LICENCIATURA E BACHARELADO EM BIOLOGIA

QUÍMICA BIOLÓGICA (5930236) 2020

EXERCÍCIOS DE QUÍMICA GERAL

Prof. Dr. Pietro Ciancaglini Profa. Dra. Taisa M. Dinamarco

Alunos PAE:
Ekeveliny Veschi
Claudio dos Reis Ferreira

DQ - FFCLRP/USP

CAPÍTULO 1 - CONCENTRAÇÃO DE SOLUÇÕES

- 1. A vanilina, C₈H₈O₃, é a substância responsável pelo odor característico da baunilha, a qual é usada como saponificante. 150 mL de uma solução de vanilina em eter etílico contém 35,4 g de vanilina. Calcule a concentração em g/L de vanilina nessa solução.
- 2. A frutose, C₆H₁₂O₆ (MM = 180 g/mol), é um açúcar que ocorre no mel e é duas vezes mais doce que a sacarose. Que volume de uma solução 0,125 mol/L contém 1 mol desta substância?
- 3. Como você poderia preparar as seguintes soluções:
 - a. 1 L de uma solução de (NH₄)₂SO₄ 0,5 mol/L , a partir de (NH₄)₂SO₄ sólido.
 - b. 5 L de NaH₂PO₄ 0,1 mol/L a partir de NaH₂PO₄.H₂O sólido.
 - c. 0,2 L de MgCl₂ 0,3% (p/v) a partir de MgCl₂ sólido.
 - d. 37 mL de H₂SO₄ 1,6 mol/L a partir de uma solução 17,8 mol/L desse ácido.
 - e. 3 mL de NaOH 0,20 mol/L a partir de NaOH 6 mol/L.
 - f. 250 mL de uma solução de NaCl 0,3 mol/L a partir de NaCl 1,2 mol/L.
 - g. 20 mL de NaCl 0,3% (p/v) a partir de NaCl 1% (p/v).
 - h. 5,1 mL de KOH 0,1 mol/L a partir de KOH 0,87 mol/L.
- 4. O permanganato de potássio, KMnO₄ (MM = 158 g/mol), é um sólido cristalino de cor violeta-escuro que pode ser usado como antisséptico de uso tópico. Qual é a concentração molar da solução onde 1,0 g desse sal foi dissolvido em 500 mL de água destilada ?
- 5. Quantos gramas de sacarose (MM = 342 g/mol) existem em 250 mL de uma solução 0,1 mol/L ? E se o composto fosse o NaOH (MM = 40 g/mol) ? E se fosse uma solução de MgCl₂ (MM = 95 g/mol) ?
- 6. O ácido sulfúrico, H₂SO₄ (MM = 98 g/mol), é extremamente corrosivo a qualquer tecido do corpo humano. Como se procede para preparar 1 litro de

- uma solução de ácido sulfúrico 4 mol/L a partir do ácido concentrado, cuja densidade é 1,7 g/cm³ e teor 73,5% em peso ?
- 7. Que massa de CuSO₄.5H₂O (MM = 249,5 g/mol) deve ser dissolvida em água para se preparar 250 mL de solução 0,4 mol/L desse sal ?
- 8. Tem-se duas soluções de ácido sulfúrico de molaridade 0,8 mol/L e 4 mol/L, respectivamente. Que volume destas soluções devem ser misturados, para se obter 200 mL de solução 1 mol/L ?
- 9. Que volume de ácido nítrico, HNO₃, de densidade 1,4 g/cm³ e 70 % em peso é necessário para se preparar 100 mL de solução 0,5 mol/L desse ácido ?
- 10. Como deve ser diluída uma solução 0,48 mol/L de glicose para que se obtenha uma 1 L de solução 0,16 mol/L ?
- 11. Expresse em molaridade a concentração de uma solução 99,5% em peso de CH₃COOH (ácido acético) cuja densidade é 1,06 g/cm³.
- 12. Uma solução contém 15 g de carbonato de sódio em 135 g de água e tem densidade igual a 1,1 g/cm³.
 - a. Calcule a porcentagem em massa de carbonato de sódio dessa solução.
 - b. Calcule a concentração dessa solução em g/L.
- 13. Que massa de soluto devemos dissolver em 460 g do solvente a fim de obter uma solução a 8% em massa ?
- 14. Por ser uma substância cancerígena, recomenda-se que a concentração em volume de benzeno no ar não ultrapasse 25 cm³/m³. Ao se analisar uma amostra de 2,0 L de ar de um ambiente industrial contaminado por benzeno, encontrou-se 73 μL de benzeno. Calcule a concentração em volume de benzeno nesta amostra e decida se a contaminação está acima ou abaixo daquela que se pode tolerar.

