
Edited by
Maziar A. Sharbafi  and André Seyfarth



Bioinspired Legged Locomotion



This page intentionally left blank



Bioinspired Legged
Locomotion
Models, Concepts, Control and Applications

Maziar A. Sharbafi
André Seyfarth



Butterworth-Heinemann is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2017 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about
the Publisher’s permissions policies and our arrangements with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in
the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-803766-9

For information on all Butterworth-Heinemann publications

visit our website at https://www.elsevier.com/books-and-journals

Publisher: Joe Hayton
Acquisition Editor: Sonnini R. Yura
Editorial Project Manager: Mariana Kuhl
Production Project Manager: Kiruthika Govindaraju
Designer: Vitoria Pearson

Typeset by VTeX

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals


Maziar A. Sharbafi:

To my wife, Aida, for her devotion and endless support;
her selflessness will always be remembered.



This page intentionally left blank



Contents

List of Contributors xxi
About the Editors xxv

1. Introduction

Maziar A. Sharbafi and André Seyfarth

1.1 What Is Bio-Inspired Legged Locomotion? 2
1.2 Organization of the Book 4
References 6

Part I
Concepts

2. Fundamental Subfunctions of Locomotion

Maziar A. Sharbafi, David Lee, Tim Kiemel, and André Seyfarth

Preamble—Things to Consider "Before Walking" 11
2.1. Stance

David Lee

2.1.1 Effects of Gait 16
2.1.2 Effects of Size 22
2.1.3 Summary 25
References 26

2.2. Leg Swinging
Maziar A. Sharbafi and André Seyfarth

2.2.1 Characterizing Features of Leg Swinging 30
2.2.2 Leg Swinging Effects in Locomotion 32

2.2.2.1 Contributing to Stance Phase Dynamics 32
2.2.2.2 Trade-off Between Versatility, Robustness, and

Efficiency 33
2.2.2.3 Distribution of Energies in Forward, Lateral, and Vertical

Directions 33
2.2.2.4 Recovery from Perturbations 38

vii



viii Contents

2.2.3 Swing Leg Modeling and Control 39
2.2.3.1 Massless Swing Leg 39
2.2.3.2 Mass in the Swing Leg 40

References 42
2.3. Balancing

Tim Kiemel

2.3.1 The Neural Control of Balance: Standing vs. Walking 48
References 52

3. Conceptual Models of Legged Locomotion

Justin Seipel, Matthew Kvalheim, Shai Revzen, Maziar A. Sharbafi,
and André Seyfarth

A Role for Simple Conceptual Models
Justin Seipel

3.1. Conceptual Models Based on Empirical Observations
Justin Seipel

3.1.1 Observing, Imagining, and Gaining Insights into Locomotion 57
3.1.2 Locomotion as a Complex System Behavior 57
3.1.3 Some Characteristics of Whole-Body Locomotion 58

3.1.3.1 The Trunk: Bouncing Along 59
3.1.3.2 The Stance Leg: Acting Like a Spring 60
3.1.3.3 The Swing Leg: Recirculating for Touchdown 61

3.1.4 Whole-Body Conceptual Models as an Integration of Parts or
Subfunctions 61

References 61
3.2. Templates and Anchors

Matthew Kvalheim and Shai Revzen

3.2.1 A Mathematical Framework for Legged Locomotion 62
3.2.2 Templates and Anchors: Hierarchies of Models 63
3.2.3 Templates in Dynamics, Control, and Modeling 66
3.2.4 Sources of Templates; Notions of Templates 67

3.2.4.1 Dimensionality Reduction in Dynamical Systems 67
3.2.4.2 Templates Based on Mechanical Intuition 72
3.2.4.3 Data-Driven Model Reduction 72

3.2.5 Conclusion 74
References 75

3.3. A Simple Model of Running
Justin Seipel

3.3.1 Running Like a Spring-Loaded Inverted Pendulum (SLIP) 79
3.3.1.1 Physical Mechanisms and Robots Related to the SLIP

Model 80
3.3.2 Mathematical and Physics-Based SLIP Model 81

3.3.2.1 Ground Reaction Forces During Stance 82
3.3.2.2 Stride Maps: Behavior Investigated Step-by-Step 83



Contents ix

3.3.2.3 Stability of Locomotion 83
3.3.3 Some Insights into Running Aided by SLIP-Based Models 84

3.3.3.1 Adaptive, Resilient Locomotion Based on Open-Loop
Stability 84

3.3.3.2 Reducing Energetic Costs through Compliant
Interaction 85

3.3.3.3 Momentum Trading to Benefit Stability 85
3.3.3.4 Useful Inefficiency: Inefficiency can Benefit Robustness 85

References 86
3.4. Simple Models of Walking

Justin Seipel

3.4.1 Walking Like an Inverted Pendulum 87
3.4.2 Passive Walking Mechanisms: Physical Models and

Physics-Based Math Models 88
3.4.3 Mathematical Equations Governing a Bipedal Inverted

Pendulum (IP) Model 89
3.4.3.1 Behavior Within a Single Stance Phase 89
3.4.3.2 Stance Leg Liftoff and Swing Leg Touchdown 90
3.4.3.3 The Mechanics of Switching from One Stance Leg to the

Next 91
3.4.3.4 Stride Maps: Behavior Investigated Step-by-Step 92
3.4.3.5 Stability of Locomotion 92

3.4.4 Some Insights into Walking Aided by Inverted Pendulum
Models 93
3.4.4.1 Walking Includes a Pendular Flow of Energy 94
3.4.4.2 Walking Includes the Catching of Repeated Falls 94
3.4.4.3 Momentum is Exchanged During Double Stance 95

3.4.5 Integration of Walking and Running Models 95
References 96

3.5. Locomotion as an Oscillator
Shai Revzen and Matthew Kvalheim

3.5.1 Locomotion as an Oscillator 97
3.5.2 Stride Registration as Phase Estimation 99
3.5.3 Recovery from Perturbations 101
3.5.4 Subsystems as Coupled Oscillators 102
3.5.5 Legged Locomotion Oscillators are Hybrid Dynamical

Systems 102
3.5.6 Advanced Application: Data Driven Floquet Models 104
3.5.7 Summary 106
References 107

3.6. Model Zoo: Extended Conceptual Models
Maziar A. Sharbafi and André Seyfarth

3.6.1 More Detailed Representations of the Leg 111
3.6.1.1 Extending the Number of Limbs (B-SLIP, Q-SLIP) 113
3.6.1.2 Rimless Wheel 114
3.6.1.3 Stance Leg Adaptation (VLS and E-SLIP) 114



x Contents

3.6.1.4 Clock-Torque SLIP (CT-SLIP) 115
3.6.1.5 Linear Inverted Pendulum Mode (LIPM) 116
3.6.1.6 Addition of Leg Mass to IP (Acrobot, Simplest Walking

Model) 117
3.6.1.7 Addition of Mass to SLIP Leg (M-SLIP) 117
3.6.1.8 Extending SLIP with Leg Segments (F-SLIP, 2-SEG,

3-SEG) 118
3.6.1.9 Ankle Actuated IP 119
3.6.1.10 Curved Feet Model 120

3.6.2 Upper Body Modeling 121
3.6.2.1 Virtual Pivot Point (VPP) 121
3.6.2.2 Force Modulated Compliant Hip (FMCH) 122

3.6.3 Extension to 3D 123
3.6.3.1 3D SLIP 124
3.6.3.2 3D IP 125

3.6.4 Extension with Muscle Models 125
References 127

Part II
Control

4. Control of Motion and Compliance

Katja Mombaur, Heike Vallery, Yue Hu, Jonas Buchli,
Pranav Bhounsule, Thiago Boaventura, Patrick M. Wensing,
Shai Revzen, Aaron D. Ames, Ioannis Poulakakis, and Auke Ijspeert

Introduction 135
4.1. Stability and Robustness of Bipedal Walking

Katja Mombaur and Heike Vallery

4.1.1 Introduction 139
4.1.2 Stability Criteria Related to Instantaneous Properties of the

Walking System 140
4.1.2.1 Projected Center of Mass 141
4.1.2.2 Zero Moment Point 142
4.1.2.3 Capture Point or Extrapolated Center of Mass 143
4.1.2.4 Virtual Pivot Point 144
4.1.2.5 Angular Momentum 144
4.1.2.6 Zero Rate of Angular Momentum Point 145

4.1.3 Stability Criteria for Limit Cycles 146
4.1.3.1 Definition of Stability and Orbital Stability in the Sense

of Lyapunov 146
4.1.3.2 Stability Analysis of Walking Using Lyapunov’s First

Method 147
4.1.3.3 Applicability of Limit Cycle Stability Concepts to

Feedback-Controlled Robots and Humans 149



Contents xi

4.1.4 Robustness Measures of Walking 151
4.1.4.1 Robustness Analysis via the Basin of Attraction 151
4.1.4.2 Robustness Analysis via the Gait Sensitivity Norm 152
4.1.4.3 Robustness Analysis Based on Lyapunov’s Second

Method 153
4.1.4.4 Pseudospectra for Robustness Analysis of the Matrix

Spectrum 154
4.1.5 Recovery from Large Perturbations and Pushes 155
4.1.6 Discussion & Outlook 158
References 159

4.2. Optimization as Guiding Principle of Locomotion
Katja Mombaur

4.2.1 Introduction 164
4.2.2 Forward and Inverse Dynamics Models of Locomotion 166
4.2.3 Formulating Legged Locomotion as Optimal Control Problem 173
4.2.4 Application of Optimal Control to Generate Locomotion in

Humans and Robots 177
4.2.5 What Is the Cost Function of Human Locomotion? The Inverse

Optimal Control Problem 181
4.2.6 Application of Inverse Optimal Control to Analyze Optimality

in Human Locomotion 185
4.2.7 Discussion & Outlook 189
Acknowledgements 191
References 191

4.3. Efficiency and Compliance in Bipedal Walking
Katja Mombaur, Yue Hu, and Jonas Buchli

4.3.1 Introduction 196
4.3.2 Different Models of Compliance 199

4.3.2.1 Constant Compliance 200
4.3.2.2 Variable Compliance 202
4.3.2.3 Extension of Compliance Models to Coupled Joints 203

4.3.3 Using Optimal Control for Compliance Studies 203
4.3.4 Optimization-Based Compliance Studies in Humans 205

4.3.4.1 Constant Parallel Compliance Models for Running and
Walking 205

4.3.4.2 Compliance Modulation in Human Walking in Different
Situations 207

4.3.5 Optimization-Based Compliance Studies in Robots 210
4.3.5.1 Constant Serial Compliance in Robots 212
4.3.5.2 Variable Rest Length Results in Robots 215
4.3.5.3 Variable Compliance in Robots 216

4.3.6 Discussion & Outlook 218
References 219



xii Contents

4.4. Impedance Control for Bio-Inspired Robots
Jonas Buchli and Thiago Boaventura

4.4.1 Rigid Body Dynamics 223
4.4.2 Task/Operational Spaces 227
4.4.3 Impedance & Admittance 229
4.4.4 Impedance of a Robot 231
4.4.5 Impedance Control 233

4.4.5.1 Impedance Control Through Joint Control 233
4.4.5.2 Impedance Control Through Kinematic Configuration

Control 235
4.4.5.3 Impedance Control Through Contact Control 236

4.4.6 Emulation of Muscle Models 237
References 238

4.5. Template Models for Control
Patrick M. Wensing and Shai Revzen

4.5.1 Introduction 240
4.5.1.1 A Design Process for Template-Based Control 241

4.5.2 Template Model Selection 242
4.5.2.1 Linear CoM Models for Walking 243
4.5.2.2 SLIP Models for Running 245
4.5.2.3 Perspectives of Template Model Selection 247

4.5.3 Template Model Control 247
4.5.3.1 Control of Linear CoM Models for Walking 248
4.5.3.2 Control for SLIP-Based Models 251
4.5.3.3 Beyond Tracking Control for Pendular Models 254

4.5.4 Establishing a Template/Anchor Relationship 254
4.5.4.1 Realizing Template Dynamics Through Task-Space

Control 255
4.5.4.2 Lifting Other Properties of Template Control 260
4.5.4.3 Anchoring the Template Through Less Model-Intensive

Methods 261
4.5.4.4 Template-Inspired Mechanical Design 262

4.5.5 Conclusions 263
References 263

4.6. Control Based on Passive Dynamic Walking
Pranav Bhounsule

4.6.1 Introduction 267
4.6.2 Passive Dynamic Walking on a Slope 269

4.6.2.1 Model Description and Equations of Motion 269
4.6.2.2 Analysis Using Poincaré Return Map 271
4.6.2.3 Passive Dynamic Walking in 3-Dimensions 272

4.6.3 Powered Bipedal Robots Inspired from Passive Dynamics 274
4.6.3.1 Collisionless Walking 274
4.6.3.2 Actuating Passive Dynamic Walking Robots 275
4.6.3.3 Discrete-Decision Continuous Action Control 277



Contents xiii

4.6.4 Discussion and Challenges 282
4.6.4.1 Energy Efficiency and Dynamic Walking 282
4.6.4.2 Stability and Robustness 283
4.6.4.3 Versatility, Maneuverability, and Agility 283
4.6.4.4 Mechanical Design 284
4.6.4.5 Estimation 285
4.6.4.6 Higher Dimensional Systems 285

4.6.5 Conclusion 285
Acknowledgement 286
Appendix 4.6.6 286

4.6.6.1 Derivation of Equations of Motion for the Simplest
Walker 286

References 289
4.7. Hybrid Zero Dynamics Control of Legged Robots

Aaron D. Ames and Ioannis Poulakakis

4.7.1 Bipedal Robots with HZD Controllers 292
4.7.2 Modeling Legged Robots as Hybrid Dynamical Systems 295

4.7.2.1 Continuous Dynamics 295
4.7.2.2 Discrete Dynamics 296
4.7.2.3 Hybrid Control System 297
4.7.2.4 Advanced Models of Locomotion 298

4.7.3 Virtual Constraints for Locomotion 299
4.7.3.1 Virtual Constraints 299
4.7.3.2 Designing Virtual Constraints for Locomotion Tasks 300

4.7.4 Using Feedback Control to Impose Virtual Constraints 302
4.7.4.1 Feedback Linearization 302
4.7.4.2 Zero Dynamics 304
4.7.4.3 Partial Zero Dynamics 306

4.7.5 Generating Periodic Motions 307
4.7.5.1 Hybrid Zero Dynamics 308
4.7.5.2 Partial Hybrid Zero Dynamics 311
4.7.5.3 Control Lyapunov Functions 313

4.7.6 Extensions of Hybrid Zero Dynamics 315
4.7.6.1 CLF-Based QPs 316
4.7.6.2 Multidomain Hybrid Zero Dynamics 318
4.7.6.3 Application to Prostheses 320
4.7.6.4 Compliant Hybrid Zero Dynamics 320

4.7.7 Summary 325
References 326

4.8. Robot Locomotion Control Based on Central Pattern Generators
Auke Ijspeert

4.8.1 Introduction 332
4.8.2 Central Pattern Generators in Animals 332
4.8.3 CPGs as Robot Controllers 334

4.8.3.1 Different Types of Implementation 335
4.8.3.2 Examples of CPG Controllers 337



xiv Contents

4.8.3.3 Design Methods for CPG Controllers 340
4.8.4 Discussion 341
4.8.5 Conclusion 342
References 342

5. Torque Control in Legged Locomotion

Juanjuan Zhang, Chien Chern Cheah, and Steven H. Collins

5.1 Introduction 347
5.2 System Overview 352

5.2.1 System Modeling 352
5.2.2 Potential Control Issues 355

5.3 A Case Study with an Ankle Exoskeleton 357
5.3.1 Exoskeleton System 358
5.3.2 Low-Level Torque Controllers 359

5.3.2.1 Motor Velocity Control 360
5.3.2.2 Model-Free Feedback Control 360
5.3.2.3 Model-Based Feed-Forward Control 362
5.3.2.4 Model-Based Feedback Control 363
5.3.2.5 Model-Free Feed-Forward Control 365
5.3.2.6 Additional Feedback Control Terms Piloted 368

5.3.3 High-Level Assistance Controllers 369
5.3.3.1 Stance Torque Control 369
5.3.3.2 Swing Control 372

5.3.4 Experimental Methods 372
5.3.5 Results 375

5.4 Discussion 378
5.4.1 Proportional-Learning-Damping Control 379
5.4.2 Benefits of Additional Control Elements 381

5.4.2.1 Continuous-Time Integration 381
5.4.2.2 Model-Based Control Elements 382
5.4.2.3 Gain Scheduling, Optimal Control, and

Learning 383
5.4.3 Factors Limiting Interpretation 384

5.4.3.1 High-Level Controllers 384
5.4.3.2 Interactions with Human Response 384
5.4.3.3 Hardware Dependence 385

5.4.4 Implications for Control of Future Systems 386
5.5 Conclusions 386
Acknowledgements 387
Appendix 5.A Stability and Convergence of the Passivity Based

Controller 387
5.A.1 Passivity 387
5.A.2 Convergence 388

Appendix 5.B PD∗ +�LRN Versus LRN+ PD∗ 390
Appendix 5.C Neuromuscular Reflex Model 393
References 395



Contents xv

6. Neuromuscular Models for Locomotion

Arthur Prochazka, Simon Gosgnach, Charles Capaday, and
Hartmut Geyer

6.1. Introduction: Feedforward vs Feedback in Neural Control: Central
Pattern Generators (CPGs) Versus Reflexive Control
Arthur Prochazka and Hartmut Geyer

References 403
6.2. Locomotor Central Pattern Generators

Simon Gosgnach and Arthur Prochazka

6.2.1 Neuronal Networks that Make up the Locomotor CPG 404
6.2.2 In Vivo Preparations Used to Study the Locomotor CPG 405
6.2.3 In Vitro Preparations Used to Study the Locomotor CPG 406
6.2.4 Implementation of Molecular Genetic Techniques to Study

the Locomotor CPG 407
6.2.5 Network Models of the Locomotor CPG 410
6.2.6 CPG Control of Locomotor Phase Durations 413
References 414

6.3. Corticospinal Control of Human Walking
Charles Capaday

6.3.1 Forward Walking 419
6.3.2 Backward Walking 420
6.3.3 Comments on the Role of Motor Cortex in Forward and

Backward Walking 423
6.3.4 Conclusions on Corticospinal Control 424
References 424

6.4. Feedback Control: Interaction Between Centrally Generated
Commands and Sensory Input
Arthur Prochazka

6.4.1 Locomotor Control 427
6.4.2 Effect on Locomotion of Sensory Loss 427
6.4.3 Centrally-Generated Commands Versus Sensory-Dominated

Control 428
6.4.4 Sensory Inputs 428
6.4.5 Stretch Reflexes and “Preflexes”: Displacement and Force

Feedback 430
6.4.6 Role of Sensory Input in Phase-Switching 431
References 432

6.5. Neuromechanical Control Models
Arthur Prochazka and Hartmut Geyer

6.5.1 Are Extensor-Dominated Phase Durations Obligatory for
Biomechanical Reasons? 437

6.5.2 Neuromechanical Entrainment in Human Models of
Locomotion 437

6.5.3 Alternative Roles of CPGs in the Limb Controller 438



xvi Contents

6.5.4 Inspiration for Control in Robotics 439
6.5.5 Modeling the Mammalian Locomotor System 440
6.5.6 Explicit Example of Neuromechanical Model of Human

Locomotion 443
6.5.7 Concluding Remarks 446
References 446

6.6. Appendix
Arthur Prochazka and Hartmut Geyer

6.6.1 Muscle Activation Function 449
6.6.2 Force–Velocity Function 449
6.6.3 Force–Length (Length–Tension) Function 450
6.6.4 Passive Stiffness 450
6.6.5 Tendon Compliance 450
6.6.6 Muscle Spindle Length Response Function 451
6.6.7 Fusimotor Offset and Gain Function 451
6.6.8 γ -Fusimotor Drive 452
6.6.9 Golgi Tendon Organ Model 452
Acknowledgments 452
References 452

Part III
Implementation

7. Legged Robots with Bioinspired Morphology

Ioannis Poulakakis, Madhusudhan Venkadesan, Shreyas Mandre,
Mahesh M. Bandi, Jonathan E. Clark, Koh Hosoda, Maarten Weckx,
Bram Vanderborght, and Maziar A. Sharbafi

Preface 457
7.1. Biological Feet: Evolution, Mechanics and Applications

Madhusudhan Venkadesan, Shreyas Mandre, and Mahesh M. Bandi

7.1.1 Overview 461
7.1.2 The Human Foot 463

7.1.2.1 Anatomy 463
7.1.2.2 Evolution 464

7.1.3 Cost–Benefit Analysis of the Human Foot 466
7.1.3.1 Costs 466
7.1.3.2 Benefits 468

7.1.4 Temporal Filtering 469
7.1.4.1 Point-Like Foot 469
7.1.4.2 Spatially Extended and Rigid Foot 470
7.1.4.3 Conclusion: Temporal Filtering 474

7.1.5 Spatial Filtering 475
7.1.5.1 Smoothing Over Rough Terrains 475
7.1.5.2 Effect of the Foot Arches on Stiffness 477



Contents xvii

7.1.6 Conclusion 483
References 483

7.2. Bioinspired Leg Design
Jonathan E. Clark

7.2.1 Functions of a Leg in a Robot 487
7.2.1.1 Four Basic Functions 487
7.2.1.2 Obstacle Clearance and Foot Scuffing 488
7.2.1.3 Material and Manufacturing Considerations 489

7.2.2 Actuation Strategies 489
7.2.2.1 Pneumatics, Hydraulics, and DC Motors 490
7.2.2.2 Active Materials 491
7.2.2.3 Transmission Strategies 492
7.2.2.4 Variable Stiffness Mechanisms 493

7.2.3 Bio-inspiration: Morphology 494
7.2.4 Bio-inspiration: Dynamics 495

7.2.4.1 Single Active DOF Legs 495
7.2.4.2 2+ Active DOF Legs 496
7.2.4.3 Climbing and Other Uses of Legs 497
7.2.4.4 Multiuse Leg Designs 499

7.2.5 Summary and Future Directions 501
References 502

7.3. Human-Inspired Bipeds
Koh Hosoda, Maarten Weckx, Maziar A. Sharbafi, and
Ioannis Poulakakis

7.3.1 Mimicking the Human Figure 507
7.3.1.1 Early Control-Based Approaches 508
7.3.1.2 Morphologically Inspired Bipeds and Quasistatic

Balancing 510
7.3.1.3 Passive Walking and Dynamic Balancing 512

7.3.2 Human-Inspired Musculoskeletal Bipeds 515
7.3.2.1 Biarticular Muscles: Biomechanics and Inspiration 515
7.3.2.2 Applications to Robotics 519

7.3.3 Conclusions 524
References 525

7.4. Bioinspired Robotic Quadrupeds
Ioannis Poulakakis

7.4.1 Preliminaries on Gaits 527
7.4.2 The Role of the Torso: Observations from Biology 531
7.4.3 Modeling: Template Candidates for Quadrupedal Locomotion 535

7.4.3.1 Spring–Mass Models for Quadrupedal Locomotion 536
7.4.3.2 A Passive Template Candidate for Bounding With a

Flexible Torso 539
7.4.4 Quadrupedal Robot Design: Rigid or Flexible Torsos? 545

7.4.4.1 Robots With Rigid Torso 546
7.4.4.2 Robots With Segmented Torsos 552

7.4.5 Conclusions 556



xviii Contents

Acknowledgements 556
References 556

8. Actuation in Legged Locomotion

Koh Hosoda, Christian Rode, Tobias Siebert, Bram Vanderborght,
Maarten Weckx, and D. Lefeber

8.1. Muscle-Like Actuation for Locomotion
Christian Rode and Tobias Siebert

8.1.1 Fundamental Phenomenological Muscle Mechanics 565
8.1.2 Active and Semiactive Mechanisms of Force-Production 571
8.1.3 How Human Muscles Work as Actuators in Locomotion 577
8.1.4 Redundancy of the Actuation System – Functionally Resolved? 581
References 585

8.2. From Stiff to Compliant Actuation
Maarten Weckx, Bram Vanderborght, and Dirk Lefeber

8.2.1 Stiff Servomotor 591
8.2.2 Stiff Servomotor with Active Compliance 592
8.2.3 Series Elastic Actuator (SEA) 594

8.2.3.1 Example: SEA in an Ankle Prosthesis 595
8.2.4 Variable Stiffness Actuator (VSA) 597

8.2.4.1 Spring Preload 599
8.2.4.2 Changing Transmission Between Load and Spring 601
8.2.4.3 Changing the Physical Properties of the Spring 601

8.2.5 Parallel Stiffness 602
8.2.6 Locking Mechanisms 606
8.2.7 Multi-DoF Joints 607
References 609

8.3. Actuators in Robotics as Artificial Muscles
Koh Hosoda

8.3.1 Muscle-Like Actuators Driven by Electric Rotational Motors 613
8.3.2 Linear Actuators without Slack 615
8.3.3 Pneumatic Artificial Muscles 617
8.3.4 Artificial Muscle Emulating Dynamics of Biological Muscle 620
References 621

9. Conclusion

Maziar A. Sharbafi, David Lee, Thomas G. Sugar, Jeffrey Ward, Kevin
W. Hollander, Koh Hosoda, and André Seyfarth

9.1. Versatility, Robustness and Economy
David Lee

References 630



Contents xix

9.2. Application in Daily Life (Assistive Systems)
Thomas G. Sugar, Jeffrey Ward, and Kevin W. Hollander

9.2.1 Rehabilitation 632
9.2.2 Spinal Cord Injury 632
9.2.3 Passive Ankle Foot Orthoses 633
9.2.4 Powered Ankle Foot Orthoses 634
9.2.5 Passive Prosthetic Ankles 635
9.2.6 Powered Prosthetic Ankles 635
9.2.7 Wearable Robots for Manufacturing 636
9.2.8 Wearable Robots for Recreation 636
References 638

9.3. Related Research Projects and Future Directions
Maziar A. Sharbafi, André Seyfarth, Koh Hosoda, and
Thomas G. Sugar

9.3.1 European Projects 640
9.3.2 Research Projects in North America 648

9.3.2.1 National Science Foundation (NSF) 648
9.3.2.2 Defense Advanced Research Projects Agency (DARPA) 649
9.3.2.3 CAREER: Robust Bipedal Locomotion in Real-World

Environments 650
9.3.2.4 MIT Cheetah Robot 651

9.3.3 Research in Asia 651
9.3.3.1 Humanoid Robotics Institute, Waseda University 651
9.3.3.2 JST Laboratory, University of Tokyo 651
9.3.3.3 Honda Robotics 652
9.3.3.4 Humanoid Robotics Project (HRP) 652
9.3.3.5 HUBO Project, KAIST 652
9.3.3.6 Adaptive Robotics Laboratory, Osaka University

(Hosoda Laboratory) 652
9.3.3.7 Surena Bipedal Robot Series 653

9.3.4 Novel Techonologies 653
9.3.4.1 Soft Exosuit 653
9.3.4.2 Superflex 654
9.3.4.3 JTAR from SpringActive 654
9.3.4.4 Bionics at MIT 654
9.3.4.5 Quadrupedal Robots of Boston Dynamics 655
9.3.4.6 SRI PROXI Humanoid Robot 655
9.3.4.7 SCHAFT Biped Robot 655
9.3.4.8 “Spring–Mass” Technology in the Future of Walking

Robots 656
9.3.4.9 Summary 656

References 657
Index 659



This page intentionally left blank



List of Contributors

Aaron D. Ames

Mechanical and Civil Engineering and Control and Dynamical Systems,
California Institute of Technology (Caltech), United States

Maziar A. Sharbafi

School of Electrical and Computer Engineering, College of Engineering,
University of Tehran, Iran

Lauflabor Locomotion Laboratory, TU Darmstadt, Germany

Mahesh M. Bandi

Collective Interactions Unit, OIST Graduate University, Tancha, Okinawa,
Japan

Pranav Bhounsule

Department of Mechanical Engineering, The University of Texas at San
Antonio, San Antonio, TX, United States

Thiago Boaventura

ADRL, ETH Zürich, Zürich, Switzerland

Jonas Buchli

ADRL, ETH Zürich, Zürich, Switzerland

Charles Capaday

Universitätsmedizin Göttingen, Institute for Neurorehabilitation Systems,
Georg-August University Göttingen, Göttingen, Germany

Chien Chern Cheah

School of Electric and Electronic Engineering, Nanyang Technological
University, Singapore

xxi



xxii List of Contributors

Jonathan E. Clark

Department of Mechanical Engineering, FAMU/FSU College of
Engineering, Tallahassee, FL, United States

Steven H. Collins

Department of Mechanical Engineering, Carnegie Mellon University,
United States

Robotics Institute, Carnegie Mellon University, United States

Hartmut Geyer

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United
States

Simon Gosgnach

Neuroscience and Mental Health Institute, University of Alberta,
Edmonton, AB, Canada

Kevin W. Hollander

SpringActive, Inc.

Koh Hosoda

Department of System Innovation, Graduate School of Engineering
Science, Osaka University, Toyonaka, Japan

Yue Hu

Optimization, Robotics & Biomechanics, ZITI, IWR, Heidelberg
University, Heidelberg, Germany

Auke Ijspeert

Biorobotics Laboratory, EPFL – Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland

Tim Kiemel

School of Public Health, University of Meryland, United States

Matthew Kvalheim

Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI, United States

David Lee

School of Life Sciences, University of Nevada, Las Vegas, United States



List of Contributors xxiii

Dirk Lefeber

Department of Mechanical Engineering, Vrije Universiteit Brussel,
Brussels, Belgium

Shreyas Mandre

School of Engineering, Brown University, Providence, RI, United States

Katja Mombaur

Optimization, Robotics & Biomechanics, ZITI, IWR, Heidelberg
University, Heidelberg, Germany

Ioannis Poulakakis

Department of Mechanical Engineering, University of Delaware, Newark,
DE, United States

Arthur Prochazka

Neuroscience and Mental Health Institute, University of Alberta,
Edmonton, AB, Canada

Shai Revzen

Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI, United States

Christian Rode

Department of Motion Science, Friedrich-Schiller-Universität Jena, Jena,
Germany

Justin Seipel

Purdue University, West Lafayette, IN, United States

André Seyfarth

Lauflabor Locomotion Laboratory, TU Darmstadt, Germany

Tobias Siebert

Institute of Sport and Motion Science, University of Stuttgart, Stuttgart,
Germany

Thomas G. Sugar

Fulton Schools of Engineering, The Polytechnic School, Arizona State
University, AZ, USA

Heike Vallery

Faculty of Mechanical, Maritime and Materials Engineering, Delft
University of Technology, Delft, The Netherlands



xxiv List of Contributors

Bram Vanderborght

Department of Mechanical Engineering, Vrije Universiteit Brussel,
Brussels, Belgium

Madhusudhan Venkadesan

Department of Mechanical Engineering & Materials Science, Yale
University, New Haven, CT, United States

Jeffrey Ward

SpringActive, Inc.

Maarten Weckx

Department of Mechanical Engineering, Vrije Universiteit Brussel,
Brussels, Belgium

Patrick M. Wensing

Department of Aerospace and Mechanical Engineering, University of
Notre Dame, Notre Dame, IN, United States

Juanjuan Zhang

Department of Mechanical Engineering, Carnegie Mellon University,
United States

School of Electric and Electronic Engineering, Nanyang Technological
University, Singapore



About the Editors

Maziar A. Sharbafi
Maziar A. Sharbafi is an assistant professor in Electrical and Computer Engi-
neering Department of University of Tehran. He is also a guest researcher at
the Locomotion Laboratory, TU Darmstadt. He studied control engineering at
Sharif University of Technology and University of Tehran (UT) where he has
received his Bachelor and Master’s degrees, respectively. He started working
on bipedal robot control during his PhD studies at University of Tehran which
ended in 2007, and worked more on bio-inspired control approaches since he
entered Lauflabor in 2011. His current research interests include bio-inspired
locomotion control based on conceptual and analytic approaches, postural sta-
bility, and the application of dynamical systems and nonlinear control to hybrid
systems (e.g., for legged locomotion).

André Seyfarth
André Seyfarth is a full professor for Sports Biomechanics at the Department
of Human Sciences of TU Darmstadt and head of the Lauflabor Locomotion
Laboratory. After his studies in physics and his PhD in the field of biome-
chanics, he went as a DFG “Emmy Noether” fellow to the MIT LegLab (Prof.
Herr, USA) and the ParaLab at the university hospital Balgrist in Zurich (Prof.
Dietz, Switzerland). His research topics include sport science, human and an-
imal biomechanics and legged robots. Prof. Seyfarth was the organizer of the
Dynamic Walking 2011 conference (“Principles and Concepts of Legged Loco-
motion”) and the AMAM 2013 conference (“Adaptive Motions in Animals and
Machines”).

xxv



This page intentionally left blank



Chapter 1

Introduction
Maziar A. Sharbafi∗,†, André Seyfarth†

∗School of Electrical and Computer Engineering, College of Engineering, University of Tehran,
Iran †Lauflabor Locomotion Laboratory, TU Darmstadt, Germany

In human life movements are required to explore and to interact with the world.
Movements are necessary for communication and even help anticipate abstract
concepts like time. The act or ability of moving from place to place is called
locomotion (Merriam-Webster, 2004). Man-made systems can also be designed
to move, e.g., wheeled vehicles that can be fast and efficient. However, many of
these systems have certain drawbacks such as limited ability to handle gaps or
steps, reduced agility and poor coping mechanisms for dealing with uneven ter-
rains. Legged systems are nature’s common approach for locomotion on ground.
Aristotle was one of the first persons who realized the challenge of designing
legged system when he asked “why are man and birds bipeds, but fish footless?”
and “why do man and bird, though both bipeds, have an opposite curvature of
the legs?” (Aristotle, 2014).

Research on legged locomotion, both in nature and robotics, may enable us
to design and construct more agile and efficient moving systems. At the same
time, it can also help us understand human movement and control. In turn, this
may support developing new approaches for locomotor rehabilitation and assis-
tance. In this respect, findings in biology and robotics can greatly complement
each other (Collins et al., 2015). Currently, the principles of animal and hu-
man locomotion and their applicability to artificial legged and assistive devices
are not fully understood. Given the differences between biological and artifi-
cial body design and control, an important question is to what extent should we
use biological design and control approaches for building artificial locomotor
systems?

Learning from nature does not require mimicking the biological locomotor
system in detail. We can already greatly benefit from applying selected design
and control principles, such as adding compliant structures to artificial systems
or arranging actuators analogous to bi-articular muscles in the human leg.

In recent years, researchers from highly diverse disciplines such as biology,
motion science, medicine, and engineering have advanced research on legged
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locomotion by investigating the underlying principles of body mechanics and re-
lated control design (Raibert, 1986; Alexander, 2003; Chevallereau et al., 2013;
Winter, 2009; Westervelt et al., 2007; Holmes et al., 2006; Duysens et al., 2002;
Duysens and Van de Crommert, 1998; Koditschek et al., 2004). Consider-
ing nature as an ingenious teacher, bio-inspired approaches have become in-
creasingly important in the study of legged locomotion (Duysens et al., 2002;
Ijspeert, 2008; Seyfarth et al., 2013a). This book aims at providing a compre-
hensive overview of the biomechanics and control of legged locomotion using
perspectives from both biology and engineering. In addition, we introduce a
roadmap of the state-of-the-art in studying bio-inspired locomotion.

1.1 WHAT IS BIO-INSPIRED LEGGED LOCOMOTION?

In this book bio-inspiration does not just mean copying structures or controller
from nature but instead describes the concepts behind the design and control
of legged systems. Since our understanding of legged locomotion in biological
systems is not complete, here, bio-inspiration refers to the insight obtained from
biology that can be adapted to the needs and capabilities of engineered systems
(such as those defined by sensor and actuator properties). The reason behind
using biology as an inspiration is that the capabilities of engineered systems
may be very different to their biological counterparts. For example, compared
to artificial actuators (like electric motors), biological muscles consist of many
small actuator units (contractile elements) with distributed properties (such as
fast vs. slow twitch muscle fibers) (McMahon, 1984). As a result, a biological
motor system is capable of producing versatile movements, spanning tasks of
highly different loading and speed conditions. In contrast, state-of-the-art arti-
ficial actuators are designed to work optimally during continuous operation at
one specific working condition.

Following the presented understanding of bio-inspired legged locomotion,
we arranged the book in three general parts:

i. Locomotion concepts,
ii. Locomotion control,
iii. Implementation and applications.

As robotic and biological legged systems have different body structure, bi-
ological controllers may not be directly applicable to the engineered system. In
particular, because of different properties of biological and artificial actuators
(Klute et al., 2002), it is important to extract the logic behind locomotion con-
trol in humans and animals rather than simply replicating individual properties
and specific control strategies.

In this book we start with bio-inspired locomotion concepts. Inspired from
nature, we can consider legged locomotion to be composed of three locomotion
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FIGURE 1.1 Main locomotion subfunctions: (i) axial stance leg function, (ii) rotational swing
leg function (an additional axial leg function of the swing leg is used for ground clearance), and
(iii) balance for maintaining posture.

subfunctions (Seyfarth et al., 2013b): stance, swing, and balance, as shown
in Fig. 1.1. Stance function describes the repulsive function of the stance leg
(in contact with the ground) to counteract gravity (Seyfarth et al., 2013b). Leg
swinging is mainly a rotational movement combined with a complementing
axial leg movement to avoid foot scuffing on the ground. Because a major
part of the body mass is located at the upper body, the human body is an in-
herently unstable system unless a controller is continuously keeping balance
(Winter, 1995). Therefore, balancing (Pollock et al., 2000) or body posture
control (Massion, 1994) is considered to be the third locomotion subfunction
required to accomplish stable gaits, especially in bipeds. Template models (Full
and Koditschek, 1999) which have a high level of abstraction provide a very
useful tool to understand how these subfunctions are controlled and coordinated,
both in nature (Blickhan, 1989) and legged robots (Raibert, 1986).

For stable legged locomotion, an appropriate control architecture is required
to employ the locomotion concepts. Hence, we need to know the correspond-
ing control principles and how to learn from biology to simplify control. In
addition, for interaction with humans, lower level force/torque control is bene-
ficial in comparison to position control which might be harmful (Haddadin et
al., 2008). On the higher level, legged locomotion requires motor control based
on sensory feedback. This control organizes the interaction between the current
state of the body and the actuator commands (provided through muscles stimu-
lation in humans) (Duysens et al., 2002), such as task-specific reflex pathways
that shape the neuromuscular system dynamics. Since neural and mechanical
systems are dynamically coupled (Full and Koditschek, 1999), identifying the
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interplay of different levels of the neuro-mechanical system is a key challenge
in bio-inspired locomotion control.

In order to benefit from bio-inspired locomotion concepts and control that
can be used for implementation on robots or assistive devices, key character-
istics of legged mechanisms need to be identified. Raibert and Hodgins (1993)
stated: “We believe that the mechanical system has a mind of its own, governed
by the physical structure and laws of physics.” Although there is no unique
winning body design that is optimal for all types of gaits, identifying general
useful mechanisms is crucial. For example, one important lesson learned from
nature is that, during legged locomotion, compliance plays a significant role
in simplifying control, and enhancing energy efficiency and robustness against
perturbations (McMahon, 1985; Full et al., 2000). In addition, body morphol-
ogy and actuator properties are key aspects in the mechanical design of legged
systems and can simplify control and increase energetic efficiency.

1.2 ORGANIZATION OF THE BOOK

This book presents a general overview of legged locomotion research (shown
in Fig. 1.2) that consists of a large range of academic disciplines comprising
physics, biology, mathematics, robotics, control engineering, computer science,
movement science, and biomechanics. The reader is invited to learn more about
the related background by studying books concerning different disciplines pro-
vided in Table 1.1.

The book is divided into nine chapters, which have the following structure:
outline, abstract, introduction, and main contents. The main topics of each chap-
ter are presented in the outline. The abstract shortly describes the relationship
between these topics presented in the outline. In the introduction, the reader will
find background information on relevant research. The main content is divided
into sections. In some chapters they stand alone as separate articles, whereas
in others the sections are in closer relation to each other. In the following, we
describe the content of the chapters, following the Introduction (Chapter 1):

In Chapter 2, legged locomotion is described as a composition of three
subfunctions: (1) “Stance” leg axial function during contact with ground,
(2) “Swinging” the leg during the flight/swing phase rotationally, and (3) “Bal-
ancing” the upper body as an interaction between the leg and the upper body.
In Chapter 3, conceptual models are presented as tools to explain the main
features of locomotion.

Chapter 4 focuses on locomotion control and concepts from control the-
ory, such as stability, efficiency, and robustness. In this chapter, we first present
several engineering-based approaches and then comment on potential ways in
which applying knowledge from biomechanics can be beneficial. Among nu-
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FIGURE 1.2 Bio-inspired legged locomotion. In this book we consider biological locomotion
from three perspectives: minimalistic template models, control of locomotion, and implementation
of locomotion control on robots and assistive devices through body and actuator properties.

merous engineering control approaches, we discuss the methods that can be em-
ployed to mimic human- and animal-like control strategies, such as impedance
control (Hogan, 1986), template-based control (Wensing and Orin, 2013), hy-
brid zero dynamics (HZD) (Westervelt et al., 2007), and central pattern gen-
erators (CPG) (Grillner and Wallen, 1985). In order to implement control ap-
proaches on a locomotor system, the interaction with environment and circuitry
of control are needed to be identified. In Chapter 5 we focus on torque con-
trol which is required to interact with environment. It is more significant when
the artificial locomotor system needs to interact with living creatures (e.g., hu-
mans). In this chapter we compare the torque-tracking performance of nine
control strategies in combination with four high-level controllers that deter-
mine the desired torque (implemented on an ankle exoskeleton as a test-bed).
A detailed description of muscular system, neural control, their interaction in
neuro-muscular systems and also the brain role in locomotion control is pre-
sented in Chapter 6.

In line with learning from nature, the body morphology, actuators and neu-
romuscular structure are significant components that need to be employed ap-
propriately to simplify control. Chapter 7 presents examples that show how
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TABLE 1.1 List of books on legged locomotion

Author Book title Short description Field

David A.
Winter

Biomechanics
and Motor
Control of
Human
Movement

Techniques to measure, analyze
and model human movements
on mechanical, muscular and
neuromuscular level

Human
biome-
chanics

Roger M.
Enoka

Neuro-
mechanics of
Human
Movement

Neural control of human
movement in selected tasks,
sensory motor system and
control of human muscle
mechanism

Neuro-
mechanics

Marc H.
Raibert

Legged Robots
That Balance

Legged locomotion, building
useful legged robots, balance
and dynamic control

Robotics

Thomas A.
McMahon

Muscles,
Reflexes and
Locomotion

Mathematical model of muscle
function, neural control and
mechanics of human locomotion

Muscle
modeling

R. McNeill
Alexander

Principles of
Animal
Locomotion

Locomotion biomechanics,
muscle function, energetics,
measurement techniques, and
motion types

Animal
biome-
chanics

Christine
Chevallereau
et al.

Bipedal Robots,
Modeling,
Design and
Building
Walking Robots

Gait modeling, gait patterns
synthesis and control of bipedal
robots, walking, control based
on robot modeling, neural
network

Bipedal
robots

man-made legged systems can benefit from biological body (morphology) de-
sign. In Chapter 8, we review basic muscle properties and attempts to build
actuators with muscle-like behavior. As examples of employing bio-inspired
locomotion studies, Chapter 9 introduces applications of bio-inspired legged
locomotion design and control methods to daily life. In addition to a qualitative
comparison between engineered and biological locomotor systems, this chapter
highlights state-of-the-art research which may help better anticipate potential
future research directions in the field.
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Chapter 2

Fundamental Subfunctions of
Locomotion
Maziar A. Sharbafi, David Lee, Tim Kiemel, and André Seyfarth

Legged locomotion is a complex hybrid, nonlinear and highly dynamic prob-
lem. Animals have solved this complex problem as they are able to generate
energy efficient and robust locomotion resulted from million years of evolution.
However, different aspects of locomotion in biological legged systems such as
mechanical design, actuation and control are still not fully understood. Splitting
such a complicated problem to simpler subproblems may facilitate understand-
ing and control of legged locomotion. Inspired from template models explaining
biological locomotory systems and legged robots, we define three basic locomo-
tor subfunctions: stance leg function, leg swinging and balancing. Combinations
of these three subfunctions can generate different gaits with diverse properties.
Basic analysis on human locomotion using conceptual models can result in de-
veloping new methods in design and control of legged systems like humanoid
robots and assistive devices.

PREAMBLE—THINGS TO CONSIDER "BEFORE WALKING"

Animals are integrated collections of “parts” that are good enough to be passed
on to the next generation. Because we often project a forward design philosophy
on animals, it is all too common to misinterpret animals as optimal designs that
should be copied. To the contrary, animals are junkbots that inherit “parts”—
really a combination of genetic and epigenetic factors—from their ancestors.
Of course, animals’ structures can be modified from generation to generation
but the evolutionary process is more akin to gathering parts from old VCRs and
printers than to the forward-design process used in engineering. Animals build
bodies that are good enough for survival in their environment, for competition
with other individuals of the same species, and for reproduction to pass their
genes on to the next generation—this is the key tenet of evolution by natural
selection. Additionally, there are limitations to the body types, shapes, and sizes
that a given animal lineage can build. The form and function of an animal’s

Bioinspired Legged Locomotion. http://dx.doi.org/10.1016/B978-0-12-803766-9.00003-8
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body is subject to developmental, material (i.e., biochemical and tissue-level),
and constructional constraints that are inherited from their ancestors.

When considering bio-inspired designs for robots, it is important to look at
animals for what they are and how they have been built from the biomaterials
available to them. Despite this caveat, nature has produced excellent designs
and a level of performance in legged locomotion that is unrivaled by robotic
systems. Hence, a guiding principle for robot builders might be to begin with
models that capture the fundamental physics and control strategies rather than
attempting to mimic the fleshy details of animal locomotion.

In the history of life on Earth, leg-like appendages appear to have evolved
independently within many phyla, including Arthropoda, Annelida, Mollusca,
Echinodermata, and Chordata (Panganiban et al., 1997). In every case of this
messy history, legs originated in an aquatic environment and may have been
used for swimming, underwater walking or bounding, grasping, feeding, or
holding position in strong currents. The subsequent use of legs for locomotion
on land introduced new challenges. Amongst functional changes in ventilation,
respiration, desiccation resistance, temperature regulation, and metabolism,
these terrestrial pioneers began to move without hydrodynamic forces—instead,
using their legs to apply horizontal forces while supporting their full body
weight without buoyancy. The transition to terrestrial legged locomotion has
been accomplished by insects, arachnids, crustaceans, and vertebrates. A hy-
pothesized role of the first vertebrate limbs were as hold-fasts used by our
nearest known lobe-finned fish ancestor, Tiktaalik, in fast moving rivers and
streams some 375 million years ago (Daeschler et al., 2006). The pelvic bones,
femur, tibia, and fibula of Tiktaalik are homologous to our own, yet Tiktaalik’s
appendages had the appearance of strut-like fins (Shubin et al., 2014).

Our ancestral hind limbs have a longer history as aquatic holdfasts than they
do as bipedal walking or running legs. The early tetrapods that inherited the ap-
pendages of Tiktaalik used them to move about quadrupedally on land, as did the
early amniotes and mammal-like reptiles. The first mammals used these limbs
for quadrupedal terrestrial and arboreal locomotion some 200 million years ago,
and the marmoset-like early primates committed to quadrupedal arboreal loco-
motion about 50 million years ago. Apes descended from quadrupedal primates
and began a transition from quadrupedal arborealism to suspensory locomotion,
wherein the forelimbs grasp and pull-up on branches while the hind limbs tend
to grasp and press against branches, tree trunks, or the ground. The subfam-
ily Ponginae, containing extant orangutans, gorillas, chimpanzees, and humans
originated some 12 million years ago from an orangutan-like great ape. The first
Hominin with features of habitual bipedalism, Australopithecus afarensis ap-
peared in the fossil record about 4 million years ago and Homo erectus, with
skeletal anatomy nearly the same as our own, appeared just 2 million years ago.
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This necessarily stochastic evolutionary history finds us as the only obligate
biped amongst primates—and the only striding biped amongst mammals. The
only other obligate, striding bipeds living today are birds. Including their thero-
pod ancestors, these avian dinosaurs have a 250 million year history as striding
bipeds, compared with less than 5 million years in our own lineage.

The example of our own evolutionary history highlights the meandering path
we have taken to bipedalism and the short evolutionary distance from our arbo-
real ancestors. Does their longer history of bipedal locomotion mean that birds
are better “designed” or have a better handle on the physics of bipedalism? No—
an organism at any given time is simply good enough to survive, compete, and
reproduce in its ecological niche. Nonetheless, it is useful to consider the in-
herited design constraints and opportunities, as well as the different ecological
niches of birds and humans. For example, natural selection has resulted in fast,
economical running of ostriches and economical walking plus long-distance
running capabilities of humans—yet these different specializations were shaped
in part by the developmental, anatomical, physiological, and behavioral biology
inherited from the ostrich and human ancestor. A primary goal of comparative
biomechanics is to understand the fundamental physics of locomotion within
an evolutionary context. As this understanding progresses, bio-inspired legged
robots and robotic prosthetics will transition from copying nature to borrow-
ing, in whole or part, its strategies for interacting with the physical world—thus
matching or even exceeding the locomotor performance of biological systems.

Bearing these evolutionary caveats in mind, the remainder of this chapter
seeks to reveal and interpret the fundamental physics of legged systems. Our
approach divides legged locomotion into three subfunctions, which are intrinsi-
cally interrelated, yet represent distinct tasks:

• Stance (Chapter 2.1) is the subfunction that redirects the center of mass by
exerting forces on the ground.

FIGURE 2.0.1 Functional levels of the locomotor system.
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• Swing (Chapter 2.2) is the subfunction that cycles the legs between ground
contacts.

• Balance (Chapter 2.3) is the subfunction that maintains angular velocity and
body attitude within acceptable limits.

Legged locomotion is a complex task with integrated functional levels in-
fluencing all three locomotor subfunctions. These levels are mechanical, actu-
ation, sensing, and both low- and high-level control of the animal or machine
(Fig. 2.0.1). Our separate treatment of locomotor subfunctions allows interroga-
tion of key functional features at each of these levels.
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Chapter 2.1

Stance
David Lee
School of Life Sciences, University of Nevada, Las Vegas, United States

The stance subfunction of legged locomotion considers the ground reaction
force exerted on the legs to redirect the body’s center of mass from stride to
stride. Stance is usually the first subfunction that comes to mind, perhaps be-
cause we, large mammals, spend quite a bit of time standing and walking and
recognize that our legs keep the rest of our body elevated above the ground dur-
ing these behaviors. On the other hand, small mammals (of body mass less than
about 1 kg body mass), as well as lizards, crocodilians, and amphibians rest their
bodies on the ground and tend to walk or run intermittently. From the perspective
of these animals, the cycling of the legs from one stance to the next, the swing
subfunction discussed in the following section might seem equally pervasive.
The stance and swing subfunctions of the legs influence each other’s dynamics
and they also influence the third locomotor subfunction of this chapter, balance.

The primary function of the stance leg or legs is to interact with the ground
and redirect the body during each stride of locomotion by imposing fluctuations
in both the magnitude and direction of the force exerted on the ground. We often
think of the stance leg as supporting the body against gravity, even to the extent
that knee and ankle extensor muscle groups are sometimes called “antigravity”
muscles. The summed vertical force of the stance legs in fact always oscillates
about one body weight during steady-speed terrestrial locomotion, such that
body weight can be thought of as an “offset.”

The stance legs use variations in force to redirect the center of mass, os-
cillating between braking and propulsive interactions with the ground. The net
force in propulsive interactions is in the direction of travel, and that of braking
interactions is against the direction of travel. Because of the geometry of the
leg–substrate interaction, a forward (protracted) leg tends to cause braking and
a backward (retracted) leg tends to cause propulsion.

In any analysis of stance, it is important to consider potential influences of
gait, speed, animal size, leg number, and the dynamic interactions between the
swing leg(s) and other body segments. The function of a given stance leg is
linked to that of other simultaneous stance legs, as well as rotations and transla-
tions of leg and body segments. These latter considerations are important for an-
imals and machines that have moving segments with real inertial properties, yet
they are neglected in simplified point-mass models that only consider the total
ground reaction force acting on the center of mass. Conversely, a stance leg can
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influence swing and balance by exerting forces and yaw torques, plus roll and
pitch torques if the foot is able to grasp or adhere to the substrate. With simulta-
neous contact of more than one limb, such as during double support of bipedal
walking or during quadrupedal or multilegged gait, differential leg forces can
produce force couples that also contribute to balance—for example, as the rear
wheels of a car resist upward pitch during forward acceleration (Gray, 1968;
Murphy and Raibert, 1985; Lee et al., 1999).

2.1.1 EFFECTS OF GAIT

In our treatment of stance as one of three locomotor subfunctions, the main ob-
jective of the stance legs is to redirect the center of mass, which can be achieved
using any of several gaits. Gait is defined by a stereotyped spatiotemporal pat-
tern of leg contacts and oscillations of the center of mass. Redirection of the
center of mass may be achieved by using one leg at a time, as during bipedal
running with aerial phases, or by using more than one leg at a time, as during
all other gaits of bipeds, quadrupeds, and multilegged animals. The collective
action of the stance leg or legs exerts oscillating vertical and shear forces to
redirect the center of mass during each stride of locomotion.

Vertical center of mass oscillations are achieved using one or more leg at
a time, but a given stance leg contributes to only one cycle of vertical oscilla-
tion per stride. In symmetrical gaits, which are defined by bilateral (left–right)
limb pairs that are one-half stride cycle out of phase (Hildebrand, 1965), two
cycles of vertical oscillation are achieved alternately by left and right legs of a
pair during each stride. In asymmetrical gaits such as bounding, galloping, and
bipedal hopping the collective action of the stance legs achieves a single cycle
of vertical oscillation per stride. This achieves a single “gathered suspension”
(a flight period with the legs folded under the body) in each stride. Exceptions
to this rule for asymmetrical gaits are the fast gallop of cheetahs and greyhounds,
as well as the half-bound of rabbits, which include both a “gathered” and “ex-
tended suspension”—representing two vertical oscillations per stride (Bertram
and Gutmann, 2009). Hence, simultaneous leg forces produce two vertical os-
cillations per stride during symmetrical gaits and typically only one oscillation
per stride during asymmetrical gaits. It is the norm for animals, including our-
selves during walking, to exert locomotor forces simultaneously with more than
one stance leg. Bipedal running, wherein only one stance leg exerts force at any
given time, is the only exception to this rule. However, it may be argued that
bipedal hopping of macropods and rodents also falls into this category, consid-
ering the two hind legs acting as one.

To affect vertical oscillations of the center of mass, the vertical force exerted
by the stance leg or legs alternately rises above and then below body weight
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during the stride. This is true of walking as well as running. In our bipedal
running, vertical force rises above body weight during single-leg support and
falls to zero during the aerial phase. Bipedal walking shows an opposite and
somewhat counterintuitive pattern where vertical force rises above body weight
during the double-leg support at the step-to-step transition and falls below body
weight in the middle of single-leg support (Fig. 2.1.1A). Differences between
bipedal walking and running can be illustrated by windowing the vertical accel-
eration in the middle of single-leg stance, showing a trough during walking and
a peak during running (Fig. 2.1.1B). For example, comparing humans (black
line) to guinea fowl (blue line) shows that guinea fowl use a running gait indi-
cated by shallow peaks in vertical acceleration, whereas humans use a walking
gait indicated by shallow troths in vertical acceleration, at two of the interme-
diate speeds. Because center of mass position is given by the double integral of
acceleration with respect to time, the center of mass reaches its lowest vertical
position near maximum vertical acceleration—occurring in mid-stance of run-
ning and in double-leg support of walking. This difference between running and
walking is the basis of a longstanding dichotomy emphasizing that the center
of mass reaches its lowest position during mid-stance of running and its highest
position during mid-stance of walking (Cavagna et al., 1976, 1977).

Stride dynamics can also be considered in terms of the kinetic and potential
energy of the center of mass. Due to the braking impulse during the first half
of leg contact, kinetic energy always reaches a minimum near the middle of
single-leg stance during both running and walking of bipeds. Pairing this min-
imum in kinetic energy with the aforementioned potential energy minimum at
mid-stance of running and the potential energy maximum at mid-stance of walk-
ing provided the impetus to advance two models to characterize running and
walking: the spring loaded inverted pendulum (SLIP), a bouncing model with
in-phase kinetic and potential energy for running; and a rigid inverted pendu-
lum model with out-of-phase kinetic and potential energy for walking (Cavagna
et al., 1977). These two mechanisms have long shaped our understanding of
running and walking gaits in bipedal, quadrupedal, and multilegged animals
(reviewed by Dickinson et al., 2000).

Bipedal running and hopping as well as quadrupedal or multilegged trotting
are well described as “bouncing” gaits, defined by the spring-loaded inverted
pendulum (SLIP) model (Blickhan, 1989; McMahon and Cheng, 1990). These
gaits show maximum vertical force at mid-stance when the center of mass is at
its lowest point, and may or may not include aerial periods between leg con-
tacts. Because SLIP-like gaits may be achieved with leg springs, this provides a
mechanism to reduce total energy cost by storing some of the energy elastically
in the absorptive phase of early stance and returning it in the generative phase
of late stance.



18 PART | I Concepts

FIGURE 2.1.1 (A) Three human walking steps used to define a stride from mid-stance to mid-
stance of the same limb (gray traces). Vertical ground reaction force is below body weight during
the mid-stance period of walking. (B) Patterns of mid-stance vertical acceleration across a range
of dimensionless walking and running speeds, including humans (black) and guinea fowl (blue).
Negative mid-stance acceleration indicates walking and positive, running. Humans maintain neg-
ative accelerations up to dimensionless walking speeds as high as 0.75 but guinea fowl switch to
running at dimensionless speeds corresponding to moderate human walking. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this chapter.)

Despite agreement of the bipedal running and quadrupedal or multilegged
trotting gaits with the SLIP model, studies showed that bipedal and quadrupedal
walking dynamics (e.g., Lee and Farley, 1998; Griffin et al., 2004, Genin et al.,
2010) deviate substantially from a rigid inverted pendulum model. This is not
unexpected given that the vertical force of a rigid inverted pendulum model
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reaches a local maximum rather than the necessary minimum at mid-stance
(Geyer et al., 2006). Likewise, vertical force will not reach the necessary max-
imum during the step-to-step transition unless double-leg support is modeled.
Hence, it is difficult to reconcile the mechanics of a rigid inverted pendulum
with the measured dynamics of walking. In contrast to the rigid inverted pen-
dulum model, Geyer et al. (2006) also showed that simulations of walking on
compliant legs can match force patterns observed during human walking, ex-
hibiting a minimum vertical force at mid-stance and a maximum vertical force
during double support of the step-to-step transition.

Gait dynamics can be better understood by considering the fundamental
physics of the animal’s interaction with the substrate. The center of mass reaches
its lowest point during the transition between single-leg stances in walking, i.e.,
during double support at the step-to-step transition. Conversely, the center of
mass reaches its lowest point during the middle of single-leg stance in run-
ning. Minimum center of mass height coincides with maximum vertical force
in both gaits because this is where the center of mass is redirected from falling
to rising. Hence, it might be argued that walking and running show similar ver-
tical oscillations—simply achieved by two legs during walking and a single leg
during running. However, walking and running in fact show fundamentally dif-
ferent dynamics. To understand what is driving these distinct dynamics, we need
to consider the pattern of braking and propulsion during the downward to up-
ward redirection of the center of mass. In SLIP-like bouncing gaits, the force
on the center of mass is braking and then propulsive during the downward to
upward redirection. Walking is the opposite: propulsive force precedes braking
force during the downward to upward redirection. Thus, redirection of the center
of mass pairs with opposite patterns of braking and propulsion in walking ver-
sus running. This observation provides the impetus for applying collision-based
dynamics to legged locomotion.

The guiding principle of collision-based dynamics is that the stance leg
or legs seeks to redirect the center of mass with the least mechanical work
possible. Mechanical work can be viewed as an extension of D’Alembert’s
principle of orthogonal constraint, which holds that a force may redirect a
mass with zero work as long as force and velocity vectors are kept perpen-
dicular such that their dot-product, mechanical power, is zero (D’Alembert,
1743). Minimizing mechanical power at a given speed minimizes the animal’s
mechanical cost of transport. Collision-based costs are incurred whenever an
animal’s force and velocity vectors are not perpendicular. Thus, collision-free
dynamics may be achieved only if the legged system is able to maintain a
perpendicular relationship between the force and velocity vectors of its cen-
ter of mass in every instance of stance (Fig. 2.1.2(right)) (Ruina et al., 2005;
Lee et al., 2011). Because propulsion precedes braking during the step-to-step
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FIGURE 2.1.2 Collision-based dynamics for a SLIP model versus the zero-collision case (Lee et
al., 2011).

transition of walking, the force vector can be kept more nearly perpendicular
to the velocity vector while the center of mass is redirected from downward
to upward, thereby reducing the mechanical work done by the stance legs on
the center of mass (Fig. 2.1.2(right)). In contrast, SLIP-like bouncing dynamics
cannot minimize the mechanical work required to redirect the center of mass
because braking precedes propulsion during downward to upward redirection
of the center of mass (Fig. 2.1.2(left)). This violates the principle of minimiz-
ing mechanical cost through orthogonal constraint, as seen in the zero-collision
case. However, there is evidence in some species that part of the mechanical en-
ergy of the SLIP is stored in spring-like tendons that release elastic strain energy
later in stance (Biewener, 2005).

Mechanical work is quantified by the mechanical cost of transport, CoTmech,
which is the work required to move a unit body weight a unit distance. CoTmech
can be determined from center of mass mechanical power—the dot-product of
the force vector on the velocity vector. During level, steady-speed locomotion
positive and negative work are equal in magnitude. Physiologist and modelers
often count only positive mechanical power (e.g., Cavagna et al., 1977; Kuo,
2002), but here we take the absolute value of power to account for both positive
(generative) and negative (absorptive) work:

CoTmech =
∑ |F · V |
n
(
mgv̄y

) , (2.1.1)

where v̄y is the mean forward velocity, g is gravitational acceleration, m is
body mass, and n is the number of time-intervals in the summation. From the
perspective of a point-mass model (i.e., a model concentrating all of the sys-
tem’s distributed masses at the center of mass and considering only translations),
SLIP-like bouncing gaits incur a much greater mechanical cost of transport than
gaits, such as walking, that minimize collision-based costs. In humans, for ex-
ample, the mechanical cost of transport during SLIP-like running is three-times
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FIGURE 2.1.3 Mechanical cost of transport as a function of dimensionless speed in bipedal and
quadrupedal mammals (Lee et al., 2013).

that of walking (Fig. 2.1.3; Lee et al., 2013). The lower mechanical cost of
walking is achieved by the combined action of trailing and leading leg forces,
which exert propulsive and then braking forces during the downward to upward
redirection of the center mass.

As predicted from the theoretical observation that mechanical cost of
transport is inversely proportional to the number of collisions (Ruina et al.,
2005), quadrupeds more nearly approach zero-collision locomotion than bipeds.
Collision-based analysis shows that walking dogs achieve a mechanical cost of
transport approximately half that of humans (Fig. 2.1.3). Faster quadrupedal
gaits such as the gallop and amble also use sequenced leg contacts and favor-
able timing of braking and propulsive forces to reduce the work of redirecting
the center of mass—but not to the same extent as in quadrupedal walking
(Fig. 2.1.3). One might ask if terrestrial animals with six, eight, or ten legs
can achieve even lower mechanical costs of transport than quadrupeds, how-
ever, most studies of multilegged locomotion in cockroaches and crabs report
SLIP-like bouncing gaits akin to quadrupedal trotting (reviewed by Holmes
et al., 2006). If multilegged animals combined sequenced leg contacts with
propulsive then braking forces during the downward to upward transition, it is
plausible that animals with many legs could more smoothly redirect the center
of mass, thereby achieving a lower mechanical cost of transport than bipeds or
quadrupeds.
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Brachiation of gibbons (Usherwood and Bertram, 2003) and siamangs
(Michilsens et al., 2012) provide another example of collision-based dynam-
ics that reduce mechanical cost. Using a single arm to redirect the center of
mass from downward to upward, these apes achieve mechanical costs of trans-
port lower than those of walking quadrupeds. Collision-based mechanical cost is
mitigated more readily during suspensory locomotion because the arm can pull
on the overhead support to exert propulsive then braking force during downward
to upward redirection of the center of mass. As shown in bipedal, quadrupedal,
and brachiation examples, this pattern of force is the hallmark of collision-based
dynamics, which seek to redirect the center of mass using the least mechanical
work—in accordance with D’Alembert’s principle of orthogonal constraint.

2.1.2 EFFECTS OF SIZE

Size is a fundamental determinant of structure and function in animal and ma-
chines alike. For the scaling of legged locomotion, the principle of dynamic
similarity is a key concept that was introduced four decades ago as a model
to predict gait characteristics of bipedal dinosaurs based upon locomotor data
from extant birds and humans (Alexander, 1976). The same construct was later
applied to quadrupedal mammals (Alexander and Jayes, 1983). The dynamic
similarity hypothesis holds that animals of different sizes moving at the same
dimensionless speed tend to use the same dimensionless stride lengths, stride
frequencies, duty factors and maximum forces. Forward speed is normalized as
the Froude number, or preferably the square root of Froude number (McMahon
and Cheng, 1990), known as dimensionless speed U :

U = v̄y/
√
gh, (2.1.2)

where v̄y is the mean forward velocity, g is gravitational acceleration, and h

is hip height or leg length. The Froude number represents the ratio of inertial
to gravitational acceleration, indicating that a rigid inverted pendulum would
escape its circular trajectory at a Froude number or dimensionless speed greater
than one. Walking bipeds and quadrupeds, however, abandon walking gaits at
Froude numbers greater than about 0.5, corresponding to dimensionless speeds
greater than about 0.7 (Alexander, 1984). Dimensionless speeds are determined
in the same way for running, hopping, trotting, and galloping gaits and, because
these gaits often exceed a dimensionless speed of one, using Froude number
instead of its square root would show substantial nonlinearity with increasing
speed.

A refinement of Alexander’s rigid inverted pendulum calculation predicts a
different boundary for escape from a circular arc for a given combination of
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speed and step length, here defined as the distance between right and left foot-
falls. For example, a maximum dimensionless step length (i.e., step length rela-
tive to leg length) of 1.15 can be achieved by a rigid-legged walker at a dimen-
sionless speed of 0.7, approximating the fastest walking of humans (Usherwood,
2005). Adding an impulsive step-to-step transitions and a minimum mechanical
cost criterion, a subsequent computer optimization study showed that rigid-
legged walking is optimal only at dimensionless step lengths less than 0.76
(Srinivasan and Ruina, 2006). Despite observations that humans use interme-
diate dimensionless step lengths of about 1.0 at a dimensionless speed of 0.7,
there is no evidence that human walking follows the circular arc of a rigid in-
verted pendulum. In fact, experimental data show that vertical oscillations of the
center of mass during fast human walking are just 17–28% of those predicted
by rigid-legged walking models (Lee and Farley, 1998). In light of these ob-
servations, a different mechanism might be found to explain the relationship of
dimensionless step length to maximum walking speed of humans.

Dynamic similarity is used to determine equivalent speeds in animals of dif-
ferent leg length such that other effects on locomotion, such as leg number, gait,
and phylogeny can be better understood. The principle of dynamic similarity
normalizes stride length to hip height h, stride frequency to

√
g/h, and force to

body weight mg, predicting equal values of these dimensionless parameters at a
given dimensionless speed. Duty factors, calculated as the ratio of foot contact
period to stride period, are also predicted to be equal at the same dimension-
less speed. When bipedal and quadrupedal gaits are normalized according to
dynamic similarity, these dimensionless parameters tend to follow similar, yet
sometimes offset trend-lines across a range of dimensionless speeds from 0.2
to 4.0 (Alexander, 1976, 1984, 2004; Alexander and Jayes, 1983). For example,
quadrupedal primates tend to use longer stride lengths than other quadrupeds at a
given dimensionless speed. Likewise, at the same dimensionless speed, humans
walking and running bipedally use much shorter dimensionless stride lengths
than do chimpanzees and bonobos during quadrupedal gaits (Aerts et al., 2000).
A comparative study of bipedal locomotion in birds spanning three orders of
magnitude in size applied dynamic similarity to show that small birds tend to
use relatively longer stride lengths and lower frequencies than large birds at a
given dimensionless speed (Gatesy and Biewener, 1991). Dynamic similarity
is useful for determining equivalent speeds amongst subjects of different size,
such as in a human gait study, and it is also well suited to the analysis of species
that span a substantial size range. It should be used as an initial hypothesis for
understanding size effects in legged locomotion rather than a precise predic-
tive model, for example, across different species or in hopping versus striding
locomotion.
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Dynamic similarity has also been applied to reduced- and hyper-gravity
studies of legged locomotion, wherein gravity, as well as hip height, are free
variables influencing dimensionless speed and stride frequency. A study of sim-
ulated reduced gravity during human walking, found that dimensionless stride
length at a given dimensionless speed decreased as gravity was reduced from
1.0 g to 0.25 g, violating the dynamic similarity prediction that stride length
should remain the same at equal dimensionless speeds (Donelan and Kram,
1997). However, in agreement with dynamic similarity, the same study showed
that duty factor at a given dimensionless speed was unchanged across gravity
conditions. A study of simulated hypergravity during human walking showed
qualitative agreement with dynamic similarity, where duty factor increased and
dimensionless stride length decreased as dimensionless speed was decreased by
a 1.35 g hypergravity condition (Lee et al., 2013). Reduced- and hypergravity
studies of human running also show trends consistent with dynamic similarity
(Donelan and Kram, 1997; Minetti, 2001). Hence, the principle of dynamic sim-
ilarity seems robust to changes in gravity with the exception that stride lengths
are unexpectedly shortened by reduced gravity conditions during walking. Dy-
namic similarity therefore remains the primary model to determine comparable
speeds whenever animal size or gravity conditions are variable.

Another method of accounting for speed effects that has been used in studies
of quadrupedal mammals is to target the trot–gallop transition as a “physio-
logically equivalent” speed for animals of different size. This approach was
introduced in a study showing that stride frequency scales as body mass to the
−0.14 power and stride length, to the 0.38 power in mammals from mice to
horses (Heglund et al., 1974). A comparable approach measured these param-
eters at the fastest experimental speeds of running birds and humans to show
that stride frequency scales as body mass to the −0.18 power and stride length
to the 0.38 power (Gatesy and Biewener, 1991). Trot–gallop transition speeds
have also been used to compare oxygen consumption rate and mechanical power
(Heglund et al., 1982; Taylor et al., 1982), as well as in vivo bone strain and ef-
fective mechanical advantage of muscles about joints (Biewener, 1989, 1990)
across quadrupeds of vastly different size. As predicted by dynamic similarity,
mechanical cost of transport at the trot–gallop transition speed is invariant across
quadrupedal mammals from mice to horses, and also at corresponding speeds of
bipedal and multilegged runners (Full, 1989; Full and Tu, 1991). The mechan-
ical cost of transport determined by this allometric analysis is 0.1 based upon
positive work alone—doubling this value to account for negative work equals
CoTmech as defined in Eq. (2.1.1). Running, hopping, and trotting usually show
a CoTmech near 0.2. Yet, as already discussed, mechanical cost of transport is
several-fold lower for gaits that use collision-based mitigation of work, such as
walking, ambling, and galloping (Fig. 2.1.3).
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Animal size also influences the stiffness of the modeled stance leg (or legs)
during bipedal running, hopping, and trotting gaits. The spring-loaded inverted
pendulum (SLIP) is the simplest two-dimensional model of leg compliance, as
it imagines such a virtual spring-loaded leg acting between the center of mass
and the ground (McMahon and Cheng, 1990). Because this method depends
only on measurement of the total force vector during leg contact and a kine-
matic estimate of initial virtual leg length, it can be applied to quadrupedal and
hexapedal trotting as well as to bipedal running and hopping (Farley et al., 1993;
Blickhan and Full, 1993). Considering eight mammals spanning three orders of
magnitude in body mass and including hoppers, trotters, and a human runner,
allometric analysis showed that virtual leg stiffness scales as body mass to the
two-thirds power. This relationship matches the expected leg stiffness based on
the ratio of force, which scales in direct proportion to body mass, to length,
which scales as body mass to the one-third power when geometric similarity is
assumed.

A more explicit experimental approach measures leg stiffness by tracking
position of the proximal joint (the hip or shoulder) and modeling a radial leg
that extends through the distal-most joint to the ground. This method measures
radial leg stiffness by placing an actuator in series with a modeled leg spring
and choosing the spring constant that minimizes actuator work. Considering
five mammalian species, radial leg stiffness scales approximately as body mass
to the two-thirds but is more than 30% stiffer than the virtual leg spring at a given
body mass (Lee et al., 2014). The scaling of leg spring constants has also been
analyzed using a minimum work criterion in an actuated, damped SLIP model
(Birn-Jeffery et al., 2014). This model successfully reproduced the running dy-
namics of five striding bird species ranging in size from quail to ostriches and
found a dimensionless leg stiffness invariant with body mass, as did the analysis
of Blickhan and Full (1993). All modeling approaches used so far to investigate
the scaling of leg spring stiffness show that stiffness is a function of body mass
to the two-thirds power, or equivalently, that dimensionless stiffness is invariant
with size.

2.1.3 SUMMARY

This section has examined stance as a locomotor subfunction where a leg or legs
redirect the center of mass through simultaneous and/or sequenced contacts with
the substrate. The cost of this redirection is determined by collision-based dy-
namics. Whether there is an aerial phase or not, the summed vertical ground
reaction force rises above body weight during part of the stride to redirect the
center of mass from downward to upward. This is achieved by a single con-
tact leg in bipedal running and by simultaneous contact of more than one leg
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in all other gaits. During running, hopping, and trotting, downward to upward
redirection of the center of mass is SLIP-like, with braking followed by propul-
sion. This pattern is reversed in walking, ambling, and galloping gaits, with
propulsion followed by braking achieved by sequenced contacts of more than
one leg. Mechanical work can be measured using a collision-based approach,
which considers the relationship between the center of mass velocity vector and
the overall force vector. Whenever these vectors are perpendicular, no work is
done on the center of mass. Mechanical work is minimized in this way by walk-
ing, ambling, and galloping but not in SLIP-like gaits. Hence, the mechanical
cost of transport is about three-fold greater during SLIP-like running, hopping,
and trotting compared with gaits that mitigate work. Theory and some exper-
imental evidence suggest that work is increasingly mitigated as the number
of sequenced leg contacts increases. The principle of dynamic similarity es-
timates equivalent speeds for animals of vastly different size by determining
a dimensionless speed according to the square root of leg length. This model
considers dimensionless stride length, frequency, force, and mechanical cost of
transport—predicting equal values of these parameters at a given dimensionless
speed. When size spans orders of magnitude, dimensional parameters can also
be expressed as power-functions of body mass and this approach has yielded
scaling relationships for stride length, frequency, force magnitude, spring stiff-
ness, and mechanical cost of transport. Stance also influences and is influenced
by the swing and balance locomotor subfunctions discussed in the remaining
sections of this chapter.
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For successful locomotion, the swing leg needs to be prepared for the next
landing event. For a specific or changing gait condition (gait type, speed, envi-
ronment), swing leg movement could require achieving a certain foot placement
(e.g., to avoid hitting a pothole, to recover from a large perturbation). However,
in most cases the actual location of the foot during contact is not a specific tar-
get of control. Then, the leg swinging as one locomotion subfunction can rely
on the system dynamics to result in a steady gait pattern.

Based on these two mechanisms (foot placement and exploration of natural
swing leg dynamics) leg swinging can fulfill different scenarios. In the following
we will describe how leg swinging contributes to locomotion, namely how it
interacts with other locomotor subfunctions as well as its role in perturbation
recovery and switching between the gaits.

At the level of locomotion control, these two mechanisms can be com-
pared to position control vs. passive dynamic walking (Kuo, 2007a). In legged
robots, ZMP (zero moment point; Vukobratovic and Borovac, 2004) is one of
the most common approaches to achieve stable locomotion in systems employ-
ing positional control of leg joints (e.g., in Asimo; Sakagami et al., 2002). ZMP
refers to the point inside the base of support about which the ground contact
forces exert no moment (see Subchapter 2.3). The idea behind dynamic walk-
ing relies on passive dynamics of the legs to produce walking, avoids position
control, and focuses on producing a cyclic gait (Miura and Shimoyama, 1984;
McGeer, 1990a, 1990b; Collins et al., 2005). In passive dynamic walking robots,
the stance leg and swing leg behave as an inverted and regular pendulum, re-
spectively (for more explanation about passive dynamic walking see Subchapter
4.6). The required energy to compensate the losses is generated either by grav-
ity when the robot walks on gently sloped terrain (McGeer, 1990a) or minimal
actuation (Collins et al., 2005). In Kuo (2007a) the term dynamic walking is
defined to refer “specifically to machines designed to harness leg dynamics, us-
ing control more to shape and tune these dynamics than to impose prescribed
kinematic motions.” Such an actuation can be provided by hip torque (Collins
et al., 2005) or push off with the trailing leg’s ankle (Kuo, 2002). Therefore, the
relation between leg swinging with stance control and/or posture control will
come to account.
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FIGURE 2.2.1 (A) Swing leg movement in human running with changing leg length and leg angle.
(B) Leg swinging in cat walking (McVea and Pearson, 2006). Cats stepped over an obstacle with the
forelegs. After a 20 s delay, hind foot toe trajectory showed that the animal remembered the obstacle
(solid line), which was lowered while the animal stood still. The dotted line shows a step without
the obstacle.

2.2.1 CHARACTERIZING FEATURES OF LEG SWINGING

Leg swinging can be defined as rotational swing leg motion with complemen-
tary axial movement (Fig. 2.2.1A), e.g., for ground clearance in walking or for
reducing swing leg moment of inertia in running. Indeed, this axial leg shorten-
ing is very important in special situations like hurdle running. In that sense, leg
swinging can be considered as control of the end effector (here the foot) of a
manipulator. In cats, this foot trajectory to overcome obstacles was found to be
memorized. The pattern could be restored and realized with the hind limbs after
locomotion was interrupted for substantial time as shown in Fig. 2.2.1B (McVea
and Pearson, 2006).

However, the main role of leg swinging in (unperturbed) locomotion is its
rotational movement, which results in a reorientation of the leg in preparation
for the next contact phase. This primitive function of the (load-released) swing
leg can already be found in newborns; it is known as the stepping reflex (Siegler
et al., 2006).

Swing leg movements and its related control can be characterized by the
leg’s states at touchdown (landing condition) and the foot trajectory during
swing phase (ground clearance of the foot). The leg orientation and leg length
at touch-down also contributes to the dynamics of the next contact phase and
thus to other locomotion subfunctions (stance and balance). Not only the leg
configuration at touchdown but also its changes with time (angular velocity
and axial speed of leg shortening/extension) is an important feature to describe
gait dynamics. Thus, leg swinging at touchdown is characterized by leg length,
leg angle with respect to ground (angle of attack) (Seyfarth et al., 2001), leg
angular speed (Seyfarth et al., 2003) and leg shortening speed (Blum et al.,
2010). In both walking and running, the swing-leg moves backward towards
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FIGURE 2.2.2 Vertical displacement and horizontal velocity of heel and toe in walking. Minimum
foot clearance (MFC) coincides with the moment that the foot travels with maximum horizontal
velocity. The figure is adopted from Winter (1992).

the ground before touchdown (late swing-phase) (Muybridge, 1955), called
swing leg retraction (SLR). This backward movement is represented by positive
angular velocities of the leg (Poggensee et al., 2014) and has a large con-
tribution to gait stability (Seyfarth et al., 2003). SLR supports ground speed
matching, helps reduce impact losses during landing (De Wit et al., 2000;
Blum et al., 2010) and maintain forward locomotion speed.

The foot trajectory during swing phase needs to provide sufficient ground
clearance. In human walking, the foot of the swing leg is aligned horizontally
with only small distance (1–2 cm) to the ground which reduces with age in-
creasing (Winter, 1992). In contrast to Winter claim, Mills et al. showed that
increasing the variability in minimum toe clearance (MTC) results in high risk
of tripping in the elderly while the MTC medians in two young and elderly men
were similar (Mills et al., 2008). This helps generate stable and energy efficient
gait patterns (Wu and Kuo, 2015). Minimum foot clearance (MFC) is a critical
event because the foot gets its maximum horizontal velocity and lowest height
simultaneously (shown in Fig. 2.2.2) which increases the danger of tripping in
case of hitting an obstacle (Begg et al., 2007).

Judging from human leg muscle activities in the swing leg movement, biar-
ticular hip muscles rectus femoris (RF) and hamstrings (HA) seem to be the
main contributors in the swing phase of walking (Nilsson et al., 1985). By mod-
eling these two muscles with biarticular springs, we aim at a better mechanical
understanding of their activities in producing stable gait. In addition, such a pas-
sive mechanism may also replicate strong correlation observed between RF and
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FIGURE 2.2.3 Leg swinging in different gaits. Dark colors show the swing legs.

HA in human swing leg movement (Prilutsky et al., 1998), as a consequence
of body mechanics. In Sect. 2.2.3 we introduce a model for swing leg control
based on this observation.

2.2.2 LEG SWINGING EFFECTS IN LOCOMOTION

Leg swinging is required for robust locomotion in order to initiate the next step
(Fig. 2.2.3). This is a consequence of the limited number of legs which need to
hit the ground in a sequential manner. Leg swinging contributes to locomotion
dynamics in many ways:

(i) Determining stance phase dynamics as a result of the landing condition,
(ii) Shaping the system states to achieve versatile gaits with selected gait type,

footfall pattern, step length, step frequency, robustness and efficiency,
(iii) Distribution of energies in forward, lateral, and vertical directions, e.g.,

acceleration or changes in locomotion direction,
(iv) Overcoming unwanted ground contacts and perturbation recovery, e.g., ob-

stacle avoidance.

2.2.2.1 Contributing to Stance Phase Dynamics

When determining the initial condition of the next stance leg, swing leg move-
ment significantly affects the stance phase dynamics. It is related not only
to the leg configuration, but also to the momentum and angular speed which
initiate the new states after impact. Human and animal locomotion exper-
iments show high sensitivity of the initial leg loading during stance to its
landing conditions (Moritz and Farley, 2004; Birn-Jeffery and Daley, 2012;
Daley and Biewener, 2011). Daley and Biewener (2006) showed that the varia-
tion in leg contact angles explains 80% of the variation in stance impulse after
an unexpected pothole in guinea fowl running.
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2.2.2.2 Trade-off Between Versatility, Robustness, and Efficiency

Redirection of the center of mass speed at touchdown can be used by a suit-
able swing leg control (foot placement) to stabilize the gait (Townsend, 1985).
Furthermore, Winter et al. claim that foot placement is a precise and multi-
factorial motor control task which is required (beside stance leg control) for
stable gaits (Winter, 1992). Donelan et al. showed that both average external
mechanical work and metabolic rates increase with the fourth power of step
length in human walking (Donelan et al., 2002), which confirms importance
of foot placement in energy optimization. Other investigations in humans and
quadrupeds show that energy consumption is optimized in many legged ani-
mals’ locomotion (Alexander, 1984). In the steady state condition, biological
locomotors consume the least energy for leg swinging and benefit from passive
dynamics. For example, the positive work of human muscles is relatively small
(compared to stance) (Neptune et al., 2008), and in hip muscles, they partly
function as actively-tunable springs (Doke et al., 2005). However, if perturba-
tion happens or when humans walk on rough terrains, the energy consumption
increases considerably to achieve stability (Voloshina et al., 2013). Therefore,
one significant contribution of the swing leg adjustment is balancing a trade-off
between versatility, robustness, and energy consumption.

As mentioned before, leg retraction is an important feature of leg swing-
ing which has a significant effect on movement stability in quadrupeds (Herr
and McMahon, 2001), birds (Daley et al., 2007), bipedal biological locomotors
(Muybridge, 1955; Gray, 1968; Blum et al., 2010), and robots (Wisse et al.,
2005). This technique for swing leg control reduces foot-velocity with respect
to the ground and, as a result decreases landing impact (De Wit et al., 2000).
Increasing the leg length in late swing and also angular accelerations (Vejdani
et al., 2013) can improve stability and robustness (Blum et al., 2010). In human
walking and running, there is a linear relationship between motion speed and
swing leg retraction speed and acceleration (Fig. 2.2.4, Poggensee et al., 2014).

2.2.2.3 Distribution of Energies in Forward, Lateral, and Vertical
Directions

Adjusting the leg parameters during flight/swing phase is more energy efficient
than stance phase because end of the leg (the foot) is free to move. Since the
swing leg movement initiates the states of the stance leg in the next step, tuning
the system states to select the limit cycle is performed easier during leg swing-
ing. The resulting redirection of the energy in different directions can be used in
changing (a) the forward speed, (b) the gait, (c) foot placement on a specific tar-
get/position on the ground (e.g., walking on large stones), (d) motion direction,
(e) lateral balance, and (f) locomotion on slopes and stairs.
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FIGURE 2.2.4 Swing leg retraction (A) speeds and (B) accelerations for human walking and run-
ning. Data points are the global means at each speed with errors bars of one standard deviation and
associated trend lines for 21 subjects. Figures are adopted from Poggensee et al. (2014). (C) Swing
leg adjustment effect on gait speed using neutral point concept. Foot placing at neutral point results
in symmetric gait and keeping motion speed. Magnitude and direction of displacement of foot and
the neutral point determine the magnitude and direction of forward acceleration. Dark and light
boxes show acceleration and deceleration phase, respectively.

(a) Changing the speed (velocity control)

Studies on human walking and running show that locomotion speed significantly
influences leg angle of attack and leg retraction speed as two features of swing
leg adjustment (Sharbafi et al., 2013, 2016, 2017). A potential role of leg adjust-
ment for control of forward speed is indicated by modeling and robotic studies
(Dunn and Howe, 1996). This equally holds for different types of conceptual
gait models (explained in detail in Chap. 3 and 4), e.g., inverted pendulum,
spring loaded inverted pendulum, or rimless wheels, where angle of attack is
a key control property in speed adjustment.

The concept of neutral point introduced by Raibert (1986) shows such a
relation between swing leg adjustment and motion speed in a simple model of
running (describing a monopod or biped hopping robot). Neutral point is the
foot position (relative to the hip) at touchdown which results in symmetric leg
movement around mid-stance. Then the forward speed is the same at liftoff as it
is at touchdown and the average horizontal and angular acceleration over each
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stride becomes zero. With deviation from the neutral point, the body accelerates,
with the magnitude and direction of acceleration proportional to the magnitude
and direction of the displacement between foot position and neutral point, as
shown in Fig. 2.2.4C. Based on that, he suggested the following controller to
adjust forward running speed in monopod hopper and biped runner:

α = arccos

(
ẋTs + 2k(ẋ − ẋd )

2l

)
, (2.2.1)

in which α, Ts, l, k, ẋ, and ẋd are angle of attack, stance time, leg length, con-
stant gain, current and desired speed, respectively. Although this controller has
limitations at high speed running, it can perfectly demonstrate the ability of
swing leg control in gait speed adjustment in practice.

(b) Changing the gait

Raibert showed that with a simple leg adjustment protocol (beside axial leg
force control) a single-legged (monopod) robot can stably hop, run, and even
summersault (Raibert, 1986). For switching from one type of locomotion to
another (e.g., walking to running) or from standing to dynamic locomotion (and
vice versa) leg swinging plays an important role. Two different cases of gait
switching are between:

1. Standing and Walking/Running

Gait initiation and termination are two types of switching between standing and
locomotion. In gait initiation, the task is changing from keeping balance (placing
the body CoM within base of support) to moving body over the ground. During
this transition, the upcoming swing leg prepares its push-off by actively loading
and then unloading the limb. Consider the inverted pendulum model to represent
the human body to explain this phenomenon. Assume the right and left legs are
the upcoming swing and stance legs in the first step, respectively. In order to
release the right leg from ground contact, an angular momentum is required to
shift the center of mass to above the other leg (Winter, 1995). As a result, an
increase in GRF is observed at the right leg to generate the required angular
momentum and the center of pressure is moved first from middle of the two feet
to the right and then to the left foot (Winter, 1995). Compared to gait initiation,
COM trajectories are mirrored during gait termination (Jian et al., 1993). This
also holds for COP trajectories. Capture point and capture region concepts (Pratt
and Tedrake, 2006) describe how models help calculate a region to place the
swing leg to stop in one (or more) step(s) (see Section 2.2.3 for details).

2. Walking and Running

For a given speed (e.g., when moving on a treadmill), either walking or run-
ning is preferred (Thorstensson and Robertson, 1987; Hreljac, 1993). If the
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average speed (i.e., the traveling time) over a specific distance matters, hu-
mans sometimes prefer a mixture of walking and running (Long and Srinivasan,
2013). Long and Srinivasan showed that for moving between two fixed points
in a specific time, walking and running are preferred for long and short travel
time, respectively, but a mixture of walking and running and even standing is
chosen for intermediate time. Thus, sometimes steady locomotion may not be
energy optimal. This finding was also shown analytically with computational
optimization (Long and Srinivasan, 2013). However, humans prefer to switch
between walking and running at a specific speed called PTS (preferred transi-
tion speed) which barely changes at different positive or negative accelerations
(Segers, 2006). Walking is more efficient at speeds below PTS, while running
is the more optimal gait for moving faster than PTS. In running at speeds above
PTS, muscle activations in the swing leg are lower than in walking at the same
speed (Prilutsky and Gregor, 2001). In contrast, in walking at speeds below PTS
the muscle activations in stance leg are less than in running at the same speed
(Prilutsky and Gregor, 2001). Therefore, costs of swing leg and stance leg move-
ments might be the critical term in determining the energy consumption at high
and low speeds, respectively. The transition between walking and running can
be related to muscle functions as at maximum waking speed both hip and an-
kle muscles reach their limits in force production (Neptune and Sasaki, 2005;
Prilutsky and Gregor, 2001). These limits are resolved by switching from walk-
ing to running at the same speed. Hence, changing gaits support efficient
muscle function at different speeds similar to the function of the gear in a
bicycle.

(c) Targeting

In steady state gaits with no targets for foot placement (nontargeted gait) swing
leg control usually determines the angle of attack (Seyfarth et al., 2001) and
leg retraction (Seyfarth et al., 2003; Herr et al., 2002) in a periodic man-
ner. To reach certain targets, swing leg control can be used for foot place-
ment and adjusting the foot orientation. This results in different kinds of foot
contacts (e.g., heel strike or fore foot) at touchdown and may help over-
come unwanted ground contacts (e.g., with obstacles). Passing over a river
by placing the feet on stones or hurdle running are extreme cases of tar-
geting, needing precise swing leg control which do not regularly happen in
daily activities. More frequent applications of swing leg adjustment for tar-
geting can be found in locomotion on rough terrains, stepping over obstacles
or turning the motion direction. Using fore-foot touchdown for impact avoid-
ance or walking on rough terrains are samples of swing leg strategies for
targeting (Lieberman et al., 2010; Voloshina et al., 2013; Pratt and Tedrake,
2006).
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(d) Steering

Steering the motion occurs in 3D space. Swing leg control in lateral plane plays
the main role in steering the gait besides upper body yaw movement using stance
leg. Maus and Seyfarth (2014) showed how lateral leg adjustment can compen-
sate leg asymmetry and develop walking in circles or on a straight line.

(e) Lateral balance with foot placement (walking)

Lateral balancing is much more challenging than balancing in the sagittal plane
(Bauby, 2000). McGeer demonstrated that passive walking dynamics allow de-
scending a gentle slope without external power (McGeer, 1990a). So in sagittal
plane, the passive leg adjustment and interaction between dynamics of two legs
establish a periodic gait down a slight incline, with no external input except
gravity. However, this does not hold in frontal plane. Here, a lateral control
scheme is needed to withstand perturbations (Kuo, 1999). Baubuy and Kuo
(2000) claim that unlike for fore-aft stability high-level neural feedback con-
trol is necessary for maintaining lateral stability. The support of body weight
requires stabilizing motion dynamics in sagittal plane (MacKinnon and Winter,
1993). However, to achieve stability in frontal plane, proper sensing of lateral
motion (like visual and vestibular input) is required for perturbation recovery
(Warren et al., 1996; Winter, 1995).

(f) Handling gravity effect (uphill–downhill, stair climbing)

Locomotion on inclined ground or on stairs requires different swing leg adjust-
ment strategies (different trajectories) compared to level ground walking. Foot
placement in sloped terrains is more complex than on flat ground as both step
length and step height need to be controlled. For example, trajectories generated
using a simple pendulum like model of swing leg are not feasible in (stair) as-
cending because in this case vertical lifting is also required besides horizontal
forward movement. In that respect, additional parameters describing the envi-
ronment (ground) are required. This increases complexity of swing leg control
which contributes to both ground clearance and energy management. The con-
trol strategies to cope with ground level changes can be identified in locomotion
experiments on variable ground height. Grimmer and colleagues showed that
leg stiffness and angle of attack are two control parameters to cope with ground
level changes (Grimmer et al., 2008). A suitable control strategy to cope with
ground level changes is to adapt the leg stiffness to an altered angle of attack.
This adaptation is within the J-shaped area in the leg stiffness-attack angle space
predicted for stable running in the SLIP model (Seyfarth et al., 2002).

Gravity as an external force influences locomotion control on level and
inclined terrains. However, gravitational effects are more critical on sloped
grounds or stairs. For example, the largest percentage of falls occurs during
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stair walking in public places. Here, 80% of these falls on stairs relate to stair
descent (Shumway-Cook and Woollacott, 2007). The stance phase in stair as-
cending is divided into three subphases: (i) weight acceptance, (ii) pull-up, and
(iii) forward continuance. The swing phase is divided into (i) foot clearance
and (ii) foot placement (Shumway-Cook and Woollacott, 2007), which is sim-
ilar to level ground gait. The main contributors in foot clearance are tibialis
anterior (for foot dorsiflexion) and hamstrings (for knee flexion) while rectus
femoris contributes to the second half of the swing phase (similar to level walk-
ing Prilutsky and Gregor, 2001). The swing leg—guided by the movement of
the pelvis—is lifted and moved forward by hip flexion followed by hip exten-
sion and ankle dorsiflexion in preparation of foot placement on the higher step
(McFadyen and Winter, 1988). Reducing sensory information (e.g., visual feed-
back in blind-folded stair gaits) influences swing leg control strategy in walking
on stairs much more than in level walking. For example, with limited visual
feedback, anticipatory gastrocnemius activation is reduced and the leg is more
compliant during landing in stair descending (Craik, 1982). With reduced visual
sensory information (e.g., blurred-vision), foot clearance and foot placement be-
come critical control strategies for stair descending. In such conditions, the foot
is placed further backwards on the step to increase the safety margin (Simoneau
et al., 1991).

2.2.2.4 Recovery from Perturbations

Strategies for perturbation recovery may be divided to three categories: (i) small
perturbations that can be recovered by intrinsic muscle behavior (by damping
property of the system dynamic) without requiring more activation, (ii) mod-
erate perturbations requiring stance leg muscle activation for achieving posture
balance, (iii) large perturbations which need stepping for compensating pertur-
bation and returning to a stable solution (fixed point or limit cycle). In the latter
group of perturbations, swing leg adjustment plays the most significant role. Ve-
locity based leg adjustment (see Sect. 2.2.3) are the most common methods used
to find the point (region) to place the foot for perturbation recovery of models
and machines (robots). Another group is benefiting from system (passive) dy-
namics such as pendulum-like movement (McGeer, 1990a). After perturbation
occurrence, pendulum-like passive dynamics yields shorter steps (than normal
steps) which results in lower impacts, but still tolerable in for-aft direction (Kuo
and Donelan, 2010).

Eng et al. have investigated the movement strategies and neuromuscular re-
sponses to recover from a tripping perturbation in humans (Eng et al., 1994).
They have studied perturbations in early and late swing phase of walking. For
early swing perturbations, the most common control strategy was an elevat-
ing the swing limb while the swing limb lowers in response to the late swing
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perturbation. In the elevating strategy both swing limb flexion and stance limb
extension are involved. Two goals are achieved by this control strategy. Firstly, it
removes the limb from the obstacle prior to accelerating it over the obstacle. Sec-
ondly, the extensor response of the stance limb generates an early heel-off which
increases the CoM height. This provides extra time to extend the swing limb in
preparation for the landing. In contrast, swing leg flexion may be dangerous in
late swing perturbations, because the swing limb is approaching the ground and
the body mass is in front of the stance foot. Instead, the swing leg lowers rapidly
(with a flat foot or forefoot landing) which shortens the step length. Hence, the
similar recovery strategy by different patterns of muscle activation is generated
in early and late perturbations (Eng et al., 1994).

2.2.3 SWING LEG MODELING AND CONTROL

Template models such as the inverted pendulum model (Cavagna et al., 1963;
Cavagna and Margaria, 1966) and the spring–mass model (SLIP, spring-loaded
inverted pendulum) (Blickhan, 1989; Full and Koditschek, 1999) can help un-
derstand principles inherent in human locomotion and to demonstrate them in
robotic counterparts. These models concentrate on the description of ground
reaction forces (GRF) and center of mass (CoM) trajectories and neglect the
effects of swing leg dynamics. In the swing phase of walking, beside ground
clearance, the main function of the swing leg is providing an appropriate foot
placement, i.e., achieving a suitable leg configuration, a desired angle of attack,
and leg retraction in preparation of the next contact phase. Although the swing
leg mass also affects whole body motion, in most studies this effect is ignored.
In these models, the focus is on COM dynamics and the representation of swing
leg movement is reduced to describe an appropriate angle of attack (Kuo, 2007b;
Knuesel et al., 2005). In the following, we present an overview of different
swing leg adjustments based on such simplified models and we introduce a new
model for leg placement based on leg dynamics (Mohammadi et al., 2014).

2.2.3.1 Massless Swing Leg

Using a fixed angle of attack with respect to the ground can stabilize running
(Seyfarth et al., 2002) and walking (Geyer et al., 2006). However, the region
of possible leg adjustments (regarding leg stiffness, leg angle) for the stable
gait is quite limited. The next levels of swing leg adjustment approaches are
(1) swing leg retraction with a given leg rotation speed (Herr et al., 2002;
Seyfarth et al., 2003) (see Sect. 2.2.2) and (2) adapting the leg angle dur-
ing leg swinging using state feedback (Pratt and Tedrake, 2006). Leg ad-
justment strategies may rely on sensory information about the CoM veloc-
ity (Raibert, 1986) in which the foot landing position is adjusted based on
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the horizontal velocity (e.g., Pratt et al., 2006; Poulakakis and Grizzle, 2009;
Sato and Beuhler, 2004). Peuker et al. concluded that leg placement with re-
spect to both the CoM velocity and the gravity vectors yielded the most robust
and stable hopping and running motions with the SLIP model (Peuker et al.,
2012). As a modification of Peuker’s approach, Sharbafi et al. (2013) developed
a novel VBLA (velocity based leg adjustment) controller. In this controller, the
velocity vector (with horizontal and vertical components, ẋ and ẏ) is used to
adjust the angle of attack:

α = arctg

(
ẏ − c

√
lg

ẋ

)
= arctg

(
ẏ − kg

ẋ

)
, (2.2.2)

in which α, l, and g are the angle of attack (with respect to ground), leg length
(hip-to-foot point), and gravitational acceleration, respectively. Here, c is a di-
mensionless tuning parameter (gain) which can be lumped into the parameter
k = c

√
l/g. A comparison of the three methods (VBLA, Raibert and Peuker

approaches) showed that VBLA better mimics human-like leg adjustment in
perturbed hopping in place, achieves the largest range of running velocities by
a fixed set of control parameters, and predicts robust walking in a bipedal SLIP
model with extended rigid trunk (Sharbafi and Seyfarth, 2016). This method
was successfully implemented on a simulation model of a bioinspired robot
(called BioBiped) to generate stable forward hopping with adjustable speeds
(Sharbafi et al., 2014). The idea of zeroing horizontal speed (like in recovery
from perturbed hopping) with an appropriate swing leg adjustment in walking
was presented within the capture point concept (Pratt and Tedrake, 2006). This
approach determines a position for foot placement to stop forward motion. For
a bipedal system, capture state is defined as the state with zero kinetic energy
level. By placing the foot (CoP) on a capture point P , the controlled motion dy-
namics moves the states to reach the capture state. The set of all capture points
is called capture region. These concepts can be extended to n-step capture point
and n-step capture region using leg swinging and recursive definition (Pratt and
Tedrake, 2006). If n approaches∞, the n-step walking can be achieved because
the capture region converges to the area on the ground that the foot can be placed
at without falling. For implementation on robots, usually simple models like in-
verted pendulum (Pratt and Tedrake, 2006) or linear inverted pendulum (Pratt et
al., 2006) are utilized to find the capture point analytically.

2.2.3.2 Mass in the Swing Leg

Mochon and McMahon presented a model comprising a stiff stance leg and a
segmented swing leg (Mochon and McMahon, 1980). Compared with the in-
verted pendulum model, this model provides a better match of human walking
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dynamics. Introducing the spring loaded inverted pendulum (SLIP) model, the
gait dynamics (GRF and COM movement) of human locomotion can be bet-
ter represented (Geyer et al., 2006) compared to the inverted pendulum model.
However, swing leg movement is still a missing part in SLIP based models. In
Sharbafi et al. (2017) a segmented swing leg is added to the SLIP model to
represent the swing phase of human-like walking. Such template models help to
better understand key features of human walking (e.g. muscle activation patterns
and segment motions) which could previously be observed in more complex gait
models (Geyer and Herr, 2010).

Judging from human leg muscle activities in the swing leg movement, biar-
ticular hip muscles rectus femoris (RF) and hamstrings (HA) seem to be main
contributors for swing leg control in the swing phase of walking (Nilsson et
al., 1985). By modeling these two muscles with biarticular springs, better me-
chanical understanding of their activities in producing stable gait is obtained.
In addition, such a passive mechanism may also replicate strong correlation ob-
served between RF and HA in human swing leg movement (Prilutsky et al.,
1998), as a consequence of body mechanics. The role of elastic biarticular thigh
muscles (represented as springs) on swing leg dynamics can be further investi-
gated, and the appropriate spring parameters and morphology can mimic human
swing leg motion in walking. The muscle lever arm ratio, muscle stiffness, and
muscle rest lengths influence the COM motion and swing leg behavior. With
passive elastic biarticular muscles, walking motion characteristics like swing
leg retraction and symmetric stance leg behavior around mid-stance are pre-
dicted (Mohammadi et al., 2014). Such a simple bio-inspired control approach
can be implemented in robots (Sharbafi et al., 2016). During the swing phase,
biarticular muscles can support swing leg rotational movement control while
monoarticular muscles (e.g., knee or ankle joints) can provide (axial) leg short-
ening and lengthening (e.g., leg shortening is required for ground clearance).
With such a muscle-specific task allocation, the target of control could be sim-
ply setting spring rest lengths to a specific value for each gait condition.

