the form z = Z?=1 aie;, where each a; is a
nonnegative scalar and E?Zl a; = 1. Let A = max; f(e;). From Jensen’s
inequality [Eq. (B.3)], it follows that f(x) < A for every z € S.

Let {21} be a sequence in R” that converges to zero. For the purpose
of proving continuity at zero, we can assume that zy € S for all k. Using
the definition of a convex function [Eq. (B.2)], we have

Fn) < (1= Nzklloo) £(O) + lonllonf ( . ) .

[EZRIES
Letting k tend to infinity, [|zk|lcc goes to zero and we obtain

limsup f(zx) < £(0) + Alilrcnsup Iz&ljoo = f(0)-

k—o0

Inequality (B.2) also implies that

Zilloo +17 \lzklloo ) llZklloo +1

and letting % tend to infinity, we obtain f(0) < liminfx—co f(zx). Thus,
limg—oo f(zx) = f(0) and f is continuous at zero.

(b) If X is bounded, then using also the continuity of f, which was prove.d
in part (a), it follows that L, is compact. We thus assume that X is




ugbounded. Fix some z* € X* and let b € R be such that z ¢ X+ for all z
with ||z — z*|| = b (there exists such a b because X* is bounded). Denote

Sp={z € X |[lz — z*|| = b}, fzzié{g f(z).

Since X is unbounded, closed, and convex, it is seen that Sy is nonempty
and compact, and since f is continuous, it follows from Weierstrass’ theo-
rem (Prop. A.8 in Appendix A) that the infimum above is attained at some
point of S, and we have

F> s,
For each z € X with ||z — z*| > b, let
A b . A
a—m, T =(1—-a)z* +ax.

By convexity of X, we have # € X, and by convexity of f, we have
(1 =a)f(z*) + af(z) > f(2).
Since [|£ — 2*| = @||z — z*|| = b, we also have & € Sy, so that
f(@) = f.

Combining these two relations and using the definition of &, we obtain

f(2) > flav) + L@ = 1)

= fla)+ L=

S|~

ll& — 2.

Since f > f(z*), we see that if z € X and f(z) < a, then
lz - z*|| < max {b, M .
f=fa*)

Hence the level set L, is bounded and it is also closed by continuity of f.
Q.E.D.

Another way to phrase Prop. B.9(b) is that if one level set of a convex
function f: R™ — R is compact, all level sets are compact.

Local and Global Minima

Let X C ®" and let f: X — R be a function. A vector z € X is called
a local minimum of f if there exists some ¢ > 0 such that f(z) < f(y)
for every y € X satisfying ||z — y|| < €, where || - || is some vector norm.
A vector © € X is called a global minimum of f if f(z) < f(y) for every
y € X. A local or global maximum is defined similarly (compare also with
Section 1.1).

Under convexity assumptions, the distinction between local and global
minima is unnecessary as shown by the following proposition.

Proposition B.10: If C C " is a convexset and f: C— R is a
convex function, then a local minimum of f is also a global minimum.
If in addition f is strictly convex, then there exists at most one global
minimum of f.

Proof: Suppose that z is a local minimum of f but not a global minimum.
Then there exists some y # x such that f(y) < f(z). Using inequality
(B.2), we conclude that f(az + (1 — a)y) < f(z) for every a € [0,1). This
contradicts the assumption that z is a local minimum.

Suppose that f is strictly convex, and two distinct global minima x
and y exist. Then their average (z + y)/2 must belong to C, since C is
convex, and the value of f must be smaller at the average than at z and y
by the strict convexity of f. Since z and y are global minima, we obtain a
contradiction. Q.E.D.

The Projection Theorem

We close this section with a basic result of analysis and optimization, which
will also be used later in this appendix.

Proposition B.11: (Projection Theorem) Let C be a closed con-
vex set and let || - || be the Euclidean norm.

(a) For every z € R®, there exists a unique vector z € C that mini-
mizes ||z — z|| over all z € C. This vector is called the projection
of x on C, and is denoted by [z]*, ie.,

+ = i —z|.
[a]*+ = argmip |1z — g




(b) Given some z € ", a vector z € C is equal to [z]* if and only if

(y—2)(x-2)<0, VyeC.

(c) The mapping f : R — C defined by f (z) = [z]* is continuous
and nonexpansive, i.e.,

21+ — Wt < llz—yll, Vaz,yeRn

Proof: (a) Fix z and let w be some element of C. Minimizing ||z — z|| over
all z € C is equivalent to minimizing the same function over all z € C such
that ||z — 2|| < [z —w]||, which is a compact set. Furthermore, the function
g defined by g(z) = ||z — |2 is continuous. Existence of a minimizing
vector follows by Weierstrass’ theorem (Prop. A.8 in Appendix A).

To prove uniqueness, notice that the square of the Euclidean norm
s a strictly convex function of its argument [Prop. B.4(d)]. Therefore, ¢
is strictly convex and it follows that its minimum is attained at a unique
point (Prop. B.10).

(b) For all y and z in C we have
ly=2l? = ly—zl?+lz—z|2~2(y = 2)!(z—2) > |e—z|2~2(y— 2}’ (2 —2).
Therefore, if z is such that (y — 2)/(z — 2) < 0 for all y € C, we have
ly —z)|? > ||z — 2|2 for all y € C, implying that z = [z]*+.

Conversely, let z = [z]+, consider any y € C, and for & > 0. define

Yo = ay + (1 — a)z. We have

12 = yal? = I(1 ~ a)(z — 2) + a(z - y)|2
=1 =-alle—z|2 + ez —y|2 +2(1 — a)a(z - 2)/(z — y).

Viewing ||z — y. |2 as a function of ¢, we have
9 2
5o Uz —val?}| _ = =2le =22 + 2@~ 2y(z - y) = ~2(y - 2Y(z - 2).
Therefore, if (y — 2)'(z — 2) > 0 for some y € C, then
0
= — a2
60({”1; ya“ }]azo <0
and for positive but small enough «, we obtain ||z — Ya|| < ||z — 2||. This

contradicts the fact z = [z]* and shows that (y — z)(z — z) < 0 for all
yeC.

(c) Let 2 and y be elements of ®". From part (b), we have (w — [z]+)(z —
[z]+) < 0 for all w € C. Since [y]+ € C, we obtain

(it = [2]*) (2 ~ [2]) < 0.
Similarly, ,

(lz}* = [W*) (v~ y)*) < 0.
Adding these two inequalities, we obtain

(Iw)* = [a}*) (2 — [=]* —y + [4)*) <0,
By rearranging and by using the Schwartz inequality, we have
o1+ = [+ ]1* < (Wl* = [21*) (v =) < W] = lal*|| - lly — I,

showing that [-]* is nonexpansive and a fortior: continuous. Q.E.D.

Figure B.5 illustrates the necessary and sufficient condition of part
(b) of the projection theorem.

Figure B.5. Illustration of the condition
satisfied by the projection {z]*. For each
vector y € C, the vectors z — [z]* and y —
[z]* form an angle larger than or equal to
90 degrees or, equivalently, (y — [z] 1) (x —
[z") < 0.

EXERCISES

B.1.1

Let g be a convex, monotonically nondecreasing function of a single variable [i.e.,
g9(y) < g(¥) for y < 7, and let f be a convex function defined on a convex set
C C R". Show that the function h defined by

h(z) = g(f(2))
!
is convex on C. Use this fact to show that the function h(z) = e°® 9%, where 8
is a positive scalar and @ is a positive semidefinite symmetric matrix, is convex
over R™.




B.1.2

Use the line segment principle and the method of proof of Prop. B.4(c) to show
that if C is a convex set with nonempty interior, and f : R — R is twice
continuously differentiable over C with V2 f(z) positive semidefinite for all z € C
then f is convex over C. '

B.1.3 (Arithmetic-Geometric Mean Inequality)

Show that i iti i ”
'k%a if @1,...,an are positive scalars with 3" «a; = 1, then for every set
of positive scalars 1, ..., Zn, we have
al ,,>x2 an
T Ty xRt S a1Tr + @2Z2 + 0 + QnTn,

wit.h equality if and only if 21 = z2 = --- = zn. Hint: Show that —Inz is a
strictly convex decreasing function on (0, 00).

B.14

Use the result of Exercise B.1.3 to verify Young’s inequality

P q
wy< =+ L,

14 q
where p > 0, ¢ > 0, 1/p+1/g =1,z > 0, and y > 0. Then, use Young’s

inequality to verify Holder’s inequality

n n 1/p - 1/q
lez—y-il§<leil”) <Zlyi|") :

i=1

B.1.5

Let f: "™ — R be a convex function. Consider the function F : " — R
given by

F(z) = inf
(z) = inf f(z,u),
where U be any nonempty and convex subset of R™ such that F(z) > —oo for

all z € R™. Show that F is convex. Hint: There cannot exist « € [0, 1], z1, z2,
u1 € U, uz € U such that F(azl +(1- a)wz) > of(z,ur) + (1 — a) f(z2,u2).

B.1.6

Let f: R™ — RN be a differentiable function. Show that f is convex over a convex
set C if and only if

!
(VI@) - VIiW) -y >0,
Hint: The condition above says that the function f, restricted on the line segment

connecting x and y, has monotonically nondecreasing gradient; see also the proof
of Prop. B.5.

Vaz,yel.

B.1.7 (Caratheodory’s Theorem for Cones)

Let X be the cone generated by a subset of vectors S C ", i.e., the set of vectors

z of the form
T = E a;Tq,
1€l

where I is a finite index set, and for all i € I, z; € S and a; is a nonnegative
scalar. Show that any nonzero vector from X can be represented as a positive
combination of no more than n vectors from S. Furthermore, these vectors can
be chosen to be linearly independent. Hint: Let x be a nonzero vector from X,
and let m be the smallest integer such that = has the form 21":1 a;x;, where
a;>0andz; € Sforalli=1,...,m. If the vectors z; were linearly dependent,
there would exist scalars Ai, ..., Am, at least one of which is positive, and such
that 5.7, Miz; = 0. Consider the linear combination Y .- (ai — JA:)T., where
7 is the largest 7 such that a; — yA: > 0 for all 4, to arrive at a contradiction.