- 15.O tetracloreto de carbono, CCI₄, é um líquido utilizado como solvente industrial bem como na preparação de compostos clorofluorometanos (gases responsáveis pela destruição do ozônio estratosférico). Qual é a concentração molar de uma solução preparada pela dissolução de 2,5 L de tetracloreto de carbono em 500 L de éter ? Dado: a densidade do tetracloreto de carbono a 20°C é d= 1,594 g/cm³.
- 16. Soluções de hidróxido de amônio (NH₄OH) são utilizadas como detergentes e removedoras de manchas. Comercialmente, essas soluções apresentam percentagem em massa de 25% e densidade 0,91 g/cm³, a 20°C. a) calcule o volume desta solução necessário para preparar 10 mL de uma solução de concentração 2,0 mol/L.
- 17. Expresse a concentração de uma solução de ácido sulfúrico a 2,08% (p/p) de densidade 1,014 g/cm³ em termos de molaridade.

CAPÍTULO 2 - EQUILÍBRIO QUÍMICO

 Escreva as expressões das constantes de equilíbrio K_c para as seguintes reações:

a.
$$H_2(g) + Br_2(g)$$
 2 HBr(g)

b.
$$PCl_5(g)$$
 \longrightarrow $PCl_3(g) + Cl_2(g)$

c.
$$CO(g) + \frac{1}{2} O_2(g)$$
 $CO_2(g)$

d.
$$2 \text{ NO}_2(g) + 7 \text{ H}_2(g)$$
 \longrightarrow $2 \text{ NH}_3(g) + 4 \text{ H}_2\text{O}(g)$

2. Predizer o efeito do aumento da pressão em cada um dos seguintes equilíbrios gasosos:

a.
$$2 \text{ NO} + \text{O}_2 \implies 2 \text{ NO}_2$$

b.
$$CO_2 + H_2$$
 \longrightarrow $CO + H_2O$

c.
$$N_2 + O_2 \implies 2 NO$$

d.
$$CH_4 + H_2O \longrightarrow CO + 3 H_2$$

3. Predizer o efeito do aumento da temperatura em cada um dos seguintes equilíbrios gasosos:

a.
$$2 \text{ NO} + \text{O}_2 \implies 2 \text{ NO}_2 + \text{calor}$$

b.
$$H_2 + I_2 + \text{calor} \rightarrow 2 \text{ HI}$$

c.
$$2 SO_2 + O_2 = 2 SO_3 + calor$$

- 4. Por que a presença de um catalisador não influencia o equilíbrio químico?
- 5. Dada a reação:

Calcule a constante de equilíbrio, K, sabendo-se que no equilíbrio existem 0,4 moles/L de A, 0,5 moles/L de B, 0,3 moles/L de C e 0,2 moles/250 mL de D.

5

6. Dada a reação:

Calcular a constante de equilíbrio, K, sabendo-se que no equilíbrio, a concentração do reagente A é três vezes maior que a do reagente B.

- 7. O corpo humano contém aproximadamente 70% de água em massa. A 37°C, a concentração do íon H₃O⁺ em água pura é 1,545x10⁻⁷ mol/L. Qual é o valor de K_w nesta temperatura ?
- O ácido nicotínico (C₅H₄NCOOH), é um derivado de ácido carboxílico, que se dissocia da seguinte maneira:

Sabendo-se que uma solução desse ácido, de concentração inicial $12,0x10^{-3}$ mol/L, apresenta as seguintes concentrações de equilíbrio: $[C_5H_4NCOOH]= 11,6x10^{-3}$ mol/L, $[C_5H_4NCOO^-]= 4,10x10^{-4}$ mol/L e $[H^+]= 4,10x10^{-4}$ mol/L, calcular o valor do K_a desse ácido.