This simple control strategy is able to produce human-like forces and kine-
matic behavior in walking. It was successfully approved in a simulation model
of BioBiped robot for describing forward hopping (Sharbafi et al., 2016).
Changing the motion speed can be achieved by adjusting the rest angle of biar-
ticular springs. This provides a simple and efficient swing leg control approach
without needing sensory information of the leg configuration. In order to achieve
high efficiency during different phases of the gait cycle (e.g., swing phase), non-
backdrivable actuators are advantageous. They enable setting the springs’ rest
lengths to desired values and switching off the motors and to operate with no
(or little) resistance when no actuation is needed.
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For stable locomotion, swing-leg adjustment needs to complement the other
locomotor subfunctions (stance and balance). In future, a better understanding
of the interplay of these subfunctions needs to be developed. These insights will
help to further improve the design and modular control of locomotor systems
both in simulation models and in hardware.
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Chapter 2.3

Balancing
Tim Kiemel
School of Public Health, University of Meryland, United States

Balance is the control of the body’s orientation relative to vertical. To describe
the mechanics of balance, we start with some definitions (Vukobratović and
Borovac, 2004; Vukobratović et al., 2006; Herr and Popovic, 2008; Maus et
al., 2010; Xiang et al., 2010; Goswami, 1999). Balance depends on the support
base, the smallest convex set on the support surface containing all contact points
between the feet and support surface. As an approximation, consider a finite
number of contact points qi with forces f i acting on the feet (Fig. 2.3.1A).
Let fni ẑ be the component of q i normal to the support surface, where ẑ is the
vertical basis vector. Define the center of pressure (COP) as

COP=
∑

fniqi∑
fni

(2.3.1)

and the ground reaction force (GRF) as
∑

f i . Then the net effect of all contact
forces f i acting at qi equals the GRF acting at the COP and a moment M

about the COP. The horizontal components of M are zero (Goswami, 1999),
so the COP is often referred to in the robotics literature as the zero-moment
point (ZMP). Some authors consider the COP and ZMP to be equivalent (e.g.,
Goswami, 1999). However, others consider the ZMP to be defined only when
the COP is in the interior of the support based (e.g., Vukobratović and Borovac,
2004; Vukobratović et al., 2006) (Fig. 2.3.1A), since the foot may rotate about
the COP when the COP lies on the boundary of the support base (Fig. 2.3.1B).
To describe such foot rotation, one can define an extension of the ZMP, known
as the foot rotation index (FRI) (Goswami, 1999) or fictitious zero-moment point
(FZMP) (Vukobratović and Borovac, 2004), as the point on the support surface
where the GRF would need to act to prevent foot rotation. When the FRI/ZMP
lies in the interior of the support base, then it coincides with the ZMP = COP
and there is no foot rotation (Fig. 2.3.1A).

With these definitions, we can understand the mechanics of balance in terms
of how the GRF acting at the COP changes the body’s angular momentum L(t )
about its center of mass (COM). Herr and Popovic (2008) describe this relation-
ship using the centroidal moment pivot (CMP), as illustrated in Fig. 2.3.2 for
sagittal-plane motion. The CMP is the intersection of the support surface and
the line parallel to the GRF that passes through the COM. For sagittal-plane mo-
tion, change in angular momentum dLx (t )/dt equals the normal component of
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FIGURE 2.3.1 (A) The center of pressure (COP) lies in the interior of the base of support and,
thus, coincides with the zero moment point (ZMP) and foot rotation index (FRI). (B) The COP lies
on the boundary of the base of support and FRI �= COP indicates that the foot will rotate about the
COP.

FIGURE 2.3.2 Whole-body mechanics of balance in the sagittal plane.

the GRF times the position of the COP relative to the CMP. Angular momentum
changes in the forward (clockwise) or backward (counterclockwise direction)
depending on whether the COP is behind the CMP (Fig. 2.3.2A) or ahead of the
CMP (Fig. 2.3.2C), respectively.

For periodic locomotion, both Lx (t ) and dLx (t )/dt are periodic with mean
0, allowing angular momentum Lx (t ) to be uniquely computed by integrat-
ing dLx (t )/dt (Herr and Popovic, 2008; Elftman, 1939). For human walking,
Lx (t ) is backwards during mid-stance and increases in the forward direction
near the end of single-support when the COP is behind the CMP (Fig. 2.3.2A).
Lx (t ) obtains its greatest forwards value near heel strike when dLx (t )/dt = 0
(Fig. 2.3.1B). Lx (t ) changes in the backward direction when the COP is ahead
of the CMP after heel strike (Fig. 2.3.2C), and is again backwards by mid-stance
of the opposite leg. This pattern leads to a cancellation of positive and negative
values of Lx (t ) so that it has mean 0 over the gait cycle. Such temporal cancella-
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tion must occur for any periodic gait. In additional, for human walking, there is
cancellation of the angular momenta of different body segments at each point in
time so that Lx (t ) is small throughout the gait cycle (Herr and Popovic, 2008).
In other words, the COP and CMT remain close throughout gait cycle, leading
to “zero-moment control”.

Another method to describe the relationship between the GRF and the COM
involves the virtual pivot point (VPP) (Maus et al., 2010). In the strictest defi-
nition, as illustrated in Fig. 2.3.2, the VPP is a point on the body with a fixed
position relative to the COM (i.e., the vector r is constant) such that at each point
in time, the line through the COP in the direction of the GRF passes through this
point. For human walking, there is a VPP above the COM that approximately
meets this definition (Maus et al., 2010) (Fig. 2.3.2). Maus et al. (2010) propose
a conceptual model in which the VPP above the COM acts like the pivot point
of a virtual pendulum, leading to stable balance during locomotion.

Comparing the approaches of Herr and Popovic (2008) and Maus et al.
(2010), both examine the relationship between the GRF and the COM. Herr
and Popovic (2008) emphasize that the line of action of the GRF passes close to
the COM throughout the gait cycle, that is, there is approximate zero-moment
control. If zero-moment control were perfect, then the VPP would be the COM.
Instead, the small deviations from zero-moment control are such that the VPP is
above the COM, leading Maus et al. (2010) to propose virtual pendulum control
to explain stable balance during gait.

2.3.1 THE NEURAL CONTROL OF BALANCE: STANDING VS.
WALKING

Balance has been extensively studied for standing (Horak and Macpherson,
2010), where the base of support is fixed. The nervous system uses informa-
tion from various sensory systems (somatosensation, vision, and the vestibular
system) to detect deviations away from the desired (nearly) vertical of various
body segments, such as the trunk, thighs, and shanks. The nervous system cor-
rects these deviations by modulating the stimulation of muscles acting at various
joints, such as the ankles, knees, and hips. Balance during locomotion shares
many of the same basic features, although there are important differences due
to the changing base of support and rhythmicity inherent in locomotion. Here
we consider these similarities and differences, focusing on the example of the
control of the trunk relative to vertical.

Fig. 2.3.3 is a schematic representation of the neural control of balance in
the general framework of control theory. Here the plant, the entity being con-
trolled, is an input–output process that describes how stimulation of muscles by
the nervous system leads to movement. The plant is defined by the biomechani-
cal properties of the body and its mechanical interaction with the environment.
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FIGURE 2.3.3 Schematic diagram of the neural control of movement, including standing balance
and balance during locomotion.

The controller describes how the nervous system uses sensory information to
modulate the stimulation of muscles. Balance is the result of the closed-loop
interaction between the plant and the controller.

There are two basic questions about the neural control of balance. First, what
is the desired attractor corresponding to stable balance? Second, how does neu-
ral feedback stabilize this attractor? For standing, the attractor is a stable fixed
point and, thus, is easy to describe: the body, on average, leans slightly forward
and there is, on average, a low level of stimulation of appropriate muscles (such
as calf muscles) to counteract the small torques due to gravity resulting from the
slight forward lean. For walking the attractor is a limit cycle. One must describe,
as a function of the phase of gait cycle, the periodic stimulation of each muscle
and the periodic movement of each mechanical degree of freedom of the body.
For example, Fig. 2.3.4A shows the periodic stimulation, as measured by sur-
face electromyography (EMG), of the erector spinae muscle of the lower trunk,
which acts to rotates the trunk backwards and is one of many muscles involved in
maintaining trunk orientation (Logan et al., 2017). Similarly, Fig. 2.3.4E shows
the periodic motion of the trunk in the sagittal plane. The closed-loop nature of
neural control implies that there is a consistency between EMG and kinematic
waveforms. The periodic EMG waveforms of all muscles and the properties of
the plant predict the periodic waveforms of each mechanical degree of freedom.
Conversely, the periodic waveforms of all mechanical degrees of freedom and
the properties of the neural controller predict the periodic waveform of each
muscle.

One early approach to understanding the relationship among mean EMG and
kinematic waveforms was the concept of balancing and unbalancing moments
of Winter (1995). The vertical and especially horizontal acceleration of the hip



FIGURE 2.3.4 Walking and standing perturbed by movement of the visual scene. Responses to continuous movement of the visual scene were used to infer the
effect of a small step in visual-scene position at the times indicated by arrows. Black bars along horizontal axes indicate double-support phases of the gait cycle. Based
on data from Kiemel et al. (2011) for standing and Logan et al. (2017) for walking.
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during walking produce an “unbalancing movement” of the trunk about the hip.
Muscles must provide a counteracting “balancing” moment to keep the ampli-
tude of trunk-angle oscillation within the observed range of about a degree or
two (Fig. 2.3.4E). For example, after heel strike there is a backwards accelera-
tion of the hip, which if not counteracted would produce a large forward rotation
of the hip. The stimulation of erector spinae and other trunk extensor muscles
near heel strike (Fig. 2.3.4A) produce a counteracting backwards moment on
the trunk. Note that stimulation of the erector spinae muscle starts before heel
strike, suggesting that the nervous system anticipates the unbalancing moment
rather than merely reacting to its effects.

Another approach to understanding the relationship among mean EMG and
kinematic waveforms is optimal control modeling (Anderson and Pandy, 2001;
Miller, 2014). Given a model of the plant and a cost function, periodic EMG
and kinematic waveforms are found that minimize the cost function for walking
at a specified speed. The cost function typically penalizes metabolic cost and/or
the amount of muscle stimulation. The amount of trunk accelerations predicted
by these models roughly approximates observed behavior, although their cost
functions do not penalizes acceleration. This calls into question the common
belief that balance during locomotion is designed to reduce head accelerations
in order to improve visual and vestibular sensing (Winter, 1995).

Sensory feedback control

The trunk during locomotion, as during standing, acts like an inverted pendu-
lum (Winter, 1995) and, thus, is unstable without sensory feedback. Given the
wealth of knowledge about how sensory information is used to stabilize standing
balance, it is advantageous to consider whether similar principles apply to loco-
motion, which is much less studied. In particular, system identification methods
based on sensory and mechanical perturbations have been used to identify the
key features of the plant and the neural controller (Fig. 2.3.2) (van der Kooij et
al., 2005; Kiemel et al., 2011) for standing balance. By comparing responses to
such perturbations during standing and locomotion, we can gain insight into the
similarities and differences between the two types of balance. For example, if
the visual scene moves forward, a standing subject interprets this environmen-
tal motion as self-motion in the backwards direction. As a result, the nervous
system changes levels of muscle stimulation, such as reducing the stimulation
of the erector spinae muscles (Fig. 2.3.4D), in order to rotate the trunk forward
(Fig. 2.3.4H). The reduction in stimulation is followed by an increase, which
acts to limit the forward trunk rotation and eventually, on a longer time scale
than shown in Fig. 2.3.4H, bring the trunk back to its original orientation.

If the same visual-scene perturbation is applied to a walking subject early
during the single-support phase of the gait cycle, the initial response is similar:
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a decrease in erector spinae stimulation (Fig. 2.3.4B) followed by a forward
trunk rotation (Fig. 2.3.4F). However, the response is highly dependent on the
phase of the gait cycle at which the perturbation occurs. For example, if the
perturbation occurs at the beginning of double support, then the initial erector
spinal response is greatly reduced (Fig. 2.3.4C). Instead, the stimulations of
other muscles respond to the perturbation (not shown), so that the trunk still
rotates forward (Fig. 2.3.4G).

This phase dependence occurs because the change in a muscle’s stimula-
tion due to a small perturbation occurs during those phases of the gait cycle
when the muscle is normally stimulated. For example, the effects of perturba-
tions on erector spinae stimulation occur around the beginning of double support
(Fig. 2.3.4B, C) when the periodic stimulation is highest (Fig. 2.3.4A). Thus,
the set of muscles that the nervous system can use to provide the earliest re-
sponse to a perturbation depends on the phase at which the perturbation occurs.
If a perturbation occurs during early double support, the erector spinae is in that
early-response set. If the perturbation occurs at the beginning of double support,
it is not and other muscles are used instead.

In summary, what emerges from the comparison of standing balance and
locomotor balance is that both use similar feedback control mechanisms based
on sensory information to respond to perturbations, but that locomotor balance
has the additional property of phase dependence. This view of feedback control
of locomotor balance is generally consistent with how feedback balance control
has been implemented in walking models (Aoi et al., 2010; Geyer and Herr,
2010; Song and Geyer, 2015; Günther and Ruder, 2003). In models with a single
trunk segment, the position and angular velocity of the trunk is used modulate
the stimulation of muscles that act at the hip, but only when the given leg is in
stance, giving rise to phase dependency.
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Chapter 3

Conceptual Models of Legged
Locomotion
Justin Seipel, Matthew Kvalheim, Shai Revzen, Maziar A. Sharbafi, and
André Seyfarth

This chapter provides an overview of simple conceptual models of locomotion
at the scale of whole body movements. First, conceptual models of locomotion
are introduced along with a few key empirical observations that support the con-
struction of simple conceptual models. Next, a theoretical perspective is offered
based on “templates and anchors” theory, where templates are related to simple
conceptual models. Commonly used models of legged locomotion are then pre-
sented: The Spring-Loaded Inverted Pendulum (SLIP) model of running and the
Inverted Pendulum (IP) model of walking. Legged locomotion is next presented
in terms of oscillatory behavior and oscillatory-based analysis. Finally, readers
are taken on a tour of a “model zoo” featuring many extensions of the SLIP and
IP models to more complex and realistic models.

A Role for Simple Conceptual
Models
Justin Seipel
Purdue University, West Lafayette, IN, United States

Legged locomotion of humans and other animals relies on a currently incompre-
hensible complex of underlying physiological systems. Though we have learned
a lot about what is happening inside the body when humans or other animals
move, we remain far from a coherent and complete understanding of how all the
underlying processes integrate and contribute to whole-body motion.

Despite the overwhelming complexity of the internal processes of legged
locomotion, the overall behavior on the level of whole body motion has remark-
able coherence and regularity that can be understood using measures and models
at the whole-body scale. As a complimentary approach to the direct study of the
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full complexity of locomotion, it can be helpful to develop relatively simple
conceptual models that capture the overall, whole-body characteristics of lo-
comotion. These models may also be more likely to be tractable mentally and
mathematically. Further, many simple conceptual models can also be related to
physical experiments and corresponding mathematical governing equations that
provide powerful capabilities of prediction and scientific analysis. Such models
tend to be simple in the sense that they often have a small number of elements
and degrees of freedom. They nonetheless often exhibit nonlinear dynamic be-
havior that requires sophisticated investigation and analysis. Also, the way these
models relate to and are applied to biological and robotic systems often requires
sophistication.

In this chapter we present conceptual models of whole-body locomotion.
Further, these models are shown to be related to physical observations and ex-
periments, as well as mathematical governing equations based on physical laws
of motion. Subchapter 3.1 provides an introduction to conceptual models of lo-
comotion and key empirical observations that support simple conceptual model
building on a scientific basis. Subchapter 3.2 provides a perspective on “tem-
plates and anchors” theory and how it relates to simple conceptual models.
Subchapters 3.3 and 3.4 present the Spring-Loaded Inverted Pendulum (SLIP)
model of running and the Inverted Pendulum (IP) model of walking. Subchap-
ter 3.5 introduces locomotion in terms of oscillatory behavior and related ap-
proaches to analysis. Finally, Subchapter 3.6 presents a “model zoo” featuring
many extensions of the SLIP and IP models.
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Chapter 3.1

Conceptual Models Based on Empirical
Observations
Justin Seipel
Purdue University, West Lafayette, IN, United States

3.1.1 OBSERVING, IMAGINING, AND GAINING INSIGHTS
INTO LOCOMOTION

Legged locomotion is in many ways familiar to us. Consider human running,
as shown in Fig. 3.1.1. We can recognize the scene of a human in motion, even
if it is only a snapshot in time. We can likely recognize the basic anatomical
segments of the trunk and limbs as well as the basic patterns of movement that
are exhibited. We are likely able to form a kind of mental model of locomotion.
Perhaps we can even conjure mental images or a movie related to the overall
motions we observe when others run, or the experiences we have when we run.

Despite the familiarity of locomotion, more aspects may remain fuzzy or
even foreign to us and become apparent only when explored further with trained
observations and/or special tools and techniques. Questions may also help guide
observations further. We might ask ourselves: Do we know what is happening
when we move? Can we provide an explanation for it? Can we build a system
that moves like we do? Do we know how major parts and processes of the body
integrate into a coherent movement pattern?

Here we seek to develop a conceptual understanding of locomotion that in-
cludes and goes beyond our everyday observations. We also seek to provide a
modeling framework that has predictive and design-aiding capabilities. Towards
achieving these goals, it can be helpful to develop models of locomotion that
provide both simple conceptual understanding as well as clear relationships to
physical systems and physical laws.

3.1.2 LOCOMOTION AS A COMPLEX SYSTEM BEHAVIOR

There are significant challenges to developing scientific theories and models of
legged locomotion. Movement in humans and other animals relies on a complex
integration of skeletal, muscular, neurological, and other physiological systems.
The skeletal system is organized with many complex joints, and multiple mus-
cles are organized into groups and can span different numbers of joints and
wrap in complex geometries. Also, the connectivity between neurons is beyond
anything we understand. As complex as this anatomical perspective already is,
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FIGURE 3.1.1 Human locomotion. Modified photograph by William Warby, Heat 1 of the Wom-
ens 100 m Semi-Final. Cropped and converted to grayscale. CC BY 2.0.

there remains additional complexity as seen from other perspectives, such as
when considering information processes or feedback dynamics. Overall, it is
a major challenge to derive simple models directly from the composition of a
large number of biophysical parts and integrated processes.

An alternative and complimentary approach to simple model development
is to use direct empirical study of overall, whole-body motion, as well as in-
spiration from mental models and intuition we may have. Other alternatives
are possible too, such as attempting to model at an intermediate scale some-
where between the smallest underlying physiological processes and the whole
body. All of these approaches can ultimately contribute to the development of a
more comprehensive and integrative understanding of biological movement. For
now, the focus of this chapter is on simple models that primarily capture overall
whole-body movements of legged locomotion and that are related to physical
experiments and physical laws.

3.1.3 SOME CHARACTERISTICS OF WHOLE-BODY
LOCOMOTION

Models of legged locomotion can be conceived based on direct observations.
Here, we focus on empirical observations of both the movement of the main
body (trunk) and the corresponding movement of the legs, to reveal overall kine-
matic patterns that are characteristic of locomotion. Other measurements such as
ground reaction forces and energetic consumption can be correlated with body
movements to provide insights into kinetic processes influencing motion.

Overall movements of the body can be tracked from one or more points on
the trunk, such as a marker on or near the hip (which is in the vicinity of the mass
center in humans). The overall motion of the legs may be tracked relative to the
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FIGURE 3.1.2 Running sequence. Photographs by E. Muybridge. Markers added by eye.

main body, such as by tracking points on the feet that help indicate whether a
leg is in stance or swing, and where it is relative to the body.

Many observations of whole-body movement can be made with the unaided
eye, but motion capture and tracking techniques have clarified what is otherwise
fuzzy or too fast to see and has enabled significantly greater accuracy and quan-
tification of movement (e.g., photographic techniques developed by E.J. Marey
and E. Muybridge enabled and inspired new scientific and artistic works, Marey,
1894; Muybridge, 1979; Silverman, 1996).

An example of tracking and characterizing overall locomotion is provided
in Fig. 3.1.2. This illustration and analysis of human running is based on a
sequence of Muybridge photographs. The original photographs have been mod-
ified with markers (dots) added manually, at the feet, hip, and top of the spine.
These markers, connected by lines, indicate major segments of the body: the two
legs and trunk. Legs are either functioning in stance (with foot on the ground) or
in swing (with foot off the ground), where flight phases of motion occur when
both legs are off the ground. The three segments or parts identified here—the
trunk, and two legs in stance or swing—relate to differentiated “subfunctions”
that integrate together into whole movement. This concept was introduced in
Chapter 2 from a motion control perspective, and is discussed again here from
the complimentary perspective of three anatomical parts: trunk, stance leg, and
swing leg.

3.1.3.1 The Trunk: Bouncing Along

During running, the trunk of the body appears to bounce along (here marked by
the hip and top of spine): The trunk bounces or oscillates vertically between the
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FIGURE 3.1.3 Stance leg length shortening and lengthening.

action of gravity and stance leg forces, all the while making forward progress.
Further, the trunk tends to be angled forward of vertical (averaging about 15 de-
grees in Fig. 3.1.2), and appears to be regulated such that it oscillates slightly
about this average. In many cases, locomotion model development is focused on
the translational movement of the body and in those cases rotations of the trunk
are not included as one may focus on developing a “point-mass” model of the
body. An example of a point-mass model of the body is provided in Subchap-
ter 3.3.

3.1.3.2 The Stance Leg: Acting Like a Spring

During the stance phase of running, as shown in Fig. 3.1.3, the stance leg length
shortens (compresses) and then lengthens (decompresses) while it pivots about
the foot. Observations of ground reaction forces show that the direction of force
is significantly aligned with the leg (though not entirely) and that the force mag-
nitude F changes with leg length, emulating Hooke’s Law (Blickhan, 1989;
Blickhan and Full, 1993):

F = k(l0 − l).

Here, k is an effective leg spring stiffness, l0 is its resting length, and l is the leg
length. This emulation of an effective leg spring has been observed across many
species, including poly-pedal locomotion where multiple legs can act together
as a single virtual leg-spring (Blickhan and Full, 1993). Further, effective leg
stiffness behavior has been demonstrated during walking (Geyer et al., 2006).
Though these observations provide us with a helpful model of the overall func-
tional behavior of stance legs, and elastic tissues do exist in legs, actual animal
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legs do not store and return energy the same way as an idealized spring. Animal
legs generally require significant energy to operate.

3.1.3.3 The Swing Leg: Recirculating for Touchdown

During locomotion, the swing leg recirculates in order to be placed down at
the next touchdown. For this, the prevailing movement of the swing leg is a
swinging motion to a position forward of the body. This motion resembles the
swinging of a pendulum. In addition to the forward swinging movement, the
swing leg also goes through a significant retraction, both at the beginning and
at the end of the swing phase: See Fig. 3.1.2. While swing legs can move like a
passive pendulum under their own weight, swing legs are also likely to be con-
trolled. Simple models of swing legs could include some combination of passive
pendulum-like dynamics and active leg placement control. One highly simpli-
fied swing leg model that has been used often results from assuming the swing
leg mass is negligible compared with the main body mass, and that the swing
leg angle is controlled to follow a prescribed trajectory (as simple as a constant
angle) until touchdown. An example of this is provided in Subchapter 3.3.

3.1.4 WHOLE-BODY CONCEPTUAL MODELS AS AN
INTEGRATION OF PARTS OR SUBFUNCTIONS

An overall simple conceptual model of locomotion can be arrived at through
integrating simple models/functions of the trunk (or main body), stance leg,
and swing leg into a whole system. Further, by deriving governing equations
of the whole system based on physical laws, we can predict its locomotion
behaviors. Later, we present two well-established models of locomotion: the
Spring-Loaded Inverted Pendulum (SLIP) model of running in Subchapter 3.3,
and the closely associated Inverted Pendulum (IP) model of walking in Sub-
chapter 3.4.
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Chapter 3.2

Templates and Anchors
Matthew Kvalheim and Shai Revzen
Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United
States

3.2.1 A MATHEMATICAL FRAMEWORK FOR LEGGED
LOCOMOTION

In this section we present a mathematical framework for analysis and modeling
of legged locomotion. This framework is, for most applications, far too gen-
eral. However, it will serve to provide a precise mathematical foundation, inside
which other more practical models and approaches appear as special cases.

The study of legged locomotion is the study of how bodies move through
space by deforming appendages we refer to as “legs” and using them to produce
reaction forces from the environment that propel the body. Thus, the configu-
ration of the system we seek to study comprises two parts—the location of the
body in space, and the “shape” of that body with respect to a frame of refer-
ence that travels with the body. In mathematical terms, this means the overall
configuration space Q is:

Q= SE(3)×B, B ⊆R
m (3.2.1)

where SE(3) is the “special Euclidean group of dimension 3”, also known as
“the space of rigid motions”, and B is taken to be some bounded, continuous,
closed, piecewise smooth surface in the space R

m. Let us temporarily use q =
(g, b) ∈Q to denote the instantaneous configuration.

In this book we are primarily concerned with legged locomotion that is gen-
erated by repeating patterns of motion called “gaits.” When an animal or robot
executes a gait, it traces out a cycle with b in the shape space B, while at the same
time translating and/or rotating the body frame g ∈ SE(3) through the world.
This form of a mathematical structure, in which a space is given by the Carte-
sian product of a “base space” (in our case, the shape space of the body) and
a group,1 here SE(3), is called a (trivial) “principal fiber bundle”,2 or simply a

1. More technically, the group is required to be a “Lie group”, and each fiber is a “principal ho-
mogeneous space” for this Lie group. Readers interested in these technicalities may consult, for
example, Steenrod (1951), Husemoller (1994).
2. This bundle is called “trivial” because it is equal to a product SE(3)×B, whereas in general fiber
bundles are spaces which are locally trivial, i.e., locally a product in some sense. See, for example,
Bloch et al. (2003), Husemoller (1994), Steenrod (1951).
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“principal bundle.” Subsets of Q of the form SE(3)× {b} for a fixed b ∈ B are
called “fibers.” A very readable introduction to the theory of fiber bundles may
be found in Chapter 2 of Bloch et al. (2003).

In physics, principal bundles have been used to describe diverse phenom-
ena in which cycles in the base space can be associated with a shift along a
fiber. Names for some phenomena in the literature associated with this concept
include “Berry phase”, “geometric phase”, “dynamical phase", “Pancharatnam
phase”, and “holonomy.”

In the study of locomotion, these ideas have been used to describe the ma-
neuvers cats (Marsden et al., 1991) and geckos (Jusufi et al., 2008) use to land
on their feet, and the choice of undulatory motions made by snakes and eels
(Ostrowski and Burdick, 1998; Hatton and Choset, 2011). When the relation-
ship between shape change and body frame velocity is linear, it is given by a
“connection”:

g−1ġ =A(g,b)ḃ (3.2.2)

While technical issues and high dimensions of the models create significant
difficulties in applying “geometric mechanics” approaches in practice, this the-
oretical framework can in principal describe legged systems.

3.2.2 TEMPLATES AND ANCHORS: HIERARCHIES OF MODELS

One of the most influential insights allowing legged locomotion systems to be
analyzed in practice was articulated in Full and Koditschek (1999), which pro-
posed the use of “templates” for generating refutable, testable hypotheses for
legged locomotion. While a “template” is defined as “the simplest model (least
number of variables and parameters) that exhibits a targeted behavior”, the
discussion and more recent treatments of the templates-and-anchors approach
follow more closely the concept outlined in Full and Koditschek (1999) on
page 3329: “We will say that a more complex dynamic system is an ‘anchor’ for
a simpler dynamic system if (1) motions in its high-dimensional space ‘collapse’
down to a copy of the lower-dimensional space of motions exhibited by the sim-
pler system and (2) the behavior of the complex system mimics or duplicates
that of the simpler system when operating in the relevant (reduced-dimensional
copy of) motion space.” In other words, animals have many degrees of freedom,
but move “as if” they have only a few, and limit pose to a behaviorally rele-
vant family of postures. One way to encapsulate this insight mathematically is
to presume that animals occupy only a low-dimensional “behaviorally relevant”
submanifold of B, the space of possible “poses.” As an illustrative example of
what this means in practice, consider a photo of a galloping horse. We know that
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the horse is galloping, because the pose (“shape”) of the body that we see in that
still image is one which is only used for galloping. In fact, there is a cycle of
poses that is associated with that horse galloping, and if environmental circum-
stances contrive to perturb the horse’s body away from appropriate shapes for
galloping, it quickly returns to some appropriate galloping pose.

However, the insight extends further: trotting quadrupeds such as horses and
dogs, running bipeds such as humans and ostriches, insects like cockroaches
employing alternating tripod gaits, and even running decapods like ghost crabs
all employ similar center of mass dynamics—the “Spring Loaded Inverted Pen-
dulum (SLIP)” (Dickinson et al., 2000; Blickhan, 1989). All these organisms
exhibit similar center of mass dynamics: in each step, they bounce like a pogo
stick. The center of mass slows down while descending closer to the ground,
reaching its minimum speed at its lowest altitude, while ground reaction force
in the normal direction is maximal. The center of mass continues, speeding up
as it rises until the body entirely detaches from the ground into an aerial phase
of ballistic motion leading to the next step.

In this sense, the SLIP template represents a common governing feature ap-
pearing in many organisms when they run quickly. The template is not only a
description of a typical subset of poses, but also a low dimensional dynamical
model that captures features of the aggregate behavior of the body.

It would be tempting to assume that for every behavior or animal examined,
there exists a specific “simplest” template model that governs that behavior.
However, Full and Koditschek (1999) had already pointed out that the notion
of “simplest” model is problematic, and that both the Lateral Leg Spring (LLS)
and the Spring Loaded Inverted Pendulum (SLIP) are templates for running (H3,
H4 in Full and Koditschek, 1999, Table 1). The specific formal definition of a
“template” was left vague.3

As an illustrative example, both the “Clock-Torque (CT-)SLIP” (Seipel and
Holmes, 2007) and “SLIP with knee” (Seyfarth et al., 2000; Rummel and Sey-
farth, 2008) models may be considered to be anchors for the classical sagittal
plane spring loaded inverted pendulum (SLIP) model; important features of this
model can be further distilled (following Blickhan, 1989) into a vertical hop-
ping model, or alternatively into a compass walker (Usherwood et al., 2008).
The three-dimensional pogo stick-like SLIP template (Seipel and Holmes, 2005)
may also be viewed as an anchor for the sagittal plane SLIP, but one may be
equally justified in reducing this three-dimensional pogo stick to a horizontal
plane Lateral Leg Spring (LLS) model (Schmitt and Holmes, 2000a, 2000b)

3. This was intentional, based on personal communication with each of the authors.
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FIGURE 3.2.1 A collection of locomotion models with their template–anchor relationships in-
dicated, showing a partial order structure. [i] Usherwood et al. (2008), [ii] & [iii] Blickhan
(1989), [iv] Schmitt and Holmes (2000a, 2000b), [v] Rummel and Seyfarth (2008), Seyfarth et
al. (2000), [vi] Seipel and Holmes (2005), [vii] Seipel et al. (2004), [viii] Seipel and Holmes (2007),
[ix] Kukillaya and Holmes (2007).

which captures aspects of the horizontal motion such as steering, but ignores
the importance of vertical bouncing. Additionally, both the “hexapedal lateral
leg spring” (Kukillaya and Holmes, 2007) and “jointed lateral leg spring with
neurons” (Seipel et al., 2004) models are extensions of the classical LLS which
may be viewed as a template for these models. This hierarchy is depicted in
Fig. 3.2.1.

We are led to the conclusion that rather than a template being a unique, ul-
timate object, “template and anchor” is a relationship between models. A given
model Y can be a template for a more anchored model X, while Y itself may
be an anchor for a further template Z. We will use the term “template” to im-
ply that this model is “simpler” than its “anchor.” Usually, one aspect of this
simplicity is a reduction of dimension, and quantities in a template often rep-
resent aggregates of quantities from the underlying anchor. For example, both
SLIP and LLS reduce the mass distribution of the body to a concentrated mass
with or without rotational inertia; both discard modeling the kinetic energy and
momentum associated with the legs themselves. An insightful discussion on the
design and control of legged robots using template–anchor notions is given in
Blickhan et al. (2007).

In the remainder of this chapter we will discuss several of the ways in which
a template-and-anchor hierarchy can be constructed to facilitate the understand-
ing of legged locomotion.

As a cautionary note, it should be pointed out that the term “template” has
sometimes been used to mean “a spring mass model of center of mass dynam-
ics.” In this book, we will use it in the much broader meaning described above.
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3.2.3 TEMPLATES IN DYNAMICS, CONTROL, AND
MODELING

There are several ways to approach template–anchor relationships which have
been used successfully. Mathematicians and physicists studying dynamical sys-
tems theory have constructed a variety of notions of dimensionality reduction.
From this perspective, the primary object of study is an elaborate mathematical
“anchor” model comprising a set of equations, the solutions of which are shown
to be approximately or exactly modeled by a simpler “template” model compris-
ing fewer equations with fewer parameters. Several examples of this approach
can be found in Holmes et al. (2006). In particular, Kukillaya and Holmes (2007)
have shown an example of a hexapedal cockroach model with jointed legs and
neuronal control, which can be formally reduced and shown to behave similarly
to the far simpler LLS model.

Engineers building robots have looked to templates as “targets of control”,
i.e., as descriptions of desirable behaviors to be emulated (Westervelt et al.,
2003; Revzen et al., 2012; Ames, 2014), or as simplifications to be used for
quickly estimating an appropriate control policy (Raibert et al., 1984). Here, the
primary object of study is not the template itself, as much as it is the means by
which template dynamics are elicited from an anchor.

A more explicit focus on templates is found in work by engineers employing
“template-based” strategies for the bio-inspired design and control of robots.
Here, the goal is to embed well-known templates in more complex, anchored
locomotion systems. Controllers have been designed to embed the dynamics en-
coded in SLIP and its three-dimensional analog in bipedal robots (Wensing and
Orin, 2014; Dadashzadeh et al., 2014). In Poulakakis and Grizzle (2009), the
SLIP model is explicitly mathematically embedded as the “hybrid zero dynam-
ics” of an asymmetric version of the SLIP model. Ankarali and Saranli (2011)
have used an extended SLIP model involving torque actuation at the hip for
designing a controller to achieve underactuated planar pronking in the robot
RHex (Saranli et al., 2001). Other researchers have considered the combination
of several different templates in the same robot in order to render it capable
of achieving multiple goals, such as running/climbing (Miller and Clark, 2015)
and running/reorientation/vertical hopping (De and Koditschek, 2015). Lee et
al. (2008) have even worked to embed a cockroach-inspired antenna-based wall-
following template in a robot with a bio-inspired antenna.

Biomechanists have looked to templates from a data-driven, experiment-
centric perspective. Here, the primary objects of study are the locomotion data
themselves. The goal is to find low-dimensional models which represent obser-
vational data, accounting for both trends and variability with a few meaningful
parameters. Data-driven templates have been used successfully to predict how
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animals recover from perturbations (Revzen et al., 2013) and how humans con-
trol and stabilize their running gait (Maus et al., 2014). These ideas are elabo-
rated upon in Section 3.2.4.3.

3.2.4 SOURCES OF TEMPLATES; NOTIONS OF TEMPLATES

Given the three approaches to templates described in the previous section, it is
hardly surprising that there are many mathematical notions of being a template-
and-anchor pair. In this section we point to some of the literature in the field. The
subtle differences and technical caveats associated with applying these notions
are outside the scope of our exposition.

3.2.4.1 Dimensionality Reduction in Dynamical Systems

As a simple example, templates exist in the dynamics of linear systems (see,
e.g., the textbook of Hirsch and Smale, 1974, for an introduction to linear
systems). When a stable Linear Time Invariant (LTI) system of differential equa-
tions ẋ =Ax has a large “spectral gap”—some modes (projections of solutions
onto the generalized eigenspaces of A) collapse much faster than others—the
slower modes can justifiably be viewed as a template for the complete higher-
dimensional system. This expresses itself as a large difference in the real part
of the eigenvalues of the matrix A, with the eigenvalues corresponding to slow
template modes having a real part close to zero.

Dynamicists have extended this idea to nonlinear systems in multiple ways
using the notion of “invariant manifolds”, of which the generalized eigenspaces
in the previous example are a special case. A positively (negatively) invariant
manifold is a smooth submanifold of the state space of a dynamical system
for which any initial condition belonging to this submanifold remains in the
submanifold as it evolves forward (backward) in time. An invariant manifold is
a smooth submanifold of the state space of a dynamical system which is both
negatively and positively invariant; in other words, an invariant manifold is a
union of trajectories. (Positively) invariant manifolds are often useful notions
of templates—here, the template appears in a form which guarantees that the
anchor dynamics restricted to template states are invariant, meaning that if the
anchor begins in a state belonging to the template it can no longer escape back
to exhibiting more complex behaviors. An excellent survey of the many ways
invariant manifold methods have been useful in science and engineering is given
in Chapter 1 of Wiggins (1994).

One well-known class of invariant manifolds which can be used to form
useful templates are the asymptotically stable normally hyperbolic invariant
manifolds (NHIMs) (Hirsch et al., 1970; Eldering, 2013; Wiggins, 1994); by
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“asymptotically stable”, we mean that they attract all nearby trajectories asymp-
totically. Special cases of NHIMs include hyperbolic fixed points and hyperbolic
periodic orbits (Hirsch and Smale, 1974). A particularly nice property of NHIMs
is that they persist under small smooth perturbations of the equations defining
the dynamical system (Hirsch et al., 1970), and the compact invariant mani-
folds which persist under smooth perturbations are normally hyperbolic (Mané,
1978). This makes NHIMs useful from a modeling perspective. Since physical
measurements cannot determine parameters of a mathematical model with per-
fect accuracy, any physically meaningful feature of a mathematical model must
persist under small perturbations.

Viewed as infinite-dimensional dynamical systems, even certain partial dif-
ferential equations admit a template-like structure both through the theory of
normal hyperbolicity (Bates et al., 1998, 2000) and the related theory of “iner-
tial manifolds”, the second class of (positively) invariant manifolds we mention
here (Constantin et al., 2012; Foias et al., 1988b). Inertial manifolds, when they
exist, are finite-dimensional positively invariant manifolds containing the global
attractor of a (possibly infinite-dimensional) dynamical system and attracting all
solutions at an exponential rate (Foias et al., 1988b). If an inertial manifold ex-
ists for a given partial differential equation, it governs the long-term dynamics.
Examples of systems having an inertial manifold include dissipative systems
such as those that appear in elasticity and fluid dynamics (Constantin et al.,
2012). Techniques for computationally producing approximate inertial mani-
folds have been studied (Foias et al., 1988a).

“Center manifolds” are the third class of invariant manifolds we mention
here. We briefly describe the most basic notion of center manifold at the level of
generality relevant for our discussion; see, for example, the discussion in Sec-
tion 3.2 of Guckenheimer (1983) for more details. Given a system of differential
equations ẋ = f (x) and a stable equilibrium point x0 with f (x0)= 0, the eigen-
values of the linearization Df (x0) split into collections of eigenvalues having
negative and zero real part. These collections of eigenvalues respectively deter-
mine stable and center subspaces. The center manifold theorem states that there
exist “stable” and “center” invariant manifolds respectively tangent to these sub-
spaces. Trajectories in the stable manifold approach x0 exponentially in positive
time. While the stable manifold is always unique, in general the center mani-
fold need not be. Center manifolds may also be defined for periodic orbits (see
Theorem 4 of Section 3.5 in Perko, 2001) and more general attractors (Chow et
al., 2000). Center manifolds and NHIMs have somewhat similar spectral prop-
erties, but they differ in that NHIMs have an instrinsic global definition whereas
center manifolds are only defined locally. This local definition manifests itself
in the fact that center manifolds are in general nonunique (see Section 1.1.2 of
Eldering, 2013 for more discussion).
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All of the classes of (positively) invariant manifolds we have mentioned have
the property that they attract all nearby states. The template is stable in the sense
that anchor states which are near template states will asymptotically approach
the template. However, one important reason these notions of templates are so
useful is more subtle than this; not only do nearby anchor states approach these
invariant manifold templates, they approach specific trajectories in the template.
This provides justification for the approximation of anchor dynamics by tem-
plate dynamics. For inertial manifolds, this property is known in the literature
as “asymptotic completeness” (Robinson, 1996), and the fact that center mani-
folds have this property is shown, for example, in Carr (1982). For NHIMs, this
property is often noted by referring to the existence of an “invariant foliation” or
“invariant fibration” of the basin of attraction of the invariant manifold (Hirsch
et al., 1970), and is also sometimes referred to as “asymptotic phase” in the
literature (Bronstein and Kopanskii, 1994) (we also refer to this as “dynamical
phase” in Subchapter 3.5). Guckenheimer (1975) contains a simpler discussion
of the properties of asymptotic phase for the special case of exponentially stable
limit cycles.

As an illustrative example of the utility of invariant manifold notions of tem-
plates in the analysis of legged locomotion, consider an oscillator. As explained
in Subchapter 3.5, an oscillator, by definition, consists of the dynamics in the
basin of attraction of an exponentially stable periodic orbit (also known as a
limit cycle).4 The image of the periodic orbit, or set of points traced out by
the limit cycle, is itself a normally hyperbolic invariant manifold. Defining the
anchor to be the dynamics on the entire basin of attraction, a template may be
taken to consist of the dynamics restricted to the image of the periodic orbit. Ex-
plicitly, the existence of asymptotic phase on the basin of attraction implies that
each anchor state will asymptotically coalesce with a (in this case, unique) tem-
plate state which may be represented by assigning to each anchor state a number
θ ∈ [0,2π). This is the “phase oscillator” template explained in Subchapter 3.5.
However, for many practical applications, this particular template approxima-
tion of the anchor dynamics may be too coarse. As explained in Subchapter 3.5,
the theory of normal forms (Bronstein and Kopanskii, 1994) shows that large
“spectral gaps” in the “Floquet multipliers” of an oscillator yield additional in-
variant “slow manifolds” corresponding to slow “Floquet modes.” Anchor states
will again asymptotically approach particular template trajectories in such a way
that the dynamics restricted to such an invariant manifold constitutes a good
template approximation of the anchor dynamics. Physically, the limit cycle may

4. As in Subchapter 3.5, an “oscillator” is a deterministic system as defined here, while in Sub-
chapter 3.5 we use the term “rhythmic system” to refer to a nondeterministic system resulting from
perturbations of a (deterministic) oscillator by (“relatively small”) noise.
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FIGURE 3.2.2 An example of an invariant manifold template–anchor relationship in the context of
modeling legged locomotion shape-space dynamics by an oscillator. The collection of states corre-
sponding to “Floquet multipliers” with relatively large magnitude form an invariant “slow manifold.”
The states belonging to this invariant manifold may be thought of as the states which return slowly
to an unperturbed gait, modeled by the limit cycle. Taking the anchor to be the dynamics on the
entire state space, the dynamics restricted to this invariant slow manifold may serve as a template.
Alternatively, the dynamics restricted to the states traced out by the limit cycle itself may serve as a
“phase oscillator” template which is a coarser approximation of the anchor dynamics.

be viewed as representing a perfectly periodic gait subject to no environmental
or neuromuscular perturbations. The invariant slow manifold template may then
be viewed as the collection of anchor states having “slow recovery” when per-
turbed from this steady gait. Any anchor states not belonging to this template
will quickly return to the template and may be viewed as “posture errors.” This
is illustrated in Fig. 3.2.2.

Yet another source of templates comes from mechanical models possess-
ing symmetries. Roughly speaking, a differential equation is said to possess
a “symmetry” if it is invariant under the action of a “Lie group” (Lee, 2012)
on its state space. For the case of mechanical systems, reduction tools such as
Noether’s Theorem from geometric mechanics (Abraham and Marsden, 1978;
Bloch et al., 1996) yield conserved quantities (e.g., energy, momentum, angular
momentum) which constrain trajectories of the dynamical system to lower-
dimensional submanifolds. Dynamics restricted to these lower-dimensional sub-
manifolds form templates for the original anchored mechanical system, and one
can understand the behavior of the template in terms of the anchor and vice-
versa. We note that other reduction methods in the spirit of Galois’ work on
algebraic equations (Dummit and Foote, 2004) also exist for the analysis of or-
dinary differential equations possessing symmetries but not necessarily arising
from mechanical systems (Olver, 2000).
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FIGURE 3.2.3 An uninjured dog and a 3-legged dog can both jump to catch a Frisbee. The ability
to do so well can be expressed (red arrow) by taking the dynamics anchored in the 4-legged mor-
phology, abstracting them as a jumping template and embodying this template in a 3-legged anchor
reflecting the new morphology. The quality of this abstraction and embodiment can be quantified in
a formal way within the framework of approximate bisimulation.

An even greater focus on templates as approximations can be found in the
theory of “bisimulation” appearing in its original form in the study of discrete
state transition systems in computer science (Park, 1981). Intuitively, two sys-
tems are bisimilar if they cannot be distinguished by an “external observer.”
Bisimulation has been generalized to apply to continuous-time and hybrid dy-
namical systems. In fact, the template notions previously mentioned in this
section are bisimulations of their anchor dynamics, which follows from Propo-
sition 11 of Haghverdi et al. (2005). Bisimulation provides a formalism for
discussing templates and anchors for situations more general than the case in
which the template is an invariant submanifold of the anchor.

Despite the level of generality afforded by the framework of bisimulation, re-
quiring bisimilarity between models as a criterion for template–anchor relation-
ships can sometimes arguably be too restrictive for modeling physical systems.
Bisimilarity relations are not necessarily robust to noise, measurement error, or
other perturbations to physical models. Recent work has extended the notion
of bisimilarity by providing a definition of “approximate bisimulation” (Girard
and Pappas, 2007). The utility of approximate bisimulation lies in its ability to
quantify the quality of approximation by one mathematical model of another. In
particular, the language of approximate bisimulation can be used to quantify the
degree to which some mathematical model is a template for another anchored
model. As a simple example, a double pendulum with one small mass m and one
large mass M can be approximated by a single pendulum of mass M +m. For
a more interesting example, consider the following. Animals, such as dogs, are
able to instantiate the same template despite seemingly catastrophic injury such
as limb loss. Fig. 3.2.3 illustrates the approximate template–anchor relationships
between relevant models for this case. These examples are hardly surprising
from the perspective of mechanical intuition, but the theory of approximate
bisimulation renders these observations formal, testable, and quantifiable in a
computational framework.
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3.2.4.2 Templates Based on Mechanical Intuition

By far, the most prolific source of models intended as templates has been the
insight of researchers. As described in Section 3.2.2, the insight of Blickhan led
to the introduction of the SLIP template in his seminal work (Blickhan, 1989).
Despite being an energetically conservative model without control inputs, the
SLIP has enjoyed enormous success in making tractable the tasks of animal lo-
comotion analysis (Section 3.2.2) and robot design and control (Section 3.2.3).
The success of the sagittal plane spring-loaded inverted pendulum as a mathe-
matical model inspired various extensions of SLIP, such as CT-SLIP (Seipel and
Holmes, 2007), as well as three-dimensional (Seipel and Holmes, 2005), bipedal
(Geyer et al., 2006), and segmented versions of SLIP (Seyfarth et al., 2000;
Rummel and Seyfarth, 2008). Other templates such as LLS (Schmitt and
Holmes, 2000a, 2000b) and its extensions (described in Section 3.2.2) such as
a model with additional joints and neuronal interactions (Seipel et al., 2004)
and a hexapedal version of LLS (Kukillaya and Holmes, 2007) were developed
to specifically capture the horizontal component of locomotion. Thoughtful
consideration of modeling has produced a plethora of additional templates of
varying levels of complexity appropriate for other situations. Inspired by the
climbing aptitude of insects and geckos, Goldman et al. (2006) proposed a
template for describing rapid vertical climbing. Observations of cockroaches
using their antennae to follow walls motivated the introduction of an antenna-
based wall following template (Cowan et al., 2006). Human walking inspired
a template based on the notion of “virtual pivot points” (Maus et al., 2010).
Examples of other templates proposed for specific classes of models include a
quadrupedal running template for robotic systems with articulated torsos (Cao
and Poulakakis, 2013) and a kinematic template proposed for an eight-legged
miniature octopedal robot assumed to be in quasi-static motion (Karydis et al.,
2015).

Typically, templates have been proposed without explicitly formulating the
anchor model to which they relate, although there are exceptions. In other work,
there is an emphasis placed on exploring relationships between various tem-
plates and their anchors. To name but a few examples, see Seipel and Holmes
(2005, 2006), as well as Chapter 5 of Holmes et al. (2006) and the references
therein.

3.2.4.3 Data-Driven Model Reduction

Data-driven dimensionality and model reduction has emerged as an industrious
and interdisciplinary field of research, having broad applications to the science
and engineering fields and drawing upon techniques from optimization, statis-
tics, dynamical systems theory, and machine learning. Classical approaches
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to dimensionality reduction include linear subspace projection methods such
as “principal component analysis” and “factor analysis” (Jolliffe, 2002); one
active area of current research concerns nonlinear dimensionality reduction ap-
proaches such as “manifold learning” (Lee and Verleysen, 2007), which general-
ize linear projection methods by replacing linear subspaces with submanifolds.
Projection methods such as these identify a small (relative to the dimensionality
of the raw data) collection of parameters which may accurately represent the raw
data, and this collection of parameters is optimal in some sense depending on
the projection method used. Such a small parameter set may accurately capture
the spatial information present in time series data and motivate the construc-
tion of reduced-order spatio-temporal mathematical models. Givon et al. (2004)
contains a review of several other algorithmic approaches to dimensionality re-
duction, focusing on methods specifically aimed at model reduction of general
dynamical systems.

In the context of legged locomotion, there has been work on the construc-
tion of templates directly motivated from data. Operating under the assump-
tion that the underlying mathematical model is an oscillator (see Subchap-
ter 3.5), several researchers have performed nonparametric system identifica-
tion of biomechanical systems (Ankarali, 2015; Wang, 2013; Revzen, 2009;
Hurmuzlu and Basdogan, 1994; Hurmuzlu et al., 1996). Researchers have addi-
tionally attempted to find nonlinear coordinate systems directly from data in
which oscillator dynamics are linear (see Revzen and Kvalheim, 2015, and
references therein for more mathematical detail), and have coined the term
“Data-Driven Floquet Analysis” (DDFA) to collectively refer to the computation
of this linearizing coordinate system and to other oscillator system identifi-
cation methods (Revzen, 2009). The linearizing coordinate change of DDFA
can be viewed as a special case of finding linearizing “observables”, which are
themselves eigenfunctions of the “Koopman operator” (Rowley et al., 2009;
Koopman, 1931), and may in some cases be computed using “Dynamic Mode
Decomposition” (Schmid, 2010) and its extensions. Using the techniques of
DDFA, Revzen and Guckenheimer (2011) present a method for identifying ap-
propriate dimensions of reduced-order models of legged locomotion and other
rhythmic systems directly from noisy data and without explicit knowledge of
governing equations. By exploiting the structure of the stability basin of an oscil-
lator, they determine a candidate dimension for the slow manifold by examining
the magnitudes of eigenvalues of Poincaré return maps. This candidate dimen-
sion serves as an upper bound for the dimension of a statistically significant
template.

In the specific context of human walking, Wang used analysis of Poincaré
maps to show a relationship between upper body/trunk motion and foot place-
ments, providing a rigorous data-driven derivation of human walking features
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previously conjectured (Wang, 2013). Maus et al. (2014) performed DDFA on
human running data and showed that while the SLIP template predicts within-
step kinematics of the center of mass, it fails to predict stability and behavior
beyond one step. Furthermore, insights derived from DDFA enable Maus et al.
(2014) to identify that swing-leg ankle states are important predictors of human
locomotion beyond those present in the SLIP template. Augmenting the SLIP
model with these predictors, the authors construct a model shown to have pre-
dictive power superior to SLIP for the available subject population.

3.2.5 CONCLUSION

The answer to the question of “which notion of template–anchor relationship
should be used?” depends on one’s goals and on practical limitations of the
application in mind.

As an example of one end of the spectrum, mathematicians wanting to ex-
plore mathematical relationships need to write down or use existing equations
of motion, which may make many assumptions about the underlying physics
and/or biology of a locomoting system. In this case, various templates may be
amenable to discovery by theoretical consideration. For example, invariant man-
ifolds may be found “by hand” or numerical methods. Alternatively, reduction
tools from geometric mechanics and the theory of Lie groups may be used to
produce templates if symmetries are present in the equations of motion. Notions
such as bisimulation and approximate bisimulation from computer science are
used to formalize template–anchor notions in some areas of the literature.

On the opposite end of the spectrum, experimental biologists deal with ac-
tual data and do not have access to explicit mathematical models a priori. For
this reason, researchers have worked on data-driven methods of system identi-
fication and model reduction. As outlined in Section 3.2.4.3, many algorithms
have been used in attempts to tackle this problem for real-world systems in gen-
eral, and several researchers have worked on methods aimed specifically toward
legged locomotion. In particular, there has been some success in using Data
Driven Floquet Analysis both using data to directly explain previously conjec-
tured features of human locomotion and in motivating new templates of human
running which may outperform SLIP as predictive models.

In between these two extremes, engineers and control theorists need methods
to obtain practical models amenable to computation for which they can pro-
duce their own template “targets of control” to achieve desirable behaviors in
robotic systems. Some engineers have used “template-based” methods in the
bio-inspired design and control of robots, attempting directly to embed the low-
dimensional dynamics of classical templates such as SLIP in high-dimensional
anchored robots in order to achieve useful behaviors.
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There are a myriad of notions and examples of “templates and anchors”
outlined in this chapter, and many of these notions appear, at least at first glance,
to be quite distinct. Many engineers, scientists, and mathematicians may benefit
from exposure to these ideas.
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Chapter 3.3

A Simple Model of Running
Justin Seipel
Purdue University, West Lafayette, IN, United States

3.3.1 RUNNING LIKE A SPRING-LOADED INVERTED
PENDULUM (SLIP)

Humans and other animals run in a way that loosely resembles a pogo-stick
bouncing along; see Fig. 3.3.1 for an illustration of human running. This behav-
ior is approximately captured in the spring–mass, or Spring-Loaded Inverted
Pendulum (SLIP) model of running; see Fig. 3.3.2. Further, passive dynamic
running mechanisms can also embody SLIP-like running; see Fig. 3.3.3.

There are several features of running behavior that are in common for ani-
mal, robot, and SLIP model running: During the stance phase of running, the
body first moves downwards, reaching a minimum height at or near mid-stance,
then moves upwards, all the while pivoting about the foot of the stance leg.
After the stance leg lifts off, the trunk continues to rise during a flight phase
of motion, until reaching a maximum height apex, then falls until the swing leg
touches down to start the next stance. During stance, the length from trunk to the
foot of the stance leg compresses (shortens) and then decompresses (lengthens),
roughly in proportion to the ground reaction force acting on the leg, effectively
like a spring. During flight, when all legs are off the ground, the leading swing
leg (with foot off the ground) is moved into position for the next foot touch-
down.

The overall behavior of running, as summarized here, can be captured in
simple conceptual models of locomotion such as the SLIP model (e.g., spring–
mass “SLIP” models by Blickhan, 1989 and McMahon and Cheng, 1990 and
other SLIP models introduced in Subchapters 3.2 and 3.6). SLIP models are of-
ten low-dimensional models, commonly using a single point-mass representing
the body and a single massless leg that can represent key stance and swing leg
functions during both stance and flight phases, respectively. Please see Subchap-
ters 3.2 and 3.6 for an overview of SLIP-based models with varying degrees of
complexity and realism. More realistic SLIP models might explicitly include
more aspects of locomotion such as the movements of both legs during all
phases of movement, as well as rotations and translations of the body/trunk.
However, with increased realism there is often a trade-off in model complex-
ity. Here a simple point-mass implementation of the SLIP model of running is
presented.
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FIGURE 3.3.1 Illustration of running (modified chronophotograph by Étienne-Jules Marey).

FIGURE 3.3.2 An illustration of the Spring-Loaded Inverted Pendulum (SLIP) running. Here a
running sequence is shown with descriptive labels of key events and phases of motion: touchdown,
stance phase, liftoff, and flight phase prior to the next touchdown. The position of the body mass
(m) at any instant during stance is indicated by the leg length (l) and leg angle (θ ). During flight, the
leg angle is controlled to be equal to the value β upon the next touchdown, where the leg length at
touchdown is lo . The leg stiffness (k) and the leg compression (�l) are also indicated. The maximum
height at apex is indicated by yi (note that the subscript i indicates the ith apex event, to be followed
by the (i + 1)th event). The timing of touchdown and liftoff events are close to those in Fig. 3.3.1
but do not exactly correspond.

3.3.1.1 Physical Mechanisms and Robots Related to the SLIP
Model

The concept of pogo-stick locomotion or SLIP locomotion has also been influ-
enced by the work of mechanicians and roboticists who were inspired by human
and other animal motion to produce running machines and robots. For example,
dynamic legged robots as described in Raibert (1986), and the Robotic Hexapod
RHex as recorded in Saranli et al. (2001). More recently, passive running mech-
anisms have been demonstrated, with elements that directly relate to the spring-
loaded inverted pendulum model. For example, the passive locomotion mecha-
nism of Owaki et al. (2010) exhibits running-like behavior; see Fig. 3.3.3. Such
running mechanisms and robots are essentially like pogo sticks bouncing along,
and are similar to the Spring-Loaded Inverted Pendulum model of running.



Conceptual Models of Legged Locomotion Chapter | 3 81

FIGURE 3.3.3 A passive dynamic legged mechanism. Images here are reproduced from Owaki
et al. (2010) and displayed in a new arrangement. (Left panel) Image of a passive dynamic run-
ning mechanism, shown in a static position, with key system elements labeled: (A) hip springs to
facilitate leg rotational oscillations, (B) leg springs to facilitate leg compression oscillations, (C) par-
allel link mechanism to synchronize the two outer legs, (D) shock absorber to dampen impact, and
(E) a knee hyperextension mechanism to enable a form of mechanical support at the knee during
stance, hypothesized to be needed in the absence of muscles or other actuators acting to transfer
load across the knee joint (Owaki et al., 2010). (Right-top panel) A photograph captured during the
flight phase, demonstrating one of the characteristic features of dynamic legged locomotion with a
level of energy surpassing normal walking behavior. (Right-bottom panel) A photograph captured
during the first half of stance, where the stance leg spring is clearly compressed. Note that in or-
der for this system to maintain a steady stable gait, it runs on an inclined plane (here, running on
an inclined treadmill). This mechanism exhibits flight phases and some characteristics of running,
though currently does not produce maximum leg compression near mid-stance as is characteristic
of SLIP running. Despite these differences with the classical assumptions and behaviors of the SLIP
model, here we can see basic SLIP principles embodied in a physical system.

3.3.2 MATHEMATICAL AND PHYSICS-BASED SLIP MODEL

The SLIP model of running can be described in a more precise mathematical

form based on physical laws of motion. The SLIP model, as presented in this

chapter (Fig. 3.3.2), is composed of a point mass m representing the body, an

effective leg stiffness k representing a massless stance leg, and a massless leg

during flight representing a swing leg. Here, we derive the mathematical equa-

tions governing the motion of the SLIP model, based on a similar but more

detailed presentation in Shen and Seipel (2016).

During the stance phase of motion the body mass m moves forward pivoting

about the foot of the stance leg, and can be described by the leg length l and

angle θ . The Lagrangian L of the system, a description of the system’s kinetic
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energy T and potential energy V , is

L= T − V = 1

2
m
(
l̇2 + (lθ̇)2)− 1

2
k (l − l0)

2 −mgl sin θ.

Application of the Euler–Lagrange Equation to L yields the following equations
governing stance:

ml̈ =mlθ̇2 − k (l − l0)−mg sin θ,

ml2θ̈ =−mgl cos θ − 2mll̇θ̇ .

The stance phase of motion ends when the stance leg reaches its uncompressed
length l = l0. This event is called liftoff. After liftoff, the flight phase of motion
follows.

During the flight phase of motion, the mass center is only affected by gravity,
and so the motion is most simply described in terms of the height: ÿ =−g. The
horizontal component of velocity is constant during flight. During flight, the
angle for the next touchdown leg is set to a specified value β and held there
in preparation for the touchdown event, when the foot reaches the ground (y =
l0 sinβ) and the flight phase ends. After touchdown, a new stance phase follows
and the gait pattern repeats.

The governing equations of stance and flight, together with the event equa-
tions defining liftoff and touchdown, can be solved to determine the overall
locomotion solutions of the SLIP model. In general, a numerical approach to
solving the governing equations is used, though analytical solutions are pos-
sible for approximations of the SLIP model (e.g., Ghigliazza et al., 2005;
Saranlı et al., 2010; Schwind and Koditschek, 2000; Geyer et al., 2005;
Robilliard and Wilson, 2005; Altendorfer et al., 2004; Shen and Seipel, 2016).

3.3.2.1 Ground Reaction Forces During Stance

In addition to computing the solutions of the governing equations to yield po-
sition and velocity, other quantities such as ground reaction forces can be com-
puted and predicted. Ground reaction forces are often measured in locomotion
experiments and can provide insights into the kinetics of locomotion. A com-
parison of experimentally measured ground reaction forces of human running
and predictions made by the SLIP model are presented in Fig. 3.3.4 (a modified
reproduction of plots from Geyer et al., 2006). This demonstrates that multiple
key features of ground reaction force in both the fore-aft (horizontal) and the
vertical directions can be accurately predicted by the SLIP model.
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FIGURE 3.3.4 The ground reaction forces of human running and SLIP model predictions. Human
experimental traces and SLIP model traces are reproduced from Geyer et al. (2006).

3.3.2.2 Stride Maps: Behavior Investigated Step-by-Step

The dynamic nature of locomotion is often studied using a stride map: a func-
tion that governs how the system states, like position and velocity, change from
one step to the next. In general, this is constructed using a Poincaré Return Map.
In less precise terms, this is like taking a snapshot of the system at either a set
interval of time, or alternatively, every time a well-defined event occurs (e.g., ev-
ery time a foot touches down, or every time the trunk mass reaches a maximum
height apex). The mapping that results is often referred to as a stride map.

3.3.2.3 Stability of Locomotion

The stability of running solutions can be determined using the stride map, which
is a common approach for SLIP models. For a more general discussion of sta-
bility and analysis methods, please see Full et al. (2002), Strogatz (1994), or
Guckenheimer and Holmes (1983). A common technique is to find periodic so-
lutions and then determine whether small deviations to the periodic motion will
lead to the system diverging away from the periodic motion or returning to it.
This can be approximated by linearizing the stride map and evaluating it with re-
spect to the periodic solution being investigated. The eigenvalues of the resulting
linear system will indicate the kind of local stability that occurs in the neighbor-
hood of the periodic locomotion (where if the magnitude of all eigenvalues is
less than one there exists asymptotic stability; if greater than one, unstable; if
equal to one, further analysis is needed). For example, for the SLIP model pre-
sented above, asymptotically stable periodic running exists for a wide range of
system parameters, as described in Geyer et al. (2005) and reproduced here in
Fig. 3.3.5. In this figure, reproduced from Geyer et al. (2005), an apex-to-apex
stride map is used. Here, two fixed points are shown, each representing differ-
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FIGURE 3.3.5 Here, a mapping from one apex to the next is displayed, reproduced from Geyer
et al. (2005). There are two fixed points where the same apex height repeats each step, indicating a
periodic locomotion solution. However, the stability of these two solutions differs. The stable fixed
point is demonstrated by the inset figure, where an example sequence of steps is shown converg-
ing upon the stable fixed point value. Note that the analysis in Geyer et al. (2005) makes use of
dimensionless parameters and some naming conventions that are different than those used here.

ent periodic locomotion solutions. One represents a stable limit cycle, or stable
periodic locomotion. The other fixed point is an unstable periodic locomotion
solution of the SLIP model. The SLIP model also exhibits other behaviors, such
as higher period locomotion (Ghigliazza et al., 2005).

3.3.3 SOME INSIGHTS INTO RUNNING AIDED BY
SLIP-BASED MODELS

3.3.3.1 Adaptive, Resilient Locomotion Based on Open-Loop
Stability

An aspect of locomotion theory influenced by SLIP or pogo-stick models is our
understanding of how locomotion is regulated or controlled in animals, and how
it could be regulated in robots or assistive devices. In particular, SLIP models
have demonstrated that largely uncontrolled dynamics of running can be self-
stabilizing, requiring minimal control sensing or actuation. Understanding how
open-loop stability properties of running integrate with more active feedback
and actuation layers of locomotion is still far from being understood (perhaps
partly due to the complexity of neuromechanical systems). Nonetheless, many
simple SLIP model analyses have demonstrated both basic stability properties
(e.g., Ghigliazza et al., 2005; Geyer et al., 2005) but also improved stability
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properties by including features we know represent realistic biological strate-
gies, such as swing leg placement control (e.g., Knuesel et al., 2005 and other
studies introduced in Subchapter 3.6), and inclusion of forcing and damping
(e.g., Shen and Seipel, 2012). More examples of controlled and actuated SLIP
models are presented in Subchapters 3.2 and 3.6.

3.3.3.2 Reducing Energetic Costs through Compliant Interaction

SLIP models of running have demonstrated clearly the theoretical possibility of
locomotion with relatively small energetic cost (due to efficient energy storage
in compliant legs and low-mass, low-impact legs that are idealized in many SLIP
models). Robots, and prosthetic devices in particular, can be designed to effi-
ciently store and return energy using elegant elastic structures inspired by SLIP
models. Though the SLIP model is a highly idealized conception of running, and
we know that animal and robot running generally involves many forms of ener-
getic loss and actuation, the SLIP model can nonetheless provide insights into
theoretical limiting cases that can influence and challenge our thinking about
locomotion.

3.3.3.3 Momentum Trading to Benefit Stability

Another perspective on the mechanics of running is based upon momentum of
the body (its mass times velocity) and angular momentum about the stance foot.
During locomotion, there are transitions between flight phases where forward
linear momentum is conserved, and stance phases where angular momentum is
nearly conserved (or approximately conserved in the case of negligible gravity).
At events like liftoff and touchdown, we can think of the system transitioning
between these two modes. Whatever momentum was being conserved in one
phase now gets “traded” or otherwise exchanged such that part of it contributes
to a new conserved form of momentum. This has been referred to as “momen-
tum trading” (e.g., Holmes et al., 2006). Without this aspect of the switching (or
hybrid) dynamics of locomotion, the stability properties of an energy conserving
SLIP system would not be possible (Holmes et al., 2006). The regulation of lo-
comotion might be thought about in part as the regulation of traded momentum,
from one step to the next.

3.3.3.4 Useful Inefficiency: Inefficiency can Benefit Robustness

An inefficient use of energy might sometimes be beneficial for creating more
robust stability of legged locomotion. A common aspect of physical running,
though less commonly represented in the simplest of SLIP models, is a sig-
nificant energetic cost. While it is physically possible to demonstrate entirely
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passive SLIP-based running mechanisms, even in these cases there are energy
losses that are overcome by using an inclined plane (e.g., Owaki et al., 2010).
In other words, some non-negligible amount of positive work on the system and
negative work on the system appears to be a common feature of periodic run-
ning locomotion. Further, recent studies have suggested that this could play a
substantial role in the stability of locomotion, helping to generate significantly
greater robustness (e.g., it can contribute to significantly larger basins of attrac-
tion, Shen and Seipel, 2012). In addition to regulating momentum, locomotion
might also be thought about as regulating the flow of energy from step to step.

REFERENCES
Altendorfer, R., Koditschek, D.E., Holmes, P., 2004. Stability analysis of legged locomotion models

by symmetry-factored return maps. Int. J. Robot. Res. 23.
Blickhan, R., 1989. The spring–mass model for running and hopping. J. Biomech. 22.
Full, R.J., Kubow, T., Schmitt, J., Holmes, P., Koditschek, D., 2002. Quantifying dynamic stability

and maneuverability in legged locomotion. Integr. Comp. Biol. 42 (1).
Geyer, H., Seyfarth, A., Blickhan, R., 2005. Spring–mass running: simple approximate solution and

application to gait stability. J. Theor. Biol. 232.
Geyer, H., Seyfarth, A., Blickhan, R., 2006. Compliant leg behaviour explains basic dynamics of

walking and running. Proc. R. Soc. B 273.
Ghigliazza, R.M., Altendorfer, R., Holmes, P., Koditschek, D., 2005. A simply stabilized running

model. SIAM Rev. 47 (3).
Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations

of Vector Fields. Springer-Verlag.
Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J., 2006. Dynamics of legged locomotion:

models, analyses and challenges. SIAM Rev. 48 (2).
Knuesel, H., Geyer, H., Seyfarth, A., 2005. Influence of swing leg movement on running stability.

Hum. Mov. Sci. 24.
McMahon, T.A., Cheng, G.C., 1990. The mechanics of running: how does stiffness couple with

speed? J. Biomech. 23.
Owaki, D., Koyama, M., Yamaguchi, S., Ishiguro, A., 2010. A two-dimensional passive dynamic

running biped with knees. In: Proceedings of IEEE ICRA.
Raibert, M., 1986. Legged Robots That Balance. MIT Press.
Robilliard, J.J., Wilson, A.M., 2005. Prediction of kinetics and kinematics of running animals using

an analytical approximation to the planar spring–mass system. J. Exp. Biol. 208.
Saranli, U., Buehler, M., Koditschek, D.E., 2001. RHex: a simple and highly mobile hexapod robot.

Int. J. Robot. Res. 20 (7).
Saranlı, U., Arslan, Ö., Ankaralı, M.M., Morgül, Ö., 2010. Approximate analytic solutions to non-

symmetric stance trajectories of the passive spring-loaded inverted pendulum with damping.
Nonlinear Dyn. 62 (4).

Schwind, W.J., Koditschek, D.E., 2000. Approximating the stance map of a 2-DOF monoped runner.
J. Nonlinear Sci. 10 (5).

Shen, Z.H., Seipel, J.E., 2012. A fundamental mechanism of legged locomotion with hip torque and
leg damping. Bioinspir. Biomim. 7 (4).

Shen, Z., Seipel, J., 2016. A piecewise-linear approximation of the canonical spring-loaded inverted
pendulum model of legged locomotion. J. Comput. Nonlinear Dyn. 11 (1).

Strogatz, S.H., 1994. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering. Westview Press.



Conceptual Models of Legged Locomotion Chapter | 3 87

Chapter 3.4

Simple Models of Walking
Justin Seipel
Purdue University, West Lafayette, IN, United States

3.4.1 WALKING LIKE AN INVERTED PENDULUM

The movements of human walking, and animal walking more generally, have
been likened to the motion of an inverted pendulum (e.g., Alexander, 1976;
Mochon and McMahon, 1980); see Figs. 3.4.1 and 3.4.2 for illustrations of hu-
man and inverted pendulum walking, respectively. Further, some walking mech-
anisms and robots have exhibited similar walking behavior and are sometimes
constructed in ways that are mechanically analogous to an inverted pendulum;
see Fig. 3.4.2 for one example by McGeer (1990).

The overall motions of the trunk, stance leg, and swing leg of walking hu-
mans, walking mechanisms and robots, and the inverted pendulum model share
many similarities: During the stance phase of human walking, when a single leg
is on the ground, the body tends to rise and then fall as it pivots about the foot.
This is similar to the way an inverted pendulum moves about its pivot. Walking
is also described as a pattern or gait with alternating left and right legs (or sets

FIGURE 3.4.1 Illustration of human walking based on a modified chrono-photograph taken by
Étienne-Jules Marey. A leg length has been superimposed on the original image, approximately
from the hip to an approximate center of pressure for heel-to-toe walking. Overall, this approximates
a vaulting or pendular motion of the body about the foot.
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FIGURE 3.4.2 (left) A modified photograph of a passive walking mechanism, and (right) an il-
lustration of an inverted pendulum model that represents a physics-based mathematical model. The
original walking mechanism photograph is from McGeer (1990).

of legs). This characteristic walking pattern can also be exhibited by bipedal
inverted pendulum models.

In biological and robot walking, when the stance leg is on the ground, the
other leg, a swing leg, swings forward into position for touch down. Swing leg
touchdown typically occurs before the current stance leg will lift off (also called
take off), which leads to a double stance phase. This is followed by another
single leg stance phase, and the overall pattern repeats. This process can be ap-
proximated in bipedal inverted pendulum models. For mathematical simplicity,
in some inverted pendulum models the double stance phase is assumed to occur
in an instant.

Overall, the basic walking movements of humans and other animals can be
approximated by bipedal inverted pendulum locomotion, and can also be em-
bodied physically in walking mechanisms. Though the concept of a bipedal
inverted pendulum is dramatically simple when compared to walking humans
or other animals, it can nonetheless help us understand and predict many as-
pects of walking.

3.4.2 PASSIVE WALKING MECHANISMS: PHYSICAL MODELS
AND PHYSICS-BASED MATH MODELS

The notion of walking like an inverted pendulum can be investigated via ex-
perimental study of simple physical “inverted pendulum” walking mechanisms,
such as walking toys and other passive dynamic walking mechanisms (e.g.,
McGeer, 1990; Coleman and Ruina, 1998; Collins et al., 2001). Many of these
mechanisms are passive in the sense that they do not have active power ele-
ments such as motors to drive locomotion. Passive walkers generally main-
tain a steady gait by walking down an inclined plane, though some do use
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small actuators to maintain nearly passive walking (e.g., Collins et al., 2005;
Bhounsule et al., 2014). In many of these walking mechanisms, one can directly
observe a physical bipedal inverted pendulum mechanism in action (Fig. 3.4.2).
In this way, a walking mechanism can be considered as a kind of physical model
of human and animal locomotion that strongly demonstrates a role that passive
dynamics can play in locomotion. Mathematical models of bipedal inverted pen-
dulum walking can be closely associated with physical walking mechanisms, via
application of the laws of mechanics, or they can be developed in more direct
relationship to empirical studies of biological locomotion, via motion capture,
ground reaction forces and other techniques.

3.4.3 MATHEMATICAL EQUATIONS GOVERNING A BIPEDAL
INVERTED PENDULUM (IP) MODEL

Now that we have discussed many of the foundational concepts of walking that
are embodied in bipedal inverted pendulum models, here we explicitly present a
mathematical model for a bipedal inverted pendulum. In particular, we present
the mathematical equations that describe the mechanics, hybrid dynamics, and
control of a bipedal inverted pendulum. We present one particular inverted
pendulum model of walking in order to provide a simple example of explicit
mathematical governing equations. Please see Subchapter 3.6 for an overview
of multiple established Inverted Pendulum models, including models that are
more complex than the one presented here.

Here we present a highly simplified version of the inverted pendulum model
based closely on a previous study by Wisse et al. (2006). Specifically, we as-
sume that the swing leg has negligible mass, that the swing leg is controlled to
touch down with a prescribed angle and leg retraction speed, that the time spent
in double stance phase is negligible compared to the total stride, and that stance
leg liftoff and swing leg touchdown are instantaneous. Other inverted pendulum
models have relaxed some of these assumptions. For example, several models
have included the effects of swing leg mass (e.g., Coleman and Ruina, 1998 and
others reviewed in Subchapter 3.6), and more recent extensions of the inverted
pendulum model have included leg compliance, enabling a substantial double
stance phase as well as more accurate prediction of ground reaction forces (e.g.,
Geyer et al., 2006). The particular and highly simplified Inverted Pendulum
model presented here, along with its corresponding equations and figures, are re-
productions of the particular model and results presented by Wisse et al. (2006).

3.4.3.1 Behavior Within a Single Stance Phase

The mathematical equations governing stance for a simple inverted pendulum
model can be derived by applying laws of physics. Common approaches include
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FIGURE 3.4.3 A simple Inverted Pendulum model of walking. The figure is reproduced from
Wisse et al. (2006). The model is simplified via fixing mass, gravity, and leg length in the governing
equations to be equal to one. Reductions in the total number of system parameters can also be gained
through formal nondimensionalization techniques.

applying Newton’s Second Law of Mechanics to a Free Body Diagram of forces
acting on the system, or applying the Euler–Lagrange Equation to a description
of the system’s energy. Here, we use the Euler–Lagrange approach: Looking at
the simple bipedal IP system modeled in Fig. 3.4.3, where the system rotates
with an angle θ , and where the mass of the swing leg is assumed to be negli-
gible, we can describe the kinetic energy T , potential energy V , and resulting
Lagrangian L as follows:

L= T − V = 1

2
ml2θ̇2 −mgl cos(θ − γ ).

Here m is the mass, l is the leg length, g is gravity, and γ is the angle of the in-
clined plane. We then apply the Euler–Lagrange Equation of mechanics to yield
the following differential equation governing motion of the system, in terms of
the angle θ :

θ̈ = gl−1 sin(θ − γ ).

This equation, along with the initial conditions at the beginning of stance, deter-
mine the motion of the inverted pendulum during stance. For the model shown
in Fig. 3.4.3, the model analysis was simplified by taking the leg length, gravity,
and mass to be equal to one. More explicit nondimensionalization could yield a
similar simplification. Note also that the angle θ used here has a different refer-
ence than that used for the Spring-Loaded Inverted Pendulum model presented
in Subchapter 3.3.

3.4.3.2 Stance Leg Liftoff and Swing Leg Touchdown

The termination of the stance phase of a given leg is often defined as when
the foot loses contact with the ground (which can also be related to the ground
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reaction force). Realistically, for normal walking this would occur sometime
after the current swing leg touches down and so a substantial double stance
phase would occur. However, for simple inverted pendulum models the double
stance phase is assumed to be infinitesimal in duration. Therefore, here we allow
the termination of stance to occur approximately at the same instant as the swing
leg touches down. By determining when the swing leg touches down in such
a simplified model, we automatically determine the time when the stance leg
terminates.

The touchdown of the swing leg can be defined as when the foot of the swing
leg reaches the ground, or when the distance between the swing leg foot and
ground reaches zero. Further, to avoid counting glancing contacts as a swing leg
touchdown, one can also require that the velocity of the foot is pointing into the
ground when this distance reaches zero. The distance between the swing foot
and ground will generally depend on complicated dynamics and control of the
swing leg. For the simplified model discussed here, it is assumed that there is a
swing leg controller that maintains a prescribed trajectory of the swing leg, with
a prescribed retraction angular velocity near the time of touchdown. In this sce-
nario, the swing leg actually first swings past what will become the touchdown
angle and then retracts towards the desired angle for touchdown. If touchdown
were delayed or occurred early, it would result in a different touchdown angle.
In this simple model, the stability of walking can be influenced by this effect.

3.4.3.3 The Mechanics of Switching from One Stance Leg to the
Next

During the infinitesimal double stance phase of motion of this simple walking
model, the current stance leg lifts off and the swing leg touches down at the
same time. During this period, even if it occurs over an infinitesimal period
as assumed in simple walking models, there is a change in momentum of the
system such that the velocity which was heading downwards at the end of one
stance will change and head upwards in order to vault over the next stance leg.
In order to model this process, an impulse–momentum equation can be used.
We assume the simplified model presented here is entirely passive, so the leg
lifting off is not able to apply an impulse during this sequence (other inverted
pendulum models include active toe-off impulses which have been shown to
help reduce overall energetic cost, Kuo, 2002). We are left to assume that for
the system to have a velocity direction consistent with the circular arc of the
new stance leg; there must be a net impulse that makes it so. It is reasonable to
assume that much of this impulse occurs along the length of the touchdown leg,
and so we assume a touchdown impulse entirely aligned with the touchdown leg
that cancels all momentum in that direction. The remaining momentum is per-
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pendicular to the new stance leg. From the application of impulse–momentum
equations it is worked out that the angular velocity just after the leg switching
is less than that just before the leg switching, depending on the angle φ between
the two legs:

θ̇+ = cos(φ)θ̇−,

where θ̇+ is the angular speed of the inverted pendulum the instant just after the
leg switching process, and θ̇− is just before.

3.4.3.4 Stride Maps: Behavior Investigated Step-by-Step

One of the key methods currently used to investigate walking behavior is to
see how the states of the system, such as positions and velocities, change at
discrete intervals from step-to-step. This creates a mapping of the system states
from one stride to the next, and can be constructed using a Poincaré Return
Map. In less precise terms, this is like taking a snapshot of the system at either
a set interval of time, or alternatively, every time a well-defined event occurs
(e.g., every time a foot touches down, or every time the trunk mass reaches
a maximum height apex). The mapping that results is often referred to as a
stride map. For systems that are integrable, a return map (or stride map) can be
written in closed-form mathematical expressions. However, it is also common
to numerically integrate governing equations to produce a stride map, especially
for more complex models of locomotion.

3.4.3.5 Stability of Locomotion

The dynamic stability of locomotion is often of interest when studying Inverted
Pendulum models of walking. Surprisingly, such systems can exhibit stable lo-
comotion even when no active control is present. Many physical parameters
of the walking system could potentially affect stability in important ways, and
understanding the underlying passive dynamics can also benefit the design of
controllers that can be added to the system. Here we present only one simple
example: We investigate how stability of walking depends on the swing leg re-
traction speed, as an example to highlight how stability is studied for such a
simple walking model. For more general discussion of stability and analysis
methods, please see Full et al. (2002), Strogatz (1994), or Guckenheimer and
Holmes (1983).

A common approach to measure stability is to use the stride map to find
periodic walking motions and then determine whether small deviations to the
periodic motion will lead to the system diverging away from the periodic mo-
tion or returning to it. This is done systematically by analytically or numerically
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FIGURE 3.4.4 Example result of a stability analysis of inverted pendulum models of walking. The
result shown here is reproduced from Wisse et al. (2006) for this example. It shows how the stability
of the system can be influenced by the speed of swing leg retraction. In particular, this study found
that there is a range of swing leg retraction speeds for which stable walking motions were found
(where the magnitude of the two eigenvalues of the system are both less than one).

calculating a linearization of the stride map, evaluated with respect to the pe-
riodic solution being investigated. This yields a linear discrete dynamic system
that approximates the stride map. The eigenvalues of this linear system will in-
dicate the kind of local stability that occurs in the neighborhood of the periodic
locomotion being investigated (where if the magnitude of all eigenvalues is less
than one there exists asymptotic stability; if greater than one, unstable; if equal
to one, further analysis is needed). For example, for the model presented above
it was found that asymptotically stable periodic walking exists for a range of the
leg retraction speeds: This result is reproduced here in Fig. 3.4.4 from Wisse et
al. (2006).

3.4.4 SOME INSIGHTS INTO WALKING AIDED BY INVERTED
PENDULUM MODELS

Walking mechanisms, and the associated study of the inverted pendulum model
of walking, have been influential and have provided insights regarding the me-
chanics and control of walking. They have led to theory about the flow of
energy during the walking cycle, both what is physically possible and insights
on what may be happening in biological systems. Empirical study of these walk-
ing mechanisms and related theoretical study of inverted pendulum models have
also suggested that the regulation of walking could rely in part on its passive dy-
namics. One such insight was that passive dynamic walking is a process that is
statically unstable about a given resting point, but yet has dynamic stability over
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a walking cycle (see, for example, the work by Coleman and Ruina, 1998). Fol-
lowing are a few concepts about walking that have been influenced by simple
walking models. These concepts are largely presented using a mechanics per-
spective of walking, though they have implications for control. These concepts
are complementary to those presented for the Spring-Loaded Inverted Pendulum
model in Subchapter 3.3.

3.4.4.1 Walking Includes a Pendular Flow of Energy

One basic discovery, inspired by mechanical analysis of inverted pendulum mo-
tion, is that kinetic energy and potential energy are exchanged during walking.
For a passive inverted pendulum system, energy is conserved during stance, and
so we have the basic theoretical mechanics result: Kinetic Energy + Potential
Energy = Constant. Since the total system energy is constant, any change of ki-
netic energy corresponds with an equal and opposite change in potential energy.
This means that as the mass center rises the speed slows, corresponding to a
decrease in kinetic energy that is equal to the increase in potential energy. This
occurs until apex, at the highest point where the mass center is directly above the
pivot. Assuming that the initial kinetic energy (and corresponding mass center
speed) is enough for the inverted pendulum to reach and pass through apex, then
after apex the mass center falls. As the mass center falls, the speed increases,
corresponding to an increase in kinetic energy that is equal to the decrease in
potential energy. Not all levels of energy in the system will permit a “gait” or
motion of the inverted pendulum. For a passive inverted pendulum walker, the
initial value of kinetic energy needs to be larger than the increase in potential
energy needed to reach apex, in order for the system to pass through apex with
a nonzero speed.

3.4.4.2 Walking Includes the Catching of Repeated Falls

Walking can also be likened to controlled falling, where the body falls and piv-
ots about the stance foot, only to be caught by the next stance leg. This view
is consistent with the energetic concepts of inverted pendulum motion during
stance and adds to it the importance of the placement of the swing leg to switch
from one leg to the next. This requires a bipedal inverted pendulum walking sys-
tem that is able to transition from one leg to another. While one leg is in stance,
the other is in a swing phase. The swing leg is often assumed to follow a passive
dynamic trajectory under the influence of its own weight, though in reality it is
also likely regulated (e.g., Coleman and Ruina, 1998). A simplified modeling
approach is to assume the swing leg is controlled to follow a trajectory based
on time, phase, or system states relative to the main body and/or ground (e.g.,
Wisse et al., 2006).
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FIGURE 3.4.5 Walking vertical ground reaction force predicted by the IP and SLIP models. Hu-
man experiment and model traces reproduced from Geyer et al. (2006).

3.4.4.3 Momentum is Exchanged During Double Stance

Walking generally includes a significant “double stance” phase where the body
is supported by two legs. For inverted pendulum models, it is often assumed
that double support happens over a negligible period of time. In inverted pendu-
lum models the legs are often assumed to be rigid, and this requires that double
support phases vanish since movement is otherwise kinematically restricted. De-
spite this simplification, physical insights can still be gained regarding how the
two legs act during the transition from one stance leg to the next. For example,
it makes an energetic difference what the order is of the different possible im-
pulses from the two legs (e.g., a toe-off impulse occurring before the touchdown
leg impulse can reduce energetic costs, as presented in Kuo, 2002). However, a
more accurate analysis could be gained by relaxing the rigid leg assumption and
enabling a substantial-duration double support phase. For example, Geyer et
al. (2006) showed that a bipedal Spring-Loaded Inverted Pendulum model can
more accurately predict the ground reaction forces of human walking, including
the portion during which double-support phases occur; see Fig. 3.4.5. This ap-
proach has an added benefit of utilizing the SLIP modeling framework already
associated with running.

3.4.5 INTEGRATION OF WALKING AND RUNNING MODELS

Though we have so far studied walking as separate from running, walking and
running can be viewed as expressions of the same legged locomotion system,
whether of humans, other animals, or robotic systems. It is also possible to pre-
dict both walking and running in a single mathematical model without adding
much additional complexity compared with the IP and SLIP models. This can
be achieved by blending the bipedal nature of the IP model and the effective
leg spring of SLIP, into a bipedal SLIP model, as demonstrated in Geyer et al.
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(2006). There it was also demonstrated that many predictions of human walk-
ing are improved, such as predictions of ground reaction forces: For example,
as reproduced in Fig. 3.4.5, it is apparent that the bipedal SLIP model captures
well the characteristic shape of human walking ground reactions. Other exten-
sions to the SLIP model have also demonstrated how two gaits might arise from
one simple SLIP-based mechanism. For example, a clock-torqued SLIP model
was inspired by the robot RHex, as well as cockroaches, and demonstrates that
a range of walking and running behaviors result from simple clock parameter
adjustments (Seipel and Holmes, 2007). Though the simplest walking models
and the simplest running models may continue to have many uses and may be
preferred for the sake of simplicity, a more integrated modeling framework of
walking and running also has many potential advantages and uses. Regardless
of the model used, it is likely helpful to remember that walking and running are
behaviors that can arise from similar underlying processes, and that the study of
one can often inform the other.
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Chapter 3.5

Locomotion as an Oscillator
Shai Revzen and Matthew Kvalheim
Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United
States

3.5.1 LOCOMOTION AS AN OSCILLATOR

Virtually all animals, and even more so bipeds such as humans, move in a rhyth-
mic way at moderate to high speeds of their available range of speeds. We
refer to these as “rhythmic”, rather than the more mathematically strict term
“periodic”, which is reserved for systems that have a precisely defined period
within which motions repeat exactly. We define a rhythmic system as a stochas-
tic system whose underlying deterministic part (the “drift” in the language of
Stochastic Differential Equations) has an exponentially stable periodic solution.
The cycles of legged locomotion, known as “strides”, typically vary from each
other in duration and geometry of motion. As animals move slightly faster or
slower, their limbs follow similar trajectories at slightly higher or lower rates.
Even at a given stride frequency animal motions exhibit variability. At least to
casual observation, it seems this variability (normalized for body size) is greater
in smaller animals, in animals using more legs for propulsion, and in animals
moving more slowly.

Taking the “templates and anchors” perspective of Subchapter 3.2, we can
rephrase this observation as a statement that the so-called “phase oscillator”
is the simplest template of most moderate-speed legged locomotion. In other
words, the simplest model of legged locomotion is the timely progression
through a repeating sequence of body postures, which happens also to include
interaction with the ground that produces propulsion. For this chapter, we will
refer to this cycle as the “gait cycle.”

The phase oscillator template of locomotion can be modeled as a curve in the
configuration space of the animal’s body, and a velocity associated with every
point on that curve. Alternatively, it can be modeled as a periodic function of
time, e.g., using a Fourier series model of the body configuration as a function
of “phase.”

Under sufficiently small perturbations of the environment or body posture,
animal motions recover to the gait cycle after few steps. This suggests that the
slightly richer structure of an “asymptotically stable oscillator” (“oscillator” for
short) applies just as universally. From a mathematical perspective, an oscillator
is the differential equation that governs motion within the stability basin of a
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FIGURE 3.5.1 Obtaining a prediction of future motion using a phase estimate. (Left to right)
Starting with cockroach foot motions in the body frame of reference (first plot), we focused on
the fore-aft motions as a function of time (second plot), and computed the velocity as a function
of position (middle six plots; nondimensionalized by z-scoring). We combined these linearly to a
single “foot oscillation state” with+1 coefficients for one tripod and−1 for the other. This gave rise
to a state which collectively describes the phase of the gait as a whole (large oval plot). The polar
angles of the plots of each leg and of the combined state follow a linear trend over multiple strides
(rightmost plot). All plots shown are from the same time segment of a single experiment tracking a
Blaberus cockroach running at moderate speed.

cycle, i.e., the gait cycle and all bodily states that allow for the gait cycle to be
recovered.

There is a rich mathematical literature on the structure of oscillators. If
we restrict our attention in that literature to those oscillators that are “struc-
turally stable” and “generic”, i.e., oscillators which are physically observable
and whose dynamics would change only a little if properties of the body and en-
vironment change slightly, all smooth oscillators share several properties. One
of the most important of these is that oscillators have a phase coordinate for
the entire stability basin. This phase specializes to, and is therefore consistent
with, the phase oscillator phase on the gait cycle itself. Any perturbations of the
animal away from the gait cycle will typically result in a phase shift that will per-
sist after the animal returns to the gait cycle. Since all observables of a rhythmic
system must themselves be rhythmic, we may aim to estimate the phase of an
animal’s phase oscillator template (“dynamical phase” hereon, called “asymp-
totic phase” in Subchapter 3.2 – not to be confused with “dynamical phase” in
geometric mechanics) by observing neuromechanical quantities such as body
configurations, speeds of various body parts, forces and torques, and EMG or
other neuronal measurements.

Once a method of phase estimation is available, predicting phase as a func-
tion of time should produce a linear trend if the phase oscillator template is
compatible with the observations (see Fig. 3.5.1). By subtracting this linear
trend from the instantaneous phase estimate we can obtain the “residual phase”
which can be used to identify how oscillations change under the influence of
external perturbations (Revzen et al., 2009).

Dynamical phase is the only dynamical variable of the phase oscillator tem-
plate. The study of how that phase responds to the body and environment allows
us to eliminate possible neuromechanical control architectures, e.g., by separat-
ing out responses that could be achieved only with changes to descending neural
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FIGURE 3.5.2 Clocked, Torqued SLIP model (CT-SLIP, Seipel and Holmes, 2007) set to param-
eters of a Blaberus cockroach running gait (upper center) with two different control architectures
(upper left & right diagrams), was subjected to an assay of three perturbations (lower center). In
each case, the magnitude of the perturbation is varied, producing qualitatively different residual
phase response curves (plots lower left & right) for the two architectures. Results show that phase
alone can be used to differentiate the neuromechanical control architecture (Revzen et al., 2009).

signals, and responses that could occur for solely mechanical reasons (Revzen
et al., 2009). An example of such an analysis is shown in Fig. 3.5.2.

3.5.2 STRIDE REGISTRATION AS PHASE ESTIMATION

Estimating dynamical phase can also be seen as a way of representing methods
of “stride registration.” Whenever we observe a rhythmically moving animal, we
encounter the problem of stride registration: which samples of stride n represent
“the same” state in the gait cycle as which samples of stride n+ 1? Whenever
investigators construct a notion of a gait cycle, they implicitly define such a
registration method. In each such class of states which are “the same” in this
sense, there is one distinguished representative which lies on the gait cycle itself.
Because it lies on the cycle, it is a state of the phase oscillator template of that
animal motion. Thus we see that any stride registration method corresponds to
a choice of assigning phase to data samples.

Typical stride registration methods in the literature include linearly interpo-
lating once-per-stride events in time, e.g., heel strike (Jindrich and Full, 2002;
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Ting et al., 1994) or anterior extreme position of a limb (Cruse and Schwarze,
1988). Some work in robot control has attempted to parameterize a target gait
using a hip-to-heel angle, or other combination of internal angles (Chevallereau
et al., 2003; Sreenath et al., 2011). By construction, these driving variables are
a form of step registration as well.

The advantage of phase-based stride registration becomes clear if we assume
a state independent measurement noise, and that observed motions are perturba-
tions around a core phase oscillator template. Estimating the phase oscillator’s
phase and using it for binning and averaging the measurements ensures that all
equal sized bins have (asymptotically) the same number of samples. Thus the
bin average estimates provided are homoscedastic and standard statistical hy-
pothesis testing tools can be used to test for treatment effects. If any other stride
registration method is used the bin averages will be heteroscedastic, and require
much more refined statistical techniques.5

Let us compare the process of naïve stride registration and a dynamical
phase-based one. For the former, we define an event detector function which
has positive zero crossings when the desired event occurs, e.g., for heel-strike
based stride registration we take the time and force pairs (ti , fi) from a force
plate under the running human and renormalize to (ti ,1− fi/(mg)). We then
detect the positive crossing times {ck} and form the piecewise linear function
of time p(·) such that p(ck) = k are its knot points. We now select a num-
ber of bins Nb and put the (multidimensional) data sample (ti , di) in the bin
bi := �Nb(p(ti)− �p(ti)	)	. We estimate the period of the gait cycle τ by tak-
ing a central statistic such as the median of {ck+1− ck}. Taking a representative
such as sample average of the data in each bin in an appropriate way for the data
itself, we obtain the model that at time t the gait cycle places the animal at body
configuration given by the representative of the bin �Nb(t mod τ)/τ	.

A dynamical phase-based stride registration would consist of first training or
deriving a phase estimator that gives a phase pi for every data sample (ti , di).
Using that phase estimate instead of p(ti), i.e., by taking bi := �Nb(pi − �pi	)	,
we proceed with the same approach to obtain bin representatives.

It should be noted that in many cases, producing the gait cycle model at a
given phase does not require binning, and can instead be done by building a
Fourier series model of animal properties d(t) as a function of phase using a
Fourier series of some order Nf :

x(ϕ)=
Nf∑

k=−Nf

ake
i2πkϕ, (3.5.1)

5. Phase defines a measure on the cycle which is flow invariant, and thus averaging a function of
state with respect to the phase measure along trajectories does not introduce additional variance due
to the dynamics—only the preexisting measurement noise.
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where

ak :=
∫

all t
e−2π ikt/τ d(t)

dp

dt
(t) dt. (3.5.2)

3.5.3 RECOVERY FROM PERTURBATIONS

The structurally stable, generic oscillators that we use as models of locomotion
share an additional property: they can be “linearized exactly.” The core insight
dates to the late 19th century, when Gaston Floquet showed that linear time
periodic (LTP) differential equations can be solved by writing their solutions as
a periodic part multiplying the solutions for a linear time invariant part (Floquet,
1883). This insight extends from LTP systems to oscillators because one may
view the dynamics of the oscillator as a perturbation of the dynamics of its
phase oscillator template, which is time periodic. The theory of “Normal Forms”
(Bronstein and Kopanskii, 1994; Lan and Mezić, 2013) shows that Floquet’s
result does in fact extend to the entire stability basin of the oscillator.

In other words, the oscillators that appear in locomotion problems can be
rewritten with respect to appropriately chosen coordinates such that they are
linear time invariant (LTI) systems in the new coordinates. In these linearizing
coordinates, the tools of linear systems theory and control theory can be brought
to bear, telling us that the long-term dynamics are governed by a single “system
matrix” A which describes the LTI equation of motion. For a gait cycle with pe-
riod τ , the matrix norm of eτA provides a bound on how quickly perturbations
decay back to the unperturbed gait, with the magnitude decreasing by at least
a factor of |eτA| every stride. It is important to note that in the linearizing co-
ordinates, the results apply to both large and small perturbations; if return map
Jacobians are used without a full coordinate change, the result only applies to
small perturbations.

The Floquet Normal Form provides even more detailed insight. Every pertur-
bation to the state of the animal can be rewritten in terms of a linear combination
{ξk} of the eigenvectors {vk} of A, x(0)=∑k ξkvk , and will thus evolve as

x(t)=
∑
k

eλkt ξkvk. (3.5.3)

The “Floquet Multipliers” eλkτ are invariant to the choice of coordinates,6 and
can therefore be computed in the original coordinates we use to obtain our
measurements. Computing Floquet Multipliers is thus the method of choice for
determining the stability of smooth oscillators (see Fig. 3.5.3).

6. This follows because the matrices involved in different coordinate representations are similar
(conjugate) to each other and thus have the same eigenvalues.
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FIGURE 3.5.3 A CT-SLIP (Seipel and Holmes, 2007) model of a running Blaberus cockroach
alternates between right and left foot touchdown events [A]. The center of mass bounces vertically
every step, exhibiting a limit cycle ([B], heavy black line). At “apex”, with vertical velocity zero and
going negative, it is convenient to define a Poincaré section. This section is 2D, consisting of height
(z) and horizontal velocity (vx ) of the center of mass. An ensemble of initial conditions at apex,
varying in both z and vx ([B], colored lines) can be integrated to the next apex ([B], colored dots).
Using linear regression, the affine map taking apex states to the next apex can be estimated, and
its eigenvalues—the Floquet Multipliers—computed. Bootstrap analysis can further be used to get
a distribution of eigenvalues and produce confidence bounds for the estimate ([C], 1000 bootstrap
computations from the ensemble in [B]). For this gait the eigenvalues are a complex conjugate
pair, of magnitude less than 0.5. This tells us that the oscillator is very robustly stable, and (small)
perturbations decay in magnitude by better than a factor of 2 every step. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this chapter.)

3.5.4 SUBSYSTEMS AS COUPLED OSCILLATORS

The entire argument presented above for treating a phase oscillator as a template
for animal locomotion applies equally well to parts of an animal’s body. The par-
titioning of the animal into subsystems can be physiological, e.g., viewing the
nervous system as one or more oscillators as well as viewing the musculoskeletal
system as one or more oscillators. It can also follow morphology, e.g., treating
each limb as an oscillator. In all such cases, one ends up with a notion of “sub-
system phases” (Revzen et al., 2009), and of an animal locomotion template
consisting of coupled phase oscillators.

Which gait an animal is employing at any given time can be ascertained from
the relative phases of the legs (see Fig. 3.5.4).

3.5.5 LEGGED LOCOMOTION OSCILLATORS ARE HYBRID
DYNAMICAL SYSTEMS

The theory of oscillators, as described hereto, was developed for “smooth”
dynamical systems—ones for which the equations of motion are at least con-
tinuously differentiable. Unfortunately, the models used for legged locomo-
tion rarely satisfy this requirement. Typically, the equations of motion of a
legged system depend strongly on which legs are in ground contact. Indeed,
the very dimension of the system or the number of mechanical degrees of
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FIGURE 3.5.4 Coupled oscillator description of horse gaits. A body reference frame was fixed to
the horse (black dots) and the motion of six markers on each leg was described as a phase oscillator
and thereby reduced to a single phase per leg. The phases of all four legs are shown (radial lines in
circles; color corresponds to animal leg) for both trotting (left) and walking (right) [figure from Yu
et al., 2016].

freedom may change as contact varies. For legged systems, we must ex-
tend our scope to the study of “Hybrid Dynamical Systems.” Several sub-
tly different definitions of Hybrid Systems exist in the literature (Alur et al.,
1993; Burden et al., 2015, 2016; Goebel et al., 2009; Holmes et al., 2006;
Nerode and Kohn, 1993), but all share several features: (1) the solutions of the
Hybrid System are referred to as “executions”, rather than “trajectories”; (2) dy-
namics are defined over several “domains” and are smooth within each domain;
(3) “reset maps” link domains to each other, and an execution may go through
a reset map by taking its value in one domain, applying the map and using the
image as the initial condition in the new domain; (4) the sets of points in each do-
main over which reset maps may be applied are called “guards.” As a concrete
example which is also of interest to legged locomotion, assume we have two
masses linked by a vertical spring and constrained to bounce in the vertical di-
rection in earth gravity above level ground. While both masses are in the air, the
dynamics are the smooth ballistic motion of the two masses, with the additional
internal force of the connecting spring. The flight domain is four-dimensional,
with two mechanical degrees of freedom (DOF). Assume further that when a
mass hits the ground, it loses all kinetic energy in a plastic collision. Thus, with
the lower mass on the ground, we may use a two-dimensional, one DOF model.
Adding the assumption that at length 0 the spring exerts enough force to lift the
top mass from the ground, we have a hybrid system with 2 domains and 4 reset
maps (see Fig. 3.5.5).

One may readily envision that with the addition of a periodic actuation force
applied by the spring, the system may enter a range of persistent hopping at
some constant amplitude which balances the energy lost by m colliding with the
ground with the energy injected by the actuator.

While the core results of oscillator theory and Floquet theory do not apply to
this system as stated, since it is not a smooth oscillator, recent results (Burden
et al., 2015) show that after two cycles this system becomes restricted to a 2D
surface in the 4D ballistic domain, such that the motions in the stance domain
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FIGURE 3.5.5 An example of a hybrid dynamical system model. A vertically bouncing pair of
masses (M,m) connected by a spring can be modeled with two domains (rounded frames) and four
reset maps (labeled arrows). In the ballistic flight domain, the system is 4-dimensional since the state
contains position and velocity for each mass. In the stance domain, the lower mass (m) is stationary
on the ground, and the state is two dimensional, consisting only of position and velocity of one mass.
Reset maps take states in which masses collide with ground to the associated stance state, and take
states in which the lower mass would detach from the ground, from stance into ballistic motion.

and in the ballistic domain can be “stitched together” using a function that is
smooth everywhere except the guards, and leading to dynamics that are smooth
in the new coordinates. In fact, this equivalence7 to smooth systems extends to
multilegged locomotion gaits in which many legs hit the ground at once—a class
of models which was only analyzed recently (Burden et al., 2016). Thus, we find
that once some technical complications are addressed, the long-term behavior of
hybrid oscillator models that arise in legged locomotion is the same as that of
the more familiar smooth oscillators.

3.5.6 ADVANCED APPLICATION: DATA DRIVEN FLOQUET
MODELS

One of the strengths of the oscillator perspective on locomotion is the ability
to identify properties of feasible locomotion models from observational data
(Revzen, 2009; Revzen and Kvalheim, 2015; Wang, 2013). This approach has
been called “Data Driven Floquet Analysis (DDFA)” and consists of a collection
of numerical methods that attempt to reconstruct the oscillator dynamics of the
putative legged locomotion oscillator directly from observational data.