B.1.8 (Properties of Relative Interiors) [Roc70]

(a) If C is a convex set in R”™, then:
(i) cl(C) = el(ri(C)).
(ii) ri(C) = ri(cl(C)).
(iii) ri(A-C) = A -ri(C) for all m X' n matrices A.
(b) If Ci and C2 are convex sets in }™, then:
(i) Ti(C1 4+ C3) =ri(Cy) +1i(C2).

(ii) ri(C1NCa) = 1i(C1)Nri(Cz), provided the sets ri(C1) and ri(Ch) have
a nonempty intersection.

~—

{c) If Cy and C» are convex subsets of ®* and R™, respectively, then

I‘i(C] X Cz) = ri(Cl) X I‘i(Cz).

SEPARATING HYPERPLANES

A hyperplane is a set of the form {z | @’z = b}, where a € R, a # 0,
and b € R, as illustrated in Fig. B.6. An equivalent definition is that a
hyperplane in " is a linear manifold of dimension n — 1. The vector a
called the normal vector of the hyperplane (it is orthogonal to the difference
z — y of any two vectors = and ¥y of the hyperplane). The two sets
{z|a'z > b}, {z|a'z < b},

are called the halfspaces associated with the hyperplane (also referred to as
the positive and negative halfspaces, respectively). We have the following




Positive Halfspace
{xlax 2z b}

Negative Halfspace
{xlax<h}
Hyperplane {x|a'x=b}

e

(0)

Figure B.6. (a) A hyperplane {z | ¢’z = b} divides the space in two halfspaces as
illustrated. (b) Geometric interpretation of the supporting hyperplane theorem.
(c) Geometric interpretation of the separating hyperplane theorem.

result, which is also illustrated in Fig. B.6. The proof is based on the
projection theorem and is illustrated in Fig. B.7.

Proposition B.12: (Supporting Hyperplane Theorem) If C' C
R~ is a convex set and  is a point that does not belong to the interior
of C, there exists a vector a # 0 such that

a'z > d'T, Vazel. (B.7)

Proof: Denote by C the closure of C, which is a convex set by Prop. B.8.
Let {z\} be a sequence of vectors not belonging to C, which converges to
T; such a sequence exists because T does not belong to the interior of C.
If Z is the projection of x; on C, we have by part (b) of the projection
theorem (Prop. B.11)

(&g — zk) (x — &) > 0, Vzel.

Figure B.7. Illustration of the proof of the supporting hyperplane theorem for
the case where the vector Z belongs to the closure of C. We choose a sequence
{xr} of vectors not belonging to the closure of C which converges to z, and we
project x on the closure of C. We then consider, for each k, the hyperplane that
is orthogonal to the line segment connecting xx and its projection, and passes
through z;. These hyperplanes “converge” to a hyperplane that supports C at T.

Hence we obtain for all k and z € C,
(Be—zk) > (Er—zk) Tk = (@r—zk) (Er—2k)+(Er—2) Tk > (B —Tk) Tk-

We can write this inequality as

apT > ajr, Veel, k=0,1,..., (B.8)
where
2y — xx
ap = ———,
12k — 2l

We have |jag|| = 1 for all k, and hence the sequence {as} has a subsequence
that converges to a nonzero limit a. By considering Eq. (B.8) for all a
belonging to this subsequence and by taking the limit as & — oo, we obtain
Eq. (B.7). Q.E.D.

Proposition B.13: (Separating Hyperplane Theorem) If Cy
and C; are two nonempty and disjoint convex subsets of ™, there
exists a hyperplane that separates them, i.e., a vector a # 0 such that

a'r1 < a/zy, Ve C, x2eCha. (B.9)




Proof: Consider the convex set

Cz{x|x:$2‘"$1,$1€C1,$2602}.

Since C} and Co are disjoint, the origin does not belong to C, so by the
supporting hyperplane theorem there exists a vector a # 0 such’ that

0<az, YzeC,

which is equivalent to Eq. (B.9). Q.E.D.

Proposition B.14: (Strict Separation Theorem) If C; and Cs
are ‘two nonerpty and disjoint convex sets such that C; is closed and
.02 is compact, there exists a hyperplane that strictly separates them
i.e., a vector a # 0 and a scalar b such that ’

a'zy <b<a're, vV z1 € Ch, z2 € Ca. (B.10)

Proof: Consider the problem

minimize |z1 — 22|

subject to z; € C1, z2 € Co. (B.11)

The set
CZ{Il -z | a1 601,322602}

is convex a.nd ‘closed by Prop. B.8(b). Since problem (B.11) is the prob-
lem of projecting the origin on C, we conclude using Prop. B.11(a), that
problem (B.11) has at least one solution (Z,,Z2). Let 7

a=——— T

Lo
I
2O
SH
|
g\
8|

Then a ?é D Since T € C i) S C2 a/nd alld. isj
b H ) 3 C i
CZ are dlS oint. The

{z | ¢’z = b}
contains Z, and it can be seen from problem (B.11) that Z; is the projection

of T on C1, and T2 is the projection of Z on C: i
B.11(b), we have > (see Fig. B.8). By Prop.

(E—fl)’(xl —51) <0, VYV e(Ch

Cy={E1.82)1E1 S0} Cp={E152)1E1 >0.852>0, 54522 1}

C={x;- Xa1xy € Cy,x2€ Ca}
={1.E)18: <0}

SOULOUNNUOUONNANANNNNNNGYN,

@ (b}

Figure B.8. (a) Illustration of the construction of a strictly separating hyperplane
of two disjoint closed convex sets C; and C2 one of which is also bounded (cf.
Prop. B.14). (b) An example showing that if none of the two sets is compact,
there may not exist a strictly separating hyperplane. This is due to the fact that
the set C = {z1 —®2 | 21 € C1, 72 € O} is equal to {(§1,62) | &1 < 0} and
is not closed, even though Cy and C, are closed. This is also an example where
vector sum as well as linear transformation of closed convex sets does not preserve
closure.

or equivalently, since T — 71 = 4,
a'z1 < a'Ty = a'T + o/ (T1 —-7)=b—|all? <b, vz € Ch.

Thus, the left-hand side of Eq. (B.10) is proved. The right-hand side is
proved similarly. Q.E.D.

The preceding proposition may be used to provide a fundamental
characterization of closed convex sets.

Proposition B.15: Every closed convex subset of R” is the intersec-
tion of the halfspaces that contain it.

Proof: Let C be the set at issue. Clearly C is contained in the intersec-
tion of the halfspaces that contain C, so we focus on proving the reverse
inclusion. Let z ¢ C. Applying the strict separation theorem (Prop. B.14)
to the sets C and {z}, we see that there exists a halfspace containing C but
not containing z. Hence, if z ¢ C, then x cannot belong to the intersection
of the halfspaces containing C', proving the result. Q.E.D.




EXERCISES

B.2.1

Let C; and C2 be two nonempty, convex sets, which are at positive Euclidean
distance from each other, that is,

inf llz1 — z2]) > 0.
z1€C1,x2€Cy

Show that there exists a hyperplane that strictly separates them. Hint: Adapt
the proof of Prop. B.14.

CONES AND POLYHEDRAL CONVEXITY

We now develop some basic results regarding cones and also discuss the

geometry of polyhedral sets. A set C C R” is said to be a cone if ax € C

for all @ > 0 and z € C. We introduce three important types of cones.
Given a cone C, the cone given by

CLt={y|yz<0, VzeC}

is called the polar cone of C.
A cone C is said to be finitely generated, if it has the form

T
C= w‘w:Zujaj,ujZO,j=l,...,r y
j=1

where a1,...,a, are some vectors.
A cone C is said to be polyhedral, if it has the form

C={z]ajz<0,j=1,...,r},

where a1,...,a, are some vectors.

Figure B.9 illustrates the above definitions. It is straightforward to
show that the polar cone of any cone, as well as all finitely generated and
polyhedral cones are convex, by verifying the definition of convexity of Eq.
(B.1). Furthermore, polar and polyhedral cones are closed, since they are
intersections of closed halfspaces. Finitely generated cones are also closed

Figure B.9. Illustration of a cone
and its polar in ®2. Here, a; and
ag are given vectors, C = {z | z =
pray + poag, p1 > 0, puo > 0}, which
is a finitely generated cone, and C'+ =
{y | ¥'a1 €0, y'az < 0}, which is a
polyhedral cone.

as shown in part (b) of the following proposition, which also provides some
additional important results.

Proposition B.16:

(a) (Polar Cone Theorem) For any nonempty closed convex cone C,
we have (CL)L =C.

(b) Let a,...,ar be vectors of . Then the finitely generated cone
C = a:‘szujaj,ujZO,jzl,...,r (B.12)
j=1

is closed and its polar cone is the polyhedral cone given by

Ct={z|a'a; <0,5=1,...,7}. (B.13)

(c) (Minkowski - Weyl Theorem) A cone is polyhedral if and only if
it is finitely generated.

(d) (Farkas’ Lemma) Let x, e1,...,em, and as, ..., ar be vectors of
Rn. We have z’y < 0 for all vectors y € R such that

ye; =0, Vi=1,...,m, ya; <0, Vji=1,...,n

if and only if z can be expressed as

m r
T = Z Aiei + Zu;a;—,
7j=1

ie=]




&

where \; and u; are some scalars with p; > 0 for all 7.

Proof: (a) See Fig. B.10.

Figure B.10. Proof of the polar cone theorem. If z € C, then for all y € C*t, we
have z'y < 0, which implies that z € (C1)+. Hence, C C (C*)*. To prove the
reverse inclusion, take z € (C+)+, and let 2 be the unique projection of z on C,
as shown in the figure. Since C is closed, the projection exists by the projection
theorem (Prop. B.11), which also implies that

(z—2)(z—2)<0, VzeC.
By taking x = 0 and z = 2% in the preceding relation, it is seen that
(z—2)'2=0.