9. A morfina (C₁₇H₁₉NO₃), é uma substância de origem vegetal muito utilizada como anestésico para aliviar dores muito fortes. Quando dissolvida em água ela se comporta como uma monobase fraca do tipo amina, que se dissocia da seguinte maneira:

$$C_{17}H_{19}NO_3H^+ + H_2O \longrightarrow C_{17}H_{19}NO_3 + H_3O^+$$

Calcule o valor de K_b da morfina sabendo que uma solução de concentração inicial $5x10^{-4}$ mol/L apresenta as seguintes concentrações de equilíbrio: $[C_{17}H_{19}NO_3H^+]=4,72\ x\ 10^{-4}$ mol/L, $[C_{17}H_{19}NO_3]=2,75x10^{-5}$ mol/L e $[H^+]=2,75x10^{-5}$ mol/L.

10.O sulfeto de hidrogênio, H₂S, é um gás encontrado em minas de carvão, jazidas de gás, em águas sulfurosas e em matéria orgânica, que contém enxofre, em decomposição (por exemplo, ovo podre). Em temperaturas elevadas este gás se decompõe de acordo com a seguinte equação:

$$2 H_2S(g) = 2 H_2(g) + S_2(g)$$

Quando 0,0750 moles deste gás são colocados num balão de 7,50 L e aquecidos a 1132° C, obtem-se no equilíbrio 0,0214 moles de H_2 . Calcule o valor de K_c nessa temperatura.

11.O óxido de nitrogênio, NO, é um gás formado durante a combustão da gasolina nos motores de automóveis. Esse gas é instável e reage imediatamente com o oxigênio do ar formando o dióxido de nitrogênio (NO₂), um gás muito tóxico.

$$N_2(g) + O_2(g) = 2 NO(g)$$

A uma temperatura de 2.400~K, K_{c} = 2.5×10^{-3} . Se nessa temperatura existem em equilíbrio $2.4 \times 10^{-2}~\text{mol/L}$ de N_2 e $5.4 \times 10^{-2}~\text{mol/L}$ de O_2 , qual será então a concentração de equilíbrio do NO ?

12.O ácido p-aminobenzóico, NH₂C₆H₄COOH, é um ácido monoprótico fraco, usado em loções do tipo "filtro solar" para prevenir queimaduras solares, que se dissocia da seguinte maneira:

$$NH_2C_6H_4COOH \longrightarrow NH_2C_6H_4COO^- + H^+$$

Calcule as concentrações de equilíbrio, sabendo-se que a concentração inicial deste ácido é $4x10^{-3}$ mol/L e que $K_a = 2,2x10^{-5}$ mol/L.

- 13. A dimetilamina, C₂H₇N, é uma monobase fraca, usada na fabricação de detergentes catiônicos, amplamente empregados como amaciantes de roupas. Sabendo que K_b= 5,41x10⁻⁴ mol/L, calcule as concentrações de equilíbrio para as diferentes espécies existentes em uma solução aquosa dessa base cuja concentração inicial é 5x10⁻² mol/L.
- 14. A hexoquinase é uma enzima existente em nosso organismo que catalisa a reação:

$$Mg^{2+}$$
Glicose + ATP \longrightarrow Glicose-6-P + ADP

Calcular as concentrações das diferentes espécies químicas existentes no equilíbrio sabendo-se que a constante de equilíbrio dessa reação é 2.180 e que as concentrações iniciais de glicose e ATP são 0,01 e 0,005 mol/L, respectivamente.