One application of DDFA is the identification of plausible dimensions for
template models. As described in Subchapter 3.2, multiple models with varying
levels of detail may exist for a given legged locomotion behavior. Viewed as an
oscillator, the same behavior has a set of Floquet multipliers, the magnitudes of
which define a set of decay rates. Each Floquet multiplier is associated with a
“Floquet mode”—a specific phase-dependent way of the motions being offset

7. Formally, a piecewise smooth and everywhere continuous conjugacy.
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FIGURE 3.5.6 (Reproduced from Fig. 8 of Revzen and Guckenheimer, 2008) Comparison of
Floquet multiplier magnitude distributions obtained from running cockroaches. Since this analysis
is done at a specific phase in the cycle, magnitudes are plotted for three different phases (0.79,
1.57, and 3.14 radians in red, green, and blue, respectively). Experimental motion data is marked
with markers; unmarked lines come from surrogates—randomly paired crossings of the surface
on which the Floquet multipliers are computed—and offer a null hypothesis which demonstrates
that meaningful cycle-to-cycle dynamics exist. A 21-dimensional random effects model selected by
the algorithm of Revzen and Guckenheimer (2008) (gray confidence band with green center-line)
shows the portion of the Floquet multiplier magnitudes that can be explained by random effects.
In this 27-dimensional dataset, the template dynamics are therefore at most 6-dimensional. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version
of this chapter.)

from the limit cycle. For example, a Floquet multiplier of magnitude 0.5 would
be associated with a mode that decays by a factor of two every cycle. Floquet
modes evolve independently of each other, and thus any subset of modes is, in
principle at least, a reduced-dimension model of the dynamics.

By the very requirement that they describe the long-term dynamics of lo-
comotion, templates will thus comprise modes that correspond to the larger
Floquet multipliers. This observation allows Floquet multipliers computed from
experimental data to be sorted by magnitude and compared with the Floquet
multipliers of a null (random effect) model (Revzen and Guckenheimer, 2011).
The multipliers that cannot be accounted for by random effects may be counted,
and provide an upper bound on the dimension of a template model that can
reasonably be supported with those data (see Fig. 3.5.6).

The Floquet models obtained from DDFA may be used to extend existing
models of locomotion by identifying additional states that improve prediction.
In the case of human running, while the SLIP model has an excellent fit to obser-
vations (Ludwig et al., 2012), it fails to predict stability properties, and is in fact
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FIGURE 3.5.7 (Reproduced from Fig. 5, Maus et al., 2014) ability of various models to explain
observed quantities in human running data, plotted as “relative remaining variance (rrv)”: the ratio
of residual variance to data variance. An rrv of 1 means no predictive ability; rrv of 0 is perfect
prediction. The “full state” DDFA model, and the “factor-SLIP” model derived from it are better
predictors than the “augmented SLIP” model which is itself slightly more powerful than classical
Spring-Loaded Inverted Pendulum models. The structure of the data driven factor-SLIP suggested
adding ankle states to the system, leading to the physically meaningful ankle-SLIP model and cap-
turing most of the potential prediction gains of the DDFA full state model.

unstable at some of the range of running gait parameters humans use. In attempt-
ing to predict step-to-step running dynamics, Maus et al. (2014) showed linear
feedback using an augmented SLIP model whose state consists of SLIP state
variables and all SLIP parameters was less effective at predicting future states
than a DDFA-derived linear model. By subjecting the DDFA model to factor
analysis, five governing linear factors were obtained for a state with nearly 200
dimensions. Examination of the weights in these factors suggested that adding
an ankle state could extend SLIP and give large improvements in prediction (see
Fig. 3.5.7). This showed that DDFA modeling may be used to incrementally ex-
tend existing analytical models for specific goals, e.g., maximizing predictive
ability.

3.5.7 SUMMARY

At intermediate speeds, limit cycle oscillators are a useful reduced model of
legged locomotion. The rich theory and tools available for analysis of oscillator
dynamics provide a uniform language for expressing and understanding gaits.

Future work includes the substantial space for improvement in the numerical
algorithms used for DDFA and development of algorithms that require shorter
time series. Better algorithms for identifying parameters of coupled oscillator
models of locomotion are needed, as most of the coupled oscillator methods
from the physics literature (Pikovsky et al., 2003) assume far weaker coupling
and far lower phase noise. New directions from Koopman Theory (Budišić et al.,
2012) suggest a reframing of DDFA in terms of decomposition of oscillator dy-
namics into Koopman modes, although numerical algorithms for accomplishing
this goal are in their infancy. Finally, little to no work exists on the identification
and numerical analysis of hybrid oscillators, as the theory of such oscillators is
a recent addition to the field.
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In the previous chapters we explained how abstractions and simplification can
help understand locomotion principles. For this, several locomotion models with
reduced representation of the human body were introduced. In general, the de-
scription of legged systems can be based on

• Highly simplified models (e.g., template models) which focus on the prin-
cipal dynamics of the movement using only few parameters, or

• More detailed simulation models (e.g., muscle–skeletal models) like Open-
Sim (http://opensim.stanford.edu) and AnyBody (http://www.anybodytech.
com/) with a high number of degrees of freedom (DOF) and with many
model parameters.

In this chapter we will describe how simplified models can be subsequently
extended in order to increase the level of more detail of the simulation models.

Whereas complex simulation models are often directly related to the struc-
ture of the human body (body segments corresponding to bones, muscles, ten-
dons and other soft tissues), the design of conceptual simplified models highly
depends on mechanical intuition like in the inverted pendulum (IP) model
(Cavagna et al., 1963), the lateral leg spring (LLS) model (Schmitt and Holmes,
2000), or the spring-loaded inverted pendulum (SLIP) model (Blickhan, 1989;
McMahon and Cheng, 1990). These models are focusing on describing the axial
leg function as a simple telescopic leg spring, with either a constant leg length
during stance (IP model) or a leg force proportional to the amount of leg com-
pression (LLS or SLIP model). The assumption of spring-like leg function can
be found (in approximation) experimentally both in animals (Blickhan and Full,
1993) and humans (Lipfert, 2010) during steady state locomotion. However,
there are also clear deviations in the locomotion dynamics that are not well de-
scribed by these simple models.

The key limitations of both the IP model and the SLIP model as the most
common template models for legged locomotion are summarized in Table 3.6.1.
Corresponding model extensions that are suitable to overcome these limitations
are also presented. It is important to note that we only select elementary ex-
tensions of the model, however, also combinations of the model extensions

http://opensim.stanford.edu
http://www.anybodytech.com/
http://www.anybodytech.com/
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TABLE 3.6.1 Extensions of the Template Models to Resolve the Limitations
in Explaining Locomotion Features

Limitation
of model

Extension Extended model Description

Focus on a
single leg

Second leg Bipedal SLIP
(B-SLIP)

Required to study
different gaits (e.g.,
walking and running)rimless Wheel, IP

with swing leg
dynamics

More legs Quadrupedal SLIP
(Q-SLIP)

For animal or infant
locomotion

Focus on
axial leg
function

Rigid trunk SLIP with trunk
(T-SLIP)

Enables control of body
posture

IP with trunk (e.g.,
bisecting)

Foot segment SLIP with rigid flat /
curved foot (F-SLIP)

Enables roll-over
function of foot with
shift in center of
pressure (COP) during
contact

IP with rigid flat
/curved foot

Leg segments 2-segment leg with
thigh and shank

Leg geometry
influences transfer
between joint torque
and leg force

3-segment leg with
thigh, shank and
foot

Hip spring
model

Hip spring between
both legs

Tuning of leg swing
with stance leg

Prescribed
axial leg
function

Varying leg
parameters
in stance
phase

E-SLIP Permits energy stability
with change in leg
spring parameters in
midstance

VLS-SLIP Permits energy stability
with variable leg spring
parameters during
stance

LIP Permits changes in leg
length and leg force

Mass-less leg Add leg masses M-SLIP Considers leg masses in
stance legPassive dynamic

walker or Acrobot
model
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TABLE 3.6.1 (continued)

Limitation
of model

Extension Extended model Description

Focus on
sagittal
plane

Lateral
movements
of COM

3D SLIP Permits 3D running and
walking with lateral leg
placements

3D LIP Permits 3D running and
walking with lateral leg
placements

Purely me-
chanical
description

Add muscle
dynamics

Leg with muscle
model

Actuation of the leg
through muscle forces
with optional reflex
pathways

are possible to consider, like XT-SLIP (Sharbafi et al., 2013a) which is an ex-
tended SLIP model with trunk (T-SLIP), and added leg mass (M-SLIP) or the
ballistic walking model presented of Mochon and McMahon (1980). Model ex-
tensions can address either mechanics or control of the system. Another class
of model extensions comprises muscles (e.g., single-joint and two-joint muscles
with muscle fiber-tendon dynamics) and neural circuits (e.g., sensory feedback
pathways) describing muscle stimulation and integration of sensory signals.
A sophisticated extension of the SLIP model including muscles, reflex path-
ways, and segmented legs is the gait model of Geyer and Herr (2010), which
originates on the neuro-muscular model introduced by Geyer et al. (2003).

The extensions of IP and SLIP models described in this subchapter (Ta-
ble 3.6.1) are shown in Fig. 3.6.1 and Fig. 3.6.2, respectively. The reasoning
of the different extensions in both templates is often similar. In the following,
we will describe selected model extensions in more detail. We will start with
model extensions regarding the leg structure, followed by models describing the
dynamics of the trunk and finally models including lateral leg placements and
locomotion in 3D.

3.6.1 MORE DETAILED REPRESENTATIONS OF THE LEG

In the aforementioned template models, a point mass sits on top of a rigid
or compliant massless leg. The focus of these models is on CoM movement,
which considers the stance leg movement as the first locomotion subfunction
and partially leg swinging (the second locomotion subfunction). The following
extensions in the leg structure addressing more features in each of these two
subfunctions will be presented:

• Stance leg: (a) adding leg mass, inertia and damping, (b) adaptation of leg
parameters during motion and (c) increasing number of segments



112 PART | I Concepts

FIGURE 3.6.1 Extensions of the sagittal inverted pendulum (2D IP) model with selected added
model features: hip spring between both legs, foot (flat or curved) attached to the lower end of the
IP, swing leg dynamics by adding leg masses, segmented swing leg or rimless wheel model, linear
inverted pendulum (LIP) with leg force law, including lateral movements (3D IP), and adding a
trunk. Different control policies can be applied to each of these model extensions, e.g., the capture
point concept for LIP model (Pratt et al., 2006).

FIGURE 3.6.2 Extensions of the sagittal SLIP model with selected added model features: foot
segment (F-SLIP); the number of legs (bipedal B-SLIP, quadrupedal Q-SLIP, etc.); leg masses (M-
SLIP); segmented legs, 2 and 3 leg segments; swing leg dynamics as a pendulum, spring loaded
pendulum SLP or two-segmented swing leg; control for varying leg spring properties during stance
(VLS-SLIP), at mid-stance (E-SLIP) or continuous control during step (CT-SLIP); added trunk
(T-SLIP); muscle-like leg function (leg muscle) and different reflex pathways (force, length, and
velocity feedback) and lateral movements (3D SLIP). Each of these model extensions can be con-
sidered as a separate or in combination with others, e.g., BT-SLIP. Gray color indicates control
features of SLIP based models.

• Swing leg: (a) addition of one or more legs (b) increasing number of seg-
ments in swing leg, (c) adding leg mass
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The simplest way to extend the locomotion template models regarding the

leg function is adding additional massless legs to the body. With this more ad-

vanced swing leg adjustment approaches (e.g., leg retraction; Wisse et al., 2006)

can be developed. Second groups of extensions can be from the control point of

view. For example adaptation of the stance leg parameters during gait (E-SLIP,

Ludwig et al., 2012) or a continuous unified controller for swing and stance

phase (CT-SLIP, Seipel and Holmes, 2007) which enhances the model abilities

in reproducing more biological and also more stable gaits while keeping the

model complexity. Third, the legs can be represented in a more physical way by

considering leg mass, inertia or damping. Finally, the number of segments can

approach the numbers in human/animal legs. In the following, we explain some

of these extensions in related models.

3.6.1.1 Extending the Number of Limbs (B-SLIP, Q-SLIP)

Inspired by the work on the SLIP model, Herr et al. (2002) developed a

quadrupedal SLIP model to describe trotting and galloping in several animals

(chipmunk, dog, goat, and horse). The model was extended with a compliant

trunk (described by neck and back stiffness). Hip and shoulder were actively

powered resulting in a running pattern that was similar in kinematics (e.g., limb

angles) and kinetics (e.g., peak force, limb stiffness) to experimental data. Inter-

estingly, swing leg retraction was identified as a key feature required obtaining

stable running in the model (Seyfarth et al., 2003). A very similar quadrupedal

SLIP model with rigid trunk was created following the design of the Scout II

robot (Poulakakis et al., 2005). The predicted stable bounding gait is in close

agreement with the behavior observed in the robot. Later on, the model and

robot dynamics were extended to galloping (Smith and Poulakakis, 2004).

Geyer et al. (2006) extended the sagittal SLIP model to a bipedal version

(B-SLIP), which was the first model capable of predicting walking and running

gait within the same model setup. In this model, the only parameter change re-

quired to achieve different gaits was the system energy. For moderate speeds

(around 1 m/s) walking patterns with double humped profiles of the ground re-

action force are found. In contrast, with higher locomotion speed, a running gait

with single-humped patterns of the ground reaction force is observed. Surpris-

ingly, the model predicts further walking gaits with more than two humps for

lower energies. Such gaits (e.g., with three-humped force patterns) can indeed

be found in human locomotion like in amputees’ gaits or in the development of

gait during early childhood (Gollhofer et al., 2013).
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3.6.1.2 Rimless Wheel

The inverted pendulum model is developed to explain walking. Because of the
rigidity of the stance leg, no flight phase exists to represent running or hop-
ping. Therefore, the minimum number of legs in this model is 2. The addition
of the number of legs for this model is not common because it is usually applied
to understand human gaits or developing passive dynamic robots except for in-
creasing stability in 3D, e.g., McGeer passive walker (McGeer, 1990). However,
rimless wheel model can be considered as an extension of inverted pendulum
model with adding more legs, which are coupled with a fixed angle between
limbs (McGeer, 1990). More explanations about the passive dynamic walking
model and rimless wheel can be found in Section 4.4.

3.6.1.3 Stance Leg Adaptation (VLS and E-SLIP)

In the SLIP model, stance leg parameters like leg stiffness and angle of attack are
often set to a specific value. This usually represents the steady-state (average)
gait pattern during locomotion. However, leg function varies from step to step
(e.g., in response to ground level changes, Daley et al., 2007; Müller et al.,
2010, and also during the stance phase Riese et al., 2013). Such variations in
leg parameters can be represented in extensions of the SLIP model in order to
better match experimental data. With this also deviations from the conservative
spring-like leg function can be described which may lead to also energetically
stable gait patterns.

During human locomotion, there is a tendency towards higher leg stiffness
during leg loading (leg shortening) compared to unloading (leg lengthening).
Additionally, the leg length is often larger at takeoff compared to touchdown
(Lipfert et al., 2012). There are several possible explanations for that, e.g.,
eccentric force enhancement during leg compression or the role of leg segmen-
tation (Maykranz et al., 2009; see F-SLIP model below).

Based on the SLIP model, two simple approaches were introduced to address
changes in leg parameters during stance phase:

1) In the variable leg spring (VLS) model a continuous change of leg parame-
ters over time is assumed (Riese and Seyfarth, 2011). For stable hopping, a
decrease in leg stiffness and a continuous increase in rest length of the leg
spring (Fig. 3.6.3A) were required in the model unless sufficient leg damping
is provided. This is in line with experimental findings on changes in stance
leg parameters during human locomotion (Lipfert et al., 2012).

2) In the E-SLIP model, a sudden change in leg parameters at midstance is
considered (Fig. 3.6.3B) without a sudden drop or increase in leg force. This
model permits to consider step-to-step changes in system energy as found in
human running (Ludwig et al., 2012).
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FIGURE 3.6.3 Extensions of the SLIP model with adjustable leg springs parameters (stiffness k
and rest length l0). In the variable leg spring VLS approach, leg stiffness and rest length change lin-
early with time (Riese and Seyfarth, 2011). In the two other approaches (ESLIP and Kalveram et al.,
2012), a fixed amount of energy �E is added during stance phase after maximum leg compression
(tMC ) when the leg length reaches its minimum value (lmin). The equations show the parameters
used in the figure.

3) Following the approach of Kalveram et al. (2012), leg stiffness can be
changed during leg extension (leg unloading) such that a defined amount of
energy is injected to the leg. This approach inspired the control of Marco
hopper robot as well as the Marco-2 hopper robot with segmented leg
(Oehlke et al., 2016).

Changes in leg parameters in steady-state movements were observed exper-
imentally at a global (leg) level (Lipfert et al., 2012; Lipfert, 2010 for walking
and running; Riese et al., 2013 for hopping; Seyfarth et al., 1999 for take-off
phase in long jump) as well as at local (joint or muscle) level (Peter et al., 2009
AMS for running). So far, it is still unclear whether and how limb stiffness is ad-
justed at a global (leg) level or a local (joint, muscle) level. It remains for future
research to investigate in more detail how changes in state variables (angles, an-
gular velocities) and environmental changes (e.g., changed ground properties)
effect these adjustments of leg parameters during stance phase.

3.6.1.4 Clock-Torque SLIP (CT-SLIP)

In order to keep the simplicity of the SLIP model and increasing the ability
to predict more features of legged animal and robot locomotion dynamics, the
CT-SLIP model was developed by Seipel and Holmes (2007). In this model, a
reference clock drives the leg movement (using a PD controller for stance leg)
while damping is added to the stance leg. In this model, the same mechanism
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FIGURE 3.6.4 Extensions of IP model (A) rimless wheel, (B) Acrobot, (C) LIP, and (D) actuated
ankle.

(continuous leg rotation) is utilized to control the leg in both stance and swing
phases. This model, which is inspired by RHex robot (Saranli et al., 2001), can
address hip actuation, more realistic take off and touch down (with leg retrac-
tion) and more importantly, a more robust gait compared to the SLIP model,
without increasing dimension of the model (Seipel and Holmes, 2007).

3.6.1.5 Linear Inverted Pendulum Mode (LIPM)

The original IP model does not consider displacements in axial leg direction
during stance and thus forces the CoM to move on a circular arch. Introducing
a prismatic joint in stance leg converts the IP into a SLIP model if the generated
force is proportional to the leg length. In that respect SLIP can be considered as
an extension of IP with additional leg spring.

For a long time, many studies in walking were related to the CoM movement
described by the inverted pendulum paradigm and the six determinants of gait
(Kuo, 2007). Based on minimization of CoM displacement, the six determinants
of gait theory (Saunders et al., 1953) result in no vertical CoM excursion in
walking. In 1991, the linear inverted pendulum model was introduced by Kajita
and Tani (1991), in which the leg force is determined to compensate gravity,
resulting in zero vertical acceleration. The ground reaction force can only act
along the leg axis (CoP–CoM line) and the vertical element of the leg force
should be equal to the body weight (Mg). According to parameters shown in
Fig. 3.6.4C, the required leg force (Fl) to achieve the CoM height (h0) when the
horizontal distance between CoM and CoP equals x is computed as follows:

Fl = Mg

h0
l =

Mg

√
x2 + h2

0

h0
. (3.6.1)

Following this approach, leg force is predicted to increase with leg lengthening,
which is opposite to experimental findings (Lipfert et al., 2012) and the concept
of spring-like leg function.
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The LIPM model was used to develop capture point concept (Pratt et al.,
2006) as a method for leg adjustment to reach zero forward speed at vertical
leg configuration within one step (see Section 2.2 for details). Some versions
of this model consider a rotation around the CoM by using an upper body (e.g.,
Kajita and Tani, 1991 with a constant angular velocity) or a flywheel with torque
control (Pratt et al., 2006).

3.6.1.6 Addition of Leg Mass to IP (Acrobot, Simplest Walking
Model)

The “pure” IP model with massless legs (Alexander, 1976; Hemami and Golli-
day, 1977; Wisse et al., 2006) is rarely utilized in walking analysis. Addition of
a point mass to each leg can simplify control (e.g., based on passive swing leg
movement) and also makes the model more realistic. The resulting model was
called “the simplest walking model” (Garcia et al., 1998) or the “compass gait
model” (Goswami et al., 1996). The compass gait concept was already pointed
out by Borelli (1680) in his famous book “De Motu Animalium.” This popular
model is able to represent walking without the need for active control of the
swing leg. The stability of the predicted gait was well analyzed (Goswami et al.,
1996). Investigation of the limit cycle stability for walking on slope with this
model versus parameter variations (slope, normalized leg mass, and leg length)
demonstrate that a wide range of solutions gradually evolves through a regime
of bifurcations from stable symmetric gaits to asymmetric gaits and eventually
arriving at an apparently chaotic gait where no two steps are identical (Goswami
et al., 1998).

Different leg mass locations are considered, like the leg’s CoM position (at
about the center of the leg) like in the passive dynamic walking model (McGeer,
1990) or small masses at tip toes (Garcia et al., 1998). A very similar model
compared to the simplest walking model is the Acrobot model (Westervelt et al.,
2007). In this model the mass is distributed along the leg and not concentrated
at the hip. In general, addition of leg mass (i) can simplify control, (ii) enables
passive walking down a shallow slope, (iii) permits describing leg swinging (an-
other locomotion subfunction), but at the same time it (iv) requires control, e.g.,
of hip torques when walking on flat terrain to stabilize the gait and to compen-
sate for energy losses (energy management). Please find more explanations on
passive dynamic walking models in Subchapter 4.6.

3.6.1.7 Addition of Mass to SLIP Leg (M-SLIP)

In the M-SLIP (Peuker et al., 2012) model, the leg is represented by a rigid
leg segment and a prismatic spring attached at the distal part of this segment.
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In stance phase, the spring is aligned in leg axis by a viscoelastic rotational
coupling between the rigid segment and the leg spring. During swing phase, the
prismatic leg spring is bent such that the leg segment can freely swing forward.
The leg angle is adjusted by setting the rest angle of the rotational hip spring and
this leg angle switches between two values depending on the state (one stiffness
for swing phase and another one for stance phase).

With leg masses, the gait dynamics is more realistic but also more complex
(e.g., landing impacts). Compared to the SLIP model, the predicted solutions
for stable running of a one-legged system with leg masses (M-SLIP) are shifted
towards flatter angles of attack (Peuker et al., 2012). In an alternating, bipedal
M-SLIP model, however, the inertial effects of both legs are compensating each
other such that the region of stable running is similar to the one observed in
the SLIP model. This indicates that also the model with leg masses can inherit
solutions of the SLIP model. At the same time, leg inertia of the leg with mass
permits creating swing-leg trajectories (e.g., by introducing a hip torque) that
were not represented by the original SLIP model. In this model, a PD (pro-
portional, derivative) controller is used for hip torque control in walking. It is
similar to the hip spring model developed by Dai Owaki for running (Owaki et
al., 2008).

3.6.1.8 Extending SLIP with Leg Segments (F-SLIP, 2-SEG, 3-SEG)

Biological limbs are designed as a serial arrangement of leg segments with mus-
cles spanning the leg joints. In the following, benefitting from muscle properties,
we describe a number of extended SLIP models using muscle mechanics, which
lead to a more detailed representation of leg segments and describe their effects
on the gait dynamics.

In the F-SLIP model (Maykranz et al., 2009), the prismatic leg spring is
extended distally by a rigid foot segment, which is attached by a rotational foot
spring (similar to the ankle joint). This model permits to describe a shift of
the center of rotation along the foot segment as found in heel to toe running
or in human walking. Similar to the VLS model it can describe an increase in
leg length from touchdown to take-off due to the asymmetric arrangement of
the foot, pointing forward (Maykranz and Seyfarth, 2014). The resulting force–
length curve of the leg indicates a drop in leg stiffness from early to late stance
phase. This is a consequence of the mechanical action of the compliantly at-
tached foot segment. In late stance the foot joint (ankle) is leaving the ground
resulting in a more realistic representation of the push-off in human locomotion.
Surprisingly, the F-SLIP model is able to predict running well, but has limited
capability to generate walking patterns.
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Another segmented model extending the SLIP model is the 2-segment model
by Rummel and Seyfarth (2008). Here, the leg spring is replaced by a rotational
(knee) spring attached between the two massless leg segments (upper and lower
leg). The analysis of the model shows that running solutions can be observed for
different rest angles of the knee spring with clear deformations in the predicted
regions for stable locomotion. With extended rest angles (knee joint angles be-
tween 150–170 degrees), a larger region of angles of attack compared to the
SLIP model result in stable running. In contrast to the SLIP model, knee stiff-
ness needs to be increased for faster running. This increase of knee stiffness
with speed was also found experimentally (Rummel and Seyfarth, 2008; Lipfert,
2010). There has been a number of similar leg models with two segments pre-
sented with muscle-like joint function, e.g., for describing jumping (Alexander,
1990a, 1992; Seyfarth et al., 2000) and hopping tasks (Geyer et al., 2003).

Finally, in a three-segment model including foot, shank and thigh, the adjust-
ment of joint stiffness for spring-like leg function was investigated by Seyfarth
et al. (2001). This simulation study shows that a shared loading of knee and an-
kle requires not only a proper distribution of knee and ankle stiffness but also
additional mean to avoid joint buckling or overextension. The following means
for achieving stable leg function could be identified (Seyfarth et al., 2006):

1) Elastic two-joint connection between ankle and knee (e.g., gastrocnemius
muscle)

2) Asymmetric segment lengths with shorter foot and asymmetric joint config-
urations (extended knee, bent ankle)

3) Joint constraints (e.g., heel contact by calcaneous) prevents too large ankle
bending and avoids knee overextension

4) Nonlinear progressive joint stiffness (with larger nonlinearity in knee com-
pared to ankle)

5) Transition from a zig-zag mode to a bow configuration of the leg (like in
spiders)

The transfer of this mechanical three-segment leg model to a muscle–skeletal
model was presented by Geyer and Herr (2010).

3.6.1.9 Ankle Actuated IP

The position dependence of passive ankle joint mechanics was shown in Weiss
et al. (1986). Considering a flat foot and elastic element to model ankle torque,
Ahn developed an ankle actuated IP model (Ahn, 2006) (see Fig. 3.6.4D). In this
model, the constraint of having instantaneous double support in IP is resolved.
A rotational spring with rest angle equal to π starts working for the trailing leg
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FIGURE 3.6.5 Curved foot model (A) knee–ankle–foot (KAF) coordinate system (adopted from
Hansen et al., 2004), (B) CoP motion in KAF coordinate system (adopted from Hansen et al., 2004),
(C) IP with curved feet (adopted from Adamczyk et al., 2006). Push-off (PO) produces positive work
which should be equal to the negative work consumed at impact (imp) for periodic gait. (D) SLIP
with curved feet (Whittington and Thelen, 2009).

after touchdown of the other leg until take-off or reaching straight ankle angle:

τ =
{

k(π −ψ) ψ < π,

0 ψ ≥ π.
(3.6.2)

This preloaded ankle spring (Fig. 3.6.4B) injects energy and supports push-off.

3.6.1.10 Curved Feet Model

In bipedal locomotion the center of pressure (CoP) is not fixed on the ground like
assumed in gait template models (with point contact). Extending the model with
flat feet is a possible solution for introducing a moving CoP during ground con-
tact. This model extension needs additional ankle torque control (Ahn, 2006).
A simpler solution, which can generate human-like CoP movement without re-
quiring ankle torque control, is using curved feet (McGeer, 1990). In human
walking, a circular path with a radius of curvature 30% of leg length repre-
sents the CoP trajectory in knee–ankle–foot (KAF) coordinate system shown in
Fig. 3.6.5A, B (Hansen et al., 2004). Similar ratio between the foot curvature ra-
dius and the leg length was found in the case of different prosthetic legs (Curtze
et al., 2009) and also agrees closely with McGeer’s robot (McGeer, 1990).

In line with these findings, extended IP and SLIP models with curved feet
were used to investigate foot function in walking. Inspired by McGeer’s robot
(McGeer, 1990), Kuo presented an IP model with arc-shaped feet, called “An-
thropomorphic Model” (Kuo, 2001). This model was used to predict the pre-
ferred speed–step length relationship (Kuo, 2001) and later to predict the effects
of changing the radius of curvature on cost of transport (Adamczyk et al., 2006).
In the latter study, the mechanical work and metabolic activities of human body
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are measured in walking experiments with shoes having different curvatures
showing that using 33% of the leg length as the curved foot radius results
in the minimum mechanical work and metabolic rate activities (Adamczyk et
al., 2006). Considering impulsive push-off as the energy source to compensate
losses at impact (Fig. 3.6.5C), it is shown that having this curvature will appear
energetically advantageous for plantigrade and human walking, partially due to
decreased work for step-to-step transitions (losses is reduced with any nonzero
radius (Fig. 3.6.5C, as δ < 2α). In Whittington and Thelen (2009), a new SLIP
model extended with curved feet (Fig. 3.6.5D) illustrates stable gait for an in-
terval of feet curvature and shows that increase of foot radius up to one-third
of the leg length decreases the maximum amount of the ground reaction force.
All these studies show that extending template models with arc-shaped feet is
useful for analyzing gait dynamics and energetics.

3.6.2 UPPER BODY MODELING

For posture control, the third locomotion subfunction, we need to extend the
template models by adding an upper body, e.g., by a rigid trunk. With this ad-
ditional degree of freedom, developing a controller for balancing is required.
Therefore, several models were developed to address posture balance based
on template models. In extended IP with a rigid torso, often traditional con-
trol engineering methods are used for keeping the torso upright (McGeer, 1988;
Grizzle et al., 2001; Gregg and Spong, 2009). In Wisse et al. (2004) a passive
model is presented, in which the upper body is aligned mechanically creating a
bisecting angle between the two legs. In the following we explain bioinspired
SLIP-based models for posture control based on by human/animal locomotion:
VPP, compliant hip, and FMCH.

3.6.2.1 Virtual Pivot Point (VPP)

In the SLIP model the body dynamics is described by a point-mass. This model
can only describe leg force pointing to this point-mass which differs from GRF
patterns in human (or other bipedal) gaita. During locomotion, the forces act-
ing on the body are not necessarily directed to the center of mass (COM). For
instance, in human walking the stance leg forces point to a slightly above the
COM. In order to describe such deviations of the leg force from the leg axis
(from contact point at ground to COM), the point-mass needs to be replaced
by an extended body, e.g., a rigid trunk (Fig. 3.6.6A). To study the control of
a hopping robot, Poulakakis and Grizzle (2009) extended the SLIP model with
a rigid upper body. They used the hybrid zero dynamics (HZD) approach to
successfully control the system. Maus et al. (2010) applied the same extension
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FIGURE 3.6.6 (A) T-SLIP model and VPP control concept introduced by Maus et al. (2010).
(B) Virtual pendulum point (VPP) concept shown illustrated in a Roly Poly toy, (C) GRF vectors
and VPP concept in human walking. (D) Virtual pendulum concept in human locomotion.

(rigid upright trunk) to a bipedal SLIP model to implement the virtual pivot
point (VPP) concept. This approach assumes leg forces to intersect at a fixed
location above the body COM to keep postural balance like a Roly Poly toy
(Fig. 3.6.6B, C). Both stable walking and running could be predicted by this
model (Fig. 3.6.6A) and the predicted hip torques are similar to those observed
in human walking. As a result, the inverted pendulum model of locomotion can
be transferred to a periodic movement, modeled by a regular virtual pendulum
(VP) as shown in Fig. 3.6.6C, D.

3.6.2.2 Force Modulated Compliant Hip (FMCH)

The key idea behind the FMCH approach is to substitute the VPP concept with
a structural model that has physical representation. With that we want to keep
the basic idea of a virtual pendulum (VP) thorugh adaptable hip compliance.
Therefore, first, the hip joint (between trunk and leg) of the T-SLIP model was
equipped with a passive spring (Fig. 3.6.7A) simulating the effects of extensor
and flexor muscles resulting in stable walking (Rummel and Seyfarth, 2010).
Stable running and hopping could be predicted by implementing the virtual
pendulum (VP) concept using passive hip springs (Sharbafi et al., 2013b). In
this study, the quality of posture control based on of the passive compliant hip
was compared to the virtual pendulum posture controller (VPPC) and also the
hybrid zero dynamics (HZD, Westervelt et al., 2007, see Section 4.7). The ro-
bustness and control quality (e.g., settling time) with passive hip springs are
worse than VPPC, but sufficient considering passivity of the control. Then,
by applying the leg force to modulate hip compliance within FMCH model,
a large improvement in balance control was achieved. It results in human-like
posture balance and provides a mechanical explanation for the VPP concept
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FIGURE 3.6.7 (A) T-SLIP with passive compliant hip. (B) Force modulated compliant hip
(FMCH) model for walking. (C) Comparison of the leg force and the hip torque in human walk-
ing and FMCH model at normal waling speed.

(Sharbafi and Seyfarth, 2014, 2015). In this force modulated compliant hip
(FMCH) model (shown in Fig. 3.6.7B) the hip torque (τ ) is a product of a con-
stant (c), the leg force (Fs ) and the difference between the hip to the leg angle
(ψ ), and its rest angle (ψ0) as follows:

τ = cFs(ψ −ψ0). (3.6.3)

It is mathematically shown that the required torque in VPPC is precisely approx-
imated by FMCH in a range of hip and leg movements which are representative
for human gaits (Sharbafi and Seyfarth, 2015). Fig. 3.6.7C shows the leg force
and hip torque developed by the FMCH model for stable walking at normal
walking speed (1.4 m/s) compared to the human experimental results. In addi-
tion to explain human gaits, this concept can be utilized in bipedal robot control
and assistive devices (e.g., exoskeleton).

This model can be considered as a candidate for neuro-mechanical tem-
plate for posture control. The model suggests a sensory pathway originating
at a force sensor of the leg extensor muscle (e.g., in the knee) and a gain
factor (constant c). In contrast to the neural system, no processing delays are
considered in the FMCH model. Also, the muscle function is reduced to an
activation-dependent tunable spring. These are clear simplifications compared
to neuro-muscular processing of sensory data.

3.6.3 EXTENSION TO 3D

In order to extend the models to 3D, in addition to increasing the system degrees
of freedom and enlargement of the state space the lateral leg placement is the
main challenge. In the following the 3D SLIP and IP models are presented.
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FIGURE 3.6.8 (A) 3D SLIP model with leg adjustment w.r.t. world coordinate (Seipel and
Holmes, 2005). The desired leg orientation is defined by α and β . (B) 3D SLIP model with leg
adjustment in body coordinate (Peuker et al., 2012). In this approach the velocity vector (v) defines
the body coordinate frame. The vector vp is the projection of v in the horizontal plane (x, y). The
body lateral plane is defined by v and vp . The desired leg orientation l is defined by α and β the
angle between v and projection of l in the frontal plane and the angle between vp and the projection
of l in the horizontal plane, respectively. (C) 3D passive dynamic walking model (McGeer, 1990).

3.6.3.1 3D SLIP

Like in 2D SLIP, stable gaits require a proper leg adjustment. Interestingly, sta-
ble gaits are not predicted with a given step length (or step frequency) but by
adjusting the leg angle for landing (angle of attack) with respect to gravity. This
indicates that the locomotion pattern is rather an outcome than a target of con-
trol. For instance, if a subject runs on a treadmill, the variability of the gait
pattern increases when the very same preferred step length or step frequency is
provided (markings on the belt, metronome) as targets for locomotion (Ludwig
et al., 2010).

In 2005 Seipel and Holmes published a paper investigating running stabil-
ity predicted by a new SLIP model extended to 3D by including a lateral leg
placement at touchdown (Seipel and Holmes, 2005). The lateral leg angle was
selected with alternating direction (left or right) with respect to a desired running
direction (Fig. 3.6.8A). Surprisingly, no stable running patterns were predicted
by this novel 3D SLIP model. Later, Peuker et al. (2012) introduced a velocity-
based leg adjustment. Here, the leg angle was laterally adjusted within the plane
spanned by the COM velocity vector and gravity vector. With this change in the
coordinate frame for swing leg adjustment, stable running solutions were pre-
dicted for a huge range of angle of attack and lateral leg angles before landing.

In 2014, Maus and Seyfarth developed an extended bipedal SLIP model
for 3D walking. The simulation results of this 3D walking model reveals that
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changes in leg adjustments between the two legs can result in walking in curves
(Maus and Seyfarth, 2014). However, there are combinations of leg parameter
adjustments between the two legs which still results in straight walking (with a
fixed direction of progression) for even asymmetric leg configurations regard-
ing leg stiffness and angle of attack. The predicted asymmetric walking patterns
can be neutrally stable. This means that the direction of walking will change if
a sudden lateral push is applied to the body, however after the perturbation the
walking direction remains constant. This outcome is similar to the predictions of
the lateral leg spring (LLS) model of Schmitt and Holmes (2000) that operates
in the horizontal plane only.

3.6.3.2 3D IP

The focus of conceptual model based gait analyses is on 2D motion in sagittal
plane. Moving from side to side to modulate lateral foot placement and rotating
about the vertical (yaw) axis at the ankles are the two observations in biologi-
cal legged locomotion (humans). One of the first attempts for such extensions
was 3D model of passive dynamic walking (Fig. 3.6.6C) incorporating both roll
and yaw rotation (McGeer, 1993). However, they found that the model couldn’t
stably walk without control. Representing the theoretical stability of a walking
machine that rocks side to side without yaw motion, Kuo could stabilize the
passively unstable system by a simple control scheme inheriting much of the
passive behavior (Kuo, 1999).

In Zijlstra and Hof (1997) a 3D inverted pendulum model was utilized to
explain human walking in 3D space with a sinusoidal left-right movement of
CoM. Using such a 3D compass gait model, Gregg and Spong (2009) extended
the planar walking into directional 3D dynamic walking (e.g., moving on a cir-
cle) by controlled reduction approach. Other extensions like 3D LIPM (Kajita et
al., 2001), 3D IP+torso (Gregg and Spong, 2009), the generalized 3D IP (Sakka
et al., 2010), and 3-segmented IP based model with small actuation at ankle
(Wisse et al., 2001) are instances of studies to build an anthropomorphic 3D
model for stable walking based on inverted pendulum model. Recently, 3LP, a
3D linear IP-based model including torso and swing dynamics, was presented
by Faraji and Ijspeert (2016) to represent all three subfunctions of legged loco-
motion with a IP based model. In addition, they could predict nonlinear speed
frequency relationship as one optimality trends in human walking.

3.6.4 EXTENSION WITH MUSCLE MODELS

In the previous sections we focused on mechanical representations of legged lo-
comotion. Compared to human locomotion, the complex interactions within the
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biological (e.g., human) body were described based on highly simplified models
with only a few lumped parameters. For instance, leg stiffness is such a common
parameter. It summarizes the complex interaction of segmented body mechanics
with active and passive compliant structures (e.g., muscles, ligaments, tendons,
connective tissues, etc.) and the environment (e.g., compliant ground contact).
In this section we present a number of gait model extensions, which additionally
take muscle–tendon dynamics into account.

For spring-like leg operation, a concerted interplay between many compo-
nents in the biological body is required including:

• Active muscle forces based on muscle properties (force–length and force–
velocity relations) and muscle activation dynamics (see Subchapter 8.1),

• Connective tissues
• Titin filaments (see Subchapter 8.1)
• Muscle lever arm geometry at joints
• Tendon compliance
• Geometry of segmented legs
• Muscle arrangement in relation to joints (e.g., two-joint muscles)
• Interface mechanics to the environment (e.g., foot–ground interaction)

In a first approach, the geometry of the leg was represented by two leg seg-
ments (see above, e.g., Rummel and Seyfarth, 2008). To generate leg force, joint
torque can be introduced by mechanical components (e.g., rotational spring;
Alexander, 1990b) or by an extensor muscle spanning the joint (Alexander,
1990a; Seyfarth et al., 2000). Due to the eccentric force enhancement in mus-
cles, leg force becomes larger during leg compression (muscle lengthening)
compared to leg extension (muscle shortening) if constant muscle activation is
assumed. To generate continuous movements like in hopping or running, a mod-
ulation of muscle stimulation with time is required with lower muscle activation
during eccentric phase, compared to concentric phase. This even holds if the leg
geometry is ignored and the muscle is directly replacing the leg spring. Here,
repulsive leg function (like in hopping and running) can be achieved by an ap-
propriate muscle stimulation pattern (feedforward control; Häufle et al., 2010),
by using sensory feedback pathways, or by a combination of both (Häufle et al.,
2012). The combination of feedforward and feedback provides superior stabil-
ity and perturbation rejection compared to feedforward and feedback schemes
in isolation.

In the two-segment leg model with a knee extensor muscle and the neural
control of Geyer et al. (2003) it was shown that similar leg function as described
in the spring–mass model was predicted by a positive force feedback applied to
the leg muscle. This spring-like leg function emerges after 1–2 hopping cycles
and recovers quickly after perturbations (e.g., ground level changes).
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With more than two leg segments different arrangements of muscles can be
considered including one- and two-joint muscles (Seyfarth et al., 2001) span-
ning ankle, knee, and hip joints. There has been a long scientific debate about
the specific role of two-joint (biarticular) muscles, including their ability to co-
ordinate the action of adjacent joints ((Doorenbosch and van Ingen Schenau,
1995)), transfer of energy (Sharbafi et al., 2016), reduced energy and peak power
requirements of joint actuation (Grimmer et al., 2012). Another suggested func-
tion of two-joint muscles is their ability to direct (orient) leg force (Doorenbosch
and van Ingen Schenau, 1995; Sharbafi et al., 2016).

Muscle function is largely supported by the action of compliant structures
arranged in series (e.g., tendon) and in parallel to the muscle fibers (e.g., titin).
Serial elastic elements can reduce the muscle fiber displacement and speed dur-
ing stretch-shortening-cycles (e.g., in jumping, running or walking; Seyfarth et
al., 2000). In contrast, parallel elastic elements (Rode et al., 2009) help reduce
the muscle fiber force, but keep the elongation and the speed of the fibers un-
changed. Both elastic elements can largely reduce the energy and the peak power
requirements of the muscle during movement.

The potential role of sensory feedback for achieving stable locomotion was
demonstrated in a 7-segment neuromuscular human walking model presented
by Geyer and Herr (2010). In this model, seven muscles were represented in
each leg. The muscles were controlled by tuning the corresponding reflex pa-
rameters (sensor source, gain, delay). The model was continuously extended
during the last years and can predict human-like walking and running at differ-
ent speeds and in different environmental conditions (e.g., stairs, slopes, curves).
This model is described in more detail in Subchapter 6.5.
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Chapter 4

Control of Motion and
Compliance
Katja Mombaur, Heike Vallery, Yue Hu, Jonas Buchli,
Pranav Bhounsule, Thiago Boaventura, Patrick M. Wensing,
Shai Revzen, Aaron D. Ames, Ioannis Poulakakis, and Auke Ijspeert

INTRODUCTION

The control of legged locomotion and in particular of biped locomotion is a
complex task. This is due to the fact that legged locomotion is often unstable,
underactuated, redundant, nonlinear, and with complex hybrid dynamics. In-
deed, legged locomotion is often (statically) unstable because the projection of
the center of mass moves at times outside of the small polygons of support pro-
vided by feet on the ground. A locomotion controller therefore needs to ensure
dynamic stability and prevent that the robot does not fall over while locomoting.
Legged locomotion is underactuated because, unlike robot manipulators that
are attached to a base, the feet of legged robots are not bolted to the ground and
the leg actuators have therefore no direct control of the orientation and position
of the main body. Legged robots are furthermore often redundant systems with
more actuators and more actuated degrees of freedom than would in principle
be needed to adjust the six degrees of freedom that determine the position and
orientation of the main body. In addition, each of these actuators can perform
infinitely many different actuation patterns many combinations of which lead
to the same overall locomotion output, such as a step of a given length or a
gait at a given speed. A locomotion controller has therefore to solve this re-
dundancy problem and choose among many possible control actions for each
motor to move the body forward. Furthermore, the relationships between actua-
tor commands and the movement of the main body are highly nonlinear. Unlike
differential drive wheeled robots in which the forward speed of the robot is lin-
early related to the rotation velocities of the motors, a locomotion controller for
a legged robot needs to implement complex nonlinear, typically periodic, rela-
tionships between motor commands and desired movements of the main body.
Finally, legged locomotion presents complex hybrid dynamics, which refers
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to the fact that the number and points of contact of the body with the ground
change over time. Typically, a biped robot can switch between zero (when run-
ning), one, two, or more (when other parts of the body touch the environment)
points of contacts with the environment, and this leads to drastic changes in
the dynamics and the equations of motion. Problems with hybrids dynamics are
difficult to model properly and make it hard to plan control actions in advance.
Taken together these properties make it very difficult to design robust locomo-
tion controllers in particular for complex unstructured terrains.

In this chapter, we will present several important concepts in locomotion
control, as well as several examples of control approaches. In that respect, first
we explain the basic concepts of locomotion control such as stability, robustness
and efficiency. Insertion of compliance as a bioinspired term in the robot body
complicates control while providing advantages in terms of robustness and effi-
ciency. Impedance control can be considered as control technique to deal with
complexity added in compliant robots or to provide virtual compliance by con-
trol even if the structure is rigid. The second part of this chapter includes control
approaches which are bio-inspired or can be translated to implement bioinspired
concepts.

The first subchapter (by K. Mombaur and H. Vallery) reviews different
concepts to evaluate stability and robustness of locomotion considering nom-
inal walking situations as well as the reaction to larger external perturbations.
Stability criteria discussed include those based on characteristic points or on
dynamic quantities of the system evaluated separately at each point of a motion
as well as those evaluating the entire trajectory or limit cycle of periodic mo-
tion. Robustness criteria aim to assess the size of its stability region or basin
of attraction of a stable solution. Different experimental and computational ap-
proaches to evaluate the ability to recover from large perturbations or pushes are
outlined.

The second subchapter (by K. Mombaur) discusses how optimal control can
serve as guiding principle of legged locomotion in humans and robots. It starts
by giving different examples for dynamic multibody system models of the lo-
comotor systems which represent an important basis for optimization studies.
Different possible objective function and optimization problem formulation for
humans and robots and their numerical solution are discussed. In addition, the
chapter focuses on the inverse problem, i.e., the identification of the optimality
criterion underlying a recorded human motion, which is called the inverse op-
timal control problem, also presenting several example solution approaches. It
concludes by summarizing current research questions related to the optimization
of locomotion.

The third subchapter (by K. Mombaur, Y. Hu, and J. Buchli) discusses differ-
ent concepts of compliance in human and robot locomotion including constant
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and variable compliance. Compliance provides many advantages for dynamic
motions, such as increased efficiency, stability, adaptability and softness, but
also introduces many challenges for the design and control of locomotion. The
chapter outlines how optimal control can be used to tune compliance parameters
and control compliant actuators, based on different models.

The fourth subchapter (by J. Buchli and T. Buenaventura) focuses on the
topic of impedance control in locomotion. It reviews concepts of whole-body
motion modeling and task space as an important basis for this research and
discusses the interaction of the human or robots with the environment. Passive
impedance (by hardware) as well as active impedance (by control) is described.
The paper introduces different methods and concepts to emulate appropriate
impedances for a legged robot either for modelling or for function. This tech-
nique can be also used to emulate muscle models in order to mimic biological
properties in legged locomotion.

The fifth subchapter (by P. Wensing and S. Revzen) reviews control ap-
proaches for locomotion based on so-called template models. Template models
are very simple models consisting only of a single (or very few masses) to
describe the locomotion system which can already serve to extract basis char-
acteristics of locomotion and to be considered as target for control. As template
and anchor concept is discussed in detail in Chapter 3, here the focus is on how
these models can be employed to design controllers. Therefore, after select-
ing an appropriate template model, establishing its relation to the anchor model
through implementation in controller (called anchoring the template models) is
the focus of this subchapter.

The sixth subchapter (by P. Bhounsule) describes passive dynamic walk-
ing (PDW) robots that use a purely mechanical approach to motion control
and walk down inclined slopes in a highly efficient and natural way without
any actuators and sensors. Passive dynamic walking concepts have also inspired
minimally powered passive walking. The most important feature of PDW based
controllers is that PDW robots benefit from natural dynamics of the system
and mimic human walking with minimum efforts. After reviewing elementary
stability concepts and summarizing passive dynamic walking results for the sim-
plest 2D walking model, the chapter discusses how minimal control can be used
to create almost passive walking robots on level ground. It also summarizes
the current state-of-the-art of powered passive dynamic robots with respect to
energy-efficiency, stability, robustness, versatility, mechanical design, estima-
tion, and robot complexity, and formulates the grand challenges for the future.

The seventh subchapter (by A.D. Ames and I. Poulakakis) presents hybrid
zero dynamics (HZD) as a control synthesis framework for feedback laws that
realize dynamic walking and running in a class of robotic bipeds. The goal is to
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develop reliable and efficient legged locomotion controllers that combine prov-
able stability and performance guarantees with fast and elegant motions and
fully exploit the capabilities of the system. The idea of hybrid zero dynamics
is to reduce the complexity of whole-body control by task encoding through
the enforcement of lower-dimensional target dynamics. This subchapter intro-
duces the core concepts of this control approach and its application walking and
running robots, discussing different models, theory and implementation. Using
human locomotion data, this technique can be extended to implement a bio-
inspired controller through the notion of partial hybrid zero dynamics (PHZD).
With that, biological locomotor behaviors are formulated by few virtual con-
straints that can be implemented on robots or assistive devices (e.g., prostheses).

The last subchapter (by A. Ijspeert) presents a control approach based on
the concept of central pattern generators, which are neural circuits found in ani-
mals that can produce coordinated rhythmic patterns necessary for locomotion.
CPGs implemented as coupled nonlinear oscillators can similarly serve as build-
ing blocks of locomotion controllers for legged robots. Interestingly, the use
of robots could potentially also help answering some open questions in neuro-
science about the respective roles of CPGs versus reflexes in human locomotion.
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Chapter 4.1

Stability and Robustness of Bipedal
Walking
Katja Mombaur∗ and Heike Vallery†

∗Optimization, Robotics & Biomechanics, ZITI, IWR, Heidelberg University, Heidelberg, Germany
†Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology,
Delft, The Netherlands

Abstract. In this sub-chapter, we review different criteria to evaluate stability
and robustness of locomotion in nominal situations as well as during large per-
turbations. We discuss different stability measures and control concepts that are
based on characteristic points or on dynamic quantities of the system evaluated
separately at each point of the motion. In addition, we discuss stability criteria
for periodic motions that are based on the entire trajectory, as e.g. the study of
the limit cycle properties of the motion. Another important topic is to asses the
robustness of a solution which defines the stability margins of a stable solution,
i.e. the size of its stability region, for which we present different approaches. As
a last topic, we consider the robustness with respect to large perturbations or
pushes while walking and standing, outlining different experimental and com-
putational results.

4.1.1 INTRODUCTION

Stability is one of the most important properties of bipedal locomotion. Intu-
itively, “stable” gait can be defined as any gait that does not lead to a fall. This
implies that the definition of stability should relate to the set of all states that
a bipedal walker can experience and still avoid falling, the so-called “viability
kernel” (Wieber, 2002). However, this definition is difficult to handle in practice,
due to the size of this set and the absence of systematic tools to synthesize con-
trollers from the definition. Another intuitive, but a bit more focused definition
of “stable” gait is that of persisting also in the presence of perturbations, i.e., the
ability of a person, animal or robot to continue the motion that was planned be-
fore the perturbation. In the first definition case, also recovery actions would be
acceptable that may completely modify the motion or even the type of motion,
e.g., recovering from a perturbation while walking by coming to a full stop.

Both types of stability are hard to achieve. Even though humans usually
learn to walk without any problems during the first years of their life, the un-
derlying mechanisms, and especially the natural human stability control, are not
yet fully understood. The difficulty of achieving stable walking can easily be
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seen in humanoid robotics where even the most expensive and advanced robots
in the world, participating in the DARPA robotics challenge in 2015 suffered
from many falls during walking motions that would not be very challenging for
an able-bodied human. A better understanding of stability would not only be
useful for robotics, but also for many medical applications. Stability concepts
are required for a better control of prostheses, orthoses, and exoskeletons, or for
Functional Electrical Stimulation. For individuals with neurological or orthope-
dic impairments and for members of the elderly generation exhibiting mobility
problems, it is important to asses the general as well as immediate risk of falling.

In this chapter, we will not be able to address all these issues since they
describe a whole roadmap for interdisciplinary research of many years. The fo-
cus of this chapter is on computational criteria that may help assess and control
the stability and reaction to small and large perturbations of different types of
robots, humans, and humans using wearable technical devices. We also describe
some stability-related experiments in biomechanics and robotics, and we touch
upon control approaches based on these criteria.

With respect to the different views on stability, we will adopt the following
terminology from here on:

• Stability refers to the property of a motion to persist even under small per-
turbations;

• Robustness of a solution addresses the question of the size of the corre-
sponding stability regions;

• Push recovery or large perturbation recovery describes situations where
an active reaction with a switch of motions and motion strategy is required
in order to avoid a fall.

This chapter is organized as follows: In Sections 4.1.2 and 4.1.3 we discuss
different stability criteria. While Section 4.1.2 focuses on pointwise criteria (in
the temporal as well as sometimes in the spatial sense), Section 4.1.3 discusses
the limit cycle approach, which studies the entire motion or at least a full cycle
at once. Section 4.1.4 outlines different criteria to analyze the robustness of
stable motions. In Section 4.1.5, we discuss research on push recovery including
computational approaches and experiments. Section 4.1.6 contains some final
remarks.

4.1.2 STABILITY CRITERIA RELATED TO INSTANTANEOUS
PROPERTIES OF THE WALKING SYSTEM

In this section, we will review several classical criteria that are used to define
stability of walking motions. Here we focus on those criteria that can be eval-
uated independently at every instant of a walking motion, just looking at the
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FIGURE 4.1.1 Walking model with center of mass (CoM), projected center of mass (GCoM),
point of zero rate of angular momentum (ZRAM), center of pressure (CoP)/zero moment point
(ZMP), virtual pivot point (VPP), and capture point (CP)/extrapolated center of mass (XCoM).

current state of the system or some simplified model of it. In contrast to that,
in the next section we discuss criteria which are based on the study of an entire
motion or limit cycle. Due to their instantaneous nature, the measures of walk-
ing stability discussed here can be directly used to derive control laws for robot
walking. Many of these stability measures result in characteristic points which
are summarized in Fig. 4.1.1.

4.1.2.1 Projected Center of Mass

The projected center of mass (GCoM) is the projection of the center of mass
(CoM) of the walking system to the ground (Fig. 4.1.1). It can be used to define
the static stability of a system where it is put in relationship to the polygon
of support (PoS), i.e., the convex hull of all contact points of the system with
the ground. If the GCoM lies within the polygon of support and if the velocity
and acceleration of the CoM is negligible, the system is statically stable. This
measure has been heavily used in the context of slower multilegged robots such
as six- or eight-legged crawling robots (e.g., Berns et al., 1994), e.g., resulting in
the tripod gait for six-legged robots. It is not relevant for bio-inspired dynamic
bipedal walking or even quadrupedal walking using bio-inspired gaits like pace,
trot, or gallop. While statically stable bipedal walking is in principle possible, it
requires very large feet and very slow walking speeds, slowly shifting the GCoM
from one foot to the other, which is not interesting from the perspective of this
book.
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4.1.2.2 Zero Moment Point

The most commonly used stability concept in the field of humanoid robots is
the Zero Moment Point (ZMP) (Vukobratović and Borovac, 2004). The ZMP is
the point on the ground where the resulting torques of inertia and gravity forces
of the robot about the horizontal axes become zero. For nonsliding motions on
level ground, and in the absence of external forces acting on the system, besides
ground reaction forces, it is equivalent to the Center of Pressure (CoP) which is
the point where the resulting ground reaction force applies to the foot (or feet
in the case of multi-foot contact). This is shown in Fig. 4.1.1. While the CoP is
computed based on external forces, the ZMP is defined using inertia properties
and internal accelerations of the segments of the robot:

pZMP, Q =
n×M

gi
Q

Rgi · n , (4.1.1)

where pZMP, Q denotes the position vector of the ZMP with respect to a general
fixed point Q on the contact surface, n the vector normal to the contact sur-
face, Rgi the sum of the gravity and inertia force at the center of mass, and M

gi
Q

the moment at point Q caused by acceleration, gravity and change in angular
momentum of the segments (Sardain and Bessonnet, 2004). The ZMP can be
interpreted as an augmented GCoM that additionally takes the effects of trans-
lational and rotational acceleration into account.

In humanoid robotics, the ZMP is generally not computed using the full
model of the robot with all segments, but with simplified robots in order to speed
up computation in the context of control algorithms. The most popular model
is the table–cart model of Kajita et al. (2003) that approximates the human as
a point-mass in the pelvis center and only considers horizontal motion of this
point. The position of the table cart ZMP on the floor (pZMP, x,pZMP, y) in for-
ward and sidewards directions x and y then can be directly computed from the
center of mass position x, y, z (with constant height z= zc) and accelerations:

pZMP, x = x − zc

g
ẍ, (4.1.2)

pZMP, y = y − zc

g
ÿ. (4.1.3)

In order to stabilize gaits of humanoid robots, ZMP-based control concepts
aim at keeping the simplified ZMP well within the PoS. While the precise ZMP
can not travel outside the polygon of support, stability properties of the system
get unpredictable when the ZMP is at the edge of the PoS. Controllers typically
apply a large safety margin to the real boundary such that the ZMP is only al-
lowed to lie in a much smaller subset of the PoS. E.g. in the case of the humanoid
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robot HRP-2, the standard stabilizing controller aims to maintain the table cart
ZMP within a few centimeters around the projection of the ankle joint. Other
examples for ZMP-based humanoid robot control are Asimo (Sakagami et al.,
2002), and also some of the control approaches used in the DRC (Kuindersma
et al., 2014; Wang et al., 2014).

While this approach is very easy to apply, it leads to quite conservative and
not very human-like gaits with strong knee flexion. Computations have shown
that relaxing strict ZMP constraints results in more dynamic gaits with more
stretched knees, i.e., a higher pelvis position (Koch et al., 2012).

Dynamic human walking is characterized by ZMPs and COPs approaching
the edge of the PoS frequently e.g. for level ground walking traveling from the
very back to the very front of the foot. Also during very dynamic balancing mo-
tions, including recovery motions of the arms and the upper body, the ZMP / CoP
reach the boundary of the PoS at many different places and for extended periods
of time. One major problem of the ZMP criterion, even if precisely computed
based on the whole-body model, is that it is not possible to predict if the system
will fail in the next second or if it can be stabilized. Part of this is based on the
fact that it only takes momentary snapshots.

4.1.2.3 Capture Point or Extrapolated Center of Mass

The capture point (CP) (Pratt et al., 2006) or extrapolated center of mass
(xCOM) (Hof et al., 2005) is another point on the ground that can be used to
quantify stability, and to directly guide foot placement. It is based on a highly
simplified model of gait, the linear inverted pendulum. By solving the differen-
tial equations of this model, the point on the ground can be found where the CoP
needs to be placed in order to make the system come to a full halt above it. For
a walker with leg length l walking at a speed v under the influence of gravity g,
the point is located at a distance of v/ω0, with eigenfrequency ω0 = √g/l,
in front of the CoM (Fig. 4.1.1). To achieve continuous walking, the leg can
be placed slightly behind of this point (in walking direction, i.e. closer), for
example, by constant offset control (Hof et al., 2005). Also for this strategy,
experimental evidence was found in humans (McAndrew Young et al., 2012).
However, healthy young subjects, healthy elderly subjects and elderly fallers
seem to exhibit different stability margins with respect to this point (Lugade et
al., 2011). The capture point and the concept of capturability also play an impor-
tant role in the context of push recovery, i.e., the recovery of large perturbations
(see below). It has also been used to generate stabilizing controllers for devices
that observe (Paiman et al., 2016) or assist human walking (Vallery et al., 2012;
Monaco et al., 2017).
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4.1.2.4 Virtual Pivot Point

The Virtual Pivot Point (VPP) (Maus et al., 2010) represents a hypothesis on
human balance control. It is based on the observation that many animals and
also approximately the human, direct the ground reaction force vector towards
a point above the body’s center of mass throughout the gait cycle (Fig. 4.1.1).
This way, the body mimics a physical pendulum, with the VPP as hinge joint.
As opposed to an inverted pendulum, a regular hanging pendulum is not inher-
ently unstable, and does not require active state feedback control throughout the
entire gait cycle. Experimental evidence for this hypothesis was found (Maus
et al., 2010), and models based on the VPP showed high coefficients of deter-
mination for predicted ground reaction force direction and whole-body angular
momentum (Maus et al., 2010). The point can be used to command hip control
torques to direct the ground reaction force vector. Later, the same group found
that the emergence of a virtual pivot point can also be explained by feedback
control of hip muscles (Sharbafi and Seyfarth, 2015). It has also been used to
observe human walking (Paiman et al., 2016).

4.1.2.5 Angular Momentum

Another quantity that is assumed to play an important role for the stability of a
walking motion is the total angular momentum about the center of mass, also
called the centroidal momentum. Since the orientation of humans and robots
during locomotion – as well as in any other upright form of movement – remains
more or less vertical and there is no continued rotation about any horizontal axis
as in somersaults, the average angular momentum about the frontal and sagittal
axis must be zero. The same is true for the longitudinal axis in straight walking
and running, but changes for curved walking and spinning motions and jumps.
In stability research, the variations of angular momentum during locomotion
are studied. As described by basic laws of physics, angular momentum changes
over the locomotion cycle under the action of external forces, typically ground
reaction forces. During aerial phases of running and jumping, the total angular
momentum remains constant.

The total angular momentum about the CoM is computed taking the contri-
butions of all segments of the body into account:

HC =
n∑

i=1

(ri ×miṙi)+
n∑

i=1

(�iωi), (4.1.4)

where �i is the inertia matrix of segment i with respect to its center of mass, and
mi its mass, ri the distance vector from the total CoM to the segment CoM, ṙi the
corresponding relative velocity, and ωi the angular velocity vector of segment i.
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The angular momentum during walking as well as the contributions of the
different segments have been investigated in Popovic et al. (2004), Herr and
Popovic (2008). The values of the total angular momentum remain quite small
throughout the cycle, but they are clearly not zero everywhere, which is some-
times assumed. In Heidelberg, we have obtained similar results for the angular
momentum of neutral and emotionally modified locomotion (Felis, 2015). For
example, the angular momentum about the frontal axis (i.e., for rotations in
the sagittal plane) oscillates up to 4 Nm/s which amounts to about 10% of the
angular momentum of a highly dynamic somersault motion in platform diving
(Koschorreck and Mombaur, 2011), so it is not negligible.

The fact that the angular momentum is not zero everywhere and that it ac-
tually changes is also in accordance with the observations on the virtual pivot
point above. The angular momentum change in the sagittal plane is generated
by the moment of the ground reaction force about the center of mass, which is
nonzero since the VPP lies above the CoM, resulting in a nonzero lever arm.
The direction of the moment changes since the ground contact occurs in front
of or behind the GCoM (see Fig. 4.1.1).

The absolute angular momentum and the change of angular momentum
about the different axes can also be used as objective functions in the generation
of optimal locomotion for human or robot models; compare with Subchap-
ter 4.2. The results we have obtained for human models in Heidelberg show
that it seems to be an important criterion in a multiobjective function to gener-
ate human-like walking (Felis and Mombaur, 2016) and that it is certainly not
the unique criterion of human walking (otherwise it would also be zero every-
where).

4.1.2.6 Zero Rate of Angular Momentum Point

Linked to the properties discussed in the previous paragraph, also a character-
istic point has been defined: The Zero Rate of Angular Momentum (ZRAM)
point is an indirect measure of the rate of change of angular momentum that
is currently being generated by the moment of the ground reaction force vec-
tor (Goswami and Kallem, 2004). It is located at the intersection of the ground
and a line that passes through the body’s center of mass and is parallel to the line
of action of the ground reaction force vector. Given that the moment of all exter-
nal forces about the center of mass of a mechanical system is equal to the rate of
change of angular momentum of this system about its center of mass (the cen-
troidal momentum), this point is an intuitive measure of how much the body’s
rotational movement is currently changing: The further away this point is lo-
cated from the actual center of pressure, the higher the moment that is generated,
and the more the body’s centroidal momentum will change. In order to maintain
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constant centroidal momentum, the walker needs to direct the ground reaction
force vector exactly towards its center of mass. Oscillations of the ZRAM are
expected, as they correspond to the changes in angular momentum discussed
above and relate to the self-stabilizing characteristics of the Virtual Pivot Point,
dictating that the ground reaction force vector does not pass exactly through the
center of mass.

4.1.3 STABILITY CRITERIA FOR LIMIT CYCLES

Another fundamentally different way to study stability is to look at the entire
motion or at least an entire walking step or double step at once and evaluate how
small perturbations would affect this particular motion. This approach follows
the mathematical stability theory of Lyapunov and has been frequently used in
robotics in the field of (passive-)dynamic walking. The stability measures and
limit cycle analyses discussed in this section do not provide direct guidelines for
control, but rather give hints for robot design, and they offer practically relevant,
global information on whether a walker is going to fall or not.

Passive-dynamic robots (see, e.g., McGeer, 1990, 1991, 1992; Coleman and
Ruina, 1998 and Subchapter 4.6 of this book) are purely mechanical walking
devices, typically with stiff or kneed legs, that have neither motors nor sensors
and control systems and walk down inclined slopes. Stability of their walk-
ing motions is based on their intelligent mechanical design which is capable
of executing limit cycles, i.e., self-stable periodic motions. There are also more
recent versions of dynamic walking robots with little actuation and little feed-
back (Collins et al., 2005) which are still based on the same dynamic principles.
Very often they have curved feet which are only in point or line contact with
the ground, so, e.g., the ZMP criteria discussed above would be of no help. The
same is true for dynamic human walking or running where very only small and
rapidly changing contact areas exist.

4.1.3.1 Definition of Stability and Orbital Stability in the Sense
of Lyapunov

According to Lyapunov, a solution of a nonautonomous (i.e., explicitly time-
dependent) nonlinear system1 is stable if small perturbations of the trajectory
result in perturbed trajectories that always stay in a finite neighborhood of the
original one, and it is asymptotically stable if additionally the perturbed so-
lutions converge to the unperturbed one for t →∞ (e.g., Cronin, 1994), see
Fig. 4.1.2 left. In the case of autonomous systems (i.e., systems with no explicit

1. Note that this mathematical concept of autonomy/nonautonomy is not equivalent of the use of
these terms in robotics and may seem counterintuitive from a robotics perspective.
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FIGURE 4.1.2 Definition of stability and asymptotic stability in the sense of Lyapunov (left) and
of orbital stability and orbital asymptotic stability (right).

time dependency) the notions of orbital stability and orbital asymptotic sta-
bility (see Fig. 4.1.2 right) become important which are similar to the previous
ones, with the exception that time shifts of the solution by the perturbation (also
called orbital shifts) may occur and persist or even grow, but are not considered,
i.e., only the distance between the orbits as a whole is important and not the dis-
tance of corresponding time points. The strictly passive-dynamic robots without
any actuation fall in this category.

4.1.3.2 Stability Analysis of Walking Using Lyapunov’s First
Method

The concept of Lyapunov stability can especially well be applied to periodic
motions, also called limit cycles, and is therefore very interesting for the study
of walking and running. In this case, the propagation of perturbations over one
walking cycle, typically one step, is considered. The study uses the Poincaré
map that maps the states at the beginning of this cycle to the states at the end
of this cycle. A periodic solution of the dynamic equations corresponds to a
fixed point of the Poincaré map (Fig. 4.1.3). For the investigation of stability
of a motion, the Jacobian of the Poincaré map, which in mathematics is called
monodromy matrix, transfer matrix or sensitivity matrix, is computed as

X(T )= dx(T )

dx(0)
, (4.1.5)
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FIGURE 4.1.3 Poincaré maps corresponding to nonautonomous systems with Poincaré sections
in regular time intervals (left) and to autonomous systems with state-dependent Poincaré sections
(right).

and contains the sensitivities – or first order derivatives – of the states at the end
of the cycle with respect to their initial values. Lyapunov’s first method (e.g.,
Cronin, 1994; Hsu and Meyer, 1968) states that a periodic solution with cycle
time T of a periodic nonautonomous system

ẋ(t)= f (t, x(t)) with f (t, ·)= f (t + T , ·) (4.1.6)

is asymptotically stable if all eigenvalues of the monodromy matrix satisfy

|λi(X(T ))|< 1. (4.1.7)

These eigenvalues are sometimes also called the Floquet multipliers in the field
of passive dynamic robots even though, strictly speaking, Floquet theory in
which Floquet multipliers are defined, addresses the problem of linear differ-
ential equations, while robots are described by nonlinear differential equations.
Lyapunov’s first method provides the extension of Floquet theory to nonlinear
systems by studying the variational system about a particular solution. If not
all state variables x are periodic, which, e.g., is the case if one variable de-
scribes the forward direction of walking, then the nonperiodic directions have
to be eliminated from the matrix by projection prior to applying this stability
criterion. In the original matrix this direction is associated with an eigenvalue
of 1, meaning simply that the same motion could be performed from an arbi-
trary starting point and that this shift would be conserved. Also in the case of
autonomous systems, such as passive dynamic walking systems, there is always
an invariant eigenvalue of 1, describing that perturbations along the orbit are
conserved, The system is orbitally asymptotically stable if eq. (4.1.7) holds for
all other eigenvalues. As shown in Mombaur et al. (2005a), the Lyapunov stabil-
ity criterion can be used not only for simple systems of type (4.1.6), but also for
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hybrid multiphase systems which are required to describe general walking and

running motions of humans and robots (see Subchapter 4.2). If there are phases

with fewer degrees of freedom, as it is often the case in walking models due to

additional foot contacts, there are two zero eigenvalues for the overall cycle cor-

responding to the constrained position and velocity of one degree of freedom.

This describes that the perturbations associated with this degree of freedom are

naturally damped out.

This criterion has been thoroughly investigated for passive dynamic robots

by several authors (Garcia et al., 1998; McGeer, 1990; Goswami et al., 1996;

Coleman, 1998; Hurmuzlu, 1993) to analyze the stability of a given motion and

the effect of parameter variations. The same criterion can also be used in the

optimal control context to generate the most stable systems by minimizing the

maximum eigenvalue (also called the spectral radius) of the monodromy matrix

for passive as well as actuated open-loop controlled systems. With this approach

it was possible to generate open-loop stable systems of different complexity

(Mombaur et al., 2005a, 2005b; Mombaur, 2009), also see Subchapter 4.2 of

this book.

Related to this criterion are formulations based on other norms of the

monodromy matrix. Examples for this are the spectral radius and the 1- and

∞-norms which are both upper bounds on the spectral radius (see the theorem

of Hirsch (e.g., Stoer and Bulirsch, 1990)) and therefore represent stricter mea-

sures of stability. Mombaur (2001) shows the application of these criteria to

walking and hopping motions.

4.1.3.3 Applicability of Limit Cycle Stability Concepts to
Feedback-Controlled Robots and Humans

The examples discussed so far in this section, to which the analytical concept

of Lyapunov stability has been applied, include passive dynamic walking robots

and other simple, essentially open-loop controlled robot configurations. How-

ever, it is possible to generalize this concept to a system with feedback control.

Lyapunov’s first method can be applied to any periodic solution of a nonlinear

system with a periodic right-hand side. This requires also including the equa-

tions of all feedback controllers into the system to be studied, in addition to

the mechanical equations previously treated. Thus it could, in principle, also be

used to generate closed-loop stable limit cycles for humanoid robots, e.g., by

means of optimization if a full description of the system with mechanics and

controllers in terms of differential equations is available. We are, however, not
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aware that this has already been tried. It should also be noted that the computa-
tional effort involved in analyzing and in particular in optimizing stability in the
sense of Lyapunov is very high for systems with many degrees of freedom (see
Mombaur, 2009).

Lyapunov stability can, in principle, also be pursued as a path to explain sta-
bility of human walking and running. The gait of some passive-dynamic robots
which are Lyapunov stable looks much more human-like than the one of most
complex humanoid robots. It is assumed that open-loop stability plays an im-
portant role in human walking and running robots. Obviously humans are not
entirely open-loop controlled as they also use important reflexes and higher-
level controllers for the control of walking and running. Therefore, in order to
be able to thoroughly apply Lyapunov analysis to explain stability in human
gaits, full models would be required, addressing the essential components of the
human neuro-musculo-skeletal system. In Mombaur (2009), open-loop stable
running motions have been generated for a multibody system model with hu-
man kinematic and dynamic properties driven by torques in the joints as a proof
of concept. The resulting motion was in fact not human-like since important
components for explaining human stability were missing. The first important
components to add in his context are muscle models, since it has been dis-
covered that for biological system the force generating mechanisms inside the
muscles, in particular the force–length relationship of the muscle contributes
to self-stability of the system, in addition to favorable dynamics (Blickhan et
al., 2007). In addition, all relevant feedback loops of the nervous system would
have to be added. Such a model is obviously not available, yet, and it will take a
significant amount of research to establish something close to this goal, requir-
ing combined efforts from very different research fields. Research on stability
of models with simplified control loops might also prove to be very interest-
ing.

There have also been attempts to experimentally measure stability in the
sense of Lyapunov for human walking, at first by Hurmuzlu and Basdogan
(1994). Poincaré sections have been identified by characteristic events such as
heel strike, heel off, or toe off. The data collected has been analyzed using a
simplified model just taking trunk angle and overall leg angles into account. No
active sensitivity computation or generation of perturbed trajectories is imple-
mented in these experimental conditions, but instead the natural variability of
the motion is used. The computed eigenvalues are also very much influenced by
measurement noise. Also there has been a lot of discussion about the relevance
of this analysis to evaluate the global or momentary risk of a person falling,
but no clear conclusion has been reached. Many experimental studies, however,
focus on more active perturbation studies; see below.
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4.1.4 ROBUSTNESS MEASURES OF WALKING

The concepts of Lyapunov stability and orbital stability discussed in the previous
section define stability of a motion with respect to small perturbations of the tra-
jectory. But how small is the small perturbation that a particular walking motion
can sustain? The values of the computational criteria, e.g., the absolute size of
the maximum eigenvalue, only describe how quickly the perturbation will decay
from one cycle to the next (in the particular norm defined by the eigenvalues).
It does not say anything about the absolute size of sustainable perturbations.
This important property is termed robustness of a solution, which defines the
stability margins of a solution. Quantifying robustness for walking motions of
humans and robots is a very difficult issue for several reasons. Walking systems
have multiple degrees of freedom, and perturbations may occur in any of these
position and velocity variables individually or in all possible combinations of
them, which results in a very high number of possibilities. Perturbations may
also be induced by the environment, e.g., the floor conditions, or there may be
perturbations in the actuation of the walking systems. Since these systems are
highly nonlinear and coupled, the full nonlinear dynamics have to be considered
(either in the model or the real world) to investigate how perturbations affect all
variables of the system over time. It is not a priori clear how long perturbed
motions should be observed to judge if the perturbed solution goes back to the
original one or not. A thorough test of robustness also checks the closeness to
constraints, e.g., the distance of the swing foot to the ground, which is not taken
care of in any of the stability criteria but which may lead to premature contact
of the foot and failure of the motion when a perturbation is applied.

Note that we are adopting here, in general, the engineering definition of the
term robustness by looking at absolute sizes of possible perturbations. In math-
ematics, the term robustness denotes first-order sensitivity information of the
quantity investigated, in the case of Lyapunov stability it would be the deriva-
tive of the maximum eigenvalue with respect to changes in the variables. This
mathematical type of robustness is, however, less relevant for practical imple-
mentations.

Due to the above mentioned difficulties, there is no straightforward way to
compute robustness of a walking motion numerically and in an objective way.
In this section, we present several approaches to quantify robustness applied in
the past.

4.1.4.1 Robustness Analysis via the Basin of Attraction

The Basin of Attraction offers a global perspective to analyze robustness of
limit-cycle walking (Schwab and Wisse, 2001): It represents the set of all ini-
tial conditions on the Poincaré section from which the system will converge to



152 PART | II Control

the fixed point(s). This results in a region surrounding the fixed point(s), and
any point outside this Basin of Attraction will eventually result in a fall. For
most practically relevant systems, this method requires numerical simulation of
walking movements starting with many initial conditions, to establish the basin
of attraction. Mostly, this is done in a grid-based fashion, for example, using cell
mapping of the Poincaré section. Evaluating the stride function of the walker for
initial conditions of a particular cell center yields a final condition that is either
contained within the same cell, or within another one. Cells pointing to them-
selves are called sink cells. By repeating this process, each cell can be associated
with a sequence of subsequent cells, ending either in a sink cell or in a repetitive
cycle. The cells that either end in a repetitive cycle or in a fixed point define
the basin of attraction. Sink cells can be unfeasible or represent a fixed point of
a limit cycle. Analyzing initial conditions within a small neighborhood of the
fixed point of a limit can be used to confirm if this limit cycle is stable. Ro-
bustness can be analyzed in terms of the size of the basin of attraction and the
distance of the fixed point from its boundaries.

A drawback of this method is that it requires substantial amounts of data,
usually obtained via model-based simulations. Therefore, it is not suitable to
analyze robustness of a physical system via experiments in the real world. How-
ever, it has extensively been used to study robustness of the simplest walking
model. For example, the Basin of Attraction of the simplest walker confirmed
the practical observation that the set of perturbed states from which it can safely
recover is very small (Schwab and Wisse, 2001). The same type of analysis
demonstrated that sufficiently fast swing leg control can always prevent the
walker from falling forward (Wisse et al., 2005).

4.1.4.2 Robustness Analysis via the Gait Sensitivity Norm

The Gait Sensitivity Norm has been developed (Hobbelen and Wisse, 2007) as
a more practical measure of robustness. This method quantifies the effect of a
set of disturbances e on a set of gait indicators g using the H2-norm, which
indicates how much energy amplification occurs in the system:

NGSN =
∥∥∥∥∂g∂e

∥∥∥∥
2
. (4.1.8)

Disturbances e can be chosen freely to include all those that are relevant to the
designer, ranging from impulsive disturbances to continuous ones. Also, the gait
parameters g can be tailored such that they quantify the quality of gait or are
directly related to failure modes. For example, floor irregularities can be chosen
as disturbance and step duration as gait parameter (Hobbelen and Wisse, 2007).
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Like for the basin of attraction, also this robustness measure requires the dy-
namic system response, obtained either from simulations or from practical ex-
periments. However, only a smaller, more targeted, and practically relevant set
of data is needed.

4.1.4.3 Robustness Analysis Based on Lyapunov’s Second
Method

More famous than Lyapunov’s first method, which is the basis for the limit cycle
analysis in Section 4.1.3.2 above, is the second method of Lyapunov (see, e.g.,
Cronin, 1994). This method does not rely on any linearization or first order
sensitivity information, but instead uses a so-called Lyapunov function V (t, x)

to determine if the solution x ≡ 0 of the nonlinear differential equation ẋ =
f (t, x(t)), i.e., 0= f (t,0) is stable.

The Lyapunov function V (t, x) which can be computed at all points along
the solution represents a generalization of the potential energy function. The po-
tential energy of a mechanical system (e.g., a pendulum) is minimal at a stable
equilibrium (the lowest point) and maximal at an unstable equilibrium (the high-
est point). A Lyapunov function is defined by the following properties: it is zero
at x = 0, is positive definite for x �= 0, and has a negative semidefinite derivative
with respect to time, V̇ . Of course, the Lyapunov function can be more com-
plex than the potential energy and it is a priori unclear what this function looks
like and if it exists at all. Lyapunov’s second method only states that IF such
a function exists, then the trivial solution 0= f (t,0) is stable. In detail, it dis-
tinguishes the cases of just negative semidefiniteness of V̇ (solution is stable),
negative definiteness (solution is asymptotically stable), and V̇ (x) ≤ −αV (x)
and V (x) ≥ b|x|β, (α,β, b > 0) (solution is exponentially stable). It can also
be applied to nontrivial solutions by subtracting the solution and looking at the
deviation from this solution.

So Lyapunov’s second method is a classical stability criterion and would
therefore fit in the stability sections of this chapter. However, it is very difficult
to apply this method for stability analysis or improvement in a practical system,
since it requires the construction of a suitable Lyapunov function for each of
these systems. So far, such functions have only been found for certain classes
of systems, e.g., the total energy is a Lyapunov function for Hamiltonian sys-
tems. This need for construction, however, makes it difficult to use Lyapunov’s
second method for an automated analysis of stability of motions or even for
optimization of stability.

Nevertheless, very promising approaches have been made using Lyapunov’s
second method for controller design and robustness analysis of the closed loop
system which is why we are mentioning the method here. Papachristodoulou
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and Prajna (2002) has proposed an approach to construct Lyapunov functions
based on sums of squares. It was also extended to systems with contacts and
discontinuities (Posa et al., 2013). So far, this method has been applied suc-
cessfully to develop controllers for given equilibrium solution (Majumdar et al.,
2013). Wieber (2002) has proposed a stability margin in the sense of Lyapunov
that computes the distance of all points of a given solution to the next nonvi-
able solution (i.e., a solution that leads to a fall) for a given controller, using the
Lyapunov function.

An extension of these approaches constructing Lyapunov functions using
sums of squares also to the generation of new stable solutions and the simulta-
neous development of suitable controllers might be very promising, but is also
a challenging task.

4.1.4.4 Pseudospectra for Robustness Analysis of the Matrix
Spectrum

One way to investigate part of the robustness of the stability analysis based on
Lyapunov’s first method uses so-called pseudospectra of the monodromy matrix.
This robustness analysis studies how the spectral radius changes with changes in
the matrix entries which in turn are caused by perturbations in the independent
variables. A pseudospectrum of a matrix is a tool that helps asses the first part
of this dependency, namely the absolute changes of the spectrum produced by
changes in the matrix: Pseudospectra of a matrix can be defined in terms of the
spectra of all nearby matrices which result from given maximum perturbations:

�ε(C)= {z ∈C : z ∈�(C +E) for some E with ‖E‖< ε} (4.1.9)

where � denotes the spectrum of a matrix. An overview of the theory of pseu-
dospectra, including equivalent definitions and useful tools, is given in Trefethen
and Embree (2005). In Fig. 4.1.4, we give an example of a pseudospectrum of
an open-loop stable solution for the flic flac robot, taken from Mombaur (2006)
and also presented in Subchapter 4.2. In the example, the monodromy matrix is
of dimension 10 and hence has 10 eigenvalues, two of which are zero due to a
loss of degrees of freedom in positions and velocity in the contact phase, and
one turns out to be quite small for this particular solution. The 8 nonzero eigen-
values are real. All eigenvalues of the original matrix are shown as black dots in
the figure, and they clearly lie within the unit circle. The colored lines show, for
different values of ε, the boundaries of the regions in which the corresponding
eigenvalues of the perturbed matrices will be situated.

Since the monodromy matrix is a nonsymmetric matrix which has no orthog-
onal basis of eigenvectors and may exhibit bad transients or high sensitivity of
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FIGURE 4.1.4 An example pseudospectrum analysis of the monodromy matrix related to an open-
loop stable periodic solution for a bipedal gait, computed with Eigtool (Trefethen and Embree,
2005). The stable region is inside the unit circle (in gray).

eigenvalues with respect to the matrix entries, the pseudospectra provide a first
and very useful hint on the relevance of the computed spectral radius for the
stability of a practical solution. However, it does not, obviously, contain any in-
formation about the sensitivity of the matrix entries with respect to perturbations
of the free variables, so it cannot be considered as a full robustness criterion.

4.1.5 RECOVERY FROM LARGE PERTURBATIONS AND
PUSHES

The criteria and concepts treated in the previous sections concern the stabil-
ity and robustness of locomotion, when investigating under which conditions
a planned motion might still be executed in a stable way. Another important
question in the context of walking is how a human or a robot reacts to large
perturbations which require a significant change in strategy in order to avoid
falling. In this case, the original motion plan is replaced by some recovery strat-
egy which may be, e.g., a stopping motion to come to a full rest or a significantly
modified walking motion. So in contrast to the previous question, a fundamental
change of the motion or even the type of motion is perfectly acceptable as long
as the human or robot is not falling.

Once a bipedal system is pushed with a significant impulse, the gait patterns
are considerably disturbed. Humans and also many controllers for humanoids
change their behavior and exhibit dedicated recovery strategies in this situation,
instead of relying only on intrinsic self-stabilization of their nominal gait.
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During standing, different types of strategies have been found in humans,
depending on the strength of the perturbation. The first mechanism consists in
mechanical viscoelastic properties of tendons and joints (Rietdyk et al., 1999).
These properties depend on the muscles’ activation levels, so stiffness can be in-
creased via anticipatory co-contraction. However, these torques are not the result
of active contraction in response to the perturbation (Rietdyk et al., 1999). Only
later in time, due to neural delays, active contraction can move the CoP by means
of ankle torques (Sardain and Bessonnet, 2004), also called the “ankle strategy”.
Slightly larger perturbations are countered by the “hip strategy”, which moves
the upper body in the opposite direction with respect to the lower body, chang-
ing the body’s angular momentum. Ankle and hip strategies are dominant during
stance, and only for larger perturbations humans step out (Kuo and Zajac, 1993;
Horak, 1987). A full model of physiological balance control during stance has
also been successfully implemented on a robotic platform (Mergner, 2007). In
many studies, arm movements are ignored; however, for dynamic motions they
are very important. Kuindersma et al. (2014) showed how rapid arm movements
can be used for push recovery while standing.

During walking, foot placement dominates recovery behavior in humans
(Hof, 2008; Townsend, 1985). Recovery actions by the arms also seem to play
a role to counter perturbations during gait: Even though arm swing may not aid
local stability, it was found that dedicated recovery actions of the arms increase
robustness to perturbations (Bruijn et al., 2010). This also indicates that there
might be a switch in strategy between normal gait and push recovery. Ferber
et al. (2002) and Tang et al. (1998) studied which muscles are most relevant to
sustain large perturbations. Pijnappels et al. (2005) investigated how important
early reactions of the stance leg are for a successful recovery after tripping.

To investigate recovery mechanisms in humans, diverse experimental
setups have been devised, particularly treadmills that can apply perturba-
tions (Engelhart et al., 2012). Also cable systems with winches (Pidcoe and
Rogers, 1998; Mergner et al., 2003; Fritschi et al., 2014) or weights (Mouchnino
et al., 2012) have been used to apply perturbations to the upper body during
standing and gait. In the future, also wearable perturbation devices would be
possible to manipulate angular momentum of the human body (Li and Vallery,
2012; Lemus et al., 2017 Chiu and Goswami, 2014). In the KoroiBot project
(Mombaur, 2013–2016), we have also performed various human push recov-
ery experiments while standing and while walking (see, e.g., Kaul et al., 2015;
Schemschat et al., 2016a) which are all included in the KoroiBot Motion Cap-
ture Database (2016). Different pushing devices have been developed and used
to apply variable external pushes, including pushing sticks equipped with sen-
sors to measure the size and direction of the pushing forces applied. The goal of
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this study was to understand how humans recover from large perturbations and
then transfer this knowledge to humanoid robots.

To analyze robustness to pushes, most of the above measures cannot be
applied. For example, all limit cycle related analyses specifically consider the
return to this particular motion and cannot handle the concept of alternative re-
covery motions. The concept of the gait sensitivity norm can be applied to push
recovery as an approach to determine critical push directions. Dedicated analy-
sis tools that consider the theoretical ability of a biped to avoid falling from any
arbitrary initial condition (in particular, after large pushes) are still rare. This is
explicable because this would in fact be a question of formal verification, which
can involve huge computational efforts for higher-dimensional, nonlinear, and
hybrid systems (Althoff and Krogh, 2014).

For a linear inverted pendulum model, a particular type of reachability anal-
ysis has been suggested, namely the above introduced capture point concept
has been extended to the principle of “capturability” (Koolen et al., 2012). The
so-called “capture region” is the reachable set of possible next footholds such
that a walker can come to a full stop in a given number n or fewer future steps.
The principle was defined in Koolen et al. (2012) as “the ability of a system
to come to a stop without falling by taking n or fewer steps, given its dynam-
ics and actuation limits.” According to this definition, the 0-step capture region
equals the walker’s current support polygon, whereby the instantaneous capture
point (ICP) has to be contained within it, and it has to be possible for the Center
of Pressure to be placed upon it instantaneously. Next, 1-step capturability re-
quires the existence of a step position within the reachable area (considering a
constraint of maximum step length lmax ), such that the system becomes 0-step
capturable then. Similarly, for n-step capturability, a foothold must exist such
that the system becomes (n− 1)-step capturable.

In contrast to the simple model underlying the capture point concept, we
have investigated the use of whole-body models and optimal control to generate
reactions to push recovery while walking. On the one hand, dynamic models
of humans are fitted to experimental human data in the least squares sense to
further analyze the dynamics underlying push recovery during walking mo-
tions (Schemschat et al., 2016a). On the other hand, optimization is used for
movement synthesis of push recovery, in this case based on a human model and
minimizing the deviation from the original walking cycle as well as the effi-
ciency of the motion (Schemschat et al., 2016b). The optimization criteria could
be adjusted to the particular situation or demand, putting more emphasis on the
continuation of the previous motion or on efficiency, or on any other criterion
added. This optimization approach can also be applied to humanoid robots based
on the respective whole-body models. This would require special techniques to
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solve such big optimal control problems for humanoid models online, e.g., as
suggested in Clever et al. (2017).

Well-known robotics approaches to recover from pushes include the reactive
stepping method by Morisawa et al. (2009) to generate the position of the CoM
and the ZMP as well as the placement of the foot after a perturbation. Wieber
(2006) showed how model predictive control (MPC) can be used to generate a
recovery step online to counteract perturbations. Stephens and Atkeson (2010)
used MPC for step recovery control with force-controlled joints. A hierarchical
push recovery strategy using reinforcement learning was proposed (Yi et al.,
2011). A momentum-based reactive stepping controller was developed in Yun
and Goswami (2011). A new optimization-based approach for push recovery in
case of multiple noncoplanar contacts was introduced in Mansour et al. (2011).

The most impressive experiments on push recovery for humanoid robots
while walking have been achieved by Boston Dynamics with their robots Pet-
man (Nelson et al., 2012) and Atlas. Both robots are powered by hydraulics,
are extremely strong and can counteract very large perturbations during walk-
ing applied by external pushes or strong perturbations of the environment. This
has been demonstrated in various YouTube videos as well as during the DARPA
challenge. Unfortunately, for confidentiality reasons, the rare publications on
these robots only give sparse technical information about the control strategy.
Some work by other authors on making the Atlas walk on rough terrain has
been published e.g. in Feng et al. (2013).

4.1.6 DISCUSSION & OUTLOOK

In this chapter, we have discussed different possibilities to study stability, ro-
bustness, and the ability to recover from large perturbations that can be used to
study gaits in robotics and biomechanics.

Even though this is a crucial topic for robot locomotion as well as for physio-
logical and pathological human locomotion, no uniquely accepted and generally
applicable criteria for stability and robustness exist. As we have shown, many
approaches have been developed and many criteria have been formulated, but
none of them can so far fully explain the stability of truly dynamic human loco-
motion. As a consequence, there is also no control approach yet that can make
a humanoid robot walk like a human, or control a prosthesis or orthosis in the
way a human would control the respective limb. Some of the criteria and the
corresponding control concepts are too conservative to result in truly human-
like movement and other criteria require model information that does not exist,
yet. The development of good and reliable stability and robustness measures for
fast dynamic locomotion will be an important research topic for the next years.
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Once such general criteria for stability and robustness are established, they
also have to be included in the motion generation and motion optimization
process, typically combining them with the other motion performance related
criteria.

For better stability and robustness, it will also be important to better link the
design and control process of robots and of technical devices. Inspired by the
work in passive dynamic walking robots, the mechanics and inherent stability of
typical motions to be executed should already be taken into account in the design
phase. Self-stabilizing mechanical elements might also be used on humanoid
robots. With the shift to more compliance in robots, also the self-stabilizing
properties of springs could be exploited. Such efforts could be supported by
simple parameter studies, but also by extensive model-based simulations and
optimization to evaluate all choices.

Capture point approaches have been used with success to solve different
push recovery tasks in robotics. It has to be investigated in the future how pow-
erful and generalizable the capturability concept is and in which situations the
discussed whole-body approaches might be useful for push recovery.

One of the topics which has not been discussed in this chapter is the role of
variability in the context of walking stability and robustness. In human move-
ment, there always is some variability from step to step, and the assumption of a
perfect limit cycle as it was used for some of the criteria does, of course, not hold
precisely. However, for healthy adult gait, steady-state walking is typically very
close to a limit cycle. There have been many investigations trying to relate the
variability of a walking motion but so far no uniform picture appeared. While in
elderly people there is a high variability and also a higher risk of falling, there
are many children who also walk in a variable way, yet are very stable at the
same time. It also should be noted that in general one tries to link variability to
the general walking performance and the global risk of falling, and not to the
imminent risk of falling. So it seems that variability is not useful as a basis for
controller decisions.
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Chapter 4.2

Optimization as Guiding Principle of
Locomotion
Katja Mombaur
Optimization, Robotics & Biomechanics, ZITI, IWR, Heidelberg University, Heidelberg, Germany

Abstract. It is a common assumption that optimization is a guiding principle of
human and animal movements, also including locomotion in many situations.
Reasons for this can be found in the evolution of the human body and its gait
in general, as well as in the lifelong learning and training process of every in-
dividual. In this subchapter, we discuss how this principle can be exploited to
use optimal control approaches for the analysis and generation of walking and
running motions of humans and robots. We give different examples for dynamic
multibody system models of the locomotor systems which represent an impor-
tant basis for these studies. We present the formulation and numerical solution
of optimal control problems for locomotion generation for selected objective
functions. Results of optimal control problems for human and robot locomotion
are presented. In addition, we are interested in the inverse problem, i.e., the
identification of the optimality criterion underlying a recorded motion, which
is called the inverse optimal control problem. The formulation and numerical
solution of these problems for locomotion examples are discussed, and example
results of inverse optimal control for human locomotion based on whole-body
models are shown. We also discuss some current research questions related to
the optimization of locomotion.

4.2.1 INTRODUCTION

Nature optimizes in many ways. A fundamental reason behind this can be
found in the principles of evolution based on selection and survival of the fittest
(Darwin, 1859; Rosen, 1967). Popular examples for optimality in nature are op-
timal or close to optimal structures such as honeycombs (minimizing material
for mesh generation in given volume), optimal materials or material surfaces
such as shark skin (minimizing drag (Ng and Luo, 2016)) which are studied
in the field of bionics to develop technical devices and materials copying biol-
ogy. Also many behaviors of humans and animals are optimal or nearly optimal.
This also includes many types of motions which are assumed to be optimal due
to epigenesis and phylogenesis with the optimization criterion being adapted
to the particular situation. Optimization effects can be found in the mechanical
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properties of the locomotion systems (Alexander, 1984, 1996), but also in the
closed-loop sensory motor system (Todorov, 2004). In this article we want to
discuss how optimization serves as a guiding principle of biological locomotion
with a special focus on bipedal locomotion of humans and humanoids or other
bipedal robots. We also discuss how – as a logical consequence – mathematical
optimization and optimal control techniques can be used in the study of bipedal
locomotion.

Humans and other anthropomorphic systems have many degrees of freedom
(DOF) and are highly redundant, i.e., a given motion task, e.g., performing a
step of a given length, can be executed in an infinite number of ways, involv-
ing different combinations of motions of the individual joints. Redundancy is
an advantage if one way of performing a movement is not possible due to some
external constraint and another one can be chosen. But it is complex to ex-
plain which of the many redundant ways is preferred by the human body or
should be selected for a robot. How is the natural way of performing a motion
distinguished from unnatural ones? What is the most efficient, the fastest, the
smoothest way a movement can be executed? These are only some of the ques-
tions to which optimization can give an answer.

In addition, anthropomorphic and other biological or bio-inspired motions
are underactuated in the general case. This means that not all DOF are directly
actuated – usually only the internal DOF (or most of them), but not the overall
position and orientation of the body in space. This one only results indirectly
from the combination of the internal joint’s actions and the interaction of the
body with the environment (in the case of locomotion essentially the contact of
the feet with the floor). The question arising in this context is how the actuated
DOF must be controlled in order to make the entire system move in a desired
way. This is also a problem that can be answered by optimal control. An opti-
mal control problem in mathematics is an optimization problem for a dynamic
process, i.e., a process described by a differential equation. The term control
here does not necessarily refer to feedback control; the process dynamics can
describe either an open-loop or a closed-loop system.

Optimal control approaches have been used by researchers from differ-
ent fields to study locomotion. Human movement studies to generate optimal
walking and running have been performed in Ackermann and van den Bogert
(2010), Schultz and Mombaur (2010), Felis and Mombaur (2016), Geyer and
Herr (2010) with a focus on biomechanics. In computer animation, optimiza-
tion based approaches serve the goal to generate realistically looking motions
for human shapes and fantasy anthropomorphic characters (Geijtenbeek et al.,
2013; Wang et al., 2012; Sok et al., 2007; Tassa et al., 2012) where not all physi-
cal constraints have to be satisfied. More precision is required in robotics, where
optimal control is also used to generate walking motions for specific humanoid
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robots (Buschmann et al., 2007; Atkeson and Liu, 2013; Lengagne et al., 2011;
Miossec et al., 2006; Suleiman et al., 2007; Koch et al., 2012a, 2012b, 2014). In
all these cases, the dynamic model description as well as the objective function
formulation have been established a priori and the problems have been solved
by means of forward optimal control.

However, the inverse problem is also very interesting in biomechanics and
all fields that are concerned with understanding human or other biological be-
havior: Given a specific human movement for which motion capture data has
been recorded and a defined model used for its description, which is the un-
derlying objective function that gives rise to this movement? This is called an
inverse optimal control problem. For some types of motions, e.g., in sports, this
question is easy to answer since the objective function corresponds to the volun-
tary goal of the human subjects, like maximizing running speed or jump height.
However, for many other types of motion, this optimization takes place uncon-
sciously and is guided to some extent by the mechanics of the body, and here
the question is far from trivial. Inverse optimal control problems are challeng-
ing since they require the solution of an identification problem inside an optimal
control problem. They are related to some of the problems solved in reinforce-
ment learning, since the inverse optimal control essentially learns the objective
function.

This chapter is organized as follows. Since whole-body models describing
the forward and inverse dynamics of locomotion form an important basis for this
research on optimal control, these models are described in Section 4.2.2, high-
lighting the hybrid nature of locomotion with multiple phases and discontinuous
impacts. In Section 4.2.3, we describe the formulation of bipedal gait generation
as an optimal control problem and its numerical solution. Section 4.2.4 summa-
rizes some results for optimal control of walking and running for robot and
human models. In Section 4.2.5, we present the inverse optimal control problem
looking at mathematical formulation and solution approaches. Section 4.2.6 dis-
cusses special considerations one has to take when formulating a inverse optimal
control problems for specific motion problems, as well some applications to hu-
man locomotion. In Section 4.2.7, we give a final discussion and outlook for
future research.

4.2.2 FORWARD AND INVERSE DYNAMICS MODELS OF
LOCOMOTION

In this section, we present different dynamic whole-body models of locomotion.
As all models, the whole-body models discussed in this sections are obviously
simplifications of the real world. However, the goal is to establish models that
are as precise as possible while still allowing for acceptable computation times.
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FIGURE 4.2.1 Whole-body dynamic models of human and robot locomotion which include real-
istic description of the dynamic behavior of the systems: models of human walking in (A) 3D and
(B) 2D (Felis et al., 2015; Felis, 2015) and of human running in (C) 3D and (D) 2D (Schultz and
Mombaur, 2010), as well as models of walking humanoid robots, such as HeiCub, a variant of iCub
(E), (F) HRP-2 (Koch, 2015), and (G) Leo (Schuitema et al., 2010), and models of (H) a two-legged
open-loop stable simulated robot (Mombaur et al., 2005c) and (I) of the Tinkertoy robot (Mombaur,
2001; Coleman et al., 2001).

In contrast to template models, discussed in Subchapter 4.5 of this book, whole-
body dynamic models aim to capture the dynamics of the essential segments
and DOF of the system, i.e., the human or the robot, that are relevant for the
motion considered. In the case of whole-body models of humans, e.g., this does
not mean that all bony segments and all of the more than 200 DOF have to be
considered, or that each bone has to be modeled separately. If walking motions
are studied then it is usually not required to model the DOF of the fingers or
all motion possibilities of the spine. For human locomotion, whole body models
of around 12–14 segments with 35–40 DOF in 3D or 9–15 DOF in the sagittal
plane seem suitable.

Fig. 4.2.1 shows different examples of whole-body dynamic models for sys-
tems of different origin and complexity. In the first row, whole-body models for
running and walking in 3D and 2D are shown. The second row contains pic-
tures of dynamic models of current humanoid robots, as well as models of other
bipedal robots.

One important feature of bipedal walking and running motions is that they
consist of several phases of motions, each of which is characterized by different
types of contacts of the human/robot with the environment. Generally speak-
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FIGURE 4.2.2 Phase orders for biological and robotics walking and running motions (TD =
touchdown, LO = liftoff).

ing, running motions consist of alternating single foot contact phases and flight
phases, and walking consists of alternating single and double support phases.
Depending on in how much detail foot contact is described, we may also iden-
tify subphases of a foot contact considering if the heel, toes, or entire sole, etc.,
are in contact with the ground. Fig. 4.2.2 shows the phase orders for human
and robotic walking and human running. For four-legged systems, the number
of possible combinations of foot contacts, and therefore the number of different
phases, is even higher than for bipeds. For humans and humanoids, there may be
additional contacts between the hands and the environment, e.g., when climbing
stairs using a handrail. In any case, the different contacts change the dynamics of
the system, such that each phase is described by its own set of differential equa-
tions. In addition, there may be discontinuities between phases when a contact
occurs instantaneously by fully inelastic impact, and velocities are subject to
quite instantaneous changes. We have discovered in previous research that mod-
eling an impact as fully inelastic gives a quite good approximation of reality
if humans and robots walk on normal ground and with standard feet and soles.
Only for very soft terrains like mattresses or trampolines or when walking on
very flexible soles a compliant modeling of the ground gets more realistic. The
dynamic models of these multibody systems have to correctly describe these
hybrid dynamics properties. In the following paragraph, we will describe the
general form of such models.

For the description of walking systems, different choices of coordinates are
possible. A typical choice of coordinates for a biological walking system is to
use the position and orientation of the base body (often the pelvis), and addi-
tionally all internal DOF at the joints. To describe the different phases, the same
or different sets of coordinates can be used. We usually stick to the same set of
coordinates for all phases.
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If minimal coordinates q are chosen for a phase, i.e., the number of coordi-
nates is equal to the number of DOF of the system in this phase (which would
apply to the flight phase in running for the coordinate choice described above),
the motion is described by a set of ordinary differential equations of the follow-
ing form:

M(q,p)q̈ +N(q, q̇,p)q̇ = F(q, q̇,p,M), (4.2.1)

Here M is the mass or inertia matrix, N the vector of nonlinear effects, and
F the vector of all external forces (including gravity, joint torques M, drag,
etc.). F may also include the action of passive elements, e.g., of spring–damper
elements which may be linear (with diagonal stiffness and damping matrices K
and D and rest length vector q0),

Fkd =K(q − q0)−Dq̇, (4.2.2)

or generally nonlinear.
For a redundant choice of coordinates q , i.e., when the dimension of q is

larger that the number of DOF, the coupling can be described by a constraint
of the form g(q) = 0 and a corresponding constraint force in the differential
equation. For the coordinate choice above, this applies to all phases with some
foot–ground contact where different types of contacts apply to different sets of
constraints. This results in a system of differential algebraic equations (DAE)
of index 3 for the equations of motion and can be transformed into a DAE of
index 1 by index reduction:

q̇ = v, (4.2.3)

v̇ = a, (4.2.4)(
M(q,p) G(q,p)T

G(q,p) 0

)(
a

λ

)
=
(
−N(q, v)+ F(q, v,p,M)

γ (q, v,p)

)
, (4.2.5)

with acceleration a = q̈ and Lagrange multipliers λ. The matrix G is the Jaco-
bian of the position constraints G= (∂g/∂q), and γ the corresponding Hessian
matrix γ = − ((∂G/∂q) q̇) q̇ . The Lagrange multipliers are equivalent to the
negative of the contact forces resulting from the corresponding constraints. The
fact that ground contact during walking and running is unilateral, i.e., the ground
can only push against the foot, and not pull, can be taken into account by formu-
lating an appropriate constraint on λ. In addition, it must be guaranteed that the
original position and velocity constraints of the system are still satisfied. This is
achieved by respecting the two invariant equations:
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FIGURE 4.2.3 Forward and inverse dynamics use of the same whole-body model.

gpos = g(q(t),p)= 0, (4.2.6)

gvel =G(q(t),p) · q̇(t)= 0. (4.2.7)

It should be noted that these same equations can be used to solve the forward
dynamics or the inverse dynamics problem as shown in Fig. 4.2.3. The task of
forward dynamics is to compute the resulting acceleration of the system, given
a specific vector of external forces, and at a state (i.e., position and velocity) of
the system. The inverse dynamics task does the opposite: it computes, for a spe-
cific acceleration (again at a given position and velocity), the external forces that
are required to produce these accelerations. The equations are the same in both
cases, just the set of known and unknown variables changes. In Section 4.2.3,
we will discuss how optimal control can be used if none of the two sets of vari-
ables is known a priori. For this approach, both forward and inverse dynamics
formulations can be applied.