Combining the last two relations, we obtain (2 —2)'z < 0 for all z € C. Therefore,
(z — 2) € C*, and since 2z € (C1)*, we obtain (z — 2)'z < 0, which when added
to (z — 2)’2 = 0 yields ||z — 2||2 < 0. Therefore, z = # and z € C. It follows that
(cHt co.

(b) We first show that the polar cone of C has the desired form (B.13). If
y satisfies y’a; < 0 for all j, then y’z < 0 for all € C, so the set in the
right-hand side of Eq. (B.13) is a subset of C+. Conversely, if y € CL, that
is, if 4’2 < 0 for all z € C, then (since a; belong to C') we have y'a; < 0, for
all j. Thus, C1 is a subset of the set in the right-hand side of Eq. (B.13).

To show that C' is closed, it will suffice to show that C is polyhedral;
this will also prove half of the Minkowski-Weyl theorem [part (c)]. Our
proof, due to [Wet90], is constructive and uses induction on the number of

vectors r. We will also give an alternative proof, which is simpler than the
first but does not show simultaneously half of part (c).

To start the induction, we assume without loss of generality that
a; = 0. Then, for r = 1, we have C = {0}, which is polyhedral, since it

can be expressed as
(x| ufx <0, —ujx <0,i= 1,...,n}

where u; is the ith unit coordinate vector.
Assume that for some r > 2, the set

r—1

Cro1 = w‘w:Zujaj,ujZO

j=1
has a polyhedral representation
Py ={z|bjz<0,j= 1,...,m}.

Let .
ﬂ]:a;"bja .7:1)"'7m9

and define the index sets
J-={jlBi<0}, Jo={j|B=0} Jt={ilB >0}

Let also

bl‘kzb[—ﬁl-bk, vieJ+, ke J.

Br
We will show that the set

Cr = w\w=2ua‘aa‘,uj20
j=1
has the polyhedral representation
Pr={z|bz<0,j€J UJ, bz <0,leJ+ ke ),
thus completing the induction.
We have C, C P, because by construction, all the vectors ay,...,ar
satisfy the inequalities defining P,. To show the reverse inclusion, we fix a

vector € P, and we verify that there exists pr > 0 such that

z — prar € Proy,




which is equivalent to

7 S Hr S 6)
where
bl' "
’y=max{0,ma J—I}, 6:minbj—z
jeJ+ Bj jeJ= B
Since z € P,, we have
b,z
0< L]?CT Vked-, (B.14)
and also b;yk:v <Oforalll € J*, k€ J-, or equivalently
bz bz
ES 5 VieJt, ke J-. (B.15)

Equations (B.14) and (B.15) imply that v < §, thereby completing the
proof.

We now give an alternative proof that C is closed, which is based
again on induction on the number of vectors r. When r = 1, C is either
{0} (if @1 = 0) or a halfline, and is therefore closed. Suppose, for some
r > 1, all cones of the form

T
w’$=2ujaj,ug-20
j=1

are closed. Then, we will show that a cone of the form

T+1

Cri1=qz ‘ T=3 pjag, p; >0
Jj=1

is also closed. Without loss of generality, assume that llasll = 1 for all j.
There are two cases: (i) The vectors —aj, ..., —ar41 belong to Cr41, in
which case Ci; is the subspace spanned by ai,...,ar+1 and is therefore
closed, and (ii) The negative of one of the vectors, say —ar+1, does not
belong to Cr41. In this case, consider the cone

-
G = ivrl“:Zujaj, ni 20,
=1
which is closed by the induction hypothesis. Let

m = min al . zx.
w€Cr, fz|l=1 "1

Since, the set {x € Cr | ||z|| = 1} is nonempty and compact, the minimum
above is attained at some z* by Weierstrass’ theorem. We have, using the
Schwartz inequality,

m=a,;,2* 2 —|lar || - Jlzx]| = -1,
with equality if and only if z* = —a,41. It follows that
m > -1,

since otherwise we would have x* = —a,41, which violates the hypothesis
(=ar+1) ¢ Cr. Let {xx} be a convergent sequence in Cr+1. We will prove
that its limit belongs to C,. 11, thereby showing that C..1 is closed. Indeed,
for all k, we have xx = {xar41 + Yk, where & > 0 and yi € Cr. Using the
fact ||ar41|| = 1, we obtain

lzll2 = €2 + lull? + 2éral, yx
> 2+ |lywll® + 2mé ||y
= (& — llyl)? +2(1 + m)&ellykll.

Since {z} converges, & > 0, and 1 +m > 0, it follows that the sequences
{€x} and {yx} are bounded and hence, they have limit points denoted by
& and y, respectively. The limit of {zx} is

lim (Ekar+1 + yx) = €artr + v,
k—oo

which belongs to Cr1, since £ > 0 and y € Cr (by the closure hypothesis
on Cr). We conclude that Cr4) is closed, completing the proof.

(c) We have already shown in the proof of part (b) that a finitely gener-
ated cone is polyhedral. To show the reverse, we use parts (a) and (b) to
conclude that the polar of any polyhedral cone [cf. Eq. (B.13)] is finitely
generated [cf. Eq. (B.12)]. The finitely generated cone (B.12) has already
been shown to be polyhedral, so its polar, which is the “typical” polyhedral
cone (B.13), is finitely generated. This completes the proof.

(d) Define a;+; = e; and arym+i = —e;, @ = 1,...,m. The result to be
shown translates to
rzeC — x € P,
where
r+2m
C= I)I= > s, 200,
j=1

P={yly'a; <0,j=1,...,r+2m}.
Since by part (b), P = C1 and C is closed, we have by part (a), P+ =
(cL)* =C. Q.ED.
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Polyhedral Sets
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PZ{Ila;ﬂbej,jzl,...,T},

where a; are some vectors and b; are some scalars.

The following is a fundamental result, showing that a polyhedral set
can be represented as the sum of the convex hull of a finite set of points and
a finitely generated cone. The proof is based on an interesting construction

that can be used to translate results about polyhedral cones to results about
polyhedral sets.

Proposition B.17: A set P is polyhedral if and only if there ex-
ist a nonempty and finite set of vectors {v1,...,vm}, and a finitely
generated cone C such that

m m
P= a:|z=y+ijvj,y€C,Zuj=l,uj20,j=1,...,m
i=1 i=1 :

Proof: Assume that P is polyhedral. Then, it has the form
P={z|da<b,j=1,...,r}
;e)r +slome vectors a; and some scalars b;. Consider the polyhedral cone of
P={(z,w)|0< w, ajz <bjw,j=1,...,r}
and note that
P:{:13|(:1:,1)€I5}.

By the Minkowski — Weyl theorem [Prop. B.16 P is fini
By the Minkowsks [Prop. B.16(c)|, P is finitely generated,

R m m
P= (x,'l,U)‘Z:Zﬂjvj,wzzﬂjdj,ujzo,j:17...,m ,
i=1 i=1

for some vectors v; and scalars d;. Since w > 0 for all vectors (x,w) € P
we see that d; > 0 for all 5. Let ’ ,

Jt={jld; >0}, JO={jld; =0}

By replacing p; by pj/d; for all j € J+, we obtain the equivalent descrip-
tion

P= (x,’l.U)liE:ZﬂjUj,w: Z piy i =0,5=1,....m
j=1 jeJ+

Since P = {z | (z,1) € P}, we obtain

P = I\w= ZMWFZM% Zuj=1,uj20,j=1,~--,m

jeJ+ jeJo jeJt

Thus, P is the vector sum of the convex hull of the vectors vj, j € J™, plus
the finitely generated cone

{ZujvjlujZO,jGJO}-
4eJo

To prove that the vector sum of the convex hull of a finite set of
points with a finitely generated cone is a polyhedral set, we use a reverse
argument; we pass to a finitely generated cone description, we use the
Minkowski — Weyl theorem to assert that this cone is polyhedral, and we
finally construct a polyhedral set description. The details are left as an
exercise for the reader. Q.E.D.

EXTREME POINTS

A vector z is said to be an extreme point of a convex set C if = belongs
to C and there do not exist vectors y € C and z € C, with y # = and
2 # z, and a scalar o € (0,1) such that z = ay + (1 — @)z. An equivalent
definition is that z cannot be expressed as a convex combination of some
vectors of C, all of which are different from x.

An important fact that forms the basis for the simplex method of
linear programming, is that if a linear function f attains a minimum over
a polyhedral set C having at least one extreme point, then f attains a
minimum at some extreme point of C' (as well as possibly at some other
nonextreme points). We will prove this fact after considering the more
general case where f is concave and C is closed and convex. We first show
a preliminary result.
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Proposition B.18: Let C be a nonempty, closed, convex set in R,

(a) If H is a hyperplane that passes through a boundary point of C
and contains C in one of its halfspaces, then every extreme point
of T = C N H is also an extreme point of C.

(b) C has at least one extreme point if and only if it does not contain
a line, that is, a set L of the form L = {z + ad | @ € R} with
d#0.

Proof: (a) Let Z be an element of 7" which is not an extreme point of C.
Then we have T = ay + (1 — @)z for some « € (0, 1), and some y € C and
z€ C, withy # z and z # z. Since T € H, T is a boundary point of C,
and the halfspace containing C' is of the form {z | a’z > a/T}, where a # 0.
Then a’y > a’'T and a’z > o/T, which in view of T = ay + (1 — o)z, implies
that a'y = ¢/T and a’z = a’T. Therefore, y € T and z € T, showing that T
cannot be an extreme point of T

(b) Assume that C has an extreme point z and contains a line L = {T+ad |
a € R}, where d # 0. We will arrive at a contradiction. For each integer
n > 0, the vector

1 1 1
Ty = (1——>x+—(5+nd)=$+d+—(f—x)
n n n

lies in the line segment connecting x and T + nd, so it belongs to C. Since
C is closed, z + d = limy,— o & must also belong to C. Similarly, we show
that 2 — d must belong to C. Thus z — d, z, and z + d all belong to C,
contradicting the hypothesis that x is an extreme point.