15. Dadas as reações:

Fumarato +
$$H_2O$$
 Malato $K_1 = 4,5$

Malato + DPN^+ Oxaloacetato + $DPNH + H^+$ $K_2 = 1,32x10^{-5}$

Oxaloacetato + acetil CoA + H_2O Citrato + CoASH $K_3 = 3,2x10^5$

Calcular a constante de equilíbrio para a reação:

Fumarato + DPN⁺ + Acetil CoA + 2H₂O

Citrato + CoASH + DPNH + H⁺

- 16. A glicose-6-fosfato (G6P) foi hidrolisada enzimaticamente, em pH 7,00 e a 25°C, em glicose e fosfato inorgânico. Sabendo-se que a concentração inicial de G6P era 0,1 mol/L e que no equilíbrio restaram apenas 0,05% da concentração inicial, determinar a constante de equilíbrio da reação.
- 17. A hexoquinase catalisa a reação de fosforilação da glicose em glicose-6-fosfato (G6P), pelo ATP, na presença de magnésio, de acordo com a reação:

Glicose + ATP
$$\longrightarrow$$
 Glicose-6-fosfato + ADP Partindo-se de glicose 0,1 mol/L e ATP 0,1 mol/L, verificou-se que as concentrações de equilíbrio de G6P e ADP eram 0,098 mol/L, respectivamente. Calcular K_e a 38 $^{\circ}$ C.

18. Dadas as reações:

$$A + B \longrightarrow C$$
 K_1
 $C + D \longrightarrow E$ K_2
 $E + F \longrightarrow G$ K_3

Demonstrar que para a reação global: A + B + D + F \longrightarrow G, a constante de equilíbrio será dada por: K = $K_1 K_2 K_3$.

- 19.A glicose-1-fosfato (G1P) quando incubada com fosfoglicomutase é transformada em glicose-6-fosfato (G6P). Em um dado experimento, atingido o equilíbrio verificou-se que a [G1P]= 4,5.10⁻³ mol/L e que a [G6P]= 9,6.10⁻² mol/L. Calcular a constante de equilíbrio da reação, a 25°C.
- 20. Duas reações biquimicamente importantes que envolvem a formação de ATP são:

$$ATP + AMP \longrightarrow ADP + ADP$$
 $ATP \longrightarrow ADP + Pi$

O que acontece com a constante de equilíbrio de cada uma delas se: a) a concentração de ATP for duplicada? b) a concentração de ADP for duplicada? c) a solução for diluída ao dobro ?

CAPÍTULO 3 - pH

- Soluções aquosas do gás iodeto de hidrogênio, HI, são conhecidas como ácido iodídrico. Este ácido é um importante reagente usado na fabricação de produtos farmacêuticos, desinfetantes, etc. Calcule o pH de uma solução 0,5 mol/L desse ácido.
- 2. O pK_a do ácido fórmico é 3,77 a 298 K. Qual o pH de uma solução aquosa de ácido fórmico 0,01 mol/L?
- 3. O cianeto de hidrogênio, HCN, é um gás extremamente tóxico e é usado para exterminar ratos e insetos em navios. As soluções aquosas deste gás são conhecidas como ácido cianídrico. Calcule o pH de uma solução aquosa de HCN de concentração inicial 0,1 mol/L. Dado: K_a = 4,9x10⁻¹⁰.
- 4. O hidróxido de potássio, KOH, é uma substância sólida incolor, utilizada na fabricação de sabões líquidos. Já o hidróxido de sódio, NaOH, é usado na fabricação de sabões sólidos. Calcule o pH de uma solução de KOH de concentração igual a 1,1x10⁻³ mol/L.
- 5. O hidróxido de cálcio, Ca(OH)₂, é uma substância sólida incolor, usada em lubrificantes, em formulações de pesticidas, na composição de materiais à prova de fogo, etc. Calcule o pH de uma solução de hidróxido de cálcio de concentração 9,85x10⁻⁴ mol/L.
- 6. A metilamina, CH₃NH₂, é uma substância que ocorre na urina de certos animais e também em algumas plantas. Sabendo-se que o pK_b dessa substância 3,4 qual será o pH de uma solução 0,01 mol/L ?
- 7. O brometo de hidrogênio, HBr, é um gás incolor, muito corrosivo e, quando inalado, provoca irritação nos olhos, pele e vias respiratórias. As soluções aquosas deste gás são conhecidas como ácido bromídrico. Calcule a concentração de HBr em uma solução de pH 3,25.