For walking and running, changes between the different motion phases de-
scribed above usually do not happen at predefined time points, but depend on the
states of the system. For example, touchdown with a particular foot takes place
when the lowest point of this foot gets as low as the ground. Liftoff, on the other
hand, occurs when the vertical contact force (and thus also the corresponding
Lagrange multiplier in Eq. (4.2.5)) becomes zero. This can be described by the
zero of the following so-called switching function:

s(q(τs), v(τs),p)= 0. (4.2.8)
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The velocity discontinuities caused by inelastic impacts can be computed as(
M(q,p) G(q,p)T

G(q,p) 0

)(
v+
�

)
=
(
M(q)v−

0

)
, (4.2.9)

where v+ are the unknown velocities after impact and v− are the corresponding
velocities immediately before impact. Matrices M and G are the same as in
Eq. (4.2.5). Note that for the choice of compliant impacts there would be no
discontinuities in the velocities but only in the right-hand side of the system
since the floor contact would be modeled by an external spring–damper force.
There would also be no loss in DOF due to the contact, as it occurs in the fully
inelastic contact case.

For modeling a specific walking system, the above equations of motions, im-
pact equations and switching functions have to be established. For very simple
systems, such as (H) and (I) in Fig. 4.2.1 as well as for template models, it is still
possible to set up these equations by hand, for systems like (G) this gets already
very challenging, and for systems (A)–(F) it is practically impossible. Instead,
dynamic modeling tools can be used to set up the model of the multibody sys-
tem. It is not necessary to provide symbolic equations of motion, but functions
that either establish the different parts of the equations of motions, e.g., mass
matrix M , constraint Jacobian G, etc., or functions that directly give an answer
to the forward dynamics or the inverse dynamics problem for a given input.

The automatic model generator of HuMAnS by Wieber et al. (2006) uses
Maple to generate explicit code to compute the entries of matrices M and G,
vector N and γ . In our group, we have developed two different modeling tools
which both are, in principle, suited to model general multibody systems, but
in our case mainly serve the primary purpose of generating whole-body human
and humanoid models. The Rigid Body Dynamics Library (RBDL) (Felis et al.,
2015, 2016) is based on an order n recursive algorithm by Featherstone (2007).
The other tool, Dynamod, Koch (2015) is based on explicit code generation in
a similar way as HuMAnS. The examples shown in Fig. 4.2.1 (A), (B) and (E)
were generated using RBDL; (C) and (D) using RBDL; and (F) using DynaMod.
On top of the RBDL code, we also established the human metamodel HeiMan
3D (Felis et al., 2015; Felis, 2015) which has been used, e.g., to set up the 3D
human walking models (A) and (B) in Fig. 4.2.1.

Once the specific equations of motion for a given system have been estab-
lished, another important step is the determination of the correct model param-
eters for geometry and inertia. For human models, one possibility is the use of
tabular anthropometric data, e.g., from de Leva (1996) or Winter (2004), which
only uses the subject’s total height and mass and then uses regression formula to
compute the specific segment data. In Ho Hoang and Mombaur (2015), we have
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proposed an adjustment of this data to take into account specific characteristics
of the elderly generation. If a precise match between dynamic model and real
human data or good prediction quality is to be achieved, the parameters have to
be adjusted to the individual properties of the subject in a better way. In Felis et
al. (2015) we have described an approach to establish subject specific dynamic
human models based on kinematic measurements. A more precise and sophisti-
cated approach to generate subject-specific geometric and inertial data based on
MRI images has also been developed in our group by Sreenivasa et al. (2016).
For robot models, the geometric and inertial parameters of the segments are usu-
ally known from the robot design process. In addition, there may by dynamic
parameters linked to friction and damping in the robot as well as compliance in
the joints (see above) or in external contacts.

The equations above, which describe the dynamics of the multibody system,
i.e., the relationship between motion and forces/torques, can be extended by
additional models describing the generation of forces/torques or the different
feedback loops of the walking system. With respect to the first, muscle models
could be integrated in the case of human walking models describing the link
between muscle activation or excitation and muscle force. In this case, each
torque would have to be replaced by the action of at least two muscles – agonist
and antagonist – in many cases more, so the number of controls of the system
would be at least doubled. The complexity of the evaluation of the right-hand
side of the multibody system equations would be significantly increased. If also
activation dynamics are included for each muscle, the number of state variables
would grow by the number of controls. In the case of robot walking, models of
the motors or other actuators could be considered, which would also add another
differential equation per motor. However, this is not the subject of this chapter
and is instead discussed in other chapters of this book.

Legged locomotion is often a periodic or quasiperiodic form of motion. It
is therefore often desirable to formulate periodicity constraints to the model on
all velocity variables v and a reduced set of position variables qred , only elimi-
nating the coordinate describing the person’s or the robot’s direction of motion.
Usually, these gaits are also symmetric with identical left and right steps, such
that the periodicity constraints are not applied over the full cycle of two steps
(i.e., a full stride), but over one step, including the formulation of a shift of sides
in the model. In the examples for locomotion presented in Section 4.2.4, we will
also look at more unusual kind of locomotion including somersaulting and flip-
flopping which includes rotations about the medio-lateral axis (which will be
taken into account in the formulation of the periodicity constraints by applying
an appropriate delta to the respective angle).
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4.2.3 FORMULATING LEGGED LOCOMOTION AS OPTIMAL
CONTROL PROBLEM

The generation of legged locomotion can be formulated as an optimization prob-
lem based on the dynamic models of the motions described in the previous
section. There are two reasons for this, the first one caused by biological inspi-
ration, the second one by considerations of practical solvability of the problem.

1. As described in the introduction, optimality is a guiding principle of nature,
and movements which are performed frequently or trained in the context
of sports tend to be optimal with respect to some optimality criterion. It is
therefore logical to use mathematical optimization in the study of movement
in order to mimic this biological optimization process. Criteria to be opti-
mized in the motion generation process can be biologically inspired in the
case of humans, and biologically but also technically motivated in the case
of robots.

2. From a practical perspective, optimization helps to solve the feasibility issue
and the redundancy issue of walking at the same. time. As outlined above,
if locomotion (or any other type of motion) is to be generated by means of
simulation, either all torque/force histories would have to be fully known
for the forward dynamics problem or all acceleration histories would have
to be known for the inverse dynamics problem. However, in practice, often
none of them is known in advance, and due to the complexity of the prob-
lem pure trial and error usually leads to infeasible motions. Optimization can
help solve this feasibility problem by computing motions and joint torques,
etc., that satisfy all the different equality and inequality constraints imposed
on the system and the motion task, i.e., result in a feasible motion. In addi-
tion, optimization solves the redundancy problem, i.e., it determines out of
the many – sometimes infinite number of – ways to perform a given motion
task, the one that is optimal with respect to the chosen optimization crite-
rion.

In mathematical terms, the task of solving an optimization problem for a dy-
namic process model of the form described in Section 4.2.2 is called an optimal
control problem. This is not a control problem in the sense of feedback control,
but the task is to simultaneously optimize trajectories and inputs (open-loop
control variables) which are all unknown functions in time. To be more precise,
due to the hybrid dynamics nature of the locomotion models discussed above,
we are facing a multiphase optimal control problem with discontinuities. We
assume here that we know the order of phases in the case locomotion (which
is usually true for a given gait), but that the durations of all these phases are
unknown. This can be formulated as follows:
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min
x(·),u(·),p,τ

nph∑
j=1

(∫ τj

τj−1

φj (x(t), u(t),p) dt + �j(τj , x(τj ),p)

)
(4.2.10)

s. t. ẋ(t)= fj (t, x(t), u(t),p) for t ∈ [τj−1, τj ],
j = 1, . . . , nph, τ0 = 0, τnph = T , (4.2.11)

x(τ+j )= x(τ−j )+ J (τ−j , x(τ
−
j ),p) for j = 1, . . . , nph,

(4.2.12)

gj (t, x(t), u(t),p)≥ 0 for t ∈ [τj−1, τj ], (4.2.13)

req(x(0), . . . , x(T ),p)= 0, (4.2.14)

rineq(x(0), . . . , x(T ),p)≥ 0. (4.2.15)

In these equations, x(t) is the vector of state variables (including positions q

and velocities v of Section 4.2.2), and u(t) is the vector of control variables
of the system (which in the cases discussed here are the joint torques). Note
that we are using the dynamic equations in the forward sense with torques as
input, but as outlined above this does not mean that torques have to be known,
since controls and states are determined simultaneously by the optimal control
problem. It would also be possible to formulate the optimal control problem
based on inverse dynamics, but in this case another choice of control variables
would be made (e.g., equivalent to accelerations u= q̈). p is the vector of free
model parameters. τ is the vector of phase switching times, with the overall time
of the motion being T = τnph .

Eqs. (4.2.11) and (4.2.12) are place-holders for the hybrid system dynam-
ics with continuous and discrete motion phases of Section 4.2.2. Here, we use
ODEs for simplicity of presentation; but as shown above, we usually face DAE
models for most or part of the phases. With respect to constraints, special care
must be taken to formulate all relevant constraints, but not more than necessary
since it is favorable to use all available freedom in the system to truly optimize
the motion. Eq. (4.2.13) describes all continuous inequality constraints, such as
simple lower and upper bounds on all variables as well as more complex rela-
tions between several variables. In addition, there are coupled and decoupled
pointwise equality (4.2.14) and inequality constraints (4.2.15), e.g., start and
end point constraints on the states, phase switching conditions, or periodicity
constraints.

For the formulation of the objective function (4.2.10), we can distinguish two
different types of terms: Lagrange-type objective functions (first term) take the
form of an integral, while Mayer-type objective functions �j (second term) only
depend on values at the end of the respective phase. Typical Mayer-type objec-
tive functions are minimum phase times, minimum total maneuver time, or max-
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imum distance traveled. Typical examples of Lagrange-type objective functions
include different types of energy or effort minimization, e.g., minimization of
mechanical energy or minimization of weighted torques squared, minimization
of muscle excitations or activations (to different powers), efficiency maximiza-
tion, etc. Also some of the stability criteria (compare Subchapter 4.1 such as
angular momentum minimization or the zero moment point (ZMP) and capture
point common in robotics can be described by Lagrange-type functions.

Other criteria related to stability may get much more complex. For example,
if stability is formulated using Lyapunov’s first method for nonlinear periodic
systems, one has to compute the spectral radius ρ of the monodromy X(T ) for
which ρ := |λi(X(T ))|max < 1 must hold. The monodromy matrix is the Jaco-
bian of the Poincaré map which maps the states from one cycle to the next. No
matter if this criterion is used in the objective function (to make the eigenvalue as
small as possible) or in a constraint (to keep it strictly below one), this requires
that sensitivity information of the trajectory is computed in the objective func-
tion or the constraint, respectively, i.e., in a place where usually only trajectory
information is required. This means that an augmented form of the original sys-
tem has to be treated in the constraints of the optimal control problem, consisting
of the original dynamics and impact equations along with the corresponding
variational differential equation and the update formulas for the sensitivity ma-
trices at impacts. For a state variable vector of dimension nx , this results in
n2
x additional dynamic equations and variables. In addition, the spectral radius

criterion may have a problem of ill-conditioning at points of multiple maxi-
mum eigenvalues, since the monodromy matrix is a nonsymmetric matrix. The
spectral radius becomes nondifferentiable, and sometimes even non-Lipschitz at
these points, which may occur no matter if the criterion is used as an objective
function or as a constraint. Nonetheless, it has been possible to find significant
descent and even an optimum using this criterion and the methods made for
smooth criteria which are described below. A detailed discussion of stability
optimization goes beyond the scope of the paper, but can be found in Mombaur
(2009). For an earlier version of the stability optimization code using a bi-level
formulation, see, e.g., Mombaur et al. (2005a), in which stability is optimized in
the upper level changing model parameters and another criterion – e.g., related
to energy – is minimized in the lower level adapting states and controls.

Optimal control problems are harder to solve than standard nonlinear opti-
mization problems since they are infinite-dimensional problems, meaning that
the unknown variables are not just n-dimensional vectors, but rather functions of
time. This concerns the state variables of the dynamic model (typically includ-
ing at least all position and velocity variables) as well as the control or input
variables (depending on the model considered the torques, the muscle activa-
tions or excitations or the input variables of the controllers). In addition, there
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may be additional free variables of the optimal control problems which are not
functions of time, e.g., free model parameters.

There are, in principle, three different ways to handle the infinite-dimen-
sionality of the control functions: dynamic programming, direct and indirect
methods. The basic idea of dynamic programming is to transform the continu-
ous time problem into a sequence of problems to be solved at every time step in
time and thus to compute the optimal control – and then the state – for the next
interval. It uses the principle of optimality of subarcs and leads to the Hamilton–
Jacobi–Bellman equation (Bertsekas, 2005).

For the direct approach – also called first-discretize-then-optimize approach
– the free control functions are discretized by replacing them by a finite num-
ber of free parameters, e.g., in terms of piecewise constant or piecewise lin-
ear function approximations. After this discretization, we obtain a boundary
value problem for the state variables. In contrast, indirect methods, also called
first-optimize-then-discretize methods, formulate the necessary optimality con-
ditions of the infinite-dimensional optimal control problem. This also results in
a boundary value problem. This type of methods includes Pontryagin’s Maxi-
mum Principle (Pontryagin et al., 1962). While the indirect approach is more
precise since it keeps the full space of control variables, the direct method is
much better suited to solve practical problems. For both the direct and indirect
method, the solution of the boundary value problem, which corresponds to the
treatment of the infinite-dimensionality of the state variables, can be solved by
shooting methods or by collocation methods (Ascher et al., 1998).

Collocation uses a discretization of states on the so-called collocation points.
The original continuous dynamic equation only has to be satisfied at the collo-
cation points, which results in the formulation of a finite number of constraints
instead of the differential equations.

Shooting methods use a different approach in which states are parameter-
ized, not discretized. The optimization process only manipulates the states at
the so-called shooting points, but the full dynamics of the system are simul-
taneously evaluated using integrators, i.e., they “shoot” trajectories from these
starting points. While single shooting only uses the parameterized states at the
initial time point, multiple shooting uses multiple points, from which inde-
pendent integrations are started. Continuity between these integrated trajectory
pieces and the next multiple shooting point, i.e., the start of the next trajec-
tory piece, is guaranteed by additional constraints. After these two discretiza-
tion/parameterization steps, both direct collocation and direct shooting meth-
ods result in nonlinear programming problems (NLP), which can be solved by
general or special structure exploiting NLP techniques, e.g., special sequential
quadratic programming (SQP) methods. Efficient direct multiple shooting meth-
ods have been developed by Bock and Plitt (1984), Leineweber et al. (2003), and



Control of Motion and Compliance Chapter | 4 177

Houska et al. (2011), while von Stryk developed a direct collocation method
(von Stryk, 1994). Both approaches are used to generate locomotion by differ-
ent researchers, but no systematic comparison of the two methods exists so far.

In our research and for the solutions presented later in this article, we built
upon the direct multiple shooting methods by Bock mentioned above, and as
implemented in the code MUSCOD (Leineweber et al., 2003). This approach
has been extended to mechanical DAEs with discontinuities of the above form.

4.2.4 APPLICATION OF OPTIMAL CONTROL TO GENERATE
LOCOMOTION IN HUMANS AND ROBOTS

In this section, we present several examples for the application of optimal con-
trol in the generation of walking and running motions and some more exotic
forms of locomotion. All motions are generated using the multiphase hybrid dy-
namics formulation and the numerical solution method based on direct multiple
shooting discussed in the previous section.

As a first example, we show optimal motions for the simple dynamic bipedal
model (H) of Fig. 4.2.1. Its configuration reminds of the early MIT leg lab robots
by Raibert (1986). The main purpose of discussing this model is to demon-
strate how optimal control can generate different types of motions for the same
model by just replacing some equality and inequality constraints. As shown in
the figure, the model consists of a central body and two prismatic legs. We only
consider 2D motions in the sagittal plane, i.e., there are three global DOF de-
scribed by the 2D position and the orientation of the central body. Physically,
the model has four internal DOF (relative angles between central body and legs
as well as the prismatic joints of the two legs), powered by torques and linear
series elastic actuators, respectively. Since the lower part of the leg is assumed
to be massless, the prismatic DOF is not there when the respective leg is in the
air, so we have a total of 5 DOF for the flight phase and 4 DOF for single leg
contact. The motions that we discuss here are (also compare Fig. 4.2.4):

• A symmetric and periodic running motion with alternating single leg contact
phases and flight phases (Mombaur et al., 2005c);

• A symmetric and periodic somersaulting motion. It also has alternating sin-
gle leg contact and flight phases, but the system performs a full 360◦ rotation
about the medio-lateral axis in every step (Mombaur et al., 2005b);

• A periodic flic-flac motion, also with alternating flight and single leg contact
phases, this time only performing 180◦ rotations between steps (Mombaur,
2006). Note that while the pictures show two legs and two “arms” to resem-
ble the human flic-flac motions, the dynamic model actually is identical to
the previous ones with just two legs, one being turned upwards.



178 PART | II Control

FIGURE 4.2.4 Three different types of motion for the same dynamic model imposed by differ-
ent boundary conditions and different constraints: running (Mombaur et al., 2005c), somersaulting
(Mombaur et al., 2005b), and flic-flacs (Mombaur, 2006).

The phase types and phase order in all three cases have been the same. The dif-
ferent motions are produced simply by changing the periodicity constraints to
incorporate the imposed rotations. In addition, inequality constraints for colli-
sion avoidance between central body and legs have to be slightly changed for the
leg turned upward in the flic-flac case, since it now must stay on the other side of
the torus. It would, of course, also be possible to generate walking motions for
the same model; however, in this case also the type and order of phases would
have to be changed, with additional two-leg contact phases and no flight phases.
The main optimization criterion applied in the solutions shown above was a
maximization of stability with the result that all these solutions are open-loop
stable. This has been achieved using the bilevel approach mentioned previously
where stability is optimized in the upper level with the additional criterion in
the lower level to minimize actuator inputs, i.e., some kind of energy. More de-
tails can be found in the cited papers. Other optimization criteria could also be
applied, such as cost of transport, etc.

The second example that we are presenting is an optimality study of the full
humanoid robot HRP-2 of Fig. 4.2.1F performed by Koch in his PhD thesis
(Koch, 2015). HRP-2 is a full-size humanoid robot from Japan developed by
Kawada and AIST (Kaneko et al., 2004). This robot has 6 global and 30 internal
DOF which are essentially position controlled, but with an elasticity in the ankle
joints. The goals of generating optimal motions for the robot are:

• To have an approach that selects all properties of the motion at the same
time (i.e., all joint trajectories, step height, length width, actuator inputs and
outputs, contacts with the environment, etc.);
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FIGURE 4.2.5 Examples for simulated cyclic and non-cycle optimized motions for HRP-2:
(A) a periodic walking motion maximizing efficiency (Koch et al., 2012b) and (B) a step over an
obstacle with maximum height, starting and stopping at bipedal resting position (Koch, 2015).

• To be able to generate different styles of robot motions for some given task;
• To bring the robot towards its extremes in terms of kinematics, dynamics,

performance, etc.

The dynamic model captures all kinematic and dynamic features of the mechan-
ics of HRP-2. One problem, however, is that HRP-2 can, in fact, not execute
all motions that its mechanics alone would permit. The robot uses a high level
control system that is actually very conservative in its judgment and imposes
strict constraints, e.g., on the trajectory of the ZMP. For formulating optimal
control problems, it is important to consider also all these constraints as far as
possible, i.e., as far as they are known. As most humanoid robots, the robot
walks with full flat foot contacts, so only single support and double support
have to be described. The summary of the study of periodic walking motions
for HRP-2 is given in Koch et al. (2012a, 2012b), see Fig. 4.2.5A. We have
investigated different objective functions in this context, some of which are bi-
ologically inspired, i.e., try to mimic what humans are doing and others are
more technically or performance oriented. We have studied the minimization of
joint torques squared, maximization of forward velocity, maximization of postu-
ral stability, maximization of efficiency, and minimization of angular velocities.
The criteria have a quite important impact on the style of the walking motion.
Periodicity and symmetry constraints are imposed on the walking motions. In
addition, we have looked at the effect of different constraints such as restric-
tions on the ZMP to stay very close to the ankle joint. It could be shown that
relaxing the ZMP constraints generates a significantly more upright gait. The
second type of problems we have considered is the generation of the largest
possible steps over obstacles in the attempt to bring the robot to its extremes
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(Koch et al., 2014), see Fig. 4.2.5B. It could be shown that for such problems
with very challenging dynamics it is necessary to model all tiny details of dy-
namic behavior and the influence of the controllers. As we discovered, ignoring,
e.g., the ankle elasticity in this context leads to infeasible motions since the
elasticity in fact slows the motion down. It was also not possible to simply use
the primary optimization criterion which was to maximize the step height. In-
stead, several other criteria had to be included via reverse engineering to take
into account all preferences of the control system. With this approach it was
possible to generate a new motion with record step height of 20 cm which has
been executed on the real robot. As a comparison, the optimal solution for the
full dynamic model of the robot with all torque limits but ignoring the ankle
elasticity and some control systems characteristics had previously led to a step
height of 47 cm which then, however, turned out to be infeasible (Koch, 2015).

The third motion generation example we are discussing concerns whole-
body motions for human models. We have studied walking and running motions.
All systems discussed here are equipped with torque actuators at each of the
internal DOF replacing the action of the human muscles. Running models (com-
pare Fig. 4.2.1C and D), as they have been developed in Schultz and Mombaur
(2010) describe 2D and 3D sprinting as a sequence of alternating flight and sin-
gle leg contact phases. The 3D model consists of 12 rigid bodies, and has 25
DOF in flight – 6 global DOF associated with the position and orientation of the
pelvis and 19 internal DOF related to internal joint angles. The model is powered
by torques and parallel spring–damper elements in all joints. We assume point
contact with the ball of the foot which is a realistic assumption for fast running.
We have imposed the average running speed of 10 m/s which is not too far from
world class sprinting speed and minimized a combination of active joint torques
squared and torque derivatives squared because it selects – out of the infinitely
many ways to run at this speed – the one that does it with the smallest effort
and the smallest change in effort over time per joint. Especially the first part
of the criterion seems to lead to a good approximation of human-like dynamic
behavior. Step and phase times as well as spring–damper parameters have been
left free for optimization. The resulting running motions look very realistic; see
Fig. 4.2.6A for the 3D model. We have also investigated stability optimization
to generate open-loop stable running using the one-level approach discussed in
Section 4.2.3 (Mombaur, 2009), which, however, did not lead to a very human-
like motion. The obvious (and not very surprising) conclusion of this is that
human running is not open-loop stable, but depends on some crucial feedback
signals.These loops could, in principle, be included in the model to perform the
same type of stability study for the closed loop system; however, we are not
aware of any model that captures all relevant feedback loops of walking as well
as the entire biomechanical part of the system in a satisfactory way.
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FIGURE 4.2.6 Optimized running and walking motions for whole-body human models.

Human multi body system walking models in 2D and 3D have been devel-
oped by Felis in his thesis (Felis, 2015); see Fig. 4.2.3A and B. The formulation
of the optimal control problem is similar as for the humanoid robot HRP-2.
What gets more challenging here is the description of foot contact since the
human capability to roll over the foot has been considered. This means that
each foot contact is divided into heel only, flat foot, and ball only contact. Of
course, a further refinement of this foot contact model is possible to include
more flexible foot curvatures, which is subject of current research. We have in-
vestigated the effect of different optimization criteria on the motions, such as
the minimization of joint torques squared, the maximization of walking effi-
ciency, the minimization of total angular momentum, and the maximization of
step frequency, all leaving the step and phase times as well as average velocity
free (Felis and Mombaur, 2016), see Fig. 4.2.6B and C. We also heuristically
investigated different possible combinations of these criteria, some of which get
quite close to generating a human-like walking motions. Also the effect of fixing
walking speed to different values has been studied. In order to get even closer to
experimental recordings of true human walking, the approach presented in the
next two sections is required.

4.2.5 WHAT IS THE COST FUNCTION OF HUMAN
LOCOMOTION? THE INVERSE OPTIMAL CONTROL
PROBLEM

Following the fundamental hypothesis of optimality of human movement, a cen-
tral question is what precisely is optimized for a given task, i.e., what is the
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FIGURE 4.2.7 Inverse optimal control problems vs. optimal control problems.

exact objective function for the problem of interest. In contrast to the previous
sections, where we have started from a mathematical problem formulation with
a mechanical model and a given objective function and looked for a solution,
we now start from an observed real movement.

As described in other chapters in this book, human movement can be exper-
imentally observed and quite precisely measured by different techniques, such
as motion capture systems (optical systems or inertial measurement units), force
plates for ground reaction forces, EMG measurements for muscle activity, etc.
From these measurements, the state variables’ trajectories are fully or partly
known, and sometimes also control histories can be (partly) measured. The
inverse optimal control problem then consists in determining, from this infor-
mation, the optimization criterion that has produced this observed solution. This
can be a single criterion, but usually it is a combination of different weighted
criteria. This inverse optimal control problem is a hard problem since it consists
in solving a parameter estimation problem within an optimal control problem.
This naturally results in a bilevel formulation with the parameter identification
problem in the upper level and the optimal control problem solution in the lower
level. We will further discuss this below.

Fig. 4.2.7 shows the connection between optimal control and inverse optimal
control problems where the previous starts from the optimal control formulation
and the latter one leads to it. It also illustrates how they can build on top of each
other: as soon as the optimization criterion is identified for a class of movements,
this criterion can be used to predict other movements of the same class under
conditions that have not been studied in experiments.

The term inverse optimal control for the identification of an objective func-
tion in an optimal control problem from measurements has been coined by
Kalman (1964) for linear problems. Later other types of problems have been dis-
cussed, e.g., inverse optimization in combinatorial problems (Heuberger, 2004).
The class of nonlinear inverse optimal control problems receives a lot of atten-
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tion in the mathematical community, especially in the context of reformulating
the problem as a so-called MPEC (mathematical program with equilibrium
constraints) where essentially the optimal control problem is replaced by the
corresponding first order optimality conditions (Luo et al., 1996). Work is per-
formed on the theoretical side (e.g., Ye, 2005; Dempe and Gadhi, 2007), but also
some successful algorithms have been implemented for direct methods based
on multiple shooting (Hatz et al., 2012, 2014) and collocation (Albrecht et al.,
2010).

Important related work has been performed by Liu et al. (2005) who study
realistic movement generation for character animation by physics-based models:
here the problem was not to find the objective function, but to identify unknown
model parameters from motion capture data using a nonlinear inverse optimiza-
tion technique. Other related work comes from the field of learning control
and reinforcement learning (Atkeson and Schaal, 2010), which is very a pop-
ular approach in robotics and which in the same way as optimization assumes
that a function is approved over the course of learning. Although the terminol-
ogy is different, learning system and inverse optimal control both assume that
there is an objective function optimized by the process and use an estimation
of performance index that describes the progress of learning or identification
(Aghasadeghi and Bretl, 2011). A fundamental difference is that in optimization
usually all steps are performed on a computer using simulation models, while
learning also takes place over real world experiences. Sometimes learning meth-
ods are combined with optimization methods to solve problems of the inverse
optimal control type (e.g., Levine and Koltun, 2013 and Dörr et al., 2015).

We have proposed an approach that keeps the original bilevel form (Mombaur
et al., 2010) and works for general nonlinear inverse optimal control problems,
even with multiple phases and discontinuities of the type that we are facing for
studying walking motions. It uses a combination of an efficient direct optimal
control technique for the lower level and a gradient-free optimization technique
for the upper level. A new implementation of this method has been performed
recently.

As an important prerequisite for the solution of the inverse optimal con-
trol problem, we assume that we can establish a set of reasonable independent
base functions �i(t) for the objective function. For this, in principle, also math-
ematical base functions, such as Fourier or polynomial bases, could be used.
However, the objective of inverse optimal control is to determine the objec-
tive function in terms of some physically meaningful expressions, not in terms
of some purely mathematical functions. We therefore chose physically moti-
vated base functions, e.g., related to energy, efficiency, mechanical work, speed,
smoothness of motions, etc. This will be discussed in more detail below. The
choice of good base functions for a particular problem is crucial. On the one
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hand, a fit can only be as good as the available objective functions permit; on
the other hand, the base functions must not be redundant with respect to their ef-
fect on the motion, otherwise no solution of the inverse optimal control problem
is possible since there would be an infinite number of possibilities of combining
the two objective functions with the same effect. The contributions of all these
base functions �i(t) to the overall objective function can be expressed by a pri-
ori unknown weight factors αi . With this we have expressed the inverse optimal
control problem as a problem to determine the weight factors α that result in the
best possible fit to experimental data. Mathematically, this is written as

min
α

m∑
j=1

‖x′ ∗(tj ;α)− x′M(tj )‖2, (4.2.16)

where x′ ∗(t;α) results from the solution of

min
x,u,p,T

n∑
i=1

αi

∫ T

0
�i(x(t), u(t),p)dt (4.2.17)

s. t. ẋ(t)= f (t, x(t), u(t),p), (4.2.18)

g(t, x(t), u(t),p)≥ 0, (4.2.19)

req(x(0), . . . , x(T ),p)= 0, (4.2.20)

rineq(x(0), . . . , x(T ),p)≥ 0. (4.2.21)

The two levels mentioned above are clearly visible: in the upper level, we
aim to minimize the distance between the measured motion and the computed
one by optimizing over the vector of weight parameters α. In the lower level, we
solve a (forward) optimal control problem for the current iterate of α in order
to compute the solution x∗ to evaluate the objective function of the higher level
problem. The problem formulation shown here only uses single phase problems
for simplicity of presentation; however, it is no problem to extend this formula-
tion to the type of multiphase optimal control problems discussed in the previous
section by replacing the constraints of the lower part by Eqs. (4.2.11)–(4.2.15).
Weight factors corresponding to base functions that turn out to be not relevant
for the problem under investigation should go to zero during the solution of the
problem. Obviously, there still is one redundancy in the problem formulation:
analytically, the lower level problem would be exactly the same if all weight
factors were multiplied by the same scalar (numerically, differences might oc-
cur due to scaling). This can be addressed by either fixing one of the weights
(of which one is certain that it will not vanish) to a predefined value, e.g., to 1.0.
The other option is to add to (4.2.20) a condition that the sum of all αi is equal
to a constant. We usually use the previous one, but have also used the latter one
with equal success.
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With x′ we denote the subset of the state vector for which measurement in-
formation can be directly or indirectly gained (also see the discussion in the
next session). x′M(tj ) denotes these measurements, typically taken at discrete
time points tj , and x′ ∗(tj ) the corresponding parts of the optimal state trajectory
x∗, evaluated at these same points. The task of the upper level is to determine
the weight factors α that result in the best fit between the computational model
and the measurements in the least squares sense. For each function evaluation
here the lower level optimal control problem has to be solved, i.e., the upper
level function cannot be expected to satisfy any conditions on smoothness or
differentiability that are usually assumed to be valid for many gradient based op-
timization algorithms. Since derivative information is hard to obtain, we prefer
to apply a derivative-free optimization technique, i.e., it only requires function
evaluations and no explicit gradient information. The derivative-free optimiza-
tion code BOBYQA (Bound Optimization BY Quadratic Approximation) by
Michael Powell (2009) which can also handle bounds on the free parameters
performs particularly well in this context. In the new implementation, also the
code COBYLA is used. The task of the lower level is to efficiently solve the for-
ward optimal control problem which occurs in each iteration of the upper level.
For this, it is important to use an efficient method since this problem needs to be
solved frequently; and we can use the direct boundary value problem approach
MUSCOD that has been described in Section 4.2.3.

This method has already been used to study optimality criteria of different
problems, among them the whole-body locomotion examples addressed in the
next section, but also other applications such as yoyo playing (Mombaur and
Sreenivasa, 2010), interaction and locomotion paths (Mombaur et al., 2010),
etc.

4.2.6 APPLICATION OF INVERSE OPTIMAL CONTROL TO
ANALYZE OPTIMALITY IN HUMAN LOCOMOTION

The goal of this section is to illustrate how the methods described above can be
used to identify optimality criteria of human movement. We present some of the
inverse optimal control work on whole-body human locomotion performed in
the ORB (Optimization, Robotics & Biomechanics) research group. The models
used in this context are the models in the first row of Fig. 4.2.3; here we specif-
ically mention work performed with models (B) and (C). For a more detailed
overview of inverse optimal control for human locomotion based on different
modeling levels (i.e., whole-body models, template models, and overall loco-
motion path generation), see the recent article (Mombaur and Clever, 2017).

To actually formulate and solve the inverse optimal control problem
(4.2.16)–(4.2.21) for a specific movement and data set, several decisions have
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to be taken first from a biomechanical as well as a technical perspective. These
include:

• How many motions and how many subjects should be considered at once?
In principle, it is possible to formulate inverse optimal control problems ei-
ther for (i) individual motions of one subject, (ii) several motions of the same
subject, or (iii) several motions of several subjects. The choice depends on
the particular biomechanical question asked, i.e., if individual behavior is to
be analyzed or compared, or if an average behavior is to be modeled. For (i),
the problem formulation is given above. For (ii), either average data of the
different motions can be used, again resulting in the problem formulation
above or each motion can be analyzed separately, resulting in the simulta-
neous solution of multiple optimal control problems in the lower level and
an additional sum over all motions for computing the overall fit in the up-
per level. For (iii), also the model parameters have to be adjusted to each of
the subjects, such that here definitely multiple lower level optimal control
problems have to be solved simultaneously. If for each subject data for mul-
tiple motions is available, then this can be treated with the options described
under (ii). Examples for some of the cases will be given below.

• How should the fit between model and data be computed?
As shown in Eq. (4.2.16), the upper level fit is based on the least squares dis-
tance between modeled and measured state variable trajectories. However, in
practice generally the state variables of the system are not directly measured.
As described in Section 4.2.2, a typical choice of state variables is to use po-
sition and orientation of the pelvis as well as all internal joint coordinates,
as well as the corresponding velocities. However, no biomechanical mea-
surement device will directly measure these quantities. The most standard
case is to use marker-based systems which measure Cartesian coordinates of
markers at specified positions of the human body (or to be more precise, on
some approximately defined positions of the skin that exhibits relative mo-
tion with respect to the skeleton, which makes the problem harder). Other
options include, e.g., IMUs which measure acceleration and rotational ve-
locity information at other specific points. This means that transformations
have to be performed either of the recorded data or of the model variables.
For marker-based motions, the fit can be achieved either on marker posi-
tion level (requiring that corresponding marker positions are computed in
the model) or on the joint level (requiring that pseudomeasured joint angles
are derived from the measured marker positions). On the one hand, the lat-
ter is not so desirable since this transformation involves the use of another
model for the transformation and induces errors that are not visible anymore
afterwards. On the other hand, it is much better in terms of analyzing de-
viations in the fit and drawing conclusions for potential adjustment of the
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model. So no clear decision can be taken, and both approaches are possi-
ble. In the examples below, both approaches have been pursued. If the fit
is performed on the state variables, appropriate scaling of variables may be
necessary, depending on the particular choice and relative sizes.

• Which base functions should be considered in the objective function for hu-
man locomotion?
As discussed above, choosing appropriate base functions is one of the fun-
damental choices that have to be made for each inverse optimal control
problem. Popular candidates for the study of human locomotion in differ-
ent contexts (healthy or pathological walking) are:

1. Minimization of integral joint torques squared (related to motion effort)
(see results presented in Section 4.2.4);

2. Minimization of absolute mechanical work at all joints (integral of abso-
lute mechanical power);

3. Minimization of different types of energy (per time);
4. Minimization/maximization of time (for a walking distance);
5. Maximization of step length;
6. Minimization/maximization of step frequency;
7. Minimization of interval of jerk squared (jerk of a particular point or

angular jerks at joints, as suggested in Flash and Hogan (1984) for arm
movements);

8. Minimization of rotational motion of the head (so-called head stabiliza-
tion) (Pozzo et al., 1990);

9. Minimization of head acceleration;
10. Minimization of length of walking path;
11. Minimization or maximization of walking speed;
12. Minimization of angular momentum about center of mass;
13. Maximization of postural stability;
14. Maximization of other stability criteria, e.g., related to capture point.

For each particular walking problem, the interesting set of such physical base
functions has to be determined. As mentioned above, special care needs to
be taken to choose nonredundant base functions. To give a simple example
of redundant cost functions, for a system moving straight at a fixed speed,
minimization of walking time and minimization of length of walking path
would be equivalent. On the other hand, the minimization of time to perform
a given task and the minimization of energy spent per time are usually com-
pletely independent. Unfortunately, the situation is not always as clear, and
the cases of local as well as global redundancy have to be considered.

• How can the above choice of physical base functions be used in the inverse
optimal control formulation?
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An important point which is often not carefully considered is how to transfer
the choice of physical base objective functions taken above into terms of the
parameterized objective function in the mathematical problem formulation.
Many of the functions listed above refer to quantities at the individual joints.
In these cases the contributions of all joints may be different, also taking into
account, e.g., the different strength of the actuators at these joints. Therefore
in the extreme case, each joint should get its own term and own weight factor
αi in the objective function. This means that, e.g., just the choice of the
objective function related to joint torques would result, for a model with,
e.g., 15 internal DOF, in 15 terms and 15 unknowns in the upper level for the
inverse optimal control problem. However, in some cases synergies can be
exploited, e.g., by assuming equivalent weights for left and right body half,
or by assuming similar weights for different parts of the body (e.g., lower
body, upper body).

As a first example, we discuss the 3D running model (Fig. 4.2.1C) with 25
DOF and 19 internal DOF for which already forward optimal control solutions
have been shown in Fig. 4.2.6A. In contrast to the forward problem which ad-
dressed high speed sprinting, this inverse optimal control problem studies slower
running (jogging) at controlled speed of 10 km/h on a treadmill. We therefore
impose the running speed as a constraint of type (4.2.20) to the problem. We
still keep the assumption of forefoot running, i.e., there is no flat foot ground
contact, only point-like contact with the ball of foot. Running data has been col-
lected by our collaboration partners at the University of Rennes using a Vicon
system at 100 Hz and 43 markers within the Locanthrope project. For this ex-
ample, the fit between modeled and recorded motion is achieved on the level
of marker positions. Overall, the parameterized objective function studied has
13 terms: 10 terms related to the minimization of torques (function 1 above) at
the 19 internal joints, but exploiting symmetry, 1 related to the maximization
of step length (function 4) and 2 related to head velocity (function 7). Results
are reported in Mombaur et al. (2013), and summarized in Mombaur and Clever
(2017). None of the parameters goes to zero, i.e., all components seem to play
a role. However, the fit for the best possible objective function is not as good
as desired. Reasons for this are the quite coarse model in the upper body which
does not allow performing all motions that the human body can do, as well as –
potentially – the fact that additional objective function terms should be added.
Both items are addressed in current research.

The second example addresses human walking motions and uses the dy-
namic walking model in the sagittal plane Fig. 4.2.1B. It consists of 14 segments
with a total of 16 DOF of which 13 are internal DOF. Detailed results are pre-
sented in Clever et al. (2016b), and a summary can be found in Mombaur and
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Clever (2017). The focus here is on level ground unconstrained walking; how-
ever, inverse optimal control studies of more complex walking situations with
constrained are underway. The study has been performed based on 6 subjects
which have very different height. Vicon data at 100 Hz has been recorded within
the KoroiBot project by our collaboration partners at the University of Tuebin-
gen and archived in the KoroiBot database (KoroiBot Motion Capture Database,
2016; Mandery et al., 2015). The parameterized objective function used here
consists of 7 terms: 4 of them concern again the torque criterion (function 1),
but this time the same weight is used for entire parts of the body (hip, lower
legs, arms, torso + head). In addition, there is 1 term for head stabilization
(function 4), 1 for step length maximization (function 4), and 1 for step fre-
quency maximization (function 5). In this study we compute the least squares
fit based on position state variables, i.e., the coordinates of the model, which on
the experimental side are derived from marker data using the MMM framework
(Terlemez et al., 2014). In total seven motions have been considered, two for
one of the subjects, and one each for all other subjects, where the motion con-
sisted in all cases of one (right) step. Each of these motions has been considered
as a separate inverse optimal control problem, corresponding to case (i) since
the walking styles of the persons looked too different to combine them into one
single description. This allowed us to compare results. For each of the motions,
a set of weights could be determined, but as expected they are not identical but
show a significant correlation. We can therefore hypothesize that the optimiza-
tion criterion of a subject for a class of motions can be seen as a combination of
a general objective function term and a term describing the personal movement
style.

4.2.7 DISCUSSION & OUTLOOK

In this chapter, we have analyzed the role of optimality in bipedal locomotion.
For this, two different types of problems have been considered, namely (for-
ward) optimal control and inverse optimal control, both of which are based on
complex dynamic locomotion models of humans and robots. For inverse opti-
mal control, also experimental data of human locomotion has been taken into
account.

Using the optimal control approaches discussed in Section 4.2.3, we could
successfully generate various types of locomotion for different models and dif-
ferent orders of phases and constraint sets as shown in Section 4.2.4. In all these
cases, motion generation by pure simulation and trial and error would have been
practically impossible or at least not feasible in a reasonable amount of time.
Different objective functions and constraints allow generating motions of vari-
ous styles and types and satisfying different goals. Appropriate formulations can
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be used to bring (humanoid) robots towards their technical limits. Some mixed
criteria have been heuristically found for human walking and running models
that make the resulting motions look quite human-like.

The last statement leads us to inverse optimal control problems, the goal of
which is to identify in a more precise way the underlying objective function of
experimental recordings of human locomotion and which have been discussed
in Sections 4.2.5 and 4.2.6. Inverse optimal control problems can be formulated
for one or several data sets, motion types or subjects, depending on the underly-
ing hypothesis of how large the area of validity of the investigated optimization
law is. Inverse optimal control problems have been solved for different types of
walking and running motions (among other types of motions) and different sets
of data revealing important components of the objective functions. First studies
comparing different subjects have shown that there is a correlation between ob-
jective function components of different subjects, but that also every subject is
characterized by its own personal walking styles and individual motion varia-
tions.

An important issue which has not been directly addressed in this chapter
is that optimal control problems for motion generation in robotics should ulti-
mately be solved online, i.e., in real time. This would allow (humanoid) robots
to generate and control walking motions on the spot when perceiving a new en-
vironment. The optimal control problems based on hybrid whole-body models,
e.g., for the robot HRP-2, as presented in Section 4.2.4, take several hours to
solve on a standard computer; hence alternative approaches are required.

Online optimal control, also known as (nonlinear) model-predictive con-
trol, would be the method of choice; however, there is no approach around that
can solve optimal control problems for the mentioned hybrid multibody system
models in real time while respecting all constraints.

Impressive results in this direction using online optimization have been
achieved in computer graphics (e.g., Wang et al., 2012; Tassa et al., 2012),
which also includes online reactions to events. In this case also some short-
cuts are taken by simplifying constraints since the essential goal is to make the
animations look good, but in robotics more realism of constraints is required to
make solutions feasible for the real robot. Koenemann et al. (2015) work with a
model of the robot HRP-2, but also seem to ignore several dynamic constraints.

Model-predictive control currently is used for simple models such as (linear)
inverted pendulum models (Kajita et al., 2003) which also leads to quite agile
behavior; see, e.g., Faraji et al. (2014), or 6D centroidal body models of walking
(Kudruss et al., 2015). In the KoroiBot project and follow-ups, we are pursuing
research on NMPC for walking motions to move to more complex robot models.
This not only involves efficient solution of optimal control problems but also
the treatment of receding horizons with changing phases of a priori unknown
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order. We also investigate how to best combine model-based optimal control and
model-free robot learning at the example of the bipedal robot Leo (Schuitema
et al., 2010).

Another approach pursued in KoroiBot is the combination of optimal control
and movement primitives. The basic idea, as presented in Koch et al. (2015), is
to use several optimal control problem solutions based on the full model and
all constraints to learn movement primitives using Gaussian process models
and Bayesian binning. These primitives are then used to assemble new walk-
ing steps on the spot, as required by the environment, which is feasible in just a
few seconds. It could be shown that already with a small number of movement
primitives it is possible to generate new walking motions which are very close to
dynamic feasibility and to optimality of the criterion used for the training data.
It has been applied to generate periodic walking motions at new step lengths but
also adaptive walking patterns with changing step length (Clever et al., 2016a).
Overall this seems to be a very promising approach to implement optimality
principles on complex humanoid robots.
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Abstract. In this chapter we discuss different concepts of compliance in lo-
comotion including constant and variable compliance. Compliance provides
many advantages for dynamic motions, such as increased efficiency, stability,
adaptability and softness, but also introduces many challenges for the design
and control. Optimal control provides a promising approach to optimally tune
compliance parameters and control compliant actuators. Different models for
control are discussed. We give several examples for understanding the use of
compliance in human motion and for optimizing compliance in different types
of robots.

4.3.1 INTRODUCTION

Compliance plays an important role in locomotion of humans and animals.
There are many sources of compliance in biological systems including muscles,
tendons, soft tissue, etc. Compliance of joints can even be modulated by differ-
ent levels of cocontraction of agonist and antagonist muscles. There are many
advantages of compliance: it allows a better adaptation to a given task; it per-
mits storing energy and releasing it at another point in the locomotion cycle and
therefore can help in increasing the efficiency of locomotion (Alexander, 1988).
In addition, compliance can improve the stability of a system since it generates
natural backdriving forces on a mechanical level, if compliance is properly con-
trolled for a motion. Compliant external surfaces result in softer contacts and
more safety in interactions.

In robotics, there has also been a strong shift in the past decades from rigid
position controlled joints to torque controlled and compliant actuators and the
use of passive compliant elements. The aim is to also benefit from the advan-
tages listed above by introducing compliance in the robot design. However,
properly selecting design parameters of compliant elements and control inputs
for compliant actuators is no easy task due to the high number of degrees of
freedom (DOF) of the locomotion systems and the high number of parameters
to tune. For the solution of this problem in robotics applications, optimal control
provides an efficient tool.
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The goal of this chapter is to give an overview of the benefits of optimal
control for the proper tuning of compliance in robot motions as well as an ap-
proach to understand compliance in humans. We summarize several studies on
compliance in locomotion and related dynamic motions that have been per-
formed independently by the different authors, addressing the optimization of
variable and constant compliance. This chapter is thus complementary to Sub-
chapters 4.4 and 4.2 on impedance control and optimal control, respectively.
The focus here is on the compliance in joints, not in external contact surfaces.
The studies presented here therefore require locomotion models with all relevant
joints or the real system, but no simplified template models.

In recent years there has been an increasing interest in compliance aspects in
human and animal locomotion. While it was initially considered relevant mainly
for running, it has been analyzed also in walking motions and was demonstrated
to be essential by means of simple spring–mass models where entire legs are
replaced by linear springs on level ground (Geyer et al., 2006) and rough terrains
(Liu et al., 2015), or variable stiffness springs (Visser et al., 2013). Other studies
were focused on the role of biarticular muscles (Iida et al., 2008; Mombaur,
2014) and tendons (Endo et al., 2006) by using spring–damper models.

Compliance at the joint level also plays a central role in locomotion (Latash
and Zatsiorsky, 1993), where many researchers address the analysis of joint stiff-
ness by studying the torque angle relationship of the leg joints (Weiss et al.,
1986a, 1986b), namely hip, knee, and ankle. The aim of many of these studies
is to look for a possible way to recreate the same walking motion with simple
mechanisms such as linear springs, which has been demonstrated to be possible
in certain phases of walking (Shamaei et al., 2013a, 2013b, 2013c) and running
(Günther and Blickhan, 2002). Joint torques are computed with inverse dynam-
ics and a statistical analysis on a high number of subjects of both gender was
carried out, but without identifying differences between them, which was then
done by Gabriel et al. (2008). However, studies have shown that compliance in
humans is variable and modulates due to the cocontraction of agonist and antag-
onistic muscles acting on the joints during the execution of movements (Ferris
et al., 1998; Hogan, 1984).

Humans are able to adjust the impedance (in addition to their kinematic
plans), both in terms of direction and magnitude to the requirements of a task.
This can be demonstrated by subjecting a person to a random force fields in
reaching movements and observing how the measured impedance at the hand
changes (Burdet et al., 2001; Selen et al., 2009; Franklin et al., 2007). These
experiments demonstrate, as expected from control theoretical principles, that
impedance adaptation can serve at least two purposes: (1) It can be used to sta-
bilize a kinematic task against random perturbation by increasing the stiffness.
(2) By lowering the stiffness the body or parts, it can be decoupled by from
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external disturbances. While such experiments for practical reasons have most
commonly been done with the upper extremities based on general control theo-
retical principles, we can conjecture that such principles are general and apply
to the lower extremities as well. Task requirements might be reaching a cer-
tain goal (i.e., kinematic/geometric constraints), not falling over (i.e., stability, a
mixed dynamic/geometric constraint), speed (translating into time or velocities
as constraints). More often than not at any given time several such goals might
be important and are complicating finding the right task achievement. Recent re-
sults prove more and more convincingly, however, that optimal control can find
the motions and associated controllers to satisfy such difficult planning and con-
trol problems. The above mentioned task constraints are usually either handled
as soft constraints via the cost function or as “real” constraints via transcrip-
tion.

Humans in daily life walk in many different environments, the most com-
mon ones are level ground, up and down slopes of different inclinations, stairs
of different sizes, and different types of rough terrain. So in order to better
understand locomotion, it is necessary to analyze walking in all these differ-
ent scenarios. But, despite the large amount of literature on stiffness at the
joint level, most of them are focused on level ground walking, with only a
few works on other walking scenarios. In biomechanics there is some work on
the analysis of kinematics and kinetics of slope walking (Franz et al., 2012;
Silder et al., 2012) and stair climbing (Andriacchi et al., 1980; Amirudin et al.,
2014), but there is a lack of studies focused on joint stiffness in this context.

In robotics, the main objective related to compliance is to gather fundamen-
tal information to develop compliant control and actuation principles, some of
which have elastic elements with fixed stiffness and others with variable stiff-
ness.

In Mombaur et al. (2009) three different hypotheses about the use of com-
pliance have been formulated in bipedal locomotion and demonstrated in the
examples of multibody system models of different complexity using optimiza-
tion techniques. It was postulated that an optimally tuned compliance can sig-
nificantly reduce the cost of transport, can produce naturally looking motions,
and can also improve the stability of locomotion.

Compliance control, and in particular variable compliance, can be imple-
mented in several ways in robots. One of the most flexible approaches is em-
ulating compliance with an outer position loop around an inner force/torque
control loop (Semini et al., 2015) (see also Subchapter 4.4. Here the gains of the
position controller then correspond to impedances with the position gain being
the stiffness and the derivative gain being the damping. The challenge now is to
find suitable impedances for any given time, thus amounting to finding a gain
schedule. Variable impedance can also be realized with semipassive systems.
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Here two major categories exist: (1) active change of the spring constant (Wolf
et al., 2016) and (2) dynamic adjustment of the impedance via the series motor
in a series elastic actuator (Pratt and Williamson, 1995a). The first approach has
the typical limitation that the spring constant cannot be instantaneously changed
and that the devices are usually still too bulky to be well integrated into com-
plex robotic systems, e.g., such as small robots, prostheses, or exoskeletons. The
second approach has the limitation that strict control theoretical stability bounds
significantly limit the achievable compliance levels.

As robots started to come out from the factories and enter human popu-
lated environments, humanoid robots using compliant actuators started to appear
(Pratt and Williamson, 1995a), such as the Lucy robot using pneumatic artificial
muscles (Verrelst et al., 2005), the Roboray using tendon driven actuators (Kim
et al., 2012), and M2V2 (Pratt and Krupp, 2008), the COMAN (Colasanto et
al., 2012), WALK-MAN (Tsagarakis et al., 2016) and iCub (Metta et al., 2010;
Parmiggiani et al., 2012) using Series Elastic Actuators (SEA) (Pratt and
Williamson, 1995b). In particular, the COMAN humanoid robot showed to be
able to perform stable walking with SEA (Li et al., 2012; Moro et al., 2014;
Dallali et al., 2012). The introduction of compliant actuators has the aim of
absorbing impacts, and facilitating the generation of human-like movements
and energy efficiency. The often quoted motivation of increased safety by
adding compliant elements does not hold as a general principle (Semini et al.,
2015).

The rest of this chapter is organized as follows. In Section 4.3.2, we present
different models of compliance in locomotion system, including different types
of constant and variable compliance. Section 4.3.3 describes the possibilities
and benefits of using optimal control for compliance studies. In Section 4.3.4 we
present some examples of optimal control based studies of compliance in human
locomotion. Section 4.3.5 focuses on examples for compliance optimization in
robot motions. Section 4.3.6 finally formulates a conclusion and some research
perspectives.

4.3.2 DIFFERENT MODELS OF COMPLIANCE

In this section, we discuss different types of compliance from the modeling
perspective. It is assumed that the whole walking system is described as a rigid
multibody system (MBS) powered by joint torques. The equations of motions
of a typical walking system take the following form:(

M GT

G 0

)(
q̈

λ

)
=
(−C + τ

γ

)
, (4.3.1)
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FIGURE 4.3.1 Different types of compliance model discussed in this chapter: (A) constant paral-
lel compliance, (B) constant serial compliance, (C) variable compliance with stiffness modulation,
(D) variable compliance with rest length modulation.

with mass matrix M , vector of nonlinear effects also including gravity C, vec-
tor of joint torques (or forces) τ , including active and passive components,
accelerations q̈ , Lagrange multipliers λ, constraint Jacobian G, and constraint
Hessian γ . Here we use a slightly less general formulation than in Subchap-
ter 4.2, which assumes that there is no drag, and no external pushing forces,
etc., and that the actuation is applied directly at the joints.

Specific model properties of some walking models will be discussed later
in the example sections. We are now considering different ways how compli-
ance can influence these total joint torques τ , distinguishing between models of
constant and variable compliance.

4.3.2.1 Constant Compliance

We start by discussing models of constant compliance which can enter either
in parallel or in series with the active torque/forces. These two concepts are
illustrated in Fig. 4.3.1A and B, respectively.

In the case of constant parallel compliance, the torques or forces generated
by the springs are added to the active torques or forces:

τP,i(t)= τactive,i(t)+ τspring,i(t)

= τactive,i + kp,i(φ0,i − φi(t)), (4.3.2)

as shown here for the torque at joint i with joint angle φi , assuming a linear
spring with spring coefficient kp,i . φ0,i denotes the joint angle at which the
spring is not deformed, which for simplicity we call “rest length”, even though
it strictly is an angle in the rotational case. This combined τ = τP enters the
right-hand side of Eq. (4.3.1). In the same way, also a linear damper with free
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damping coefficient bp,i could be added in parallel to the torque and the spring:

τP,i(t)= τactive,i(t)+ τspring,i(t)+ τdamp,i(t)

= τactive,i + kp,i(φ0,i − φi(t))− bp,i φ̇i (t). (4.3.3)

We only mention damping here once, but it can, of course, be added to the other
compliance models discussed below in the same way. Also nonlinear springs
and dampers might be chosen. The free spring (and potentially damper) pa-
rameters can be tuned by optimization, e.g., to achieve a higher efficiency or
stability. Examples of this type of can be found in robots where simple mechan-
ical springs are put in parallel to the motor actions, and damping or velocity
friction occurs naturally in each joint. In humans, passive tissues of the muscles
as well as in the joints may act as parallel compliance and damping.

In the case of constant serial compliance, the active and passive terms are
not added, but the torque/force generated by the active element is transmitted to
the link via the spring, which obviously is deformed by the load (see Subchap-
ter 4.4 for a discussion of the input/output relationships of compliant elements).
In robotics, this kind of compliance appears when a rigid actuator is assem-
bled in series with a transmission system with some compliance, or mechanical
springs put in series with the actuators. An example for the latter are the series
elastic actuators (SEA) introduced in (Pratt and Williamson, 1995a) and used
in the iCub robot (Metta et al., 2010), also discussed in the example sections.
In humans, the tendons are a prominent example of elastic elements that work
in series with the actuators, the muscles. There are several muscles in the hu-
man body in which the influence of the series elastic element should not be
neglected, e.g., in the Gastrocnemius muscle/Achilles tendon complex. Serial
constant compliance can be modeled by augmenting the equations of motions
(4.3.1) to ⎛⎜⎝M 0 GT

0 R 0
G 0 0

⎞⎟⎠
⎛⎜⎝q̈θ̈
λ

⎞⎟⎠=
⎛⎝−C + τC

τS − τC

γ

⎞⎠ . (4.3.4)

As before, q̈ describes the accelerations of the mechanical parts, corresponding
to the chosen coordinates, and θ̈ describes the accelerations of the points be-
tween actuators and springs. τS denotes the active torques requires in this serial
context and τC the coupling torques transmitted by the spring. The matrix R is
a diagonal matrix describing the inertia of the rotors in robots and of muscles,
etc., in humans. It is important to note that the serial compliance significantly
increases the complexity of the problem by doubling the number of variables
used for the description of all actuated joints with additional compliance.
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4.3.2.2 Variable Compliance

In addition to the model of constant compliance discussed so far, also models
of variable compliance are of big interest for studying locomotion in robotics
as well as in biomechanics. In these cases, the actuators are not built in series
or in parallel to springs, but they are acting inside the spring, directly changing
the spring’s property. Note that this kind of spring is not conservative any more
as an ideal passive spring, but the actuation allows putting energy in as well as
taking it out of the system.

There are two principally different ways to generate variable compliance:
(i) by modulation of the stiffness coefficient, or (ii) by modulation of the rest
length of the spring, as shown in Fig. 4.3.1C and D, respectively. Here we ex-
plain both approaches starting from the model of a linear torsional spring. The
same approaches could be applied to nonlinear spring models.

Compliance modulation by stiffness coefficient modulation can be mod-
eled as follows:

τSM,i(t)= kv,i(t)(φ0,i − φi(t)). (4.3.5)

Here compliance kv,i(t) of each joint can change in time, but the rest length φ0,i

remains constant and the current stiffness coefficient is multiplied by the devia-
tion of the current joint angle from the rest angle of the spring. The MACCEPA
actuators (Van Ham et al., 2007), for example, follow the principle of changing
the stiffness of the spring by two electric motors. Variable stiffness also plays
an important role in humans who have the capability of flexibly adjusting joint
stiffness via different levels of co-contraction. Higher stiffness is, e.g., used to
counteract large forces and to help maintain or stay close to a position, while a
small stiffness is used in more efficient, dynamic, and flexible motions that do
not have to resist external forces.

The other case, modulation of compliance by rest length modulation can
be modeled for each joint as follows:

τRM,i(t)= kr,i(φ0,i + ui(t)− φi(t)). (4.3.6)

Here we assume that the stiffness is constant kr,i , but that the actuator can mod-
ulate the rest length of the spring φ0,i + ui(t) from the original value φ0,i by
changing ui(t). Such a concept can also be implemented using SEA or ex-
tensions which implement the concept of equilibrium point control. Instead of
controlling the force of the actuator, the rest length of the spring is actively
controlled (Van Ham et al., 2009; Robinson, 1997). Examples of this type of
compliance and how in can be optimized are discussed in Section 4.3.5.2. There
also is a discussion about the role of rest length modulation in human motions.
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4.3.2.3 Extension of Compliance Models to Coupled Joints

So far, we have essentially discussed compliance at the level of separate joints.
However, an important property of biological locomotion systems is the cou-
pling of joints via compliant bi-articular muscle tendon structures, such as the
rectus femoris at the front of the thighs or the hamstrings at the back of the
thighs, which all couple hip and knee joints. Concepts of bi-articular tendons
have also been shown to work well in simple robot systems (Iida et al., 2008).

In principle, all models discussed above can be extended to situations with
bi-articular coupling. We will not detail this for all cases, but describe as an
example how the model based on stiffness modulation can be extended to bi-
articular joints (Mombaur, 2014; Hu and Mombaur, 2016):

τi(t)= kB,i,j (t)(φ0,i,j − φi − φj )+ kv,i(t)(φ0,i − φi(t)). (4.3.7)

The first term describes the coupling torque which depends on the angles of
both joints, an individual rest length parameter φ0,i,j , and the individual vari-
able stiffness coefficient kB,i,j (t). In this model, the same term would be added
for the bi-articular effects on the other joint of the pair. This is a quite simple
approach to formulate the coupling just based on torques, but more sophis-
ticated approaches exist, especially in the context of full muscle modeling,
e.g., based on the forces that are transmitted via the bi-articular muscle ten-
don structure and the real lever arms which might be different in the joints
and even changing with the state of the system (see, e.g., Sherman et al., 2013;
Scholz et al., 2014), as well as creating normal forces in the joints. The model
presented above will be used in the studies of human compliance shown later.

4.3.3 USING OPTIMAL CONTROL FOR COMPLIANCE
STUDIES

In this section, we discuss how optimal control methods can be used to tune
compliance in walking systems for design and control optimization for both
constant and variable compliance models. Fig. 4.3.2 shows the components of
an optimal control problem. We do not go into the detailed description and so-
lution methods of an optimal control problem and its solution since this has
already been treated in Subchapter 4.2 on optimization. However, it should be
emphasized that optimal control, in contrast to any other method, can simul-
taneously optimize all compliant components of the locomotion system for an
optimal support of the dynamic motion considered. For systems with many DOF
and compliance models with many possible variations, no manual tuning is fea-
sible and such an automated optimization is absolutely crucial.
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FIGURE 4.3.2 Components of an optimal control problem for optimization of design and control
of compliant models.

In optimal control problems, we distinguish the following types of variables:
t , denoting time, x(t) denoting the vector of system states, which are free func-
tions in time, u(t) denoting the vector of control or input variables of the system
which are also free functions in time, and p the vector of free model parame-
ters. In the case of constant compliance, the compliance parameters to be tuned
would be part of the free model parameters p to be optimized. In the case of
variable compliance, it is useful to choose the variable to be modulated (i.e.,
the rest length or the stiffness coefficient) or suitable derivatives of them as free
control variables u(t) to be optimized.

The constraints of the optimal control problem (second and third block in
Fig. 4.3.2 make sure that the physical properties of the system (the human,
the robot, the animal) are correctly taken into account, including the proper-
ties of the compliance model chosen, and that the desired locomotion task is
fully described. Here it is also important to correctly capture the limits of com-
pliance modulating actuators or for the choice of passive compliant elements in
the model.

Examples for objective functions (firs block in the figure) in the context of
compliance optimization are:

• For models with constant parallel compliance like in Eqs. (4.3.2) or (4.3.3),
different measures related to energy consumption or efficiency could be op-
timized, such as the integral over the weighted sum of active torques squared∫ T

0 τTactiveWτactivedt or the cost of transport. This results in an optimal
choice of the parameters of the parallel springs (and dampers) within the
chosen bounds to support this criterion.

• Performance related criteria, such as a maximization of walking speed or
jumping height or width, could be considered for all compliance models, in
all cases resulting in compliance that is tuned for this particular criterion.

• For investigating compliance in human motions, based on motion record-
ings, the fit of the dynamic model with respect to the data can be optimized.
Depending on the spring model, there still might be some redundancy in this
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formulation (e.g., in the parallel constant compliance case, the same total
torque could be produced by an infinite number of combinations of active
and passive torques). In this case, any other optimization criterion, e.g., min-
imizing the active part above, could be added as regularization term (i.e.,
with a small weight) to distinguish otherwise redundant solutions.

• For variable compliance, it might be interesting to investigate the role of
compliance modulation or rest length modulation (for the first example, see
Section 4.3.4.2). For this a minimization of the derivatives of the respective
terms, which can be chosen as controls, would be suitable. This can also be
combined with other criteria.

• Also different types of stability criteria can be used in the objective func-
tions, such as eigenvalues defining Lyapunov stability, ZMP or capture point
criteria (also compare Subchapter 4.1 on stability).

• With compliant systems, position control is not straightforward, and also
not a suitable thing to do. If, however, it is important to exactly reach or
pass through some points, they can be considered as point constraints of the
problem; if points should be approximately reached or given paths should
be approximately followed, they may be considered in an objective function,
e.g., in form of a least squares formulation. This also works for deviations
from a desired step/hopping length, height, or width.

4.3.4 OPTIMIZATION-BASED COMPLIANCE STUDIES IN
HUMANS

In this section, we present some examples of optimization-based studies of com-
pliance in human motion distinguishing between models of constant compliance
and variable compliance.

4.3.4.1 Constant Parallel Compliance Models for Running and
Walking

Here we discuss an example for the optimal exploitation of constant parallel
compliance by optimization. We consider human running motions for which
we set up models in the sagittal plane as well as in 3D, also taking sidewards
motions as well as yaw and roll directions int account (Schultz and Mombaur,
2010). The results discussed here concern the sagittal plane running model as
shown in Fig. 4.3.3 which has nine segments (a combined pelvis–torso segment,
and two thighs, shanks, feet, and arms). It has mono-articular springs in all joints
in parallel to the actuators, but no dampers. For more information, see Mombaur
(2009).

The optimization studies performed with this model do not involve any hu-
man recordings, but aim at generating running motions by optimization only.
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FIGURE 4.3.3 Model of human running in the sagittal plane with constant parallel compliance at
each joint.

FIGURE 4.3.4 Comparison of active (green line / light gray in printed version), spring torques
(black dashed line) and total torques (black solid line) for two joints of the running model.

We have imposed the average running speed of 10 m/s and then searched for
the solution with minimum active torques squared. Fig. 4.3.4 shows the results
already presented in Mombaur et al. (2009). As shown at the examples of two
joints, the passive torques produced by the springs contribute significantly to the
total torque, allowing for a reduced active torque. The average savings for these
two joints in the particular running motion studied amount to approximately
50%, computed in terms of absolute values of torques.

For the same model, we have also investigated the existence of open-loop
stable running motions, i.e., motions that are stable without any feedback (see
also the chapter on stability). In this case the resulting spring values are obvi-
ously very different since they are principally tuned for generating backdriving
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forces to the trajectory, in the same sense as a P-controller with a constant set
point would do. See Mombaur (2009) for an account on how different objective
functions influence the parameter values of the model.

More recently, these studies have been extended to 3D models of human
walking with 34 DOF (Felis and Mombaur, 2016), also showing that a signifi-
cant amount of the effort can be taken over by passive elements. We also have
investigated how much passive parallel compliance can contribute to recovery
actions from pushes while walking (Kopitzsch and Mombaur, 2017).

4.3.4.2 Compliance Modulation in Human Walking in Different
Situations

For the study of compliance in human walking, we have looked at the compli-
ance modulation at the joint level by considering mono- and bi-articular springs
with the possibility to modulate stiffness (see models (4.3.6) and (4.3.7)). As
many state-of-the-art walking mechanisms use elastic elements with constant
stiffness, we are interested in the actual influence of stiffness modulation on the
walking gait, addressing the following questions:

1. Is stiffness modulated during human walking?
2. If it modulates, how would a reduction of the modulation influence the walk-

ing gait?

This section summarizes the results published previously in Hu and Mombaur
(2016, 2017). For this study, a simple model such as the spring-loaded inverted
pendulum cannot be used, but we need a model with human topology including
the most essential human joints, as in Fig. 4.3.5. Some simplifying assumptions
are made, as we restrict the present study to the sagittal plane, and therefore only
look at the pitch joints. The model was introduced in Hu and Mombaur (2016)
and consists of a 2-dimensional (2D) rigid multibody model with 14 segments
and 16 DOF, of which 13 are internal DOF and 3 are for the free floating base.
The foot model is a flat foot described by two contact points, one on the toe
and one on the heel. Torsional springs are introduced in each of the leg joints,
i.e., hip, knee, and ankle. A bi-articular spring is inserted between the hip and
knee joints in each leg corresponding to the bi-articular muscles of humans.
A damper is inserted in each ankle to avoid possible oscillations that might
occur at liftoff. The stiffness of all the mono- and bi-articular springs is variable
and represents the actuation of the leg joints, where torques are generated by
varying the stiffness of each spring in time. The modulation of the stiffness, the
rest position of each spring, and the damping factor of the ankle are determined
by the optimization process.

To answer our first question, we have identified stiffness histories for human
walking motions from measurements. Here, the stiffnesses of the springs rep-
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FIGURE 4.3.5 Joint angle trajectories are extracted from motion capture data and mapped onto a
2D human model with springs in the leg joints. The same model is used for walking on level ground,
up a slope, and stairs climbing.

resent the control inputs of the system for the leg joints in the optimal control
problem, while in the upper body joint torques are used as controls. We pro-
ceed by mapping joint angle trajectories obtained from motion capture data to
our model by taking into account dynamic constraints and contact sequences
corresponding to the different walking phases. The data sets considered each
consist of a single step for four different male subjects walking in three differ-
ent environments: level ground, walking up a slope, and climbing up stairs. For
each subject and environment, one recording is considered from which a peri-
odic step is extracted, in which the right leg is the stance leg and the left one
the swing leg. For the mapping procedure, the model is scaled according to the
height and weight of the subjects in order to obtain reasonable fittings, and then
a least squares optimization problem is solved to minimize the fitting error.

The optimal control problem solutions provide us with stiffness profiles for
each of the subjects and environment. The profiles show that stiffness is not
constant over the whole walking gait, and that it could only be approximated
as constant in certain phases (e.g., double support phase). In particular, mod-
ulations in a range between 0 and 1500 [Nm/rad] could be observed in many
joints in different environments. The results show common features, but overall
present very different properties among the walking scenarios and can hardly
be generalized for walking in all environments. In the case of level ground, the
stiffness is higher in the stance leg knee joint during single support as the whole
weight of the body is on the stance leg, while in the swing leg it presents a high
spike (up to ∼1200 [Nm/rad]) in the ankle joint after the impact of the foot toe
with the ground due to the collision. In walking up the slope the average behav-
ior is similar to the level ground case, where the stiffness has high values in the
knee joint of the stance leg during single support, while the stiffness of the swing
leg is much lower than in the level ground case, the spike on the ankle joint after
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impact is also much smaller (up to ∼300 [Nm/rad]). When climbing stairs the
stiffness values are overall smaller than in the previous two scenarios, however,
the phases are also different, as climbing stairs does not involve separate toe-tip
contacts but it is assumed that the swing leg strikes on the step with a flat foot.
However, also in this case, spikes are observed after impacts. The stiffness val-
ues of the bi-articular coupling spring are much lower than the mono-articular
springs: the maximum values are around 150 [Nm/rad], with highest values dur-
ing stair climbing. In Hu et al. (2014) a model with fewer DOF was used, and
bi-articular couplings were not included. In this case, in some phases the joint
stiffness reached higher values than those obtained with the current model with
bi-articular couplings. This means that the introduction of bi-articular coupling
could reduce the stiffness since forces are summed up, but the modulations are
still high and can hardly be defined as constant through all the walking phases
in all the three scenarios.

From these observations, we can state that stiffness has high modulations
over the walking cycle, where it has higher values in the stance leg during single
support and present jumps after impacts. We are therefore interested in answer-
ing our second question concerning the effect of a reduced modulation on the
walking gait, and if a gait were still reproducible if stiffness were assumed to
be constant. To answer this question, we introduced the derivative of stiffness as
controls of the optimal control problem, treating the stiffness as additional state
instead. In the upper body we keep the joint torques as control inputs. Addition-
ally to the minimization of fitting errors, we added two more objective functions
consisting of the minimization of stiffness derivatives to reduce modulation and
the minimization of stiffness jumps between phases which were introduced as
slack variables in the optimal control problem.

The results are obtained for the four subjects and three environments with
combinations with different weights of the objective functions. In particular we
imposed increasing weights on the reduction of modulation and on the stiffness
jumps to analyze their effects. In Fig. 4.3.6 we show a subset of results obtained
for the three environments for one of the subjects. We can observe that with high
weight on minimization of stiffness derivatives the stiffness profiles are damped
until becoming almost constant (with modulation in the range of 1 [Nm/rad]) in
different phases, but can still assume very high values and high jumps between
phases. When jumps are minimized, the stiffness over the whole walking cycle
is almost constant but can still have big values. To analyze the influence of
these profiles on the gait, we looked at the average fitting errors of the leg joint
angle trajectories. In the case of level ground and walking up a slope, the gait
can be still vaguely approximated, but with bigger deviations from the original
joint trajectories than in the case with variable stiffness. In the case of stair
climbing, the modulation has higher influence on the gait, as the deviations are
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much bigger, where the joint with biggest error is the hip joint of both stance and
swing legs. In every environment, however, deviations are on average smaller if
at least stiffness jumps across phases are allowed, even though it can be assumed
that human stiffness does not exhibit such jumps.

From the observations made on fitting errors and the obtained stiffness pro-
files, we can say that in generating walking motions, stiffness modulation should
be taken into account where continuous modulation should be a desired feature.
However, this is hard to achieve with real life systems such as state-of-the-
art variable stiffness actuators. We showed that on level ground and walking
up a slope it is possible to recreate walking motions with moderate deviations
from the original motion also with constant stiffness over the whole walking
cycle, but with different stiffness values in different joints. The gait could be
improved if stiffness can be changed for different walking phases, in particular
when complex walking environments are involved. A trade-off between con-
stant and highly modulated stiffness consists in the possibility of switching the
stiffness value when transitioning into a different walking phase. The range of
this switch is, however, high as we can observe from Fig. 4.3.6.

To answer the two questions we can conclude that:

1. Stiffness modulates during human walking and can assume high values.
2. When reducing the modulation to have almost constant stiffness, a gait that is

different but not too far from the original gait can be generated for walking on
level ground and slopes, but that large differences occur for the stair climbing
case.

These conclusions are based on previous assumptions and simplifications of the
model, which we cannot completely neglect in analyzing the outcomes, such
as the model in 2D with motions on the sagittal plane only, the flat foot with
only two contact points and the structure of the springs introduced in the joints
and the bi-articular coupling which already result in a nonzero error in the fit
between model and experiments for the best possible fit. Despite the simplifica-
tions, the results we obtained still give an important insight into how stiffness
modulates in human walking and how the modulation influences the walking
gait considering all effects in the sagittal plane, which is the dominant plane for
walking.

4.3.5 OPTIMIZATION-BASED COMPLIANCE STUDIES IN
ROBOTS

In this section, we discuss examples of the use of different types of compliance
in robots and specifically focus on the use of optimal control to select the best
possible compliance parameters and control inputs with respect to the chosen
criterion.



Control of Motion and Compliance Chapter | 4 211

FIGURE 4.3.6 Representative subset of stiffness profiles of one subject obtained for different
combinations of weights on the objective functions: wf it for fitting error, wder for stiffness deriva-
tives, w�K for stiffness jumps. Limited means that the stiffness derivatives are constrained within
the boundaries±1000 [Nm/rad·s], while in the first case the boundaries are 100 times higher. Please
note that all the plots have different scaling. (For interpretation of the colors in this figure, the reader
is referred to the web version of this chapter.)
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4.3.5.1 Constant Serial Compliance in Robots

Beside the advantages introduced by the compliant actuators in humanoid
robots, the complexity of motion generation and control of the robots also
increases significantly. In this section, we discuss robots with constant serial
compliance, as described in Eq. (4.3.4).

One important example is the new design of the iCub (Metta et al., 2010)
robot legs (Parmiggiani et al., 2012), which was derived from the COMAN hu-
manoid robot (Colasanto et al., 2012), with the aim to perform walking and
balancing motions. A novelty with respect to previous iCub versions was the
introduction of serial elasticity in the knee and ankle pitch joints, with spring
stiffness of 350 [Nm/rad]. This is similar to the series elastic actuators (Pratt
and Williamson, 1995b), but no measurements of the force via the spring de-
formation are taken. A peculiarity of these actuators is that the spring can be
unmounted, making the actuator rigid and giving the possibility of comparing
the performances with and without compliance in the actuators.

We use the HeiCub robot (Hu et al., 2016b), a reduced version of the full
iCub robot located in Heidelberg, with 3 DOF torso and 6 DOF legs. Before
studying walking motions, we want to address the simpler but still challenging
task of squatting with serial elasticity, by using model based optimal control.
The objective is to study the effect of serial elasticity from the motion genera-
tion perspective in order to compare different objective functions and identify
properties and parameters for the more complex task of walking.

The model is reduced to a 2 or 3 DOF model in the sagittal plane as in
Fig. 4.3.7, as the squatting motion does not have significant influence on the
frontal and transversal planes. The full dynamic properties of the robot and the
elasticity in the knee and ankle pitch joints are taken into account in the problem
formulation, i.e., all segments are included but the joints are treated as fixed
except for the hip pitch, knee and ankle pitch joints. In this way the generated
motions can be transferred to the real robot. The hip joint, which is actually
rigid, is modeled here with very high stiffness. The motions are generated with
respect to a set of objective functions including maximization of squat range,
and minimization of joint torques, joint and motor accelerations, and mechanical
work. Stability is modeled based on the Zero Moment Point (ZMP), which has
to lie inside the polygon of support.

During the squatting motion, the robot first goes down from a fully stretched
position and then goes back up, hence the squatting problem is formulated as an
optimal control problem with two continuous phases, where the states are the
generalized joint and motor positions and velocities, and the control inputs are
the joint torques. The motion is defined as a periodic motion which starts and
ends in the same conditions, which means that it could ideally be repeated an
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FIGURE 4.3.7 The model of HeiCub reduced to 2 or 3 DOF. The motion is performed in two
phases. Numerical results are implemented on the real robot.

infinite number of times. The robot does not follow any predefined trajectory,
but the whole-body trajectories are left free to be determined by the optimal
control problem solution.

We computed the maximum achievable squat range by formulating it as ob-
jective function. In the case of the 2 DOF model, the hip pitch joint was kept
fixed at 30 degrees, and the maximum obtained squat range with this setup is of
3.3 [cm], which is extremely small considering that the robot legs are 51 [cm]
long. This results from the poor balancing capabilities introduced by the fixed
hip joint. In the case of the 3 DOF model, the results look much better: the
achievable range is of 18.1 [cm], which corresponds to more than 35% of the
leg length of HeiCub. All following computational results presented are for the
model with 3 DOF and the determined squat range.

Motions are generated for both the models with and without SEA with a
fixed time of 1.5 [s] per phase to compare the different objectives. In the case
of rigid actuators, when other objective functions than torque minimization are
considered, the torque has high variations in all three joints. The acceleration is
subject to a sudden change when the phase changes from squat down to lift up,
due to the higher average torque and mechanical work required to perform the
motion at lower speed. This could be compensated by adjusting the weights of
the objective functions: giving a higher weight to the acceleration term the fast
change would be smoothened, but this would, of course, have a negative influ-
ence on the torque and work terms. In the case of series elasticity, the behavior
is completely different than in the rigid actuator case. Due to the springs, the
acceleration variations are attenuated on the joint side. This happens also in the
hip joint, mainly in the transition between the two phases, where accelerations
of the motors are much higher. Even if a very high stiffness was assigned to
the hip pitch to emulate a rigid actuator, the effect of flexibility is still present.
The elastic joints, i.e., knee and ankle pitch, are moved first and the rigid joint,
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i.e., hip pitch, is the last to move. Due to this delay in moving the hip joint, a
high velocity is required for the hip pitch joint. This is due to the higher average
effort required to move the hip pitch joint at lower speed and to the presence of
the springs in the other joints.

The results obtained for both cases with the combination of all objectives
was implemented on the real robot. When using the rigid actuators, the positions
are tracked accurately in all the joints, but a higher error can be observed on the
hip pitch joint, where a small delay is present. This is because the hip pitch and
roll joints are coupled and therefore they cannot achieve the same velocity as
the other joints. In the case of serial springs, we used a control mode where
the tracking feedback loop is closed on the motor side and the spring is left to
its natural oscillations. In this case both joint and motor positions could not be
accurately tracked, where a bigger error is present on the joint positions, which
resulted to be closer to the motor positions. This means that in the real robot the
stiffness of the joint could be actually higher than in the model, where the effect
could also be due to other elements, such as the stiffness of the transmission
system, friction, and damping. As in optimal control models good parameter
values are very important, these unknown parameters could only be identified
on the actual robot via repeated experiments to further adjust the model.

The goal of this study on squatting was to identify suitable models, param-
eters and constraints for more complex problems with serial compliance, such
as walking. Numerical results have shown that rigid joints should be treated as
such rather than as elastic with high stiffness values in optimal control, as this
might lead to stiff problems as expected. The experiments on the real robot have
shown that the actual stiffness of the joints with serial elasticity is most probably
different from the one set in the model, as in the real system many other factors
also play important roles in addition to the mechanical spring. Walking motions
are commonly generated with reduced models such as the inverted pendulum
(Kajita et al., 2003), which has been done also for the HeiCub robot without
the use of series elasticity (Hu et al., 2016a). Despite the successful walking
motions, reduced models do not respect and also do not allow exploiting the
whole-body dynamics of the robots.

As we did for the squat motion, here we aim to use optimal control with the
whole-body model of the robot including also serial elasticity, where the prob-
lem is formulated in a similar way. The main differences lie in the model, where
all the DOF are considered (i.e., 15 internal DOF and 6 DOF for the floating
base), and the dynamics of the system is hybrid, i.e., there is a combination of
continuous and discrete phases where discontinuities at impacts occur. A higher
number of phases are also needed, since three types of steps occur with different
phases: the initialization step (or maybe more than one) with which the robot
starts the walking motion, the periodic steps in which the robot is in a cyclic
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motion, and the ending step(s) in which the robot comes to a stop. Constraints
include all limitations of the robot acquired during the previous experiments
as well as stability constraints. Several objective functions can be used in or-
der to obtain different walking motions: minimization of the joint torques, joint
accelerations, motor accelerations (model with SEA only), mechanical work,
maximization of step length, walking velocity. The use of serial elasticity dur-
ing walking is expected to contribute to energy savings and shock absorption – if
the passive spring is properly chosen for the walking task. Therefore a thorough
analysis of the performance needs to be carried out.

4.3.5.2 Variable Rest Length Results in Robots

In this section, we discuss a simulation model of a two-legged running robot
that consists of a toroidal trunk and two telescopic legs and performs motions in
the sagittal plane. The robot has four actuators in total, two torque actuators in
the hips between trunk and leg with parallel constant spring damper elements,
and two series elastic actuators in the telescopic legs, which modulate the rest
lengths of the springs. The robot is inspired by the early MIT hopping and run-
ning robots. This precise robot, as shown in the simulation models, has never
been built (but a simplified version has been (Lang et al., 2009), which, how-
ever, used different types of actuators and was not powerful enough to perform
the computed motions). The robot model has 7 DOF in the plane when in the
air, which can be reduced to 5 DOF if the lower parts of the legs are assumed
to be massless. During contact, this reduces to 4 DOF (see Fig. 4.3.8). For more
information about the model, see Mombaur et al. (2005).

As shown in Subchapter 4.2 on optimization, different types of periodic
motions have been generated for this model, including running, somersaults
and flic-flacs, just by changing a few locomotion task constraints. The focus
in this context was the optimization of open-loop stability. Here, we focus on
the behavior of the series elastic actuator and the modulation of the rest length
for these results. In Fig. 4.3.9, we compare the SEA actuation for two differ-
ent motions of the model taken from Mombaur et al. (2005b): the most stable
somersaulting motion which also turns out to be very efficient, and the most ef-
ficient running motion which, however, is open-loop unstable (but was chosen
for comparison since the stable running motion Mombaur et al., 2005 was quite
inefficient).

In both cases, the maximum change added to the original rest length was
chosen as 0.2, and both curves reach this maximum. In the running motion, the
contact phase takes more than half of the step time, while in somersaulting it is
only around 25%. The total step time is increased by 16% for the somersault.
It should be noted that an increase of rest length in a compressed spring adds
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FIGURE 4.3.8 Model of bipedal running robot with SEA.

energy to the system, and a decrease removes energy; however, if the decrease
takes place in the flight phase it passes without any effect, due to the assumption
of massless lower legs. The SEA actuation of the somersaults is characterized
by a very quick peak at the beginning and a somewhat longer second peak until
after takeoff. In the running case, there is only one slowly ascending peak, which
starts only in the second part of the contact phase, and also lasts until after
takeoff, but results in a smaller takeoff speed in vertical direction The right part
of the figure shows that the hopping height is much larger for the somersault,
which results in the longer flight times mentioned above. The edges in both rest
length actuation profiles come from the piecewise constant discretization of the
controls chosen for the optimal control problem solution in this case. In the case
of a real robot, the representation could be adjusted to the physical properties of
the robot’s actuators.

4.3.5.3 Variable Compliance in Robots

As discussed in the introduction, variable compliance control can be imple-
mented in several ways in robots. The gains of the position controller then corre-
spond to impedances with the position gain being the stiffness and the derivative
gain being the damping. The challenge now is to find suitable impedances for
any given time, thus amounting to finding a gain schedule.

Notwithstanding the differences in the different approaches to implement
variable impedance, optimal control methods are very well suited to exploit the
capabilities of adjusting the impedance in all these systems in a principled way.
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FIGURE 4.3.9 SEA controls in the legs and hopping height of the torus center for running and
somersaulting motions.

Hwangbo et al. (2015) show how the impedance of a legged robot with series
elastic actuation (Fig. 4.3.10A) can be optimized such that it becomes more
robust to nonperceived obstacles. The method employed is a model free, black-
box optimization algorithm. Since this method does not rely on a model of the
system, the optimization can be executed directly based on evaluating the can-
didate solutions on hardware. The result is a highly time varying impedance
schedule linked to takeoff and touchdown events of the leg (Fig. 4.3.10B). The
impedance shows a negative change of stiffness at touchdown. The same is ob-
served in human gait models (Blum et al., 2007). Model based optimal control
can as well be used to find impedance schedule. Optimal control is especially
powerful if it is used to unify path planning and control gain design as demon-
strated in de Crousaz et al. (2015). A fully optimized gait pattern with variable
impedances for a quadruped robot is demonstrated in Farshidian et al. (2017).
Here Sequential Linear Optimal (SLQ) control is used to find the optimal con-
trol.

A model-free method called reinforcement learning (Sutton and Barto, 1998)
can be used to find impedance schedules in case model knowledge is insufficient
for model based optimal control. In Buchli et al. (2011) it is shown how such
an approach finds strongly time varying gain schedules for different robots and
tasks by trials of the system and given high level task-unspecific feedback on
the quality of task achievement via a cost function (i.e., reinforcement learning).
Thus a robot can learn suitable impedances, which is particularly interesting in
hard to model situations, typical for biologically inspired robots interacting with
complex environments.

When subjected to random force fields humans have a specific way of shap-
ing both the directional impedance as well as the chosen reference path for the
hand suitable for the characteristics of the external force experienced. The re-
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FIGURE 4.3.10 (A) A blind hoping legged robot asked to stabilize hopping height and thus to
reject random obstacles placed under the foot. (B) Gain schedule at the foot over one hoping cycle.
Reprinted from Hwangbo et al. (2015).

sults in Stulp et al. (2012) show that such variable impedance reinforcement
learning approaches in principle replicate the impedance and motion learning
observed in humans.

The introduced model-based and model-free methods can be combined to
develop methods that can benefit both from domain knowledge through model
based optimal control and the advantages of model-free learning to improve over
the initial model based controller and adapt to the real system. Derived from the
first principle of optimality, optimal control and reinforcement learning both
share the same mathematical foundation. Farshidian et al. (2014) demonstrates
such a pipeline on an instable torque controlled robot. First, a model-based con-
troller and plan is derived with SLQ. This plan is then refined on the real robot
using Path Integral Reinforcement Learning.

4.3.6 DISCUSSION & OUTLOOK

In this chapter we have presented several studies on constant and variable com-
pliance in human and robotic locomotion that were based on optimal control as
a very helpful tool.

In the study of human walking, we have used variable compliance models
as well as models with fixed parallel compliance in the joints in addition to
torque actuators. For the constant parallel compliance we could show for vari-
ous motions that the constant parameter can be tuned in order to best support a
desired motion, e.g., in the sense of minimizing and energy-related cost func-
tion. In this case, the compliance optimally stores and releases energy in order
to minimize the overall energy expenditure. However, it should be noted that
the determined parameters are optimal just for this particular motion and don’t
necessarily work so well for another one, so they would have to be changed. In
humans, this can be interpreted by the fact that only part of the passive torque
comes from truly passive tissue and that the rest of the compliance part comes
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from adjustable compliance of the muscles. The studies of variable compliance
in human walking based on motion capture recordings have shown that stiffness
variation is a characteristic of human walking in different situations. A thor-
ough analysis in other environments with 3D models would be very interesting,
as other anatomical planes and rotations would also be considered. This would
also allow studying situations as step stone walking, or (lateral) stability stud-
ies in beam walking. In this case a revision of the model with more bi-articular
couplings might be needed. Stiffness variation might be a desirable feature in
wearable robotics such as exoskeletons and prosthesis, as their goal is to sup-
port the patients to walk like healthy subjects. Therefore efficient methods have
to be developed that do not only allow solving optimal control problems for the
variable stiffness problems as offline data fitting problems, but also as online
motion generation problems.

Transferring the concept of constant parallel stiffness to robots, the issue of
the constant parameters that are only tuned for one particular motion would have
to be addressed: either one could implement switchable springs that are only
meant to support a set of extremal motions for which they are specially tuned,
or one could look for a whole set of typical situations for which support should
be provided, e.g., extreme push recovery situations, and then the set of constant
springs that is optimally tuned on average for all of them could be implemented.

The actual advantage of variable stiffness, and also constant stiffness for
humanoid robots, still needs further investigation. Even though there are many
conceptual advantages of compliance, the challenges with it still have to be over-
come before compliance can be truly exploited by robots. So far there are only
a few bipeds with compliance, and those with variable stiffness that have suc-
cessfully performed walking are even rarer. A systematic comparison in walking
tasks should be performed to actually conclude on the best possible choices of
objective functions, and the optimized compliance for this difficult task, and to
draw general conclusions about the advantages and disadvantages of compli-
ance in bipedal locomotion. A lot of research will be performed in this area in
the coming years.
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Chapter 4.4

Impedance Control for Bio-inspired
Robots
Jonas Buchli and Thiago Boaventura
ADRL, ETH Zürich, Zürich, Switzerland

Abstract. In this subchapter we introduce the basic concepts required to reason
about the physics of the interaction of the robot with its environment and means
how to control this interaction.

It is often useful to think about a robot as a collection of rigid bodies con-
nected by articulated links, leading to a model in the form of a rigid body
dynamics system. Being a model, it is not fully reflecting reality (e.g., it ne-
glects finite stiffness of the links), but allows one to reason about some of the
important governing dynamics of a robot. Such modeling has been tremen-
dously productive and insightful both for robotics (Featherstone and Orin,
2000) and modeling of human and animal biomechanics (Khatib et al., 2009;
Burdet et al., 2013). We will use the rigid body dynamics model in this chapter
to discuss the effect of dynamic interaction of a robot with its environment. We
will show that with the methods and concepts introduced here one can emulate
appropriate impedances for a legged robot either for modeling or for function,
e.g., such as locomotion and manipulation.

4.4.1 RIGID BODY DYNAMICS

A single rigid body possesses 6 degrees of freedom (DoF) and can be described
by the basic equation of motion of a rigid body:

M(q)q̈+ c(q, q̇)+ f= 0. (4.4.1)

Here M(q) ∈R6×6 is the inertia matrix of the body, q ∈R6 represents the
6 states of a rigid body (3 Cartesian positions and 3 rotations), c(q, q̇) ∈ R6

is the Coriolis force vector, and f ∈ R6 is a generalized force/torque vector,
accounting for all external forces and torques acting on the system, including
gravity.2

2. We use the following notation: upper case bold for matrices, lower case bold for vectors, and
lower case for scalars. Also, we elected Rn to denote vectors composed of n “floating point num-
bers” representing physical quantities that are not necessarily in R. Thus they do not generally
constitute vector spaces and thus in general Rn /∈ Rn. The same argument is extended to matrices.
See, e.g., also Featherstone (2007) for an in-depth discussion.
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A system of uncoupled nb bodies would possess nb × 6 DoF. Every joint
that we introduce to connect two such bodies together introduces at least one
constraint on the relative motion of the bodies, imposing a loss of degrees of
freedom of the overall system. We can thus describe the state of the system
by n = (nb × 6) − cj variables, where cj is the number of constraints intro-
duced by the joints. A set of coordinates that capture these DoF are commonly
also known as minimum coordinates. In robotics, links are typically connected
with revolute or prismatic joints, which allow only a single DoF by introducing
cj = 5 constraints each: 3 relative Cartesian movement directions and 2 rela-
tive rotations for a rotational joint; and 2 Cartesian directions, 3 rotations for
a prismatic joint. Thus, for a set of nj = (nb − 1) revolute or prismatic joints,
we have n= ((nj + 1

)× 6
)− (5× nj

)= nj +6. This means that an articulated
rigid body system with nj prismatic and/or revolute joints can be fully described
using nj + 6 variables.

Example. Consider an articulated “robot” consisting of two links. The two bod-
ies are connected with a revolute joint. Thus the total number of DoF of the
mechanism is n= 7. A possible choice of a minimal coordinate system in this
case is [x1, y1, z1, α1, β1, γ1, θ12], i.e., the position and orientation of one of
the bodies with respect to an inertial frame, and the angle of the revolute joint
connecting the two bodies.

Using a choice of minimal coordinates, we can write the equation of motion
of such a system constituted by rigid bodies connected together as

M(q)q̈+ c(q, q̇)+ g(q)+ f(q, q̇, t)= 0 (4.4.2)

with M(q) ∈Rn×n, c(q, q̇) ∈Rn, f(q, q̇, t) ∈Rn. Note that we have split up f
and made the gravitational forces explicit in the new term g(q) ∈Rn for con-
venience. The physics of the system still looks very much like a rigid body
dynamics; however, the properties of the system are now state dependent, and
thus in general also a function of time. It is beyond the scope of this chapter to
show how the quantities M(q) and c(q, q̇) are derived. There are many great text
books that describe different methods to do so. In particular, we would like to
point the interested reader to Featherstone (2007), where highly efficient algo-
rithms to calculate these quantities are described. The key message is that these
quantities can efficiently and automatically be derived by computer code. See
Frigerio et al. (2012, 2016) for an efficient, yet easy to use implementation of
these concepts.

For the modeling of rigid body systems, we typically use a few coordinate
systems that have a special importance. First, the already mentioned inertial
coordinate system that represents the “resting” world, which does not move.
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It is also called world coordinate system. Second, there is the joint coordinate
system that describes the position of the links by using only the joint position
(e.g., angles) with respect to a certain reference, which is usually the position
of the previous body in the kinematic chain. This is usually a more intuitive and
“natural” representation of the robot.

There are other coordinate systems that may be relevant for modeling and
control of rigid body systems. For instance, there is the coordinate system fixed
to an arbitrarily chosen reference body, named base, which is often the heaviest
or biggest body of the robot. This coordinate system is called base coordinate
system, which moves as the base moves. There is also the motor coordinate
system, which is usually the same as the joint coordinates, but not necessarily.
Also, especially in bio-inspired robots one often finds the case that a motor sys-
tem (e.g., an artificial muscle or tendon based actuation system) spans two DoF,
e.g., to mimic biarticular muscles, or that some joints deliberately remain unac-
tuated. Such cases can readily be modeled with the notions of task or operational
spaces, as introduced in the next sections. In case of a muscle/tendon actuated
system, however, it can be useful to reintroduce a dedicated muscle coordinate
system, see Demircan et al. (2012) for an example.

Example. Consider the simple 2D floating base legged robot shown in
Fig. 4.4.1. Given the constraints inserted by the revolute joints, the position
of each link of the robot can be fully defined by the (xi, zi) position of a cer-
tain point (e.g., the center of mass) fixed to it. Since the base is floating and
can also rotate, it needs an additional angular position θb in order to be fully
defined. Thus, to fully define the configuration of the entire robot using only the
world frame, we would need 7 variables: xb, zb, θb, x1, z1, x2, z2. By using the
joint coordinate system for the links we have the minimal representation with 5
variables: xb, zb, θb, θ1, θ2.

A particularly useful set of coordinates for mobile robots with arms and legs
are the joint coordinates qj and the position and orientation xb of the base frame:

q= [xb qj]T (4.4.3)

where

xb = [x, y, z,α,β, γ ]T ,
qj = [θ1, . . . , θnj ]T .

This leads to the formulation of a floating base rigid body system (Sentis and
Khatib, 2006; Dubowsky et al., 1999; Mistry et al., 2010), that is, a system of
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FIGURE 4.4.1 Schematics for a planar legged robot with 2 revolute joints. Based on the inertial
Cartesian frame [x, z] the positions of base and links (xi , zi ), with i = {b,1,2}, can be defined.
The orientation of the base is given by θb . Other coordinate systems are also shown, such as the
joint polar coordinate system [θ1, θ2] and the base Cartesian coordinate system [xB, zB ]. These
coordinate systems can be used separately or in combination to model and control a robot.

FIGURE 4.4.2 3D representation of three typical coordinate systems used in modeling biological
inspired robots. The robot joint coordinates qj describe the (internal) positions of the links with
respect to the base frame xb , which in turn is measured relatively to the inertial frame. Together
these coordinate systems build a complete minimal coordinate system for a mobile robot.

coupled rigid bodies, i.e., a robot, that is not fixed to any point in the environ-
ment, see Fig. 4.4.2:

M(q)q̈+ c(q, q̇)+ g(q)+ Jc(q)T fc + fm + f(q, q̇, t)= 0. (4.4.4)

In the description above, we made the effect of the contact forces of the
robot end-effectors with the environment explicit rather than adding them up
in the general external force vector f by writing them as Jc(q)T fc, where
Jc(q) ∈ Rnc×n is the configuration-dependent contact Jacobian, and fc ∈ Rnc

the contact forces vector of the nc contacts. In particular, this form makes it
clear that it is not necessary to derive different rigid body dynamics models for
each contact state the robot may face (e.g., when the foot is in stance or flight
phase in a legged robot). Instead, the different contact states are reflected in here
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by different choices of the contact Jacobian Jc. This is a highly flexible and use-
ful approach both for simulation (Coros et al., 2011) and control (Barasuol et
al., 2013) since the contact Jacobian can be selected algorithmically at run-time
by a program.

Furthermore, given a robot usually has actuators to drive some or all of its
joints, a term of motor forces fm can also be made explicit. We elect to write
this term as

fm = ST τ (4.4.5)

where τ ∈Rnj is the vector of joint torques, and S ∈Rnj×n is a binary selection
matrix reflecting the fact that only some of the DoF of a robot can be directly
actuated.

Example. The selection matrix S for a 3D robot with fully actuated joint space,
would be written using S= [0nj×6 Inj×nj

]T . This is because the 6 DoF of the
base of the robot can never be directly actuated.

Finally, all further external forces acting on the robot links can be summed up
and accounted for in f. This includes, e.g., joint friction, and eventually forces
due to passive mechanical components fixed to the robot structured, such as
springs and dampers.

Example. Consider adding a rotational spring to the first revolute joint of
the 2D robot of Fig. 4.4.1, and that it is the only “external” force acting
on it. The external force f would be modeled as f = [01×3 fspr 0] where
fspr = kspr (θ1 − θ10), θ10 is the spring resting length, and kspr the spring stiff-
ness.

A detailed discussion of the mathematics of rigid body dynamics systems
is beyond the scope of this chapter. A great in depth discussion of rigid body
dynamics and constraints can be found in Featherstone (2007).

4.4.2 TASK/OPERATIONAL SPACES

Ultimately, instead of the dynamics in joint space, one would rather like to know
what the “physics” of the robot looks like at other points of interest, e.g., the
hand, the foot, the Center of Mass (CoM), etc. Especially, we would like to
understand the behavior of the interaction with the environment at such chosen
points. It turns out that the dynamics at these points can be straightforwardly
derived from the above introduced general dynamics.

As we will see shortly, there are two key quantities of interest to understand
the physics governing interaction in any rigid body dynamics system: the forces
and the velocities. We thus need to understand how to transform these quantities
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from one coordinate system into another one. The key is choosing a coordinate
frame (the “task space”) that describes the point of interest and the directions
of motion at this point. Then, properties of the coordinate transform can be
used to map the equations describing the physics between the two systems. In
the interest of space and explanatory power, in the following we will use an
informal, illustrative, yet not entirely mathematically precise way of deriving
the two relationships.

For the time being, we will assume that there exists a coordinate transform
between the two chosen systems: x= T (q). Firstly, let us now derive the veloc-
ity ẋ in the new coordinate system:

ẋ= dx
dt
= dT (q)

dt
, (4.4.6)

which using the chain rule can be written as

ẋ= ∂T (q)
∂q

q̇= Jq
x q̇. (4.4.7)

The partial derivative Jq
x = ∂T (q)

∂q = ∂x
∂q is called the Jacobian matrix. To stress

which of the two involved coordinate systems we are referring to, colloquially
we often say that it is the Jacobian from coordinate system q to x, and de-
note this fact in the notation. As we will see, the Jacobian has a central role in
understanding almost any aspect of rigid body dynamics, including impedance
behavior.

Secondly, let us derive the relationship of the (generalized) forces in the two
coordinate systems for a nonredundant rigid body system (i.e., a system with
the same number of degrees of freedom in task and joint spaces). Here we use
a simple variational principle. The work being done in both coordinate-systems
must be the same. Thus any small change in the state of the system described in
one coordinate system must amount to the same work in the other system:

fT δx= τT δq. (4.4.8)

Applying the definition of the Jacobian,

J= δx
δq

, (4.4.9)

we can rewrite this as

fT Jδq= τT δq. (4.4.10)

This statement has to be valid for all nonzero “virtual displacements”, and thus
we get

τ = JT f. (4.4.11)
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For redundant systems, where the “robot” has more degrees of freedom at
the joint than at the task space, the relationship of these generalized forces is not
unique anymore. In this case, there is a nullspace where joint motions do not
produce any motion or work at the task space. For more details on redundant
systems and on how to handle this nullspace, please refer to, e.g., Mistry and
Righetti (2011), Sentis (2007).

4.4.3 IMPEDANCE & ADMITTANCE

With the above introduced foundational concepts on the physics of a rigid body
system with its environment, let us now model them as impedances and admit-
tances.

We are seeking to understand the dynamic interaction (i.e., a functional de-
scription of the time evolution in the form of a differential or integral equation)
of a certain point on the robot with its environment. This is captured by the dy-
namic relationship of the flow and effort variables, which describe the power
flow at this point. In order to be able to fully describe the time evolution of
power, one needs to understand the states of the system, which in this case are
energy storages. In any given mechanical system there are two types of energy
storage elements: one type for kinetic energy and one type for potential energy.

To understand the basic physics of these elements and the fundamental dif-
ference between the two, let us take a look at the simplest linear storage ele-
ments: an ideal mass m (kinetic energy) and an ideal spring (potential energy)
following Hooke’s law with spring constant k.