Conversely, we use induction on the dimension of the space to show
that if C' does not contain a line, it must have an extreme point. This is
true in the real line R!, so assume it is true in ®7—1. If a nonempty, closed,
convex subset C of R contains no line, it must have some boundary point
T. Take any hyperplane H passing through Z and containing C in one of
its halfspaces. Then, since H is an (n — 1)-dimensional manifold, the set
C N H lies in an (n — 1)-dimensional space and contains no line, so by the
induction hypothesis, it must have an extreme point. By part (a), this
extreme point must also be an extreme point of C. Q.E.D.

We say that a set C C R™ is bounded from below if there exists a
vector b € R" such that z > b forall z € C.

Proposition B.19: Let C be a closed convex set which is bounded
from below and let f : C — R be a concave function. Then if f attains
a minimum over C, it attains a minimum at some extreme point of C.

Proof: We first show that f attains a minimum at some boundary point
of C. Let z* be a vector where f attains a minimum over C. If z* is a
boundary point we are done, so assume that z* is an interior point of C.

Let
L={z|z=2"+XM, AR}

be a line passing through «*, where d is a vector with strictly positive coor-
dinates. Then, using the boundedness from below, convexity, and closure
of C, we see that the set C N L contains a set of the form

{z* + M| M <A< Ao}
for some Ay > 0 and some A; < 0 for which the vector
T =z*+ Md

is a boundary point of C. If f(Z) > f(z*), we have by concavity of f,

)\2 . /\2 *
2_/\1f(3c)+ (1— /\Q_Al)f(x + A2d)

oo, e .
> s+ (1 AQ_M)M © ad).

It follows that f(z*) > f(z* + A2d). This contradicts the optimality of z*,
proving that f(Z) = f(z*).

We have shown that the minimum of f is attained at some boundary
point & of C. If Z is an extreme point of C, we are done. If it is nc_)t‘a‘n
extreme point, consider a hyperplane H passing through T and containing
C in one of its halfspaces. The intersection T1 = C'N H is closed, convex,
bounded from below, and lies in a linear manifold M) of dimension n — 1.
Furthermore, f attains its minimum over 71 at z. T hus, by the preceding
argument, it also attains its minimum at some boundary point z; of Ti.
If 1 is an extreme point of 7%, then by Prop. B.18, it is also an extreme
point of C and the result follows. If z1 is not an extreme point of 71, t}}en
we view M, as a space of dimension n —1 and we form 75, the intersection
of T with a hyperplane in M; that passes through z; and contains T1
in one of its halfspaces. This hyperplane will be of dimension n — 2. We
can continue this process for at most n times, when a set T,, consisting of
a single point is obtained. This point is an extreme point of T, and, by
repeated application of Prop. B.18, an extreme point of C. Q.E.D.

RS

As a corollary we have the following:




Proposition B.20: Let C be a closed convex set and let f:C — R
be a concave function. Assume that for some invertible n x n matrix
A and some b € R we have

Az > b, VYredl.

Then if f attains a minimum over C, it attains a minimum at some
extreme point of C.

Proof: Consider the transformation £ = A—1y and the problem of mini-
mizing
hy) = f(A-1y)

over Y = {y | A~y € C}. The function h is concave over the closed
convex set Y. Furthermore, y > b for al y € Y and hence Y is bounded
from below. By Prop. B.19, & attains a minimum at some extreme point
y* of Y. Then f attains its minimum over C at * = A-1y*, while 2* is an
extreme point of C, since it can be verified that invertible transformations
of sets map extreme points to extreme points. Q.E.D.

Extreme Points of Polyhedral Sets

We now consider a polyhedral set P and we characterize the set of its
extreme points (also called vertices). By Prop. B.17, P can be represented
as

P=C+P,

where C is a finitely generated cone C and P is the convex hull of some
vectors vi1, ..., Um:

m m

P = :v~x=Zujvj,Zﬂj=l, ;i >0,7=1,...,m
Jj=1 J

—1

We note that an extreme point T of P cannot be of the form T = ¢ + %,
where ¢ #0, c € C, and Z € P, since in this case T would be the midpoint
of the line segment connecting the distinct vectors & and 2¢+&. Therefore,
an extreme point of P must belong to P, and since P C P, it must also be
an extreme point of P. An extreme point of P must be one of the vectors
Vi,...,Um, since otherwise this point would be expressible as a convex
combination of v1,...,vmn. Thus the set of extreme points of P is either
empty or finite. Using Prop. B.18(b), it follows that the set of extreme
points of P is nonempty and finite if and only if P contains no line.

If P is bounded, then we must have P = P, and it can be shown that
P is equal to the convex hull of its extreme points (not just the convex hull
of the vectors v1,...,vm). The proof is sketched in Exercise B.4.1.

The following proposition gives another and more specific character-
ization of extreme points of polyhedral sets, and is central in the theory of
linear programming.

Proposition B.21: Let P be a polyhedral set in ®7.
(a) If P has the form

P={zlaix<bj,j=1,...,7}

where a; and b; are given vectors and scalars, respectively, then
a vector v € P is an extreme point of P if and only if the set

sz{aj|a;-v=bj,j=1,...,r}

contains n linearly independent vectors.

(b) If P has the form
P={x| Az =b,z > 0},

where A is a given m x n matrix and b is a given vector, then a
vector v € P is an extreme point of P if and only if the columns
of A corresponding to the nonzero coordinates of v are linearly:
independent.

(¢) (Fundamental Theorem of Linear Programming) Assume that P
has at least one extreme point. Then if a linear function attains
a minimum over P, it attains a minimum at some extreme point
of P.

Proof: (a) If the set 4, contains fewer than n linearly independent vectors,
then the system of equations

ajw =0, YV a; € Ay

has a nonzero solution . For sufficiently small v > 0, we have v +~yw € P
and v — yw € P, thus showing that v is not an extreme point. Thus, if v
is an extreme point, A, must contain n linearly independent vectors.

Conversely, suppose that A, contains a subset A, consisting of n
linearly independent vectors. Suppose that for some y € P, z € P, and
a € (0,1), we have v = ay + (1 — a)z. Then for all a; € Ay, we have

bj = djv = adjy + (1 — a)ajz < abj + (1 — a)b; = b;.



Thus v, y, and z are all solutions of the system of n linearly independent
equations

a;.w:bj, Va;€ A,
Hence v = y = 2, implying that v is an extreme point.

(b) Let k be the number of zero coordinates of v, and consider the matrix
A, which is the same as A except that the columns corresponding to the
zero coordinates of v are set to zero. We write P in the form

P={z] Az <b, —Az < b, —x <0},

and apply the result of part (a). We obtain that v is an extreme point if and
only if A contains n — k linearly independent rows, which is equivalent to
the n — k nonzero columns of A (corresponding to the nonzero coordinates
of v) being linearly independent.

(c) Since P is polyhedral, it has a representation
P ={z| Ax > b},

for some m x n matrix A and some b € ™. If A had rank less than n, then
its nullspace would contain some nonzero vector Z, so P would contain
a line parallel to Z, contradicting the existence of an extreme point [cf.
Prop. B.18(b)]. Thus A has rank n and hence it must contain n linearly
independent rows that constitute an n x n invertible submatrix A. If bis
the corresponding subvector of b, we see that every z € P satisfies Az > b.
The result then follows using Prop. B.20. Q.E.D.

EXERCISES

B.4.1

Show that a polyhedron of the form

m m
P={x\x:vaj,Zqu20,j=1,...,m}» (B.16)
j=1 j=1

is the convex hull of its extreme points. Hint: Use induction on the dimension of
the space. Suppose that all bounded polyhedra of (n—1)-dimensional spaces have
a representation of the form (B.16), but there is a bounded polyhedron P C R™

B.5

and a vector & € P, which is not in the convex hull Pg of the extreme points of
P. Let & be the projection of z on Pg and let T be a solution of the problem

. . ~N/
maximize (z — &)’z
subject to z € P.

The polyhedron X ’
P=pPn{z|(z-%)z=(z—3)T}

is equal to the convex hull of its extreme points by the induction hypothesis.

Show that Ps N P = &, while, by Prop. B.18(a), each of the extreme points of P

is also an extreme point of P, arriving at a contradiction.

DIFFERENTIABILITY ISSUES

Convex functions have interesting differentiability properties, which we dis-
cuss in this section. We first consider convex functions of a single variable.
Let I be an interval of real numbers, and let f : I — R be convex. If
x,y,z € I and <y < 2, then we can show the relation
[~ 1@ _ f@)-f@) _ 1)~ I) B.17)
y—x - z2—x z2—y
which is illustrated in Fig. B.11. For a formal proof, note that, using the
definition of a convex function [cf. Eq. (B.2)], we obtain

s < (Y22) i@+ (1) 5w

z—z
and either of the desired inequalities follows by appropriately rearranging
terms.

_fo)- f(x)

Z-X

slope =

o : _ 1)-1)
slope = _.(Y)T)_xﬂ. : slope = ——Z—_y—— )

Figure B.11. Illustration of the inequalities (B.17). The rate of change of the
function f is nondecreasing with its argument.
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Let a and b be the infimum and the supremum, respectively, of I, also
referred to as the end points of I. For any z € I, z # b, and for any o« > 0
such that x + a € I, we define

f@+a) = f(z)

(o4

st(z,a) =

Let 0 < a < o/. We use the first inequality in Eq. (B.17) withy =z +
and z = z + o to obtain st(z,a) < st(z,a’). Therefore, st(z,a) is a
nondecreasing function of & and, as a decreases to zero, it converges either
to a finite number or to —co. Let f*(z) be the value of the limit, which
we call the right derivative of f at the point z. Similarly, if z € I, z # a,
a>0,and x — a € I, we define

SRR {CO B G}
«
which is, by a symmetrical argument, a nonincreasing function of a. Its
limit as o decreases to zero, denoted by f—(z), is called the left derivative
of f at the point z, and is either finite or equal to co.
In the case where the end points ¢ and b belong to the domain I of
f, we define for completeness f~(a) = —oo and f+(b) = co.