- 8. Os hidróxidos metálicos são substâncias extremamente importantes na indústria química. Eles são usados na fabricação de sabões, em medicamentos (antiácidos), na construção civil (cal), etc. Calcule as concentrações das seguintes soluções de hidróxidos metálicos:
 - a. NaOH, pH 13,8.
 - b. Ca(OH)₂, pH 9,88.
 - c. KOH, pH 10,26.
- 9. O ácido fórmico, HCOOH, é usado na fabricação de formato de metila, um inseticida utilizado na proteção de frutas secas bem como do formato de etila, usado na indústria de bebidas para dar o sabor artificial do rum. Calcule a concentração de ácido fórmico inicial e no equilibrio, a 25°C, em uma solução de pH= 4,55. Dado K_a= 1,77x 10⁻⁴ mol/L.
- 10. A amônia, NH₃, é muito utilizada como matéria prima na produção de uma série de fertilizantes, tais como sulfato de amônio, uréia, superfosfatos amoniacais, etc. Quando dissolvida em água ela se comporta como uma base fraca. Calcule o valor da concentração de amônia inicial e no equilíbrio, a 25°C, em uma solução aquosa de pH= 11,15. Dado: K_b= 1,81x10⁻⁵ mol/L.
- 11. Quanto HCl 6,0 mol/L precisa ser adicionado a um litro de água para se obter uma solução de pH= 1,5 ?
- 12. Quantos mL de NaOH 1,0 mol/L precisam ser adicionados a 475 mL de água para se obter uma solução de pH= 10,9 ?

CAPÍTULO 4 - TITULAÇÃO ÁCIDO-BASE

- Qual é o pH no ponto de equivalência em uma titulação de HCl 0,10 mol/L com NaOH 0,1 mol/L ?
- 2. Qual é o pH no ponto de equivalência de uma titulação de 25 mL de CH₃COOH 0,24 mol/L com NaOH 0,24 mol/L. (K_a= 1,8x10⁻⁵)
- 3. 3. Qual é o pH no ponto de equivalência de uma titulação de 35 mL de HNO₃ 0,25 mol/L com KOH 0,25 mol/L ?
- 4. Qual é o pH no ponto de equivalência de uma titulação de 25 mL de H_2SO_4 0,28 mol/L com NaOH 0,50 mol/L. (K_a (HSO_4^-)= 1,2x10⁻²)
- 5. Em uma titulação de 25 mL de CH₃COOH 0,1 mol/L, qual será o pH da solução após a adição de 10 mL NaOH 0,1 mol/L ? Dado: K_a= 1,8x10⁻⁵.
- 6. Considere que 10 mL de NaOH 0,1 mol/L são titulados com HCl 0,1 mol/L. Calcule o pH da solução após a adição dos seguintes volumes do ácido:
 - a. 1,0 mL.
 - b. 5,0 mL.
 - c. 9,0 mL.
 - d. 9,9 mL.
 - e. 10,0 mL.
 - f. 11,0 mL.
- 7. Representar graficamente a titulação de 10 mL de ácido acético 0,1 mol/L com adições de 1 mL de NaOH 0,1 mol/L. Representar em ordenadas (eixo dos y) o pH da solução resultante após a adição de cada volume de NaOH e, no eixo das abscissas (x) o volume de NaOH adicionado (até um volume máximo de 20 mL).
- 8. Qual é o pH no ponto de equivalência de uma titulação de 35 mL de NH $_3$ 0,1 mol/L com HNO $_3$ 0,1 mol/L. (K_b = 1,81x10 $^{-5}$)

- 9. Uma solução 0,25 mol/L de um ácido fraco é titulada com NaOH 0,25 mol/L . Quando metade da base necessária para alcançar o ponto de equivalência foi adicionada verificou-se que o pH da solução era 4,41. Qual é a constante de dissociação do ácido?
- 10. Escolha o indicador adequado para a titulação de uma solução 0,1 mol/L de cada um dos seguintes ácidos com NaOH 0,1 mol/L:
 - a. ácido aspártico ($K_1 = 1.4 \times 10^{-4}$)
 - b. ácido oxálico ($K_1 = 5.4 \times 10^{-2}$)