We can see that there is a fundamental difference between these two ele-
ments. For the mass, the velocity is causally dependent on the force imposed
on the it, while for the spring the force is causally dependent on the velocity
imposed on the spring. Also, for a mass and a spring, the energy stored is di-
rectly determined by the state “velocity” and the physical parameter “mass”
(ek = (m2 )v

2), and by the state “force” and the physical parameter “spring con-
stant” (ep = ( 1

2k )f
2), respectively. We thus realize that one of the most founda-

tional principles of physics, causality, dictates two distinct classes of elements,
which we elect to define as admittances and impedances, respectively. We thus
come to a first alternative definition of admittances as stores of kinetic energy,
and impedances as stores of potential energy.

Example. From the above definition it becomes clear that gravity acts as
a configuration-dependent impedance on the robot bodies. Consider a planar
1-DOF fixed-base robot with a single revolute joint. The Jacobian matrix J of
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TABLE 4.4.1 Pure mass and spring dynamics

Mass Spring

Governing differential equation v̇= 1
m f ḟ= kv

Governing integral equation v= 1
m

∫
fdt f= k

∫
vdt

TABLE 4.4.2 Admittance and impedance definitions

Admittance Impedance

Integral definition v= ∫ fA(f)dt f= ∫ fI (v)dt
Differential definition v̇= fA(f) ḟ= fI (v)

the link center of mass pG = [xG zG]T would be given by

J=
[
dxG
dθ
dzG
dθ

]
=
[
−l sin θ
l cos θ

]

where l is the magnitude of the vector pG, and θ the angle between pG and a
horizontal line. The gravitational force acting on the center of mass is given by
f = [fx fz]T = [0 −mg]T , where m is the total mass of the link and g is the
gravity acceleration magnitude. The respective joint torque is then τ = JT f =
−lmg cos θ . This derivation clearly illustrates that the reflected torque caused by
gravity can be interpreted as a nonlinear joint spring. An equivalent derivation
of the above torque equation can be done considering the cross product τ =
pG ×mg. For robots with more degrees of freedom, the reflected torque at the
a certain joint will depend not only on the position of the link attached to it, but
also on the position of all the preceding and subsequent links. For floating base
robots, the reflected gravity torques will depend also on position and orientation
of the base.

To write the definitions in general form we must express power as p(t) =
v(t) · f(v(t)) in case of an impedance or p(t) = f(t) · v(f(t)) in case of an ad-
mittance, which will thus lead to an integral equation, as shown in Table 4.4.2.
We list an equivalent differential definition, which is the common definition of
impedance and admittance in the literature. As can be seen from these defini-
tions, there is no requirement for the admittance function fA and the impedance
function fI being linear, or even continuous.

Also from the introductory discussion above and the definitions in Ta-
ble 4.4.1 and Table 4.4.2, it is easy to intuitively grasp that the two elements
have a natural definition of input and outputs. This is a reflection of the causal-
ity underlying the physical nature of such mechanical elements: inputs can be
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non-differentiable, but the outputs cannot. The reasoning behind this is that in
order to have an instant (e.g., step-like) response at the output, the input to the
dynamic system would need to have an infinite magnitude. For instance, for an
impedance (i.e., a spring) to have a step-like force response, an infinite velocity
would be required. While of course we can mathematically express such infinite
quantities, they are a clear sign that important aspects of the physical reality are
being neglected. This is particularly important if these relationships are used in
closed loop control, where causality must be observed and is thus very important
for impedance control.

This simple causality analysis leads to a second alternative and equivalent
definition of admittance and impedance based on their input/output relation.
An impedance, defined at a particular location of a mechanical system, is a
function describing the force produced when a motion is imposed on the system
at this location. In analogy, an admittance is defined as the function describing
the motion that a mechanical system exhibits if a force is applied to a given
location.

From this discussion, we realize that without further assumptions we cannot
transform an admittance into an impedance and vice versa, as this in general
leads to a causality inversion. If, however, we make some assumptions, common
ones are continuity and linearity, we can define algebraic relationships between
the two that are useful for mathematical treatment (such as standard and well
known treatment of linear systems for control (Franklin, 1993)). In this case, the
admittances and impedances can be defined as transfer functions from force to
velocity and velocity to force, respectively. These definitions can also be further
generalized and applied to other physical quantities via the definition of flow
and effort, and bond graph modeling (Hogan, 1985a), as shown in Table 4.4.3.

Example. Applying Newton’s second law to a damped spring–mass system, we
get the dynamics f=mẍ+ bẋ+ k(x− x0), where x0 is the spring resting length
vector. We can then apply the Laplace transform to this ordinary differential
equation to get the impedance transfer function z(s)= f (s)

ẋ(s)
=ms+b+ k

s
. Since

for linear systems the admittance is the inverse of the impedance, we can also
write the admittance transfer function a(s)= 1

z(s)
= 1

ms+b+ k
s

.

We now want to turn back and apply the concept of impedance to a robot
modeled as a general articulated rigid body dynamics system as introduced in
the beginning of this chapter.

4.4.4 IMPEDANCE OF A ROBOT

The definition of an impedance is always linked to a chosen location of inter-
est in a mechanical system and thus a given system can exhibit many different
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TABLE 4.4.3 Linear impedances & admittances

Impedance Admittance

Transfer function definition z(s)= f (s)
v(s)

a(s)= 1
z(s)
= v(s)

f (s)

Spring k
s

s
k

Mass ms 1
ms

Damper b 1
b

Spring–mass–damper ms + b+ k
s

1
ms+b+ k

s

impedances (or admittances); of course, some of them are functionally linked
through the rigid body dynamics.

In other words, using the mathematics of task spaces we can transform the
impedance given in one coordinate system into another. For example, we might
be interested in the reflected motor inertia/admittance at the output of a gear
train, or the impedance seen at the foot of a robot controlled via motors in its
joints.

Example. Consider passive springs placed at the revolute joints of a robotic
arm or leg such that τ = Kθ (q− q0)⇒ τ̇ = Kθ q̇. Considering the task space
relationship q̇ = J−1ẋ, we can write τ̇ = KθJ−1ẋ. Now, given the task space
generalized forces relationship, we have τ = JT f⇒ τ̇ = J̇T f+ JT ḟ. For a fixed
posture (i.e., J̇ = 0) we have τ̇ = JT ḟ. Via simple manipulations and substitu-
tions, we can write ḟ= J−1T KθJ−1ẋ=Kxẋ, where the term Kx = J−1T KθJ−1

can be seen as the reflected task space stiffness. In the same way, one can derive,
e.g., the reflected motor inertia at a certain task-space.

In general, we can write the behavior of the original rigid body dynamics
system (4.4.2) in the chosen new coordinate system of the task space as

�(x)ẍ+μ(x, ẋ)+ p(x)= f. (4.4.12)

The inertia �(x) in task space is configuration dependent and can be shown
to be (Khatib, 1987)

�(x)= J−T (q)M(q)J−1(q). (4.4.13)

Important to realize is that the impedance seen at a certain point of a robot
is in general not only dependent on its joint configuration and joint controller,
but as well the contact situation with the environment. A simple thought exper-
iment illustrates this fact: Consider the linear admittance presented by a point
mass floating in free space which is A(s) = 1

Ms
. Now consider the same body



Control of Motion and Compliance Chapter | 4 233

resting against the earth, the admittance seen is now the combined admittance
of the particle and the large planet (which is for practical matters infinity). The
methods we introduced let us readily reason through such “reflected” inertia in
a general case of an articulated robot in contact with the environment.

4.4.5 IMPEDANCE CONTROL

The impedance at a specific contact point on a robot can be achieved in two
general ways: passively or actively (Mason, 1981; Whitney, 1985). Passive
impedance is obtained through hardware and can be attributed to mechanical
elements, such as: the limited stiffness of the robot’s links; the compliance of
the actuator transmission (e.g., springs, gearboxes, harmonic drives, hydraulic
oil, air, etc.); and the softness of the robot “skin” (e.g., a layer of rubber). On
the other hand, active impedance is achieved via the control of the robot states
and the manipulation of joints. These two approaches (and the following) can
be combined.

Let us now turn the discussion to the question how one, through the appropri-
ate choice of a controller, can actively influence the impedance of a robot. From
the sections above it becomes clear that there are several ways of adjusting the
robot impedance: (1) through applying motor forces in reaction to changes in
the system state, (2) through configuring the robot into a certain pose, and fi-
nally, (3) by placing the robot into a given contact situation. In general, we can
combine all three of these methods to achieve a certain behavior of a robot. Let
us look in turn into these three different options.

4.4.5.1 Impedance Control Through Joint Control

A well-known and common way of regulating the dynamic behavior of a robot
is by controlling its joints. There are several different choices and flavors of
impedance controllers. For instance, they can be designed in a task space (e.g.,
impedance control Hogan, 1985b, using operational space control Khatib, 1987,
and virtual model control Pratt et al., 2001), or in joint space (Boaventura et
al., 2015). Although the space of interest may change among these approaches,
they have an important common characteristic: they rely on a state feedback
controller which usually produces desired joint torques as output. Thus, a par-
ticularly useful way to implement such impedance controllers on real robots is
by using SISO low-level joint torque controllers to track the generated torque
commands (Boaventura, 2013; Focchi, 2013). As the design of these joint torque
controllers goes beyond the scope of this chapter, we will focus instead on pre-
senting few of the above mentioned impedance control approaches. For now, we
assume the robot has high-fidelity joint torque sources.
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FIGURE 4.4.3 Joint cascade impedance control architecture: an outer loop feeds back the po-
sition and creates the torque reference τref for the inner torque loop, which calculates the input
command u to the actuator. Both outer and inner controllers can feedback additional states in case a
model-based controller is employed.

An often used implementation of an impedance controller consists of a cas-
caded control architecture composed by an inner torque loop and outer position
feedback loop that sets the desired impedance (Whitney, 1987), as depicted in
Fig. 4.4.3. Here, both control loops are SISO, that is, each joint is controlled in-
dividually and does not explicitly take the states of the other joints into account
(Boaventura et al., 2015; Luca et al., 2006). It is also common to use a MIMO
approach for the outer impedance loop, using e.g., a LQR (linear quadratic reg-
ulator) controller (Stengel, 1994; Mason et al., 2014) or a nonlinear feedback
linearization controller (Slotine and Li, 1991), where the intrinsic joint coupling
can more easily be taken into account. The output of the MIMO controller is
usually a vector of joint torques, which are sent as desired values to, usually
SISO, joint torque controllers.

To illustrate the design of the outer impedance loop, consider a simple ideal
mass m that is driven by a motor force fm in a plane. We would like to set
a desired dynamic behavior for this mass such that, when interaction with an
external entity, this contact force fc would be given by

fc = bd�ẋ+ kd�x−md ẍ (4.4.14)

where md , bd , and kd the desired mass, damping, and stiffness, respectively. The
operator � represents the difference between the desired and the actual values,
e.g., �x= xd − x. In this case, the expected acceleration of the mass is

ẍ=m−1
d (bd�ẋ+ kd�x− fc). (4.4.15)

The dynamics of the real mass is determined by Newton’s second law mẍ +
fm+ fc = 0. Solving for the motor force and substituting the desired acceleration
above, we get the impedance control command,

fm =−m m−1
d (bd�ẋ+ kd�x− fc)− fc. (4.4.16)
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Example. In case the control designer does not wish to change the inertia of
the system, i.e., m=md , the impedance control law reduces to fm =−(bd�ẋ+
kd�x), which is equivalent to a position PD feedback controller.

We can also easily map the impedance control law derived above to an artic-
ulated multi DOF rigid body system. Using the definition of the Jacobian matrix,
Eq. (4.4.7), and the desired linear acceleration, Eq. (4.4.15), we can write

q̈= J−1 (ẍ− J̇cẋ
)= Jc

−1
(

M−1
xd

(
Bxd�ẋ+Kxd�x− fc

)− J̇cẋ
)

(4.4.17)

where Mxd , Bxd , and Kxd are the desired task space inertia, damping, and stiff-
ness matrices, respectively. Using the rigid body dynamics, Eq. (4.4.4), this
leads to the traditional articulated impedance control law for a fully actuated
robot, as presented by Hogan (1985b)

fm =−MJc
−1
(

M−1
xd

(
Bxd�ẋ+Kxd�x− fc

)− J̇cẋ
)
− g− c− Jc

T fc − f.

(4.4.18)

Note that this impedance control law requires the measurement of the interaction
force fc at the contact points.

It is also possible to set a desired impedance in joint space similarly to the
task space case above by setting a desired joint acceleration as

q̈=M−1
θd

(
Bθd�q̇+Kθd�q− Jc

T fc

)
,

which leads to the following control law:

fm =−MM−1
θd

(
Bθd�q̇+Kθd�q− Jc

T fc

)
− g− c− Jc

T fc − f (4.4.19)

where Mθd , Bθd , and Kθd are the joint space desired inertia, damping, and stiff-
ness, respectively.

4.4.5.2 Impedance Control Through Kinematic Configuration
Control

Here the kinematic configuration of the robot is adjusted such that a certain
impedance is realized. For example, a humanoid robot can chose a stretched out
position of the arm to apply more force to an object through directly coupling
the inertia of the main body with the output point at the arm. In other words, the
object will see the main body as a large part of the reflected inertia at the point
of contact with the robot.
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Example. In this example we show how one can use the posture of the robot
to control its impedance/admittance. Consider the 2-DOF planar legged robot
depicted in Fig. 4.4.1. The fixed-base Jacobian matrix Jθ for the foot can be
written as

Jθ =
[
l1 cos(θ1)+ l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

−l1 sin(θ1)− l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

]
.

As shown in Eq. (4.4.13), the inertia �(x) at the task space depends on the
inverse of Jθ . Since near singularities (i.e., θ2 → 0 in this case) we have
det(Jθ )→ 0, the apparent inertia � at these regions tends to infinity, and so
does the impedance.

If we consider the base is now floating, with extra translational 2 DOFs in x

and z directions (rotation not considered, i.e., θb = 0), the floating base Jacobian
matrix JB would be

JB =
(

1 0
0 1

∣∣∣∣∣ Jθ

)
.

Due to the matrix inversion in Eq. (4.4.13), it is not straightforward to gain
insight into the inertia matrix in an analytic form. However, if we consider the
arm in the singular position (θ2 = 0) and vertical (θ1 = 0), the inertia matrix �

at the foot would be given by

�=
[
f (p) 0

0 Mb +m1 +m2

]

where f (p) is a general function of a set of parameters p that include the length,
center of mass position, mass, and moment of inertia of the links, as well as the
base mass Mb . As we can see, the inertia seen at the foot in z direction in this
singular position is equal the sum of all the masses, which is a very intuitive
result that demonstrates how one can use kinematics to regulate the impedance
of a robot.

4.4.5.3 Impedance Control Through Contact Control

Finally, the robot can chose a certain contact configuration to increase the
impedance. For instance, a humanoid robot might deliberately chose to rest its
forearms against a solid object such as a table in order to have a higher output
impedance at the hands and a decoupling of the trunk and the hand to achieve
higher manipulation precision. Humans tend to use such a strategy in fine ma-
nipulation tasks requiring high precision.
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FIGURE 4.4.4 (A) Schematic of the virtual elements implemented in the HyQ robot leg, which
uses a stiff hydraulic actuation system. (B) Linear spring and exponential-spring-damper emulation.
The black line shows the ideal behavior, the red the emulated behavior. The work done by these
components can readily be evaluated from the available joint data. (For interpretation of the colors
in this figure, the reader is referred to the web version of this chapter.)

4.4.6 EMULATION OF MUSCLE MODELS

The presented methods of impedance control can be used to emulate a wide
range of “virtual models”, it including models from biology. For example, the
joint actuator models can be inspired from biology and include the dynamics and
properties of muscles, tendon systems, etc. In Fig. 4.4.4B we show the emulation
of a linear spring f = 2500δl and an exponential spring–damper f = 17e10δl +
50l̇ with the above introduced impedance control on a leg of the HyQ robot,
Fig. 4.4.4A (Boaventura et al., 2012; Semini et al., 2011). Thus, such approaches
allow one to study the behavior of muscle models in real world behaviors. The
energy consumption of the emulated springs, dampers, muscles and other virtual
models and flows between them can readily be analyzed from the available joint
data, thus amounting in a study of virtual metabolics.

An often used muscle model is the Hill model (Hill, 1938), which can be
written as (Shadmehr and Wise, 2004)

ḟm = f (vm, lm, fm) (4.4.20)

where fm is the muscle force vector, and lm and vm are muscle length and
contraction vector rate, respectively. This relation not only fits the definition
of an impedance, but also describes a state dependent torque that can directly be
applied to a torque controlled robot by calculating the muscle length and con-
traction rate using a Jacobian from joint space to a “virtual” muscle space. The
Jacobian emulates the function of the muscle attachment points and the resulting
lever arms. See Burdet et al. (2013) for an in-depth introduction and treatment
of impedance control of humans using the concepts presented in this chapter
among others.
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4.5.1 INTRODUCTION

Within integrative biology, template models have enabled us to gain insight and
understanding into a variety of complex motor control tasks. Indeed, we see
that despite the relative complexity of our musculoskeletal systems, locomo-
tion is often well modeled conceptually with relatively few degrees of freedom.
Species from crabs to kangaroos bounce in a dynamically similar fashion, well
described by the Spring-Loaded Inverted Pendulum (SLIP) template model.
While the SLIP only captures the role of spring-leg operation in governing the
center of mass (CoM) dynamics, in principle, increasingly complex template
models may be sought and developed to describe increasingly rich aspects of
motion. However, the importance of conceptual models is hypothesized to ex-
tend well beyond merely these descriptive capabilities.

In addition, template models may be used as prescriptive models of loco-
motion, providing low dimensional dynamic targets for closed-loop control in
biological and robotic systems alike. It has been hypothesized that the cogni-
tive processes regulating locomotion may include reasoning centered around
reduced dimensional subsets of our full dynamics – template dynamics that cap-
ture the most salient aspects of a locomotory behavior (Full and Koditschek,
1999). This conjecture is a central tenant of the templates and anchors hypothe-
sis from Chapter 3. These principled reductions capture universal characteristics
of locomotion and may play an important role in enabling animals to general-
ize dynamic performance across such a wide range of scenarios in nature. This
section aims to illuminate how conceptually similar reductions may be applied
within control of our robots, enabling versatile locomotion with template mod-
els for control.

Before we begin, why should one consider the use of these reductive models
for control when performance guarantees in the full state space may be pro-
vided by other control techniques in this chapter? At present, many methods
with performance guarantees are not yet computationally viable for real-time
application in the high-dimensional state space of our robots. Some methods,
for instance those in Subchapter 4.7, provide certificates of stability and robust-
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ness through offline analysis. However, these guarantees are often only valid in
a narrow region of the state space. The hybrid and nonlinear dynamics in our
high-degree-of-freedom (DoF) robots challenge the development of guarantees
that hold more broadly. These challenges collectively motivate the use of tem-
plate models for control: by addressing an important subset of the dynamics,
template-based control provides computational and analytical advantages that
enable real-time computation and simplify control system analysis.

As we start to view template models for control, it is important to understand
the fundamental differences from the use of template models in biology. Within
biology, it is a role of the integrative biologist to discover reduced dimensional
template dynamics embedded in human or animal motion. These template dy-
namics may take the form

ẋT = f(xT )

where f(·) captures the effects of closed-loop sensorimotor control, and xT rep-
resents the state of the template. Rather than discover existing dynamics, within
robotics, it is instead the goal to synthesize closed-loop dynamics through real-
time control. For an uncontrolled robot, it is possible that no template dynamics
exist in advance. As a result, the specific aim of template-based control is to re-
alize the behavior of a template through feedback in the full model. To guide the
design of this feedback, we view templates themselves as controlled dynamic
systems

ẋT = f(xT ,uT ) (4.5.1)

with template control inputs uT used to shape the closed-loop response. By
strategically crafting closed-loop template controls that achieve a high-level goal
(a desired running speed, or recovery from a push disturbance, for instance),
anchoring a template imparts satisfaction of these performance objectives in the
full model.

4.5.1.1 A Design Process for Template-Based Control

Despite the wide range of applications for template models in control, the de-
velopment of template-based controllers generally follows a common workflow.
This design process can be broken down into three rough steps as depicted
in Fig. 4.5.1: template selection, template control, and establishing the tem-
plate/anchor relationship. Template selection entails the choice or design of a
reduced dimensional control dynamic system that captures the challenges of a
motion control task while respecting the limitations of any target hardware. Fol-
lowing this selection, reduced dimensional control strategies may be designed
for the template. Properties of the closed-loop dynamics for this template may
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FIGURE 4.5.1 Three step design process to employ template models for control. The steps pro-
ceeding top to bottom represent a linear progression of designing a template-based control system.
At each stage in the process, design decisions from earlier steps should be refined, as represented
by the upward flows.

then be used to guide control in a high-DoF robot towards establishing a tem-
plate/anchor relationship.

We further detail each of these steps in the sections that follow. Examples
of developing walking and running controllers for a humanoid are presented to
clarify the design steps. Despite the rather linear progression in the presentation
of the examples, we note that the design process in general should be iterative.
In practice, insights gained at each step should be used to continually inform
refinements to decisions made earlier in the process. For example, following
the development of a SLIP-based template controller in step (2), attempted ap-
plication to a robot with high-impedance transmissions in step (3) may require
redesign of the template model selected from step (1). At the conclusion of the
process, the final output is a real-time control system, which may be used in a
physical or simulated robot.

4.5.2 TEMPLATE MODEL SELECTION

In the first step of the process, an appropriate template for the motion control
task must be selected or designed. This selection may come from study into mo-
tor control for biological systems, from previously applied models in robotics,
or from personal insight into the fundamental physics of the motor control task.
There is no explicitly right or wrong template model for a given task, and within
robotics one need not be confined to those models that have appeared in biology.
Indeed, fundamental differences between mechanical actuators and materials
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FIGURE 4.5.2 The linear inverted pendulum (LIP) and spring loaded inverted pendulum (SLIP)
models are commonly employed templates for walking and running control in legged robots.

compared to biological muscles and tissues necessitates strategically principled
bio-inspiration. As a result, the validity of a template model in robotics may
only be judged based on the results of the final template-based control system.
This may be viewed as a downside. However, we see a similar story for the use
of template models in biology. Across both realms, a template model can never
explicitly be proven as the correct template, but instead must be judged based
on its usefulness to understand or control new physical behaviors.

Within the control of locomotion to date, popular template models have gen-
erally been simple physical dynamic systems. That is to say, systems whose
dynamics follow the laws of Newtonian physics. Such models include the lin-
ear inverted pendulum model (LIP) as commonly used for walking control
(Kajita et al., 2001, 2003; Herdt et al., 2010), the SLIP model used in run-
ning control (Blickhan, 1989; Seipel and Holmes, 2005; Garofalo et al., 2012;
Wensing and Orin, 2013b), and many others. Examples below detail these com-
mon center of mass (CoM) template models further, highlighting their benefits
to control dynamic walking (Kuindersma et al., 2015) and running (Wensing and
Orin, 2013b). We will follow these examples though the design process of tem-
plate models for control applied to a high-DoF robot in the sections to come.
Through this development xT ∈ R

nT and uT ∈ R
mT will denote the state and

controls for the template.

4.5.2.1 Linear CoM Models for Walking

Example 1 (LIP Model for Walking). The Linear Inverted Pendulum (LIP)
Model, shown in Fig. 4.5.2, captures the connection between the Center of Mass
(CoM) and ZMP dynamics under an assumption of constant walking height. It is
a commonly selected template to develop walking controllers. The model con-
sists of a point mass m located at a position pcom = [x, y, z]T ∈R3. The position
of the mass is intended to represent the CoM of a system with more degrees
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of freedom. The model evolves according to forces fzmp = [fx,fy, fz]T ∈ R
3

that act at a ZMP pzmp = [px,py,pz]T ∈ R3. For walking on level ground, pz
remains constant. As is standard with point-mass template models, the LIP as-
sumes that ground reaction forces (GRFs) create no moment about the CoM.
This condition defines the line of action for the GRF and requires fx/fz =
(x − px)/(z− pz) with similar conditions for fy . As a result, the template dy-
namics take the form:

mẍ = fz

z− pz
(x − px), (4.5.2)

mÿ = fz

z− pz
(y − py), (4.5.3)

mz̈= fz −mg, (4.5.4)

where g is the gravitational constant. Under the assumption of a constant height,
ż= z̈≡ 0. Thus, letting ω=√g/(z− pz), we obtain

ẍ = ω2(x − px), (4.5.5)

ÿ = ω2(y − py) . (4.5.6)

These dynamics are unstable, with poles on the real axis at s =±ω. The ZMP
positions in the plane can be viewed as the control input uT = [px,py]T ∈ R2

for this system, with state xT = [x, y, ẋ, ẏ]T . For this template, a constraint that
the ZMP must remain in a support polygon, discussed in Section 4.1.2.2, can be
expressed directly through constraints on uT (t).

For use in the next section, we note that the LIP dynamics can be expressed
in state space:

ẋT (t)=A xT (t)+B uT (t) (4.5.7)

=
[

0 I

ω2I 0

]
xT (t)+

[
0

−ω2I

]
uT (t), (4.5.8)

with the CoM accelerations considered as an output yT = [ẍ, ÿ]T ∈R2, where

yT (t)=C xT (t)+D uT (t) (4.5.9)

=
[
ω2I 0

]
xT (t)+

[
−ω2I

]
uT (t) . (4.5.10)

Example 2 (ZMP/CoM Dynamics for Walking with Nonconstant Height). In
some cases, such as walking up stairs, the assumption of a fixed CoM height
may be prohibitive within a template model for walking control. In the case
that a nonconstant desired CoM height z(t) is known in advance, the remaining
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dynamic equations for x(t) and y(t) are no longer time invariant. We again
assume that the forces create no moment about the CoM. Considering that
fz(t) = mg + mz̈(t), redefinition of ω := ω(t) to be time varying according
to

ω(t)=
√

g + z̈(t)

z(t)− pz

results in an linear time varying (LTV) system for the lateral (x, y) dynamics:

ẍ = ω(t)2 (x − px), (4.5.11)

ÿ = ω(t)2 (y − py). (4.5.12)

Despite the additional complexity, constraints on the ZMP are still readily ad-
dressed through constraints directly on uT (t)= [px,py]T .

4.5.2.2 SLIP Models for Running

Example 3 (A Passive SLIP Model for Humanoid Running). The Spring-
Loaded Inverted Pendulum (SLIP) model, described in Subchapter 3.3, is a
commonly selected template for control of running and hopping robots. In the
SLIP, a point mass m alternates between periods of flight and stance. In flight,
the point mass experiences ballistic physics p̈comT = g, where g ∈R3 is the grav-
ity vector.

During flight, the leg may be repositioned through touchdown angles
(θ,φ) in the forward and lateral directions. For application to humanoid
control, these touchdown angles may be given with respect to an estimated
hip position, phipT , at a fixed offset from the CoM as shown in Fig. 4.5.3.
The hip offset may change from step to step to account for the leg in
stance. In comparison to defining touchdown angles in spherical coordi-
nates relative to the CoM, this alternate touchdown angle definition pro-
vides closer correspondence with the virtual leg angles in a robot that in-
cludes hip separation. As an alternative, the Cartesian position of the foot
may be used directly as a control input in flight. This requires more care-
ful consideration of virtual leg length constraints, but provides a close cor-
respondence between the LIP and SLIP in terms of their states and con-
trols.

SLIP stance begins at touchdown (TD) of its virtual leg, wherein a Hookean
spring of stiffness ks and initial length �0 imparts conservative forces on the
mass. The stance dynamics follow

m p̈comT = ks(�0 − ‖�‖) �̂+mg (4.5.13)
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FIGURE 4.5.3 Leg angle definitions for 3D-SLIP applied to humanoid control. Leg angles are
given with respect to a virtual hip position that exists at a fixed offset from the CoM during flight.

where � := pcomT − pzmpT ∈ R
3 represents the virtual leg, �̂ ∈ R

3 the unit vec-
tor along the leg, and �0 the rest length computed at touchdown. Often, the
ZMP position pzmpT is fixed following touchdown for simplicity even when the
SLIP acts as a template for a robot with flat feet. Stance ends at liftoff (LO),
wherein the model transitions back to flight. This energetically passive SLIP
model can be controlled through touchdown angle inputs uT [n] = [θ,φ]T at
each step n.

A unique event for each step (e.g. apex during flight) may be used
to define a Poincaré section for study of the step-to-step dynamics. Let-
ting xT [n] = [z, ẋ, ẏ]T at the nth apex, we define the step-to-step dynamics
through

xT [n+ 1] = f(n,xT [n],uT [n]) (4.5.14)

where f(n,xT ,uT ) is a Poincaré return map.

Example 4 (An Active SLIP Model to Enable Energetic Transitions). As one
of a variety of potential extensions for this model, the examples in this chapter
will consider modulating the stiffness of the SLIP leg once per step. Other valid
actuation schemes for the SLIP may consider changes to its rest leg length,
which are equivalent to the addition of a linear actuator in series with the spring.
For simplicity, we consider a fixed stiffness ks1 before maximum compression
of the spring in stance, and a stiffness ks2 following maximum compression.
This consideration modulates the total energy E by �E = 1

2 (ks2 − ks1)(�0 −
‖�‖)2, enabling changes in speed and height from step to step. Considering these
stiffnesses as control variables along with the leg touchdown angles, the active
SLIP may be controlled by selecting

uT [n] = [θ,φ, ks1, ks2]T (4.5.15)
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at each step n. As in the LIP, a key aspect of the template is that the forces
emanate from a well defined point pzmpT that must reside under the supporting
contacts.

4.5.2.3 Perspectives of Template Model Selection

Each of these template models have a notable characteristic in that they follow
the laws of Newtonian physics. Templates that follow the laws of Newtonian
physics have benefits when targeted to legged robots, which themselves must
follow the laws of physics. Physical template models may often easily be re-
stricted to operate in a regime that is dynamically feasible for the target system.
For instance, control inputs across each of these pendular models directly influ-
ence the center of pressure. Constraints for this point to remain within a support
polygon are easy to formulate, which can be used to simplify template planning
and control. To contrast, for a target system such as a humanoid, constraints
on its control inputs (joint torques) to satisfy center of pressure constraints are
much more complex, and in general are nonlinearly dependent on state.

Despite these benefits afforded in physical template models, such physicality
is not a requirement. With such freedom, template models may be judiciously
crafted to possess linear (Kajita et al., 2003; Kuindersma et al., 2014), integrable
(Mordatch et al., 2010), polynomial (Park et al., 2015), or other simplified dy-
namics. These simplifications may be sought to further facilitate analysis and
control. We again stress that, within robotics, the applicability of template mod-
els need not be grounded in biological or exact physical plausibility. Instead
templates should ultimately be assessed based on the additional performance
that they bring to motion control in physical robots.

Selections of control inputs uT also have important reachability implications
for the template. For instance, the selection of controls for a passive SLIP pre-
cludes the possibility to reach any states at higher or lower total energy levels. As
template controls are designed to improve reachability properties, they need not
match those controls available the full system. Design choices should be made,
however, such that the resultant template dynamics are able to be replicated in
the full model given its associated control authority.

4.5.3 TEMPLATE MODEL CONTROL

After selecting a candidate template for a motor control task, the second step
in the process is to develop a control system for the template itself. The key
idea in using template models for control is that the solution of this template
control problem can provide guiding principles to solve the control problem for
the full system. General methods to design control systems for template mod-
els are the same as those that might otherwise applied for the full model. As a
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benefit, approaches that might not scale (in time or space complexity) to the full
model may become practical when considered in the scope of a template. Tra-
jectory optimization for optimal control (Diehl et al., 2006) may offer applica-
bility for real-time model-predictive control, feedback motion planning libraries
(Tedrake et al., 2010) may scale to the dimensionality of template models, and
feedforward knowledge-bases may be developed through offline computation
(Wu and Geyer, 2013). Template model control has enabled many contempo-
rary systems (Kuindersma et al., 2015; Feng et al., 2013; Pratt et al., 2012;
Takenaka et al., 2009; Rezazadeh et al., 2015) to skirt Bellman’s curse of di-
mensionality (Bellman, 1957) while maintaining real-time computation.

4.5.3.1 Control of Linear CoM Models for Walking

Many center of mass (CoM) templates have led to template controllers real-
ized in modern walking humanoids. CoM templates driven by the zero moment
point (ZMP) in discrete time (Kajita et al., 2003; Dimitrov et al., 2011) and con-
tinuous time (Tedrake et al., 2015) enable real-time optimal control solutions,
highlighted in the example below. Whether in the LIP model, or its extension
with a fixed CoM height trajectory, linear template dynamics simplify the de-
velopment of optimal controllers. Other methods have used differential dynamic
programming (DDP) to solve the optimal control problem locally when vertical
CoM dynamics are allowed to vary but are not fixed a priori (Feng et al., 2013).

Example 5 (ZMP Preview Control Through LQR). A common method of
walking control for humanoid robots attempts to control the ZMP position un-
derneath the feet. The linear inverted pendulum template model from Example 1
can enable efficient computation of ZMP controllers for use in a high-DoF robot.
Let us assume that a desired ZMP trajectory udT (t) has been generated in ad-
vance and that an assumption of constant CoM height is reasonable. Due to the
unstable pole in the LIP dynamics, blindly using this ZMP trajectory as input to
the LIP template will result in an unstable CoM motion, which must be handled
through feedback in a ZMP controller.

ZMP Preview control attempts to predict (and minimize) future CoM mo-
tions and ZMP errors through model predictive control (MPC). This main idea
has been pursued by many authors (Kajita et al., 2003; Dimitrov et al., 2011;
Tedrake et al., 2015) with different solution methods and formulations. Follow-
ing the techniques in Kuindersma et al. (2015) and Tedrake et al. (2015), this
problem can be formulated as one of continuous time linear optimal control

J ∗(t0,x0)=min
u(t)

∫ ∞
t0

‖yT (t)‖2
R + ‖uT (t)− udT (t)‖2

Q dt (4.5.16)

s.t. ẋT (t)=A xT (t)+B uT (t), (4.5.17)
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yT (t)=C xT (t)+D uT (t), (4.5.18)

xT (t0)= x0, (4.5.19)

where J ∗(t0,x0) represents the optimal cost-to-go for an optimal ZMP preview
controller. The matrices R = RT > 0 and Q = QT > 0 are positive definite
matrices that encode the relative importance of minimizing CoM accelerations
and ZMP tracking errors through the weighted �2-norms ‖y‖R =

√
yT Ry and

‖u‖Q =
√

uT Qu, respectively.
We note that due to the invertibility of D, uT , or yT could either be viewed

as the control for optimization. Regardless, this is a standard LQR problem
(Tedrake et al., 2015) with an optimal cost-to-go of the form:

J ∗(t,xT )= xTT S1(t)xT + xTT s2(t)+ s3(t). (4.5.20)

Details to analytically form S1(t), s2(t), and s3(t) are provided in (Tedrake
et al., 2015) for the interested reader and may be derived as an exercise. The
optimal control law is given by the Hamilton–Jacobi–Bellman (HJB) equation
(Bertsekas, 2005) for uT or yT as

u∗T (t,xT (t))

= argmin
uT

(
‖CxT (t)+DuT ‖TR + ‖uT − udT (t)‖2

Q +
d

dt
J ∗(t,xT (t))

)
, or

(4.5.21)

y∗T (t,xT (t))= argmin
yT

L(t,xT (t),yT ) (4.5.22)

= argmin
yT

(
‖yT (t)‖TR + ‖D−1(yT −CxT (t))− udT (t)‖2

Q +
d

dt
J ∗(t,xT (t))

)
,

(4.5.23)

which balances instantaneous costs with long-term costs encoded in the optimal-
cost-to-go (Kuindersma et al., 2015; Tedrake et al., 2015). The next subsection
will explore how this optimal control solution can be lifted into a more complex
robot model.

Capture point methods provide a different perspective to controlling the
CoM. The capture point (CP) was originally introduced as a point on the ground
where a robot would have to step to bring its CoM to a complete stop (Pratt et
al., 2006, 2012; Koolen et al., 2012). This concept is illustrated in Fig. 4.5.4.
For the linear inverted pendulum model, the CP ξ = [ξx, ξy,0]T is a composite
variable in a sense that it incorporates both position and velocity information:

ξx = x + 1

ω
ẋ (4.5.24)
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FIGURE 4.5.4 A capture point is a place where the foot may be placed such that the model may
be brought to a complete stop. For the LIP model, the capture point is a linear combination of the
CoM (x, y) position and the (ẋ, ẏ) velocity.

with similar definition in y (Koolen et al., 2012). Beyond seeing the capture
point as a place to step, it should be noted that the capture point may be viewed
as a bandwidth-tuned CoM look-ahead. Indeed, the term 1/ω in (4.5.24) rep-
resents a time constant for the LIP dynamics. Performing a linear change of
variables (x, ẋ)→ (x, ξx) results in the system

ẋ =−ω (x − ξx), (4.5.25)

ξ̇x = ω (ξx − px) . (4.5.26)

In the case that the ZMP is placed at the capture point, (4.5.26) provides ξ̇ = 0
while (4.5.25) implies that the (x, y) CoM exponentially converges to the cap-
ture point. Thus, (4.5.25) describes the system dynamics due to the stable pole
of the LIP at s = −ω, again providing an attractor for the CoM to the capture
point. In contrast, (4.5.26) describes the dynamics from the unstable pole of
the LIP at s =+ω. These unstable capture point dynamics, however, represent
a controllable subsystem, motivating the development of explicit capture point
controllers.

As a result of the cascaded structure in the CoM/CP dynamics, control of
the second-order LIP dynamics (4.5.5) may be instead pursued through control
of the first-order capture point dynamics (4.5.26). Under proper tracking con-
trol of the capture point itself, stable attraction of the CoM to the capture point
provides CoM tracking as a byproduct. As a result of this first-order structure,
the instantaneous capture point and its 3D extension, also called the divergent
component of motion (Takenaka et al., 2009; Englsberger et al., 2015), have
provided an analytically clean framework to consider CoM control. Capture
point-based methods are able to plan CoM trajectories directly for push re-
covery and walking over uneven terrains through closed-form analysis that is
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judiciously enabled by this reductive change of variables. Insightful geometric
interpretations from the capture point and its implications for push recovery are
elegantly covered in Koolen et al. (2012) with extensions to 3D in Englsberger
et al. (2015).

4.5.3.2 Control for SLIP-Based Models

Within the domain of running, SLIP-based template models have provided
many principles for adjusting leg behaviors to control dynamic balance. Due
to the hybrid structure of the SLIP dynamics, control of the SLIP may be man-
aged both through the selection of discrete control variables (i.e., touchdown
angles) as well as continuous actions (i.e., changes in leg stiffness, nominal
rest length, etc.). As in Example 4, continuous controls may often be pa-
rameterized by a discrete set of variables to simplify Poincaré analysis. Wu
and Geyer (2013) developed deadbeat controllers for the 3D-SLIP using of-
fline optimization to determine leg touchdown angles for ground height distur-
bance rejection. For online computation, the lack of an analytical expression
for the Poincaré return map presents computational challenges. Carver (2003)
and Wensing and Orin (2013b) developed locally deadbeat controllers using
a linearized analysis of the Poincaré return map to reactively handle distur-
bances. Other authors have developed approximations to the return map to
accelerate online control computations (Arslan et al., 2009; Geyer et al., 2005;
Piovan and Byl, 2016). The following example highlights the ability to develop
SLIP-based footstep controllers through linearized analysis.

Example 6 (Approximate Deadbeat Control of the 3D-SLIP). In this example,
we will develop a stabilizing controller for the actuated 3D-SLIP model running
on level terrain. Following Example 4, let us assume that we have precomputed
nominal controls udT [n] and associated apex states xdT [n] that follow the discrete
dynamics:

xdT [n+ 1] = f(n,xdT [n],udT [n]) . (4.5.27)

In this example, we seek to find a control law uT [n] = π(n,xT [n]) that provides
local asymptotic tracking xT [n]→ xdT [n] to the nominal state trajectory as n→
∞. As one of many possible approaches, constructing a deadbeat controller
would remove all tracking error within a single step. This would require a policy
such that

xdT [n+ 1] = f(n,xT [n],π(n,xT [n])) . (4.5.28)

Finding a policy satisfying this equation exactly requires detailed computation
that may not be viable online. We demonstrate an approximate solution here.



252 PART | II Control

Taking a Taylor expansion of (4.5.14) around the nominal trajectory provides

x̃T [n+ 1] =A[n] x̃T [n] +B[n] ũT [n] + o
(∥∥(x̃T [n], ũT [n]

)∥∥) (4.5.29)

where x̃T [n] = xT [n] − xdT [n], ũT [n] = uT [n] − udT [n],

A[n] = ∂f
∂xT

∣∣∣∣
(n,xdT [n],udT [n])

, and (4.5.30)

B[n] = ∂f
∂uT

∣∣∣∣
(n,xdT [n],udT [n])

. (4.5.31)

When the matrix B[n] has full row rank, the deadbeat condition (4.5.28) can be
satisfied locally through the selection of any feedback law ũT [n] =K[n] x̃T [n]
satisfying

0=A[n] +B[n]K[n] . (4.5.32)

The control policy in original coordinates

π(xT [n], n)= udT [n] +K[n] (xT [n] − xdT [n]) (4.5.33)

then admits local asymptotic tracking to the desired trajectory.
This simple approach can automatically capture many of the powerful

heuristics that enabled dynamic gaits in Raibert’s machines (Raibert, 1986). For
instance, considering the actuated 3D-SLIP from Examples 1 and 2 with param-
eters m= 72.5 kg, �h = 0.97 m, and phipT = pcomT + [0, 12 cm · (−1)n, 0]T , the
controls

θd [n] = 0.4 rad, φd [n] = 0 rad, (4.5.34)

kds1
[n] = 12.7 kN/m, kds2

[n] = 12.7 kN/m (4.5.35)

can be used to generate a left-right symmetric 2-step periodic running gait for
a nominal speed of ẋ = 3.5 m/s (Wensing and Orin, 2013b). For such a gait, a
feedback policy K[n] that satisfies (4.5.32) can also be developed to be 2-step
periodic. For a left-foot step (i.e., phipT = pcomT + [0, 12 cm, 0]T with coordi-
nates given in Fig. 4.5.3), one such feedback gain is⎡⎢⎢⎢⎢⎣

θ̃

φ̃

k̃s1

k̃s2

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎣
−0.51 0.13 −0.01
−1.95 −0.08 0.90
36.9 13.2 0.86
−36.9 −13.2 −0.86

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

K[n]

⎡⎢⎣z̃˙̃x
˙̃y

⎤⎥⎦ (4.5.36)
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FIGURE 4.5.5 (Left) Nominal 2-step periodic 3D-SLIP gait for running at 3.5 m/s. (Center) Local
deadbeat performance of the SLIP controller with small disturbances. (Right) Asymptotic tracking
performance for larger disturbances with the local deadbeat SLIP controller.

where an additional constraint k̃s1 =−k̃s2 has been employed to resolve the fact
that four control variables exist to satisfy three deadbeat constraints. Looking
at the bottom two rows shows the control response to a state having excess
potential energy in z, or excess kinetic energy in ẋ or ẏ. In all cases, the feedback
law is one that employs a stiffer spring at touchdown, and softens at maximum
compression in order to remove the excess energy. Other heuristics exist in each
column. The first column shows that a running state that begins too high should
be countered by placing the foot further under the CoM at touchdown. Similar
leg placement heuristics are shown in the second and third columns. We note
that these automatically tuned heuristics can provide guiding principles, not just
for template control, but for humanoid control as we will pursue in the next
subsection.

To demonstrate the performance of the control law (4.5.33), Fig. 4.5.5 shows
the nominal state trajectory, the state trajectory subject to a small disturbance
wherein local deadbeat behavior is approximately observed, and response to a
larger perturbation wherein asymptotic tracking is recovered.

It should be noted that certain operating regimes of the 2D-SLIP model have
been shown to possess so-called self-stable behavior. That is to say, for a fixed
touchdown angle θ and leg stiffness ks , open-loop stable gaits have been shown
to exist (Seyfarth et al., 2002; Ghigliazza et al., 2003). While these results are
an interesting finding, they do not extend to 3D (Seipel and Holmes, 2005) and
represent a lower bound on the domain of attraction and robustness achievable
by the addition of feedback.

More recently, the bipedal SLIP model has been proposed as an alternative
walking template (Geyer et al., 2006) for the CoM. Recent work has devel-
oped controllers for this template based on analysis of its Poincaré return map
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(Vejdani et al., 2015; Liu et al., 2015) similar to in the 3D-SLIP for running.
This template includes rich nonlinear hybrid dynamics, due to two virtual spring
legs making and breaking contact. As a result, control strategies for this model
have often required offline computation with detailed knowledge bases used for
real-time control.

4.5.3.3 Beyond Tracking Control for Pendular Models

Beyond these traditional CoM models, the computer graphics community has
employed many other nontraditional template models for physics-based simu-
lation of virtual characters. Mordatch et al. (2010) used a translational LIP with
decoupled vertical SLIP to provide a relaxation of the SLIP model for locomo-
tion planning with evolutionary search. da Silva et al. (2008) used iLQR with a
three-link model as a template for the body and leg CoM motions. Ye and Liu
(2010) applied differential dynamic programming to a CoM and angular mo-
mentum model that included an integrated centroidal angular momentum (Orin
et al., 2013) as a nonphysical surrogate angular state.

Many of these cited works have focused template control on asymptotic
tracking guarantees. Moving forward, template control warrants investigation
to achieve other important control specifications such as robustness, viabil-
ity, and yet others. Terrain robustness specifically has been a focus of much
work within SLIP frameworks (Ernst et al., 2009; Wu and Geyer, 2013;
Liu et al., 2016). Other work has advocated for viability (Wieber, 2008) as a
more appropriate goal in legged systems. For a state to be viable intuitively
means that it can be controlled to avoid any undesirable regions of the state space
(such as those in which the robot has fallen to the ground). Indeed, in robotics
when we say a system is “stable” it rarely is meant rigorously in a Lyapunov
sense, but rather is more loosely meant in a sense of not falling down. Viability
theory offers potential to bring rigor to this loose specification. Its rigorous tech-
nical definitions lead, in principle, to methods for identifying viable regions of
the state space. Such verifications are beyond the reach of current computational
methods for high-DoF systems. Yet, a notion of viability drives the definition of
capturability (Koolen et al., 2012), and motivates the use of low-DoF template
models to pursue viability more broadly (Sherikov et al., 2015).

4.5.4 ESTABLISHING A TEMPLATE/ANCHOR RELATIONSHIP

In the last step of the process, a high-DoF control system must be developed to
establish the template in the anchor dynamics. Control of the template itself does
not consider the issue of how the various actuators in the full system should be
recruited. Thus, a high-DoF control problem exists to realize any template/an-
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chor (T/A) relationship. Fig. 4.5.6 provides a rough diagram of how a solution
to this realization fits into a full solution for real-time template-based control in
a high-DoF anchor.

An initial part of this design stage entails the selection of which template/an-
chor notion to pursue. As alluded to in Subchapter 3.2, there are a wide range
of specifications for what a proper T/A relationship may entail. At one extreme,
the template states may be represented by a normally hyperbolic invariant mani-
fold (NHIM) embedded in the state space of the anchor. To satisfy this notion of
the T/A relationship, a diffeomorphic copy of the controlled template dynamics
must be rendered on the NHIM in closed-loop. Towards realizing this condition,
the template may be sought as the hybrid zero dynamics (HZD) (Westervelt et
al., 2003; Poulakakis and Grizzle, 2009) of a judiciously crafted output regu-
lation problem. HZD methods will be described further in Subchapter 4.7, and
offer promise to bring the full scope of the templates and anchors hypothesis to
bear in experimental machines.

Simpler methods may strive to replicate only select aspects of the template
within the anchor dynamics. For instance, rather than the SLIP state encoding
a target whole body state for the anchor (as in the NHIM notion of the T/A
relationship), it may instead simply encode a target state for the anchor CoM.
In this light, we will denote “anchor features” as any features of motion in the
anchor whose control is informed by the template. Existing methods for con-
trolling anchor features to match a template differ considerably in the degree of
replication quality that they provide. In methods that only loosely achieve the
desired template dynamics, this inaccuracy itself may represent a disturbance to
any template-level controller. In methods that more precisely achieve the target
template dynamics, a greater burden may exist on the template to operate in a
manner that is replicable in the full system.

4.5.4.1 Realizing Template Dynamics Through Task-Space
Control

Task-space or operational-space control provides a formal framework to pursue
an exact realization of a template’s continuous dynamics in a more complex
anchor system. The state of the anchor system can be given as [q, q̇]T ∈ RnA

with configuration q. In legged robots, the configuration q generally pos-
sesses the structure q = [qb, qj ] where qb ∈ SE(3) is the configuration of a
floating-base and qj ∈Rnj is the configuration of the internal joints. We denote
xA(q, q̇) ∈ R

nT (same dimensions as xT ) as the anchor feature state (i.e., the
projection of the anchor state onto those features that are captured in the tem-
plate). For instance, for CoM templates where xT = [pcomT , ṗcomT ], the projection
would extract the CoM position and velocity xA := [pcomA , ṗcomA ] of the anchor
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FIGURE 4.5.6 Real-time template-based control diagram. The relevant features of the anchor
system xA = g(q, q̇) are propagated to the template xT . A control system applied to the template
uT = π(xT ) gives rise to target properties of the closed-loop template dynamics. These properties
are lifted into the full system by a high-dimensional controller that coordinates many actuators uA
to realize a template/anchor relationship.

system. For physical template models more broadly, this relationship is often
clear, however, for more abstract templates, this assignment itself may present
another degree of design freedom.

As shown in Fig. 4.5.6, this projected state xA is propagated to the tem-
plate xA→ xT to begin the application of template-based control. As one of
many possibilities, let us assume that such propagation happens discretely, with
trajectories of the controlled template xT (t) provided between updates. For in-
stance, in the SLIP model, such propagation might only occur at the Poincaré
section, with xT (t) representing a controlled SLIP trajectory for the next step.
Controlling the full system trajectory xA(t) to asymptotically anchor the tem-
plate xA(t)→ xT (t) is then a well studied problem within the context of the
operational-space and whole-body control literature.

Replicating the Dynamics of CoM Templates

A common whole-body control solution applied to the replication of template
dynamics is to minimize the replication errors at a dynamic level through real-
time optimization in closed-loop. To build towards this solution, we reintroduce
the standard dynamic equations of motion

H(q)q̈+C(q, q̇)q̇+G(q)= STa τ + Js(q)T Fs (4.5.37)

where H, Cq̇, and G are the familiar mass matrix, velocity product terms, and
gravitational terms, respectively. Here Fs collects ground reaction forces (GRFs)



Control of Motion and Compliance Chapter | 4 257

for appendages in support and Js is a combined support Jacobian. The matrix
Sa = [0nj×6 1nj×nj ] is a selection matrix for the actuated joints.

For CoM templates with anchor features xA = [pcomA , ṗcomA ], an optimization
problem can first be formulated to partial-feedback linearize the CoM dynamics
of the anchor under whole-body constraints. Given a desired acceleration for
the CoM p̈com,dA , the goal of the whole-body controller is to select joint torques
uA := τ that most closely realize this commanded acceleration. This can be
formulated as an optimization problem

min
q̈,τ ,Fs

1

2

∥∥∥Jcomq̈+ J̇comq̇− p̈com,dA

∥∥∥2
(4.5.38)

subject to H q̈+C q̇+G= STa τ + JTs Fs , (4.5.39)

Js q̈+ J̇s q̇= 0, (4.5.40)

Fs ∈ C, (4.5.41)

where Jcom ∈ R
3×(nj+6) is the CoM Jacobian, Fs ∈ R

6nf are ground reaction
forces for nf feet in planar contact, and C is the convex cone of forces that
can be created through the available contacts (Wensing and Orin, 2013a). The
constraint (4.5.40) enforces that any supporting contacts must not move. While
ground forces Fs may often be viewed as the Lagrange multipliers associated
with this constraint, their solution is not unique when multiple feet are in pla-
nar contact. As a result, the optimization enforces that at least one set of these
Lagrange multipliers must satisfy frictional constraints.

If the optimization problem can be solved to an optimal objective function
value of 0, then the current contacts provide the necessary control authority to
exactly realize the commanded dynamics. When this is the case, solution of
the optimization problem in closed-loop will provide a feedback linearization
from the commanded dynamics p̈com,dA to the anchor feature pcomA . As a result,
a common approach to achieve template tracking is to select the commanded
feature dynamics according to the law

p̈com,dA = p̈comT + kD(ṗcomT − ṗcomA )+ kP (pcomT − pcomA ) (4.5.42)

where kP and kD are positive definite gain matrices. This selection provides
an asymptotically stable second-order dynamic for the anchoring error e(t) =
pcomT (t) − pcomA (t). If the template includes only kinematic features and their
associated derivatives, then the above development is general through the use of
an appropriate task Jacobian. If the template includes purely velocity-dependent
features, such as angular momentum, then minimal modifications to the above
development can be employed (Wensing and Orin, 2013a).
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Exploiting Redundancy

It should be noted that there is significant redundancy remaining after only ful-
filling the commanded anchor feature dynamics. Often the use of this flexibility
is needed to track aspects of the full system that are absent in the template. For
instance, in running with the SLIP template, the lack of a swing leg in the tem-
plate requires coordinated swing leg torques in the full model to move the swing
leg into place for the following step.

These torques may be found algorithmically through solving a subsequent
optimization problem that respects the optimal anchor feature dynamics from
(4.5.38). Given desired accelerations p̈d1 ∈ R

n1 for another feature of motion,
such as a swing foot position, modified torques can be derived from the solution
to

min
q̈,τ ,Fs

1

2

∥∥∥J1q̈+ J̇1q̇− p̈d1

∥∥∥2
(4.5.43)

subject to H q̈+C q̇+G= STa τ + JTs Fs , (4.5.44)

Js q̈+ J̇s q̇= 0, (4.5.45)

Jcomq̈+ J̇comq̇= p̈∗A, (4.5.46)

Fs ∈ C, (4.5.47)

where p̈∗A is the optimal anchor feature acceleration resulting from first solving
(4.5.38). By solving (4.5.38) and then (4.5.43) in a cascaded fashion, a strict pri-
oritization is being given to tracking the anchor features above all else. When a
strictly ordered hierarchy exists between yet further tasks, this approach may be
extended through additional cascaded solves or through dedicated hierarchical
solvers (Escande et al., 2014).

As an alternative, soft priorities can be implemented through solving a single
optimization problem with an objective that is a weighted combination of the
task command errors:

min
q̈,τ ,Fs

wA‖Jcom q̈+ J̇com q̇− p̈com,dA ‖2 +
∑
i

wi‖Ji q̈+ J̇i q̇− p̈di ‖2

(4.5.48)

subject to H q̈+C q̇+G= STa τ + JTs Fs , (4.5.49)

Js q̈+ J̇s q̇= 0, (4.5.50)

Fs ∈ C. (4.5.51)

In comparison to using a strict prioritization, soft prioritization requires fewer
invocations of an optimization solver, but can suffer from numeric conditioning
issues if a large disparity in weights is desired. Overall, these optimization-
based whole-body control methods perform well in practice, and have been a
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FIGURE 4.5.7 Template-based whole-body response to a push disturbance and associated whole-
body control system. Following a push (red arrow in the upper-left subfigure), the disturbed state of
the humanoid is projected and propagated to the SLIP template xA→ xT . SLIP control uT = π(xT )
suggests touchdown angles for the upcoming steps and a dynamically feasible CoM trajectory xT (t)
for a template-based recovery in the following stance. (For interpretation of the colors in this figure,
the reader is referred to the web version of this chapter.)

workhorse for modern humanoids in recent years. However, they are fundamen-
tally single-step model predictive control schemes where the actions that are
instantaneously greedy are designed to play out favorably in the long term. The
template controllers from Section 4.5.3 readily admit formal guarantees on their
performance. However, when coupled to optimization-based whole body con-
trollers such as (4.5.38), currently little can be proven or guaranteed about the
long-term behavior of these systems.

Example 7 (Closed-Loop Control of High-Speed Humanoid Running).
Fig. 4.5.7 shows the results of a full template-based control system applied to
humanoid push recovery while running at 3.5 m/s with the SLIP controller de-
veloped in Example 6. At each liftoff, anchor features are propagated to the SLIP
template. Controlled SLIP trajectories xT (t) then provide physics-based recov-
ery motions. At each step, (4.5.33) provides touchdown angles and matched
spring stiffnesses ks1 and ks2 to provide approximate deadbeat tracking back to
the nominal gait within one step. Due to system features, such as ground/foot
impacts that are not captured in the SLIP, this full template-based controller does
not experience the strong deadbeat behavior shown in Example 6. Fig. 4.5.8
shows the CoM response in the simulation experiment demonstrating that the
template recovery motions are realized in the anchor.
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FIGURE 4.5.8 Response of a full template-based control system for a humanoid following a lateral
push disturbance of 40 Ns. At each step a CoM reference trajectory is generated based on the results
of the local deadbeat template controller from Example 6. At each transition from flight to stance,
an impact impulse in the full system, which is due to leg mass not captured in the SLIP, provides a
persistent disturbance to the full template-based control system. The system nominally recovers to
its steady-state gait within 4 steps.

Since the SLIP assumes massless legs that can be instantly repositioned
in flight, a state machine is used in the humanoid to coordinate leg motions.
This state machine does so through providing foot acceleration commands to an
optimization-based controller as in (4.5.43). Foot acceleration commands simi-
larly take a PD form as in (4.5.42). However, rather than the template providing
reference trajectories, cubic spline references are generated online to achieve
the desired virtual leg configuration at touchdown. To resolve remaining re-
dundancy, a centroidal angular momentum (Orin et al., 2013) rate of change
command and pose acceleration command (Wensing and Orin, 2013b) are also
provided to (4.5.43). The optimization is solved at rate of 200 Hz, and resulting
joint torques τ are applied in dynamic simulation. Further details can be found
in Wensing and Orin (2013b).

4.5.4.2 Lifting Other Properties of Template Control

The previous example included feedback to the template on a discrete basis.
Other methods continuously resolve the behavior of the full system with an
optimal reaction from the template by lifting properties of an optimal template
controller. For instance, optimal controllers for template models as in Example 5
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can be used to guide CoM control in a humanoid. Following the construction of
the optimal-cost-to-go from Example 5, the whole-body QP (4.5.48) from the
previous subsection could be modified as (Kuindersma et al., 2015)

min
q̈,τ ,Fs

wAL(t,xA, p̈comA )+
∑
i

wi‖Ji q̈+ J̇i q̇− ẍci ‖2 (4.5.52)

subject to H q̈+C q̇+G= STa τ + JTs Fs , (4.5.53)

Js q̈+ J̇s q̇= 0, (4.5.54)

Fs ∈ C, (4.5.55)

where again L(t,xA, p̈comA ) from (4.5.22) (Kuindersma et al., 2015) balances in-
stantaneous template control costs with long-term costs encoded in its optimal-
cost-to-go. The benefit of this formulation over (4.5.48) comes from the fact that
when the optimal template dynamics are not instantaneously feasible, deviations
from the optimal template dynamics are not created equal. Some deviations,
while equal in magnitude, may be more costly than others in the long term. This
subtlety is addressed by the long-term costs encoded in the optimal cost-to-go,
while the error norm penalty in (4.5.48) manages no such long-term trade-off.
A summary of the whole-body control results for the MIT DRC team, which
used this approach in hardware with ATLAS, can be found in Kuindersma et al.
(2015, 2014). In particular, the formulation of minimizing L(t,xA, p̈comA ) was
cited to provide practical robustness over other methods that simply enforce de-
creasing the template-based optimal-cost-to-go over time.

Overall, these optimization-based control methods guarantee template track-
ing error will asymptotically approach zero when sufficient control authority
exists. If there are unmodeled aspects of the anchor system that affect xA but are
not captured in the template, these unmodeled aspects represent a persistent dis-
turbance to the template-based control system. Otherwise, asymptotic tracking
across these examples is accomplished in (4.5.48) and (4.5.52), through care-
fully selecting joint torques that compensate for nonlinear joint-space dynamics
and replace them with those commanded for the locomotion features. Tracking
performance, as a result, is predicated on the correctness of the dynamic model
itself and thus may exhibit sensitivity to modeling errors. Other less model-
intensive methods are able to overcome these drawbacks but provide a looser
match between template and anchor features.

4.5.4.3 Anchoring the Template Through Less Model-Intensive
Methods

Virtual model control is a less model-intensive method to track locomotion
features over time. Virtual model control (VMC) uses virtual components to
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formulate fictitious forces that govern interaction between real and virtual sys-
tems (Pratt et al., 2001). These fictitious forces are then realized through static
joint torque mappings, often using the Jacobian transpose. Virtual systems may
represent springs and dampers, or other general mechanisms that are designed
to produce virtual interactions and regulate the state of the real system. Thus, in
a sense, virtual model control is a descendant of simple impedance control, yet
more general interaction dynamics may be authored through design of virtual
models. VMC has been applied widely in quadruped robots to stabilize dynamic
locomotion plans (Park and Kim, 2015; Semini et al., 2015; Coros et al., 2011;
Winkler et al., 2014) and in dynamic balance for humanoids (Stephens and Atke-
son, 2010). When physical template models are used in a template controller,
the template itself can often be viewed as a virtual model. When this is the case,
VMC provides a direct method to approximately realize the template dynam-
ics. By only relying on kinematic data from the real system to resolve virtual
template forces, VMC is essentially model-free at a dynamic level. Thus, with-
out compensation for dynamic effects, VMC relies on heuristic gain tuning to
find controller parameters that provide suitable performance at each operating
point. Due to the changes in neglected dynamic forces across operating regimes,
however, performance claims for these controllers can often only be verified em-
pirically.

4.5.4.4 Template-Inspired Mechanical Design

Throughout this section, rigid-body dynamics (4.5.37) have been assumed with
torque sources modeled at the joints. Yet, many modern machines do include
other forms of impedance (compliance and damping) at the joints and more
generally across the body structures. The natural dynamics of these structures
may point toward the selection of a particular template that can significantly re-
duce the burden of imparting a template/anchor relationship through closed-loop
control. For instance, the bipedal-SLIP model was used to develop high-level
template-based controllers for ATRIAS (Rezazadeh et al., 2015). Lower-level
control mechanisms did not explicitly attempt to impart bipedal-SLIP dynamics
to the machine. However, since ATRIAS was designed to exhibit dynamics that
embody the bipedal-SLIP (Ramezani et al., 2014), the robot has been shown
to exhibit qualitative similarity to its template in terms of its ground reaction
forces. A similar success story may be found in Raibert’s early hoppers, whose
control systems where inspired by SLIP-based laws and implemented on phys-
ical SLIP-type robots with air springs (Raibert, 1986). Further intersection of
template-based control and template-inspired design presents interesting future
prospects to simplify closed-loop control of legged machines.
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4.5.5 CONCLUSIONS

This section has described the design process for using template models for con-
trol. We have discussed the three main sub-problems that must be integrated to
realize a template-based control system. First, a template pertinent to the lo-
comotion task must be identified. There is no right or wrong template for a
given task and those from biology need only serve as inspiration. Next, con-
trol methodologies for the template itself must be identified and developed. In
some cases, the template may not provide sufficient control flexibility to achieve
desired controller specifications, requiring modifications to the template under
consideration. Following the solution of a template control problem, controlled
template dynamics must be retargeted to the full system, addressing the co-
ordination of many actuators to achieve low-dimensional specifications. Many
methods exist to realize these target template dynamics, which vary in the de-
gree of replication quality that they impart. The application of template models
for control does require the intuition of a human designer. However, its focus
on the most important characteristics of locomotion has enabled reactive con-
trol architectures in many experimental robots, and may yet play a key role in
unlocking the full potentials of legged machines.
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Chapter 4.6

Control Based on Passive Dynamic
Walking
Pranav Bhounsule
Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX,
United States

4.6.1 INTRODUCTION

How much control is needed to create walking gaits for legged robots? The
passive dynamic walking paradigm suggests that movement in a legged robot
requires no control because walking can emerge purely from the mechanics of
the legs. Passive dynamic walking robots are machines that use their natural
dynamics, i.e., their mass distribution and geometry, to move downhill with no
actuation or control.

The concept of passive dynamic walking is about a century old as evidenced
by a number of patents on downhill walking toys (Fallis, 1888; Bechstein, 1912;
Mahan and Moran, 1909; Wilson, 1938). The Wilson Walker is shown in
Fig. 4.6.1A. It has two legs, each of which connects to a body by a hinge joint.
When launched correctly, the toy is able to walk stably down a slight incline.
Specifically, the sideways rocking of the body lifts a foot off the ground. The
off-ground foot then swings forward to complete a step. The same sequence is
repeated with the other foot, thus enabling steady downhill locomotion.

The Wilson walker inspired McGeer (1990) to create the first passive dy-
namic walking machine. His robot, called the Dynamite, had four legs with
knees but arranged in pairs so that the inner two and outer two legs alternate
during walking (see Fig. 4.6.1B for a replica made at Cornell University). Like
the Wilson walker, Dynamite was able to walk stably downhill when launched
with the right set of initial conditions. But the configuration of the legs limits
the walking only to the sagittal or the front–back plane. Collins et al. (2001)
created a 3D passive dynamic robot with two kneed legs and two swinging arms
(see Fig. 4.6.1C and D). Their design had swinging arms coupled to the legs
and feet with guide rails to stabilize side-to-side (roll motion) and turning (yaw
motion). Owaki et al. (2011) built the first successful passive dynamic running
robot. Their design had four legs with knees arranged in pairs (two inner- and
outer-legs coupled to each other), an axial spring in each of the legs to cush-
ion collisions, a spring between the legs to aid hip swing, and arc shaped feet.
The robot was able to successfully run 36 steps on downhill ramp with slope of
0.22 rad. All these robots have the common feature that they use their natural
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FIGURE 4.6.1 (A) The Wilson walker; (B) A copy of McGeer’s passive dynamic walker built at
Cornell University; (C) A 3D passive dynamic walker with arms from Cornell University. These
figures are from Collins et al. (2005). (D) A sequence of snapshots during walking of the 3D passive
dynamic walker shown in (C). The figure is from Collins et al. (2001).

dynamics and gravity to descend downhill. Since these robots use no motors,

they are very energy-efficient. However, the most striking aspect is that their

motion looks natural and graceful, like that of a human. Indeed, Mochon and

McMahon (1980) have shown that the leg swing in human walking is dictated

greatly by the natural dynamics with very little control. This suggests that per-

haps humans exploit their natural dynamics to walk while expending negligible

amounts of energy. We think that these two aspects, the energy-efficiency and

the biological relevance, makes it appealing and interesting to study the role of

passive dynamics in creating functional legged robots.

The rest of the chapter is written as follows. We describe the simplest pas-

sive dynamic walker in Sect. 4.6.2 and provide necessary details for analyzing

its motion. This model is a nice starting point for beginners in the field. Next

in Sect. 4.6.3, we describe techniques to enable passive-dynamic walking on

level ground with or without control. The discussion and challenges in creating

passive-dynamics based robots are in Sect. 4.6.4. Finally, the conclusions follow

in Sect. 4.6.5.
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FIGURE 4.6.2 A typical step of the simplest walker. (For interpretation of the colors in this figure,
the reader is referred to the web version of this chapter.)

4.6.2 PASSIVE DYNAMIC WALKING ON A SLOPE

The first known simulation of a passive dynamic walking model was done by
McGeer (1990). Two other well-known papers are those by Goswami et al.
(1998), who called it the compass-gait walker (reminiscent of the compass tool
used in drawing), and by Garcia et al. (1998), who created an extremely simpli-
fied model and called it the simplest walker. Garcia’s model had a point mass
at the hip and massless legs. After nondimensionalizing velocity, the model has
a single parameter, the ramp slope. The simplicity of this model makes it very
attractive for learning about passive dynamic models. We present the analysis
used in Garcia et al. (1998) in the next section. The MATLAB code for simu-
lating the simplest walker and for general mass distribution round feet walker is
available in the paper by Bhounsule (2014b). Another tutorial paper on passive
dynamics is by Wisse and Schwab (2005).

4.6.2.1 Model Description and Equations of Motion

Fig. 4.6.2II shows a model of the simplest walker. The model consists of a mass
M at the hip and a point mass m at each of the two feet. Each leg has length �,
gravity g points downwards, and the ramp slope is γ . The leg in contact with
the ramp is called the stance leg (thin red line) while the other leg is called the
swing leg (thick blue line). The angle made by the stance leg with the normal
to the ramp is θ (counterclockwise is positive) and the angle made by the swing
leg with the stance leg is φ (clockwise is positive). Fig. 4.6.2 a single walking
step for the walker. The walker starts in (I), the state in which the front leg is
the stance leg and the trailing leg is the swing leg. A sequence of snapshots that
make up a single step are shown from (II) to (V). Finally in (VI), the swing leg
collides with the ground and becomes the new stance leg. At this point, we have
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a complete gait cycle, i.e., the walker configuration in (VI) is the same as (I).
Note that between (III) and (IV), there is foot scuffing because the swing leg
passes through the ground. We ignore foot scuffing in the model but an exper-
imental prototype needs to have a mechanism to create foot clearance during
swing. Foot clearance can be created by having actuated ankles (Bhounsule et
al., 2014a) or by adding knees to the walker (McGeer, 1993).

A single step of the walker consists of the following sequence:

Single Stance phase−→ Foot–ground contact event−→ Foot-strike phase−→︸ ︷︷ ︸
one step/period-one limit cycle

Single Stance

(4.6.1)

Next, we state the equations of motion for the phases and events described
in Eq. (4.6.1) and provide a brief explanation on the derivation. Please see the
appendix for more details on the derivation.

Single Stance Phase (Continuous Dynamics)

In this phase of motion, the stance leg pivots and rotates about the stationary
foot, while the swing leg pivots and rotates about the hinge connecting the two
legs. The assumptions are: the stance leg does not slip, there is no hinge friction,
and foot scuffing is ignored. The equations for this phase are:

θ̈ = sin(θ − γ ), (4.6.2)

φ̈ = sin(θ − γ )+ {θ̇2 − cos(θ − γ )} sin(φ). (4.6.3)

Eqs. (4.6.2) and (4.6.3) are obtained by doing an angular momentum balance
about stance foot contact point and hip hinge respectively, followed by nondi-
mensionalizing the time with

√
�/g and applying the limit, m/M→ 0.

Foot–Ground Contact Event

The swing leg contacts the ground when the following condition is met:

φ = 2θ. (4.6.4)

Foot-Strike Phase (Discontinuous Dynamics)

In this phase of motion, the legs exchange their roles. That is, the current swing
leg becomes the new stance leg and the current stance leg becomes the new
swing leg. The assumptions are: the swing leg has a plastic collision (no slip
and no bounce) with the ground, the collision is instantaneous, and there is no
double support phase. The equations for this phase are:

θ+ =−θ−, (4.6.5)
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FIGURE 4.6.3 A Poincaré map is used to find walking solutions and to analyze stability.

φ+ =−φ− =−2θ−, (4.6.6)

θ̇+ = cos(2θ−)θ̇−, (4.6.7)

φ̇+ =
(

1− cos(2θ−)
)

cos(2θ−)θ̇−, (4.6.8)

where the superscripts − and + denote the instance just before and just after
foot-strike, respectively. The switching of the leg angles is given by Eqs. (4.6.5)
and (4.6.6). The angular rates of the legs after foot-strike are obtained by using
conservation of angular momentum about the impending foot-strike point and
the hinge joint at the hip to obtain Eqs. (4.6.7) and (4.6.8), respectively. Then,
time is nondimensionalized using

√
�/g and the limit, m/M→ 0, is applied.

4.6.2.2 Analysis Using Poincaré Return Map

A Poincaré return map is used to find steady-state walking motions and to an-
alyze motion stability (Garcia et al., 1998; McGeer, 1990; Strogatz, 2014). In
Fig. 4.6.3, the gray region is the Poincaré section and denotes an instance in the
walking motion (e.g., before foot-strike, after foot-strike, and mid-stance).

We assume the Poincaré section to be the instance just after foot-strike. Let
q0 = {θ+0 , θ̇+0 , φ+0 , φ̇

+
0 } be the state after foot-strike. Then, there is a function S

that takes the initial condition, q0, and returns the state after one step, q1. The
function S is called the stride map. Thus, the Poincaré map is q1 = S(q0). There
is an initial condition q0 such that

q0 = S(q0). (4.6.9)

The above condition defines a period-one limit cycle. In other words, the ini-
tial condition after foot-strike, q0, defines a walker state that maps onto itself
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after one step. Similarly, one can find a period-two limit cycle by applying the
function S twice, and so on.

In general, it is not possible to find S and the state q0 analytically, so one
needs to resort to numerical techniques. To compute S, we first integrate the
equations of motion in the single stance phase (Eqs. (4.6.2) and (4.6.3)) till the
foot-strike event (Eq. (4.6.4)), and apply the leg support exchange conditions
(Eqs. (4.6.5)–(4.6.8)). Finally, to find four initial conditions in q0, the zeros of
Eq. (4.6.9) (q0 − S(q0)= 0) are found. The zeros can be found by root finding
techniques such as Newton–Raphson’s method. In our experience, a good initial
guess is of paramount importance for the root finder to give quick results. To
find good initial conditions, we recommend simulating and animating a single
step to see if it is close to repeating and then use those as a guess for the root
finder (also see Wisse and Schwab, 2005).

After obtaining q0, the stability of the period-one limit cycle is analyzed.
To do this, one needs to compute the eigenvalues of Jacobian of the Poincaré
map, S. To obtain the Jacobian, we used the central difference with a step size
of 10−5. The limit cycle is stable if the magnitude of the biggest eigenvalue is
less than 1 and unstable otherwise (Garcia et al., 1998; McGeer, 1990; Strogatz,
2014).

We give benchmark results for a ramp slope, γ = 0.009, the only free param-
eter in this model. Using the method described above, there are two period-one
limit cycles. Table 4.6.1, first row, gives the two limit cycles. Table 4.6.1, second
row, gives the eigenvalues of each of the fixed points, q0. As seen from the ta-
ble, the middle column is the stable limit cycle because the biggest eigenvalue is
inside the unit circle while the third column from left is the unstable limit cycle
because the biggest eigenvalue is outside the unit circle. Thus one limit cycle
is stable and the other is unstable. Fig. 4.6.4 shows the angular position of the
stance and swing leg as a function of time for the stable limit cycle and phase
portrait of the stable limit cycle.

4.6.2.3 Passive Dynamic Walking in 3-Dimensions

McGeer (1993) and Garcia (1999) analyzed a 3D model with four degrees of
freedom (roll or side-to-side, pitch or front–back, yaw or turning on the stance
leg and interleg pitch angle between stance and swing leg). However, both of
them were unable to find a stable walking gait. Kuo (1999) considered a simpler
3D model without the yaw degree of freedom. After doing an exhaustive search,
he found that one eigenvalue was always greater than one. This eigenvalue asso-
ciated with this unstable gait was in the roll direction and was due to a mismatch
in the roll velocity at ground contact condition. Further, he demonstrated that
several simple strategies such as: applying a torque in the yaw direction, spin-
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TABLE 4.6.1 Fixed points (first row and denoted by q0), eigenvalues using
central difference (second row and denoted by λ), for the simplest walker
for slope, γ = 0.009. The fixed points are accurate to 12 decimal places. The
eigenvalues computed by central difference and with perturbation size of
10−5 and are accurate to 5 decimal places

Variable Stable solution Unstable solution

State, q0

⎡⎢⎢⎢⎣
0.200310900544287

−0.199832473004977

0.400621801088574

−0.015822999948318

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.193937369810184

−0.203866927442010

0.387874739620369

−0.015144260853192

⎤⎥⎥⎥⎦

Eigenval-
ues,
λ

⎡⎢⎢⎢⎣
0

0.000000001586465

−0.190099639402167− i0.557599274284362

−0.190099639402167+ i0.557599274284362

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
−0.000000000000002

−0.000000005231481

0.459589047035257

4.003865226079296

⎤⎥⎥⎥⎦

FIGURE 4.6.4 (Left) Stance leg and swing leg angle as a function of time for one step of the
simplest walker. (Right) Phase portrait for one step of the simplest walker for slope, γ = 0.009.

ning a reaction wheel, moving the upper body slightly, and controlling the lateral

foot placement, all have the effect of stabilizing the roll motion while preserving

the passive dynamics.

Collins et al. (2001) were able to create a stable, 3D passive dynamic ma-

chine by adding swinging arms (see Fig. 4.6.1). Coleman and Ruina (1998)

created a nonanthropomorphic walker with ellipsoidal feet that was able to walk

stably downhill. Though Coleman and Ruina were able to explain the stability

of their walker using Poincaré based methods (Coleman et al., 2001), it is not

clear what design parameters are critical in achieving stable three-dimensional

passive dynamic walking.
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FIGURE 4.6.5 Collisionless walking models: (A) bipedal walking model with upper body coupled
to the legs through torsional springs (Gomes and Ruina, 2011), (B) rimless walking model with
inertial device with torsionally coupled spring (Gomes and Ahlin, 2015).

4.6.3 POWERED BIPEDAL ROBOTS INSPIRED FROM PASSIVE
DYNAMICS

In walking robots, energy is lost each time the foot hits the ground (unless spe-
cial mechanism is used to prevent collisional losses). In order to sustain steady
walking, this energy needs to be supplied through external means. In case of pas-
sive dynamic robots walking downhill, this energy is supplied by gravity. These
facts suggests two different approaches to enable level ground walking: (1) pre-
vent energy loss during collision by suitable robot design (see Sect. 4.6.3.1), and
(2) use an actuator to supply the lost energy (see Sect. 4.6.3.2). The rest of this
section will highlight some of the methods to enable almost-passive walking on
level ground.

4.6.3.1 Collisionless Walking

One way to enable level ground walking with passive models is to find means
of reducing the collisional losses at foot-strike to zero. Gomes and Ruina (2011)
created a passive dynamic walking model which had an upper-body that was
coupled to each leg through a torsional spring (see Fig. 4.6.5A). They found
internal oscillatory modes of the upper body that ensures that the swing leg con-
tacts the ground with zero velocity. Thus, the robot is able to sustain walking
on level ground without external energy input. However, note that the motion
of the robot is unstable because even the slightest perturbation will create a col-
lisional loss at foot-strike and the robot will be off the limit cycle. Thus there
are no stable (asymptotic, uniform, etc.) solutions for collisionless locomotion
models. Also, the model requires the swing foot to stick to the ground and later
release for swing. Gomes and Ahlin (2015) have created a physical prototype
of a rimless wheel, another passive dynamic model (McGeer, 1990), that can
demonstrate nearly collisionless walking. Their device consists of the rimless
wheel coupled to an inertial wheel through a torsional spring. Between the mid-
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FIGURE 4.6.6 Powered walkers inspired from passive dynamics: (A) Cornell powered biped,
(B) Delft powered biped, and (C) MIT learning biped. These figures are from Collins et al. (2005),
and (D) Cornell Ranger (Bhounsule et al., 2014a).

dle to the end of a step, the torsional spring transfers the energy of the rimless
wheel to the inertial wheel thereby reducing the wheel velocity to almost zero
just before the next spoke makes contact with the ground. The torsional spring
then transfers the stored energy back to the wheel from start to the middle of
the step speeding up the rimless wheel. This energy transfer ensures walking on
level ground without collisional losses.

4.6.3.2 Actuating Passive Dynamic Walking Robots

In robots where collisionless walking is not possible, one can add one or
more actuators to enable level ground walking. Fig. 4.6.6 shows powered
bipedal robots based on passive dynamic walking principles. The Cornell biped
(Fig. 4.6.6A) has five internal degrees of freedom (two ankles, two knees, and a
hip), the arms are mechanically linked to the opposite leg, and the upper body
is kinematically constrained so that its midline bisects the hip angle through a
hip bisection mechanism. The robot is electrically powered by an ankle push-
off that is triggered when the opposing foot hits the ground. The Delft biped
(Fig. 4.6.6B) is similar to Cornell biped, but is powered by pneumatic hip actu-
ation and has a passive ankle. The MIT learning biped (Fig. 4.6.6C) is based on
the simpler ramp-walker passive hip, is powered by two servo motors in each
ankle, and uses reinforcement learning to automatically acquire the controller
(Collins et al., 2005). The Cornell Ranger (Fig. 4.6.6D) has three internal de-
grees of freedom (one hip and two ankles) and is electrically powered. More
details on control of Ranger are discussed later in this section. Next, we review
control schemes that preserve the natural dynamics while enabling walking on
level ground.



276 PART | II Control

Virtual passive dynamic walking is able to recreate downhill walking by
adding a virtual gravity field using ankle and hip actuators. In passive dynam-
ics walking with a downhill slope of γ , gravity makes an angle of γ with the
direction perpendicular to the ramp. Thus, the component of gravity normal to
the ramp is g cos(γ ) and along the ramp is g sin(γ ). But since γ is relatively
small, one can approximate the normal component as g and horizontal com-
ponent as gγ . However, if the slope was zero (level ground walking), then the
component normal to the ground would be g and it would be 0 in the horizontal
direction. From the above arguments we see that the walker on level ground is
missing a horizontal component of gγ . Thus, the idea behind virtual passive
dynamic walking control is to use actuators to create a virtual gravitational field
such that the horizontal component is gγ and leave the vertical component un-
affected (Asano et al., 2000). The resulting motion is very similar to passive
dynamic walking on slope γ but it is on level ground. However, this requires
both, an ankle as well as a hip actuator.

Another way to achieve almost passive dynamic walking is to track a con-
stant mechanical energy. The key idea is that passive dynamic robots are able
to maintain a periodic walking motions because their mechanical energy (i.e.,
kinetic + potential energy) is constant between steps. Thus to recreate passive
dynamic walking on level ground, one can use the actuators to track this me-
chanical energy (Goswami et al., 1997). Further, each slope has a different total
mechanical energy. Thus, by tracking the total mechanical energy for a given
slope, the walking motion can be made slope independent. A key point here is
that the tracking gains need to be kept low to ensure that the natural dynamics
of the passive gait is preserved.

Yet another way of preserving passive dynamic walking is to use on–off
or bang–bang control to supply the energy lost during collision. Camp (1997)
presented a 2D knee-less model with two legs and two powered ankles that used
such an actuation scheme. The ankle motor is turned on when the swing leg
reaches a prescribed angle and shut-off at the instance of foot-strike. The walker
exhibits a variety of stable and unstable limit cycles as the motor stall torque is
varied. The stall torque is thus analogous to the ramp of the passive dynamic
walker. An extreme case of this type of control is to use an impulse type control
to power walking (Formalsky, 1995). An impulse is provided at the beginning of
the swing phase and no actuation is provided for the rest of the step. By choosing
appropriate impulse at the beginning of swing phase the robot is able to walk
stably.

Low gain proportional-derivative (PD) controllers can be used to create
passive-dynamic like walking gaits on level ground. Typical implementation in-
volves dividing the walking step into set of states or a state machine, and having
different PD controllers and set-points for different states (Braun and Goldfarb,
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2009; Dertien, 2006). The gains on the PD controller are weak so that they do
not interfere with the natural dynamics of the legs.

Instead of using continuous feedback to track the mechanical energy, one
can use feedback at discrete times in the walking step. For instance, when a
passive dynamic robot walks on level ground without any control whatsoever,
the end-of-step state will be different from the start-of-step state because of the
collisional losses. The error can be used to derive feedback control law that nul-
lifies the difference (Miura and Shimoyama, 1984). This type of control is called
once per step control because the feedback error and corrections are based on
sampling the state once per step. Bhounsule et al. (2014a) took a similar ap-
proach to stabilize the robot Ranger (see Fig. 4.6.6D) which walked a distance
of 40.5 miles nonstop on a single battery charge. The stabilization is in addi-
tion to the energy-optimal trajectory controller that is set up on the robot. The
Poincaré map for Ranger is about the mid-stance position. The energy-optimal
trajectory is linearized about the Poincaré map. In the linearized equations, the
state variables are the stance leg velocity, swing leg position and velocity at
mid-stance and the control actions are the foot placement and ankle push-off.
The linearized equations are used to set up a discrete linear quadratic regulator
to reduce the errors in the state at the Poincaré section (Bhounsule et al., 2014b).
We provide more details in the next section.

4.6.3.3 Discrete-Decision Continuous Action Control

Next, we present a controller formulation that does discrete, event-based, inter-
mittent control that is able to preserve much of the passive dynamics of walking
robots (also see Bhounsule et al., 2014b). We illustrate the problem with a hy-
pothetical example and then show how it can be used to control a bipedal robot.

Control Problem

Let the state of the full, possibly nonlinear, system be x(t), the control be u(t)

and the continuous system dynamics defined by F with ẋ = F(x,u). Further,
assume the system has a desirable nominal trajectory x̄(t) associated with a
nominal baseline control ū(t),

˙̄x = F(x̄, ū). (4.6.10)

The feedforward command ū(t) in the above equation is open-loop and does not
stabilize the system adequately, or perhaps at all. For example, even with per-
fect initial conditions, modeling errors, actuator imperfections and disturbances
will cause the system to too-much, or catastrophically (“failure”), deviate from
the nominal trajectory. So we add a feedback control that supplements u with
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FIGURE 4.6.7 Schematic example: (A) the nominal (solid red) and deviated (dashed blue) trajec-
tory, for some dynamic variable x of interest. We measure the state x at the start of a continuous
interval, namely at section n; (B) the new deviated trajectory in target variables z after switching
on our feedback controller. In this example, feedback controller nulls (zeros) the output z at the
end of the interval, illustrating a “dead-beat” controller. (C) The feedback motor program has two
control actions: a sinusoid for first half cycle and a hat function for the second half of the cycle.
These shapes are arbitrary and different from each other in form only for illustrative purposes. They
could overlap in time. We choose the amplitudes U1 and U2 of the two functions at the start of the
interval depending on the error (x − x̄). By a proper choice of the amplitudes U1 and U2 deviations
are, in this example, fully corrected in between measurements. The choice of trigger for event n, the
choice of sensor measurements x, the choice of output variables z, and the control shape functions
f (t) are offline design choices.

a control δu to adequately brings the system back to the nominal trajectory. In
this case, we do feedback at discrete times and the control commands are sim-
ple feedforward control functions over the interval. This differs from common
continuous feedback control because we only sense key quantities and only at
occasional times.

Schematic Example

We illustrate the event-based intermittent feedback control idea with a schematic
example. Consider the nominal trajectory of a second-order system shown as
a solid red color line in Fig. 4.6.7. Let n and n + 1 be instances of time at
which we are taking measurements from sensors. The time interval between the
measurements n and n + 1 is typically on the order of the characteristic time
scale of interest (and not the shortest time our computational speed allows). Let
us assume that we take two measurements, xn = [x1 x2]′ (e.g., a position and
velocity) at time n. We want to regulate two outputs: z1 and z2 (some attributes
of the state xn) at time n+ 1.

Assume that, due to external disturbances, the system has deviated from
its nominal trajectory. We show the trajectory as a dashed blue color line in
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Fig. 4.6.7A. Now, the state of the system is x̄n ( �= xn) at time n. When feedback
corrections are absent, the relevant output z̄n+1 ( �= zn+1) whose components, in
notational shorthand, are [z̄1 z̄2]′.

Our feedback controller measures deviations at time n (δxn = xn − x̄n) and
uses actuation to reduce the deviations in output variables (δzn+1 = zn+1 −
z̄n+1). For illustration, we choose two control actions, δun = [U1f1(t) U2f2(t)]′,
a half-sinusoid and a hat function, each active for half the time between time
n + 1 and n (Fig. 4.6.7C). The controller adjusts the amplitudes (U1 and U2)
of the two control functions, based on measured deviations δxn, to regulate the
deviated outputs δzn+1. For example, with a proper choice of the amplitudes, it
should be possible to fully correct the deviations in the output variables, as seen
in Fig. 4.6.7B.

In the simplest cases, we linearize the map from the measurement section
n to the section n + 1. The sensitivities of the dynamic state to the previous
state and the controls Un = [U1 U2]′ are: A = ∂xn+1/∂xn, B = ∂xn+1/∂Un,
C = ∂zn+1/∂xn, and D = ∂zn+1/∂Un. The brute-force way of calculating the
sensitivity matrices A,B,C and D is by numerical finite-difference calculations.
We then have, for our linearized discrete system model:

δxn+1 =Aδxn +BUn, (4.6.11)

δzn+1 =Cδxn +DUn. (4.6.12)

Again, the δxn are a list of measured deviations, the δzn are a list of devi-
ations which we wish to control, the U are the activation amplitudes (2 in our
example above). For simplicity, assume full state measurement, the controller
architecture is thus

Un =−Kδxn, (4.6.13)

where K is a constant gain matrix. We choose the gains K to meet or optimize
various goals using a discrete linear quadratic regulator (DLQR).

For most systems, ones that have the needed controllability, it is possible
to find shape functions f1(t) and f2(t) so that the matrix B is nonsingular. In
the same way that a square matrix is generically nonsingular, n random shape
functions for an n order system should (generically) lead to a nonsingular B
and thus the possibility of 1-step dead-beat control. Of course, the matrix B
can be more or less well conditioned depending on how independent the shape
functions are from each other.
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Discrete Linear Quadratic Regulator (DLQR)

One can use a DLQR to any goal function z of the state. In DLQR (Ogata, 1995),
we seek to minimize the cost function Jdlqr defined as

Jdlqr =
n=∞∑
n=0

(
δzn+1

T Qzzδzn+1 +Un
T RUUUn

)
, (4.6.14)

where Qzz and RUU are matrices that weight the different components of δzn+1

and Un (RUU must be positive definite and Qzz positive semidefinite). The
weights Qzz and RUU are design parameters picked to give reasonably fast
return to nominal values but without unduly high gains (which might tend to
lead to control command that are beyond safety limits). They are often given as
diagonal for simplicity.

Putting Eq. (4.6.12) into Eq. (4.6.14) and rearranging gives

Jdlqr =
n=∞∑
n=0

(
δxn

T Qδxn + 2δxn
T NUn +Un

T RUn

)
, (4.6.15)

where Q = CT QzzC, N = DT QzzC, and R = DT RzzD + RUU . Jdlqr can be
minimized with a linear state feedback, Un = −Kδxn with gain K found by
solving the standard Riccati equation (Ogata, 1995).

Other Goals

The same linear control architecture given by Eq. (4.6.13) could have gains K
chosen to optimize or achieve other criteria that do not fit into standard basic
linear control formalisms. For example, there could be a weight on the sparse-
ness of K, on nonquadratic costs for error and control over some range of initial
conditions, on the basin of attraction for the nonlinear system, etc. To calcu-
late K one might then require more involved optimization calculations, but the
structure of the resultant controller would be preserved. Similarly the choice of
shape functions could be subject to optimization on independence, smoothness,
maximizing control authority, etc.

Factors to Consider While Designing the Controller

The systems we are interested in controlling are not those in which we do
measure control quality by how closely a target is followed; clearly, the type
of intermittent control we discuss here is not optimal for that. Rather, we are
interested in preventing total system failure. For walking or for an inverted pen-
dulum, falling down is failure. To slightly generalize, by failure we mean that
the system state has moved outside a particular target region surrounding the
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target point. How is this region defined? In practice, it is the region outside of
which nonlinear effects lead to divergence of the solution to points much farther
from the target (e.g., falling down). Sticking to the linear model, the user has to
supply the target region based on intuitions, experience, or nonlinear modeling.
Some issues in the controller design include:

1. Selecting a suitable section or instance of time to take measurements — this
instant should be when the dynamic-state estimation is reasonably accurate,
and when dynamic-state errors which cause failure are evident;

2. Selecting measurement variables (xn) that are well-predict system failure;
3. Picking output variables (zn) that can well-correct against system failure;

and
4. Picking actuator shape profiles (f (t)’s) that have large, and relatively inde-

pendent, effects on the target variables, and are also sufficiently smooth for
implementation with real motors.

We next discuss the above points with in the context of a walking robot.

Example: Controlling a Bipedal Walking Robot

For a 2D bipedal robot walking at steady speed, here is how we can go about
designing a discrete controller (Bhounsule, 2014a). A typical walking step of
a bipedal robots includes two phases: a smooth continuous phase in which the
entire robot vaults over the grounded leg, and a nonsmooth discontinuous phase
in which the legs exchange roles.

1. Suitable section or instance of time to take measurements: Any instant not-
close to support-exchange is a good time for measurement. This is because
the measurements are typically noisy during the nonsmooth support change
(heel-strike collision).

2. Suitable measurement variables (xn) that are representative of system failure:
The state of the lower body is most important for walking balance, so good
measurement variables are the state (position and velocity) of the stance leg.

3. Suitable output variables (zn) that also correlate with system failure: Step
time, step length are important quantities to regulate during walking, and
they serve as good output variables.

4. Suitable actuator shape profiles (f (t)’s) that have large and relatively in-
dependent effects on the target variables: For leg swing, for example, two
torque profiles, one with large amplitude near the start of the interval, and
one with large amplitude near the end, yield good control authority over po-
sition and velocity of the swing leg at the end of the interval.

Once the above quantities are picked, we can check the system controllability.
If the system is not well controllable (correction of reasonable disturbances re-
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quires unreasonable actuation amplitudes), the first likely fix is picking better
actuation shape functions.

As noted, we used this discrete feedback control idea to stabilize steady
walking gait of a bipedal robot leading to energy-efficiency record and long
distance 65 km walking record (Bhounsule, 2012; Bhounsule et al., 2014a;
Ruina, 2012).

Computing the Linearization

For linear control approaches, the gain selection depends on having the lin-
earized map Eqs. (4.6.11) and (4.6.12) from Eq. (4.6.10). We assume we have
a system, or computational model of the system, with which we can perform
numerical experiments. To get the matrices A and C, we can perturb xn element-
wise and use finite difference to compute these matrices. Similarly, to get ma-
trices B and D, we can put in small amplitudes of the controls Un and use finite
difference to compute the sensitivities.

4.6.4 DISCUSSION AND CHALLENGES

4.6.4.1 Energy Efficiency and Dynamic Walking

Energy-efficiency for a variety of locomotion/mobility modes is quantified by
total cost of transport (TCOT) (Tucker, 1970) and the mechanical cost of trans-
port (MCOT) which are defined as follows:

TCOT= total energy used per step

weight× step length
, (4.6.16)

MCOT= mechanical energy used per step

weight× step length
. (4.6.17)

The total energy includes the mechanical energy and other energy-terms like
dissipation in the resistive elements of electric motors, energy to power the elec-
tronics (e.g., sensors, computers). For passive dynamic walkers, the total energy
is equal to the mechanical energy and is equal to the tangent of the ramp slope.
Thus, MCOT = tan(γ ) = TCOT, where γ is the ramp slope. McGeer’s Dy-
namite had a TCOT = MCOT = 0.025 (McGeer, 1990). Some of the most
energy-efficient powered legged robots are: Collins biped (TCOT= 0.2, MCOT
= 0.055) (Collins and Ruina, 2005); Cornell Ranger (TCOT = 0.19, MCOT =
0.04) (Bhounsule et al., 2014a); and Cargo (TCOT = 0.1) (Guenther and Iida,
2017). To put these numbers in perspective, humans have a TCOT = 0.3 (Atzler
et al., 1925)3 and MCOT = 0.05 (Margaria, 1968). Note that both TCOT and

3. The TCOT is computed using the total metabolic energy. However, if only the energy to walk is
taken into account then human TCOT is 0.2.
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MCOT are functions of the step size and step velocity and the above values
correspond to the lowest energy values at a specific step size and step velocity
(Bertram and Ruina, 2001).

4.6.4.2 Stability and Robustness

Passive dynamic-based walkers have shown poor stability and robustness
characteristics. The most well-known method of computing stability of pas-
sive dynamic-based robots is using the eigenvalues of the limit cycle (see
Sect. 4.6.2.2). The walking motion is stable if the magnitude of the biggest
eigenvalue is less than 1 and unstable otherwise. In particular, an eigenvalue
equal to 0 implies that all disturbances are nullified in a single step. Thus a
values closer to zero implies greater stability. However, passive dynamic robots
have rarely demonstrated an eigenvalue less than 0.6 > 0 (Bhounsule et al.,
2014a). One way of stabilizing the passive dynamic-based walkers is to de-
velop a controller that sets the eigenvalue to a desired value, also known as pole
placement (Kuo, 1999; Bhounsule et al., 2014a, 2014b). Another option is to
minimize the biggest eigenvalue during the controller design phase (Mombaur
et al., 2001).

A commonly used metric for robustness of passive dynamics-based walkers
is the maximum change in height that the robot can withstand without falling
(Wisse et al., 2005). One can nondimensionalize the change in height with
the leg length to compare different robots. The maximum step-down (normal-
ized by leg length) for passive dynamics-based robots from TU Delft are: Max
1%, Denise 1%, and Mike 2% (Hobbelen, 2008), indicating poor robustness to
terrain variation. Kim and Collins (2017) have found that adding random dis-
turbances rather than a single disturbance is a better indicator of stability. They
have also found that to get consistent results, one needs to evaluate stability
(ability to not fall) over 100 steps. Kelly and Ruina (2015) provide a technique
for creating asymptotically stable and robust using Lyapunov function. But all
the approaches so far evaluate the robustness after controller design. A challenge
then is to come up with a technique to design a controller for a given robustness.

4.6.4.3 Versatility, Maneuverability, and Agility

Versatility refers to the ability of the bipedal robot to stand, walk, turn, and
climb stairs (Kuo, 2007). Maneuverability is the robot’s ability to turn its body
or change the heading (Full et al., 2002; Jindrich and Full, 1999), and agility
is defined as the robot’s ability to change its velocity (Bowling, 2011). Passive
dynamics-based robots have demonstrated very limited versatility, agility, and
maneuverability. There does not seem to be any fundamental limitation in ad-
dressing these metrics except that very limited work has been done in this regard.
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4.6.4.4 Mechanical Design

Proper tuning of the mass distribution, inertia, and leg geometry is vital to enable
unactuated passive dynamic walking down a ramp. We discuss the issues next.

The natural frequency of the swinging leg should be such that it is able to
swing forward to break the forward fall about the stance leg. The natural fre-
quency depends on the leg inertia and the location of the center of mass of
the leg. The pendulum swing time is directly proportional to the inertia of the
leg and inversely proportional to the location of the center of mass of the leg.
Thus, by increasing the inertia or moving the center of mass near the torso in-
creases the swing time and which increases the natural frequency of walking. If
the natural frequency increases too much then there will be no passive walking
solutions. However, moving the center of mass away from the pin joint will in-
crease the energy loss at foot-strike, leading to energy-inefficiency. Thus, there
is a trade-off in locating the center of mass on the legs. Another key parameter
is the offset of the center of mass with respect to the line joining the hip joint
and the foot contact point. Simulations have shown that the existence of walking
solutions are extremely sensitive to the mass fore-aft offset.

Adding an upper body increases the energy-efficiency and stability of a 2D
model of walking but adds more complexity to the walker (Wisse et al., 2007).
One way of reducing the complexity is to kinematically couple the upper body
to the legs through a hip bisection mechanism. The hip bisection mechanism
ensures that the angle of the upper body is the average of the angle between the
two legs. However, it is conjectured that the hip bisection mechanism could po-
tentially reduce the energy efficiency because of the need to actively counteract
effects of the torso on the trailing leg following collision (private communica-
tion, Steve Collins).

A circular shaped foot is more energy-efficient than a point foot. As the
radius of curvature of the foot increases, the collisional losses at foot-strike de-
creases, thereby increasing energy-efficiency. When the radius of curvature of
the foot is equal to the leg length, there is a collision free support transfer be-
tween the legs, provided the center of mass is also at the hip joint. Such a walker
is called a synthetic wheel (McGeer, 1990) and can walk on level ground with-
out using external energy.

Walking robots also need a mechanism that will enable ground clearance
during leg swing. One technique is to use sideways rocking to allow for ground
clearance (e.g., see Wilson Walker, Fig. 4.6.1A). To enable rocking, the bottom
of the feet are made circular in the longitudinal as well as lateral direction with
the center of both arcs approximately at the same place (Kuo, 1999). In addition,
the leg mass, center of mass, and inertia needs to be tuned so that the lateral and
longitudinal swing leg motion have the correct frequency which is dependent on
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the slope and dynamics of the rest of the walker. Another technique of creating
ground clearance is to use knees but needs proper design (e.g., a latching mech-
anism) to prevent knee buckling. As both these methods add additional degrees
of freedom, it also decreases the range of passive walking solutions.

Finally, friction in joints need to be as little as possible. Simulations with pas-
sive dynamic walkers have shown that passive dynamic walking solutions dis-
appear as the friction increases (McGeer, 1990). For a passive inspired powered
robot it is vital for the motors to be back-drivable to allow for passive leg swing.

4.6.4.5 Estimation

Good control depends on good estimates of the robot state and perhaps of the ex-
ternal disturbances. For example, to create energy-efficient walking with ankle
actuation, the timing of push-off is critical. Push-off before heel-strike is four
times cheaper than push-off after heel-strike (Kuo, 2002; Ruina et al., 2005).
However, to do push-off just before heel-strike one needs good estimates of
the time to heel-strike, which depends on the stance and swing leg angles and
the terrain. Since it is next to impossible to have a precise estimate of all these
things, it is not possible to determine the exact time to heel-strike. A compromise
is to start the rear ankle push-off as the front foot hits the ground so as to achieve
an overlap between the two. Sometimes it might be necessary to know the robot
state just after heel-strike (e.g., if control is based on instance after heel-strike).
However, the robot is vibrating at the instance after heel-strike which makes it
challenging to do state estimation. Finally, almost all passive dynamic robots
walk blindly. If these robots have to walk in practical scenarios such as in the
presence of obstacles or stepping stones, it is crucial to incorporate vision based
estimation and modify the control algorithm accordingly.

4.6.4.6 Higher Dimensional Systems

Most successful passive dynamics-based walkers have a few degrees of free-
dom, typically between 3 to 6. It is not obvious how to extend passive dynamics
control approach to high dimensional systems such as humanoids which have
10+ degrees of freedom. Most humanoids are versatile but not quite energy-
efficient (TCOT of Honda’s ASIMO is around 3.2 and that of Boston Dynamics’
PETMAN/ATLAS is around 5 (Bhounsule et al., 2014a)). Creating energy-
efficient and versatile humanoids will dramatically increase their practicality.

4.6.5 CONCLUSION

Passive dynamic walking is an attractive concept because of the low energy
usage and the naturalness in the motion. However, the major drawbacks of
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passive-dynamics robots are: limited robustness, limited versatility, and limited
agility/maneuverability which restricts their applications to simple systems and
simple scenarios. How to create walking machines that meet all the above met-
rics is clearly an important, but unsolved challenge.
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APPENDIX 4.6.6

4.6.6.1 Derivation of Equations of Motion for the Simplest
Walker

The equations of motion for the simplest walker were given in Section 4.6.2. We
provide more details here.

Single Stance Phase

The equations of motion in single stance phase are given below:

AssXss = bss, (4.6.18)

Ass =
[
−�2 (M + 2m− 2m cos(φ)) −�2 m (cos(φ)− 1)

l2 m (cos(φ)− 1) �2 m

]
, X=

[
θ̈

φ̈

]
,

bss =
[
Mg� sin(γ − θ)− �2mφ̇2 sin(φ)− g�m sin(γ − θ + φ) + g�m sin(γ − θ)+ 2�2mθ̇ φ̇ sin(φ)

�2mθ̇2 sin(φ)− g�m sin(γ − θ + φ)

]
.

To reduce them to the simplest walker Eqs. (4.6.2) and (4.6.3), we nondimen-
sionalize time with

√
�/g and take the limit m/M→ 0.