Proposition B.22: Let I C R be a convex interval and let f : I — R
be a convex function. Let a and b be the end points of I.
(a) We have f~(y) < f+(y) for every y € I.
(b) If z belongs to the interior of I, then f+(z) and f~(z) are finite.
(¢c) ¥z,z€ I and = < 2z, then f*(z) < f~ ().
(d) The functions f—, f+ : I = [—00, +00] are nondecreasing.
(e) The function f+ (respectively, f—) is right— (respectively, left-)
continuous at every interior point of I. Also, if a € I (respec-
tively, b € I) and f is continuous at a (respectively, b), then f+

(respectively, f—) is right— (respectively, left-) continuous at a
(respectively, b).

(f) If f is differentiable at a point = belonging to the interior of I,
then f+(z) = f~(z) = (df /dz)().

(g) For any z,z € I and any d satisfying f~(z) < d < f*+(z), we
have

f(z) 2 f(z) + d(z — x).

(h) The function f+ : I — (—00, 0] [respectively, f~ : I — [—o0,0)]
is upper (respectively, lower) semicontinuous at every z € I.

Proof: (a) If y is an end point of I, the result is trivial because f~(a) =
—00 and f+(b) = co. We assume that y is an interior point, we let a > 0,
and use Eq. (B.17), with z = y — a and z = y + ¢, to obtain s=(y,a) <
s+ (y, ). Taking the limit as o decreases to zero, we obtain F=) <€ F+(y).

(b) Let z belong to the interior of I and let & > 0 be such that z —a € I
Then f- () > s~ (z, @) > —oc. For similar reasons, we obtain f+(z) < occ.
Part (a) then implies that f~(z) < oo and f*(z) > —o0.

(c) We use Eq. (B.17), with y = (z + z)/2, to obtain s+ (z,(z-2)/2) <
s~ (2,(z—x)/2). The result then follows because f*(z) < s+ (z,(z—x)/2)
and s~ (2, (z — z)/2) < f~(2).

(d) This follows by combining parts (a) and (c).

(e) Fix some z € I, z # b, and some positive § and o such that x+0+a < b.
We allow z to be equal to a, in which case f is assumed to be continuous
at a. We have f+(z + ) < st(z + §,a). We take the limit, as § decreases
to zero, to obtain limgjo f+(x + d) < s*t(zx,a). We have used here the
fact that s*(z, ) is a continuous function of z, which is a consequence of
the continuity of f (Prop. B.9). We now let o decrease to zero to obtain
lims,o f*(z + 6) < f+(z). The reverse inequality is also true because ft
is nondecreasing and this proves the right—continuity of f+. The proof for
f— is similar.

(f) This is immediate from the definition of f+ and f-.

(g) Fix some z,z € I. The result is trivially true for z = z. We only
consider the case z < z; the proof for the case > z is similar. Since
s*(z,a) is nondecreasing in «, we have (f(z) - f@)/(z—z) > st(z,a)
for o belonging to (0,z — x). Letting o decrease to zero, we obtain (f(z) -
f())/(z —z) > f*(x) > d and the result follows.

(h) This follows from parts (a), (d), (e), and the definition of semicontinuity
(Definition A.4 in Appendix A). Q.E.D.

We now consider the directional derivative f'(z;y) of a convex func-
tion f : R* — R at a vector z € R" in the direction y € ®". This deriva-
tive is equal to the right derivative Fjf (0) of the convex scalar function
Fy(a) = flz+ay) at a =0, 1ie,

f’(l‘; y) — 1;?01 f(iE + ai) — f(ﬂ')) — E{% Fy(&) ; Fy(o) — F;—(O)’ (Blg)

and the limit in the above equation is guaranteed to exist. Similarly, the left
derivative Fy (0) of Fy, is equal to — f’(2; —y) and, by using Prop. B.22(a),
we obtain Fy (0) < Fyf (0), or equivalently,

—fz;—y) < fllzy), YyeRm (B.19)
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The directional derivative can be used to provide a necessary and
sufficient condition for optimality in the problem of minimizing a convex
function f : B — R over a convex set X C R». In particular, z* is a
global minimum of f over X if and only if

fz*;z —z*) >0, VzelX.

This follows from the definition (B.18) of directional derivative, and from
the fact that the difference quotient

flz* + a(z — %)) — f(z*)

«

is a monotonically nondecreasing function of .

The following proposition generalizes the upper semicontinuity prop-
erty of right derivatives of scalar convex functions [Prop. B.22(h)], and
shows that if f is differentiable, then its gradient is continuous.

Proposition B.23: Let f : ®» — R be convex, and let {fx} be a
sequence of convex functions fr : R — R with the property that
limg— o0 fx(zk) = f(z) for every z € R and every sequence {zx} that
converges to z. Then for any z € ®" and y € R, and any sequences
{zx} and {yx} converging to = and y, respectively, we have

li,rcnsup Fe(zis 9e) < filz3y)- (B.20)

Furthermore, if f is differentiable at all z € R7, then its gradient
Vf(z) is a continuous function of z.

Proof: For any p > f'(x;y), there exists an @ > 0 such that

f(z +ay) - f(z)

«

< W, Va<ua.

Hence, for a < @, we have

fr(zr 4+ ayx) — fil
a

:L'k) <
for all sufficiently large k, and using Eq. (B.18), we obtain
limsup f (zi; yx) < p.
k—o0

Since this is true for all g > f/(x;y), inequality (B.20) follows.

If f is differentiable at all z € ®7, then using the continuity of f and
the part of the proposition just proved, we have for every sequence {zx}
converging to z and every y € R",

lim sup V f(zx)'y = limsup f'(zx;y) < f'(5y) = VI(2)'y.
k—00

k— o0

By replacing y by —y in the preceding argument, we obtain
—liminf V f(zx)'y = limsup(—V f(zx)'y) < -V f(z)v.
k—oo k—co

Therefore, we have V f(zk)'y — V f(x)'y for every y, which implies that
Vf(zx) — Vf(z). Hence, the gradient is continuous. Q.E.D.

Subgradients and Subdifferentials

Given a convex function f : R — R, we say that a vector de R is a
subgradient of f at a point z € R if

f(2) > f(z) +(z —z)d, Yz € R (B.21)

If instead f is a concave function, we say that d is a subgradient of f at
z if —d is a subgradient of the convex function — f at . The set of all
subgradients of a convex (or concave) function f at & € R~ is called .the
subdifferential of f at z, and is denoted by 8f(z). Figure B.12 provides
some examples of subdifferentials.

f(x) = IxI fx) = max{Cl. (172)(2 - 1)}
0 X 1 0 1 X
AH(x) oflx)
4 1
{ ) AL o
0 X AL

Figure B.12. The subdifferential of some scalar convex functions as a function
of the argument x.
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We nex’F provide the relationship between the directional derivative
and the subdifferential, and prove some basic properties of subgradients.

Proposition B.24: Let f : 2 — R be convex. For every z € Rn,
the following hold:

(a) A vector d is a subgradient of f at z if and only if

fzy) >yd, VyeRn,

(b) The subdifferential df(z) is a nonempty, convex, and compact
set, and there holds

Nz y) = 'd, : :
f'(z5y) B VyeRr (B.22)

In particular, f is differentiable at z with gradient V f(z), if and
only if it has V f(z) as its unique subgradient at . Furthermore,
if X is a bounded set, the set Uzex0f(z) is bounded.

(c) If a sequence {zx} converges to z and di € 9f(zx) for all k,
the sequence {di} is bounded and each of its limit points is a
subgradient of f at z.

(d) If f is equal to the sum fi + - - + fm of convex functions f; :
R — R, 7 =1,...,m, then 8f(z) is equal to the vector sum
Ofi(z) + -+ 0fm(z).

(e) If f is equal to the composition of a convex function i : ™ — R
and an m x n matrix A [f(z) = h(Azx)], then O0f(z) is equal to
A'Oh(Ax) = {A’g| g € Oh(Az)}.

(f) = minimizes f over a convex set X C R" if and only if there
exists a subgradient d € 9 f(x) such that

d'(z—2z) >0, VzelX.

Proof: (a) The subgradient inequality (B.21) is equivalent to
f@+ay) - f(x)

(87

> y/d, YVye R a>0.

Since the quotient on the left above decreases monotonically to f/(z;y) as
o l.O [Eq. (B.17)], we conclude that the subgradient inequality (B.21) is
equivalent to f/(z;y) > y’d for all y € R*. Therefore we obtain

dedf(x) — iz y) > y'd, YV ye R (B.23)

(b) From Eq. (B.23), we sec that df(z) is the intersection of the closed
halfspaces {d | y'd < f' (z;y)}, where y ranges over the nonzero vectors
of ®n. It follows that df(z) is closed and convex. It is also bounded,
since otherwise, for some y € R", y’d could be made unbounded by proper
choice of d € df(z), contradicting Eq. (B.23). Since 0f(z) is both closed
and bounded, it is compact.

To show that &f(z) is nonempty and that Eq. (B.22) holds, we first
observe that Eq. (B.23) implies that f/(x;y) > maxgeay(z) y'd [where the
maximum is —oo if df(z) is empty]. To show the reverse inequality, take
any z and y in R, and consider the subset of R+l

Cr={(mz) > f(2)},
and the half-line
Co = {(u,2) | p=f@)+af(ny), z=z+ay, a >0}

see Fig. B.13. Using the definition of directional derivative and the convex-
ity of f, it follows that these two sets are nonempty, convex, and disjoint.
By applying the separating hyperplane theorem (Prop. B.13), we see that
there exists a nonzero vector (y,w) € R*+! such that

yutw'z < 7(f(x)+af’(x;y))+w’(7;-|—ay), Ya>0,zeRr u> f(2).

(B.24)
We cannot have ~ > 0 since then the left-hand side above could be made
arbitrarily large by choosing p sufficiently large. Also if v = 0, then Eq.
(B.24) implies that w = 0, which is a contradiction. Therefore, v < 0 and
by dividing with v in Eq. (B.24), we obtain

p+(z—x) (w/y) > f@)+af (zy)+ay (w/y), Va2 0, ze R, p> f(z).