CAPÍTULO 5 - SOLUÇÕES TAMPÃO

- 1. Qual é a concentração de ácido acético e acetato existentes em um tampão acetato 0,2 mol/L, pH 5 ? Dado: o K_a do ácido acético é 1,75x10⁻⁵ mol/L.
- 2. Qual é o pH de uma solução que contém ácido acético 0,3 mol/L e acetato de potássio 0,15 mol/L ? Dado: o K_a do ácido acético é 1,75x10⁻⁵ mol/L.
- 3. Quantas gramas de NH₄Cl e NH₄OH devem ser usadas para preparar um litro de uma solução tampão 0,2 mol/L pH 9,6 ? Dado: K_b da amônia é 1,81x10⁻⁵ mol/L.
- 4. Descrever como você prepararia 3 litros de tampão acetato 0,1 mol/L pH 5, partindo de acetato de sódio (MM = 136 g/mol) e ácido acético 1 mol/L.
- 5. Como você prepararia 1 litro de tampão fosfato 0,15 mol/L pH 7,2 partindo de uma solução de ácido fosfórico 89% em peso, densidade 1,75 g/mL ? Dado: as constantes de dissociação do ácido fosfórico são: K₁= 7,1x10⁻³ mol/L; K₂= 6,3x10⁻⁸ mol/L; K₃= 4,2x10⁻¹³ mol/L.
- 6. Descrever a preparação de 2 litros de tampão fosfato 0,4 mol/L pH 6,9 partindo de H₃PO₄ 2 mol/L e KOH 1 mol/L. Dado: as constantes de dissociação do ácido fosfórico são: K₁= 7,1x10⁻³ mol/L; K₂= 6,3x10⁻⁸ mol/L; K₃= 4,2x10⁻¹³ mol/L.
- 7. Descrever a preparação de 2 litros de tampão fosfato 0,4 mol/L pH 6,9 partindo de NaH₂PO₄ 1 mol/L e Na₂HPO₄ 1 mol/L. Dado: as constantes de dissociação do ácido fosfórico são: K₁= 7,1x10⁻³ mol/L; K₂= 6,3x10⁻⁸ mol/L; K₃= 4,2x10⁻¹³ mol/L.
- 8. Você pretende preparar uma solução tampão 0,1 mol/L pH 4,76. No laboratório você dispõe de ácido acético e ácido cítrico. Qual deles você escolheria? justifique a sua resposta. Dados: ácido acético (K_a = 1,75x10⁻⁵ mol/L). ácido cítrico (K_1 = 7,45x10⁻⁴ mol/L; K_2 = 1,73x10⁻⁵ mol/L).
- O ácido fosfórico pode ser usado para se preparar uma solução tampão de pH
 7,5 ? Por quê ? Dado: K₁= 7,1x10⁻³ mol/L; K₂= 6,3x10⁻⁸ mol/L; K₃= 4,2x10⁻¹³ mol/L.

Tabela 1: Zona de Viragem de Indicadores Ácido-base

Indicador	∆рН	Mudança de cor
Violeta de metila	0,1 – 1,6	amarelo → azul
Azul de timol*	1,2 – 2,8	vermelho → amarelo
Púrpura de m-cresol	1,2 – 2,8	vermelho → amarelo
4-dimetilazobenzeno	2,9 – 4,0	vermelho → laranja amarelado
Azul de bromofenol	3,0 – 4,6	amarelo → violeta avermelhado
Vermelho do congo	3,0 – 5,2	violeta azulado → laranja avermelhado
Alaranjado de metila	3,1 – 4,4	vermelho → laranja amarelado
Verde de bromocresol	3,8 – 5,4	amarelo → azul
Indicador misto 5	4,4 – 5,8	violeta avermelhado → verde
Vermelho de metila	4,4 – 6,2	vermelho → amarelo alaranjado
Tornassol	5,0 -8,0	vermelho → azul
Púrpura de bromocresol	5,2 - 6,8	amarelo → púrpura
Vermelho de bromofenol	5,2 - 6,8	amarelo alaranjado → púrpura
Azul de bromotimol	6,0 – 7,6	amarelo → azul
Vermelho de fenol	6,4 - 8,2	amarelo → vermelho
Vermelho neutro	6,8 - 8,0	vermelho azulado → amarelo alaranjado
Vermelho de cresol	7,0 - 8,8	amarelo → púrpura
Púrpura de m-cresol	7,4 – 9,0	amarelo → púrpura
Azul de timol*	8,0 - 9,6	amarelo → azul
Fenolftaleína	8,2 – 9,8	incolor → violeta avermelhado
Timolftaleína	9,3 – 10,5	incolor → azul
Amarelo de alizarina	10,0 - 12,1	amarelo claro → castanho
Azul de epsilon	11,6 - 13,0	alaranjado → violeta
Índigo carmin	11,5 - 14,0	Azul → amarelo

^{*}apresenta duas faixas de mudanças de cores.