Next, we give more details about the derivation of the equation for single

stance. Let �̇H/X and �M/X denote the rate of change of angular momentum and
external torque about the point X, respectively. The first and second lines in the
above equation are obtained by equating the angular momentum to the external
torque about the foot in touch with the ground, C1, and the hip, H , respectively.
These points of interest are shown in Fig. 4.6.8A. We obtain the following equa-
tions:

�̇H/C1 = �M/C1 , (4.6.19)

�̇H/H = �M/H . (4.6.20)

The above two equations can be written as:
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FIGURE 4.6.8 (A) Simplest walker in single stance phase. This caricature is used to derive equa-
tion for single stance mode. (B, C) Simplest walker at an instance just before and after foot-strike,
respectively. These two caricatures are used to relate angles and velocities after foot-strike with
those before foot-strike.

�rH/C1 ×M �aH + �rC2/C1 ×m�aC2 = �rH/C1 ×M �g + �rC2/C1 ×m�g, (4.6.21)

�rC2/H ×m�aC2 = �rC2/H ×m�g, (4.6.22)

where

�g = g ĵ cos(γ )− g ı̂ sin(γ ) , (4.6.23)

�aH =−ı̂
(
l θ̈ cos(θ)− l θ̇2 sin(θ)

)
− ĵ

(
l cos(θ) θ̇2 + l θ̈ sin(θ)

)
,

(4.6.24)

�aC2 =−ı̂
(
lθ̈ cos(θ)− l cos(θ − φ)

(
θ̈ − φ̈

)− lθ̇2 sin(θ)

+ l sin(θ − φ)
(
θ̇ − φ̇

)2)
...

− ĵ
(
lθ̈ sin(θ)+ lθ̇2 cos(θ)− l sin(θ − φ)

(
θ̈ − φ̈

)
− l cos(θ − φ)

(
θ̇ − φ̇

)2)
, (4.6.25)

�rH/C1 = ĵ l cos(θ)− ı̂ l sin(θ) , (4.6.26)

�rC2/C1 = ĵ (l cos(θ)− l cos(θ − φ))− ı̂ (l sin(θ)− l sin(θ − φ)) , (4.6.27)

�rC2/H = ı̂ l sin(θ − φ)− ĵ l cos(θ − φ) . (4.6.28)

To create an actuated model, a hip torque and an ankle torque needs to be
added to the first and second line of bss in Eq. (4.6.18), respectively.

Foot-Strike Phase

The angles after foot-strike are obtained by comparing the angles in Fig. 4.6.8B
with that in Fig. 4.6.8C. These are given by:

θ+ =−θ−, (4.6.29)

φ+ =−φ− =−2θ−. (4.6.30)
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The angular velocities after foot-strike are given by:

AhsXhs = bhs, (4.6.31)

Ahs =
[
�2 (M + 2m− 2m cos(φ)) �2 m (cos(φ)− 1)

−l2 m (cos(φ)− 1) −�2 m

]
,

Xhs =
[
θ̇+

φ̇+

]
, bhs =

[
M �2 θ̇− cos

(
φ−
)

0

]
. (4.6.32)

To reduce the above two equations to the simplest walker Eqs. (4.6.7) and
(4.6.8), we nondimensionalize time with

√
�/g and take the limit m/M→ 0.

Next, we show how to obtain the above velocities after heel-strike. Let �H−/X
and �H+/X denote the angular momentum about the point X before and after foot-
strike, respectively. The first and second lines in the above equation are obtained
by equating the angular momentum about the foot that is about to touch the
ground, C1, and the hip, H , respectively, to get the following equations:

�H−/C2
= �H+/C1

, (4.6.33)

�H−/H = �H+/H . (4.6.34)

Note that for the instance after foot-strike the contact points C1 and C2 are
swapped. The above equation can be written as:

�r−H/C2
×M �v−H + �r−C1/C2

×m�v−C1
= �r+H/C1

×M �v+H + �r+C2/C1
×m�v+C2

, (4.6.35)

�r−C1/H
×m�v−C1

= �r+C2/H
×m�v+C2

, (4.6.36)

where

�r−H/C2
= ĵ � cos

(
θ− − φ−

)− ı̂ � sin
(
θ− − φ−

)
, (4.6.37)

�r−C1/C2
= ı̂

(
� sin

(
θ−
)− � sin

(
θ− − φ−

))− ĵ
(
� cos

(
θ−
)− � cos

(
θ− − φ−

))
,

(4.6.38)

�r+H/C1
= ĵ � cos

(
θ+
)− ı̂ � sin

(
θ+
)
, (4.6.39)

�r+C2/C1
= ĵ

(
� cos

(
θ+
)− � cos

(
θ+ − φ+

))− ı̂
(
� sin

(
θ+
)− � sin

(
θ+ − φ+

))
,

(4.6.40)

�r−C1/H
= ı̂ � sin

(
θ−
)− ĵ � cos

(
θ−
)
, (4.6.41)

�r+C2/H
= ı̂ � sin

(
θ+ − φ+

)− ĵ � cos
(
θ+ − φ+

)
, (4.6.42)

�v−H =−ı̂ � θ̇− cos
(
θ−
)− ĵ l θ̇− sin

(
θ−
)
, (4.6.43)

�v−C1
= 0, (4.6.44)
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�v+H =−ı̂ � θ̇+ cos
(
θ+
)− ĵ � θ̇+ sin

(
θ+
)
, (4.6.45)

�v+C2
=
(
−ı̂ (l θ̇− cos

(
θ−
)− � cos

(
θ− − φ−

) )
− ĵ

(
� θ̇− sin

(
θ−
)− � sin

(
θ− − φ−

) ))(
θ̇− − φ̇−

)
. (4.6.46)
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4.7.1 BIPEDAL ROBOTS WITH HZD CONTROLLERS

The method of hybrid zero dynamics (HZD) offers a paradigm for designing
feedback control laws that induce reliable dynamically-stable walking and run-
ning motions on bipedal robots, all the while providing analytically tractable
guarantees of performance. The method has been introduced by Jessy Grizzle,
Eric Westervelt, and their collaborators in Grizzle et al. (2001), Westervelt et al.
(2003), Westervelt (2003), Morris and Grizzle (2009), where geometric nonlin-
ear control tools are developed to generate provably stable limit-cycle walking
motions in a class of bipedal robots by dealing directly with their underactuated
and hybrid nature; the book (Westervelt et al., 2007) provides an integrative per-
spective. At its core, the method relies on restricting the dynamics of the robot
on a lower-dimensional attractive and invariant subset of its state space. This
is achieved by defining a set of holonomic output functions with the control
objective being to drive these outputs to zero. Through this process, a lower-
dimensional dynamical system emerges from the closed-loop dynamics of the
robot that governs the existence and stability properties of its behavior.

Beyond its theoretical value, the method has been successful in experimen-
tally generating robust walking motions on the planar bipedal robot Rabbit
(shown in Fig. 4.7.1); see Chevallereau et al. (2003), Westervelt et al. (2004)
for details regarding these experiments. Rabbit’s successful walking experi-
ments prompted the extension of the HZD method to stabilize bipedal run-
ning (Chevallereau et al., 2005). However, while initial experiments have been
successful in exciting running on Rabbit, the resulting motions could not be
sustained due to actuator limitations (Morris et al., 2006). Given that elastic
energy storage elements – e.g., in the form of tendons in animals (Alexander,
1988) or springs (Raibert, 1986) in robots – play a significant role in the real-
ization of running motions, subsequent research efforts on the HZD method
concentrated on its implementation on compliant robots. Based on theoreti-
cal tools developed in Morris (2008), Morris and Grizzle (2009), the notion
of compliant hybrid zero dynamics has been introduced in Poulakakis (2008),
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FIGURE 4.7.1 A collection of robots and robotic assistive devices for which HZD-based methods
have successfully resulted in stable bipedal locomotion.

Poulakakis and Grizzle (2009b) and further refined in Sreenath (2011) to in-
duce robust walking (Sreenath et al., 2011) and running (Sreenath et al., 2013)
motions in experiments with the compliant bipedal robot MABEL4 shown in
Fig. 4.7.1. In addition to these experiments, MABEL provided an excellent
platform for validating advanced locomotion controllers for accommodating
unexpected large ground-height variations (Park et al., 2013), and for testing
alternative Lyapunov-based HZD control schemes as in Ames et al. (2014a) that
afford greater flexibility in incorporating constraints such as actuator torque sat-
uration (Galloway et al., 2015). These ideas have been translated to other robots,
including the use of Lyapunov-based HZD techniques to realize walking on the
planar robot DURUS-2D (Cousineau and Ames, 2015) (shown in Fig. 4.7.1),
along with running on the same platform (Ma et al., 2017).

Building upon the successes of HZD, which focused on underactuated
walking due to its clear separability from methods that require full actuation
(e.g., zero moment point (ZMP) based frameworks (Kajita et al., 2003, 2006;

4. MABEL and its monopedal version Thumper depicted in Fig. 4.7.1 have been designed and
constructed by Professor J. Hurst in a collaborative effort between The University of Michigan and
Carnegie Mellon University; see Grizzle et al. (2009) for an overview and Hurst et al. (2007), Hurst
and Rizzi (2008), Hurst (2008) for details relevant to the underlying design philosophy.
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Vukobratović et al., 2006; Goswami, 1999a, 1999b)), the HZD methodology
has been proven to be extensible to walking behaviors that more clearly re-
semble humans. When locomoting, humans naturally display different discrete
phases that correspond to their changes in contact with the world (Ackermann,
2007). In the context of robots, this multi-contact behavior can be represented
by a hybrid dynamical system model of walking consisting of discrete domains,
wherein dynamics of the robot change discretely as a function of its contact with
the ground; this results in phases of full, under- and over-actuation (Ames et al.,
2011; Vasudevan et al., 2013). The ability of HZD to handle underactuation
motivated its extension to this multi-domain locomotion scenario. In particular,
using human locomotion data as inspiration, the framework of human-inspired
control extended HZD to the full-actuated case through the notion of partial hy-
brid zero dynamics (PHZD) (Ames, 2014). Combining this approach with the
HZD methods for underactuated walking, e.g., on AMBER 1, resulted in the
ability to consider multi-domain HZD, thereby achieving multi-contact walking
behaviors on bipedal robots, including ATRIAS (Hereid et al., 2014), AMBER 2
(Zhao et al., 2014b, 2015a), and the prosthesis AMPRO (Zhao et al., 2016b) (see
Fig. 4.7.1). These results, both formally and experimentally, indicated that HZD
can provide a mathematical framework for realizing human-like walking behav-
iors on robotic systems.

The last frontier for HZD-based methods was their extension to three-
dimensional (3D) walking and realization on humanoid robots; the challenges
and approaches are described in detail in Grizzle et al. (2014, 2010). This will
enable us to engage dynamically moving bipeds in motion planning tasks, in-
cluding navigation in environments cluttered by obstacles as in Gregg et al.
(2012), Motahar et al. (2016), Veer et al. (2017). While 3D robot walking
utilizing HZD had long proved feasible in simulation, and had even proven
realizable on small-scale humanoids like the NAO robot (Ames et al., 2012a;
Powell et al., 2013), bridging the gap between this theory and the experimental
realization on full-scale humanoid robots is a difficult task. This is, at its core, a
function of the fact that HZD uses the entire dynamics of the robot to generate
walking gaits in the context of a constrained nonlinear programming problem.
When this optimization problem can be solved, it results in dynamic and effi-
cient gaits – yet as the complexity of the robot increases, solving the problem
becomes more difficult making the translation to hardware evermore challeng-
ing. During the design and development of the humanoid robot DURUS (shown
in Fig. 4.7.1), structure in nonlinear optimization problem necessary to generate
gaits was discovered and exploited to allow for rapid gait generation; bringing
the time needed to obtain a stable walking gait from hours to a few minutes
(Hereid et al., 2016); importantly, due to the presence of springs in the ankles
of DURUS, this was done in the context of multi-domain walking that exploits
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PHZD to achieve stability. Not only was stable walking achieved, but it was done
so in a sustained fashion with the end result being the public demonstration of
DURUS at the DARPA Robotics Challenge, wherein it walked continuously for
over 2 1/2 hours covering over 2 km – all on a single 1.1 kWh battery (Reher et
al., 2016a). Additionally, these results were extended to the case of multi-contact
walking with natural heel–toe behaviors thereby demonstrating human-like hu-
manoid locomotion (Reher et al., 2016b). Moreover, in both cases, the walking
realized on DURUS was the most efficient walking realized on a bipedal hu-
manoid robot (Collins and Ruina, 2005). The final lessons from the realization
of HZD on a variety of platforms was that it provides a powerful method for
realizing dynamic walking behaviors on bipedal and humanoid robots.

4.7.2 MODELING LEGGED ROBOTS AS HYBRID DYNAMICAL
SYSTEMS

Walking and running behaviors can be modeled as distinguished periodic orbits
of mechanical systems that are strongly nonlinear and hybrid in nature. For ex-
ample, a simplified walking cycle consists of successive phases of single support
(swing phase) and double support (impact phase). On the other hand, running
comprises phases where a leg is in contact with the ground (stance phase) and
phases where the system is in the air following a ballistic motion under the in-
fluence of gravity (flight phase). This combination of continuous dynamics and
discrete transitions among them is characteristic of legged locomotion and it
gives rise to hybrid system models, which are the focus of this section.

4.7.2.1 Continuous Dynamics

Let Q be the configuration space of a robot with n degrees of freedom, i.e., n=
dim(Q), with coordinates q ∈ Q; examples of coordinate choices for various
bipeds are shown in Fig. 4.7.2. For the sake of definiteness, it may be necessary
to choose Q to be a subset of the actual configuration space of the robot so that
global coordinates can be defined,5 i.e., such that Q is embeddable in R

n, or
more simply Q⊂R

n. Consider the equations of motion for a robot given in the
general form by the Euler–Lagrange equations (Murray et al., 1994; Spong et
al., 2006):

D(q)q̈ +C(q, q̇)q̇ +G(q)= Bu (4.7.1)

where D(q) is the mass matrix, and C(q, q̇)q̇ , G(q) are vectors containing the
centrifugal and Coriolis forces and the gravitational forces, respectively, and

5. At various points of this chapter we will assume that certain matrix functions have full rank; it
may be necessary to carefully choose Q to satisfy these conditions.
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FIGURE 4.7.2 Examples of the configuration space for a collection of bipedal and humanoid
robots; in this case, Rabbit (Westervelt et al., 2003), AMBER 2 (Zhao et al., 2014b), ATRIAS
(Hereid et al., 2014) and DURUS (Hereid et al., 2016).

B ∈Rn×m is the actuation matrix which determines the way in which the torque
inputs, u ∈ U ⊂ R

m, actuate the system (where here U is the set of admissible
control inputs). Importantly, the actuation matrix changes based upon the actua-
tion type of the robot: in the case of full actuation, this matrix is full rank, while
in the case of underactuation this matrix has rank m< n indicating that it is not
possible to actuate all of the degrees of freedom of the system, and if m > n

the system is overactuated, i.e., there is more control authority than degrees of
freedom in the system.

Selecting the state vector x to include the configuration variables and the
corresponding rates, that is x = [qT q̇T ]T ∈R2n, and noticing that

d

dt

[
q

q̇

]
=
[

q̇

−D(q)−1 (C(q, q̇)q̇ +G(q))

]
+
[

0

D(q)−1B

]
u (4.7.2)

results in the following state-space form of the continuous dynamics (4.7.1):

ẋ = f (x)+ g(x)u. (4.7.3)

4.7.2.2 Discrete Dynamics

In the basic walking model – more advanced models are discussed in Sec-
tion 4.7.2.4 below – the continuous dynamics (4.7.3) represents the swing phase,
which evolves until the leg hits the ground, thereby resulting in an impact. It is
this impact that is the basis for the hybrid dynamical system model that under-
lies walking and running motions (Westervelt et al., 2007; Grizzle et al., 2014;
Ames et al., 2011; Haddad et al., 2006). In particular, we consider the height of
the swing foot and the surface defined by this height being zero. If pv

toe denotes
the height of the toe of the swing leg, then the surface

S = {x ∈ TQ | pv
toe(q)= 0 and ṗv

toe(x) < 0} (4.7.4)
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FIGURE 4.7.3 Representation of the hybrid model of the biped as a system with “impulse” effects.

is the switching surface (or the guard in the terminology of hybrid systems).
Upon reaching the switching surface, the system undergoes an impact, which
in basic walking models represents an instantaneous double support phase. The
end result is an update law

x+ =�(x−) (4.7.5)

mapping the pre-impact states, x−, to the post-impact states, x+. This impact
model includes both a “change of coordinates” in the configuration variables
corresponding to swapping the swing and stance legs, together with a discrete
change in the velocity of the system determined by a plastic impact of the swing
foot with the ground (which causes the stance foot to leave the ground and thus
become the swing foot). More details on deriving the impact map � can be
found in the book (Westervelt et al., 2007).

4.7.2.3 Hybrid Control System

The end result of these constructions is a system with impulsive effects or a
hybrid control system:

H C :
⎧⎨⎩ ẋ = f (x)+ g(x)u, x ∈D\S,

x+ =�
(
x−
)
, x− ∈ S,

(4.7.6)

where D = {x ∈ TQ | pv
toe(q) > 0} is the domain of the system, i.e., we require

the swing foot to be above the ground. Note that the domain is often restricted to
the admissible domain through the inclusion of friction constraints. The system
(4.7.6) is depicted in Fig. 4.7.3. We also note that sometimes systems of this
form are written as a tuple

H C := (D,U,S,�, (f, g)), (4.7.7)

as is more common in the hybrid systems literature (Lygeros et al., 2003; Goebel
et al., 2009; van der Schaft and Schumacher, 2000; Lamperski and Ames, 2013).
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4.7.2.4 Advanced Models of Locomotion

The hybrid system model of a walking robot that we have considered so far in-
cludes only a single continuous and discrete domain. For robots with more com-
plex mechanical characteristics, i.e., springs and nontrivial feet, hybrid system
models with more complex discrete structure are needed. Interestingly enough,
these hybrid models naturally relate to human locomotion models, i.e., humans
tend to display a specific discrete domain structure when walking, wherein their
contact points with the ground change throughout the gait (Ames et al., 2011;
Vasudevan et al., 2011, 2013). Other examples of locomotion models evolv-
ing on multiple domains can be found in running motions, due to the al-
ternation between stance and flight phases (Poulakakis and Grizzle, 2009a;
Sreenath et al., 2013). These more complex models for locomotion can again
be modeled as a hybrid system.

The key element to advanced models of robotic walking and running is
an oriented graph, � = (V ,E), that indicates how the contact points change
throughout the course of a gait, i.e., the vertices of this graph (V ) correspond to
different collections of contact points with the ground, and the transitions (de-
scribed by edges E) occur when these contact points change; see Fig. 4.7.4 for
examples in the case of multi-contact locomotion and Fig. 4.7.8 for a running
model. The end result is a hybrid control system model of the form

H C := (�,D,U,S,�,FG) (4.7.8)

where, in this case, D = {Dv}v∈V is a collection of domains, U = {Uv}v∈V is
a collection of admissible inputs, S = {Se}e∈E is a set of switching surfaces,
� = {�e}e∈E is a set of impact maps with �e : Se ⊂ Dsource(e) → Dtarget(e)

and FG= {(fv, gv)}v∈V is a collection of control systems of the form (4.7.3).
It is important to note that the degree of actuation changes for each domain,
i.e., on some domains the system may be underactuated, on some it might be
fully actuated, and on others it can be overactuated. The specific methods for
constructing hybrid system models as they relate to the changing contact points
of the robot can be found in Ames et al. (2011).

To provide a concrete example, consider the multicontact model of the
bipedal robot AMBER 2 shown in Fig. 4.7.4. As described in Zhao et al.
(2014b, 2015a), this model consists of three domains, Dv+ , Dvi , and Dv− ,
that depend on how the robot’s contact points (heel and toe) change through-
out the course of a step. The dynamics on each of these domains changes
with the change in contact points. Importantly, each of these domains dis-
play a different actuation type: Dv+ is overactuated, Dvi is fully actuated,
and Dv− is underactuated. Other examples of multidomain walking, and the
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FIGURE 4.7.4 (Left) The discrete domains, and the percentage of the step spent in a domain, for
a human walking (as obtained from experimental data), (Middle) the discrete two domain structure
associate with the hybrid system model of ATRIAS, and (Right) the discrete three-domain structure
for AMBER 2 when walking with articulated feet (Zhao et al., 2014b).

application of hybrid zero dynamics to these systems to achieve robotic run-
ning, will be discussed in Section 4.7.6.2. Finally, an interesting class of
multidomain hybrid models emerges naturally in the context of planning the
motion of dynamically walking bipeds amidst obstacles (Gregg et al., 2012;
Motahar et al., 2016). This can be achieved through the sequential composi-
tion of primitive limit-cycle walking motions each stabilized through HZD as
in Motahar et al. (2016), Veer et al. (2017).

4.7.3 VIRTUAL CONSTRAINTS FOR LOCOMOTION

Central to the HZD approach is the introduction of virtual constraints. These
constraints represent relations among the robot’s degrees of freedom that cor-
respond to preferred postures during the realization of a walking or running
gait. They are formulated as functions of the configuration variables of the form
h(q)= 0, q ∈Q, and can thus be interpreted as holonomic constraints, the en-
forcement of which effectively restricts the robot’s motion on low-dimensional
surfaces embedded in its higher-dimensional state space. It should be empha-
sized however, that the key difference with the classical notion of holonomic
constraints from analytical mechanics (Goldstein et al., 2002) is that virtual
holonomic constraints are imposed on the system via its actuators, not via work-
less constraint forces.

4.7.3.1 Virtual Constraints

In our setting, we would like to “force” a set of coordinates – those over which
we have control – to follow desired patterns. Doing so both enforces certain pat-
terns with regard to walking motions and reduces the overall dimensionality
of the system to a reduced dimensional space, thus giving rise to a lower-
dimensional dynamical system, namely the zero dynamics. Mathematically, we
consider the difference between an actual output, ya , and a desired output, yd ,
expressed via

y(q) := ya(q)− yd(τ (q),α) ∈Rm, (4.7.9)
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where the desired function begins as a function of time, yd(t, α), dependent on
a parameter set α, and converted to a function of the configuration variables
through a parameterization of time often chosen to be of the general form,

τ(q)= θ(q)− θ+

θ− − θ+
, (4.7.10)

where θ : Q→ R is a phase variable, θ+ = θ(q+) is its value post-impact,
θ− = θ(q−) is its value pre-impact, and therefore τ :Q→[0,1] throughout the
course of a step. To provide some intuition, as Fig. 4.7.2 indicates, the phase
variable θ can be chosen to correspond to the angle of the line connecting the
hip with the toe of the support leg, which is a monotonically increasing quan-
tity that captures “progression” of the support leg into the step; see Westervelt
et al. (2007) for details. It is important to emphasize that the outputs (4.7.9)
depend only on the configuration variables, hence the term virtual holonomic
constraints.

4.7.3.2 Designing Virtual Constraints for Locomotion Tasks

Based upon the framework of virtual constraints, the main idea is to consider a
vector of output variables ya in (4.7.9), with one output for each actuator. These
outputs capture quantities that are of interest, e.g., angles in the system or other
geometric relationships, such as the position of the center of mass or the height
of the swing foot. The goal is to drive these outputs to evolve according to a
collection of desired behaviors as represented by yd , which is a function of the
phase variable τ and a set of parameters α that allow “tuning” the constraints
according to desired specifications. The art of gait design is to pick yd so that it
displays certain properties so that driving y→ 0 in (4.7.9) guarantees stability
of the system. A concrete way of selecting yd in (4.7.9) is through the use of
Beziér polynomials of degree M , i.e., for i = 1, . . . ,m,

yd(τ (q),α)i =
M∑
k=0

M!
k!(M − k)!αk,iτ (q)

k(1− τ(q))M−k. (4.7.11)

The use of Beziér polynomials is only one choice of functions for the design
of the desired evolution yd in (4.7.9), which offers some flexibility in imposing
desired boundary conditions on the different phases that compose a cyclic loco-
motion pattern. More details about certain key properties of these polynomials
and on how to use them in the context of gait design can be found in Westervelt
et al. (2007).

Virtual constraints, designed via Beziér polynomials, provides a computa-
tionally efficient way of constructing virtual constraints. Yet, since the desired
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behavior is given by polynomials, they do not necessarily capture the virtual
constraints present in human walking. That is, we could instead seek human-
inspired virtual constraints whose design is inspired by human locomotion data.
In this light, human data suggests that for certain collections of outputs, ya , ap-
pear to act like the time solution to a mass–spring–damper system, i.e., humans
appear to display simple “linear” behavior when the proper collection of virtual
constraints are considered (Sinnet et al., 2011a; Ames, 2012; Powell et al., 2012;
Huihua et al., 2012; Zhao et al., 2014b). This motivates the following mass–
spring–damper desired output:

yd(τ (q),α)i = yMSD(τ (q),α)i

:= e−α4,i τ (q)(αk,i cos(αk,iτ (q))+ αk,i sin(αk,iτ (q)))+ αk,i

(4.7.12)

for i = 1, . . . ,m, which is simply the time solution to a linear mass–spring–
damper system, i.e., a second order linear system. Human data has been calcu-
lated from a variety of actual output combinations, ya , and it has been shown
that yMSD accurately describes (with high correlation) these outputs; examples
include the position of the hip, the position of the center of mass, and the knee
angles (Ames, 2014; Sinnet et al., 2014).

Another class of virtual constraints developed for fully actuated walking
robots considers both velocity modulating and position modulating virtual con-
straints. More specifically, in this case we can modulate both the position of
the robot – through the virtual constraints defined in (4.7.9) – and its traveling
speed. Moreover, we would like to do this in a general fashion that will allow for
different collections of virtual constraints depending on the bipedal robot being
considered and the desired behavior to be achieved. To regulate the velocity of
the robot in an explicit fashion, we consider the following virtual constraints
(Ames, 2014):

y1(q, q̇)= ∂θ(q)

∂q
q̇ − v, (4.7.13)

y2(q)= y2,a(q)− y2,d (τ (q),α) (4.7.14)

where y2 are the position modulating outputs as defined in (4.7.9), θ :Q→R is
the phase variable of the virtual constraint (4.7.9), and v is the desired velocity.
For example, we may wish to explicitly control the forward velocity of the center
of mass to regulate the robot’s speed; in this case θ would be the position of the
center of mass, and v would be the desired velocity. In doing so, it is often useful
to consider the following modified form for the parameterizations of time:

τ(q)= θ(q)− θ(q+)
v

, (4.7.15)
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where q+ is the post-impact configuration of the robot. Therefore, τ directly
couples the phase of the robot to the forward progression of the velocity mod-
ulating output. As in the case of purely position modulating virtual constraints
(4.7.9), the goal is to construct a controller that drives y1 → 0 and y2 → 0 to
force the robot to progress forward in a desired fashion while displaying the
coupling dictated by y2.

4.7.4 USING FEEDBACK CONTROL TO IMPOSE VIRTUAL
CONSTRAINTS

As discussed in Section 4.7.3, the goal is to drive y→ 0 in order to force the
actual outputs, ya , to the desired outputs, yd , i.e., in order to achieve ya→ yd .
This objective can be achieved through the use of a core tool in nonlinear con-
trol: feedback linearization (Sastry, 1999). The end result is a controller that
drives the system to the zero dynamics surface and renders this surface invariant
through the continuous dynamics. Therefore, applying this control law implies
that the full dynamics of the robot will ultimately evolve on a low dimensional
space for the continuous dynamics. The next section will discuss how to achieve
this through the full hybrid dynamics of the robot and, thereby, realize periodic
walking and running motions in the hybrid models of Section 4.7.2.

4.7.4.1 Feedback Linearization

The goal of feedback linearization is to uncover a relationship between the out-
put and the control input. This is achieved by differentiating the output until
this relationship is revealed. To be concrete, let us consider differentiating y in
(4.7.9) along solutions of the continuous dynamics (4.7.3). We have

ẏ(q, q̇)= ∂y(q)

∂q
q̇ . (4.7.16)

Since none of the inputs appear in this equation, we differentiate a second time
to obtain

ÿ(q, q̇)= ∂

∂q

(
∂h(q)

∂q
q̇

)
q̇ + ∂y(q)

∂q
q̈ (4.7.17)

and substituting in the dynamics (4.7.1) yields

ÿ(q, q̇)= ∂

∂q

(
∂h(q)

∂q
q̇

)
q̇ + ∂y(q)

∂q

[
−D−1(q) (C(q, q̇)q̇ +G(q))

]
︸ ︷︷ ︸

L2
f y(q,q̇)
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+ ∂y(q)

∂q
D−1(q)B︸ ︷︷ ︸

LgLf y(q,q̇)

u (4.7.18)

where, since we differentiated y twice to obtain the input, the virtual constraint
is a relative degree two output in the terminology of nonlinear control (Isidori,
1995; Sastry, 1999). In the context of the mixed position and velocity modulat-
ing outputs (4.7.13)–(4.7.14), the result will be a mixed relative degree, as will
be discussed in more detail in Section 4.7.4.3 below.

To obtain a controller that drives y→ 0 we consider (4.7.18) which can be
written in terms of x as

ÿ(x)= L2
f y(x)+LgLf y(x)u , (4.7.19)

where LgLf y(x) ∈Rm×m is the decoupling matrix that is assumed to be invert-
ible. Therefore, selecting

u(x,μ)= (LgLf y(x)
)−1

[
−L2

f y(x)+μ
]
, (4.7.20)

where μ ∈ Rm is an auxillary input, results in a linear relationship between the
second derivative of y and the new input μ, as in

ÿ = μ. (4.7.21)

That is, the end result is a linear control system of the form[
ẏ

ÿ

]
=
[

0 I

0 0

]
︸ ︷︷ ︸

F

[
y

ẏ

]
+
[

0
I

]
︸︷︷︸
G

μ (4.7.22)

where I ∈Rm×m is the identity matrix. Therefore, the control law

με(y, ẏ)=−KP

ε2
y − KD

ε
ẏ ⇒

[
ẏ

ÿ

]
= 1

ε

[
0 εI

− 1
ε
KP −KD

]
︸ ︷︷ ︸

Fcl(ε)

[
y

ẏ

]

(4.7.23)

where KP and KD are chosen so that Fcl(ε) is stable (Hurwitz) for all 0 < ε < 1.
Note that here ε forces the system to converge at a user defined rate. Therefore,
the control law

u∗(x)= (LgLf y(x)
)−1

[
−L2

f y(x)−
KP

ε2
y − KD

ε
ẏ

]
(4.7.24)
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FIGURE 4.7.5 Illustration of the key concepts related to hybrid zero dynamics: continuous con-
vergence to a low dimensional zero dynamics surface Z, coupled with a hybrid invariance condition:
�(S ∩Z)⊂ Z.

drives the output y and its derivative ẏ to zero exponentially fast at a rate of 1
ε

.

4.7.4.2 Zero Dynamics

The control law introduced in Section 4.7.4.1 drives y(x)→ 0 and ẏ(x)→ 0.
That is, it drives the continuous dynamics to the zero dynamics surface, illus-
trated in Fig. 4.7.5 and defined by

Z := {x ∈D | y(x)= 0 and ẏ(x)= 0} , (4.7.25)

where the dimension of the surface is the degree of underactuation of the sys-
tem 2(n − m); it is reminded that n is the number of the degrees of freedom
of the robot and m is the number of actuators. One can find (local) coordi-
nates for the zero dynamics surface, Z, given by z : D→ R

2(n−m) such that
(z, y, ẏ) : D→ R

2n is a (local) diffeomorphism. To provide a concrete exam-
ple, suppose that m= n− 1 and the angle between the robot and the ground is
the first coordinate, q1. Then, necessarily, θ(q) is a function of q1 and y(q) is
independent of q1. We can, therefore, pick coordinates for the zero dynamics as
follows (Westervelt et al., 2007):

z1(q)= θ(q),

z2(q)=D(q)(1,∗)q̇

where D(q)(1,∗) is the first row of the inertia matrix in (4.7.1).
Utilizing the coordinates for the zero dynamics and letting η= (y, ẏ) be the

coordinates for the dynamics transversal to Z, the system can be represented as

η̇= f̂ (η, z)+ ĝ(η, z)u, (4.7.26)

ż=w(η, z)
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where

f̂ (η(x), z(x))=
[

ẏ(x)

L2
f y(x)

]
, ĝ(η(x), z(x))=

[
0

LgLf y(x)

]
,

which are written here in the original x coordinates by using the fact that η
is defined in terms of y and ẏ, which, in turn, are functions of x; note that
these expressions can be converted to the (η, z) coordinates through the (local)
diffeomorphism relating (η, z) with x. Additionally, the control law (4.7.20)
with the auxiliary input μ chosen as in (4.7.23) and expressed in terms of the
η coordinates results in a linear, time-invariant system η̇ = Fcl(ε)η describing
the dynamics transversal to Z. Effectively, the feedback control law (4.7.24)
of Section 4.7.4.1 ensures that the zero dynamics surface Z is attractive and
invariant under the continuous time dynamics of the system – that is, η→ 0 and
η(0) = 0 implies that η(t) ≡ 0 for all future times t ≥ 0. As a result, the zero
dynamics – that is, the maximal dynamics compatible with the output being
identically equal to zero – can be written as

ż=w(0, z) . (4.7.27)

It is worth mentioning that, to arrive at (4.7.27), the number of outputs equals
the number of inputs. In other words, all the inputs available for control are
“slaved” to drive the outputs to zero. Depending on the controller’s objectives,
however, it is possible to define the vector of outputs y so that its dimension
is smaller than the dimension of the input vector u, and keep the remaining
control inputs for additional control within the zero dynamics, which now be-
comes controlled. This may increase the dimension of the zero dynamics, but
it provides greater flexibility for developing control action. Examples of this
approach include the stabilization of running motions on compliant robots by
“shaping” compliance within the zero dynamics (Poulakakis and Grizzle, 2007a,
2007b, 2009b), or by incorporating active force control (Sreenath et al., 2013);
see Section 4.7.6.4 below for more details. On a final note, the presence of ex-
ogenous inputs in the zero dynamics may result from externally applied forces,
giving rise to forced zero dynamics, as in Veer et al. (2015, 2016). For exam-
ple, this is the case when a bipedal robot physically collaborates with a leading
external agent – another robot or a human – to transport an object in their
workspace (Motahar et al., 2015b). In this case, the objective of the feedback
controller is to adapt the robot’s locomotion pattern to the externally applied
force (Veer et al., 2015, 2016).
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4.7.4.3 Partial Zero Dynamics

We can also consider the case in which there is a velocity modulating output
(Ames, 2014), i.e., where there are virtual constraints of the form (4.7.13) and
(4.7.14). In this case, differentiating y1 until the control input appears, as was
done in (4.7.18) yields

ẏ1(q, q̇)= ∂

∂q

(
∂θ(q)

∂q
q̇

)
q̇ + ∂θ(q)

∂q

[
−D−1(q) (C(q, q̇)q̇ +G(q))

]
︸ ︷︷ ︸

Lf y1(q,q̇)

+ ∂θ(q)

∂q
D−1(q)B︸ ︷︷ ︸

Lgy1(q,q̇)

u (4.7.28)

because y1 depends on the angular velocity in (4.7.13). Since the control in-
put appears after differentiating once, it implies that y1 has relative degree one.
Therefore, in the case of human-inspired output combinations we mixed relative
degree one and relative degree two outputs. That is, we can combine (4.7.28)
with (4.7.18) (with y replaced by y2) to obtain[

ẏ1

ÿ2

]
=
[
Lf y1(q, q̇)

L2
f y2(q, q̇)

]
︸ ︷︷ ︸

Lf (x)

+
[

Lgy1(q, q̇)

LgLf y2(q, q̇)

]
︸ ︷︷ ︸

A(x)

u (4.7.29)

where A(x) is the decoupling matrix that must be full rank. Therefore, analo-
gously to (4.7.20), we have

u(x,μ)=A(x)−1 (−Lf (x)+μ
)

⇒
[
ẏ1

ÿ2

]
= μ (4.7.30)

⇒
⎡⎢⎣ẏ1

ẏ2

ÿ2

⎤⎥⎦=
⎡⎢⎣0 0 0

0 0 I

0 0 0

⎤⎥⎦
︸ ︷︷ ︸

F

⎡⎣y1

y2

ẏ2

⎤⎦+
⎡⎢⎣1 0

0 0
0 I

⎤⎥⎦
︸ ︷︷ ︸

G

μ .

Here μ=
[
μ1

μ2

]
where μ1 is the input to ẏ1 and μ2 is the input to ÿ2. As in

(4.7.23), we can pick

μ(y1, y2, ẏ2)=
[

− 1
ε
y1

−KP
ε2 y2 − KD

ε
ẏ2

]
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⇒
⎡⎢⎣ẏ1

ẏ2

ÿ2

⎤⎥⎦= 1

ε

⎡⎢⎣−1 0 0
0 0 εI

0 − 1
ε
KP −KD

⎤⎥⎦
︸ ︷︷ ︸

Fcl(ε)

⎡⎣y1

y2

ẏ2

⎤⎦ (4.7.31)

such that Fcl(ε) is Hurwitz. Therefore, we have defined a controller that achieves
y1→ 0, y2→ 0 and ẏ2→ 0 (at a rate of 1

ε
). Moreover, because we considered

the velocity modulating virtual constraint, we have that θ̇ (q)→ v. Hence, the
velocity of the system – as it is captured by the rate θ̇ (q) of the phase variable –
converges to the desired value.

As was discussed in Section 4.7.4.2, we can consider the surface that the
system converges to under the feedback control law introduced in (4.7.29). In
this case, while our virtual constraints consist of both relative degree one and
relative degree two outputs, we will only consider the surface that the relative
degree two outputs converge to, and then study the behavior of the relative de-
gree one outputs on this surface. In particular, consider the partial hybrid zero
dynamics surface given by Ames (2014)

PZ := {x ∈D | y2(x)= 0 and ẏ2(x)= 0} , (4.7.32)

which is rendered attractive by (4.7.31). Writing η= (y2, ẏ2), then we can again
write the system in the form given by (4.7.26). The advantage of the partial zero
dynamics can be seen easiest in the case of full actuation, i.e., when n=m, as is
the case for many humanoid robots. In this fully-actuated case, the z dynamics
in (4.7.26) become controlled with the ankle torque of the robot available to
propel the robot forward. This is evidenced by the fact that, in this case, the
coordinates for z can be chosen as z1 = θ(q) and z2 = θ̇ (q, q̇) wherein, by
(4.7.30) and (4.7.31), the q dynamics become linear:

ż1 = z2 . (4.7.33)

ż2 =−1

ε
(z2 − v) .

That is, on the surface PZ the system evolves according to linear dynamics that
drive θ̇ → v. It will be seen later that this ensures a stable walking gait in the
case of full actuation.

4.7.5 GENERATING PERIODIC MOTIONS

The goal of gait synthesis is to generate periodic walking gaits for a bipedal
robot, along with the feedback controller that enforces these periodic motions.
This is where hybrid zero dynamics (HZD) provides a powerful framework
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(Grizzle et al., 2001; Westervelt et al., 2003; Westervelt, 2003; Morris and Griz-
zle, 2009). In particular, the feedback controller introduced in Section 4.7.4
rendered the zero dynamics surface, Z, both attractive and invariant for the con-
tinuous dynamics. Yet, when the system reaches the switching surface S it will
be “thrown away” from the zero dynamics surface. This has the potential to
destabilize the system even if the dynamics in Z are stable. That is, the dis-
crete dynamics in the hybrid system can destroy continuous-time invariance and
destabilize the system, even if the continuous dynamics is well behaved. This
is the core idea behind hybrid zero dynamics. By ensuring hybrid invariance of
the zero dynamics (see Fig. 4.7.5),

�(S ∩Z)⊂Z, (4.7.34)

it prevents the system from being destabilized through impact – in fact, the main
result of hybrid zero dynamics is that the condition (4.7.34) implies stability of
the overall dynamics provided that the zero dynamics are stable. This section
will establish the fundamental results related to hybrid zero dynamics.

4.7.5.1 Hybrid Zero Dynamics

Under the influence of the controllers discussed in Section 4.7.4, the “open-
loop” hybrid control system (4.7.6) takes the form of the “closed-loop” hybrid
dynamical system

H :
⎧⎨⎩ ẋ = fcl(x), x ∈D\S,

x+ =�
(
x−
)
, x− ∈ S,

(4.7.35)

where

fcl(x)= f (x)+ g(x)u(x)

and u(x) is the feedback controller given in (4.7.24).
Recall that the feedback controller in (4.7.24) rendered the zero dynamics

surface, Z, given in (4.7.25) exponentially stable. Yet, it may be the case that for
x− ∈Z, the post-impact state of the system x+ =�(x−) /∈ Z. This implies that
the pre-impact state is “thrown-away” from the zero dynamics surface. There-
fore, if the impacts occur at a rate faster than the controller can stabilize the
system, the end result is that the impacts will destabilize the system. Therefore,
the core condition that we enforce is hybrid invariance, i.e.,

�(S ∩Z)⊂Z or, equivalently, x− ∈ S ∩Z ⇒ x+ =�(x−) ∈Z.
(4.7.36)
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Enforcing (4.7.36) requires the proper choice of virtual constraints. In par-
ticular, recall that the controller in (4.7.24) was synthesized from the virtual
constraints given in (4.7.9) which, in turn, depended on the parameter set α ∈Rk

with k the total number of parameters of the desired outputs, yd(τ (q),α). There-
fore, the zero dynamics surface Z depends on the parameters α so that changing
the values of these parameters changes the shape of the surface. This allows us
to explicitly shape the zero dynamics surface to enforce the hybrid invariance
condition (4.7.36), and it can be done systematically in the context of a nonlinear
constrained optimization problem of the form

α∗ = argmin
α∈Rk

Cost(α) (HZD Optimization)

s.t. �(S ∩Z)⊂Z (HZD)

where Cost is a user defined cost function that can be chosen to produce walking
gaits with desirable properties. The details of the optimization problem are be-
yond the scope of this chapter, but can be found in Westervelt et al. (2007), Ames
(2014). We only mention here that any physically relevant constraints – such
as constraints on torque, angular velocity, ground reaction forces and friction
limitations – can be added to the optimization. Adding such constraints en-
sures the physical realizability of the resulting walking gait (Zhao et al., 2014b;
Hereid et al., 2016).

The choice of cost function in (HZD Optimization) can determine the
“shape” of the resulting gait, i.e., the overall behavior of the gait. For exam-
ple, a common choice is a cost function that minimizes the overall torque while
maximizing the distance traveled, i.e.,

Cost(α)= 1

step length

∫ T

0
‖u(α)‖2dt (4.7.37)

where u(α) is the feedback controller calculated for a given parameter set.
Another common choice of cost function, especially in the context of human-
inspired control (Ames, 2014), is to use the difference between the outputs
as calculated from human data and the desired functions with parameters, α,
seeded from human data (Ames, 2012); the end result is typically “human-like”
walking gaits. It is interesting to note that, with the proper choice of constraints,
one often sees similar gaits independent of specific cost functions as the con-
straints tend to be a large factor in the resulting look of the gait. Finally, if
efficiency is the goal, a cost function that minimizes the cost of transport can be
selected (Reher et al., 2016a).

Given constraint parameters that yield well-defined hybrid zero dynamics,
the end result is that the system evolves on the zero dynamics surface during the
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continuous dynamics and this surface is invariant through impact. Therefore,
when supplied with initial conditions in Z, the dynamics of the system evolves
according to the restricted hybrid system:

H |Z :
⎧⎨⎩ ż=w(0, z), z ∈Z\S ∩Z ,

z+ =�Z

(
z−
)
, z− ∈ S ∩Z ,

(4.7.38)

with w the zero dynamics given in (4.7.27), and �|z : S ∩Z→ Z the restriction
of the impact map to Z. This system is low-dimensional, e.g., for one degree of
underactuation it is a two-dimensional system, and the behavior of this system
dictates the behavior of the full order dynamics, H , regardless of the dimension
of the full order dynamics. For example, for a 23 degree of freedom humanoid
robot (as is the case for DURUS), H will be a 46 dimensional hybrid system,
but its behavior will still be completely determined by the behavior of the re-
stricted hybrid system, which may have dimension as low as two (Reher et al.,
2016b).

To examine how the behavior of the restricted hybrid system H |Z affects
the behavior of the full-order hybrid model H , we consider periodic orbits cor-
responding to walking gaits of interest. In particular, for the full-order dynamics
(4.7.6), let φfcl

t (x0) be the (unique) solution to the continuous dynamics ẋ =
fcl(x) at time t ≥ 0 with initial condition x0 (where we assume local Lipschitz
continuity of fcl(x)). For x∗ ∈ S we say that φfcl

t is hybrid periodic if there exists
a T > 0 such that φfcl

T (�(x∗)) = x∗. Given a hybrid periodic solution, we are
interested in considering the stability of the corresponding hybrid periodic orbit,

O = {φfcl
t (�(x∗)) : 0≤ t ≤ T } .

To study the stability of this orbit, we first consider the time-to-impact function

TI (x)= inf{t > 0 : φfcl
t (�(x)) ∈ S, with x ∈ S},

which is well defined by the implicit function applied to the function H(t, x)=
pv

toe(φ
fcl
t (�(x))) (where pv

toe is the vertical position of the toe used to define S in
(4.7.4)) since it satisfies H(T ,x∗)= 0. The end result is the Poincaré map which
is a P : S→ S which is well defined in a neighborhood of x∗, and is given by

P(x)= φ
fcl
TI (x)

(x).

Importantly, the stability of the periodic orbit O is equivalent to the stability of
the Poincaré map viewed as a discrete time dynamical system xn+1 = P(xn)

with fixed point x∗ = P(x∗), i.e.,
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O is exponentially stable

⇔ x∗ is an exponentially stable equilibrium point of P ,

see Morris and Grizzle (2009) for a proof, and Sastry (1999), Wendel and
Ames (2010, 2012), Burden et al. (2011) for more details on Poincaré maps.
These constructions can also be applied to the restricted hybrid system given in
(4.7.38). That is, given a hybrid periodic orbit OZ ⊂ Z, there is the associated
restricted Poincaré map PZ : Z ∩ S→ Z ∩ S which determines the stability of
OZ . Moreover, given a hybrid periodic orbit OZ , since Z is an invariant sub-
space of D it follows that O = ι(OZ) is a hybrid periodic orbit; here ι : Z ↪→D

is the canonical embedding.
We now have the technical machinery to state the main result for hybrid zero

dynamics. Intuitively, this results states that

OZ is exponentially stable ⇒ O = ι(OZ) is exponentially stable.

More formally, we have the following fundamental theorem of hybrid zero dy-
namics (Westervelt et al., 2007, 2003; Grizzle et al., 2001; Morris and Grizzle,
2009):

Theorem 1 (Hybrid Zero Dynamics). Consider the hybrid control system H C

given in (4.7.6) with the control law in (4.7.24) applied to obtain the hybrid
system H given in (4.7.35), and assume hybrid zero dynamics (4.7.34), �(S ∩
Z) ⊂ Z. If there exists a locally exponentially stable hybrid periodic orbit OZ

of the restricted hybrid system H |Z , then there exists an ε > 0 such that for all
ε > ε > 0 the hybrid periodic orbit O = ι(OZ) is locally exponentially stable
for the full-order hybrid system H .

The importance of this result is that the zero dynamics provides a substan-
tially lower dimensional surface in which to search for stable periodic orbits. In
fact, in the case when the robot has one degree of underactuation (m= n− 1)
closed form expressions can be obtained that guarantee the existence and stabil-
ity of a hybrid periodic orbit OZ ; this can be added directly to the optimization
problem in (HZD Optimization) as a constraint to guarantee that any parameter
set produced by the optimization is exponentially stable for the full-order dy-
namics of the system. In the case of full actuation, even stronger conclusions
can be reached.

4.7.5.2 Partial Hybrid Zero Dynamics

In the context of gait generation for humanoid robots, one often has the luxury
of dealing with a fully actuated system; in this case, partial hybrid zero dynam-
ics (PHZD) provides a useful tool for gait generation. In particular, for PHZD



312 PART | II Control

we consider virtual constraints of the form (4.7.13) and (4.7.14) that allow for
virtual configuration constraints on the robot via y2, along with the ability to
regulate the forward progression of the robot via y1. Applying this controller
developed in Section 4.7.4.3 to the hybrid control system H C given in (4.7.6)
results in a closed-loop hybrid dynamical system H as in (4.7.35) except, in this
case, u(x) is given in (4.7.30). Additionally, we established that this controller
resulted in the corresponding partial zero dynamics surface PZ being both at-
tractive and invariant. Therefore, if this surface is invariant through impact:

�(S ∩ PZ)⊂ PZ (PHZD)

the end result is partial hybrid zero dynamics. As in the case of hybrid zero
dynamics, we can consider the optimization problem (HZD Optimization) with
the constraint (HZD) replaced with (PHZD). Given a parameter set that solves
this optimization problem, we have the corresponding restricted hybrid system
H |PZ. The advantage, in this case, is that the dynamics ż = w(0, z) take the
simple linear form given in (4.7.33). Since the y2 dynamics are also linear by
choice of controller, the entire hybrid system becomes a linear hybrid dynam-
ical system. The structural properties associated with the PHZD motivates the
following key partial hybrid zero dynamics result (Ames, 2014).

Theorem 2 (Partial Hybrid Zero Dynamics). Let H C given in (4.7.6) be fully
actuated, with the control law in (4.7.30) applied to obtain a hybrid system H ,
and assume partial hybrid zero dynamics (PHZD): �(S ∩ PZ) ⊂ PZ. Then,
there exists a locally exponentially stable hybrid periodic orbit OPZ of the re-
stricted hybrid system H |PZ , and an ε > 0 such that for all ε > ε > 0 the
hybrid periodic orbit O = ι(OPZ) is locally exponentially stable for the full-
order hybrid system H .

That is, in the case of fully actuated robots (such as traditional humanoids),
we have the following intuitive representation of Theorem 2:

Fully Actuated+�(S ∩ PZ)⊂ PZ

⇒ O = ι(OPZ) is exponentially stable

or, equivalently, the existence of parameters α in (4.7.14) that yield partial hy-
brid zero dynamics implies a stable walking gait for fully actuated robots. It
is important to note that PHZD can also be applied to robots with compliance
(or underactuation) – e.g., the humanoid robot DURUS (Hereid et al., 2016;
Reher et al., 2016a) – provided that these compliant elements are “normal” to
the actuators that allow for forward progression of the robot. In this case, there
will exist nontrivial passive dynamics in the partial zero dynamics surface and,
therefore, a periodic orbit must be found in this surface to guarantee the exis-
tence of a stable periodic orbit in the full-order dynamics.
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4.7.5.3 Control Lyapunov Functions

The methods presented thus far involved using feedback to linearize the dynam-
ics of the robotic systems, wherein a linear system was defined to stabilize the
virtual constraints. Yet, the control law presented intrinsically ignores the natu-
ral dynamics of the system – the main component of the feedback linearization
process is to cancel out the dynamics using (4.7.20). Instead of canceling out the
nonlinear dynamics, we can leverage them in the context of control Lyapunov
functions. This has the benefit of yielding an entire class of controllers that sta-
bilize the system. Additionally, these controllers will stabilize periodic orbits in
the system in a pointwise optimal fashion.

Let us return to the canonical form of the dynamics obtained before the sys-
tem was feedback linearized, i.e., the nonlinear system given in (4.7.26). Recall
that, for the dynamics in this form, η = (y, ẏ) characterizes the controlled vari-
ables of the system while z describes the dynamics encompassed the passive
component of the robot. Let us denote by Y the space with η as coordinates
so that D = Y × Z. A continuously differentiable function Vε : Y → R≥0 is a
rapidly exponentially stabilizing control Lyapunov function (RES-CLF) (Ames
et al., 2012b, 2014a) if there exist positive constants c1, c2, c3 > 0 such that for
all 1 > ε > 0,

c1‖η‖2 ≤ Vε(η)≤ c2

ε2
‖η‖2, (4.7.39)

inf
u∈U

[
Lf̂ Vε(η, z)+LĝVε(η, z)u+ c3

ε
Vε(η)

]
≤ 0 (4.7.40)

for all (η, z) ∈ Y ×Z.
The existence of a RES-CLF yields a family of controllers that rapidly ex-

ponentially stabilize the system to the zero dynamics. In particular, we can
consider the control values

Kε(η, z)= {u ∈U : Lf̂ Vε(η, z)+LĝVε(η, z)u+ c3

ε
Vε(η)≤ 0}, (4.7.41)

wherein it follows that

uε(η, z) ∈Kε(η, z) ⇒ ‖η(t)‖ ≤ 1

ε

√
c2

c1
e−

c3
2ε t‖η(0)‖. (4.7.42)

Therefore, picking ε > 0 to be a small value increases the rate of convergence
of η, i.e., increases the rate of convergence to the zero dynamics surface Z. In
addition, this yields specific feedback controllers, e.g., the min-norm controller
(Freeman and Kokotović, 1996),

mε(η, z)= argmin{‖u‖ : u ∈Kε(η, z)}. (4.7.43)
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The importance of RES-CLFs is made apparent by the following theorem, which
says that any controller uε ∈ Kε results in a stable orbit for the full-order dy-
namics if one exists in the reduced order dynamics:

uε(η, z) ∈Kε(η, z)+OZ exponentially stable

⇒ O = ι(OZ) exponentially stable.

Or, more formally, we have the following result on RES-CLF + HZD (Ames et
al., 2014a):

Theorem 3 (Control Lyapunov Functions+HZD). Consider the hybrid control
system H C given in (4.7.6) with any Lipschitz continuous uε(η, z) ∈Kε(η, z)

applied to obtain a hybrid system H , and assume hybrid zero dynamics
(4.7.34), �(S ∩ Z) ⊂ Z. If there exists a locally exponentially stable hybrid
periodic orbit OZ of the restricted hybrid system H |Z , then there exists an
ε > 0 such that for all ε > ε > 0 the hybrid periodic orbit O = ι(OZ) is locally
exponentially stable for the full-order hybrid system H .

To provide a specific example of an RES-CLF, we can utilize the construc-
tions in Section 4.7.4.1 to obtain a specific RES-CLF. In particular, recall that
the feedback linearizing controller resulted in η dynamics of the form (4.7.22),
or in η notation,

η̇= Fη+Gμ. (4.7.44)

For this linear control system, we can consider the continuous-time algebraic
Riccati equations (CARE),

FT P + PF − PGGT P +Q= 0, (4.7.45)

with solution P = PT > 0. One can use P to construct a RES-CLF that can be
used to exponentially stabilize the output dynamics (4.7.44) at a user defined
rate of 1

ε
. In particular, define

Vε(η)= ηT MεPMε︸ ︷︷ ︸
Pε

η, with Mε = diag(εI, I ), (4.7.46)

wherein it follows that

V̇ε(η,μ)= LFVε(η)+LGVε(η)μ

with
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LFVε(η)= ηT (FT Pε + PεF )η,

LGVε(η)= 2ηT PεG.

Note that it is easy to verify that V (η) = ηT Pεη is an RES-CLF with c1 =
λmin(P ), c2 = λmax(P ), and c3 = γ = λmin(Q)

λmax(P )
. This can be seen by noting that,

from (4.7.45) and the form of F and G, Pε solves the CARE (Ames et al.,
2014a),

FT Pε + PεF − 1

ε
PεGGT Pε + 1

ε
MεQMε = 0, (4.7.47)

and noting that γPε ≤MεQMε so

inf
μ

[
LFVε(η)+LGVε(η)μ+ γ

ε
Vε(η)

]
≤ ηT PεG(

1

ε
GT Pε + 2μ)≤ 0,

which is satisfied, for example, by μ(η)=− 1
ε
GT Pεη. And, therefore, Vε is an

RES-CLF. We can convert this back to a control law uε via (4.7.20):

uε(x)=
(
LgLf y(x)

)−1
[
−L2

f y(x)+με(η(x))
]
∈Kε(η(x), z(x)) (4.7.48)

for με(η(x)) satisfying

V̇ε(η(x))= LFVε(η(x))+LGVε(η)με(η(x))≤ γ

ε
Vε(η(x)) (4.7.49)

where we converted back to the x coordinates, i.e., η(x) = (y(x), ẏ(x)). This
gives concrete conditions that can be checked to stabilize walking gaits in the
hybrid system H according to Theorem 3.

It is important to note that RES-CLFs can also be constructed in the case
of partial hybrid zero dynamics. In this case, the linear control system for the
output dynamics (4.7.30) is described by η= (y1, y2, ẏ2). From these dynamics,
(4.7.45) can be used to construct an RES-CLF as in (4.7.46). The end result is
a reformulation of Theorem 2 so that a stable periodic orbit is guaranteed for
the full order dynamics for any uε(η) ∈Kε(η). That is, we obtain stable walk-
ing through the entire class of controllers that satisfy the inequality constraint
obtained via the CLF condition.

4.7.6 EXTENSIONS OF HYBRID ZERO DYNAMICS

The goal of this section is to consider extensions of the HZD framework with
a view toward more rich application domains. In particular, we consider the
HZD framework developed in this chapter in the context of optimization-based
controllers via CLFs, multidomain hybrid system models, their application to
powered prostheses and compliant hybrid zero dynamics.
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4.7.6.1 CLF-Based QPs

The advantage of the control Lyapunov functions introduced in Section 4.7.5.3
is that they give a family of controllers which stabilize the system. That is, for
any uε(η, z) ∈ Kε(η, z) the system has a stable periodic gait (given a stable
periodic orbit in the zero dynamics); a specific example of this is given by the
traditional feedback linearizing controller. The importance of CLFs goes beyond
simply producing a class of controllers – it suggests an optimization-based con-
trol framework for bipedal robots and, in fact, nonlinear systems in general.
This allows for these control methods to be extended to a variety of application
domains from robotic walking, to prostheses to manipulation to safety-critical
control methods.

To see how control Lyapunov functions yield optimization-based controllers,
we can consider the set (4.7.41) giving the family of stabilizing controllers.
Note that this set is affine in the control input u and, therefore, the min-norm
controller (4.7.43) can be equivalently stated as a quadratic program (QP) of the
form:

m(η, z)= argmin
u∈U=Rm

uT u (4.7.50)

s.t. Lf̂ Vε(η, z)+LĝVε(η, z)u+ c3

ε
Vε(η)≤ 0 (CLF)

where we assume that U = R
m to ensure solvability of the QP. Not only is this

QP guaranteed to have a solution, but the solution can be written in closed form
(see Ames et al., 2014a) and is Lipschitz continuous. Moreover, one can utilize
the RES-CLF given in (4.7.46) to explicitly construct the inequality constraint
in this QP. Finally, because it is a QP it can be solved in real-time; in fact, the
CLF-based QP has been implemented in real-time (e.g., at a 1 kHz loop rate) on
MABEL (Galloway et al., 2015) and DURUS-2D (Cousineau and Ames, 2015)
to achieve dynamic walking. Additionally, it was implemented at over 5 kHz
as an embedded level controller on series elastic actuators in Ames and Holley
(2014).

The advantage of the QP formulation of CLFs, as opposed to simply utiliz-
ing the closed form min-norm solution, is that it allows for additional constraints
and objectives to be unified with the CLF. To provide a concrete example, sup-
pose that we have torque bounds on the actuators given by a scalar umax (similar
ideas extend to actuators with different max torques). While one might typi-
cally simply saturate the control input, doing so prevents the controller from
taking these torque saturations into account. Therefore, through the CLF-based
QP framework, we can incorporate the torque bounds directly into the controller
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via the quadratic program:

u∗(η, z)= argmin
(δ,μ)∈Rn+1

uT H(η, z)u+ pδ2 (4.7.51)

s.t. Lf̂ Vε(η, z)+LĝVε(η, z)u+ c3

ε
Vε(η)≤ δ, (CLF)

u≤ umax1, (Max Torque)

−u≤ umax1 (Min Torque)

where H(η, z) is positive-definite and p > 0 is a large value that penalizes for
violations of the CLF constraint. That is, we relax the CLF condition to ensure
satisfaction of the physical constraints of the system. While this takes away
guarantees on achieving the control objective, it will try to achieve convergence
of the CLF in a pointwise optimal fashion when at all possible – the result is
that the robot is able to accommodate tighter torque bounds than if one was
to simply saturate the control input (see Galloway et al., 2015 for a detailed
discussion, and experimental implementation). Note that as one expands the
number of constraints in the QP, it is important to be aware of the impact on
the resulting solvability and, as a byproduct, the continuity of the solutions to
the QP; a discussion can be found in Morris et al. (2013), and conditions on
continuity in Morris et al. (2015a).

Utilizing the observation that CLFs (and hence control objectives) can be
represented as affine constraints in a QP results in a new paradigm for the con-
trol of walking robots. In particular, going beyond simply adding torque bounds,
one can consider multiobjective controllers consisting of multiple CLF wherein
each control objective results in an additional constraint in the QP (Ames and
Powell, 2013); for example, in the context of unifying locomotion and ma-
nipulation objectives. Additionally, ground reaction forces on the robot also
appear in an affine fashion in the dynamics; thus one can use the CLF-based
QP framework in the context of force control. Finally, a recent line of work
aimed at safety-critical control makes the observation that safety conditions,
i.e., set invariance, can be stated in the context of control barrier functions
which again are affine in the control input (originally formulated in Ames et
al. (2014b) and studied in detail in Ames et al. (2016)); this framework has
been applied in the context of robotic walking (Nguyen and Sreenath, 2016;
Nguyen and Sreenath, 2015, 2016), automotive safety systems (Xu et al., 2015;
Ames et al., 2016; Mehra et al., 2015) and swarm robotics (Borrmann et al.,
2015; Wang et al., 2016a, 2016b). Therefore, safety conditions can be unified
with control objectives, physical constraints, force objectives and safety con-
straints all in the context of a single optimization-based controller that can be
realized in realtime on robotic systems.
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4.7.6.2 Multidomain Hybrid Zero Dynamics

The analysis thus far has focused on hybrid system models of walking robots
with a single continuous and discrete domain, i.e., single domain hybrid sys-
tems. Yet, in the context of advanced walking and running behaviors, it is
necessary to consider multidomain hybrid systems models as introduced in Sec-
tion 4.7.2.4. As indicated in this section, and as motivated by human walking,
throughout the course of a step humans naturally display heel–toe behavior in
their feet while locomoting (see Fig. 4.7.4). In the context of these types of walk-
ing behaviors, the end result is the multi-domain hybrid system model given in
(4.7.8); specific examples of this model are shown in Fig. 4.7.4 for the bipedal
robots AMBER 2 and ATRIAS (see Zhao et al., 2015a for the specific hybrid
system constructions for these robots).

In the context of multidomain hybrid systems, we can extend the concept
of hybrid zero dynamics. In particular, we now have a collection of contin-
uous domains D = {Dv}v∈V on which we have associated control systems:
ẋ = fv(x)+gv(x)uv . Note that the domains may be of different actuation types,
e.g., some may be underactuated while others may be fully actuated or over ac-
tuated. For each of these domains, we can define virtual constraints of the form
(4.7.9), denoted by y2,v ; in the case of full (and over) actuation, yv = (y1,v, y2,v)

as in (4.7.13) and (4.7.14)), and in the case of over actuation, care must be
taken to define constraints that result in a nonsingular decoupling matrix A(x)

in (4.7.29). Therefore, we can construct controllers, uv(x) for each v ∈ V as in
(4.7.20) for the underactuated domains and as in (4.7.30) for the full (and over)
actuated domains.

We can consider the zero dynamic surfaces (and partial zero dynamics sur-
faces) denoted, for notational simplicity, uniformly by

Zv =
{
x ∈Dv | y2,v(x)= 0 and ẏ2,v(x)= 0

}
.

Correspondingly, the control laws uv(x) drive the system to the surface Zv for
each v ∈ V and, in addition, renders each of these surfaces attractive. To ensure
stability of the overall dynamics, we must ensure hybrid zero dynamics for all
of the discrete transitions, i.e., multidomain hybrid zero dynamics (MDHZD):

�e(Se ∩Zsource(e))⊂Ztarget(e), ∀ e ∈E (Multidomain HZD)

where source(e) and target(e) are the source and target of the edge e ∈ E of
the oriented graph � in (4.7.8), respectively. As in Section 4.7.5, if the multido-
main hybrid system (4.7.8) has MDHZD, then if there is an exponentially stable
periodic orbit contained in Zv for v ∈ V , then there exists an exponentially sta-
ble hybrid periodic in the full order dynamics when the control laws uv(x) are
applied in each domain.
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FIGURE 4.7.6 Multicontact walking and running utilizing multidomain hybrid system models
realized on the DURUS-2D running robot and the humanoid robot DURUS.

This framework has been applied to numerous bipedal robots to obtain sta-
ble walking and running. Specific examples of walking robots include MABEL
(Sreenath et al., 2011), AMBER 2 (Zhao et al., 2014b), ATRIAS (Hereid et
al., 2014), and DURUS (Hereid et al., 2016). In the case of DURUS, due to
the passive springs in the ankles, a two domain hybrid system model was con-
sidered. The end result was stable 3D robotic walking, demonstrated publicly
during the DARPA Robotics Challenge, where the motion was sustained for
over 5 hours with the robot traversing almost 4 km on a treadmill. Impor-
tantly, this was the most efficient walking ever realized on a bipedal humanoid
robot (Reher et al., 2016a). This can be attributed to the fact that the MDHZD
allows for the full dynamics of the robot to be utilized in the generation of
walking gaits (through the shaping of the surfaces Zv) and, importantly for the
compliant elements in the system, e.g., springs, to be fully utilized during the
walking gait. Recently, these methods were extended to yield a four-domain
model of DURUS capturing the natural heel-toe behavior of the foot that hu-
mans display when locomoting; the end result was dynamic walking that is
efficient and human-like (Reher et al., 2016b) (tiles of this walking gait are
shown in Fig. 4.7.6). Finally, note that running motions provide natural ex-
amples of two-domain models (Chevallereau et al., 2005; Morris et al., 2006;
Poulakakis and Grizzle, 2009b) – see also Fig. 4.7.8 below – and that additional
domains can be introduced depending on the control action to enhance control
authority over the system, as in the control of running on Thumper (Poulakakis
and Grizzle, 2009a), MABEL (Sreenath et al., 2013) and the DURUS-2D runner
(Ma et al., 2017) (shown in Fig. 4.7.6).
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4.7.6.3 Application to Prostheses

The concepts presented throughout this chapter have natural application to pow-
ered prostheses. In particular, a prosthetic device can be simply viewed as a
component of a bipedal robot and, with proper representation of the human and
the interaction of the human with the device, one can generate controllers for the
device via HZD-based methods (Zhao et al., 2011). The core idea to synthesiz-
ing prosthetic controllers is to first model the human and the prosthesis as two
robotic systems that are coupled at the prosthetic attachment (see Fig. 4.7.7);
the parameters of the “human” are taken from measurements of the human and
used to generate a corresponding model, and the model of the prosthesis is then
added on the affected leg to yield an overall model of the combined human–
robot system. This robotic model can then be approached in the same way one
would approach generating walking gaits for bipedal robots: the hybrid sys-
tem model is constructed based upon the desired foot behavior, and gaits are
generated through an optimization problem that enforces the HZD conditions
together with physical constraints. This idea was first explored in the context of
human-inspired control (Sinnet et al., 2011b), and was experimentally validated
through the application on both bipedal robots (wherein one leg of the robot
plays the role of the prosthesis) (Zhao et al., 2014a), followed by the evaluation
with an amputee subject (Zhao et al., 2011). The advantage of the HZD-based
approach to designing controllers for powered prostheses is that all of the ad-
vanced control and locomotion related concepts of this chapter can be translated
to this domain. In particular, multi-domain hybrid system models of locomotion
can be utilized to achieve advanced foot behaviors on the device (Zhao et al.,
2016b). Additionally, CLF-based QP controllers (as in Section 4.7.6.1) can be
realized on prosthetic devices in realtime through a novel model-independent
variant (Zhao et al., 2015b); this allows for efficient locomotion that leverages
the use of compliant elements as in AMPRO 3 shown in Fig. 4.7.6.

4.7.6.4 Compliant Hybrid Zero Dynamics

To recover part of the energy required to sustain cyclic walking or running
motions in legged robots and to ensure safe interaction with the ground sur-
face, compliant elements in the form of mechanical springs have been in-
corporated in the legs of many such platforms; in the context of robotic
bipeds, Thumper (Hurst and Rizzi, 2008), MABEL (Grizzle et al., 2009), and
ATRIAS (Hubicki et al., 2016) are just few examples of robots in this fam-
ily. The role of elastic energy storage in compliant elements becomes more
prominent in running motions (McMahon and Cheng, 1990; Alexander, 1990).
However, the inclusion of physical springs in a robot’s structure poses additional
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FIGURE 4.7.7 Illustration of the application of HZD methods to prostheses; in this case, in the
context of the third generation AMPRO device utilized to achieve multidomain walking (Zhao et
al., 2016a, 2017).

challenges to control design. More specifically, in the pursuit of closed-loop sta-
bility, the control action must actively exploit open-loop compliance instead of –
as is usual in the control of flexible mechanisms – working to replace it. The con-
cept of compliant hybrid zero dynamics introduced in Poulakakis (2008) extends
HZD controllers so that open-loop compliance is “preserved” in the closed-loop
system and determines its behavior. To avoid complexity, we first discuss the
main ideas of this method in the context of a simplified hopping model – namely,
the asymmetric spring-loaded inverted pendulum (ASLIP) (Poulakakis and Griz-
zle, 2007a, 2009b) – and then provide some information on its application to
the control of walking and running motions in MABEL (Sreenath et al., 2011,
2013).

The Asymmetric Spring-Loaded Inverted Pendulum

The ASLIP shown in Fig. 4.7.8 was originally proposed in Poulakakis and Griz-
zle (2007a) as an intermediate model to bridge the gap between point-mass
SLIP-like models and monopedal robots with significant torso pitch dynamics.
The ASLIP includes a torso nontrivially coupled to the leg motion,6 an issue
not addressed in the widely studied SLIP, or in its straightforward extensions in
which the torso COM coincides with the hip joint. As in the SLIP, the ASLIP
features a massless leg and the contact between the leg end and the ground is
modeled as an unactuated pin joint.

6. Along the same lines with the ASLIP, the Virtual Pivot Point (VPP) model was introduced
in Maus et al. (2010) as a template for studying torso stabilization in running; see Subchapters 2.3
and 3.6 for more details.
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FIGURE 4.7.8 (A) The asymmetric spring-loaded inverted pendulum (ASLIP). Running com-
prises stance and flight phases, separated by touchdown and liftoff events. (B) The structure of the
SLIP embedding controller.

The ASLIP alternates between stance and flight phases – denoted by “s”
and “f”, respectively – resulting in a multidomain hybrid system of the type de-
scribed in Section 4.7.6.2. Let � = (V ,E), where V = {s, f} and E = {ef

s, e
s
f },

be the oriented graph that captures the contact state of the model; in this
notation, ef

s and es
f denote transition from stance to flight and vice versa, re-

spectively. The model consists of two domains Ds and Df, within which the
dynamics FG= {(fv, gv)v∈V } of the ASLIP evolve until the state intersects the
corresponding switching surface S = {Se}e∈E ; at this point, a switching map
� = {�e}e∈E is triggered to provide initial conditions for the ensuing phase.
During stance, the ASLIP is controlled by two inputs: the force u1 acting along
the leg and the torque u2 applied at the hip; (u1, u2) ∈Us, where Us is the set of
the admissible stance inputs. As in Poulakakis and Grizzle (2007b, 2009b), the
leg force u1 is modeled as a spring in parallel with a prismatic force source. Dur-
ing flight, on the other hand, the assumption of a massless leg implies that the
ASLIP follows a ballistic motion. Furthermore, the leg attains its desired con-
figuration αf = (ltd, ϕtd) ∈ Af in anticipation to touchdown kinematically, just
like the SLIP; see also Fig. 4.7.8. The inherently hybrid nature of the dynamics
of the ASLIP can then be represented by a system of the form (4.7.8) as

H C ASLIP := (�,D,U,A,S,�,FG) (4.7.52)

where U = {Us,∅} and A = {∅,Af} include the inputs available in continuous
and in discrete time, respectively. The system (4.7.52) can be brought in the
standard form of a system with impulse effects by integrating the flight phase
dynamics until touchdown, thereby obtaining a map � : Sef

s
→Ds that takes the

liftoff conditions x−s ∈ Sef
s

together with the desired configuration αf ∈Af of the
leg at touchdown to the initial conditions x+s ∈Ds of the next stance phase. The
details can be found in Poulakakis and Grizzle (2009b), and the resulting form
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is

H C ASLIP :
⎧⎨⎩ ẋs = fs(xs)+ gs(xs)us, xs ∈Ds \ Sef

s
,

x+s =�
(
x−s , αf

)
, x−s ∈ Sef

s
, αf ∈Af.

(4.7.53)

It should be emphasized that the initial condition x+s ∈Ds of the ensuing stance
phase does not only depend on the exit condition x−s ∈ Sef

s
of the previous stance

phase. It also depends on the parameter αf that determines the configuration
of the leg at touchdown, thereby strongly influencing the ensuing stance phase.
Clearly, updating αf in an event-based fashion provides a powerful control input.

Embedding the SLIP in the Dynamics of the ASLIP

As was mentioned in Chapter 3, a growing body of evidence in biomechanics
indicates that, when running, diverse species tune their musculoskeletal system
so that their center of mass bounces along as if it is following the dynamics of a
SLIP (Holmes et al., 2006). In the light of this evidence, the SLIP is construed as
a canonical model of running, and can be used as a behavioral control target for
legged robots or robot models. In what follows, we describe a feedback control
law that organizes the ASLIP so that its closed-loop dynamics is governed by the
dynamics of a variant of the SLIP; namely, the energy-stabilized SLIP (ES-SLIP)
shown in Fig. 4.7.9. The ES-SLIP is a modification of the standard SLIP that
admits exponentially stable7 hopping motions (Poulakakis and Grizzle, 2007a,
2009b). The dynamics of the ES-SLIP in closed loop with an exponentially
stabilizing feedback controller – see Poulakakis and Grizzle (2007a, 2009b) for
details – can be written as

HES−SLIP :
{

ż= fz(z), z /∈ Sz,

z+ =�z
(
z−
)
, z− ∈ Sz,

(4.7.54)

where Sz corresponds to the stance-to-flight switching surface and the rest of
the components of (4.7.54) are defined in a similar fashion to those in (4.7.53);
see Poulakakis and Grizzle (2007a, 2009b) for details.

The goal of the SLIP embedding controller is to render any8 exponentially
stable periodic running orbit of the ES-SLIP exponentially stable in the ASLIP.
As Fig. 4.7.8B shows, control action is distributed over continuous and discrete
time as follows. The continuous-time feedback law us = �c(xs) is employed

7. The standard SLIP is energy conservative and thus it cannot reject perturbations that shift the
total energy of the system.
8. Provided, of course, that the physical constraints associated with ground reaction forces and
actuator limitations are respected.
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FIGURE 4.7.9 The energy-stabilized SLIP (ES-SLIP), a variant of the standard SLIP which
features a prismatic leg actuator in parallel with the spring. The leg actuator can develop nonconser-
vative forces capable or rejecting perturbations that alter the total energy of the system.

during stance with the purpose of (i) creating an invariant and attractive sub-
manifold Zs embedded in the stance state space, Ds, and (ii) rendering the
restriction of the closed-loop stance dynamics of the ASLIP on Zs diffeomor-

phic to the ES-SLIP stance dynamics; formally,
(
fs(xs)+ gs(xs)�c(xs)

) ∣∣∣
Zs

∼=
fz(z). The discrete-time feedback law αf = �d(x

−
s ) is employed at transitions

from stance to flight with the purpose of updating the leg configuration αf at
touchdown so that (i) Zs is hybrid invariant, i.e., invariant under the closed-
loop transition map �cl(x

−
s ) := �

(
x−s ,�d(x

−
s )
)

as defined in Section 4.7.5.1,
and (ii) the restricted closed-loop reset map �cl|Zs of the ASLIP is equivalent to
the transition map �z of the ES-SLIP; formally, �cl|Zs

∼=�z. More details on
the design of the feedback laws (�c,�d) can be found in Poulakakis and Grizzle
(2007a, 2009b).

Implications to the Control of Robots

The approach described above essentially combines the practical advantages
of compliant reductive models typically used to intuitively tune empirical con-
trollers – the SLIP is a classical example – with the analytical tractability offered
by constructive feedback synthesis methods. But, how can we leverage these
feedback constructions to introduce a general control synthesis framework for
compliant legged robots?

Clearly, the direct implementation of the SLIP embedding controller in
legged robots like Thumper and MABEL depicted in Fig. 4.7.1 is far from being
a straightforward task. The primary reason is that the ASLIP is based on a num-
ber of simplifying assumptions that do not faithfully capture the structural and
morphological characteristics of these robots. More specifically, the assumption
of a massless leg together with the requirement that the HZD is equivalent –
in a strict mathematical sense – to the SLIP severely limit the applicability of
the SLIP embedding controller to Thumper and MABEL. Yet, the following
lessons learnt from the SLIP embedding controller are important: (i) the HZD
is an explicitly compliant system, possessing more than one degrees of free-
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dom, thus capturing not only the progression of the leg’s sweep angle – as in the
classical HZD method (Westervelt et al., 2003) – but also leg compression and
decompression in a way that respects compliance; (ii) control authority is avail-
able within the zero dynamics – which is now controlled – thus allowing the
development of additional feedback action to realize compliance “shaping” and
active force control for greater flexibility; and (iii) although keeping the torso
at a constant angle – which is in fact a necessary condition for embedding the
SLIP in the ASLIP (Poulakakis, 2010) – is restricting, commanding zero pitch
velocity during the late stage of the stance phase ensures that the angular mo-
mentum associated with the torso is small when the system switches to flight so
that excessive pitching during flight is eliminated. These three considerations,
which underlie the SLIP embedding controller, can be encoded in a set of suit-
ably parametrized outputs of the form (4.7.9) and enforced on the dynamics
of Thumper and MABEL though feedback linearization as in Section 4.7.4.1;
see Poulakakis (2008, Chapter VI) and Poulakakis and Grizzle (2009a) for the
development of the method. Skipping details, we only note that, similar to the
block diagram of Fig. 4.7.8B, the continuous-time control action introduces a set
of parameters which are updated in discrete time using event-based feedback.
A refined version of this method was implemented in Sreenath et al. (2011) to
generate experimentally dynamically stable, fast and efficient walking motions
on MABEL at top sustained speeds 1.5 m/s. Beyond walking, the notion of com-
pliant hybrid zero dynamics is at the core of stabilizing running on MABEL
(Sreenath et al., 2013). Running presents unique challenges due to the presence
of substantial flight phases that limit control authority over the system. Address-
ing these challenges calls for active force control within the compliant HZD as
detailed in Sreenath et al. (2013). This method resulted in MABEL running at
an average speed of 1.95 m/s and a peak speed of 3.06 m/s.

4.7.7 SUMMARY

Most traditional legged locomotion control approaches heavily rely on heuris-
tic methods which do not provide stability and performance guarantees, thus
hindering the use of legged robots in real-life applications. The hybrid zero dy-
namics (HZD) method described in this chapter has been proposed as a general
framework for the synthesis of feedback control laws that induce provably sta-
ble, fast, and reliable walking and running motions in legged robots. At the
core of the method is the idea of encoding desired locomotion behaviors via
a set of suitably parametrized virtual constraints, which effectively coordinate
the higher-dimensional robot plant into a lower-dimensional hybrid subsystem
– namely, the HZD – that governs the robot’s locomotion behavior. This chap-
ter briefly discussed the main concepts as well as key implementation aspects
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underlying the applications of the method, pointing to the relevant literature
for detailed accounts. Beyond its theoretical value, perhaps the most impressive
feature of the HZD method is its versatile nature. This feature supports imple-
mentation on robots with different structural and morphological characteristics,
ranging from rigid walking to compliant running bipeds and to prostheses.
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Chapter 4.8

Robot Locomotion Control Based on
Central Pattern Generators
Auke Ijspeert
Biorobotics Laboratory, EPFL – Ecole Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland

4.8.1 INTRODUCTION

The locomotion control circuits of animals, both vertebrate and invertebrate,
contain networks of neuronal oscillators called central pattern generators
(CPGs) that can produce coordinated rhythmic patterns of neural activity
(Grillner, 2006), see also Subchapter 7.2. From a control point of view, CPGs
can be viewed as some kind of feed-forward controllers that can produce
high-dimensional rhythmic muscle activation patterns while receiving low-
dimensional signals such as a desired speed of locomotion as inputs.

The biological concept of CPG can be mathematically modeled as systems
of coupled nonlinear oscillators, and forms an interesting approach for control-
ling a large variety of robots from swimming to walking robots (see Ijspeert,
2008 for a review). The approach has been applied to several quadruped and
biped robots, and is especially suited for legged robots with interesting natu-
ral dynamics due to pendulum and/or elastic components (i.e., robots that will
naturally produce oscillations). For those robots, the coupling of a CPG with a
mechanical body can be viewed as two systems of oscillators, one neuronal and
one mechanical, coupled together. With the right design, the whole system can
lead to mechanical entrainment (Taga et al., 1991, 1991), with a synchronized
regime, i.e., a common resulting frequency. A key concept of CPG-based con-
trol is therefore to view locomotion as a stable limit cycle behavior of these two
coupled systems, and to design the CPG controller such that the limit cycle has
a large basin of attraction (in order to be robust against perturbations, e.g., from
the environment) and that it can be modulated by simple control signals, e.g., for
changing speed or the type of gait, for instance, with transitions between walk,
trot, and gallop.

4.8.2 CENTRAL PATTERN GENERATORS IN ANIMALS

Central pattern generator networks for locomotion have been identified in many
animals, both vertebrate (Grillner, 2006) and invertebrate (Getting, 1988). A key
demonstration of the existence of CPGs was done by isolating CPG circuits in



Control of Motion and Compliance Chapter | 4 333

a petri dish and inducing rhythmic neural activity using excitatory chemicals.
For instance, an isolated spinal cord of the lamprey can produce traveling waves
of neural activity that resemble those produced during intact swimming. Such
coordinated patterns are called fictive locomotion and have been observed, for
instance, in lamprey (Cohen and Wallen, 1980), salamander (Delvolvé et al.,
1999), and neonatal rat (Cazalets et al., 1992). These experiments using subparts
of the locomotor circuits have also shown that CPGs are distributed networks
made of multiple coupled local neuronal oscillators, for example, with two neu-
ral oscillators per segment in the lamprey, and specific oscillators for limb flexor
and extensors in salamander (Cheng et al., 1998). As proposed by Sten Grillner,
a CPG can therefore be seen as a system of coupled oscillators (that he calls unit-
burst generators) with typically one or two oscillators per degree of freedom in
the animal’s musculoskeletal system (Grillner, 2006).

Other indirect demonstrations of the existence of CPGs have been made with
paralyzed or deafferented (i.e., without sensory feedback) animals. This type of
fictive locomotion has been observed in cat (Jordan et al., 1979) and monkeys
(Fedirchuk et al., 1998).

An interesting property of CPGs is that they can modulate locomotion and
even produce different gaits under the control of simple signals. This has been
demonstrated with electrical stimulation of a specific region of the brain stem,
the mesencephalic locomotor region (MLR) that directly projects to the loco-
motor CPGs in the spinal cord of vertebrate animals. Electrical stimulation of
the MLR can indeed generate walk, trot, and gallop in a decerebrated cat (Shik
et al., 1966) and transition between swimming-like and walking-like gaits in the
salamander (Cabelguen et al., 2003).

There is still an ongoing debate whether human locomotion relies on CPGs.
Some researchers propose that human locomotion does not use CPGs and
only relies on sensory feedback and descending signals from higher part of
the brain, while others propose that human locomotion uses CPGs like most
vertebrate animals. See MacKay-Lyons (2002) for discussions and Danner et
al. (2015) for a recent article suggesting the existence of CPGs in humans.
Numerical models of biological CPGs can help investigating such questions.
Taga developed a neuromechanical model of biped locomotion that combines
a CPG model, reflexes, and a simple two-dimensional mechanical model of
the body (Taga et al., 1991). That model, which is described in more details
below, was influential as it demonstrated how mechanical entrainment could
be obtained between the CPG and the body, and how the whole system could
exhibit limit cycle behavior. Taga demonstrated that the model could handle
perturbations and that it could receive control inputs for modulating speed,
ground clearance and step length (Taga, 1998). Geyer and Herr developed a
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similar but purely sensory-driven model of human locomotion, with more re-

alistic muscle models and without CPGs (Geyer and Herr, 2010). They could

demonstrate that robust human-like gaits (e.g., in terms of kinematics, ground

reaction forces and even EMG signals) can be produced without CPGs, solely

relying on a set of reflexes for generating rhythms and stable locomotion.

Dzeladini et al. (2014) extended that model by adding CPGs in the network.

That article tested the hypothesis that the addition of CPG could simplify the

control of speed, compared to the sensory-driven controller that needs multi-

ple reflex gains to be retuned for reaching different speeds. It was found that

a relatively large range of walking speeds could be obtained by simply mod-

ulating the frequency of the CPG, supporting the hypothesis and suggesting

a useful contribution of CPGs for locomotion control. This is in agreement

with the idea that body velocity is the command sent to CPG as proposed by

Prochazka and colleagues (see Chapter 7, and Prochazka and Ellaway, 2012;

Prochazka and Yakovenko, 2007). In Song and Geyer (2015), the 2D sensory-

driven model of Geyer and Herr (2010) is extended to 3D and a supraspinal

controller is added that continuously adjusts reflex gains and leg target angles.

Thanks to that supraspinal controller, the 3D model can exhibit different adap-

tive locomotion behaviors, “including walking and running, acceleration and

deceleration, slope and stair negotiation, turning, and deliberate obstacle avoid-

ance” (Song and Geyer, 2015).

Note that Art Kuo presents an interesting analysis of the benefits of combin-

ing feedback (i.e., sensory-driven) and feedforward (CPG-based) control (Kuo,

2002). He also investigates an alternative view of the role of CPGs in biological

systems: he proposes that “the neural oscillator as a filter for processing sensory

information rather than as a generator of commands.” In that view, the CPG

helps to perform state estimation and “acts as an internal model of limb motion

that predicts the state of the limb” (Kuo, 2002).

More generally, there is a large amount of work on mathematical and numer-

ical modeling of biological CPGs, see Ijspeert (2008). As we will see next, such

models can also serve as robot controllers.

4.8.3 CPGS AS ROBOT CONTROLLERS

There are many examples of legged and articulated robots controlled by CPG

models for various modes of locomotion. In the next sections, we will briefly

review different types of CPG implementations, different examples of robot lo-

comotion, and different design methods.
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FIGURE 4.8.1 Matsuoka oscillator. Time evolution of the 4 state variables of the Matsuoka oscil-
lator.

4.8.3.1 Different Types of Implementation

The type and complexity of CPG controllers for robot locomotion vary from
detailed spiking neural network models (Lewis et al., 2005), to leaky integrator
neural networks (Arena, 2000; Lu et al., 2006), to systems of coupled nonlinear
oscillators (Kimura et al., 1999; Ijspeert et al., 2007). One popular approach, in
between neural network and systems of coupled oscillators, is based on Mat-
suoka oscillators (Matsuoka, 1985, 1987). A Matsuoka oscillator is typically
composed of 2 leaky-integrator neurons with mutual inhibition and a fatigue
mechanism. It has 4 state variables and its dynamics is determined by differ-
ential equations that are linear except for a max operator that makes the whole
system nonlinear and capable of producing limit cycle behavior:

τ u̇1 =−u1 −wy2 − βv1 + u0,

τ u̇2 =−u2 −wy1 − βv2 + u0,

τ ′v̇1 =−v1 + y1,

τ ′v̇2 =−v2 + y2,

yi =max(0, ui) (i = 1,2) ,

where yi is the output of the ith neuron; ui is its inner state variable; vi is a
second state variable representing a degree of self-inhibition; u0 is an external
input, w is a connection weight, and τ and τ ′ are time constants. Because of its
simplicity and its robust limit cycle behavior, it is probably the type of oscillator
that has been mostly used to design CPG controllers for robots (Kimura et al.,
1999, 2007; Williamson, 1998). (See Fig. 4.8.1.)

Other types of oscillators have been used such as Van der Pol, Hopf oscil-
lators, (Kuramoto) phase oscillators, and Rayleigh oscillators (Ijspeert, 2008).



336 PART | II Control

FIGURE 4.8.2 Hopf oscillator. (Left) Time evolution of the two state variables of the Hopf oscil-
lator. (Right) Phase portrait. Notice that the limit cycle has a circular shape (harmonic oscillation).

Among these, the phase and Hopf oscillators are among the simplest possible
models. A phase oscillator has only one state variable, the phase θi ,

θ̇i = ωi +
∑
j

wij sin(θj − θi − φij ),

where ωi determines the oscillation frequency, wij is the weight of a connection
coming from another oscillator j , and φij is a phase bias term. Such an oscil-
lator allows one to modulate relative phases between actuated joints and can
produce periodic joint angle signals through simple periodic functions such as
x = A cos(θ), where A defines the amplitude of oscillations, or more complex
wave forms using arbitrary periodic functions.

The Hopf oscillator has 2 state variables. It has a harmonic limit cycle (i.e.,
a perfect circle in Cartesian space), and it can bifurcate between a limit cycle
regime and a stable attractor point regime depending on the sign of a control
parameter μ:

ẋ =
(
μ− r2

)
x −ωy,

ẏ =
(
μ− r2

)
y +ωx,

r =
√
x2 + y2,

where x and y are the two state variables and ω determines the oscillation fre-
quency. (See Fig. 4.8.2.)

Most CPG controllers for robots are implemented as systems of differential
equations that are numerically solved on a microprocessor or a microcontroller
on board of the robot. The computation can be distributed with different oscilla-
tors being implemented on different robot modules (Conradt and Varshavskaya,
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2003; Inagaki et al., 2006; Sproewitz et al., 2008). A few CPGs have been
implemented directly on a chip with digital or analog electronics (DeWeerth
et al., 1997; Still and Tilden, 1998; Nakada et al., 2003; Lewis et al., 2005;
Simoni and DeWeerth, 2007).

4.8.3.2 Examples of CPG Controllers

In this section, a few examples of projects will be presented in order to illustrate
what type of research has been carried out in developing CPG controllers for
legged robots. The list is not meant to be comprehensive by any means.

Taga’s Neuromechanical Simulation of Biped Locomotion

Taga and colleagues developed a CPG controller for a two-dimensional biped
simulator (Taga et al., 1991, 1993; Taga, 1998). While only in simulation, that
seminal work influenced many researchers in robotics. As mentioned above, it
was one of the first projects to demonstrate how mechanical entrainment be-
tween control oscillators and a body could lead to stable limit cycle behavior
for locomotion. The CPG model is constructed out of coupled Matsuoka os-
cillators, one per joint. More specifically, the torque of each joint is computed
from the difference of signals produced by the two, flexor and extensor, neu-
rons forming the oscillator (Fig. 4.8.3). Oscillators are coupled together through
neuronal connections and receive feedback from the body and environment
through reflexes such as the stretch reflex. The model can generate stable walk-
ing gaits in the sagittal plane and resist to perturbations (e.g., pushes and slopes
of the ground) without any parameter change. It could even switch to a run-
ning gait when excitatory input to the CPG model is increased. In a follow-up
article (Taga, 1998), Taga demonstrated how the model could be extended to
perform anticipatory behavior, such as stepping over an obstacle. For this, dis-
crete signals are provided for the CPG model in order to adjust step length and
ground clearance at specific moments. This demonstrates how a CPG model
can be modulated by higher control centers for adaptive, visually-guided loco-
motion.

CPG Models for Quadruped Locomotion

Several CPG controllers for the locomotion of compliant quadruped robots have
been developed by Kimura and colleagues (Kimura et al., 1999, 2001, 2007;
Fukuoka et al., 2003). The CPG controllers are composed of coupled Matsuoka
oscillators with a set of reflexes based on body orientation, tendon force, and
contact with the floor. In Kimura et al. (2001) they investigated how sensory
feedback could best be integrated into the CPG and compared two different
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FIGURE 4.8.3 Taga’s CPG-controlled bipedal model in two dimensions (adapted from Taga et al.,
1993). The model is made of a 2D mechanical model of a biped, a CPG (the neural rhythm generator)
and several sensory feedback loops. I.A. stands for inertial angle, A.V. for angular velocity, and S.S.
for somatic sense.

implementations: one in which sensory feedback acts independently from the
CPG and one in which sensory feedback is fed through the CPG network.

The second implementation led to the most stable locomotion in complex
terrain. They concluded that the interaction between sensory feedback and the
CPG is important for adjusting the cycle duration to the environment (e.g., when
going up or down a slope) and for making sensory feedback phase-dependent.
Reflexes in animals are known to be similarly phase-dependent, e.g., the stum-
bling correction reflex is only active during swing (Andersson et al., 1978;
Forssberg, 1979; Pearson, 1995). In a later paper, the authors added different
types of reflexes and obtained robust outdoors locomotion (Kimura et al., 2007).

While most CPG models rely heavily on direct interoscillator couplings for
generating coordinated patterns, it is possible to obtain stable gaits and even
gait transitions based only on indirect mechanical coupling, similarly to what
has been observed in the stick insect (Cruse, 1990). This was demonstrated by
Owaki and colleagues on a quadruped robot (Owaki et al., 2013). Each limb
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of the robot is controlled by a phase oscillator that receives a load-dependent
feedback signal from the same limb:

θ̇i = ω− σNi cos(θi),

where the θi is the phase, ω is the intrinsic frequency of the oscillator, Ni the
normal force felt by the limb, and σ is a gain that determines the strength of the
sensory feedback. The feedback signal slows down or even prevents oscillations
of the limb as long as there is load on the limb. This creates an indirect mechan-
ical coupling between the phase oscillators. Interestingly stable gaits emerge
from that coupling, and different gaits (e.g., trot, pace, diagonal sequence walk,
lateral sequence walk) can be generated depending on the mass distribution in
the robot. When the mass is placed more in the front, as in camels, or more to the
rear, as in monkeys, the same gaits emerge as in their biological counterparts,
respectively lateral sequence walk and diagonal sequence walk.

Other examples of quadruped robots controlled by CPGs include (Tsujita et
al., 2001; Buchli et al., 2006a, 2006b; Manoonpong et al., 2007; Ajallooeian et
al., 2013a).

CPG Models for Biped Locomotion

There are many examples of biped robots controlled by CPG-controllers (Aoi
and Tsuchiya, 2005; Endo et al., 2005; Miyakoshi et al., 1998; Shan and Na-
gashima, 2002; Nakanishi et al., 2004; Righetti and Ijspeert, 2006; Zaier and
Nagashima, 2006).

Aoi and Tsuchiya (2005) for instance designed a CPG controller for the
HOAP-1 robot. The controller was based on phase oscillators with a phase re-
setting mechanism at heel strike for synchronizing the oscillators with the robot
leg motions. The robot could change speed by modulating the stride length and
handle perturbations such as small slopes and small pushes against the trunk.
A similar approach that replaces the phase resetting mechanism (which can be
abrupt) with a smoother estimation of the natural phase of the robot dynamics
was proposed in Morimoto et al. (2006).

Endo and colleagues investigated how reinforcement learning could be ap-
plied to train a CPG controller for Sony’s humanoid robot Qrio (Endo et al.,
2008). The CPG model was based on Matsuoka oscillators, and a policy-
gradient method was used to set the parameters in the model, in particular in
the feedback loops, using learning iterations in simulation followed by learning
iterations on the real robot. The reward function was designed to favor upright
forward motion, with negative rewards when falling. Stable walking with the
real robot could be obtained after a few thousands of iteration in simulation.
The controllers could be improved further with online learning for 200 itera-
tions (2.5 hours) on the real robot.
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CPGs for Amphibious Locomotion

CPG controllers are well-suited for many modes of locomotion, in particular
for producing coordinating patterns for swimming for instance anguilliform
swimming in lamprey-like robots (Arena, 2001; Crespi and Ijspeert, 2008;
Stefanini et al., 2012). They have also been used to control amphibious robots
such as salamander-like robots. Salamanders can swim using anguilliform
swimming gaits like eels and lampreys and walk on dry ground using walking
trot gaits. Based on neurophysiological findings, we developed a CPG model for
salamander that could explain the generation and transition between these two
gaits (Ijspeert et al., 2007). The model is made of amplitude-controlled phase
oscillators, i.e. phase oscillators with an additional state variable for amplitude,
with a saturation function that determines the intrinsic frequency and amplitude
of oscillation depending on an input signal. The main idea behind the model
is that the bi-modal locomotion of salamander can be obtained by adding limb
oscillators with lower intrinsic frequency and lower saturation frequencies to a
lamprey swimming circuit made of a double chain of coupled oscillators. The
model could generate realistic gaits in water and on ground, and dynamically
modulate the speed, direction, and type of gait under the control of simple sig-
nals sent from a remote control. Interestingly, these gaits could be obtained in
open-loop because of the intrinsic stability offered by surface swimming and
walking with a sprawled posture. It is clear that sensory feedback can play an
important role in modulating the locomotor patterns (Knuesel et al., 2010), and
this is currently under investigation.

4.8.3.3 Design Methods for CPG Controllers

Different approaches have been taken to design CPG controllers. Many ap-
proaches are guided by the theory of dynamical systems, which can provide
guidelines for instantiating parameters such as intrinsic frequencies and cou-
pling weights in order to obtain synchronization and the generation of desired
gaits (Buchli et al., 2006a; Golubitsky et al., 1998, 1999; Pham and Slotine,
2007; Seo and Slotine, 2007; Righetti and Ijspeert, 2008; Schoner et al., 1990).

Unsupervised learning approaches have also been followed. These ap-
proaches are useful when the desired behavior of the robot controller is only par-
tially known, typically with only high-level desired characteristics such as mov-
ing fast without falling. Examples include the use of reinforcement algorithms
(Matsubara et al., 2006; Nakamura et al., 2007; Ogino et al., 2004) and heuris-
tic optimization algorithms such as Powell’s method (Crespi and Ijspeert, 2008;
Marbach and Ijspeert, 2005; Sproewitz et al., 2008). Most of these approaches
have been applied online, i.e., directly during runtime on the robot. An alterna-
tive approach is to perform some optimization offline, using dynamic simulators
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of the robot, before porting them online (Van der Noot et al., 2015). Stochastic
optimization algorithms such as genetic algorithms and particle swarm opti-
mization are often used in such case (Beer and Gallagher, 1992; Sims, 1994;
Gruau and Quatramaran, 1997; Ijspeert, 2001; Kamimura et al., 2003; Lewis et
al., 1993; Van der Noot et al., 2015).

When a desired output pattern is available (e.g., from animal gait record-
ings or other insights), supervised learning approaches can also be taken. In
that case, the desired periodic pattern can be used to define an explicit error
function to be minimized. The learning can be done for instance using sta-
tistical learning algorithms (Ijspeert et al., 2013), gradient descent algorithms
for recurrent neural networks (Pearlmutter, 1995), or instantiations of vector
fields (Okada et al., 2002). With clever mappings, it is possible to generate arbi-
trary limit cycle shapes while keeping the underlying dynamics low-dimensional
(Ajallooeian et al., 2013a, 2013b). Alternatively, arbitrary limit cycle shapes
can be learned by pools of adaptive frequency oscillators (Righetti et al., 2006;
Righetti and Ijspeert, 2006).

4.8.4 DISCUSSION

As discussed in this chapter, CPGs present several interesting properties as loco-
motion controllers for robots. They can exhibit stable limit cycle behavior. They
are well-suited to be coupled to and entrained by a mechanical system. They
allow for smooth modulation of locomotion (i.e., their limit cycle properties
typically act as filters of abrupt input signal changes). They can be implemented
in a distributed fashion (e.g., coupled oscillators on different microcontrollers).
And they offer a good substrate for learning algorithms (online or offline).

These interesting properties are probably also the reasons why CPGs evolved
in biological systems and why they are found in so many animals both vertebrate
and invertebrate. CPGs complement feedback loops based on reflexes by adding
a feedforward component to the whole locomotor circuitry. As discussed earlier
this is useful for generating locomotor patterns that can then be shaped by sen-
sory feedback, for handling noise in the sensory signals (Kuo, 2002) and for
simplifying the control of speed (Dzeladini et al., 2014). Note that unlike what
is sometimes believed, CPGs do not need to produce stereotyped behavior; and
many biological and robotic CPGs can be extensively modulated to produce rich
motor behavior (e.g., gait transitions between multiple gaits).

In robotics, CPG controllers are well-suited for fast locomotion, robust lo-
comotion on unstructured terrains, compliant robots, modular/reconfigurable
robots, and robots for which an accurate dynamical model does not exist. They
also have a great potential for the control of prostheses and exoskeletons (Ronsse
et al., 2011).
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They are not so well-suited for accurate feet placement, accurate full-body
control, and rich motor skills (e.g., rapid transitions and superimposition of dif-
ferent motor behaviors). Also if an accurate dynamic model of the robot and its
environment exist, alternative model-based control approaches such as optimal
control might be better alternatives.

Both in terms of biology and robotics, much research remains to be done
to better decode the functioning of CPGs and the design of better CPG-
based controllers for robots. For instance, designing a CPG-based controller
for a particular robot remains a bit of an art, and more generic design meth-
ods would be useful. Also it is not yet clear how to generate the rich mo-
tor skills exhibited by animals, with combinations of discrete and rhythmic
movements, rapid transients, and superimposition of different motor behav-
iors. One promising approach for this is the concept of a modular control
architecture made of motor primitives, i.e., building blocks of motor behav-
ior that can be combined in several ways (Thoroughman and Shadmehr, 2000;
Flash and Hochner, 2005). CPGs could be viewed as one particular type of
motor primitive for generating periodic behavior, which can be combined with
other primitives for richer motor behavior.

4.8.5 CONCLUSION

CPG-based control is an interesting biologically-inspired control approach for
robotics. It offers interesting control properties for some types of locomotion
and of robots, typically fast locomotion of compliant robots. It is also a research
area in which robotics can usefully collaborate with neurobiology and biome-
chanics in order to decode the interactions between CPGs, sensory feedback,
descending modulation, and musculoskeletal properties that underlie the amaz-
ing locomotor abilities of animals.
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Many torque control approaches have been proposed for robotic devices used
in legged locomotion, but few comparisons have been performed across con-
trollers in the same system. In this study, we compared the torque-tracking
performance of nine control strategies, including variations on classical feed-
back control, model-based control, adaptive control, and iterative learning. To
account for interactions between patterns in desired torque and tracking per-
formance, we tested each in combination with four high-level controllers that
determined desired torque based on time, joint angle, a neuromuscular model,
or electromyographic measurements. Controllers were implemented on an ankle
exoskeleton with series elastic actuation driven by an off-board motor through
a uni-directional Bowden cable. The exoskeleton was worn by one human sub-
ject walking on a treadmill at 1.25 m·s−1 for one hundred steady-state steps
under each condition. We found that the combination of proportional control,
damping injection and iterative learning resulted in substantially lower root-
mean-squared error than other torque control approaches for all high-level con-
trollers. With this low level torque controller, RMS errors can be as low as 1.3%
of peak torque for real-time tracking, and 0.2% for the average stride. Model-
free, integration-free feedback control seems to be well suited to the uncertain,
changing dynamics of the human–robot system, while iterative learning is ad-
vantageous in the cyclic task of walking.

5.1 INTRODUCTION

Robotic legged locomotion, including walking robots and powered lower-
limb exoskeletons and prostheses, has been an area of active research for
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decades (Cloud, 1965; Mosher, 1967; Frank, 1968). Most early walking related
robots used kinematic trajectory control, an approach that persists today (Jez-
ernik et al., 2003; Aguirre-Ollinger et al., 2007; Suzuki et al., 2007; Tsai et al.,
2010). In case of exoskeletons and prostheses, however, position control strate-
gies tend to result in less safe and less comfortable human–robot interactions
since they can cause large forces to develop when human and robot motions
differ (de Luca et al., 2006; Haddadin et al., 2008). Position-controlled exoskele-
tons have also been shown to be less effective in rehabilitation compared to
traditional human-based therapies (Hidler et al., 2009) for similar reasons.