(B.25)
By taking the limit in the above relation as e | 0 and | f(z), we obtain
f(2) > f(z)+(z—z)'(-w/v) for all z € R", implying that (—w/v) € 0f(z).
By taking z = z and a = 1 in Eq. (B.25), and by taking the limit as p |
f(z), we obtain y'(—w/v) > f'(z;y), which implies that maxaes (x) y'd>
f'(z;y). The proof of Eq. (B.22) is complete.

From the definition of directional derivative, we see that f is differ-
entiable at z with gradient V f(z) if and only if the directional derivative
f'(x;y) is a linear function of the form f!(z;y) = Vf(z)'y. Thus, from Eq.
(B.22), f is differentiable at z with gradient Vf(z), if and only if it has
Vf(x) as its unique subgradient at z.

Finally, let X be a bounded set. To show that UgexOf () is bounded,
we assume the contrary, i.e. that there exists a sequence {zx} C X, and a
sequence {dy} with di € 8f(zx) for all k and ||di| — oo. Without loss of
generality, we assume that di # 0 for all k, and we denote yx = di/|ldk|-
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Figure B.13. [llustration of the sets C1 and C3 used in the hyperplane separation
argument of the proof of Prop. B.24.

Since both {zx} and {yx} are bounded, they must contain convergent sub-
sequences. We assume without loss of generality that x) converges to some
z and y, converges to some y with ||y|| = 1. By Eq. (B.22), we have

fzesye) > diyr = ||dil,

so it follows that f/(xzk;ykx) — oo. This contradicts, however, Eq. (B.20),
which implies that limsup,_, o, f/(zk; yx) < f/(z;y).

(c) By part (b), the sequence {dx} is bounded, and by part (a), we have
Ydi < f'(2k39), Yy e Re.

If d is a limit point of {dx}, we have by taking limit in the above relation
and by using Prop. B.23

y'd < limsup f'(zx;y) < f'(z;9), Yy e R
k—-00

Therefore, by part (a), we have d € 9f(z).

(d) Tt will suffice to prove the result for the case where f = fi + fao. If
d1 € 8f1(z) and dy € df2(x), then from the subgradient inequality (B.21),

we have
fi(z) > fi(z) + (z — z)'d4, Yz € Rn,

f2(2) = fo(z) + (2 — x)'d2, Y z € R,
so by adding, we obtain

f2) 2 f(@) +(z—2)'(d1 + d2), VzeRr

Hence d; + d» € 8f(z), implying that 8fi(z) + 8f2(z) C 8f(z).

To prove the reverse inclusion, suppose to come to a contradiction,
that there exists a d € 9f(z) such that d ¢ 8f1(z) + 0f2(x). Since by
part (b), the sets 8f1(x) and df2(x) are compact, the set df1(z) + 8fa(x)
is compact (cf. Prop. B.8), and by Prop. B.14, there exists a hyperplane
strictly separating {d} from dfi(z) + df2(x), i.e., a vector y and a scalar b
such that

y'(di +d2) < b< y/d, YV di € 0fi(x), d2 € Ofa(x).
From this we obtain

max vy'di+ max yY'dp <y'd
4 eof(z) ayedta(z)” v

or using part (b),
filz;y) + foliy) < y'd.
By using the definition of directional derivative, fi(z;y)+fi(z;y) = f'(z;y),
so we have
f(zy) <y'd,
which is a contradiction in view of part (a).

(e) It is seen using the definition of directional derivative that
fzy) = W(Az; Ay),  VYyeRn
Let g € Oh{(Azx) and d = A’g. Then by part (a), we have
g’z < W(Azx;2) VzeR™,
and in particular,
g Ay < W(Az; Ay)  VyeRn,

or
(Ag)y < flz;y), VYyeRn

Hence, by part (a), we have A’g € 8f(x), so that A’0h(Ax) C Of(x).

To prove the reverse inclusion, suppose to come to a contradiction,
that there exists a d € f(z) such that d ¢ A’8h(Az). Since by part (b),
the set Oh(Az) is compact, the set A'Oh(Ax) is also compact (cf. Prop.
B.8), and by Prop. B.14, there exists a hyperplane strictly separating {d}
from A’Oh(Az), i.e., a vector y and a scalar b such that

y'(A'g) < b < y'd, V g € Oh(Axz).
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From this we obtain

max (Ay)'g < y'd,
gE@h(Aa:)( y)g Y

or using part (b),
R (Az; Ay) < y'd.
Since h/(Az; Ay) = f'(x;y), it follows that
fzy) <y'd,
which is a contradiction in view of part (a).

(f) Suppose that for some d € 8f(z) and all z € X, we have d’(z —z) > 0.
Then, since from the definition of a subgradient we have f(z) — f(z) >
d'(z — z) for all z € X, we obtain f(z) — f(z) > 0 for all z € X, so z
minimizes f over X.

Conversely, suppose that  minimizes f over X. Consider the set of
feasible directions of X at x

W={w#0|z+ow e X for some o > 0},
and the cone A
W={d|dw>0,YweW}

(this is equal to —WL, the set of all d such that —d belongs to the polar
cone W). If 9f(x) and W have a point in common, we are done, so to
arrive at a contradiction, assume the opposite, i.e., 0f(z) "W = J. Since
df (x) is compact and W is closed, by Prop. B.14 there exists a hyperplane
strictly separating 8f(z) and W, i.e., a vector y and a scalar ¢ such that

gy <c<dy, VgE@f(x),VdeW.
Using the fact that W is a closed cone, it follows that
c<0<dy, VdeW, (B.26)
which when combined with the preceding inequality, also yields

7
gerréz}z(z)g y<c<O.
Thus, using part (b), we have f/(z;y) < 0, while from Eq. (B.26), we
see that y belongs to the polar cone of Wi, which by the polar cone
theorem [Prop. B.16(a)], implies that y is in the closure of the set of feasible
directions W. Hence for a sequence y* of feasible directions converging to
y we have f/(z;y*) < 0, and this contradicts the optimality of z. Q.E.D.

Note that Prop. B.24(f) generalizes the optimality condition of Chap-
ter 2 for the case where f is differentiable: Vf(z)'(z—xz) > 0forall z € X.
In the special case where X = R7, we obtain a basic necessary and sufficient
condition for unconstrained optimality of z:

0€df(x).

This optimality condition is also evident from the subgradient inequality
(B.21).

Danskin’s Min-Max Theorem

We next consider the directional derivative and the subdifferential of the
function f(z) = max.cz ¢(z, 2).

Proposition B.25: (Danskin’s Theorem) Let Z C ®™ be a com-
pact set, and let ¢ : R* x Z — R be continuous and such that
&(-, z) : 7 — R is convex for each z € Z.

(a) The function f: R* — R given by
flz) = max o(z, 2) (B.27)
is convex and has directional derivative given by

fzy) = Jnax, & (z, z; ), (B.28)

where ¢/(z, z;y) is the directional derivative of the function ¢(-, z)

at z in the direction y, and Z(z) is the set of maximizing points
in Eq. (B.27)

2) = {3 | #(0.2) = ma 2.}

In particular, if Z(x) consists of a unique point Z and ¢(-,z) is
differentiable at z, then f is differentiable at z, and Vf(z) =
V.d(z,Z), where V;¢(w,Zz) is the vector with coordinates

8¢(z, %)
a.’l}i ’

(b) If @(:, z) is differentiable for all z € Z and V;¢(z, -) is continuous
on Z for each «, then

Of(x) = conv{V.¢(z,2) | z € Z(x)}, Yz e Rn.
In particular, if ¢ is linear in z for all z € Z| i.e.,
&(z,z) = abx + by, VzeZ,

then
0f(z) = conv{a. | z € Z(z)}.




Proof: (a) The convexity of f has been established in Prop. B.2(d). We
note that since ¢ is continuous and Z is compact, the set Z(z) is nonempty
by Weierstrass’ theorem (Prop. A.8 in Appendix A) and f is finite. For
any z € Z(z), y € ®", and « > 0, we use the definition of f to obtain

flo+oy) = f(z) | e +om,2) — (@ 5)

a (47

Taking the limit as « decreases to zero, we obtain f/(z;y) > ¢'(z,z;y).
Since this is true for every z € Z(z), we conclude that

fz;y) > sup &(z,2y), VYyeRr (B.29)
zEZ(x)

To prove the reverse inequality and that the supremum in the right-
hand side of the above inequality is attained, consider a sequence {ax} of
positive scalars that converges to zero and let z; = = 4+ a4y. For each k,
let zx be a vector in Z(zg). Since {zx} belongs to the compact set Z, it
has a subsequence converging to some Z € Z. Without loss of generality,
we assume that the entire sequence {2z} converges to z. We have

Tk, 2k) 2 P2k, 2), Vze€Z,
so by taking the limit as ¥ — oo and by using the continuity of ¢, we obtain
¢(z,%) = ¢z, 2), Vze Z
Therefore, zZ € Z(z). We now have

f(z + axy) - f(=z)

[z y) <
ax
_ ¢z + oy, zk) — B(x, %)
Qk
< ¢+ oy, 2x) — d(z, 2) (B.30)
a

< —¢'(z + oky, 2k —Y)
< ¢’($ + aky,Zk;y),

where the last inequality follows from inequality (B.19). We apply Prop.
B.23 to the functions fi defined by fi(-) = @(, z&), and with zx = z + aky,
to obtain
hin sup ¢'(z + axy, 2k y) < ¢/ (2,75 y). (B.31)
—0
We take the limit in inequality (B.30) as k — oo, and we use inequality
(B.31) to conclude that

fzy) < ¢ (x,7y).

This relation together with inequality (B.29) proves Eq. (B.28).
For the last statement of part (a), if Z(z) consists of the unique point
Z, Eq. (B.28) and the differentiability assumption on ¢ yield

flasy) = ¢ (2, 5y) =y Vad(z,2), VYyeRn,
which implies that V f(z) = Vz¢(z,Z).
(b) By part (a), we have

1) — \v ,2)'y,
'z y) nax, ¢(x,2)'y

while by Prop. B.24, we have

(z,y) = max dy.
f'(@y) = max dy

For all 7 € Z(z) and y € R, we have

f(y) = max é(y, z)

z€Z
> ¢(y,2)
> ¢(x,Z) + Vap(z,2)' (y — )
= f(z) + Vao(z,2) (y — 7).