Tabela 2: pKa de algumas substâcias (20°C)

Ácido maleico1.Ácido fosfórico2.Glicina2.	25 80 12 35 83
Ácido fosfórico 2. Glicina 2.	12
Glicina 2.	.35
ÁIIII	.83
Ácido malônico 2.	
Ácido ftálico 2.	95
Glicilglicina 3.	06
Ácido cítrico 3.	13
Ácido málico 3.	40
β-alanina 3.	60
Ácido fórmico 3.	75
Ácido oxálico 4.	19
Ácido succínico 4.	21
Hidóxido de amônio 4.	75
Ácido cítrico ou Ácido 4.	76
acético	
Ácido málico 5.	.11
Piridina 5.	25
Ácido ftálico 5.	41
Piperazina 5.	56
Ácido succínico 5.	65
Ácido malônico 5.	69
Ácido cítrico 5.	95
Ácido maleico 6.	.07
Mês 6.	15
Ácido carbônico 6.	.37
Ácido cítrico 6.	40
Bis-Tris 6.	50
Ada 6.	60
Aces ou Pipes 6.	80

Substância	рКа	
Mops	7.20	
Hedes	7.50	
Tes	7.50	
Tapso	7.60	
Trietanolamina	7.76	
Heppso	7.80	
Barbital	7.98	
Epps	8.00	
Tris	8.10	
Tricine	8.10	
Glicilglicilglicina	8.13	
Bicine	8.30	
Morfolina	8.30	
Taps	8.40	
Bis-Tris propano	9.00	
Ácido bórico	9.14	
Histidina	9.17	
Ches	9.30	
2-aminoetanol	9.50	
Capso	9.60	
2-amino-2-metil-3-propanol	9.70	
Glicina	9.70	
Piperazina	9.83	
β-alanina	10.13	
Ácido carbônico	10.25	
Caps	10.40	
Dietilamina	10.50	
Etilenodiamina	10.70	
Piperidina	11.10	

Mopso	6.90
Imidazol	6.99
Bes	7.10
Ácido fosfórico	7.20

Hexametilenodiamina	11.80
Ácido fosfórico	12.40
Ácido bórico	12.70
Ácido bórico	13.80

RESPOSTAS

Capítulo 1

- 1. 236 g/L
- 2.8 L.
- 3. a) 66/L. b) 69 g/5 L. c) 0,6 g/200 mL. d) 3,33 mL/37 mL. e) 0,1 mL/3 mL. f) 62,5 mL/250 mL. g) 6,0 mL/200 mL. h) 0,59 mL/5,1 mL.
- 4. 1,27x10⁻² mol/L.
- 5. a) 8,55 g. b) 1,0 g. c) 2,38 g.
- 6. 313,7 mL/L.
- 7. 24,95 g/250 mL.
- 8. 187,5 mL da solução 0,8 mol/L + 12,5 mL da solução 4 mol/L.
- 9. 3,21 mL/100 mL.
- 10. diluir 3 vezes.
- 11. 17,6 mol/L.
- 12. a) 10%. b) 110 g/L.
- 13. 40 g.
- 14.36,5 cm³/m³, portanto acima do nível tolerável.
- 15. 0,052 mol/L.
- 16. 3,08 mL da solução estoque.
- 17. 0,215 mol/L.