Increasingly, the control of exoskeletons and prostheses has shifted from
kinematic methods to strategies that respond more fluidly to actions of the user.
One reason for this shift is the concern for human safety and comfort. Another
driver is our improved understanding of the natural dynamics of human motion
(Mochon and McMahon, 1980; McGeer, 1990; Collins et al., 2005; Verdaas-
donk et al., 2009; Ijspeert, 2014), which suggests a more dynamic approach to
human–robot interactions than afforded by kinematic control.

One method for improved interaction between humans and robots is
impedance manipulation (Andrews and Hogan, 1983), in which the reaction
of a robot to external forces is regulated rather than the resulting position tra-
jectory (Kazerooni et al., 2005). Whereas position control strategies typically
impose high impedance to improve trajectory tracking performance, this method
allows lower impedance at the robot interface and a greater influence of human
actions on the resulting motions.

Direct control of interaction forces or torques can also be used to reduce
human–robot interface impedance (Haddadin et al., 2008; Lasota et al., 2014).
Torque control provides a simple means of manipulating the flow of energy from
the exoskeleton to the human, which can be useful in biomechanics studies (Ven-
eman et al., 2007; Sawicki and Ferris, 2009; Stienen et al., 2010; Malcolm et
al., 2013; Jackson and Collins, 2015). Torque control can also be used to exploit
passive dynamics or render virtual systems with alternate dynamics in humanoid
robots (Pratt et al., 1997), active prostheses (Au et al., 2008; Sup et al., 2009;
Caputo and Collins, 2013), and exoskeletons (Kawamoto et al., 2010; Unluhis-
arcikli et al., 2011; Giovacchini et al., 2014; Witte et al., 2015). In exoskeletons
and prostheses, the quality of torque control is a limiting factor in precision of
the applied intervention and can be the limiting factor in human–robot system
performance.

Series elastic actuation, in which compliance is placed between a motor and
its end-effector, can improve torque control in devices. This is especially im-
portant when human–robot interaction is involved, in which case there often
exists unknown, changing human–exoskeleton interaction dynamics. Elastic-
ity in the actuator transmission decouples motor inertia from the structure of
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the exoskeleton or prosthesis (Pratt and Williamson, 1995), which physically
reduces interface impedance and results in smaller torques when human and
robot motions unexpectedly diverge. Series elastic actuation can thereby pro-
vide improved human safety (Zinn et al., 2004) and improve torque tracking
performance in the face of complex, dynamic user movements (Robinson et al.,
1999). Unlike direct-drive actuators, torque output in a series elastic actuator is
usually not directly related to motor torque, but instead to the position of the
motor relative to the joint. Motor position is therefore better correlated to load
torque, especially in the presence of transmission friction. For these reasons,
series elastic actuators with a motor drive running in velocity mode typically
have lower actuation impedance and smoother torque tracking with lower error
(Pratt et al., 2004; Wyeth, 2006).

Bowden cable transmissions are often used in exoskeletons and prostheses
to further reduce physical impedance through drive relocation. Bowden cables
allow motor and gearbox elements to be placed in more desirable locations than
the joint they actuate, resulting in reduced device inertia. Motors can be moved
proximally on the limb or body (Collins et al., 2005; Schiele et al., 2006; Hobbe-
len et al., 2008; Mooney et al., 2014) or off the body altogether (Veneman et al.,
2006; Caputo and Collins, 2013; Witte et al., 2015). Bowden cables are flexi-
ble, producing little interference with joint motions (Caputo and Collins, 2014),
but have complex stick–slip transmission dynamics that pose additional torque
control challenges (Schiele et al., 2006).

Unidirectional Bowden cables can completely isolate the human from mo-
tor inertia when desired. The capacity to become transparent, or produce zero
impedance, is desirable in exoskeletons, as it is frequently useful to apply pre-
cisely zero torque to the human (Veneman et al., 2007; Kong et al., 2009;
Zanotto et al., 2013; van Dijk et al., 2013). Uni-directional Bowden cables can
be kept slack, preventing any torque from being transmitted regardless of human
dynamics (Collins and Jackson, 2013; Witte et al., 2015; Jackson and Collins,
2015). However, allowing the transmission to become slack introduces complex
dynamics and uncertainty during reengagement, as in other systems with inter-
mittent contact, which can make torque control more difficult.

The human ankle produces more than half of the mechanical work of the
lower limbs during walking (Winter, 1991) and has been a frequent target for
exoskeleton and prosthesis assistance (Ferris et al., 2006) and humanoid robot
control (Kim and Oh, 2004). In fact, ankle joint assistance has led to the first sys-
tems that reduce the energy cost of walking for humans (Malcolm et al., 2013),
including one device that does so passively (Collins et al., 2015). Improved
torque control at ankle joints of robotic legged locomotion systems would pro-
vide immediate benefits for such systems, and could also be beneficial at knee
and hip joints.
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Torque control is typically implemented at a low level in walking-related
robot control hierarchies, with higher level controllers determining behaviors
and commanding desired torques. In such schemes, desired torque is not a
control objective selected in advance, but rather a mid-level signal, often with
complex dynamics that reflect interactions with the human user. In this chap-
ter, we will refer to the class of control elements that generate desired torque as
high-level controllers, and to the elements that enforce desired torque, the torque
controllers that are the primary focus of this study, as low-level controllers.
Since the dynamics of the desired torque signal depend on the high-level con-
trol type, we expect interactions with low-level controllers that will affect torque
tracking performance.

Many potential low-level control elements have been proposed for track-
ing torque and position in walking related robots and series elastic actuators.
Prominent categories of torque control include classical feedback, model-based
control, adaptive control and iterative learning.

Classical proportional-integral-derivative (PID) feedback control, and sim-
ple variations thereon, have been widely employed in exoskeletons due to
their simplicity and ease of tuning. Integral control elements are used to re-
duce steady state errors in series elastic actuators with consistent dynamics
and low impedance (Pratt et al., 2004; Wyeth, 2006; Vallery et al., 2007;
Lenzi et al., 2011; van Dijk et al., 2013; Paine et al., 2014; Giovacchini et
al., 2014). Integration-free proportional-derivative (PD) control is often used in
high-impedance exoskeletons (Nef et al., 2007; Gupta et al., 2008; Farris et al.,
2011) and in series elastic actuators with more modeling uncertainties (Kong et
al., 2009; Caputo and Collins, 2014). In cases where the derivative of the error
signal is noisy, damping injection, or negative feedback on a less noisy velocity
in the system, can be used instead to provide similar stabilizing effects (Arimoto
and Takegaki, 1981; Kelly, 1999). Gain scheduling, in which control gain val-
ues change according to system states, is sometimes used in the control of robots
that interact with humans for improved safety or intervention efficiency (Cai et
al., 2006; Banala et al., 2009; Zhang et al., 2013).

Model-based control elements are often used in robots to improve torque-
tracking performance. Approaches typically include feed-forward terms that
use inverted plant dynamics to shape impedance or torque (Pratt et al., 2004;
Kazerooni et al., 2005; Fleischer et al., 2005; Aguirre-Ollinger et al., 2007; van
Dijk et al., 2013; Paine et al., 2014). This approach works best with an accurate
model of the system.

Adaptive control has also often been used in systems with human–robot in-
teraction (Zhang and Cheah, 2015). One example of adaptive control that has
been applied to human–robot interaction is passivity-based control. These con-
trollers manipulate the energy balance of the system using a system model and
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adaptive control elements, and can improve tracking performance with provable
closed-loop stability (Ortega and Spong, 1989). Passivity-based control has been
proposed for series elastic actuators (Calanca and Fiorini, 2014) and used during
human–robot interactions (Zhang and Cheah, 2015).

Variations on iterative learning derived from industrial robots have also been
applied to robotic legged locomotion (Bae and Tomizuka, 2012; van Dijk et al.,
2013). This approach improves tracking performance by exploiting the cyclic
nature of gait; tracking errors from past walking steps are used to predict errors
in the ensuing step, and feed-forward corrections are applied. Since corrections
are based on an accumulation of past errors, this approach bears some resem-
blance to classical integral control, in which errors in previous steps are used to
improve performance during the present step.

High-level controllers intended to assist human walking include schemes
that command desired torque based on time, joint angle, neuromuscular mod-
els, and electromyographic measurements. Perhaps the simplest way to generate
desired torques is as a function of time, which can be used to regulate the rel-
ative timing of robot actions as well as human actions in cases of exoskeletons
and prostheses (Malcolm et al., 2013, 2015; Jackson and Collins, 2015). An-
other common method is to imitate observed relationships between human joint
angles and joint torques (Fite and Goldfarb, 2006; Au et al., 2008; Hitt et al.,
2010), which can be especially useful in regulating net joint work (Caputo and
Collins, 2014). Virtual neuromuscular systems with complex internal dynamics
have also been used to generate desired joint torques in assistive devices (Rosen
et al., 2001; Cavallaro et al., 2005; Perry et al., 2007; Eilenberg et al., 2010;
Geyer and Herr, 2010; Shultz et al., 2014; Dorn et al., 2015; Van der Noot et al.,
2015). This method has demonstrated benefits in the control of adaptive pros-
thetic limbs (Markowitz et al., 2011). Direct neuromuscular interfaces, such as
through electromyographic measurement of muscle activity, promise more intu-
itive control of exoskeletons by users (Fleischer et al., 2005; Ferris et al., 2006;
Kawamoto et al., 2010; Loconsole et al., 2014; Huang et al., 2014; Takahashi
et al., 2015). Each of these high-level control approaches may be advantageous
in some assistance paradigm, and each results in desired torque signals with
different dynamics.

Many approaches to torque control in robotic legged locomotion have been
established, but a more complete comparison would be helpful when designing
controllers for new systems. The classical feedback, model-based, adaptive and
iterative learning control approaches reviewed in this section all have strengths
for human–robot interaction. Several of these controllers have been tested in
lower-limb exoskeletons and have shown good performance (Zoss et al., 2006;
Veneman et al., 2006; Wang et al., 2013; Zanotto et al., 2013; van Dijk et al.,
2013; Giovacchini et al., 2014). Comparisons across studies are made difficult,
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however, due to differences in protocol, performance metrics, hardware, and
high-level controllers. Some results are reported for benchtop tests (Sulzer et al.,
2009; Kobayashi et al., 2010; Accoto et al., 2013), which may provide more pos-
itive results than during complex interactions with humans. Some results are not
reported quantitatively (Zoss et al., 2006), which makes comparisons difficult. In
some cases a small number of controllers have been tested on the same hardware
(van Dijk et al., 2013), but in most cases torque tracking results are provided
for a single controller working with a single system. This makes comparisons
across studies difficult, since some portion of the differences in performance
may be due to differences in the capability of the hardware used. Similarly,
comparisons have been performed with different high-level controllers, which
could interact with low-level controllers and contribute to differences in per-
formance across studies. Studies comparing a wide range of torque controllers
in human-interaction protocols with quantitative performance metrics, consis-
tent hardware setups and a variety of high-level controllers would help establish
guidelines for selecting and tuning controllers for new robotic legged locomo-
tion systems.

The aim of this chapter is to compare the tracking performance of prominent
torque control methods, with multiple high-level desired torque conditions, in a
single robotic legged locomotion platform during walking. Promising methods
using classical feedback, model-based, adaptive and iterative learning control
elements were used. Although it was impractical to test all possible control
strategies, the chosen controllers span the set of candidate methods and pro-
vide a more comprehensive test than previously available. A diverse sample of
high-level controllers were used to test for interactions with low-level control
dynamics and provide insights into the generality of tracking results. A single
exoskeleton system was used, experimentally controlling for hardware capabil-
ities. Tests were conducted while a human wore the exoskeleton and walked
on a treadmill, making results relevant to conditions with complex interactions
between the robot, a human user, and the environment. We anticipate these re-
sults to help guide the selection and tuning of torque control elements in various
robotic legged locomotion systems.

5.2 SYSTEM OVERVIEW

5.2.1 System Modeling

A diagram of a typical one degree-of-freedom lower-limb robot driven by a se-
ries elastic actuator through a cable with a geared motor is shown in Fig. 5.1.
Based on this structure, we used the following simplified models of system com-
ponents to aid in our understanding of the system, make reasonable choices for
model-free control elements, and design model-based control elements.
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FIGURE 5.1 A schematic diagram of a one degree-of-freedom, cable-driven, robotic legged loco-
motion system with a series elastic actuator. This diagram uses an ankle device as an example. θm
and θp are motor position and pulley position after gearing, respectively. θe is the device joint angle.
R is the effective aspect ratio between motor output pulley radius rp and device joint velocity lever

arm ra defined as R = ra

rp
.

• Motor Dynamics
Assuming armature inductance dynamics occur at a substantially higher
frequency than rotor dynamics, and therefore have negligible effects, the dy-
namics of the motor can be written as⎧⎨⎩ Ka · ia(t)= Ie ·N · θ̈p(t)+ fe ·N · θ̇p(t)+ 1

N
· τo(t),

Va(t)=Ra · ia(t)+Kb ·N · θ̇p(t),
(5.1)

in which Ka is the motor-torque constant, ia is the armature current, Ie is
the effective moment of inertia of the motor and gear referred to the motor
shaft, N = θ̇m/θ̇p is the gear ratio, θm is the angular position of the motor
shaft, θp is the angular position of the gear output shaft, fe is the effective
viscous friction coefficient of the combined motor and gear referred to the
motor shaft, τo is output torque at the gear output pulley, Va is the armature
voltage, Ra is the armature resistance, and Kb is the motor-voltage constant.

• Transmission Model
The pulley transmits load to the cable as

τo = F · rp, (5.2)

in which rp is the radius of the pulley attached to the gear output and F is the
tension in the cable on the motor side. Making the simplifying assumption
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that there is no friction in the transmission, the torque at the device side is

τ = F · ra, (5.3)

in which ra is the lever arm at the ankle joint. We further assume that the an-
gular excursion of the ankle joint is small, and that the lever arm is therefore
approximately constant.

• Force–Position Relationship
Making the simplifying assumption that the cable has either spring-like com-
pliance or negligible compliance compared to the series spring, we have

F =Kc · (rp · θp − ra · θe), (5.4)

in which Kc is the total effective stiffness of the cable transmission and series
spring, and θp and θe are the pulley and device joint angles relative to a
neutral position at which the cable begins to go slack.

• Torque–Angle Relationship
Defining the gear ratio of the transmission, R, as

R = ra

rp
, (5.5)

the torque applied by the device can be written as

τ =F · ra
= rp · ra ·Kc

[
θp − ra

rp
θe

]
=Kt(θp − θeR)

(5.6)

with transmission stiffness, Kt , defined as

Kt = rp · ra ·Kc, (5.7)

relating torque at the device to the angles of the motor output pulley and
device joint.

• Device Joint Dynamics
Applying law of balance of angular momentum to the device joint, we have

τ − τh −Be · θ̇e = Ie · θ̈e (5.8)

where τh is the torque applied to the robot by the environment, which is
mostly human body in case of exoskeletons, Be is the device joint damping
coefficient, and Ie is the moment of inertia of the device.
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• Motor Velocity Control Dynamics
Motors are often operated in velocity control mode in series elastic actua-
tors, which tends to result in lower actuation impedance and better torque
tracking (Pratt et al., 2004; Wyeth, 2006). Without access to the proprietary
controller used by the commercialized motor drivers, the precise relationship
between desired motor velocity, θ̇m,des , and input voltage to the motor, Va , is
unknown. However, from Eq. (5.1), we can derive the relationship between
input voltage and actual motor velocity as

Va= RaIeN

Ka

θ̈p +
(
RafeN

Ka

+KbN

)
θ̇p + Ra

Ka

τo

= RaIe

Ka

θ̈m +
(
Rafe

Ka

+Kb

)
θ̇m + Ra

Ka

τo.

(5.9)

When the angular acceleration is zero, this reduces to

Va =
(
Rafe

Ka

+Kb

)
θ̇m + Ra

Ka

τo. (5.10)

At moderate torques and speeds, the contribution of armature resistance to
voltage drop is small at moderate speeds. Neglecting this term, we have

Va =
(
Rafe

Ka

+Kb

)
θ̇m, (5.11)

and input voltage and motor velocity are linearly related at low torque and
high speed.

5.2.2 Potential Control Issues

While the dynamic models described by Eqs. (5.1)–(5.11) capture the basic
properties of the system, they do not address its full complexity. There are
additional uncertain or changing dynamics that are difficult to model, which
contribute to most of the challenges of the control problem we are addressing.
These additional complexities are described below.

• Bowden Cable Nonlinearities and Stiction
Bowden cables are often used as a part of the transmission in robotic legged
locomotion systems. For simplicity, we modeled the Bowden cable as a fric-
tionless linear spring, but its stiffness is actually nonlinear and there are
substantial frictional effects. The cable is stiffening, exhibiting greater lo-
cal stiffness at high loads. This can be seen in the torque versus ankle angle
curves generated by fixing the motor and passively flexing the device joint
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FIGURE 5.2 Torque versus exoskeleton ankle joint angle relationship with motor position fixed
and the ankle joint being passively flexed for one hundred strides.

during walking (Fig. 5.2). The cable warms over the course of a many strides,
which decreases its overall stiffness. It exhibits creep, which increases the
slack length. If the cable is allowed to go slack, the state corresponding to
reengagement is uncertain. There is substantial friction in the cable, includ-
ing dissipation with characteristics of Coulomb friction, viscous damping,
and stiction, some of which are visible in Fig. 5.2. The cable heats over the
course of many strides, which increases overall friction. Stiction leads to sud-
den changes in cable force, and propagation of the slipping point along the
length of the cable makes these changes unpredictable. These transmission
properties are complex, nonlinear and time varying.

• Human–Robot Interaction and Human Adaptation
In the case of exoskeletons and prostheses, the robot device works together
with the human body. The device often contacts the soft tissues and muscles
of the human body, often using flexible straps. This interface is complex and
nonlinear, with low overall impedance. For example, muscle activity beneath
the straps can substantially affect stiffness and damping at the interface.
Straps may also shift on the limb, altering lever arms and engaging different
tissues. Human kinematics, kinetics and underlying neural and muscular ac-
tivity also vary in time and across steps. This can be seen in the variations
in ankle joint angle curves over many steps, even when the motor position is
fixed (Fig. 5.3).

• Delays Caused by Communication and Motor Velocity Tracking
Delays in generating desired motor position also pose a control challenge.
A portion of these delays can come from communication between subsys-
tems. For example, in the hardware used in this study there was a 6 ms
closed-loop communication delay. Another effective delay comes from ac-
celerating the motor rotor. For the hardware used in this study, the motor
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FIGURE 5.3 Variability in exoskeleton ankle joint angle trajectory during one hundred strides of
walking with the motor position fixed and the ankle exoskeleton passively flexing.

velocity rise time was about 7 ms. These delays cause feedback controllers
to become unstable as gains are increased, limiting closed-loop performance.

An effective low-level torque controller must accommodate these complex, non-
linear, time-varying system features. As discussed in the Introduction section,
various control methods have been employed in addressing this issue, which
include model-free and model-based controllers that were used as feedback or
feed-forward elements. These methods span the range of classical proportional-
integral-derivative control, passivity-based control, model-based feed-forward
compensation and iterative learning compensation. The relative performance of
these control approaches will be investigated in this chapter with an experimen-
tal case study in an ankle exoskeleton testbed, which will be detailed in the next
section.

5.3 A CASE STUDY WITH AN ANKLE EXOSKELETON

To investigate the relative performance of various control methods in torque
tracking for robotic legged locomotion, a case study was conducted. We com-
pared torque tracking performance for nine common torque control methods that
used combinations of classical feedback control, model-based control, adap-
tive control and iterative learning. These included examples of model-free and
model-based feedback and feed-forward control. Each low-level torque con-
troller was tested with four high-level walking controllers that set desired torque
based on time, ankle angle, a neuromuscular model, or electromyographic mea-
surements. All controllers were implemented on a tethered ankle-foot exoskele-
ton with series-elastic actuation driven by a uni-directional Bowden cable, and
each was tuned to minimize error. The exoskeleton was then worn by one sub-
ject who walked on a treadmill for one hundred strides at steady state under
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FIGURE 5.4 Experimental Testbed: (A) A real-time controller reads sensory information, com-
putes desired torques using a high-level controller, computes desired motor velocity using a low
level controller, and outputs desired motor velocity to the motor drive. (B) A dedicated motor drive.
(C) An off-board geared motor and pulley. (D) A Bowden cable transmission. (E) A lightweight
instrumented ankle exoskeleton. (F) An enlarged schematic of the exoskeleton. (G) A photograph
of the exoskeleton.

each condition, and the root mean squared errors between desired and measured
torque were calculated for each stride and for the averaged stride.

5.3.1 Exoskeleton System

We tested on a tethered ankle exoskeleton that comprised an off-board real-time
control module and geared electric motor, a uni-directional Bowden cable trans-
mission with a series spring, and an exoskeleton frame that interfaced with the
human foot and shank (Fig. 5.4). This system is described in detail in Witte et
al. (2015), and a summary is provided below.

We used a dedicated real-time control system (ACE1103, dSPACE Inc.)
to sample sensors at 5000 Hz, filter sensor data at 200 Hz, and generate de-
sired motor velocity commands at 500 Hz. The motor unit was composed of a
low-inertia, 1.6 kW AC servo motor and a 5:1 planetary gear, with input voltage
regulated by a motor driver running in velocity control mode (BSM90N-175AD,
GBSM90-MRP120-5 and MFE460A010B, Baldor Electric Co.). A digital opti-
cal encoder (E4, US Digital Corp.) measured motor position. As an indication
of motor module performance, the 100% rise time to peak motor velocity was
0.013 s.
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FIGURE 5.5 Flowchart of the control system. High Level Control and Low Level Control are the
two blocks to be varied in this study.

A flexible uni-directional Bowden cable transmitted forces from the motor
to the exoskeleton frame while minimally restricting leg motions. The cable
was composed of a coiled-steel outer conduit (415310-00, Lexco Cable Mfg.)
and a 0.003 m diameter Vectran� inner rope, and was 2 m in length. A series
spring (DWC-148M-12, Diamond Wire Spring Co.) with an effective stiffness
of 190 N·m·rad−1 (in terms of ankle rotation) was attached at the end of the
rope to provide increased compliance.

The exoskeleton frame applied forces on the front of the human shank below
the knee, beneath the heel, and on the ground beneath the toe, so as to generate
an ankle plantarflexion torque in proportion to transmission force. Torque was
measured using strain gauges (MMF003129, Micro-Measurements) applied in
a full Wheatstone bridge on the heel lever, with 1000 Hz signal conditioning
(CSG110, Futek Inc.). Joint angle was measured using a digital optical encoder
(E5, US Digital Corp.). For one of the high-level controllers, we measured gas-
trocnemius muscle activity using a wired electromyography system (Bagnoli 4
EMG System, Delsys Inc.).

The high-level and low-level controllers, motor, transmission, exoskeleton
frame and human interacted as shown in Fig. 5.5. The high-level controller used
time, t , device joint angle, θe, or human electromyography, EMG, to determine
desired torque. The low-level controller regulated torque, using desired torque,
τdes , measured torque, τ , motor angle, θm, and/or device angle to command de-
sired motor velocity, θ̇m,des . A hardware motor driver regulated motor velocity.
Motor rotations were transmitted through a cable to one end of a series spring.
Together with device rotation, this determined spring deflection, which in turn
generated device torque. Exoskeleton movements resulted from the balance of
torques from the series spring and from the human leg.

5.3.2 Low-Level Torque Controllers

We tested torque tracking performance with nine prominent low-level torque
control methods. Low-level controllers were selected based on prominence in
the literature, expected performance based on system modeling, and the results
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of pilot testing. They included model-free and model-based feedback and feed-
forward elements. Desired torque was set with each of four high-level exoskele-
ton control strategies, chosen based on prominence in the literature. High-level
controllers set desired torque based on time, joint angle, a neuromuscular model
or electromyography.

5.3.2.1 Motor Velocity Control

All torque controllers investigated in this study included motor velocity control
performed by a dedicated hardware motor controller. Series elastic actuators
with a drive running in velocity mode typically have lower actuation impedance
and smoother torque tracking with lower error (Pratt et al., 2004; Wyeth, 2006)
than when torque is commanded to the drive. With series elastic actuation, con-
trolling motor velocity is similar to controlling the rate of change of applied
torque, since torque is approximated by the product of series stiffness and the
difference between motor angle and exoskeleton joint angle (Eq. (5.6)). Desired
motor velocity was calculated as

θ̇m,des= 1

T
·�θm,des

= N

T
·�θp,des

(5.12)

where θ̇m,des is commanded motor velocity, T is a gain related to rise time,
�θm,des is desired change in motor position, N is the motor gear ratio, and
�θp,des is desired change in pulley position, determined by one of the low-level
torque controllers described below. The value of T was tuned so as to minimize
motor position rise time without causing oscillations during torque tracking.

5.3.2.2 Model-Free Feedback Control

The first group of torque controllers used model-free feedback control, compris-
ing variations on classical proportional-integral-derivative control. Gains were
tuned systematically using model-free procedures. Following tuning and pilot
testing, four low-level controllers were experimentally compared, L1–L4.

L1: Proportional Control with Damping Injection (PD∗)
This controller was analogous to classical proportional-derivative control
of torque, with damping injection (Arimoto and Takegaki, 1981; Kelly,
1999) on motor velocity taking the place of the derivative term:

�θp,des = −Kp · eτ − Kd · θ̇p (5.13)

where Kp is a proportional gain, eτ = τ − τdes is torque error, τ is mea-
sured exoskeleton torque, τdes is desired exoskeleton torque, Kd is a
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damping gain, and θ̇p is measured velocity of the motor pulley. In pilot
testing, we found the damping term more effective than a term with the
derivative of torque error; torque was measured with analog strain gauges,
which included substantial noise, while pulley position was measured with
a digital encoder. Damping was placed on motor pulley velocity alone
rather than the relative velocity between the motor pulley and the exoskele-
ton joint. In pilot tests, using relative velocity was less effective, likely due
to the irregular effects of stiction in the Bowden cable transmission on an-
kle joint velocity.

L2: Proportional Control with Damping Injection and Error-Dependent Gains
(PD∗+EDG)
This controller was identical to L1, with the exception that the proportional
gain was error-dependent (Zhang et al., 2013; Zhang and Cheah, 2015),
and increased with torque error:

K∗p=min
(
� |eτ |
hτ
� · hk, Kmax

)
,

�θp,des=−K∗p · eτ − Kd · θ̇p
(5.14)

where the symbol ��� denotes the ceiling operation, K∗p is the error-
dependent proportional gain, hτ and hk are torque error and proportional
gain step sizes, and Kmax is the maximum allowable gain. This is similar
to performing proportional control on the square of the torque error, with
a sign and gain adjustment. This type of gain scheduling is expected to
result in slower corrections, and fewer oscillations, when torque tracking
errors are small.

L3: Proportional Control with Damping Injection and Previous-Error Com-
pensation (PD∗ + PEC)
This controller was identical to L1, except that desired torque was altered
based on torque error from the previous instant in time (Gordon and Ghez,
1987; Klimchik et al., 2012) as:

τ ′des = τdes − eτ,prev,

�θp,des=−Kpec · (τ − τ ′des) − Kd · θ̇p
(5.15)

where τ ′des is the compensated torque error and eτ,prev is the torque error
from the previous time step. Kpec is a proportional gain. This approach
is expected to increase the control response to large errors. It bears some
similarity to integral control, in that it includes a term on prior error, but
differs in that only the prior error at the previous sampling time is used
rather than the entire time history. In cases where torque error changes
slowly, this approach approximates a doubling of the proportional gain.
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L4: Proportional-Integral Control with Damping Injection (PID∗)
This controller was analogous to classical proportional-integral-derivative
control, with damping injection substituted for the derivative term:

�θp,des = −Kp · eτ −Ki ·
∫ t

t0

eτ dt −Kd · θ̇p (5.16)

where Ki is the gain on the integral of torque error, t0 is the time at which
the stride began, and t is the present time. Integral control is expected to
eliminate steady-state error by accumulation of control input (Pratt et al.,
2004; Wyeth, 2006; Vallery et al., 2007).

5.3.2.3 Model-Based Feed-Forward Control

Many systems with series elastic actuators use an inverse dynamics model of the
series spring as a feed-forward control element, typically added to a model-free
feedback component. We implemented one such model-based controller in this
study, L5.

L5: Proportional Control with Damping Injection and Model-based Compen-
sation (PD∗ +M)
This controller included both the classical feedback controller of L1 and a
model-based feed-forward term, which was intended to anticipate changes
in desired motor position due to either changes in exoskeleton joint angle
or changes in desired joint torque:

�θp,des=−Kp · eτ − Kd · θ̇p + (θmdl − θp),

θmdl= θe · R̃ − τdes · K̃−1
t

(5.17)

where θmdl is a model-based motor position compensation generated from
Eq. (5.6), θp is measured motor pulley position, θe is measured exoskele-
ton ankle joint angle, R̃ is the estimate of R as defined in Eq. (5.5), or the
ratio of the exoskeleton lever arm to the motor pulley radius, and K̃t is an
estimate of Kt , which is the total stiffness of the tether, series spring, and
other structures between the motor pulley and exoskeleton joint as defined
by Eq. (5.7). This is an inverse dynamics approach similar to computed
torque and feedback linearization in nonlinear control. If desired torque
remains constant but the exoskeleton joint moves, we expect the motor to
need to move in proportion. If the joint is stationary but desired torque
changes, we expect we know how much to move the motor to obtain the
desired change in torque.
We also performed pilot tests with a version of this controller in which
change in pulley angle, rather than absolute pulley angle, was anticipated
based on the rate of change in exoskeleton angle and the rate of change
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in desired torque. This approach was less stable, owing to the effects of
Bowden cable stiction on exoskeleton joint angle and the interplay be-
tween user behavior and desired torque through the high-level controller.

5.3.2.4 Model-Based Feedback Control

Adaptive control approaches (Slotine and Li, 1987; Slotine et al., 1991) using
more complete system models have also been applied to exoskeletons. Such
regimes have the capacity to exploit additional knowledge of system dynamics
and allow theoretical tests of stability and performance. We developed a new
adaptive controller for this system using a passivity-based approach, L6.

L6: Passivity-Based Adaptive Control (PAS)
Combining the dynamics of the subsystems described by Eqs. (5.1)–(5.8)
so as to eliminate F and ia , we have following dynamics of the system:

τ̈ +K1τ̇ +K2τ + Sθ θ̇e =KV Va +Khτh, (5.18)

in which τ denotes the torque transmitted to the exoskeleton from the
motor, θe denotes the exoskeleton joint angle, Va is the voltage applied
to the armature of the motor, and τh denotes the torque applied to the
exoskeleton by the human body. KV , K1, K2 and Kh are positive gains
expressed as

KV = rarpKaKc

IeNRa

,

K1= 1

Ie
(
KaKb

Ra

+ fe),

K2=
r2
pKc

N2Ie
+ r2

aKc

Ie
,

Kh= r2
aKc

Ie
,

and Sθ is a gain expressed as

Sθ = [ r
2
aKc

Ie
(
KaKb

Ra

+ fe)− r2
aKcBe

Ie
]

with definitions of system constants provided in Section 5.2.1. Based on
the system model in Eq. (5.18), we developed a new, provably stable, adap-
tive controller for the system.
We define the controller as

Va=−Kp · eτ −Ks · s
+ Yd(τ, τ̇r , τ̈r , θ̇e) · �̃
−Ksw · sign(s)

(5.19)
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where Kp and eτ are as defined in L1, Ks is the sliding control gain, s is
the sliding vector, defined below, Yd is a regressor, defined below, � and �̃
are the system parameter vector and its estimate, defined below, and Ksw

is the switching term gain. The sliding vector s is defined as

s = τ̇ − τ̇des + λ · eτ = τ̇ − τ̇r

where λ is a positive scalar and τr is a virtual reference torque. The re-
gressor, Yd , is defined as

Yd(τ, τ̇r , τ̈r , θ̇e) = [ τ τ̇r τ̈r θ̇e ],
and is used to express the dynamics as a linear combination of system
parameters as

Yd · � = 1

Kv

· τ̈r + K1

Kv

· τ̇r + K2

Kv

· τ + Sθ

Kv

· θ̇e.

The system parameter, �, is defined as

� = K−1
v · [1 K1 K2 Sθ ]ᵀ.

With full knowledge of system parameters, or �̃ = �, Eq. (5.19) describes
a model-based computed torque controller. For practical reasons, however,
it is difficult to identify the value of �. Therefore, an update law is added
to estimate the system parameters, �̃, as follows:

˙̃
�=−LYᵀ

d s,
(5.20)

where L is a symmetric positive definite parameter adaptation gain ma-
trix. This parameter updating process reduces the model-dependency of
the controller in Eq. (5.19), because only the structure of the dynamic
model is used in the construction of the controller.
The closed-loop system with the model-based adaptive controller de-
scribed by Eqs. (5.19)–(5.20) and dynamics described by Eq. (5.18) is
stable and the exoskeleton torque trajectory τ converges to the desired
value of τdes , provided that the human input torque, τh, the desired torque
trajectory, τdes , and their time derivatives, τ̇h, τ̇des , and τ̈des , are bounded.
A proof is provided in Appendix 5.A.
In pilot tests, we found that better performance was obtained with this
controller by setting the time rate of change in desired torque to zero.
In practice, for most high-level controllers, the time derivative of desired
torque, τ̇des , could not be calculated in advance and contained substantial
noise when approximated numerically. Noise on this signal arose from the
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human measurements used by the high-level controllers to calculate de-
sired torque. We also found that the time derivative of torque error, ėτ ,
contained substantial noise, in part due to noise on the analog strain gauge
signal and in part due to complex Bowden cable transmission dynamics.
Better performance was obtained using motor output pulley velocity, θ̇p , in
its place. This substitution is equivalent to assuming that the characteristic
time of exoskeleton joint dynamics was much larger than the character-
istic time of motor dynamics (Eq. (5.6)). It is also analogous to the use
of damping injection in place of derivative control in the other controllers
tested. The sliding vector and regressor are therefore approximated as:

s≈ θ̇p + λ · eτ ,
Yd ≈[ τ − λ · eτ − λ · θ̇p θ̇e ].

Additionally, in pilot tests we found that it was more effective to operate
the dedicated motor drive in velocity control mode, rather than voltage
control mode. This difference in performance is likely due to the faster
control loop in the motor driver, which allowed voltage to be changed
more frequently and with less delay than for the control system as a whole.
Motor velocity is strongly related to applied voltage, since the two are
linearly related for a given torque at steady state (Eq. (5.11)). This led to a
similar formulation as for all other low-level controllers:

�θp,des=−Kp · eτ − Ks · s
+ Yd(τ, eτ , θ̇p, θ̇e) · �̃
−Ksw · sign(s).

(5.21)

5.3.2.5 Model-Free Feed-Forward Control

We also tested a group of controllers that use iterative learning as a feed-forward
component, which were expected to improve performance by exploiting the
cyclic nature of human gait.

L7: Iterative Learning of Desired Motor Position (LRN)
This controller used torque error at each instant of one stride to update a
feed-forward trajectory of desired motor position for each instant of the
next stride. This is a variation on iterative learning, which, more gener-
ally, exploits the cyclic nature of a task to compensate complex system
dynamics without an explicit model (Arimoto et al., 1984; Heinzinger et
al., 1992; Van de Wijdeven et al., 2009; Schuitema et al., 2010). While
walking is not as consistent as the operations of most industrial robots, it
is cyclic, which was expected to afford some improvement in torque errors
that occurred consistently from stride to stride.
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The feed-forward trajectory of desired motor position, θp,des , was calcu-
lated as

θp,des(i, n+ 1)= θp,des(i, n) − Kl · eτ (i, n) (5.22)

where i is the time index or number of control cycles elapsed within this
stride, n is this stride and n+ 1 is the next stride, and Kl is the iterative
learning gain. Desired motor position was then enforced as

�θp,des(i, n)= θp,des(i +D,n) − θp(i, n) (5.23)

where D is an estimate of the delay between commanding and achieving
a change in motor position. During tuning, both Kl and D were adjusted.
Current torque error thereby updates desired motor position for the same
time index on the next stride, while commanded motor velocity at this
time index is based on a preview of desired motor position later in the
same stride. Since the learned trajectory used in the present step has no
dependence on the present torque, this method is feed-forward. How-
ever, present motor pulley position measurements were used in generating
present motor velocity commands. This method can therefore be viewed
as a feed-forward iterative learning control of torque combined with pro-
portional feedback control of motor position.
Forgetting During Learning
To avoid divergence due to excessive accumulation of ripples during the
learning process, a “forgetting” constant was introduced to Eq. (5.22) as

θp,des(i, n+ 1)=β · θp,des(i, n)−Kl · eτ (i, n) (5.24)

where β ∈ [0, 1] is a weight on the learned trajectory. For β = 1, all
learning is retained, zero steady-state offset is expected, but ripples can
form if the value of D is incorrect. For β < 1, torque errors from strides
before the last stride have a reduced effect on controller behavior, reduc-
ing likelihood of ripple formation, but leading to some steady-state torque
offset. For β = 0, iterative learning is disabled. L7 then becomes propor-
tional control based on the torque error delayed by one step, and poor
torque tracking performance is expected.
Learning from Filtered Errors
Noise in the error signal leads to inappropriate updates on the learned
trajectory, which can excite unstable ripple formation. This excitation can
be reduced by filtering the error signal across strides:

ef lt (i, n) = (1−μ) · ef lt (i, n− 1) + μ · eτ (i, n) (5.25)

where ef lt is the filtered torque error trajectory, initially an array of zeros,
used in place of eτ in Eqs. (5.22) and (5.24), and μ ∈ [0, 1] is a weighting
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term on the learned error. For μ = 1, only the error from the last stride
is used to update the motor trajectory, resulting in faster convergence but
larger effects of sensor noise. For μ < 1, errors at this time increment
from all prior strides have some effect on the motor trajectory update,
resulting in slower but more stable convergence. For μ = 0, torque error
is not updated, and iterative learning is disabled.

L8: Iterative Learning of Desired Motor Position + Proportional-Damping
Compensation (LRN+ PD∗)
This controller combined iterative learning with proportional-damping
feedback control to compensate remaining torque errors. It is a direct su-
perposition of controllers L1 and L7, in which the absolute desired motor
position was learned as in L7 and feedback control was applied as in L1:

θLRNp,des(i, n+ 1)=β · θLRNp,des(i, n)−Kl · ef lt (i, n),
θp,des(i, n)= θLRNp,des(i +D,n)

−Kp · eτ (i, n)−Kd · θ̇p(i, n),
�θp,des(i, n)= θp,des(i, n) − θp(i, n).

(5.26)

Combining iterative learning with feedback control is thought to result
in improved performance compared to either component used in isola-
tion (van Dijk et al., 2013). Iterative learning is expected to generate a
feed-forward trajectory that tracks torque for an average stride with zero
steady-state error regardless of the complexity of the command signal
required, but to be susceptible to step-by-step variability. Proportional-
damping control is expected to quickly compensate for small torque errors,
but to be susceptible to rapid changes in desired or measured torque.

L9: Proportional Control with Damping Injection + Iterative Learning Com-
pensation (PD∗ +�LRN)
This controller is another combination of proportional-damping feedback
and iterative learning feed-forward control elements. Unlike controllers

L7 and L8, the values to be learned are desired changes in motor position
instead of absolute desired positions:

�θLRNp,des(i, n+ 1)=β ·�θLRNp,des(i, n) − Kl · ef lt (i, n),
�θp,des(i, n)=−Kp · eτ (i, n) − Kdθ̇p(i, n)

+�θLRNp,des(i +D,n).

(5.27)

This controller is very similar to L8, and is expected to have similar
strengths and weaknesses. Differences in motor position are learned rather
than absolute positions, however, which eliminates measured motor pul-
ley position, θp , from the formulation. It is therefore a velocity control
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approach rather than a position control approach. This may affect stabil-
ity, drift and the level and source of noise in the learned trajectory, which
may in turn affect the allowable gains and speed of convergence. Learning
desired changes in position also affects interactions between the feedback
and feed-forward elements of the controller in the presence of step-by-step
variability; learned changes in position add the same way regardless of
present position and error, while the contribution of learned absolute posi-
tions depends upon the present motor position. Either approach can oppose
feedback contributions under some conditions, but in different ways. A de-
tailed mathematical comparison of these two approaches is provided in
Appendix 5.B.

5.3.2.6 Additional Feedback Control Terms Piloted

Several control elements that seemed likely to improve performance in theory
did not fare well in pilot tests. This may be due to the unique features of the
control problem at hand, in particular the noisy sensory information and the
complex, changing dynamics of both the Bowden cable transmission and the
human. These approaches were not included in the final data collection.

One such example is the traditional derivative control element,

−Kd(τ̇ − τ̇des),

which involves the derivative of torque error. Analog noise in the derivative
of measured torque limited the magnitude of the derivative gain that could be
applied without causing oscillations. This limited the capacity of the derivative
term to stabilize the system, in turn limiting the magnitude of the proportional
gains that could be applied.

Using the model described by Eq. (5.6), we next approximated the derivative
term as

−Kd

[
(θ̇p − θ̇eR)− τ̇des · K̃t

]
where the relative velocity between the motor and exoskeleton was substituted
for the noisy measured torque derivative. The derivative of desired torque is also
problematic, however, because it generally cannot be calculated in advance and
its numerical approximation online is subject to noise from the human measure-
ments used by the high-level controller to calculate desired torque, for example
electromyographic measurements.

We next tried using just the relative velocity between the motor pulley and
exoskeleton joint,

−Kd(θ̇p − θ̇eR),
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which is equivalent to making the additional approximation that the derivative of
desired torque, τ̇des , is negligible. However, this control element was also found
to be ineffective in pilot tests due to noise on the derivative of the exoskeleton
joint angle, which seems to primarily arise from stiction in the Bowden cable
transmission.

Finally, we arrived at the simple damping term,

−Kdθ̇p,

which relied only upon the derivative of motor pulley position, which had little
noise to amplify, and provided sufficient damping to improve stability.

We also pilot tested proportional control without a damping term, which was
effective. However, the addition of some damping always allowed for higher
proportional gains and improved tracking performance. Therefore, proportional
control was always used together with damping injection in our tests.

5.3.3 High-Level Assistance Controllers

5.3.3.1 Stance Torque Control

During the stance period, desired exoskeleton joint torque was set according to
one of four high-level assistance controllers, H1–H4, described below.

H1: Time Based Desired Torque Trajectory (TIME)
This high-level controller set desired torque as a function of time. Time-
based control elements are simple and easily understood, and have been
incorporated into many exoskeleton systems (Fite and Goldfarb, 2006;
Cain et al., 2007; Malcolm et al., 2013, 2015). We used a curve that resem-
bled a scaled-down version of the human ankle moment during unassisted
walking, calculated as:

τdes =
0 < t < 0.15ξ : 0,

0.15ξ < t < 0.30ξ : τp

2
sin(

t − 0.15ξ

0.3ξ
π),

0.30ξ < t < 0.45ξ : −τp
4

cos(
t − 0.3ξ

0.15ξ
π)+ 3τp

4
,

0.45ξ < t < 0.60ξ : τp

2
cos(

t − 0.45ξ

0.15ξ
π)+ τp

2
,

0.60ξ ≤ t : 0,

(5.28)

where t is the time since the current stride began, ξ is stride period and
τp is peak torque. We used ξ = 1.1 s and τp = 45 N·m in this experiment,
which produced the desired torque profile shown in Fig. 5.6.
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FIGURE 5.6 High-level control based on a trajectory in time.

TABLE 5.1 Angle-based control parameter values

Parameter Value Parameter Value

[θ0, τ0] [0.018, 0.00] [θ3, τ3] [0.00, 11.3]

[θ1, τ1] [–0.122, 18.1] [θ4, τ4] [0.140, 0.00]

[θ2, τ2] [–0.209, 45.2]

H2: Joint Angle Based Desired Torque (ANGLE)
This high-level controller set desired torque as a function of exoskeleton
ankle joint angle and phase of the gait cycle. This approach is a subset
of impedance control, and is similar to setting desired torque based on
a phase variable rather than clock time. Variations have been employed
in many assistive devices (Au et al., 2006; Sup et al., 2009; Caputo and
Collins, 2014). We used a piece-wise linear curve that resembled a scaled-
down version of the human ankle moment during unassisted walking,
calculated as

τdes = τi − τi−1

θe,i − θe,i−1
(θe − θe,i−1), i = {1,2,3,4}, (5.29)

with curve parameter values as listed in Table 5.1.
Here, (θi, τi) defines a node in torque–angle space (Fig. 5.7). The node
(θ2, τ2) marked the transition from the dorsiflexion phase, in which ankle
velocity was negative, to the plantarflexion phase, in which ankle velocity
was positive. Since the exact transition point varied on each stride, we used
the angle and torque at the moment of transition, (θ ′2, τ ′2), when calculating
desired torque in the first portion of Plantarflexion.

H3: Neuromuscular Model Based Desired Torque (NMM) This high-level con-
troller set desired exoskeleton torque based on a Hill-type muscle model
and a positive force feedback reflex model. The resulting dynamics pro-
duce human-like motions and muscle activation patterns in simulation
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FIGURE 5.7 High-level control based on ankle joint angle.

(Song et al., 2015) and are thought to interact well with the human neu-
romuscular system (Eilenberg et al., 2010; Geyer and Herr, 2010; Shultz
et al., 2014; Dorn et al., 2015; Van der Noot et al., 2015). Virtual muscle-
tendon-unit length and velocity were set by measured exoskeleton joint
angle and angular velocity. Virtual fiber length, velocity and activation
were then used to determine muscle-tendon-unit force, Fmtu, which, after
conditioning, was used to set desired exoskeleton torque. We conditioned
the force signal by applying a low-pass filter with frequency ωq , adding a
small negative offset of τnmmo , and applying a gain of Knmm. Virtual mus-
cle force was also used to drive a positive force feedback loop in which in-
creased force led to increased muscle activation. The virtual neural system
multiplied muscle force by a reflex gain, KR, applied a time delay of DR,
added a small positive offset, PreStim, then applied a threshold, yielding
the virtual muscle stimulation. Virtual muscle activation was driven by
stimulation through first-order dynamics. A high-level schematic is pro-
vided in Fig. 5.8, high-level parameters are found in Table 5.2, and a full
set of equations and parameters are available in Appendix 5.C.

H4: Electromyography Based Desired Torque (EMG)
This high-level controller set desired torque in proportion to electromyo-
graphic measurements from the human gastrocnemius muscle. This ap-
proach gives the user direct neural control of the device, which is intended
to make interactions more intuitive (Ferris et al., 2006; Huang et al., 2014;
Takahashi et al., 2015), but can result in more complex desired torque
dynamics. Electrical activity in the gastrocnemius was measured using
surface electrodes and a commercial electromyography system. The signal
was then high-pass filtered at a frequency of ωhp , rectified, and low-pass
filtered at a frequency of ωlp . A small negative offset, τ emgo , was applied,
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FIGURE 5.8 Neuromuscular model control schematic.

TABLE 5.2 NMM parameter values

Parameter Value Parameter Value

KR 0.002 ωq 50 Hz

DR 0.020 s τnmmo −20

PreStim 0.05 Knmm 0.057 N·m

which prevented desired torque generation at low levels of muscle activ-
ity. The signal was then amplified by a gain, Kemg , yielding desired torque.
A high-level schematic is provided in Fig. 5.9, and the parameters used in
this experiment can be found in Table 5.3.

5.3.3.2 Swing Control

When the foot was off the ground, motor position control was employed to allow
free motion of the human ankle and maintain a small amount of slack in the
cable:

θp,des= θe · R̃,
�θp,des= θp,des − θp

(5.30)

where θe is exoskeleton joint angle and R̃ is the estimated total gear ratio from
motor to exoskeleton joint. Maintaining low slack in the Bowden cable reduced
the time required for cable winding at the beginning of stance.

5.3.4 Experimental Methods

All experiments were conducted with one (N = 1) healthy adult participant
(30 yrs, 56 kg, 1.65 m tall, female). Multiple participants were not warranted,
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FIGURE 5.9 Proportional electromyography control schematic.

TABLE 5.3 EMG parameter values

Parameter Value Parameter Value

Fhp 20 Hz Flp 6 Hz

Kemg 283 τ
emg
o −0.008

TABLE 5.4 Low-level torque control parameter values

Parameter Value Parameter Value Parameter Value

Kp 0.093 R̃ 2.90 Kl 0.0077

Kd 0.010 K̃c 195
N·m·rad−1

D 0.022 s

Kmax 0.15 Ks 0.005 β 1

Kpec 0.046 λ 0.077 μ 1

Ki 7.7e−5 L 1.0e−9I3
* T 0.250 s

hτ 11.3 N·m hk 0.039 Ksw 0
* I3 denotes a 3× 3 identity matrix.

as the aim of the study was to examine torque tracking performance by the ex-
oskeleton, not biomechanical response of the human. The participant walked on
a treadmill at 1.25 m·s−1 with a self-selected stride period of 1.08± 0.06 s while
wearing the exoskeleton on one leg. The participant provided written informed
consent prior to participation in the study, which was conducted in accordance
with a protocol approved by the Carnegie Mellon University Institutional Re-
view Board.

Before collecting data, we tuned parameters for each combination of high-
and low-level controller as the participant walked with the exoskeleton. High-
level control parameters listed in the prior section were selected so as to result in
peak instantaneous desired torques of approximately 45 N·m during the course
of one hundred steps of walking. Low-level control parameters listed in Ta-
ble 5.4 were systematically tuned with the aim of minimizing torque error.
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Feedback, model and adaptive control gains in L1–L6 and L8–L9 were tuned
using a variant of the Ziegler–Nichols method (Ziegler and Nichols, 1942), in
which:

1. All gains (proportional, damping, integral, model, sliding, and/or adaptive)
were set to zero.

2. The proportional gain was increased until significant oscillations were ob-
served.

3. Gain value and oscillation period were then recorded and used to estimate
optimal values for proportional and damping gains.

4. Fine tuning of gains for all control elements, other than iterative learning,
was then performed by the experimenter.

The iterative learning gain in L7 was tuned such that steady state was reached
at approximately 10 strides, which led to a value of Kl that was about one tenth
the tuned value of Kp . The same gains were used for iterative learning elements
in controllers L7–L9. During tuning we found very similar suitable low-level
control parameters across high-level controllers, and so used identical values
within each low-level controller for consistency. Tuning was performed on a
separate day from data collection. For model-based compensation, the value of
R̃ was based on measurements of the motor output pulley radius, motor gear
ratio, and exoskeleton lever arm. K̃c was estimated based on measurement of
the passive relationship between exoskeleton torque and exoskeleton joint angle
measured during walking experiments (Fig. 5.2).

For each high-level controller, all low-level control conditions were tested
on the same day, without removal of the exoskeleton between trials. A table of
condition order is presented in Supporting Materials1 Table SI.

For each combination of low-level torque control and high-level assistance
control, we collected data from 100 steady-state strides. Steady state was typ-
ically reached after about 20 strides. The subsequent 100 strides were then
decomposed into individual strides, each beginning at heel strike as detected
by a shoe-embedded switch. Data for an average stride were then calculated by
taking the mean for each instant within the stride, in time, beginning at heel
strike.

For each condition, we calculated torque error both for the set of all steady-
state strides and for the average stride. We quantified torque error as the root-
mean-squared error of the difference between measured and desired torque. For
the set of all steady-state strides, we calculated root mean squared error for each
stride individually, then calculated the mean and standard deviation. For the set
of all steady-state strides, we compared means within high-level controllers and

1. The supporting document of this chapter is located at http://biomechatronics.cit.cmu.edu/
publications/Zhang_2016_BLL—SuppMat.pdf.

http://biomechatronics.cit.cmu.edu/publications/Zhang_2016_BLL---SuppMat.pdf
http://biomechatronics.cit.cmu.edu/publications/Zhang_2016_BLL---SuppMat.pdf
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FIGURE 5.10 Root-mean-squared torque error calculated for all strides (RMS-E) and for an aver-
age stride (RMS-E AVG) across all high- and low-level control combinations.

across low-level controllers using unpaired t-tests, with a significance level of
α = 0.05.

5.3.5 Results

Means and standard deviations of stride-wise root-mean-squared torque error
(RMS-E) and average-stride root-mean-squared error (RMS-E AVG) of all low-
and high-level controller combinations are shown in Fig. 5.10. A complete table
of p values for statistical comparisons between the RMS-E of all torque con-
trollers are provided as Supporting Materials (Tables SII–SV). Overlapped time
trajectories of desired and measured joint torques across all one hundred steady-
state strides in each condition are shown in Fig. 5.11. Ankle angle trajectories in
time and torque trajectories in ankle angle space are also provided for all condi-
tions as Supporting Materials (Figs. S1–S2). Convergence plots for controllers
that involved iterative learning are provided as Supporting Materials (Fig. S4).

The combination of proportional control and damping injection with iter-
ative learning (PD∗ + �LRN or LRN + PD∗) resulted in the lowest torque
tracking errors for all high-level controllers, both in real-time and for aver-
age trajectories (Fig. 5.10). Of these two combinations with comparable per-
formance, feedback control with learning compensation (PD∗ + �LRN) was
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FIGURE 5.11 Time trajectories of desired torque (think pink lines) and measured torque (thin gray
lines) for 100 strides of walking, and average-stride desired torque (dotted red line) and measured
torque (gray line), for all combinations of controllers. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this chapter.)

simpler and converged faster. Stride-wise torque errors with PD∗ +�LRN were
between 38% and 84% lower than with PD∗ alone (p < 1.9·10−43), while
average-stride torque errors were between 91% and 97% lower, depending on
high-level controller. Iterative learning control alone tended to result in low er-
rors for average trajectories, but higher real-time errors than when combined
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FIGURE 5.11 (continued)

with feedback control. Other additions to feedback control had minor effects
on performance, except for model-based compensation, which increased torque
error substantially. When desired torque was based on EMG, torque tracking
error and variability were higher for almost all torque controllers. Values for the
PD∗ +�LRN controller, including errors as a percentage of the maximum of
the average desired torque, are provided in Table 5.5. The contributions of each
component of the PD∗ +�LRN controller to desired motor displacement, and
their evolution in time, are depicted in Fig. 5.12.

There were some interactions between high-level control type and low-level
torque control performance. With Angle and EMG based high-level controllers,
pure feedback control was more effective than pure iterative learning control,
while for Time and NMM based controllers this trend was reversed. With Time-
based desired torque, all controllers that did not have a learning component had
poor tracking at the onset of desired torque, including a delay and overshoot,
that comprised a large portion of the total torque error (Fig. 5.11). The addi-
tion of iterative learning to PD∗ control led to the greatest reductions in torque
errors when desired torque was based on Time. An integral term (PID∗) pro-
vided a small improvement in performance over PD∗ control for Time and Angle
based controllers. With Time-based high-level controllers, passivity (PAS) and
previous-error compensation (PD∗ + PEC) provided a small benefit as well.
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TABLE 5.5 Tracking errors with PD∗ + 	LRN torque control for all four high
level controllers

RMSE % τmax RMSE-A % τmax

Time 0.57 ± 0.18 Nm 1.3% 0.10 Nm 0.2%

Angle 0.99 ± 0.23 Nm 2.5% 0.11 Nm 0.3%

NMM 0.93 ± 0.32 Nm 2.3% 0.12 Nm 0.3%

EMG 2.14 ± 0.77 Nm 5.9% 0.22 Nm 0.6%

FIGURE 5.12 The contributions of each component of the PD∗ +�LRN controller at steps 1–10,
steps 51–60 and steps 101–110. In the first step proportional control dominates, and at steady state
the learned component dominates. Data shown are from the Time-based high-level controller. Plots
for all high-level conditions are available as Supplementary Materials (Fig. S5).

5.4 DISCUSSION

In this study, we investigated the effectiveness of several prominent torque con-
trol techniques in robotic legged locomotion, implemented on a tethered ankle
exoskeleton, with unidirectional series-elastic actuation, during human walking,
with a variety of high-level assistance controllers. We found that model-free
proportional control with damping injection compensated by iterative learning
(Fig. 5.13) resulted in the lowest torque errors for all high-level controllers, both
in real-time and for an averaged trajectory. This controller resulted in improved
normalized torque tracking errors compared to prior torque control techniques.
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FIGURE 5.13 A block diagram of controller L9, PD∗ +�LRN.

5.4.1 Proportional-Learning-Damping Control

The most successful controller identified in this study has features that are analo-
gous to those of classical proportional-integral-derivative control: a proportional
term provides tracking during transients, iterative learning eliminates steady-
state cyclic errors, and damping injection provides stability. We might therefore
label the approach “proportional-learning-damping” control.

Each component of the proportional-learning-damping controller con-
tributes to overall commands in different ways across the learning process.
During the first few walking steps, proportional control is the primary contribu-
tor, moderated by damping injection, while the learned trajectory remains near
its initial value (Fig. 5.12, steps 1–10). At steady state, inputs are primarily the
result of learned trajectories, which anticipate and override damping injection,
while proportional control compensates for step-by-step variations in required
input (Fig. 5.12, steps 91–100). This results in strong performance during tran-
sients and exceptional performance at steady state.

Designing and tuning the proportional-learning-damping controller in the
form of Eq. (5.27) is straightforward. First, the proportional gain on torque er-
ror Kp is slowly increased until some overshoot and oscillations are observed.
Next, the damping gain on motor velocity Kd is increased until high-frequency
motor oscillations are observed, and the gain is backed off of this limit. The
proportional gain is then re-tuned such that it is as high as possible without re-
sulting in oscillations in torque error. Next, the learning gain Kl is set to a value
of one tenth that of the proportional gain and fine-tuned until convergence oc-
curs within the desired time, in this case about ten strides. Finally, a parameter
sweep is performed on the delay parameter D used to preview learned desired
motor position. The effects of learning are sensitive to this choice; without a
delay value very close to optimal, ripples in the learned desired motor position
will form and grow. In those cases, non-unity values of the forgetting and error
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filtering terms, i.e., β �= 1, μ �= 1, are required to stabilize the system. With the
correct choice of delay, however, ripples did not form during at least one thou-
sand strides in our experiments, even without forgetting or error filtering terms.
We expect that a similar tuning process would be effective for a wide variety of
lower-limb robotic systems used in legged locomotion.

This approach builds on the strengths of torque control techniques imple-
mented in prior lower-limb exoskeletons and other legged locomotion robots.
Feedback control terms similar to those tested in this study have been used in
Bowden-cable driven hip–knee exoskeletons (Veneman et al., 2006), hip–knee
exoskeletons with collocated drives (Zanotto et al., 2013) and mobile hip ex-
oskeletons (Giovacchini et al., 2014). Effective joint position tracking has been
achieved in a knee exoskeleton using an iterative learning approach analogous
to that tested in this study (Bae and Tomizuka, 2012). Improvements in torque
tracking have been achieved in a Bowden-cable driven hip–knee exoskeleton
using a lower-dimensional “kernel-based” version of the iterative learning ap-
proach tested in this study (van Dijk et al., 2013). The proportional-learning-
damping controller identified in this study incorporates the most effective per-
mutations of these previously-identified control concepts.

Comparisons to prior torque tracking results can be complicated by differ-
ences in hardware. For example, the present system has higher-power off-board
motors than most exoskeletons, and the unidirectional Bowden cable can go
slack during the swing phase, eliminating the need for active control to achieve
transparency, i.e., the ability to apply zero impedance. On the other hand, some
prior exoskeletons have estimated joint torques using simplified system models
rather than direct measurement, which can result in the appearance of low-error
torque tracking despite substantial unmeasured torque errors. Nevertheless, the
proportional-learning-damping controller identified in this study achieved the
lowest torque errors as a percentage of desired torque of any exoskeleton to
date.

It is likely that iterative learning of the form used here or in other studies,
would improve torque tracking during most human locomotor activities, since
even irregular gaits exhibit some degree of repeatability. The case of the EMG-
based high-level controller provides an insight into such scenarios, because the
EMG signal contains substantial noise and is highly variable from step to step
(Fig. 5.11; Fig. S2). Despite these irregularities, the addition of a learning com-
ponent reduced torque tracking errors by 45% compared to feedback control
alone in the EMG condition.

Further improvements in torque tracking for some high-level controllers
might have been possible with alternate phase variables. Iterative learning re-
sulted in the greatest improvements in torque tracking for the Time-based
high-level controller, presumably because motor position adjustments were also
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learned in time. Learning as a function of ankle angle in the Angle condition, for
example, might have resulted in greater improvements. On the other hand, time
provides a unique and monotonically increasing phase variable, with consistent
indexing across steps, capable of capturing control inputs with very high levels
of complexity. This topic merits further exploration.

Although this case study was conducted on an ankle exoskeleton, the sys-
tem characteristics that lead to the effectiveness of the proportional-damping-
learning controller during torque tracking also apply to other robotic legged
locomotion systems such as lower-limb prostheses and walking robots. The
complex, uncertain and changing dynamics introduced by transmissions, gait
variations, or human–robot interactions make model-based and continuous-time
integral control actions ineffective. The cyclic behavior of walking leads to
improved performance with the addition of an iterative learning element. The
presence of delays leads to a benefit from a predictive feed-forward element, in
this case a learned compensation. These factors are discussed in the following
section.

5.4.2 Benefits of Additional Control Elements

There appeared to be some interactions between high-level and low-level control
elements, which might provide insights into strategies for circumstances that
were not tested in this experiment.

5.4.2.1 Continuous-Time Integration

When proportional-damping control was augmented by an integral term (PID∗),
previous-error compensation (PD∗+PEC), or passivity-based adaptation (PAS),
torque error with Time-based high-level control was slightly improved. How-
ever, these continuous-time integral components showed no effect or negative
effects in tracking performance for other high-level controllers. We can identify
two factors that may explain the ineffectiveness of integral control in these cases.
One factor is integral windup; the rapid changes in set point over the course of
the stride could lead to either excessive or insufficient error accumulation. An-
other factor is the nonlinear, changing, delayed dynamics of the system; the
Bowden cable has nonlinear stiffness, both the transmission and human change
in time, and there are delays in the control loop and in motor actuation. All of
these factors are known to limit integral control performance due to the linear
accumulation of torque errors that are not linearly comparable (Sung and Lee,
1996). In the case of the Time-based high-level controller, continuous-time in-
tegration may have been more effective due to the consistency of the desired
torque in time, which may have translated into more constant torque errors than
with other high-level controllers.
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The apparent success of integral terms in other robotic legged locomotion
systems with Bowden-cable transmissions may be due to differences in torque
sensing, cable composition or activities tested. For example, controllers of the
Lopes system have typically included an integral term on torque error (Vene-
man et al., 2006; Vallery et al., 2007; van Dijk et al., 2013). Differences might
relate to torque sensing. In the present study, torque was measured at the joint
using strain gauges. In Lopes, torque has been estimated from relative angle
of the motor and joint or from series spring deflection, which might result in a
more linear relationship between motor angle input and apparent joint torque.
Differences might also relate to hardware. The Bowden cables in Lopes have
features that could make them more consistent with a simple spring model, such
as stiffer, pre-stretched steel cables and bidirectional drives that do not allow
slack. Differences might also relate to the characteristic behavior of the joint
being assisted. Lopes assists the hip and knee, which have relatively smooth,
continuous patterns of joint torque. In this study, we assisted the ankle joint,
which typically involves sharper changes in dynamics. For example, the foot in-
termittently contacts the ground, discontinuously changing both the impedance
of the ankle joint and the magnitude of desired torques. These changes connote
rapid changes in set point for the controller, which leads to windup of integral
control elements, among other challenges. The proportional-learning-damping
controller developed here may therefore be expected to provide strong torque
tracking performance under a larger range of conditions.

5.4.2.2 Model-Based Control Elements

Although model-based control elements show promise in simulation and in the-
ory, these generally worsened or had no effect on tracking performance in our
experiment. One might expect that better performance could have been obtained
with a more accurate estimate of model parameters in the PD∗ +M controller.
However, in exploratory tests we found that the best performance was obtained
by driving model-based contributions to zero. One reason for the ineffective-
ness of model-based compensation may have been the nonlinear stiffness of the
Bowden cable, which we modeled as a linear spring, and slow changes in cable
stiffness and length due to heating over the course of each trial. Another reason
may have been the exclusion of friction and stiction. However, in pilot tests us-
ing model-based compensation that included these elements, we found them to
make the controller less robust; in each case the effects were highly sensitive to
choice of parameter value and torque tracking error was not reduced. Sensitivity
to model errors seems to be a fundamental issue in implementing this type of
inverse-model control in devices with Bowden cable transmissions.

The passivity-based controller (PAS) fared slightly better, perhaps due to its
adaptive nature, but still did not yield substantial benefits. One factor that may
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have limited its effectiveness is input mismatch; the controller was designed
with motor voltage as input (Eq. (5.18)), but implemented using motor velocity
commands instead. While these terms are closely related (Eq. (5.11)), it is pos-
sible that an alternate mode of motor control, or an alternate formulation, could
have led to improved results. Another factor that may have limited performance
was the inclusion of a term akin to continuous-time integration, which is subject
to windup as discussed above. The primary limitations likely stem from the re-
liance on any explicit model, however, since the dynamics of this human–robot
system are highly complex and time-varying.

Some prior controllers have used model-based control elements, apparently
to good effect. For example, Zanotto et al. (2013) used continuous-time inte-
gration and model-based terms that were not found to improve performance in
the present study. This may be because the Bowden cable transmission used
here relocated heavy actuators off of the leg, making gravity compensation
unnecessary, but had more unmodeled dynamics than a gear train, making fric-
tion compensation less effective. The proportional-learning-damping controller
described here resulted in lower torque tracking error than in prior systems, sug-
gesting improved performance might be achieved even in systems for which
model-based control has been effective. The proportional-learning-damping
controller described here resulted in lower torque tracking error than in prior
systems, suggesting improved performance might be achieved even in systems
for which model-based control has been effective.

5.4.2.3 Gain Scheduling, Optimal Control, and Learning

Error-dependent gains (PD∗ +EDG) did not provide benefits for any high-level
controller. Lower gains when torque errors were low seem to have led to larger
errors at other times, since the set point changed rapidly and there were sub-
stantial execution delays. Gain scheduling methods that instead use optimal
control might improve torque tracking for this system, but such feedback con-
trol techniques would still be limited by communication and actuation delays.
By contrast, iterative learning realizes another form of optimal control, but uses
a feed-forward approach to overcome delays. The iterative learning controller
developed here is a variation on one-dimensional root finding using Newton’s
method. The problem is to find the desired motor position (L7 and L8) or dis-
placement (L9) for zero torque error, i.e., to solve the equation

eτ (�θm,des)=0. (5.31)

The solutions are approximated in an iterative manner by

�θm,des(n+ 1)=�θm,des(n)−Kl · eτ (n), (5.32)
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which can be rewritten as

�θm,des(n+ 1)=�θm,des(n)− eτ (�θm,des(n))

K−1
l

. (5.33)

This demonstrates a variation of Newton’s method to solve eτ = 0 with the esti-
mate for the derivative of eτ fixed as e′τ =K−1

l . Unlike gain scheduling in feed-
back control, this optimal control approach addresses control delays through the
combination of a feed-forward term and a delay-compensating prediction term.
Therefore, even with an optimized gain schedule, PD∗ + EDG probably would
not out-perform PD∗ +�LRN.

5.4.3 Factors Limiting Interpretation

5.4.3.1 High-Level Controllers

It is difficult to make comparisons across high-level controllers for the same
low-level torque controller because tracking difficulty may vary with desired
torque pattern. For example, we can imagine a Time-based trajectory with step
changes in desired torque for which precise tracking would be infeasible. Sim-
ilarly, the ease of tracking Angle-based desired torques likely depends on the
similarities between the target torque-angle curve and the passive relationship
arising from series elasticity. EMG-based desired torques generally seem to
be difficult to track, given the unpredictable signals that directly drive desired
torque, but increasing filter frequency could make this task easier. We did not
test multiple values for high-level parameters in this experiment, which is an
area for future work.

5.4.3.2 Interactions with Human Response

We designed this experiment with the implicit expectation that low-level torque
control would not significantly affect human response to high-level assistance
modes, but this does not appear to have been the case. Changes in the patterns
of desired torque (Fig. 5.11) and joint kinematics (Supporting Materials, Sec-
tion II) across torque controllers within the same high-level controller reveal
an interaction effect. For example, we found more variability in joint kine-
matics with PD∗ torque control than with LRN torque control when desired
torque was generated on the basis of Time. In this case, differences seem to
be related to the smoothness of the measured torque generated by the two
controllers; the subject reported that the PD∗ controller had uncomfortable os-
cillations, leading to compensatory activity, while the LRN controller did not.
As another example, we found more variability in desired torque with NMM-
based assistance than Angle-based assistance using PD∗ torque control, but an
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opposite trend using LRN torque control. This appears to be the result of com-
plex, multi-time-scale, dynamic interactions between continuous behavior of the
torque controller, within-stride variations by the human, high-level control re-
sponses, and human adaptation over multiple strides. These effects may also
be important in selecting and tuning an exoskeleton or prosthesis torque con-
troller.

5.4.3.3 Hardware Dependence

Robot hardware, particularly series compliance, also interacted with the quality
of torque tracking. We performed pilot tests with no series spring, other than
the Bowden cable, and found significant increases in torque error and subject
discomfort for all control combinations. We also tried more compliant series
springs, and found small increases in torque tracking error. When series stiff-
ness is too high, we expect small position changes by the human to result in
large, undesirable, changes in torque, and when it is too low we expect mo-
tor dynamics to limit performance (Pratt and Williamson, 1995). Interactions
between series elasticity, low-level torque control, high-level assistance, and as-
sisted task should be explored in the future.

Some of the control elements found to be ineffective in this system might
be more effective in devices with different hardware or task characteristics. For
example, there are many examples of torque controllers incorporating model-
based terms, often accompanied by hardware that lends itself more readily to
modeling (e.g., Zanotto et al., 2013). Experimental comparisons of torque track-
ing performance with and without model-based terms in these systems would
lend further insights into their potential contributions to effective torque tracking
in exoskeletons and other robotic legged locomotion systems, and might provide
a useful point of contrast to the present work. Future work could also address
the effects of hardware changes as an additional dimension in the space sam-
pled here. Measuring performance for each combination of a set of high-level
controllers, low-level controllers and hardware setups would provide the best in-
sights into interactions between these features. As the dynamical contributions
of nonlinear time-varying elements, intermittent contact or forceful human in-
teractions increase, continuous-time integral terms, gain scheduling, and model-
based compensations are expected to become less effective, as observed with the
unidirectional Bowden-cable-driven ankle-foot exoskeleton used in this study.
The present system therefore represents a more challenging case for torque
control, suggesting that the proportional-learning-damping controller identified
here would perform even better in a system with simpler, more consistent dy-
namics.

The uni-directional Bowden cable used in this study made torque control
more challenging, but is not the dominant factor in the observed patterns of
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torque error. The onset of applied torque tended to lag that of desired torque,
particularly with feedback controllers and TIME based desired torque. This
pattern might suggest that slack in the Bowden cable was the primary cause
of torque error, but this is not the case. All high-level controllers set desired
torque to zero during the beginning of stance, from about 0 to 0.25 s, consis-
tent with typical human ankle torque patterns. All low-level controllers acted
to track desired torque throughout stance, quickly eliminating slack from the
previous swing phase early in the period of zero desired torque. The Bowden
cable was therefore not slack upon the onset of desired torque. This is evident
from the pattern of torque with feedback control and ANGLE based desired
torque, which led desired torque beginning at about 0.10 s. Patterns in torque
error across controllers are better-explained by a combination of rapid changes
in desired torque, rapid movements of the human, and electromechanical delays
in applying desired changes in motor position. These issues are common to most
lower-limb exoskeletons, prostheses and walking robots, especially systems us-
ing series-elastic actuation.

5.4.4 Implications for Control of Future Systems

The insights gained from this study are expected to help guide the design of
torque controllers for systems with similar traits, particularly complex, changing
dynamics and cyclic motions, such as lower-limb exoskeletons, active lower-
limb prostheses and walking robots. Based on the present results, there is reason
to expect that the combination of feedback control and feed-forward iterative
learning, without continuous-time integration or model-based compensation,
will provide strong torque tracking performance in any such system. Other con-
trol elements might further improve performance for some systems and control
objectives. For example, if system dynamics are relatively constant and easy to
identify, model-based compensation might be useful. If the measured and de-
sired torque both change slowly, continuous-time integral control may also lead
to some improvements. In any case, proportional-learning-damping control is
expected to provide good baseline torque tracking.

5.5 CONCLUSIONS

We performed a systematic comparison of torque control techniques in a robotic
legged locomotion system under realistic operating conditions, and found that
the combination of proportional control, damping injection and iterative learn-
ing resulted in smaller torque errors relative to peak torque than any other ap-
proach tested or previously demonstrated. Designing this proportional-learning-
damping controller was straightforward, requiring sequential tuning of only four
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parameters. Our results generally support such an approach for any torque-
controlled lower-limb exoskeleton, prosthesis and walking robot. The complex
interactions between device hardware, torque control, assistance control, task
goals and human behavior, in case of exoskeletons and prostheses, remain a rich
area for future research.
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APPENDIX 5.A STABILITY AND CONVERGENCE OF THE
PASSIVITY BASED CONTROLLER

5.A.1 Passivity

Substituting Eq. (5.19) into Eq. (5.18), we have the closed-loop equation:

1

Kv

ṡ + K1

Kv

s +Kpeτ +Kss + Yd(τ, τ̇r , τ̈r , θ̇e)�� = Kh

Kv

τh, (5.34)

in which �� = � − �̃.
Let the output be y = s. Multiplying both sides of Eq. (5.34) by the output

and then integrating it, we have∫ t

0

Kh

Kv

s(ς)τh(ς)dς

=
∫ t

0
[ 1

Kv

s(ς)ṡ(ς)+ K1

Kv

s2(ς)+Kpėτ (ς)eτ (ς)+Kpλe
2
τ (ς)

+Kss
2(ς)+ s(ς)Yd(ς)��(ς)]dς

= P(t)− P(0)︸ ︷︷ ︸
Stored Energy Change

+
∫ t

0
W(ς)dς︸ ︷︷ ︸

Dissipated Energy

,

in which the stored system energy is

P = 1

2Kv

s2 + 1

2
Kpe

2
τ +

1

2
��ᵀL−1�� ≥ 0 (5.35)

and the energy dissipating rate is

W = (
K1

Kv

+Ks)s
2 +Kpλe

2
τ ≥ 0. (5.36)
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Since both V and W are nonnegative, we can conclude the passivity of output y
for the system (5.34).

With no disturbance from human, i.e., τh = 0, we have

Ṗ =−W.

5.A.2 Convergence

To compensate for nonzero human loading, τh �= 0, an additional switching term
is added to the controller

Va =−Kpeτ −Kss + Yd(τ, τ̇r , τ̈r , θ̇e)�̃ −Kswsign(s) (5.37)

where Ksw is the compensation gain. With Eq. (5.37), the closed-loop system
equation becomes

1

Kv

ṡ + K1

Kv

s +Kpeτ +Kss + Yd(τ, τ̇r , τ̈r , θ̇e)��

− Kh

Kv

τh +Kswsign(s)= 0.

(5.38)

The integral of the product of y = s with the above equation is∫ t

0
[ 1

Kv

s(ς)ṡ(ς)+ K1

Kv

s2(ς)+Kpėτ (ς)eτ (ς)+Kpλe
2
τ (ς)

+Kss
2(ς)+ s(ς)Yd(ς)��(ς)− s

Kh

Kv

τh + sKswsign(s)]dς

= P(t)− P(0)︸ ︷︷ ︸
Stored Energy Change

+
∫ t

0
W(ς)dς︸ ︷︷ ︸

Dissipated Energy

+
∫ t

0
[−s Kh

Kv

τh + sKswsign(s)]dς
= 0,

i.e.,

Ṗ =−W + s
Kh

Kv

τh − sKswsign(s). (5.39)

Note that

s
Kh

Kv

τh − sKswsign(s)= s
Kh

Kv

τh −Ksw|s|

≤ Kh

Kv

|s|k0 −Ksw|s|
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where k0 is a finite nonnegative number defined by the boundedness of the hu-
man loading,

|τh| ≤ k0.

By choosing a Ksw such that

Ksw ≥ Kh

Kv

k0,

we have

s
Kh

Kv

τh − sKswsign(s)≤ 0. (5.40)

It is already established that

W ≥ 0,

therefore, it is proved that

Ṗ ≤ 0.

Based on the nonnegativeness of P and nonpositiveness of Ṗ , we have

P(t)≤ P(0),

i.e., P(t) is bounded. Since P is quadratic in s, eτ and ��, these three terms
are bounded.

Eq. (5.39) means

P(t)− P(0)=−
∫ t

0
W(ς)dς +

∫ t

0

[
s(ς)

Kh

Kv

τh(ς)−Ksw|s(ς)|
]
dς.

(5.41)

Combining Eq. (5.41) with Eq. (5.40) and (5.36), we have

P(t)− P(0)≤−
∫ t

0
W(ς)dς ≤ 0. (5.42)

By definition, Eqs. (5.36) and (5.42) lead to

s, eτ ∈L2(0,∞). (5.43)

Based on the definition of s, ėτ is also bounded, and hence so is τ̇ since τ̇des is
bounded. The boundedness of ėτ proves the uniform continuity of eτ .

Now due to the boundedness of τ̇des and τ̈des , τ̇r and τ̈r are also bounded,
which then lead to the boundedness of Yd(τ, τ̇r , τ̈r , θ̇e). Based on Eq. (5.38), ṡ
is then bounded, which then proves the uniform continuity of s.
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Combining the conclusions of uniform continuity, boundedness and
Eq. (5.43), we have (Desoer and Vidyasagar, 1975; Arimoto, 1996):

s→ 0, as t→∞,

eτ → 0, as t→∞.

By the definition of s and eτ , we then can conclude

τ→ τdes, as t→∞,

τ̇→ τ̇des, as t→∞,

i.e., both the actual ankle torque and its changing rate converge to the desired
values.

APPENDIX 5.B PD∗ + 	LRN VERSUS LRN + PD∗

For controller L9, i.e., PD∗+�LRN, as described in Eq. (5.27), the total desired
motor displacement at a certain time stamp t within step n, with a forgetting
factor β = 1 and a filtering factor μ= 1, is

�θp,des(n)

∣∣∣∣
t

=�θLRNp,des(0)

∣∣∣∣
t

−Kl

n−1∑
m=1

eτ (m)

∣∣∣∣
t︸ ︷︷ ︸

Step-wise Integral Control

−Kpeτ (n)

∣∣∣∣
t︸ ︷︷ ︸

Proportional Control

−Kdθ̇p(n)

∣∣∣∣
t︸ ︷︷ ︸

Damping Injection

,

(5.44)

in which the operator

∗(n)
∣∣∣∣
t

denotes the variable ∗ at time t within step n, i.e., the time lapsed from the latest
heel strike. The term

�θLRNp,des(0)

∣∣∣∣
t

denotes the initial value of the desired motor displacement to be learned. Itera-
tive learning of desired motor displacement realizes a stepwise integral control
action. Considering Eq. (5.44), it can be seen that L9 is analogous to tradi-
tional PID control; damping injection improves system stability in the manner
of derivative control, and iterative learning takes eliminates steady-state errors
across steps similar to integral control.
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For controller L8, LRN+ PD∗, combining Eqs. (5.26) and (5.12), we have

θ̇p,des(n)

∣∣∣∣
t

= 1

T
�θp,des(n)

∣∣∣∣
t

= 1

T

[
θLRNp,des(0)

∣∣∣∣
t

−Kl

n−1∑
m=1

eτ (m)

∣∣∣∣
t

− θp(n)

∣∣∣∣
t

−Kpeτ (n)

∣∣∣∣
t

−Kdθ̇p(n)

∣∣∣∣
t

]
(5.45)

when β = 1 and μ= 1.
Assuming perfect motor velocity tracking, namely

θ̇p(n)

∣∣∣∣
t

= θ̇p,des(n)

∣∣∣∣
t

, (5.46)

Eq. (5.26) becomes

θ̇p(n)

∣∣∣∣
t

= 1

T

[
θLRNp,des(0)
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t

−Kl

n−1∑
m=1

eτ (m)

∣∣∣∣
t

− θp(n)

∣∣∣∣
t

−Kpeτ (n)

∣∣∣∣
t

−Kdθ̇p(n)

∣∣∣∣
t

] (5.47)

which can be written as

θ̇p(n)

∣∣∣∣
t

=− 1

T +Kd

θp(n)

∣∣∣∣
t

+ 1

T +Kd

[
θLRNp,des(0)
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t

−Kl

n−1∑
m=1

eτ (m)

∣∣∣∣
t

−Kpeτ (n)

∣∣∣∣
t

]
.

(5.48)

Assuming the same ankle kinematics for each step and the same motor position
at each heel strike,

θp(n)

∣∣∣∣
0
= θp

∣∣∣∣
0
,

the dynamics described in Eq. (5.48) can be treated as a linear-time-invariant
system starting from the latest heel strike in the format of

ẋ =Ax +Bu (5.49)
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where x is θp(n), A is − 1

T +Kd

, and Bu is

1

T +Kd

[
θLRNp,des(0)
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t

−Kl

n−1∑
m=1

eτ (m)

∣∣∣∣
t

−Kpeτ (n)
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t

]
.

Therefore, the solution of LTI system as described in Eq. (5.48) is

θp(n)

∣∣∣∣
t

= θp

∣∣∣∣
0

exp(− t

T +Kd

)

+ 1

T +Kd

∫ t

0
exp(− t − ς

T +Kd

)
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−Kl

n−1∑
m=1

eτ (m)

∣∣∣∣
ς

−Kpeτ (n)
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ς

]
dς,

(5.50)

in which t denotes the time lapsed since the last heel strike and ς ∈ [0, t] is a
variable tracing t .

Therefore, the control input of L8 can be expressed as:

�θp,des(n)

∣∣∣∣
t

= θLRNp,des(0)
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t

−Kl

n−1∑
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eτ (m)
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Step-wise Integral Control

−Kpeτ (n)
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Damping Injection

− θp

∣∣∣∣
0

exp(− t

T +Kd

)− 1
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0
exp(− t − ς
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)

×
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eτ (m)
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ς

−Kpeτ (n)
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ς

]
dς. (5.51)

It can be seen that the LRN+ PD∗ controller differs from the PD∗ +�LRN
controller in that it has additional exponential and low-pass filtered continuous-
time integral terms. These arise from the presence of −θp(n) in the control
input.

This difference can also be illustrated in the frequency domain. The convo-
lution term

∫ t

0
exp(− t − ς

T +Kd

)

[
θLRNp,des(0)
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t

−Kl

n−1∑
m=1

eτ (m)

∣∣∣∣
ς

−Kpeτ (n)

∣∣∣∣
ς

]
dς (5.52)
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translates to

1

s + 1

T +Kd

[
θLRNp,des(0)
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s

−Kl

n−1∑
m=1

eτ (m)

∣∣∣∣
s

−Kpeτ (n)
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s

]
(5.53)

in the frequency domain. The low-pass filter term

1

s + 1

T +Kd

realizes constant scaling at low frequency and integration at high frequency.
Each evaluation of the term to be filtered,

θLRNp,des(0)

∣∣∣∣
t

−Kl

n−1∑
m=1

eτ (m)

∣∣∣∣
t

−Kpeτ (n)

∣∣∣∣
t

,

is generated independently at the sampling frequency. Therefore, the term is ex-
pected to have high frequency. A continuous-time integration effect is therefore
included in the control input with the LRN+ PD∗ controller.

In our experimental comparison, we found that continuous-time integral ac-
tion is not desirable due to the linear accumulation of terms that are not linearly
correlated. Therefore, PD∗ +�LRN is preferred due to its simplicity and lack
of continuous-time integration.

APPENDIX 5.C NEUROMUSCULAR REFLEX MODEL

The neuromuscular model included a Hill-type muscle-tendon-unit (MTU)
(Fig. 5.14), with total length, lmtu, equal to the length of the series elastic el-
ement, lse, plus that of the contractile element, lce . The length of the parallel
elastic element, lpe, was identical to lce. The total force produced by the MTU,
Fmtu, was equal to the force on the series elastic element, Fse, and also equal
to the sum of the contractile element force, Fce , and the parallel elastic ele-
ment force, Fpe (which was usually zero). The contractile element force was
expressed as

Fce = fL(lce) · fV (l̇ce) ·Act · Fmax,
in which fL(lce) and fV (l̇ce) are force scaling factors that reflect the force–
length and force–velocity properties of muscle, Act is the muscle activation
state, and Fmax is the maximum force that can be produced by the muscle. The
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FIGURE 5.14 The Hill-type muscle-tendon-unit model includes a contractile element (CE), a par-
allel elastic element (PE) and series elastic element (SE).

force–length and force–velocity relationships were:

fL(lce) = exp[− (lce − lce,opt )
2

(W · lce,opt )2
],

and

fV (l̇ce) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
A
vmax + Fmax

v · l̇ce
vmax ·A+ l̇ce

, l̇ce < 0,

vmax ·A + Fmax
v · (A + 1) · (Fmax

v − 1)

vmax ·A + l̇ce · (A + 1) · (Fmax
v − 1)

, l̇ce ≥ 0,

in which lce,opt is the optimal contractile element length, W is a force–length
constant, l̇ce is the contractile element velocity, A is a force–velocity constant,
vmax is the maximum contraction velocity, and Fmax

v is the maximum eccentric
(lengthening) muscle scaling factor.

Series and parallel elastic element forces were determined as:

Fse = Fmax · 1

(umax · lse,sl)2
·max(δlse,0)2

and

Fpe =

⎧⎪⎨⎪⎩ k1 · δlpe + Fmax · kpe

l2ce,opt
· δl2pe, δlpe > 0,

k1 · δlpe, δlpe ≤ 0,

where δlpe = lce − 1.5 · lce,opt and δlse = lse − lse,sl , and lse,sl is the slack
length of the series elastic element, umax is an elastic element curve parameter
and k1 is the subslack elastic element stiffness of the parallel elastic element.

The virtual muscle had activation dynamics as:

Act(t = 0) = PreAct,

Ȧct = (Stim−Act) ·
(
Stim

ta
− 1− Stim

td

)
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TABLE 5.6 Muscle model parameter values used in NMM

Parameter Value Parameter Value

lce,opt 0.055 m lse,sl 0.245 m

lmtu,0 0.284 m Fmax 1000 N

A 0.25 W 0.56

Fv,max 1.8 umax 0.04

vmax 0.55 m/s k1 1

ta 0.02 s td 0.05 s

PreAct 0.05

where Stim is neural stimulation from the positive reflex mechanism of the
virtual neural system, ta and td are muscle activation and deactivation time
constants, respectively, and the initial activation value A(t = 0) is defined by
PreAct .

The parameter values used in this study are listed in Table 5.6.
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Chapter 6

Neuromuscular Models for
Locomotion
Arthur Prochazka, Simon Gosgnach, Charles Capaday, and
Hartmut Geyer

Nature has solved the problem of controlling legged locomotion many thou-
sands of times in animals exhibiting an enormous variety of neuromechanical
structures. Control systems features that are common to nearly all species in-
clude feedback control of limb displacement and force and feedforward gen-
eration of motor patterns by neural networks within the central nervous system
(Central Pattern Generators: CPGs). Here we review the components of locomo-
tor control systems, with a focus on mammalian animals including humans. We
then propose a generalized model of reflex control and discuss the mathemati-
cal functions that describe the properties of the components of a spinal stretch
reflex model.
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Chapter 6.1

Introduction: Feedforward vs Feedback
in Neural Control: Central Pattern
Generators (CPGs) Versus Reflexive
Control
Arthur Prochazka∗ and Hartmut Geyer†

∗Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
†Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States

The control of animal locomotion by the nervous system has been studied for
many years. Early work in mammals explored the reflexive control of sim-
ple movements, including locomotion, after surgical removal of the cerebrum
and transection of the spinal cord, abolishing all descending neural input from
the brain, the brainstem and the spinal cord above the transection (Flourens,
1824; Freusberg, 1874; Goltz, 1869; Magnus, 1909; Sherrington, 1910). In
the spinally-transected animals, dropping one hind-limb from a flexed posi-
tion could initiate a sequence of alternating, locomotor-like contractions of the
flexor and extensor muscles of the hind-limbs (Freusberg, 1874). The rhythmi-
cal sequence could be halted simply by constraining a limb to a fixed position
(Freusberg, 1874; Sherrington, 1910). These findings led Freusberg to suggest
that locomotion was the result of a sequence of spinal reflexes, the sensory input
signaling the end of the swing phase, triggering the onset of the stance phase,
and vice versa. The notion of chains of reflexes was not new. It had been pro-
posed a decade earlier by the Russian neurophysiologist Ivan Sechenov to be the
general mechanism underlying the control of all movement (Sechenov, 1863).

The observation that locomotion can be achieved in animals without active
brain coordination may come as a surprise at first. However, passive legged
robots have been built that have neither actuators nor controllers but can walk
down a shallow ramp, switching between swing and stance simply as an out-
come of their mechanics (McGeer, 1990; Collins et al., 2005). A similar phe-
nomenon has been demonstrated for running machines (Owaki et al., 2010).

The idea that animal locomotion was controlled entirely by a chain of
reflexes was seriously challenged when T. Graham Brown discovered that
locomotor-like rhythms in cats with transected spinal cords, could still occur
even after the sensory nerve roots entering the spinal cord were cut (Brown,
1911). This led him to propose the existence of an “intrinsic factor” in the
spinal cord which could generate a locomotor rhythm without descending con-
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trol from the brain and also without sensory input. In 1975 Sten Grillner and
Peter Zangger renamed this mechanism “central pattern generation” (Grillner
and Zangger, 1975). The existence of central pattern generators (CPGs) that can
generate rhythmical movements in the absence of sensory input had also been
suggested from work in locusts (Wilson, 1961) and has since been demonstrated
in many other vertebrate and invertebrate species.

In this chapter we will review some of the research that has explored how
mechanical structure, sensory input and CPGs interact in different animals and
under different circumstances to generate locomotion. We will then discuss var-
ious neuromechanical models of locomotion and conclude with comments on
the relevance of an understanding of biological locomotor control to control in
legged robots.
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Chapter 6.2

Locomotor Central Pattern Generators
Simon Gosgnach and Arthur Prochazka
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada

There is now overwhelming evidence for the existence of locomotor CPGs in
invertebrates and nonprimate mammals. Most of the mammalian evidence is
based on neuronal firing patterns recorded during “fictive locomotion” elicited
by electrical stimulation in the midbrain of decerebrated, paralyzed animals
(Grillner and Zangger, 1974), or by chemical or electrical stimuli in isolated
spinal cord preparations (Ayers et al., 1983). As will be seen in this section,
it has been posited that the mammalian locomotor CPG has separate com-
ponents controlling the timing of the locomotor rhythm and the selection of
α-motoneuron pool activation patterns (Perret et al., 1988; Orsal et al., 1990;
McCrea and Rybak, 2007; Rybak et al., 2006). Genetic techniques have identi-
fied candidate interneuronal populations that contribute to these separate com-
ponents. Attempts have been made recently to incorporate these interneurons
into a model of left–right coordination by the locomotor CPG (Shevtsova
et al., 2015). The existence of a locomotor CPG in humans is less certain,
though there is increasing evidence to support this idea (Calancie et al., 1994;
Danner et al., 2015; Dimitrijevic et al., 1998).

6.2.1 NEURONAL NETWORKS THAT MAKE UP THE
LOCOMOTOR CPG

Walking is a complex task that requires precise coordination of dozens of mus-
cles. As discussed above, while the first theories to account for the neural control
of locomotion suggested that propriospinal reflexes were responsible for the
rhythmic, repetitive alternation of the hindlimbs (Sherrington, 1910), it has now
been accepted that in many animals, intrinsic neural networks (CPGs) located
in the spinal cord of mammals, are responsible for controlling the timing and
activation of α-motoneurons and muscles in an appropriate sequence (for a re-
view, see Kiehn, 2006). As mentioned above, this was initially proposed by
Graham Brown (1911, 1914) who found that in cats, rabbits, and guinea pigs,
after spinal transection and deafferentation that abolished descending and sen-
sory input to the lumbosacral spinal cord, the animals’ hindlimbs could still
display alternating locomotor-like movements. To account for this, Graham
Brown suggested that for each limb, the spinal cord contained a pair of mutually
inhibitory neural centers, later called “half-centers.” The half-centers were mu-
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tually and reciprocally inhibitory such that activity in the extensor half-center
activated extensor α-motoneurons while inhibiting the flexor half-center and
flexor α-motoneurons. This inhibition waned, so that after a short time the flexor
half-center began activating flexor α-motoneurons while inhibiting the extensor
half-center and extensor α-motoneurons. Brown also proposed that activity of
the half-centers could be modulated by sensory input.

6.2.2 IN VIVO PREPARATIONS USED TO STUDY THE
LOCOMOTOR CPG

In spite of the compelling evidence and hypothesis of Graham Brown, the
idea that sensory-evoked reflexes were solely responsible for generating lo-
comotor activity continued to be strongly supported up to the 1960s and re-
mains influential in certain types of locomotor models to this day (Song and
Geyer, 2015). Around this time a series of experiments by Andres Lundberg’s
group (Lundberg, 1967; Jankowska et al., 1967) incorporated a preparation
in which a decerebrate cat was spinalized and L-DOPA and 5-HTP were ap-
plied intravenously. In the presence of these pharmacological agents, stimulation
of high-threshold cutaneous or muscle afferents which evoke the flexion re-
flex under normal conditions (i.e., flexor reflex afferents – FRAs) suppressed
this reflex and instead evoked rhythmic, alternating activity in flexor and ex-
tensor α-motoneurons ipsilateral to the stimulated afferents, a locomotor-like
pattern (Jankowska et al., 1967). The Lundberg group used intracellular tech-
niques to record from interneurons in the ventromedial aspect of the lum-
bar spinal cord and were able to identify individual cells that received input
from either ipsilateral or contralateral FRAs as well as input from descend-
ing systems thought to be involved in locomotor initiation. These experiments
provided experimental evidence to support the half-center architecture of the
locomotor CPG originally proposed by Brown (1911, 1914). They are also
of historical significance since they involved the first direct recordings from
interneuronal components presumed to be part of the mammalian locomo-
tor CPG.

Shortly after these experiments, studies taking place in Moscow were suc-
cessful in identifying a small area within the midbrain which, when electri-
cally stimulated, was able to reliably evoke locomotion in the premammillary-
transected cat. This region became known as the mesencephalic locomotor re-
gion (MLR) and was shown to have discrete control over locomotor activity, in
that increases or decreases of stimulation strength were able to modulate loco-
motor speed accordingly (Shik et al., 1966, 1969).

While initial experiments using MLR stimulation were performed in de-
cerebrate cats walking on a treadmill, much of the work in the subsequent
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two decades was aimed at elucidating the structure and function of the loco-
motor CPG. This work was mainly done in the fictive locomotor preparation.
For these experiments adult cats are decerebrated and the neuraxis is severed
in the midbrain to abolish descending inhibitory drive. After a laminectomy
exposes the spinal cord for intracellular recording, the animals are fixed in a
frame and paralyzed with curare. Hindlimb nerves are cut and placed on bipolar
electrodes for recording of efferent activity. This also provides the opportu-
nity to stimulate afferents in order to investigate the effect of their activity
on the locomotor pattern. Locomotor activity in this preparation was termed
fictive locomotion since the hindlimbs do not move; rather the electroneuro-
gram activity that is evoked in the motor axons innervating the hindlimbs is
recorded, providing a read-out of the neural correlates of locomotor activity.
By incorporating intracellular recording of neurons in the spinal cord during
MLR-evoked fictive locomotor activity, this preparation enabled identification
of a number of the interneuronal components of the locomotor CPG. Identified
cells were typically grouped together based on how they responded to affer-
ent input during fictive locomotion. In addition to the interneurons that receive
input from FRAs described above (Jankowska et al., 1967), there are interneu-
rons in the intermediate nucleus of the caudal spinal cord that receive input
from extensor afferents and are only active during the extensor phase of loco-
motion (Angel et al., 2005). Another population of interneurons was shown to
be preferentially active during the flexor phase of locomotion and receive exci-
tation primarily from group II afferents (Edgley and Jankowska, 1987). Finally,
a population of cholinergic cells was identified that are primarily active dur-
ing extension and project axons to the contralateral spinal cord (Huang et al.,
2000).

6.2.3 IN VITRO PREPARATIONS USED TO STUDY THE
LOCOMOTOR CPG

While the in vivo cat preparation provided insight into the general location of
the locomotor CPG as well as the manner in which it was activated, this work
was expanded upon greatly following the development of an in vitro neonatal
rodent preparation (Kudo and Yamada, 1987; Smith et al., 1988). Here the spinal
cord is dissected out of a newborn (typically postnatal day 0–4) rodent, placed
in a recording chamber and perfused with oxygenated artificial cerebrospinal
fluid to maintain viability. Suction electrodes are used to record electroneuro-
grams (ENGs) from ventral roots in the lumbar spinal cord. Initial experiments
demonstrated that the second lumbar ventral root (i.e., L2) is almost entirely
made up of axons from flexor α-motoneurons while the 5th lumbar ventral root
(i.e., L5) consists primarily of extensor α-motoneurons. Locomotor activity can
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be evoked in this preparation via either electrical stimulation (of the brainstem or
dorsal roots) or application of various substances including NMDA and 5-HT
to the perfusate. In this preparation an alternation of ENG activity recorded
in flexor and extensor-related ventral roots on both sides of the spinal cord
is observed. Two separate groups performed a series of experiments in which
various lesions and segmentations were made to the isolated spinal cord to deter-
mine the location of the hindlimb locomotor CPG (Cowley and Schmidt, 1997;
Kjaerulff and Kiehn, 1996). Both groups concluded that the CPG is distributed
throughout the lower thoracic and lumbar segments of the spinal cord with a
rostral–caudal gradient such that the rostral segments were more able to gen-
erate fast and regular rhythmic activity than the caudal segments and they
tended to entrain the rhythm when both segments were connected. Furthermore,
they demonstrated that the rhythm-generating components were located ventro-
medially, in regions roughly corresponding to lamina VII, VIII, and X of the
spinal cord.

Because the spinal cord could be isolated and pharmacological agents ap-
plied directly to it (rather than systemically in the adult cat preparations), in-
terneurons that comprised the locomotor CPG were more accessible for whole
cell recording and their morphology and connectivity could be more easily in-
vestigated with neuroanatomical tracers. It was also easier to perform post hoc
immuno-histochemical staining. Several interneuronal populations with homo-
geneous characteristics were identified using this preparation (Butt et al., 2002;
Butt and Kiehn, 2003). In spite of these advantages, little progress was made
deciphering the manner in which these cell populations were interconnected to
generate locomotor activity. The slow headway is attributable to the plethora of
interneurons in the mammalian spinal cord and the extent to which those with
heterogeneous functions are intermingled.

6.2.4 IMPLEMENTATION OF MOLECULAR GENETIC
TECHNIQUES TO STUDY THE LOCOMOTOR CPG

Over the past 15 years, molecular techniques have complemented traditional
anatomical and electrophysiological approaches in identifying components of
the locomotor CPG and providing insight into its network structure. These ex-
periments have shown that the developing neural tube in the embryonic mouse
can be divided into ten distinct populations of spinal interneurons (dI1–dI6,
V0–V3) based on transcription factor expression (see Goulding, 2009, for a re-
view; Fig. 6.2.1 – schematic of interneuronal populations). These populations
can first be identified around embryonic day 10 (E10). By E13, they begin to
migrate towards their settling position which they reach by E16, where they
remain. Since gene and transcription-factor expression dictate neuronal charac-
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FIGURE 6.2.1 Genetic characterization of the mammalian spinal cord. (A) Transcription factors
expressed postmitotically between approximately embryonic day 10–12 (E10–E12) allow spinal
cord neurons to be divided into 11 genetically-distinct populations. (B) From E13 to E16 each pop-
ulation migrates towards its settling position. (C) Just before birth, populations reach the positions
in the spinal cord where they remain throughout adulthood.

teristics such as cell fate, channel composition, axonal projection patterns, and
neurotransmitter phenotype, it was initially postulated that populations of neu-
rons with a similar genetic background will have similar characteristics and a
similar function during locomotor activity.

The genetic characterization of interneurons in the spinal cord enables the
use of powerful molecular tools to silence or ablate entire neuronal populations
and pinpoint their specific function during locomotion. Alternatively, transcrip-
tion factors can be used to drive expression of reporter proteins such as green
or red fluorescent protein (i.e., GFP or tdTomato). This allows each popula-
tion to be visualized in live or fixed tissue with a fluorescent microscope and
renders anatomical and electrophysiological approaches much more efficient.
Validation of this multidisciplinary approach has come from a number of stud-
ies which have characterized many of the neuronal populations that originate
in the ventral neural tube and defined their function during locomotor activity
(Garcia-Campmany et al., 2010).

Initially, all of the components of the locomotor CPG were predicted to
be derived from the four populations of interneurons that originated from the
ventral half of the neural tube during development – the V0, V1, V2, and V3
populations. Anatomical and electrophysiological experiments were performed
on each of these populations to identify their neurotransmitter phenotype, ax-
onal projection pattern and intrinsic properties. In addition, the use of molecular
techniques enabled the selective ablation or silencing of each population in or-
der to assess fictive locomotion activity in their absence. The molecular work
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has demonstrated that each of these four “parent” populations of cells located
in the ventral neural tube can be subdivided into two or more subpopulations,
each of which expresses the same transcription factor as its parent but differs
in downstream expression (Alaynick et al., 2011). Recent work has indicated
that there is substantial diversity in the properties, connectivity, and locomotor
function of these genetically-related subpopulations.

V0 cells project commissural axons. The V0 population has been divided
into 3 subpopulations: V0D and V0V cells that cross to the opposite (contralat-
eral) side of the spinal cord (Lanuza et al., 2004) and coordinate left–right limb
alternation at slow and fast locomotor cadences, respectively (Talpalar et al.,
2013), and V0C/G cells that project to the same (ipsilateral) side of the cord and
regulate α-motoneuronal output (Zagoraiou et al., 2009).

V1 cells have been divided into a subset comprising Renshaw cells and Ia in-
hibitory interneurons (Sapir et al., 2004), and while these cells are not presumed
to be a key component of the locomotor CPG (Noga et al., 1987) elimination of
the entire V1 population drastically reduces the cadence of locomotor activity
(Gosgnach et al., 2006). A second subset of V1 cells is involved in coordinating
the ipsilateral alternation of activity in flexor and extensor α-motoneuron pools
during stepping (Britz et al., 2015).

V2 interneurons are extremely diverse. Broadly they can be subdivided into
a V2a subset which is excitatory and projects ipsilaterally. Some of these cells
make synaptic contact with V0v interneurons and affect left–right alternation at
fast cadences (Crone et al., 2008, 2009). A further subset has all the character-
istics of locomotor rhythm generation but deleting this subset does not abolish
the locomotor rhythm, indicating that these cells are part of a larger rhythm-
generating network comprised of several cell types (Dougherty et al., 2013;
Hagglund et al., 2013). V2b interneurons are inhibitory, and work together
with V1 cells to coordinate ipsilateral flexor and extensor α-motoneurons
during locomotion (Britz et al., 2015). V2c cells form a small, inhibitory,
Sox1-expressing population that has not been well characterized, nor has its
function during locomotion been established.