Therefore, Vq¢(z, %) is a subgradient of f at x, implying that
conv{V¢(z,2) | z € Z(x)} C Of(z).

To prove the reverse inclusion, we use a hyperplane separation argument.
By the continuity of Vz¢(x,-) and the compactness of Z, we see that Z(z)
is compact, and therefore also the set {Vad(z,2) | 2 € Z(z)} is compact.
By Prop. B.8(d), it follows that conv{Vzp(z,2) | z € Z(z)} is compact. If
d € 8f(z) while d ¢ conv{V.¢(z,2) | z € Z(z)}, by the strict separation
theorem (Prop. B.14), there exists y 7 0, and 1y € R, such that

d'y >y > Vao(z, 2)'y, V z € Z(x).
Therefore, we have

dy > €% (=) Ved(z,2)'y = f(z;9),

2€Z(x

contradicting Prop. B.24. Therefore, 8f(x) C conv{Vzp(z,2) | z € Z(z)}
and the proof is complete. Q.E.D.




Subgradients of Extended-Real Valued Convex Functions

In this book the major emphasis is on real-valued convex functions f :
" +— R, which are defined over the entire space 7 and are convex over R»,
There are, however, important cases, prominently arising in the context of
duality, where we must deal with functions g : D — R that are defined over
a convex subset D of 7, and are convex over D. This type of function may
also be specified as the extended real-valued function f : R +— (—00, 0]
given by
fz) = {g(m) ifxeD,

00 otherwise,
with D referred to as the effective domain of f.
The notion of a subdifferential and a subgradient of such a function
can be developed along the lines of the present section. In particular, given

a convex function f : R” — (—o00, 00|, a vector d is a subgradient of f at a
vector z such that f(x) < co if the subgradient inequality holds, i.e.,

f(z) 2 f(z)+ (z — 2)'d, YV z e R

If g: D+ R is a concave function (that is, —g is a convex function
over the convex set D), it can also be represented as the extended real-
valued function f : ®" +— [—00, 00), where

flz) = {g(:r) if x € D,

—00 otherwise.

As earlier, we say that d is a subgradient of f at an z € D if —d is a
subgradient of the convex function —g at z.

The subdifferential df(x) is the set of all subgradients of the convex
{or concave) function f. By convention, df(z) is considered empty for all
z with f(z) = co. Note that contrary to the case of real-valued functions,
8f(z) may be empty, or closed but unbounded. For example, the extended
real-valued convex function given by

f(x):{—\/i ifo<z<l,

o0 otherwise,

has the subdifferential

—ﬁ ifo<z <1,
Of(x) = [-1/2,00) ifz=1,
7 ifr<0orl<uz.

Thus, df(z) can be empty and can be unbounded at points = that belong
to the effective domain of f (as in the cases x = 0 and z = 1, respectively,
of the above example). However, it can be shown that 3 f(z) is nonempty

and compact at points = that are interior points of the effective domain of
f, as also illustrated by the above example.

One can provide generalized versions of the results of Props. B.24 and
B.25 within the context of extended real-valued convex functions, but with
appropriate adjustments and additional assumptions to deal with cases
where Of () may be empty or noncompact. The reader will find a detailed
account of the corresponding theory in the book by Rockafellar [Roc70].




APPENDIX C:
Line Search Methods

In this appendix we describe algorithms for one-dimensional minimization.
These are iterative algorithms, used to implement (approximately) the line
minimization stepsize rules.

We briefly present three practical methods. The first two use poly-
nomial interpolation, one requiring derivatives, the second only function
values. The third, the Golden Section method, also requires just function
values. By contrast with the interpolation methods, it does not depend on
the existence of derivatives of the minimized function and may be applied
even to discontinuous functions. Its validity depends, however, on a certain
unimodality assumption.

In our presentation of the interpolation methods, we consider mini-
mization of the function

g(@) = f(z + ad),

where f is continuously differentiable. By the chain rule, we have

g (a) = dg(@) = Vf(z + ad)d.
da
We assume that ¢’(0) = Vf(z)'d < 0, that is, d is a descent direction at
x. We give no convergence or rate of convergence results, but under some
fairly natural assumptions, it can be shown that the interpolation methods
converge superlinearly.

CUBIC INTERPOLATION

The cubic interpolation method successively determines at each iteration an
appropriate interval [a, b] within which a local minimum of g is guaranteed
to exist. It then fits a cubic polynomial to the values g(a), g(b), g'(a),
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g’(b). The minimizing point & of this cubic polynomial lies within [a, b]
and replaces one of the two points a or b for the next iteration.

Cubic Interpolation

Step 1: (Determination of the Initial Interval) Let s > 0 be
some scalar. (Note: If d “approximates well” the Newton direction,
then we take s == 1.) Evaluate g{«) and ¢’(a) at the points o = 0,
s, 2s, 4s, 8s,..., until two successive points a and b are found such
that either g’(b) > 0 or g(b) > g(a). Then, it can be seen that a local
minimum of g exists within the interval (a,b]. [Note: If g(s) is “much
larger” than g(0), it is advisable to replace s by (s, where 3 € (0, 1),
for example 8 = % or = %, and repeat this step.] One can show that
this step can be carried out if lima -0 g(cr) > g(0).

Step 2: (Updating of the Current Interval) Given the current
interval [a, b], a cubic polynomial is fitted to the four values g(a), g'(a),
g(b), g’(b). The cubic can be shown to have a unique minimum & in
the interval (a, b] given by

gb)+w-—=z

"7 g@rm Y

a==%

where
L 3gla) —9(¥))
b—a

w = /22 - ¢'(a)g’'(b).

If g'(&) > O or g(&) > g(a) replace bby &. If ¢/(&) < 0 and g(&) < g(a)
replace a by @. (Note: In practice the computation is terminated once
the length of the current interval becomes smaller than a prespecified
tolerance or else we obtain & = b.)

+g'(a) + ¢'(b),

C.2 QUADRATIC INTERPOLATION

This method uses three points a, b, and ¢ such that a < b < ¢, and
g(a) > g(b) and g(b) < g(c). Such a set of points is referred to as a three-
point pattern. It can be seen that a local minimum of g must lie between the
extreme points a and ¢ of a three-point pattern a, b, ¢. At each iteration,
the method fits a quadratic polynomial to the three values g(a), g(b), and
g{c), and replaces one of the points a, b, and ¢ by the minimizing point of
this quadratic polynomial (see Fig. C.1).

1
4
+
e !
.
,f’ :
s L '
e ' '
: ' '
' ' |
1 ' !
: Y o
a o b ¢

Figure C.1. A three-point pattern and the associated quadratic polynomial. If
& minimizes the quadratic, a new three point pattern is obtained using & and two
of the three points a, b, and ¢ (a, b, and & in the example of the figure).

L

Quadratic Interpolation

Step 1: (Determination of Initial Three-Point Pattern) We
search along the line as in the cubic interpolation method until we
find three successive points a, b, and ¢ with a < b < ¢ such that
g(a) > g(b) and g(b) < g{c). As for the cubic interpolation method,
we assume that this stage can be carried out, and we can show that
this is guaranteed if limg o g{e) > ¢(0).

Step 2: (Updating the Current Three-Point Pattern) Given
the current three-point pattern a, b, ¢, we fit a quadratic polynomial to
the values g(a), g(b), and g(c), and we determine its unique minimum
@. It can be shown that & € (a,c¢) and that

G = 1828 +a(b)(a®~c?) +9(c) (b2 ~a?)
T2 g@(e-b)+glb)(a=e)+g(e)(b=a)

Then, we form a new three-point pattern as follows. If @ > b, we
replace a or ¢ by & depending on whether g{@ < g(b) or g(@) > g(b),
respectively. If & < b, we replace c or a by @ depending on whether
g(@) < g(b) or g(@) > g(b), respectively. [Note: If g{(@) = g(b) then
a special local search near & should be conducted to replace & by a
point & with g(@') # ¢g(b). The computation is terminated when the
length of the three-point pattern is smaller than a certain tolerance.]

An alternative possibility for quadratic interpolation is to determine

the minimum @ of the quadratic polynomial that has the same value as g
at the points 0 and a, and the same first derivative as g at 0. It can be




verified that this minimum is given by

g'(0)a?
2(g'(0)a + g(0) — g(a)) "

a =

C.3 THE GOLDEN SECTION METHOD

Here, we assume that g(«) is strictly unimodal in the interval [0,s], as
defined in Fig. C.2. The Golden Section method minimizes g over [0, s] by
determining at the kth iteration an interval [c, @k containing a*. These
intervals are obtained using the number

3-v5
T =

2 7

which satisfies 7 = (1—7)2 and is related to the Fibonacci number sequence.
The significance of this number will be seen shortly.

Figure C.2. A strictly unimodal func-
tion g over an interval [0, s] is defined as
a function that has a unique global min-
imum a* in {0,s] and if a1, a2 are two
points in [0, 5] such that a1 < az < a*
or a* < a1 < az, then g(ai) > g(az) >
g(a®) or g(e™) < glar) < glaz), respec-
tively. An example of a strictly unimodal
function, is a function which is strictly
0 o ot o convex over [0, s].

Initially, we take
[a(), do] = [0, S].

Given [ou, &x], we determine |41, @k41] so that a* € [ag41,@k+1] as
follows. We calculate

br = o + 7(ar — ak)
by = oy — (@ — ax)
and g(bx), g(bx). Then:
(1) If g(bx) < g(bx) we set

Qk+1 = Qg, Ok+1 = by if g(ak) < g(bx)

ki1 =k, Gpp1=br if  glok) > g(by).