Capítulo 2

- 2. a) deslocamento para a direita. b) sem efeito. c) sem efeito. d) deslocamento para a esquerda.
- 3. a) deslocamento para a esquerda. b) deslocamento para a direita. c) deslocamento para a esquerda.
- porque diminui a energia de ativação tanto para a formação dos produtos quanto dos reagentes, isto é, ocorre somente uma influência a nível de velocidade para atingir o equilíbrio.
- 5. 3 (mol/L)⁻¹.
- 6. 0.33.
- 7. $2,387x10^{-14} \text{ (mol/L)}^2$.
- 8. 1,5x10⁻⁵ mol/L.
- 9. Ka 1,6x10⁻⁶ mol/L. e Kb 6,24x10⁻⁹ mol/L
- 10. 2,26x10⁻⁴ mol/L.

- 11. 1,8x10⁻³ mol/L.
- 12. $[NH_2C_6H_4COO^-] = [H^+] = 2,85x10^{-4} \text{ mol/L}; [NH_2C_6H_4COOH] = 3,7x10^{-3} \text{ mol/L}.$
- 13. $[C_2H_7NH^+]=[OH^-]=4,94x10^{-3} \text{ mol/L}; [C_2H_7N]=4,51x10^{-2} \text{ mol/L}$
- 14. [Glicose-6-fosfato]= [Glicose]= [ADP]= 0.005 mol/L; [ATP] $\cong 0.$
- 15. 19,01 mol/L.
- 16. 199,08 mol/L.
- 17. 2,401.
- 18. Demonstração.
- 19. 21,33 mol/L
- 20. Nada.

Capítulo 3

- 1.0,3
- 2. 2,9
- 3. 5,2
- 4. 11,0
- 5. 11,3
- 6. 11,3
- 7. 5,6x10⁻⁴ mol/L.
- 8. a) 0,6 mol/L; b) 3,8x10⁻⁵ mol/L. c) 1,8x10⁻⁴ mol/L.
- 9. 3,2x10⁻⁵ mol/L.
- 10. 0,11 mol/L.
- 11. 5,36 mL.
- 12. 0,377 mL.

Capítulo 4

- 1. 7,0
- 2.8,91
- 3. 7,0
- 4. 7,5
- 5. 4,6
- 6. a) 12,9. b) 12,5. c) 11,7. d) 10,7 e) 7,0. f) 2,32.
- 7.

pH mL pH	mL pH	mL pH
----------	-------	-------

2,9	6	4,9	12	12,0	18	12,5
3,8	7	5,1	13	12,1	19	12,5
4,1	8	5,3	14	12,2	20	12,5
4,4	9	5,7	15	12,3		
4,6	10	8,7	16	12,4		
4,7	11	11,7	17	12,4		

- 8. 5.3
- 9. 3,89x10⁻⁵
- 10. a) como a viragem ocorre em pH 8,3 deve-se usar vermelho de cresol ou púrpura de m-cresol. b) como a viragem ocorre em pH 7,0 deve-se usar azul de bromotimol ou vermelho de fenol.

Capítulo 5

- 1. [Ácido acético]= 0,073 mol/L; [Acetato de sódio]= 0,127 mol/L.
- 2.4,46
- 3. 3,32 g de NH₄C e 4,83 g de NH₄OH.
- 4. 26,112 g de acetato de sódio trihidratado +108 mL de ácido acético 1 mol/L e em seguida completar o volume para 3 litros com água destilada.
- 5. no caso de se utilizar um pHmetro para preparar o tampão, inicialmente adicionar 9,44 mL do ácido estoque a cerca de 800 ml de água destilada, e em seguida adicionar o hidróxido até o pHmetro registrar pH 7,2. Finalmente acertar o volume em 1,0 L com água destilada. Se o pHmetro não for utilizado, colocar cerca de 600 mL de água destilada no balão volumétrico, adicionar 9,44 mL do ácido estoque, 0,225 moles de base e em seguida completar o volume para 1 L.
- 6. Adicionar a 1.060 mL de KOH 1 mol/L a 400 mL de ácido fosfórico 2 mol/L e em seguida completar o volume com água para 2.000 mL.
- 7. Misturar 534 mL de NaH₂PO₄ 1 mol/L com 266 mL de Na₂HPO₄ 1 mol/L e em seguida completar o volume até 2 L com água destilada.
- 8. Os dois ácidos são adequados para a prepararação do tampão.
- 9. Sim, porque o pK_2 do H_2PO_4 é 7,2.