(2) If g(by) > g(bk) we set
aps1=br, G =ax  if  g(bk) > g(aw)
app1 = bk, arp =ax if g(be) < glak).
(3) If g(bx) = g(bx) we set

Qgy1 = bk, Qg1 = br.

Based on the definition of a strictly unimodal function it can be shown
(see Fig. C.3) that the intervals [ak, Gx] contain a* and their lengths con-
verge to zero. In practice, the computation is terminated once (&x — ax)
becomes smaller than a prespecified tolerance.

A g(e)
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Figure C.3. Golden Section search. Given the interval [a, @) containing the
minimum o*, we calculate

by = o + T(&k — k)

and -
b = ax — 7(ak — o).

The new interval [og41,@k+1] has either by or by as one of its endpoints.

An important fact, which rests on the choice of the particular number
T is that ) B
(o1, k1] = [ouk, bi] = br+1 = bk,

[k+1, Ak 11] = [bk, Gk] = bi+1 = b




In other Words, a trial point by or b that is not used as the end point of
the next interval continues to be a trial point for the next iteration. The
reader can verify this, using the property

T=(1-7)2
Thus, in either of the above situations, the values byy1, g(bps1) or byys,

9(bk+1) are available and need not be recomputed at the next iteration,
requiring a single function evaluation instead of two.

APPENDIX D:

Implementation of Newton’s

Method

In this appendix we describe a globally convergent version of Newton’s
method based on the modified Cholesky factorization approach discussed
in Section 1.4. A computer code implementing the method is available from
the author on request.

CHOLESKY FACTORIZATION

We will give an algorithm for factoring a positive definite symmetric matrix
A as

A=LL'
where L is lower triangular. This is the Cholesky factorization. Let a;; be
the elements of A and let A; be the ith leading principal submatrix of A,
that is, the submatrix

aii a2 ayq

a1 a2 az;
A= .

(273} a2 o Qg

It is seen that this submatrix is positive definite, since for any y € R;,
y # 0, we have by the positive definiteness of A

yAiy=[y O0]A [g] > 0.
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The factorization of A is obtained by successive factorization of 4, , A2, ..
Indeed we have A; = LiL}, where L1 = [/a1;]. Suppose we have the
Cholesky factorization of 4;_1,

Ai1 =L L. (D.1)
Let us write
Ay B
A = [ 2 a“} , (D.2)

where (; is the column vector

aii
B = : . (D.3)

Ai—1;
Based on Egs. (D.1)-(D.3), it can be verified that
Ai = L;Li,

where

Liy 0
L= [ lé /\n_} , (D.4)

and
L=L\B,  Ai= Vau—Ul. (D.5)

The scalar Ai; is well defined because it can be shown that a; — I)l; > 0.
This is seen by defining b = Ai__l1 B, and by using the positive definiteness
of A; to write

0< [b’ —]]A,; |:_bl] :b’Ai_1b—2b’,@4 + a;;

= blﬂi - 2b’/61 + Qi = aq — bl,61,
= ai = BAL B = aii — B(Lima L))~
= ai — (L2, B:) (L) Bi) = aii — L.

The preceding construction can also be used to show that the Cholesky
factorization is unique among factorizations involving lower triangular ma-
trices with positive elements along the diagonal. Indeed, 4; has a unique
such factorization, and if 4;_; has a unique factorization A;_; = Li 1L .,
then L; is uniquely determined from the requirement A; = L;L] with the
diagonal elements of L; positive, and Egs. (D.4) and (D.5).

ampepeam

Cholesky Factorization by Columns

In the preceding algorithm, we calculate L by rows, that is, we first calculate
the first row of L, then the second row, etc. An alternative and equivalent
method is to calculate L by columns, that is, first calculate the first column
of L, then the second column, etc. To see how this can be done, we note
that the first column of A is equal to the first column of L multiplied with
l11, that is,

;1 =l1ll7;1, 1:=1,...,TL,

from which we obtain

lin = +/ai,
Qi1
liy = —,
YT
Similarly, given columns 1,2,...,7 — 1 of L, we equate the elements of the
jth column of A with the corresponding elements of LL’ and we obtain the
elements of the jth column of L as follows:

1=2,...,n.

D.2 APPLICATION TO A MODIFIED NEWTON METHOD

Consider now adding to A a diagonal correction £ and simultaneously

factoring the matrix
F=A+FE,

where E is such that F is positive definite. The elements of E are in-
troduced sequentially during the factorization process as some diagonal
elements of the triangular factor are discovered, which are either negative
or are close to zero, indicating that A is either not positive definite or is
nearly singular. As discussed in Section 1.4, this is a principal method
by which Newton’s method is modified to enhance its global convergence
properties. The precise mechanization is as follows:

We first fix positive scalars p; and po, where py < ug. We calculate
the first column of the triangular factor L of F' by

l - v/aii lf H1 < aii,
1 vtz otherwise,
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Similarly, given columns 1,2,...,j — 1 of L, we obtain the elements of the
Jjth column from the equations

i—1

a'-—E 2 ifu <apn -7 12

73 jm 11 m=1"jm>»
m=1

V2 otherwise,

Aij — an;ll Limlim

lj; ’

In words, if the diagonal element of LL’ comes out less than (1, we bring
it up to pa.

Note that the jth diagonal element of the correction matrix F is equal

to zero if p1 < aj; - 71 12, and is equal to

li; = i=j+1,...,n.

71
p2 — (an’ - lf'm)
m=1

otherwise.

'The preceding scheme can be used to modify Newton’s method, where
at the kth iteration, we add a diagonal correction A% to the Hessian
V2f(z*) and simultaneously obtain the Cholesky factorization L*Lk of
V2f(z*)+ Ak as described above. A modified Newton direction d* is then
obtained by first solving the triangular system

Lky = -V f(z*),
and then solving the triangular system
LK dk =y,

Solving the first system is called forward elimination and is accomplished
in O(n?) arithmetic operations using the equations

_0f(a*)/0x1
lll
_Of(@R)/0zi + S Limym
Lis ’
where li is the imth element of L*. Solving the second system is called

back substitution and is accomplished again in O(n?) arithmetic operations
using the equations

Y1 =

Yi = 1=2...,n,

dnzﬂ

k]
lnn

uuuuuuu Y

Yi = Domeiyr bmid™
lis ’

The next point z*+1 is obtained from

di =

k1l = gk + akdk,

where oF is chosen by the Armijo rule with unity initial step whenever
the Hessian is not modified (A* = 0) and by means of a line minimization
otherwise.

Assuming fixed values of y; and ug, the following may be verified for
the modified Newton’s method just described:

(a) The algorithm is globally convergent in the sense that every limit
point of {x*} is a stationary point of f. This can be shown using
Prop. 1.2.1 in Section 1.2.

(b) For each local minimum z* with positive definite Hessian, there exist
scalars ¢ > 0 and € > 0 such that if g3 < p and |20 — z*|| < ¢,
then z¢ — z*, Ak = 0, and o* = 1 for all k. In other words if y; is
not chosen too large, the Hessian will never be modified near z*, the
method will be reduced to the pure form of Newton’s method, and
the convergence to z* will be superlinear. The theoretical require-
ment that p; be sufficiently small can be eliminated by making
dependent on the norm of the gradient (e.g. p1 = ¢||V f(z*)||, where
¢ is some positive scalar).

Practical Choice of Parameters and Stepsize Selection

We now address some practical issues. As discussed earlier, one should try
to choose 1; small in order to avoid detrimental modification of the Hes-
sian. Some trial and error with one’s particular problem may be required
here. As a practical matter, we recommend choosing initially x#; = 0 and
increasing ;1 only if difficulties arise due to roundoff error or extremely
large norm of calculated direction. (Choosing p1 = 0, runs counter to our
convergence theory because the generated directions are not guaranteed
to be gradient related, but the practical consequences of this are typically
insignificant.)

The parameter p2 should generally be chosen considerably larger than
u1. It can be seen that choosing ps2 very small can make the modified Hes-
sian matrix L*kL*’ nearly singular. On the other hand, choosing u2 very
large has the effect of making nearly zero the coordinates of d* that cor-
respond to nonzero diagonal elements of the correction matrix A*. Gen-
erally, some trial and error is necessary to determine a proper value of pa.
A good guideline is to try a relatively small value of pu2 and to increase
u2 if the stepsize generated by the line minimization algorithm is substan-
tially smaller than unity. The idea here is that small values of u2 tend to




o
LLLLPICILICIILALIVIL UL INEWLULL 5 IVITLLIVU NPPCUULA 1

produce directions d* with large value of norm and hence small values of
stepsize. Thus a small value of stepsize indicates that us2 is chosen smaller
than appropriate, and suggests that an increase of ps is desirable. It is also
possible to construct along these lines an adaptive scheme that changes the
values of p; and p2 in the course of the algorithm.

The following scheme to set and adjust 1 and p2 has worked well
for the author. At each iteration k, we determine the maximal absolute
diagonal element of the Hessian, that is,

2 £k
wh — max{‘a fah)| o)
(z1)? (zn)? |J’
and we set p1 and p2 to
py = riwk, L2 = rowk.

The scalar 71 is set at some “small” (or zero) value. The scalar ry is
changed each time the Hessian is modified; it is multiplied by 5 if the
stepsize obtained by the minimization rule is less than 0.2, and it is divided
by 5 each time the stepsize is larger than 0.9.

Finally, regarding stepsize selection, any of a large number of possible
line minimization algorithms can be used for those iterations where the
Hessian is modified (in other iterations the Armijo rule with unity initial
stepsize is used). One possibility is to use quadratic interpolation based on
function values; see Section C.2 in Appendix C.

It is worth noting that if the cost function is quadratic, then it can
be shown that a unity stepsize results in cost reduction for any values of p;
and p2. In other words if f is quadratic (not necessarily positive definite),
we have

flak — (FR)=1V f(z*)) < f(ak),

where Fk = V2 f(zk)+ Ak and A is any positive definite matrix such that
Fk is positive definite. As a result, a stepsize near unity is appropriate for
initiating the line minimization algorithm. This fact can be used to guide
the implementation of the line minimization routine.
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