V3 interneurons project to contralateral α-motoneurons and regulate their
output (Zhang et al., 2008). They are the least well characterized of the
ventrally-derived interneuronal populations and have yet to be subdivided into
subpopulations based on function or transcription factor expression. However,
it seems likely that there are several subsets since it has recently been shown
that there are three distinct regions in the postnatal spinal cord in which V3
interneurons are clustered, and cells in each position have a unique set of elec-
trophysiological characteristics (Borowska et al., 2015).
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6.2.5 NETWORK MODELS OF THE LOCOMOTOR CPG

Over the past century several network models have been proposed to account
for the connectivity and mechanism of function of the locomotor CPG. The first
of these, the half-center model described above postulated that stepping in each
limb is controlled by a separate CPG which contains two groups of excitatory
interneurons with mutual inhibitory connections that project to either flexor or
extensor α-motoneurons (see Fig. 6.2.2A, half-center schematic). While many
of the central tenets of this model still hold up after a century of testing with
experimental data, the observation that activity of many flexor and extensor
α-motoneurons is not strictly reciprocal (i.e., certain α-motoneuronal pools are
active during both flexion and extension phases and the onset and cessation of
activity of certain α-motoneuronal pools vary in their timing) were inconsistent
with the hypothesis. This resulted in the development of the “unit burst gen-
erator” hypothesis (Grillner and Zangger, 1975) which was proposed after it
was demonstrated that the more complex activity patterns of flexor and extensor
α-motoneurons was maintained following complete bilateral de-afferentation of
the hindlimbs. The unit burst generator hypothesis held that, rather than a single
half-center arrangement overseeing activity in each hindlimb, there were half-
centers around each joint that were connected to one another (see Fig. 6.2.2B,
unit burst generator schematic). Activity in these individual “units” was linked
but each could be individually controlled by supraspinal inputs to produce dif-
ferent patterns of locomotor output as required by the environment (Grillner,
1981).

An issue with both the half-center and unit burst generator models is
that they were constructed such that the excitatory interneurons generating
the locomotor rhythm were directly connected to the α-motoneurons gener-
ating locomotion. This makes it difficult to imagine how independent con-
trol of amplitude and duration of individual motor pool activity is achieved.
A number of groups (Burke, 2001; Kriellaars et al., 1994; Orsal et al., 1990;
Perret et al., 1988) have suggested that, rather than direct connectivity between
a rhythm generating module and α-motoneurons, the CPG is a multilayered en-
tity with an upper layer acting as a clock and setting the timing of activity. The
clock connects to a lower layer which controls the firing of α-motoneurons.
Compelling evidence for this multilayered arrangement comes from studies in-
vestigating the timing of missing bursts of activity in α-motoneuronal pools
(called “deletions”). Deletions occur relatively frequently during fictive locomo-
tion (Lafreniere-Roula and McCrea, 2005). Analysis indicated that in most cases
the burst following a deletion typically occurred at a time point expected from
the prior rhythm. These were termed nonresetting deletions since the locomotor
rhythm had not been reset. A much less common occurrence was a deletion in
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FIGURE 6.2.2 Schematics of network models of the locomotor CPG. (A) In the half-center model
alternation of flexor and extensor α-motoneurons on one side of the body is controlled by half-
centers (large circles), which activate α-motoneurons (diamonds) and interneurons (small circles)
which inhibit the antagonistic half-center and associated α-motoneurons. (B) The unit burst gen-
erator (UBG) model comprises neurons interconnected in a similar arrangement as the half-center
model but differs in that there is an independent UBG that controls flexor–extensor alternation at
each joint. (C) The two-layer model is unique in that the functions of locomotor rhythm generation
and regulation of α-motoneuronal activity are carried out by distinct neuronal populations. In this
arrangement the rhythm generating layer acts as a clock and activates the pattern forming layer at
each joint which is responsible for regulating α-motoneuronal activity.

which activity in the affected α-motoneuronal pools occurred at a random time
point after the “missed burst”, an event known as a resetting deletion. From
these data the authors proposed a two-layer model with the upper layer com-
prising the rhythm generator (RG) module which feeds out to the lower layer,
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the pattern forming (PF) layer, which in turn activates α-motoneurons. Nonre-
setting deletions were proposed to occur due to aberrant activity in the PF layer
rather than in the RG module. Conversely, resetting deletions were ascribed to
the RG layer since both timing and α-motoneuronal activity were affected.

The structure of the network model constructed in light of these data
(Fig. 6.2.2C, three-layer half-center model) includes a flexor and extensor RG
module in each limb which is activated via intrinsic cellular properties (persis-
tent sodium channels). These RG modules act as traditional half-centers made
up of excitatory interneurons which mutually excite each other, and also excite
a module of inhibitory interneurons responsible for reciprocal inhibition of the
antagonistic half-center. Cells of the PF layer receive input from their respective
RG layer and excite agonist α-motoneurons as well as inhibitory interneurons
which inhibit activity in antagonist α-motoneurons. A number of simulations
have been run using this model (Rybak et al., 2006) and it has been shown to
accurately reproduce many of the experimental phenomena observed in the in
vivo cat fictive locomotor preparation.

The initial three-layer model of the locomotor CPG was constructed to
account primarily for in vivo cat fictive locomotor data involving deletions. Re-
cently, attempts have been made to incorporate the genetically-defined interneu-
ronal populations described above into an updated version of this integrated
model (Shevtsova et al., 2015). Since the interneuronal populations involved in
coordinating left/right alternation have been so well defined, the model specif-
ically includes them and attempts to explain how they may interact with each
other as well as with the RG layer (Shevtsova et al., 2015).

The general structure of the integrated model includes a RG module for both
flexors and extensors on the right and left sides. The V2a, V0D, and V3 in-
terneuronal populations, each receive direct excitatory input from the RG layer
of the model. The V0D, V0V, and V3 cells synapse back onto the RG layer
in the contralateral spinal cord with the V0V and V3 cells making excitatory
connections and the V0D cells making inhibitory connections. The experimen-
tal data generated in the intact in vitro fictive locomotor preparation, as well
as the preparation in which the V0D, V0V, or V2a cells are inactivated, were
reproduced in this computational model.

While constructing computational models can be useful for generating and
testing hypotheses in regards to network structure of the locomotor CPG, this
specific model may be premature given the preliminary nature of the connectiv-
ity of the various cells types. First, while it has been shown that V2a cells project
to the V0V subpopulation, so far only a handful of V0V cells has been shown to
receive glutamatergic V2a-derived input. Furthermore, the full extent of axonal
projections of V2a cells has not been investigated. While some axons from V2a
cells likely project to V0V cells, there is a good chance they also project to other
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cell types and regions of the CNS given that V2a cells have been shown to have
monosynaptic contacts with α-motoneurons and that virtually all interneuronal
populations investigated have a promiscuous axonal projection pattern with in-
dividual interneurons projecting multiple axons. In addition, the model proposes
that each of the V2a, V0V, and V0D cells projects onto the RG layer of the loco-
motor CPG. While this may be the case it is a premature claim given that each
of these cell populations has been shown to make mono- or di-synaptic connec-
tions with α-motoneurons and there are no data indicating that they project to
rhythm-generating components of the locomotor CPG. Finally, the claim that
the V3 population is responsible for coordinating left/right activity during fast
locomotion (i.e., gallop) is made without any experimental evidence and the
fact that the locomotor phenotype expressed in the absence of this population
(Zhang et al., 2008) cannot be replicated with this model makes it unlikely that
these cells play the proposed role.

Despite the preliminary nature of this model, the idea that three commissural
pathways exist and coordinate left–right activity is a logical one. In the model,
V0D cell activity predominated in low-speed left–right alternating gait (walk),
V0V cells at higher speed alternating gait (trot), and V3 cells took over when the
hindlimbs were activated synchronously (gallop). The key experiment required
to test this hypothesis is to examine the activity of each cell population at various
locomotor cadences in order to determine when they are preferentially active.

6.2.6 CPG CONTROL OF LOCOMOTOR PHASE DURATIONS

In most animals, step cycle duration varies mainly as a result of changes in the
duration of the extensor phases with swing phase durations varying much less
(Goslow et al., 1973; Halbertsma, 1983). However, in fictive locomotion in de-
cerebrate cats in which the locomotor rhythm is largely generated by the CPG,
flexor phase durations were found to vary just as much, if not more, than exten-
sor phase durations (Yakovenko et al., 2005). In a given sequence of step cycles
the phase (flexion of extension) that varied more was termed the “dominant”
phase. It was proposed that the locomotor CPG is not inherently extensor- or
flexor-dominant, but that this depends on the level of descending drive received
by the flexion and extension half-centers of the CPG. The half-center receiv-
ing the lower level of drive would take longer to reach switching threshold and
therefore it would generate longer and more adjustable phase durations.

Neurons in which persistent inward currents (PICs) have been activated
show an inverse relationship between PIC level and sensitivity to synaptic inputs
(Lee et al., 2003; Li et al., 2004). This raises the possibility that interneurons in
the extensor timing element may receive less PIC-generating input and therefore
they are not only set to have longer phase durations, but they are also more sensi-
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tive to descending synaptic commands for higher or lower durations. As we will
see below, in models of locomotion controlled by finite state rules, extensor-
dominant phase-duration characteristics were associated with the most stable
gait, which suggests that the descending drives to the extensor and flexor half-
centers to produce locomotion are tuned to the biomechanical requirements and
that this may in a sense be hard-wired into the locomotor CPG.
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Chapter 6.3

Corticospinal Control of Human
Walking
Charles Capaday
Universitätsmedizin Göttingen, Institute for Neurorehabilitation Systems, Georg-August University
Göttingen, Göttingen, Germany

Human walking has four main gait characteristics: (1) humans walk erect on
two legs, (2) at the moment of contact with the ground the leg is almost fully ex-
tended, (3) the foot strikes the ground heel first (plantigrade gait), and (4) during
the late swing phase, the body’s center of gravity (COG) is outside the base of
support. By contrast, the COG of bipedal walking robots, such as Mark Tilden’s
Robosapien and Honda’s more complex Asimo, is always within the base of
support. As a consequence of the straight legged nature of human gait, there is
a mixed activation of extensor and flexor muscles at heel contact and the ac-
tivities of the various leg extensors are not in phase. Ankle extensor activity is
delayed, occurring after heel contact when activity in most other leg extensors
has ceased (Capaday, 2002). In other mammals, such as cats, the activities of
leg extensors are in phase when the foot makes contact with the ground, dig-
its first (digitigrade gait). Alexander (1992) suggested that the straight-legged
characteristic of human walking minimizes muscular activity by using the legs
like struts. Birds walk on two legs, but in a squatted position. Penguins walk
with a more erect posture than other birds, but they still walk in a squatted
position and, like other birds, walk on their toes. Thus, with the exception
of a similar gait adopted occasionally by some monkeys and apes, an erect,
bipedal, plantigrade gait pattern is unique to humans and its neural control
needs to be understood on its own terms (Capaday, 2002). Here I review in a
critical manner studies on the role of the motor cortex (MCx) during human
walking and some aspects of spinal reflex mechanisms as they relate to MCx
control.

It may seem surprising to suggest a role for the MCx in a seemingly au-
tomatic task such as walking, but there are good reasons for this. The MCx
not only issues voluntary motor commands, but it also mediates reflex-like re-
sponses to stretch of upper limb muscles (Matthews et al., 1990; Capaday et
al., 1991) and integrated responses such as contact placing (Amassian et al.,
1979). Its importance increases with phylogenetic order, as judged from the mo-
tor deficits that result from lesions of the corticospinal tract (CST) (Passingham
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et al., 1983). For example, damage to the MCx disrupts swallowing, a seem-
ingly automatic and unconscious task (Hamdy and Rothwell, 1998). Likewise,
damage to the MCx or CST results in severe walking deficits in humans and
macaques, the most conspicuous being foot drop (e.g., Knutsson and Richards,
1979; Jagiella and Sung, 1989; Nathan, 1994; Courtine et al., 2005). More-
over, locomotor recovery of persons with incomplete spinal cord injury (SCI) is
associated with improved corticospinal transmission assessed with transcranial
magnetic stimulation (TMS) methods (Thomas and Gorassini, 2005). However,
it is not clear from these clinical observations what aspect(s) of walking the
MCx controls. Nor does a parallel improvement of corticospinal transmission
and locomotion necessarily prove that the MCx has a direct role in controlling
human walking. It may simply be that other descending tracts recover with a
similar time course. This also applies to ascending, or sensory tracts. Human
walking requires critical coordination of the upper body (head, arms and trunk
(HAT)), with leg movements. Spinal lesions interrupt sensory inflow from the
legs to supraspinal centers involved in balancing the HAT, depriving these cen-
ters of the required feedback.

In the cat, evidence from single-unit MCx recordings, intracortical micros-
timulation and deficits following lesions of ascending and descending spinal
cord tracts, suggests that the MCx may be involved in the transition from the
stance to swing phases of the step cycle (Armstrong and Drew, 1984a, 1984b;
Jiang and Drew, 1996; Rho et al., 1999). However, no single observation directly
proves this. For example, the peak firing rate of different MCx neurons occurs
at widely different times during the step cycle (Armstrong and Drew, 1984a,
1984b). Additionally, sensory inputs may also modulate the firing rate of MCx
neurons, making interpretation of their activity ambiguous. What is clear is that
the MCx can initiate voluntary corrective adjustments, such as stepping over a
suddenly-appearing obstacle (Drew, 1988). In a major series of studies on meth-
ods to restore walking deficits after a spinal cord lesion in rats, it was shown
that behavioral therapies which encourage supraspinally-mediated movements
result in a cortex-dependent recovery of locomotor capacity (van den Brand
et al., 2012). Strong evidence was provided for MCx involvement in initiating
and sustaining locomotion, as well as in corrective movements. However, in ro-
dents the MCx is not essential for locomotion (Courtine et al., 2007). Thus, the
results of van den Brand et al. (2012) show that the MCx can affect control
actions normally mediated by other neural systems, a finding of potential clin-
ical value. Let us now consider studies on the role of the MCx during human
walking.
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6.3.1 FORWARD WALKING

In a study that tackled this directly, the MCx leg area was activated by TMS
at various phases of the step cycle (Capaday et al., 1999). Input–output curves
of motor-evoked potentials (MEPs) in the ankle extensor soleus and the ankle
flexor tibialis anterior (TA) were measured (Devanne et al., 1997). TMS dur-
ing the stance phase elicited MEPs in both muscles. In 4 of 6 subjects, TA
MEPs were larger than those of soleus throughout stance. This is surprising,
since soleus is active during the stance phase, but the TA remains active only
at the onset of stance. In contrast, TA MEPs were not elicited when soleus was
activated voluntarily. Additionally, soleus MEPs were reduced by ∼30% during
the stance phase compared to those during voluntary contractions at matched
background electromyographic (EMG) levels. No comparable reduction of TA
MEPs was observed. Finally, TMS of the MCx at various phases of the step
cycle did not alter the timing of the next step, indicating that the MCx was not
part of the neural system controlling the timing of step cycles, nor did it have
access to putative spinal timing circuits. It was concluded that during locomo-
tion, the corticospinal system taken as a whole (MCx circuitry and spinal relays
of the corticospinal pathway) affects spinal circuits controlling the ankle flexor
TA more than those controlling the ankle extensor soleus, but during voluntary
contractions requiring attention, it affects both equally (Capaday et al., 1999).

It had been suggested that TA MEPs are enhanced at the transition from
stance to swing (Schubert et al., 1997) but this was not seen in the Capa-
day et al. study (Capaday et al., 1999), though at the onset of a voluntary
reaction time (RT) task, TA MEPs do increase substantially, prior to any mea-
surable change in background EMG (Schneider et al., 2004; Davey et al., 1998;
MacKinnon and Rothwell, 2000). It was suggested that MEPs may depend more
on α-motoneuron activity than on activity in MCx (Schneider et al., 2004),
which has important methodological implications to be discussed below.

In another study, subthreshold TMS of MCx was found to suppress muscle
activity during walking (Petersen et al., 2001). It was proposed that this was due
to intracortical inhibition, and that the result supported the idea that MCx was
directly involved in activating both TA and soleus (Petersen et al., 2001). How-
ever, subthreshold TMS of MCx only suppresses voluntarily-generated EMG
activity in about 10% of trials and the effect is weak. It is therefore not a reliable
indicator of the proposed involvement of MCx. More importantly, H-reflexes
elicited at the time of maximal reduction of voluntary soleus EMG activity by
sub-threshold TMS are reduced relative to control H-reflexes (Fig. 6.3.1). This
suggests that TMS that is subthreshold for activating α-motoneurons activates
spinal interneurons, possibly Ia-interneurons which inhibit α-motoneurons. The
important point is that the inhibition is at the spinal rather than at the cortical
level.
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FIGURE 6.3.1 A single subthreshold TMS pulse produces a small depression, or inhibition, of the
ongoing EMG. When the H-reflex is timed to arrive at the time of maximal inhibition it is markedly
reduced compared to its value at rest. This shows that the cortical stimulus evokes inhibition in the
spinal cord.

6.3.2 BACKWARD WALKING

Lacquaniti et al. (1999) proposed that backward walking is controlled at
the kinematic level by the time-reversed motor program of forward walking
(Lacquaniti et al., 1999). Interestingly, the modulation pattern of the soleus H-
reflex is not a time-reversed version of the pattern during forward walking. In
forward walking, the soleus H-reflex increases progressively during the stance
phase nearly in parallel with soleus EMG levels (Capaday and Stein, 1986;
Crenna and Frigo, 1987; Ethier et al., 2003). It is abruptly reduced just before
swing and remains essentially shut off throughout the swing phase and early
stance while TA is active (Ethier et al., 2003). The modulation pattern of the
H-reflex during forward walking thus follows the classic pattern of reciprocal in-
hibition between antagonistic muscles (Lavoie et al., 1997). But when untrained
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subjects walked backward on a treadmill the modulation pattern was very dif-
ferent. There was a marked increase of the soleus H-reflex in mid-swing, well
before soleus EMG activity started and toe contact occurred (Schneider et al.,
2000). It was suggested that this was associated with reduced confidence due to
uncertainties of balance and timing of toe contact. In support of this idea, when
subjects held onto handrails, the high-amplitude H-reflex in mid-swing was no
longer present (Schneider and Capaday, 2003). This was also the case after ten
days of training without handrail support. During the training period the max-
imal H-reflex shifted progressively from mid-swing to early stance, suggesting
that the reflex activity was anticipatory and gradually declined as subjects gained
confidence. The reflex changes were not due to changes in ankle muscle activity
or leg kinematics, indicating that they were adaptations in the motor program
controlling backward walking.

Because backward walking on a treadmill appears to require greater con-
scious control, it seemed reasonable to ask whether the MCx might be involved.
Specifically, it was posited that in untrained subjects, CST activity during mid-
swing depolarizes soleus α-motoneurons subliminally and thus brings them
closer to threshold, explaining the unexpectedly high amplitude H-reflex (Ung
et al., 2005). To test this hypothesis, TMS was applied to the leg area of the MCx
during backward walking. MEPs were recorded from soleus and TA in untrained
subjects at different phases of the step cycle. It was reasoned that if soleus MEPs
could be elicited in mid-swing while soleus was inactive, this would be strong
evidence for increased postsynaptic excitability of soleus α-motoneurons. In the
event, despite the presence of an unexpectedly large H-reflex in mid-swing, no
soleus MEPs were observed at that time. Rather, they were in phase with soleus
EMG activity (Fig. 6.3.2). During backward walking soleus MEPs increased
less rapidly as a function of voluntary EMG activity than they did in voluntary
contractions. Furthermore, a conditioning stimulus to the MCx facilitated the
soleus H-reflex at rest and during voluntary plantarflexion, but not in the mid-
swing phase of backward walking. As mentioned above, with daily training, the
maximal H-reflex shifted progressively from mid-swing to early stance, and its
amplitude was considerably reduced compared with its value on the first day. By
contrast, no changes were observed in the timing or amplitude of soleus MEPs
with training (Fig. 6.3.2).

Taken together, these observations make it unlikely that the MCx is involved
in the control of the H-reflex during the backward step cycle of untrained sub-
jects, nor in its progressive adaptation with training. Instead, the large amplitude
of the H-reflex in untrained subjects in backward walking, and its adaptation
with training, may be due to control of presynaptic inhibition of Ia-afferents by
other descending tracts.
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FIGURE 6.3.2 Comparisons of soleus H-reflex and MEP modulation patterns during backward
walking on day 1 and day 16 of training. On day 1, the soleus H-reflex began to increase in the
mid-swing phase prior to soleus EMG onset, whereas the soleus MEP increased at soleus EMG
onset. At day 16, the soleus H-reflex had decreased throughout the step cycle, most markedly in
mid-swing and early stance. In contrast, there was little difference between soleus and TA MEPs on
days 1 and 16.
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6.3.3 COMMENTS ON THE ROLE OF MOTOR CORTEX IN
FORWARD AND BACKWARD WALKING

Let us first consider the detailed study of Courtine et al. (2005) on the effects of
unilateral transections at the thoracic level of the CST in macaques (Courtine et
al., 2005). A week after transection the animals regained some stepping capac-
ity, with notable leg drag. However, the monkeys were unsuccessful at retrieving
an item with the affected hindlimb. Thus a group of muscles could be acti-
vated during locomotion, but not voluntarily. Some 12 weeks later the spatial
and temporal characteristics of the kinematics and EMG activation patterns dur-
ing walking returned to near control values and yet the ability of the animals
to retrieve an item with the affected hindlimb remained significantly impaired.
Clearly, the CST lesion had a differential effect on stepping and voluntary acti-
vation of the affected hindlimb. If the MCx were directly and equally involved in
the two tasks, one would expect that muscles activated in one task would also be
equally activated in the other. After spinal cord injury, Sherrington (1947) noted
“In the monkey and in man spinal shock is not only peculiarly intense but pe-
culiarly long lasting” (Sherrington, 1947). The mechanisms of spinal shock are
poorly understood, but we know that many spinal neurons, including interneu-
rons, undergo what Sherrington termed “isolation dystrophy”, they degenerate
and die. We also know that many different central and peripheral inputs con-
verge on common interneurons. Furthermore, studies on fictive locomotion in
cats have shown that pattern generating and reflex circuits may be intertwined
(McCrea, 2001). Thus, gait deficits after CST lesions may be the result of in-
terneuronal dysfunctions, as well as other yet unknown mechanisms. Put simply,
the effects of CST lesions do not necessarily reveal the function of the CST per
se. The same logic applies to hemiplegic gait after a stroke; the resulting gait
deficits do not necessarily prove that cortical systems drive human walking.

Let us now consider the TMS studies. No facilitation of TA MEPs was
found at the transition from stance to swing, by contrast to the large facilita-
tion observed some 12 ms before the onset of voluntary TA EMG activity. It
may be argued that at the transition from stance to swing, TA α-motoneurons
are repolarizing from a state of hyperpolarization and that this is different from
a voluntary dorsiflexion, where the α-motoneurons may be either at a resting
membrane potential, or even subliminally depolarized. However, at or very near
the onset of activity these considerations do not apply in either case. It therefore
seems unlikely that the human MCx is involved in either triggering or driv-
ing flexor muscle activity during walking. During backward walking, whilst a
prominent soleus H-reflex can be elicited in mid-swing, it is not possible to
evoke an MEP in soleus, or to facilitate the H-reflex with MCx TMS. Thus two
principal observations argue against the direct involvement of the MCx during
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either forward or backward walking. Regarding the enhanced TA MEPs during
the stance phase of walking, in this phase the flexion reflex is enhanced relative
to that during standing. Additionally, it is significantly enhanced during swing
relative to voluntary leg and ankle flexion at matched levels of EMG activity.
Presumably therefore, TMS of the MCx during walking activates interneurons
in the spinal circuit mediating the flexion reflex which are in a greater excitable
state.

The last point that requires explanation is the apparent reduction of CST in-
put to soleus α-motoneurons during the stance phase of gait. As discussed in
Subchapter 6.4, a significant portion of ankle extensor muscle activity may be
due to inputs from muscle spindle and tendon organ afferents, mediated in part
by spinal interneurons. CST inputs to these interneurons may be partially oc-
cluded by the afferent input. Another possibility is that the enhanced excitability
of the flexion reflex network inhibits interneurons that transmit part of the CST
input to soleus α-motoneurons. This issue requires further investigation.

6.3.4 CONCLUSIONS ON CORTICOSPINAL CONTROL

The human MCx may well act to voluntarily initiate or stop walking (Jiang et
al., 2015). However, the locomotor drive is likely to be mediated by brainstem
nuclei that have been shown in numerous studies to be capable of initiating
and sustaining locomotion (e.g., Steeves and Jordan, 1980; Noga et al., 1991;
Cowley et al., 2008. Damage to the MCx would then lead to impairments in
the initiation of gait and also of voluntary gait modifications, such as changing
direction. These effects must be distinguished from direct phasic drive of lo-
comotor muscles once walking has started. On balance, the evidence presented
above does not support the notion that the MCx is involved in this direct control.
In stating this I do not claim that the MCx has no role in controlling walk-
ing that is in progress. Perhaps it is involved in balancing the HAT and along
with other descending systems, in maintaining excitability and balance within
brainstem and spinal circuits. The present conclusions are based on noninvasive
neurophysiological experiments. They stand to be corrected by more probing
methods that may be developed in the future. Finally, human walking involves
more than just placing one foot after the other on the ground. The body must
remain balanced and for most of the time it is balanced on only one leg. This
is the main difficulty of human walking and it requires the integrative action of
many ascending and descending neural systems.
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Chapter 6.4

Feedback Control: Interaction Between
Centrally Generated Commands and
Sensory Input
Arthur Prochazka
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada

6.4.1 LOCOMOTOR CONTROL

In order to be useful, locomotion must be controlled so as to achieve the desired
bodily movement and to cope with changes in terrain. The main controlling in-
puts to the mammalian locomotor CPG arise from supraspinal centers, notably
the cerebral cortex and midbrain locomotor region (MLR) and from sensory in-
puts to the spinal cord. In the intact animal the cortical drive most likely depends
on visual and auditory inputs that provide the brain with information about the
surroundings, terrain and the locations of external objects. It has been suggested
that the basal ganglia send commands to the MLR to initiate locomotion for
the purposes of exploration and the hypothalamus does the same to satisfy ba-
sic drives such as hunger (Jordan, 1998). Cadence and left–right coordination
of hindlimb movements was shown nearly 50 years ago to change as the inten-
sity of MLR stimulation in the high decerebrate cat was increased (Shik et al.,
1966). This suggested that the velocity of bodily movement might be the main
controlled variable in locomotion (Prochazka and Ellaway, 2012).

6.4.2 EFFECT ON LOCOMOTION OF SENSORY LOSS

Locomotion is possible in the absence of input from proprioceptors of the legs,
but at least initially, it is irregular and uncoordinated. This holds true in verte-
brates and invertebrates alike (Giuliani and Smith, 1987; Bassler, 1983, 1993).
Intense training has been shown to restore unobstructed over-ground locomo-
tion after chemical de-afferentation, but adaptive responses are not restored
(Pearson et al., 2003). In humans who have lost limb proprioception, locomo-
tion is severely impaired and requires conscious attention (Cole and Sedgwick,
1992). If neck proprioception is also lost, locomotion becomes virtually impos-
sible (Lajoie et al., 1996). Given the profound effects of sensory loss on the
control of locomotion, the question naturally arises, how do the three main neu-
ral mechanisms, supraspinal control, CPG control and sensory control, interact?
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6.4.3 CENTRALLY-GENERATED COMMANDS VERSUS
SENSORY-DOMINATED CONTROL

Even to this day, theories on the control of animal locomotion range from those
in which neural activation patterns generated within the central nervous sys-
tem play the major role, to those in which locomotion is entirely controlled by
spinally-mediated reflexes (Song and Geyer, 2015). Between these extremes lie
models in which centrally-generated patterns are modulated, fine-tuned or even
overridden, in response to sensory input signaling specific biomechanical events
(Prochazka, 1993).

Let us now briefly review the types of sensory input that play a role in the
neural control of locomotion.

6.4.4 SENSORY INPUTS

Most of the mechanoreceptors in the limbs of mammals are cutaneous or hair
follicle receptors. These receptors are sporadically active during the locomotor
step cycle. For example, hair follicle receptors and cutaneous receptors in the
footpad fire transiently at the moment of ground contact at the onset of the stance
phase. Hair follicle receptors covering the limb fire unpredictably in response
to surface airflow (Prochazka, 1996). Cutaneous afferents generally do not have
strong direct reflex actions on α-motoneurons, but they can initiate more global
motor responses such as the corrective response to a trip (Prochazka et al., 1978)
and transitions between the stance and swing phases of the locomotor step cycle
(Rossignol et al., 2006). Most of the continuous sensory input during move-
ment is provided by the proprioceptive afferents: Golgi tendon organs (TOs)
and muscle spindles.

Broadly speaking, TOs signal muscle force and muscle spindles signal mus-
cle length and velocity. Few of the group Ib afferents that arise from TOs are
active in a resting muscle (Houk et al., 1971). They start firing when a specific
force threshold is reached. This threshold varies widely between individual Ib
afferents. They are more sensitive to variations in active force generated by mo-
tor units whose muscle fibers insert into the musculotendinous capsule of the
receptor (Jansen and Rudjord, 1964). With the recruitment of each such motor
unit, there is a stepwise increase in the firing rate of a Ib afferent, but these steps
are smoothed out when the firing rates of ensembles of Ib afferents are summed,
as they would be in the spinal cord as a result of the convergence of synaptic
input from ensembles of Ib afferents onto spinal neurons (Crago et al., 1982).
The summed Ib firing rate saturates at high force levels even though most of
the contributing Ib afferents respond fairly linearly (Crago et al., 1982). This is
because more Ib afferents are recruited at low forces than at high forces, leading



Neuromuscular Models for Locomotion Chapter | 6 429

to a power-law relationship between ensemble Ib firing rate and force (Lin and
Crago, 2002; Mileusnic and Loeb, 2009).

Muscle spindle group Ia and II afferents respond both to length changes
of their parent muscle and to the activity of fusimotor efferents emanating
from the spinal cord (γ -motoneurons and β-motoneurons, the latter being
α-motoneurons which innervate intrafusal as well as extrafusal muscle). The
responses of spindle afferents to length changes both in the absence and pres-
ence of fusimotor action have been modeled in numerous studies of varying
complexity spanning 50 years. The reader is referred to a recent review which
provides the mathematical details of the main models, along with a discus-
sion of their pros and cons (Prochazka, 2015). In the simpler spindle models,
fusimotor action is represented by two parameters: gain and offset. The more
complex models have up to 30 parameters representing fusimotor action, intra-
fusal mechanics, sensory adaptation, and so on. Because γ -motoneurons are
small, very few researchers have managed to record from them in normally
behaving animals. This is possible in decerebrate cats (Durbaba et al., 2003;
Ellaway et al., 2002; Taylor et al., 2006) but in this case, descending drive is
absent or abnormal, and there is strong nociceptive input from open surgical
wounds, both of which affect γ -motoneurons. Because there is still no clear
consensus on how fusimotor activity is controlled during locomotion and be-
cause fusimotor action plays a big role in the more complex models, it is unclear
whether these models provide better predictions of muscle spindle afferent ac-
tivity during normal locomotion than the simpler models.

Muscle spindle models have only been compared head-to-head in a single
study of afferent activity recorded during normal locomotion in cats (Prochazka
and Gorassini, 1998a, 1998b). Interestingly, in some muscles, more than 80% of
the variance in spindle afferent firing was accounted for by the simpler models,
presumably because fusimotor action did not vary much in these muscles during
locomotion. In other muscles such as the ankle extensors, the predictions of the
models were less satisfactory, even after presumed alpha-linked fusimotor action
was added.

Because roboticists who design walking machines have been inspired just
as much, if not more, by locomotor control in invertebrates versus that in ver-
tebrates, it is worth pointing out that there are remarkable analogs of vertebrate
muscle spindles and TOs in invertebrates. Crustacean thoracico-coxal muscle
receptor organs have response properties similar to those of mammalian mus-
cle spindles (Bassler, 1983, 1993). They have two types of sensory afferents, T
and S, which are analogous to spindle Ia and II afferents (Bush, 1981). They
transmit their nonspiking signals to the CNS electrotonically, but in all other
respects their responses to length changes and their efferent control by Rml and
Rm2 motoneurons (equivalent to γ and β fusimotor neurons) are astonishingly
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similar to those of muscle spindles. Campaniform sensilla in the external cuticle
of many invertebrates show response characteristics comparable to mammalian
TOs. Similar response characteristics have also been reported for other classes of
invertebrate proprioceptors including locust forewing stretch receptors (Pearson
and Ramirez, 1990) and cockroach femoral tactile spines (Pringle and Wilson,
1952).

6.4.5 STRETCH REFLEXES AND “PREFLEXES”: DISPLACEMENT
AND FORCE FEEDBACK

Muscles of the legs generate the forces that support the mass of the body dur-
ing locomotion. When muscles are activated at a constant level by neural in-
put, they respond to stretch like damped springs (Houk and Henneman, 1967a;
Partridge, 1967). The tendons in series with the muscle fibers are viscoelastic
and contribute to this response. Resistance to stretch can be viewed as a form
of displacement feedback control, in this case resulting purely from mechani-
cal properties. The term “preflex”, has been coined to describe such feedback
control (Loeb et al., 1999).

Feedback from sensory receptors signaling muscle displacement and force
reflexly adjusts the neural input to muscles, the simplest case being the monosy-
naptic stretch reflex, whereby muscle spindle afferents responding to stretch
activate α-motoneurons that innervate the receptor-bearing muscles, resist-
ing the stretch. This is also equivalent to displacement feedback. It was first
thought that TOs had high thresholds and served only as overload sensors.
In fact as mentioned above, ensembles of TO afferents signal active mus-
cle force over the whole physiological range (Houk and Henneman, 1967b;
Prochazka and Wand, 1980; Stephens et al., 1975). The available evidence from
animal experiments suggests that in quiet stance, TOs reflexly inhibit homony-
mous α-motoneurons (Eccles et al., 1957) which is equivalent to negative force
feedback. However, during locomotion, this reflex action switches to excitation,
equivalent to positive force feedback (Conway et al., 1987). Interestingly, the
same type of reflex reversal occurs in stick insects (Hellekes et al., 2012).

Positive feedback with an open loop gain greater than unity causes instabil-
ity in man-made control systems and is therefore avoided in the design of servo
control systems. In animals, the open loop gain of force feedback mediated by
TO afferents presumably remains below unity during normal locomotion, partly
because muscles produce less force when they shorten, which automatically re-
duces the loop gain (Donelan and Pearson, 2004; Prochazka et al., 1997). The
open-loop gain may transiently exceed unity in bouncing gaits as animal sys-
tems switch reflex gains between different phases of the locomotor step cycle
(Geyer et al., 2003). For instance, positive force feedback gains of the leg anti-
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gravity muscles that are larger than unity in the stance phase approach zero in
the subsequent swing phase. Phase-dependent modulation of reflex gains has
been demonstrated not only in quadruped mammals (Forssberg et al., 1975;
Prochazka et al., 1978; Wand et al., 1980), but also in crustaceans (DiCaprio and
Clarac, 1981), insects (Bässler, 1986), and humans (Capaday and Stein, 1986;
Stein and Capaday, 1988). It is evidently a common and widespread mechanism
of sensorimotor gain control in many species (Prochazka, 1989).

In humans, it was proposed that the short-latency monosynaptic stretch re-
flex mediated by spindle Ia afferents was the dominant contributor to stretch
reflexes during locomotion (Capaday and Stein, 1986; Capaday, 2001, 2002).
Sinkjaer and colleagues challenged this, instead suggesting that spindle group
II afferents were the main contributors (Grey et al., 2001; Sinkjaer et al.,
2000). This was in turn challenged in experiments which implicated short-
latency positive force feedback mediated by TO afferents (af Klint et al., 2010;
Grey et al., 2007). In a study in decerebrated cats, TO input alone was esti-
mated to contribute up to 30% of extensor muscle activation during locomo-
tion, with very little attributed to muscle spindle input (Donelan et al., 2009;
Donelan and Pearson, 2004; Stein et al., 2000).

6.4.6 ROLE OF SENSORY INPUT IN PHASE-SWITCHING

Whereas stretch reflexes provide continuous feedback control of muscle activa-
tion, the alternating transitions between flexion and extension in the locomotor
step cycle are discontinuous, switch-like events. Since the observations of Freus-
berg nearly 150 years ago (Freusberg, 1874), sensory input has been implicated
in these transitions, but as we have seen, the locomotor CPG can also switch
between flexion and extension in the absence of sensory input.

Sensory-dominated control of phase-switching is exemplified by work done
in the 1960s on an above-knee prosthesis (Tomovic and McGhee, 1966). This
led to the concept of a “cybernetic actuator”, a system that produced continuous,
alternating motions from sensory inputs that had a finite number of states. Sig-
nals from sensors monitoring joint angles and ground contact were compared
to a set of threshold values corresponding to specific moments in the step cy-
cle. Tomovic and his colleagues acknowledged the differences between what
they called artificial reflex control and neural control in animals (Popovic et al.,
1991). Nonetheless, in 1990, Holk Cruse formulated a set of sensory-mediated
rules that neatly described the control of phase transitions and interlimb cou-
pling in invertebrates (Cruse, 1990; Cruse et al., 1998). The “Cruse Rules” have
since been used in the control systems of robotic walking machines. Contrary to
the idea of CPGs, Cruse and his colleagues concluded: “Our investigations of the
stick insect Carausius morosus indicate that these animals gain their adaptivity
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and flexibility mainly from the extremely decentralized organization of the con-
trol system that generates the leg movements. Neither the movement of a single
leg nor the coordination of all six legs appears to be centrally pre-programmed.
Thus, instead of using a single, central controller with global knowledge, each
leg appears to possess its own controller with only procedural knowledge for the
generation of the leg’s movement.”
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Neuromechanical Control Models
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In the last few years the interaction between biomechanical properties, sensory
inputs and the locomotor CPG has been explored in neuromechanical models.
For instance, Yakovenko and colleagues (2004) developed a planar model com-
prising a pair of hind limbs attached to a horizontal torso supported at the front
by a frictionless wheel (Fig. 6.5.1A). In this model, each hindlimb comprised
four rigid-body segments (thigh, shank, foot, and toes) actuated by six muscle–
tendon units. The CPG activation patterns of the muscle tendon units were based
on EMG recordings in normal locomotion in cats (Fig. 6.5.1B). The model as-
sumed that proprioceptive reflexes mediated by TO and muscle spindle input
contributed up to 30% to the muscle activations (Prochazka et al., 2002). In ad-
dition, the timing of step cycle phase transitions set by the CPG patterns could
be overridden by the following finite-state rules (Prochazka, 1993):

1. Stance to swing transition: IF stance AND ipsilateral hip is extended AND
contralateral leg is loaded THEN swing;

2. Swing to stance transition: IF swing AND ipsilateral hip is flexed AND ipsi-
lateral knee is extended THEN stance.

Interestingly, the kinematic effect on locomotion of completely removing the
stretch reflex components was surprisingly modest, except when the amplitudes
of the CPG profiles were set too low to maintain load-bearing. It had been noted
previously that in the cat there are relatively long delays (20 to 40 ms) before
the reflexly-evoked EMG response to ground contact develops (Gorassini et al.,
1994; Gritsenko et al., 2001). When the delay in the development of muscle
force is added (50 to 100 ms), the overall delay in the force contribution of
stretch reflexes (70 to 140 ms) becomes a significant part of the entire duration
of the stance phase (∼550 ms in slow walking, ∼150 ms in a gallop). Along
the same lines, in humans, the stiffness of electrically-activated muscles in the
absence of stretch reflexes was compared to that of voluntarily-activated mus-
cles in the presence of stretch reflexes (Sinkjaer et al., 1988). At medium forces,
stretch reflexes increased stiffness by up to 60%, but at low and high forces the
reflex contributions dropped to zero. Furthermore these contributions did not
develop fully until 200 ms after stretch onset.



FIGURE 6.5.1 Neuromuscular model of cat hind limb locomotion: (A) musculoskeletal structure; (B) control overview; (C) traces of hindlimb motion with different
contributions by CPG and proprioceptive reflexes. Without sensory input, the model falls (left). Added sensory input stabilizes gait (right).
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When the If–Then rules were added to the basic CPG activation profiles, the
stability of the model in over-ground locomotion and in dealing with variations
in the terrain was significantly enhanced (Fig. 6.5.1C). The key to the improve-
ment was that the duration of each CPG-generated step cycle was automatically
adjusted to the prevailing kinematic state. Similar conclusions were reached in a
later neuromechanical study in which locomotion was generated entirely by If–
Then rules, in the absence of a modulated CPG pattern (Ekeberg and Pearson,
2005).

In finite-state control, sensory thresholds, actuator states and state-transition
rules are rigidly defined. There is no provision for the input and output states
to be described in probabilistic terms or for sensory inputs to be weighted such
that the sums of weighted inputs fire state transitions as opposed to every sen-
sory input having to exceed its specified threshold (Cruse, 1990). Over the years,
finite-state systems have been “softened” to incorporate such probabilistic fea-
tures (e.g., fuzzy controllers, Kalman filters, and Hidden Markov models) that
can cope with uncertain sensory inputs and uncertain motor outputs in a proba-
bilistic manner (Prochazka, 1996).

6.5.1 ARE EXTENSOR-DOMINATED PHASE DURATIONS
OBLIGATORY FOR BIOMECHANICAL REASONS?

The spinal locomotor CPG is effectively blind to the unfolding kinematics. We
saw that in fictive locomotion in decerebrate MLR-stimulated cats the spinal
CPG could generate cycles ranging from extensor- to flexor-dominant, depend-
ing on the balance of descending drives to the half-centers. It was therefore
interesting to discover in the above neuromechanical model that stable loco-
motion was associated with phase durations that conformed to the extensor-
dominated pattern. This suggests that the biomechanics of stable locomotion
require extensor-dominant phase-duration characteristics. It would also suggest
that to harmonize with the kinematics and therefore the sensory input, the CPG
oscillator should not only have an extensor-dominant phase-duration character-
istic, but its operating points on this characteristic should be matched as closely
as possible to forthcoming biomechanical requirements by drive descending
from supraspinal areas. In other words, phase-duration characteristics are dic-
tated by biomechanical attributes and the nature of the motor task (Prochazka
and Yakovenko, 2007a, 2007b).

6.5.2 NEUROMECHANICAL ENTRAINMENT IN HUMAN
MODELS OF LOCOMOTION

The interdependence between neural control and biomechanics has been
stressed even more in models of human locomotion. Early models by Taga and
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colleagues (Taga, 1995a, 1995b; Taga et al., 1991) were based on the assumption
that the entire process of human locomotion results from mutual entrainment
between the oscillatory, pendulum-like body mechanics and the oscillatory stim-
ulation by neural CPGs. Corresponding biped models showed stable and robust
locomotion without having to resort to motion trajectories, and adaptation to
changing slopes and load conditions. Hase and Yamazaki showed that this en-
trainment approach generalizes to 3D neuromuscular models with many CPGs
and muscles (Hase and Yamazaki, 2002).

Other models included reflexive entrainment. For example, Ogihara and Ya-
mazaki (2001) found in a modeling study that human locomotion could be
generated with a neural controller architecture in which CPG input was re-
quired only for some muscles. The mutual entrainment between the CPG and
the mechanical system in this model was achieved mostly through recipro-
cal reflex inhibition of antagonistic leg muscles, which provided an alternative
source of rhythmic control. Several other neuromechanical models of human
locomotion have been proposed whose control did not include a CPG layer.
For instance, in testing the equilibrium point hypothesis, Gunther and Ruder
(2003) found that only two sets of reference muscle lengths were needed in a
model driven by stretch reflexes to entrain human walking in different gravita-
tional environments. In other recent models the essential mechanical functions
of legged locomotion were achieved for a range of human locomotion behav-
iors with entrainment only by reflexive feedback control (Geyer and Herr, 2010;
Song and Geyer, 2015; Wang et al., 2012).

6.5.3 ALTERNATIVE ROLES OF CPGS IN THE LIMB
CONTROLLER

Given the various entrainment options proposed, there is a renewed interest in
the theoretical exploration of alternative roles of CPGs. Possible alternatives are
to consider CPGs as observers of reflex output rather than as generators of limb
motion (Kuo, 2002), and as sole providers of an internal clock driving muscle
output frequency (Dzeladini et al., 2014). In the latter study, which was based
on a neuromechanical model of human locomotion, it was concluded that a lo-
comotor CPG could function as an internal drive and speed control mechanism
of a primarily reflex-based control network.

In contrast to neuromechanical models of cat locomotion, the experimental
validation of human models has been pursued less intensively, which makes it
difficult to decide between the different control ideas. For several human mod-
els, the predicted leg kinematics, kinetics, and muscle activations patterns have
been compared to the ones observed in human gait and found to be more or
less in agreement. More intensive comparisons will be necessary to really test
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candidate models. For instance, the reaction to mechanical or electrical pertur-
bations could be simulated and could help to refute some control hypotheses
while supporting others.

6.5.4 INSPIRATION FOR CONTROL IN ROBOTICS

The control systems in neuromechanical models differ from those prevalent in
legged robots (compare with Subchapters 4.1–4.7), in which the control struc-
ture is derived in a principled way from the dynamical model of the entire robot.
By contrast, the control system in neuromechanical models is based largely on
the known neuromuscular and biomechanical properties of animals and theories
concerning how these interact to generate legged locomotion. Such a heuris-
tic strategy is at odds with a rigorous mathematical approach, but, on the other
hand, it can inspire new ideas for overcoming control problems in legged robots.

One example concerns leg prostheses. The control of robotic leg prosthe-
ses cannot be derived with a model-based approach, as the states of the human
in this human–robot system are unknown. This decentralized control problem
is currently being solved using joint impedance control. In this approach, the
torque–angle relationships observed for individual leg joints in human loco-
motion are reproduced in motorized prostheses to provide amputees with an
artificial limb behavior appropriate for normal human locomotion (Sup et al.,
2009). While this works for walking over level ground and slopes, impedance
control does not react well to unexpected pushes, trips, or slips. Neurome-
chanical models with their decentralized control architecture have inspired
alternative control schemes in this application. For instance, reflex-like con-
trollers have been implemented in robotic ankle and knee prosthesis prototypes
with the goals of providing natural joint behavior and improving balance re-
covery after gait disturbances (Eilenberg et al., 2010; Markowitz et al., 2011;
Thatte and Geyer, 2015).

Another example is the exploration of neuromechanical entrainment in
legged robots (compare also with Subchapter 4.8). Quadrupedal robots like
Tekken (Kimura et al., 2007) and Cheetah-cub (Sproewitz et al., 2013) use a
control architecture which directly mimics that of neuromechanical models. In
particular, a CPG network generates motor commands in these robots. In the
case of Cheetah-cub, the network runs open-loop without sensory feedback, and
the neuromechanical entrainment is sufficient to produce self-stabilizing loco-
motion over a large range of speeds. For Tekken, the network is augmented
by reflexes that influence joint torques either directly or by modulating the du-
ration of step-cycle phases generated by a CPG. Outdoor experiments with this
quadruped robot demonstrate the adaptiveness of entrainment to unexpected dis-
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turbances on unstructured natural ground, a task that still presents a challenge
for many model-based control approaches.

Similar explorations of entrainment have been performed with humanoid
robots. One example is the work of Nassour et al. (2014) who studied walking
of a NAO humanoid driven by a multilayer CPG network similar to the one
proposed by Rybak and colleagues for cat locomotion (Rybak et al., 2006). In
general, however, simulation and experimental studies with humanoid robots
emphasize the importance of reflexes, as dynamic balance and its control by
feedback becomes a major part of bipedal locomotion. For instance, for sta-
bilizing the gait of a 26 degree of freedom humanoid, Huang and Nakamura
required specific reflexes related to the zero moment point, the landing phase,
and body posture (Huang and Nakamura, 2005). Zaier and Kanda utilized sim-
ilar reflexes for the stabilization of the Fujitsu HOAP-3 against sudden and
unexpected obstacles (Zaier and Kanda, 2008). These reflexes represent control
concepts derived from the traditional robotics literature on humanoid locomo-
tion. Thus, the exploration of neuromechanical control ideas in humanoid robots
may in return inspire neural control architectures not previously considered.

6.5.5 MODELING THE MAMMALIAN LOCOMOTOR SYSTEM

Fig. 6.5.2 provides a schematic of a locomotor control system in mammals that
includes many of the control elements discussed in this chapter. Supraspinal ar-
eas initiate locomotion and set and adjust the desired body velocity according
to cognitively generated goals, exteroceptive inputs such as vision, and proprio-
ceptive input from bodily mechanoreceptors. The velocity command is mediated
by the midbrain locomotor region. The two components of the spinal CPG re-
ceive this command and translate it into corresponding extensor and flexor phase
durations and activity levels of α-motoneuronal pools, which in turn activate
muscles. The intrinsic stiffness of the active muscles provides non-neural lo-
cal negative displacement feedback (“preflexes”). Input from sensory receptors
mediates both negative displacement feedback and positive force feedback via
spinal reflex pathways. The sensory input also reaches the timing elements of
the CPG where switching from one phase of the step cycle to the next can be
influenced and possibly overridden. The sensory input also feeds back to some
of the brain areas responsible for generating the overall commands.

Fig. 6.5.3 shows a schematic in which the preflex and reflex loops controlling
a single muscle, and the presumed positive force feedback from Golgi tendon
organs appear in more detail. The problem faced by neuromechanical modelers
is to choose from the large number of mathematical equations in the literature
that model the various components of this system (α-motoneurons, muscles and
muscle receptors, labeled A–J in the figure and discussed in the Appendix). In



FIGURE 6.5.2 Schematic of a locomotor control system in mammals. Supraspinal areas initiate locomotion and set and adjust desired body velocity. The midbrain
locomotor region translates this into a velocity command to the spinal CPG. The two components of the CPG translate the velocity command into phase durations and
activity levels of flexor and extensor muscles. The intrinsic stiffness of the active muscles provides immediate negative displacement feedback. Sensory input mediates
negative displacement feedback and positive force feedback via spinal reflex pathways, fine-tuning of phase durations via the CPG timing elements and higher-level
decisions in the brain areas responsible for generating the overall commands.



FIGURE 6.5.3 Schematic of the reflex part of the locomotor control system in mammals. For a detailed discussion of all the components of this schematic, see
Appendix.



Neuromuscular Models for Locomotion Chapter | 6 443

a recent paper, author AP reviewed and compared numerous models of muscle,
skin and joint receptors. In principle, the more complex and recent the model,
the more accurately it should predict the afferent responses. However, complex-
ity is generally associated with increased numbers of free parameters (up to 20
in one spindle model), all of which have to be chosen according to a quite lim-
ited database of relevant recordings in animals and humans.

To paraphrase from the above review, “Regarding the accuracy that is actu-
ally required of a model, this depends on the task at hand. For example, the gain
of displacement and force feedback in spinal stretch reflexes is probably quite
low. Open-loop gains of spindle feedback of more than 1 or 2 tend to cause in-
stability because of the sluggish responses of load-moving muscles (Prochazka
et al., 1997a, 1997b). Because of the low gain, such reflexes contribute quite
modestly to load compensation during locomotion (Prochazka et al., 2002;
Prochazka and Yakovenko, 2002) and therefore the accuracy of the simpler
models may suffice (i.e., a higher accuracy would make very little difference
to the performance of the neuromechanical system). On the other hand, the tim-
ing of locomotor phase transitions (from swing to stance and back) relies on
accurate information on the position and velocity of a limb (Markin et al., 2010;
Prochazka and Yakovenko, 2007b), so here a higher accuracy of ensemble af-
ferent input might be desirable.”

The same comments regarding the trade-off between simplicity and accuracy
apply to models predicting the nonlinear dependence of muscle force on muscle
length, velocity, and excitation–contraction coupling (activation). For example,
force–velocity models range from a simple pair of hyperbolic and exponential
functions (see Appendix), to a sigmoid, or to more complex, structurally-based
models (Cheng et al., 2000). Finally, in a neuromechanical model of locomotion,
much depends on the biomechanical details: the skeleton, number and attach-
ments of muscles, limb segment dimensions, and so on. Fortunately, software
platforms such as Matlab Simulink, and Working Model 2D enable graphics-
based construction of the physical model and the use of block diagrams such
as that in Fig. 6.5.3 to specify neuromuscular properties, neuronal command
signals and local feedback control for each muscle.

6.5.6 EXPLICIT EXAMPLE OF NEUROMECHANICAL MODEL
OF HUMAN LOCOMOTION

As described earlier in this section, human neuromechanical models empha-
size the entrainment of locomotion by reflexes. Fig. 6.5.4 provides an explicit
example from Song and Geyer (2015). The model does not have a locomo-
tor CPG that enforces explicit relationships between body velocity, step cycles,
and muscle activation amplitudes of the type shown in Fig. 6.5.2. Instead, the



FIGURE 6.5.4 Explicit example of a neuromechanical model of human gait. The model emphasizes locomotion entrainment by reflexes. (A) Schematic of model
implementation from neural control (left) to muscle dynamics (middle) to rigid body mechanics (right). (B) Snapshots of the model walking at normal speed over
ground with unexpected height changes. Modified from Fig. 1 of Song and Geyer (2015).
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model relies on sensory input mediated by reflexes with step cycles and muscle
activation profiles appropriate for a given body velocity emerging from the in-
teraction between sensory feedback and mechanical environment. The general
model implementation is outlined in the top panel and consists of three layers:
the reflex control of the spinal α-motoneuronal pools (left), the muscle dynam-
ics (middle), and the rigid body mechanics (right). The rigid body mechanics
interact with the muscle dynamics through geometric conversion of joint angles
(
) into muscle length changes (�l) and of muscle forces (F) into joint torques
(τ ). The instantaneous moment arms of each muscle are captured in the matrix
R(
). The matrix is diagonal except for a few off-diagonal terms accounting
for the biarticular nature of some leg muscles.

The length changes �l together with the muscle stimulations s form the input
for the computation of the muscle tendon dynamics F(s,�l), which were repre-
sented by Hill-type muscle models. More details on these models can be found
in Subchapter 8.1 of this book. Major leg muscles that are often represented in
neuromechanical models of human gait include the monoarticular soleus (SOL),
tibialis anterior (TA), biceps femoris short head (BFsH), vastus (VAS), gluteus
(GLU) and combined hip flexors (HFL), as well as the biarticular gastrocne-
mius (GAS), hamstrings (HAM), and rectus femoris (RF). Besides the forces F,
the contractile elements (CE) of the muscle tendon dynamics also generate pro-
prioceptive signals from the muscle spindles (pl and pv) and the Golgi tendon
organs (pf) carrying information about the muscle length, velocity, and force.
Although more complex models of these sensory organs exist (see Appendix),
they are reduced to proportional signals with offsets for the length and velocity
in this particular model.

The reflex control layer receives a range of sensory inputs and generates the
muscle stimulations (α-motoneurons) and fusimotor drives (γ -motoneurons).
The sensory inputs include the proprioceptive signals from the muscle dynam-
ics and exteroceptive signals from the rigid body mechanics (ev and ec). The
latter represent the vestibular system providing information about the upper
body orientation (�b) and the mechanoreceptors providing information about
the environment interaction (contact detection and sometimes ground reaction
forces). Note that in neuromechanical gait models the sensory organs for extero-
ception are generally modeled with less detail than proprioceptors. The sensory
pathways as well as the motor pathways interfacing the spinal α-motoneuronal
pools and the mechanical layers are time delayed (�t), mimicking the signal
transmission delays in the sensory and motor axons.

The synaptic interconnections between sensory inputs and motor outputs that
form the reflex control of the different muscles in the spinal α-motoneuronal
pools are based on ten functional control modules which embed key functions
of legged systems including compliant leg behavior and trunk balance in stance,
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and ground clearance and leg placement in swing. The actual reflex pathways
used to embed these modules were handcrafted based on prior work that inves-
tigated each module separately.

In the figure, the synaptic interconnections are represented by matrix multi-
plications. While this linear representation is accurate for many of the modeled
reflexes, the model has more complex interconnections as well. For instance,
some reflexes use multiplication of several inputs similar to presynaptic inhibi-
tion; others include nonlinear effects such as the switching between stance and
swing reflex connections due to input from the mechanoreceptors, ec. Finally,
this reflex control network may be further modulated by additional input from
central pattern generators (compare with Fig. 6.5.2) and voluntary supraspinal
control such as a desired leg placement angle in swing.

The bottom panel of Fig. 6.5.4 shows snapshots of the model walking over-
ground with unexpected height changes of up to 10 cm. The red cylinders indi-
cate the location of the leg muscles used in this model with their color saturation
signaling the level of muscle activation. The spinal reflex control is sufficient to
generate robust walking and other locomotor behaviors.

These behaviors were identified by optimization of the model’s 82 control
parameters. The optimization criteria were selected for stable and energy effi-
cient gait at the target velocity. For more detailed explanations about the model
and its implementation, see Song and Geyer (2015).

6.5.7 CONCLUDING REMARKS

In this chapter we have tried to describe the present state of neurophysiolog-
ical knowledge regarding the control of legged locomotion in animals, with a
focus on mammalian systems. There are still many uncertainties and gaps in
our knowledge, some of which are quite basic, for example, whether human lo-
comotion depends mainly on a spinal CPG or on chains of reflexes. Given the
complexity and fluidity of the phasic activations of dozens of muscles during
the relatively simple activity of walking in humans, it is no wonder that hu-
manoid robots still walk “robotically.” A biomimetic approach to robot design
is quite likely to change this situation. In return, the evaluation of hypotheses
about the control of the mammalian system in legged robots is likely to alter our
understanding of animal and human locomotion. Neuromuscular control mod-
els will play an important role for this interplay, as they bridge between the two
domains.
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Reflex model of neuromuscular control. Here we provide and discuss the
mathematical functions for the components in the reflex model presented in
Subchapter 6.6. These include functions that describe muscle intrinsic prop-
erties (excitation–contraction coupling, force–velocity and orce–length curves)
and sensory receptor models (muscle spindle responses to length changes and
fusimotor drive, Golgi tendon organ responses to changes in muscle force).

The mathematical functions that have been used by modelers to specify the
properties of elements A to J in Fig. 6.5.3 are discussed below.

6.6.1 MUSCLE ACTIVATION FUNCTION

F = da(t)

dt
+ 1

τact
·
(

τact

τdeact
+
[

1− τact

τdeact

]
· u(t)

)
· a(t)= 1

τact
· u(t)

where F is muscle force, u(t) is the neural input signal (range 0–1), a(t) the
state variable associated with muscle activation,→act is the time constant when
u(t)= 1 and→deact is the time constant when u(t)= 1 (Zajac, 1989).

6.6.2 FORCE–VELOCITY FUNCTION

The most widely used is a combination of a hyperbola for shortening (Hill,
1938) and an exponential for lengthening (Winters, 1990).

For shortening,

(F + a)= b · (Fmax + a)

b− V

where F is muscle tensile force, V is shortening velocity, Fmax is isometric
tensile force, a specifies a force asymptote (at V =∞), b specifies a velocity
asymptote (at F =∞). Since the force asymptote is negative (compressive, not
tensile) and the velocity asymptote is positive (lengthening, not shortening), this
function is only valid when F is positive and V is negative. Force is zero at Vmax,
the maximal possible shortening velocity, which is typically 5 rest lengths/s for
mammalian muscle.
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For lengthening,

F = (Fmax + c · (1− e−kV
))

where k sets the curvature. This function is only valid for V positive.
The following function generates a similarly-shaped relationship and re-

quires less computation:

F = Fmax
(((

1− e−aV
)
/
(
1− ebV

))+ 1
)

where a and b are constants that set the curvatures for shortening and lengthen-
ing, respectively (Winters, 1990).

6.6.3 FORCE–LENGTH (LENGTH–TENSION) FUNCTION

The force generated by individual sarcomeres is approximately related to sar-
comere length by an inverted-U function and this is sometimes used to describe
the length–tension curve of the whole muscle. However, in practice, the length–
tension curve of whole muscle at very low velocities is virtually monotonic,
with some hysteresis-like properties (Gillard et al., 2000). Arguably, over most
of the physiological operating range it is sufficient to model the length–tension
function of the muscle fiber component by Hooke’s law for a spring:

dF = k · dl

where dF is the change in force, k is a constant and dl is muscle fiber displace-
ment.

Another version of this simple model is to divide the function into three
sections, a spring at short muscle fiber lengths, a plateau at medium lengths, and
a negative spring function at long lengths (Zajac, 1989).

6.6.4 PASSIVE STIFFNESS

due to connective tissue can be modeled by a spring or exponential that starts
generating force at a long muscle length (Zajac, 1989). This compensates for
the decline in sarcomere force at very long muscle lengths.

6.6.5 TENDON COMPLIANCE

may also be modeled by Hooke’s law, with the inclusion of a small viscous
component if deemed necessary.
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6.6.6 MUSCLE SPINDLE LENGTH RESPONSE FUNCTION

Numerous models have been developed for muscle spindle group Ia and II af-
ferent responses to dynamic changes in muscle length. Many of these models
have been reviewed by one of the authors recently (Prochazka, 2015). The
functions below are illustrative of the types of models that have been used in
neuromechanical simulations. For comments on the parameters, please refer to
the review, which is available on request.

Models comprising transfer functions (Poppele and Bowman, 1970):
Spindle group Ia,

r(s)= kxs(s + 0.44)(s + 11.3)(s + 44)

(s + 0.04)(s + 0.82)

where r is firing rate, k is a constant, x is displacement;
Spindle group II,

r(s)= k2xs(s + 0.44)(s + 11.3)

(s + 0.82)
;

Models with power-law relationships:
Spindle group Ia and II (Houk et al., 1981),

r(t)− r0 = k(x − x1)v
n

where r is firing rate, k and n are constants, x is displacement;
Spindle group Ia (Prochazka, 1999),

r(t)= avn + bx(t)+ c+ d
(
a(t)

)
where r is firing rate, a, c, d,n are constants, x is displacement, α(t) is
α-motoneuronal output, assuming that a component of Ia firing is due to biasing
by α-linked γs action (see main text and 6.6.8 below).

For more complex, structurally-based models, refer to Mileusnic et al.
(2006).

6.6.7 FUSIMOTOR OFFSET AND GAIN FUNCTION

There are few models of the effects of fusimotor drive on spindle afferent firing.
The following is a transfer function modeling the dynamics of γs and γd action,
assuming concurrent length changes (Chen and Poppele, 1978):

r(s)= 1

(s + 8.8)(s + 50.2)

where r(s) is spindle group Ia firing rate in the frequency domain.
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A more complex structurally-based model has been developed that includes
biasing action (Mileusnic et al., 2006).

6.6.8 γ -FUSIMOTOR DRIVE

This variable is the most uncertain part of the reflex model, as discussed in the
main body of the chapter. One option is to assume that γs action is mirrored
by α-motoneuronal activity (see above), but there is much controversy as to
the extent of such coactivation versus independent control of fusimotor activity
that could be task- or context-related (fusimotor set) or phasically modulated in
some way related to the intended kinematics for example (Ellaway et al., 2015;
Taylor et al., 2006).

6.6.9 GOLGI TENDON ORGAN MODEL

The most widely used model is a transfer function developed for single Ib affer-
ents (Houk and Simon, 1967), namely

r(s)= kF (s + 0.15)(s + 1.45)(s + 16)

(s + 0.2)(s + 2)(s + 37)

where r(s) is Ib firing rate in the frequency domain F is muscle force and k is a
constant.

Another version of this model has a logarithmic static response term (Lin
and Crago, 2002):

r(s)=
Gg ln( F

Gf
+ 1)(s + 0.15)(s + 1.45)

(s + 0.2)(s + 2)

where r(s) is Ib firing rate in the frequency domain, F is muscle force, Gg and
Gf are gains.

A more complex, structurally-based model has been developed (Mileusnic
et al., 2006).
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Chapter 7

Legged Robots with Bioinspired
Morphology
Ioannis Poulakakis, Madhusudhan Venkadesan, Shreyas Mandre,
Mahesh M. Bandi, Jonathan E. Clark, Koh Hosoda, Maarten Weckx,
Bram Vanderborght, and Maziar A. Sharbafi

This chapter discusses how biologically inspired principles and mechanisms can
be transferred in the engineering domain with the purpose of designing legged
robots capable of reproducing animal locomotion behaviors. A bioinspired de-
sign approach is described, which relies on quantifying the basic principles
underlying a desired locomotion behavior through simple, yet predictive, mathe-
matical models. The chapter begins by examining the human foot and exploring
its implications toward the design of the next generation of prosthetic and or-
thotic devices. Then, a detailed discussion of various approaches for designing
robot legs is provided. The chapter concludes with a description of a number
of bipedal and quadrupedal robots as instances of a bio-inpired approach to
design. Throughout the chapter, the emphasis is on realizing natural-like loco-
motion behaviors on engineered systems without necessarily copying the exact
mechanisms by which animals produce these behaviors in nature.

PREFACE

During the long history of evolution, animals have developed a variety of mech-
anisms to survive in challenging habitats. Virtually every organ, muscle, or nerve
of their bodies has been called into being in the struggle to live in dynamically
changing and uncertain environments and act in compelling circumstances. As
a result, an inexhaustible set of working design ideas can be found in nature,
offering valuable inspiration to engineers in their quest to build machines, sys-
tems, and algorithms that address societal needs. It is tempting to just copy
the mechanisms by which a behavior of interest is realized in the biological
world. However, such an approach quickly arrives at an impasse since biolog-
ical solutions do not often translate directly into viable engineering designs.
Furthermore, the complexity of biological systems is usually overwhelming as
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these systems may support many vital functions beyond those of interest to an
engineer; hence, reproducing the underlying mechanisms can be an extremely
challenging – if not impossible – task that may even be unnecessary. Finally,
attempting to engineer systems that mimic exactly the form and structure of
their biological counterparts alleviates the possibility to improve. This part of
the book provides examples of a bioinspired design approach for robotic sys-
tems that relies on extracting principles relevant to a task of interest – in our
case, legged locomotion – and then adapting these principles and incorporating
them to engineering designs through the means technology provides.

Over the past few years, there has been an explosion of legged robots that are
inspired by the way animals move. Whether legs push against a solid substrate
to create crawling, walking, running, or climbing gaits, these truly exceptional
machines offer the potential of unprecedented mobility that can match – or,
in certain cases, surpass – that of their counterparts in nature. The complex-
ity of the mechanisms underlying the capacity of biological legged systems
for generating and supporting their movement can be daunting. Nonetheless,
on a macroscopic level, the principles governing legged locomotion can be
understood through the introduction of archetypical reductive models that are
composed by idealized mechanical elements, such as springs, dampers, and in-
ertias. In previous parts of this book we have seen examples of models of this
kind. Beyond their usefulness in analyzing the mechanics of locomotion, these
models can provide design guidelines for the hardware realization of robots that
exhibit the model’s behaviors, doing so without delving into the fine structural
and morphological details of the mechanisms by which this behavior is achieved
in the biological world. In other words, the principles that characterize legged
locomotion behaviors can be distilled in simple idealized mechanical models,
which can then be adapted to build machines that capture the functions of inter-
est of a biological system without necessarily reproducing its form. Of course,
passing from a model that encodes the fundamental principles characterizing
a locomotion behavior to a robotic system that actually realizes this behavior
entails a number of nontrivial design decisions. In the following chapters, we
will discuss a bioinspired approach to designing legged robots that begins with
forming a hypothesis about locomotion through biological observation, and pro-
ceeds with testing this hypothesis through modeling, hardware realization, and
experimental evaluation and assessment.

This part of the book is composed of four chapters that address various as-
pects of incorporating biological principles in legged robots. We begin with
Subchapter 7.1 contributed by Madhusudhan Venkadesan, Shreyas Mandre and
Mahesh M. Bandi. This chapter discusses the mechanical functions of the hu-
man foot, which can act as an active suspension system for protection against
collisions, as a regenerative brake for elastic energy storage, as a mechanism for
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modulating stiffness and damping to enhance gait stability, and finally as a sens-
ing unit for providing essential feedback for motion control. Emphasis is placed
on the derivation of simple mechanical models that encapsulate the functional
principles of the foot, focusing on the relationship between structure and func-
tion. The next chapter, Subchapter 7.2, is contributed by Jonathan Clark and it
deals with leg design. For the purpose of locomotion, each leg can act as a strut,
a spring, a damper and an actuator, keeping the body from falling while provid-
ing means for regulating the energy associated with the locomotion task. The
chapter begins with a brief description of the functions of a leg in a robot, and
proceeds with leg design aspects, focusing on different actuation and transmis-
sion strategies. Then, it examines how inspiration from biology can determine
the morphology and dynamics of robotic legs, focusing again on the role the
simple mathematical models as means to capture and quantify biological obser-
vations. The chapter concludes with multiuse leg designs for the development
of robots capable of multimodal locomotion; that is, robots which can combine
walking and running behaviors with climbing of vertical surfaces.

The final two chapters of this part discuss bipedal and quadrupedal robot
design. Subchapter 7.3 deals with bioinspired bipedal robots, and is contributed
by Koh Hosoda, Maarten Weckx, Bram Vanderborght, Ioannis Poulakakis, and
Maziar A. Sharbafi. Bipedal robots are inspired by the human morphology
and have the potential to play an important role for automating tasks in typ-
ical human-centric or natural environments. The chapter begins with a brief
overview of different approaches to designing robotic bipeds, including two ex-
treme approaches in terms of actuation: passive bipedal walkers and humanoids.
It is discussed that, although passive bipedal walkers are much simpler than hu-
manoids, they are capable of reproducing the dynamics of human walking more
faithfully. The chapter concludes with a brief discussion of bi-articular muscles
– that is, muscle units that span more than one joints – as an actuation archi-
tecture for designing legged robots. The final chapter, Subchapter 7.4, discusses
quadrupedal robots and is contributed by Ioannis Poulakakis. A brief overview
of common quadrupedal gaits is provided first, and then the discussion focuses
on the role of the torso in dynamic quadrupedal locomotion. Although biologi-
cal observations and mathematical models suggest that torso flexibility appears
to be advantageous – especially at high locomotion speeds – the vast majority of
successful robotic quadrupeds feature rigid, nondeformable torsos. This is pri-
marily due to the fact that the specifics of the mechanical realization of a flexible
torso significantly increase the complexity of the platform, to the point that any
performance enhancement may be overwhelmed by the cost associated with the
added complexity. To summarize, as was mentioned above, nature uses its own
means – shaped through millions of year of evolution – to realize locomotion in
animals. On the other hand, incorporating the underlying principles to robotic
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designs is subject to the conditions of operation of the mechanical, actuation
and control components of the system. An engineer that seeks inspiration from
the biological world to reproduce animal locomotion behaviors on robot plat-
forms should always make decisions that respect the limitations and haness the
capabilities of the structural elements of the proposed design.
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Chapter 7.1

Biological Feet: Evolution, Mechanics
and Applications
Madhusudhan Venkadesan∗, Shreyas Mandre†, and Mahesh M. Bandi‡
∗Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT,
United States
†School of Engineering, Brown University, Providence, RI, United States
‡Collective Interactions Unit, OIST Graduate University, Tancha, Okinawa, Japan

The foot is an active suspension system that mitigates potentially injurious colli-
sions, acts like a regenerative brake by storing elastic energy, modulates stiffness
and damping to aid in stability, and provides essential sensory feedback. In this
unit, we examine the function and evolutionary history of human feet from the
perspective of mechanics. The emphasis is on simple mathematical models that
provide insight into the relationship between structure and function. We con-
clude with implications for diagnosis or treatment of foot disabilities.

7.1.1 OVERVIEW

The foot lies at the interface between the ground and our body. The spring-like
elastic interface provided by the foot is something that we pay little attention
to, unless something goes wrong. Even mild disability of the foot can severely
impact our mobility, and thereby the entire quality of our life. Interest in the
human foot is also deeply rooted in the scientific endeavor to understand the
evolutionary origins and implications of bipedal locomotion (Lieberman, 2012).
It is therefore not surprising that scientific, medical and engineering interest
in the foot dates back at least one century (Keith, 1894; Morton, 1922; Dunn,
1928; Elftman and Manter, 1935; Jones, 1941; Hicks, 1955; Ker et al., 1987;
Harcourt-Smith and Aiello, 2004; Lee et al., 2005; Fey et al., 2012; Kelly et al.,
2014; Zelik et al., 2014). What is perhaps more striking is that the mechanics
of the foot has remained an active area of research despite continuous research
interest for over a century. Our feet comprise over 50 bones, almost a quarter of
all the bones in our body. With so many bones comes an astounding complexity
in the number of joints, ligaments, and muscles that comprise the foot. Even
counting the number of joints, ligaments, or muscles remains mired in debate
(e.g., Taniguchi et al., 2003). If two distinct bones are tightly held together and
move together, is that counted as a joint or not? Is a fan-shaped ligament or
muscle counted as one ligament or more than one, and how does that depend on
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FIGURE 7.1.1 The interaction of our body with the ground is mediated by the mechanical prop-
erties of the foot. These mechanical properties arise from the interaction between the geometric
structure of the foot, the skeletal elements such as the bones and ligaments, and the neurally con-
trolled activity of the muscles.

load transmission? Is such reductionist accounting of the elements of the foot
even necessary to understand its overall function? The foot remains an active
area of research partly because of this structural complexity, and the importance
of its function for healthy living.

The goal of this chapter is to present a mechano-centric perspective on how
the foot functions, a perspective that we consider to be of great importance in the
study of the foot or any anatomical organ. This unit does not attempt to present
the foot’s complexity in its entirety, and it does not claim to be the definitive
word on its mechanics. Such a goal deserves more than a single unit, and cer-
tainly requires a substantial amount of new research. This unit therefore adopts
the viewpoint of a mathematical mechanician, one who wants to understand a
mechanism in terms of its relationships between forces and displacements using
simple mathematical models. From that perspective, despite its enormous com-
plexity, the foot can be treated as an elastic body that transforms applied loads
into displacements, and transmits forces from the ground to the body accord-
ing to the laws of mechanics; see Fig. 7.1.1. We bring to bear the mathematical
machinery of mechanics for such an analysis of the foot. One of the primary
motivations in undertaking such an analysis is to glean underlying principles
that have the potential to guide the design of feet for applications in robotics
and prosthetics.

After a brief overview of the anatomy and evolution of the human foot in
Section 7.1.2, we motivate the functional role of the foot using a cost–benefit
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FIGURE 7.1.2 Anatomy and external forces on the human foot. (A) The skeletal anatomy of the
foot, with the proximal and distal ends identified with the toes and the heel, respectively. (B) The
arches of the foot, and external loads on it. The human foot has a doubly arched structure in the
mid-foot region; the longitudinal and the transverse arches. This figure depicts the typical external
loads when pushing-off against the ground using the ball of the foot.

analysis in Section 7.1.3. This discussion is rooted in the evolutionary story
of the human foot. In Section 7.1.4, we treat the foot as a mechanical filter,
one that transforms applied forces and displacements in time. The presentation
is organized as models of increasing mathematical sophistication, but not of
increasing complexity (measured by the number of free parameters),1 and is
restricted to consideration of either point-like or rigid feet. The spatial extent
and flexibility of the foot are explicitly considered in Section 7.1.5. Section 7.1.6
concludes this unit with a summary and brief comments about the state of the
art in robotic and prosthetic feet.

7.1.2 THE HUMAN FOOT

7.1.2.1 Anatomy

The feet and hands share striking muscular and skeletal similarities, including
a large number of homologous bones that have shared relative arrangements,
evolutionary history, and developmental origins (Rolian et al., 2010). The foot,
like the hand, not only comprises a large number of bones (over 25 per foot), but
also consists of a large number of muscles and sensory organs. We will revisit
this comparison with the hand later, with an emphasis on their differences. For
now, we use homologies between the foot and the hand to help orient the reader
to the skeleton of the foot.

The skeleton of the foot comprises its bones (Fig. 7.1.2A), and the elastic
ligaments that interconnect and hold the bones in place. The toes are at the dis-
tal end, and the calcaneus, which forms the heel, is at the proximal end. The

1. Retaining as few free parameters as possible is a central goal of effective mathematical models.
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foot articulates with the shank of the leg through the ankle. The ankle is a com-
plex joint that consists of multiple articular joints, with the talus at its core.
At the least, the ankle comprises the tibiotalar, the subtalar, and the talonavic-
ular joints. The talus articulates with the rest of the leg through the tibiotalar
joint, and also forms joints with the calcaneus (subtalar joint) and the navicu-
lar (talonavicular joint). Further distally, and articulating with the navicular are a
complex set of bones that are collectively called the tarsal bones (the cuboid and
the cuneiforms). The tarsals are homologous to the carpal bones that form the
wrist. The tarsals in turn articulate with the metatarsals at their distal end. The
metacarpals of the hand, forming the palm, are homologous to the metatarsals.
The metatarsal heads are commonly referred to as the balls of the foot, and is
the location under the foot where you push off when walking or running. The
knuckles in the hand are homologous to the metatarsal heads.

External loads on the foot, when pushing off against the ground with the balls
of the foot are as depicted in Fig. 7.1.2B. The combined effect of the loads from
the leg, through the tibiotalar joint, and the Achilles tendon, is approximated as
a net force and a net moment at the tibiotalar joint or the calcaneus.

7.1.2.2 Evolution

The current form of the human foot evolved from an ancestral morphology that
resembled our present day hands, rather than the feet (Morton, 1922, 1924a;
Harcourt-Smith and Aiello, 2004; Lieberman, 2012) (Fig. 7.1.3). The toes were
long, and the big toe was pointed away from the rest of the foot, termed as an
abducted hallux. The tarsal and metatarsals bones were arranged such that the
foot was flat, lacking the arches that are present in modern human feet. These
hand-like ancestral feet are also present in extant non-human primates such as
chimpanzees and gorillas. The human lineage is thought to have diverged from
chimpanzees at least 7–8 million years ago (Bramble and Lieberman, 2004;
Langergraber et al., 2012), and from gorillas at least 8–10 million years ago
(Bramble and Lieberman, 2004; Katoh et al., 2016). Although fossil remains
have been found from close to the time when the split between the human
and chimpanzee lineages happened, none of those findings contain samples of
the foot (Sahelanthropus tchadensis, Brunet et al., 2005; Orrorin Tugenensis,
Senut et al., 2001). The earliest intact archaeological evidence from feet after
the split from chimpanzees dates back to the ∼ 4.4 million year old fossil of
Ardipithecus ramidus (White et al., 1994; Lovejoy et al., 2009). This foot is
different from the human foot in having a highly abducted hallux (a big toe
that points sideways), flat feet, and many other morphological differences. Feet
that are strikingly similar to modern human feet appear in the genus Homo,
around 1.8 million years ago (Day and Napier, 1964). A cursory examination
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FIGURE 7.1.3 Partial sample of fossils representing evolution of the human foot, adapted from
Lieberman (2012). Humans, the sole surviving member of the genus Homo, diverged from chim-
panzees over 7 million years ago. Chimpanzees, members of the genus Pan, are phylogenetically
the closest relatives to humans among extant species. As a result, Pan is often used as a hypothetical
model for the last common ancestor between humans and chimpanzees. The foot of the chimpanzee
more closely resembles our hands than our feet. It is a flexible and prehensile appendage. The feet
of early hominins shared several features with the chimpanzees. More human-like features appear
only as recently as ∼ 2 million years ago. Note that images of these skeletons are scaled to show
detail, and are therefore not to scale. The human foot is larger in size than all the other feet shown
here.

of these feet shows that older feet more closely resembled that of a chimpanzee
than human. There is still some debate on whether the last common ancestor
between humans and chimpanzees resembled the chimpanzee or not, and this
debate impacts the choice of the chimpanzee as a model organism to study hu-
man evolution. This debate notwithstanding, it is clear that human feet look and
behave very differently from the chimpanzee or other primates. Human feet have
short stubby toes that are all aligned to point forward, pronounced arches in the
longitudinal and transverse directions, and a pronounced calcaneus (heel bone).
Chimpanzees and gorillas have long toes, an abducted hallux, highly curved
phalanxes (digits of the foot), flat feet without arches, and a relatively smaller
calcaneus.

The obvious difference in the functionality between human and the chim-
panzee or gorilla foot is bipedal locomotion. We regularly walk over ground
with our feet, and without using our hands or knuckles. In walking, we repeat-
edly push against the ground using the balls of the foot and apply forces that
exceed body-weight. In running, this force can easily exceed twice our body
weight. Despite such high loads, the foot retains its form during propulsion,
remaining relatively undeformed. In contrast, a knuckle walking chimpanzee
applies lesser forces than its body weight on its foot, but leads to severe defor-
mation of its foot at the mid-foot location as seen in Fig. 7.1.4. Humans who
are flatfooted also occasionally exhibit similar severe bending of the mid-foot
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FIGURE 7.1.4 Figure showing differing flexibilities of human feet; modified from DeSilva et
al. (2015). Flat feet, with a weak or absent arches, are a consistent skeletal correlate of a flexible
mid-foot, the so-called mid-foot break. Such flexibility is associated with symptoms of pain, which
can sometimes be debilitating.

(DeSilva et al., 2015), commonly referred to as the midtarsal break. Besides
being painful, such loss of stiffness may have other consequences to our loco-
motion. We will now examine the benefits of having a stiff foot, and some of
the “costs” associated with maintaining such a structure. Such an analysis will
have implications for how we think about trade-offs in designing a foot, as well
as for understanding the evolution of bipedal locomotion in humans.

7.1.3 COST–BENEFIT ANALYSIS OF THE HUMAN FOOT

7.1.3.1 Costs

During locomotion, most animals actively swing their leg because of overall en-
ergetic benefits (Kuo, 2007). Because mass at the extremities is more expensive
during active leg swing than being closer to the center of mass, having a foot
places a disproportionate energetic cost on locomotion.2 The torque required to
accelerate a mass is proportional to its moment of inertia with respect to the
actuated joint. In case of a foot of mass mfoot, the torque Mhip required to swing
the leg of length �leg back and forth in locomotion is

Mhip ∝mfoot�
2
leg. (7.1.1)

Metabolic power consumption increases with increasing muscle force genera-
tion. Therefore, an increase in foot mass without a change in the gait will incur

2. This additional cost is, however, offset by the energetic benefits of pushing off using a stiff foot
(Kuo et al., 2005).
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higher metabolic cost. This expectation is reflected in experimental measure-
ments of power consumption as a function of adding distal mass (Myers and
Steudel, 1985). Metabolic power consumption, as measured by oxygen con-
sumption, increases by as much as 20% by distributing 5% of the body weight
at the ankles, instead of at the waist. Similarly, for quadrupeds, adding an ad-
ditional mass of 3.5% of body mass, distributed distally versus close to the
center of mass led to an increase in metabolic power consumption of up to 20%
(Steudel, 1990). In fact swinging the leg is an appreciable cost of human lo-
comotion, up to 30% (Doke et al., 2005; Marsh et al., 2004). Additionally, a
majority of the metabolic energy consumption in legged locomotion is to make
up for the losses from ground collisions, and adding distal mass exacerbates col-
lisional losses (Ruina et al., 2005). Therefore, be it for reasons of collisions, or
active leg swinging, a heavier foot always costs more metabolic energy for the
animal.

The costs of having a foot are not all in the energetics. There is a significant
risk of injury because the initial collision of the foot with the ground depends
on its mass. Heavier feet cause greater impacts and could be injurious (Lieber-
man et al., 2010). Adding extra material, to cushion the impact or to strengthen
the foot, could in fact worsen the problem of collisions. The choice of materials
with high strength, low stiffness (Young’s modulus) and low density is one way
to deal with foot collisions, and is the topic of active research in the shoe indus-
try. Whether biological materials are somehow “optimal” with respect to these
considerations is an open research question.

A more general consequence of a heavier foot is that it imposes a lower
bound on the impedance of the leg. Mass, damping, and stiffness parameter-
ize the linear, second-order response of any mechanical system; the moment of
inertia is the quantity analogous to mass for rotational motion. An increase in
the mass of the foot disproportionately increases the moment of inertia of the
leg. The impedance of a mechanical system, which affects its frequency de-
pendent response to external forcing, is a function of the mass, damping and
stiffness parameters (Hogan, 1984). Although stiffness and damping are under
neural control, little can be done by the neural control system to alleviate the
impedance arising from the moment of inertia of the leg. In theory, exact feed-
back compensation can be used to mimic even zero mass. However, such neural
feedback-dependent strategies are fundamentally and unavoidably prone to limi-
tations that arise from sensory or neural time-delays. The time-delay determines
the highest frequency at which the neural system has control over the impedance
of the foot, and for humans, this frequency is certainly less than 5 Hz (Venkade-
san et al., 2007). As a result, increased distal mass at the foot limits the ability
of the nervous system to control the leg. This has implications for actively con-
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trolling foot placement to deal with terrain irregularities, and for the control of
foot–ground collisions.

Every terrestrial vertebrate has a foot despite all the costs mentioned above.
We argue that the benefits of a foot, in the form of an active mechanical filter,
outweighs the costs. Such an argument is difficult to prove, if not impossible, in
the context of evolutionary biology. Therefore, we will treat this argument as a
conjecture that motivates the analyses presented here.

7.1.3.2 Benefits

Modulating the stiffness of the interface between the ground and the body has
implications for stability, injury, and energy consumption during locomotion. It
is essential for the foot to remain soft when it collides with the ground during
vigorous activities like running or landing from a jump. A soft foot absorbs
some of the kinetic energy of the body, and reduces the severity of the collision
by spreading out the collision over a longer duration of time. This is much like
a shock absorber in a car.

On the other hand, the foot should be stiff during propulsion in order to con-
vert the mechanical energy output of the ankle into useful mechanical work that
propels the center of mass of the body. In walking, the mechanical energy gained
by the center of mass during push-off is almost entirely attributed to the ankle
joint (Kuo et al., 2005; Collins et al., 2015). A stiff foot is essential to convert
this energy output of the ankle joint into kinetic energy of the body. Importantly,
a stiffer foot allows the leg to impulsively push on the ground close to push-off.
It is well known that an impulsive push-off late in stance is important for reduc-
ing the energetic cost of locomotion, and to enhance stability (Kuo et al., 2005;
Ruina et al., 2005; Kuo, 2007; Srinivasan, 2011).

The ability to modulate the stiffness of the foot is like an adaptive suspen-
sion system of some cars. While a passive suspension system can be optimized
for one function or the other, say collision mitigation or sharp turns, an adaptive
system can achieve multiple goals. Such an elastic mechanical response of the
foot is sometimes characterized as a temporal filter. The term filter is used in
the general sense of a dynamical system that transforms inputs into outputs, and
typically modeled using ordinary differential equations. In addition to its ability
to filter inputs over time, the foot also has a nonzero spatial extent and behaves
as a spatial filter. Some of the beneficial mechanical properties of the foot are
by virtue of having a finite spatial extent. As we will see later in some detail, the
foot is able to function in mitigating the initial collision during agile activities
like running, and is also able to smooth out roughness of the terrain. Mathe-
matical models of the foot as a temporal filter typically use ordinary differential
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FIGURE 7.1.5 Point-like models of the foot. Reproduced, with modifications, from Srinivasan
(2011) and Liu and Nigg (2000). (A) A prevalent model of the foot, such as those in Srinivasan
(2011), uses a rigid and point-like mass for the foot. Some models, such as that shown on the
left use a massless foot. Others assume a point mass at the foot, and additionally need to assume
specific collision laws to model the foot’s collision with the ground. (B) These point-like models of
the foot are sometimes expanded to include additional parameters that capture the mass, stiffness
and damping (Liu and Nigg, 2000). In the example shown here, the colliding mass of the foot is
ignored, but its stiffness and damping are modeled by a viscoelastic “ground contact model.” The
ground contact model lumps together the foot and the ground. On nearly rigid ground, the ground
contact model reflects the viscoelastic properties of the foot.

equations to characterize the foot, and models as a spatial filter often rely on
partial differential equations.

There are also benefits of having a foot for purposes of neural control. For ex-
ample, the base of the foot is made of a specialized type of skin called glaborous
skin (Kandel, 2013). Such skin is superficially characterized by the presence of
ridge patterns, such as fingerprints in the hand. Underneath these ridges are high
densities of specialized mechanical receptors called Pacinian corpuscles that are
sensitively tuned to vibrations and play a central role in detecting slip. Such
specialized receptors on the foot pad may play an important role in maintaining
stability, although this has not yet been investigated in any depth.

7.1.4 TEMPORAL FILTERING

Temporal filters are dynamical systems that transform inputs to outputs. Such
models are prevalent in models of electrical circuits and in rigid body mechan-
ics. The spatial extent of the foot is ignored, and the inputs that act at specific
points on the foot are transformed by its mechanical response.

7.1.4.1 Point-Like Foot

One approximation of the foot is to treat it as a point-like object that is con-
nected to the rest of the body by springs and dampers (Fig. 7.1.5). This allows
the characterization of the temporal dynamics of the foot without having to deal
with the complexities that arise from its spatial extent. Such mathematical ap-
proximations are routine in the analysis of system dynamics, where the foot
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is assigned input and output “ports” that approximate its interaction with the
ground and the body. Physically, this is equivalent to approximating the distri-
bution of ground reaction forces acting on the foot with an effective force or
force/moment pair acting at a single point; likewise for the effect of the leg and
body on the foot. A useful idealization of such an approximation is the spring-
legged inverted pendulum (SLIP) model of walking and running (Fig. 7.1.5A).
In such a model, the foot and leg are lumped together into a single spring, ei-
ther constant or time-varying (Seyfarth et al., 2002; Geyer et al., 2006; Maus et
al., 2015). These models have proven useful in characterizing whole-body gait
dynamics in running. However, by lumping the temporal dynamics of the foot
together with the rest of the leg, it is no longer possible to delineate the effect of
the foot.

Others have developed more complex models (Fig. 7.1.5B), with several in-
ternal degrees of freedom for the body, including the foot (Thompson and Raib-
ert, 1990; McMahon and Cheng, 1990; Liu and Nigg, 2000; Chi and Schmitt,
2005; Zadpoor and Nikooyan, 2006). In these idealizations, the foot is treated
as a separate mass which is connected to the leg and to the ground. The contact
with the ground is in some cases approximated by a rigid collision. The alterna-
tive is to place a massless spring–damper between the foot and the ground. In all
these cases, the leg and foot are approximated as a one-dimensional telescoping
actuator with specified viscoelastic responses.

7.1.4.2 Spatially Extended and Rigid Foot

An alternative to the one-dimensional or point-like (zero-dimensional) models
of the foot is to explicitly consider its spatial extent. One such simple model is to
regard the leg and foot as rigid bars, connected with a simple hinge joint. Such
a model has been previously used to understand the consequences of different
running styles (forefoot versus heel strikes) on the ground collision (Lieberman
et al., 2010). We present this model in some detail as an instructive example of
the utility and limitations of such rigid-body models of the foot.

We model the ground collision of the foot during running as a rigid inelastic
collision of an L-shaped object. Two variants of this model are considered; one
with an ankle-like frictionless hinge at the corner (Fig. 7.1.6A), and another with
an infinitely stiff ankle (Fig. 7.1.6B). A rigid collision refers to the assumption
that the collision is instantaneous, and thus gives rise to infinitely large instan-
taneous forces over an infinitesimal time period so that the net impulse due to
the force is finite. Because the duration of the collision is nearly zero, the con-
figuration of the system remains constant over the period of the collision. The
term inelastic refers to the assumption that there is no rebound. Under these
assumptions, the only forces that affect the collision are infinite forces. This is
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FIGURE 7.1.6 The shank of the leg and the foot modeled as an L-shaped object. The foot is
assumed to first touch down and collide at the point O , which is located between the metatarsal
heads (A) and the heel (B). The location of the collision is parametrized by the strike index 0 ≤
s ≤ 1, so that the distance from the ankle to the point of collision is sl. The collision occurs at B
occurs when s = 0, and at A when s = 1. (A) To model a stiff ankle, we consider an L-shaped bar
with a rigid (infinitely stiff) hinge at the ankle. The free body diagram on the right is used to solve
for the ground reaction impulse due to the collision. (B) Modeling the ankle as a frictionless hinge,
located at the heel B, considers the effect of a soft ankle. The two free body diagrams on the right
are used in solving the collision equations. All forces are depicted as general vectors with positive
components in the chosen coordinate system, so that a negative component would act along the
negative axis.

because the mathematical idealization of rigidity reduces the time duration of
the collision to zero. Therefore, finite forces such as those arising from gravity
or elastic joints will not affect the momentum of the body; momentum is propor-
tional to the impulse, i.e., force multiplied by time. The two variants therefore
represent the two extremes of ankle joint stiffness, infinite and zero, respec-
tively.

Condition I: Infinitely Stiff Ankle Joint We consider the case of an L-shaped
bar falling vertically downward with velocity v−G = −v−ŷ and no rotational
velocity, i.e., �− = 0. Because of the collision, there is an abrupt jump in the
angular and linear velocities of the L-shaped bar to give v+G and �+ = ω+k̂.
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Fig. 7.1.6A shows a free-body-diagram of the L-shaped bar with the foot in
contact with the ground at a point O (center of pressure) that is located between
the tip of the foot and the ankle. Because the only external force-impulse on
the L-bar is applied at O , no external torque-impulses act on it about the same
point. Therefore, the angular momentum H/O about O is the same before and
after the collision. In terms of the angular velocity vector �, the velocity of the
center of mass G is given by

vG = vO +�× rG/O, (7.1.2)

where v−O =−v−ŷ and v+O = 0. Then, the angular impulse–momentum balance
is expressed as

H+/O =H−/O, (7.1.3)

H−/O = (m+M)rG/O × v−G, (7.1.4)

H+/O = (m+M)rG/O × v+G + I/G�+. (7.1.5)

The mass of the foot is m, the mass of the shank is M , and I/G is the moment
of inertia matrix of the foot plus shank about the center of mass G, where only
the principal inertia Izz parallel to the z-axis is relevant for this planar object.
Because the problem is planar, the only nonzero component of the angular mo-
mentum vectors is the z-component, yielding one equation with one unknown,
ω+, which we can solve. We find v+G using Eq. (7.1.2) and linear impulse–
momentum balance for the L-shaped bar gives us the impulse J at the contact
point O ,

J = (m+M)(v+G − v−G). (7.1.6)

Referring back to the point-like models of the foot, this collisional impulse
can be thought of as arising from a collision of a point with an effective mass
Meff, which is given by

Meff =
∣∣∣∣J .ŷv−

∣∣∣∣ . (7.1.7)

An L-shaped bar with an infinitely stiff ankle strikes the ground at some inter-
mediate point on the foot of length �, parameterized by 0≤ s ≤ 1, where s = 0
is a heel-strike and s = 1 is a forefoot-strike. The effective mass for a foot is
given by

Meff = m�2(m+ 4M)+ 4ML2(m+M)

12(m+M)�2s2 + 4m�2(1− 3s)+ 4ML2
. (7.1.8)
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FIGURE 7.1.7 Comparison of the foot–ground collision between heel-strike runners versus fore-
foot strike runners, quantified using the effective mass Meff; modified from Lieberman et al. (2010).
The solid line is the predicted Meff for an infinitely stiff ankle (condition I), and the dotted line
shows the predicted Meff for condition II with an infinitely compliant ankle. The infinitely compli-
ant ankle effectively decouples the foot mass from the rest of the foot during forefoot strikes, thereby
reducing the collisional impulse over and above the reduction because of the landing location.

L is the length of the shank. For an average adult human, m = 1.4% of body
mass, M = 4.5% of body mass, and L = 1.53� (Dempster, 1955). With these
numbers, we calculate the effective mass of the foot as a function of which
point makes contact with the ground at collision, as shown by the solid line in
Fig. 7.1.7.

Condition II: Infinitely Compliant Ankle Joint We next derive Meff as a
function of the strike index s for conditions in which the ankle is modeled as
a frictionless hinge, i.e., the shank and foot are modeled as a double-pendulum
with its joint flexed to 90◦ when it collides with the ground. This is analo-
gous to an infinitely compliant ankle. Fig. 7.1.6B shows the free-body dia-
gram for this posture of the double pendulum. Like earlier, we assume that
just before impact the entire object is moving downward with speed v− (i.e.,
v−D = v−E = v−D =−vŷ) and no angular velocity (i.e., �−m =�−M = 0). Assum-
ing a rigid plastic collision, we use angular impulse–momentum balance of the
entire double pendulum about the collision point O , and of the shank segment
(of mass M) about the hinge point B . The angular momentum vectors about O
and B are given by

Hm+M/O = (mrD/O × vD + Im/D�m)+ (MrE/O × vE + IM/E�M)

(7.1.9)

HM/B =MrE/B × vE + IM/E�M, (7.1.10)

where

vD = vO +�m × rD/O, (7.1.11)
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vE = vO +�m × rB/O +�M × rE/B. (7.1.12)

The subscripts m, M , and m +M refer to the two segments separately or to-
gether, and the only relevant element of the matrix I is the principal moment of
inertia Izz parallel to the z-axis. Because there are no external torques on the
body about the points O and B , the angular impulse–momentum equations are

H+m+M/O =H−m+M/O, (7.1.13)

H+M/B =H−M/B. (7.1.14)

Solving these equations as before, we find that the effective mass with a soft
ankle is given by

Meff = m(m+ 4M)

12(m+M)s2 + 4m(1− 3s)
. (7.1.15)

The predicted effective mass of a foot collision is shown by the dotted line in
Fig. 7.1.7, and compared against data from both heel-strike and forefoot-strike
runners. This simple model resembles data, and also establishes bounds for the
lowest collision that is possible, given that the foot has a nonzero mass.

Unlike point-like models of the foot, introducing the spatial extent allows us
to relate the foot mass to the anatomy. Importantly, we have shown that the mass
in point-like models of the foot is not a constant, and depends on the landing
posture. However, all the models presented thus far suffer from the drawback
that they are unable to predict details of the ground reaction force, because of
the rigid collision assumption. Dealing with realistic collisions remains an open
topic of research in mechanics.

7.1.4.3 Conclusion: Temporal Filtering

The clear advantage of these lumped-parameter models of the foot as a temporal
filter is their simplicity. However, such models are unable to predict the ground
reaction force. Although it appears that the model of a foot as a point with a
spring between the foot and the ground indeed predict the forces, that is not
the case. This is because the predictions are a direct consequence of choice of
parameters values for the spring, damper and mass constants. As we saw with
the L-shaped foot model, even the mass of the foot that affects the dynamics
may be a consequence of factors not considered by the point-like foot models.
Therefore, while such temporal filtering models are of value in mathematically
assessing the consequences of parameter choices, they remain limited in their
ability to predict the foot–ground interaction forces.
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7.1.5 SPATIAL FILTERING

In order to address the limitations of the earlier (temporal) models of the foot
that we have seen, it becomes necessary to explicitly consider not only its spa-
tial extent, but also its flexibility. This brings us to the realm of elasticity theory.
A soft and spatially extended elastic foot introduces interaction between the
application of forces at different locations. Moreover, the spatial geometry be-
comes closely coupled to its elastic properties, thereby introducing an additional
layer of complexity. Unlike work on the temporal filtering characteristics, there
has been little research into the spatially extended and elastic characterization
of the foot. We present some initial forays towards this direction in this section.

7.1.5.1 Smoothing Over Rough Terrains

The elasticity of the foot smooths out the influence of uneven terrain on the body
dynamics. The area of contact between the foot and the ground is determined by
the shape of the foot and the ground. If a rigid foot were to make contact with a
rigid ground, the forces and torques transmitted to the ankle will depend on the
precise shapes of both. However, the foot is not rigid and deforms in response
to the uneven terrain. The change in character of the transmitted force resulting
from the interaction between a flexible foot and uneven ground, which we term
spatial filtering, has been poorly studied. Here we outline some simple princi-
ples and the associated reduced models that may serve to guide more detailed
investigations.

Spatial filtering by the feet occurs by two mechanisms; first because of the
padding soft tissue provides, and second because of the flexibility provided by
the numerous skeletal joints in the foot. The soft padding filters ground uneven-
ness on the scale of the padding thickness, which is approximately 1 cm. The
skeletal joint flexibility deforms the foot on the scale of its width, and therefore
filters ground unevenness on that scale, which is approximately 10 cm.

Spatial Filtering by Soft Padding The soft padding around the skeleton pro-
vides a spatial filtering mechanism for smoothing stress exerted by a terrain with
roughness scale of about 1 cm. This mechanism is depicted in Fig. 7.1.8A. The
contact stress on the foot due to the ground reaction is the ratio of the applied
load and the area of contact. The area of contact depends on the scale of the
ground roughness, while the applied load is comparable to body weight. For
rough ground, contact is made on a small fraction of the foot area, as shown
in Fig. 7.1.8A, and the contact stress is high. The stress diffuses and is spread
over a larger area as the padding deforms and the area of contact itself changes
owing the elasticity of the padding. Hertz contact theory may be used to esti-
mate the stresses resulting from the roughness with radius of curvature Rrough.
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FIGURE 7.1.8 The spatial filtering because of soft tissue in the foot. (A) Role of soft padding
tissue of a foot on rough ground. For contact with ground surface with a roughness length scale
shorter than the soft tissue padding, the padding diffuses the applied ground reaction stress as it is
transmitted to the skeleton. (B) Role of soft padding tissue of a foot on smooth ground. The ground
surface has a length scale longer than the thickness of the soft tissue. The soft tissue acts as a Winkler
foundation, i.e., a bed of springs, as it transmits the ground reaction force to the skeleton.

For a normal displacement δpad, and radius of contact rpad =
√
Rroughδpad

(where equality stands for “scales as” in this estimate), the strain is δpad/rpad

and the stress is Epadδpad/rpad = Epad
√
δpad/Rrough. The force supported by

the contact area is fpad = Epadδ
3/2
padR

1/2
rough. For a given force, the normal dis-

placement is δpad = (fpad/Epad)
2/3R

−1/3
rough and the resulting stress in the pad is

E
2/3
padf

1/3
pad R

−2/3
rough. This estimate shows that the maximum stress in the pad scales

as E2/3
pad , and therefore softer pads result is reduced stress for the same supported

force because of increase in the area of contact. This mechanism is therefore
effective in distributing the contact force over a greater area and in reducing the
maximum stress experienced by the tissue when the ground roughness scale is
smaller than the padding thickness.

When the unevenness scale is longer than its thickness, the soft padding also
provides a simple compliance to the surface of the foot. This possibility is shown
in Fig. 7.1.8B. The soft padding acts as a Winkler foundation, or in other words,
an array of independent springs. The characteristic stiffness of these springs, de-
fined as the ratio of surface pressure to normal displacement, scales as Epad/tpad,
where Epad is the elastic modulus of the soft tissue and tpad is the padding thick-
ness. The presence of the Winkler foundation implies that contact with uneven
ground happens over an extended area rather than at a point, which reduces
the maximum stress experienced by the contacting surfaces. Since the charac-
teristic stress experienced by the foot pfoot ≈ mg/Acontact, where mg is body
weight and Afoot is foot area, the characteristic compression of the soft padding
is δpad =mgtpad/EpadAfoot. This type of deformation accounts for roughness of
the ground with an amplitude smaller than δpad, so that elastic deformation of
the pad can accommodate unevenness.
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Spatial Filtering by Skeletal Joint Flexibility The flexibility arising in the
foot due to the presence of numerous skeletal joints also filters out ground un-
evenness on a scale of foot width and with amplitude greater than δpad. In this
case, the foot may be considered to be akin to an elastic plate and its response
may be approximated as a bending-torsion deformation. The details underlying
the bending rigidity of the foot will be considered in Section 7.1.5.2. The whole
foot, and not just its bottom surface, conforms to features on the ground using
this flexibility. As described in Section 7.1.3, a foot which is soft in bending can
act as a shock absorber and as a spatial filter, but it needs to be stiff enough to
transmit ground reaction forces to the body without deforming too much. This
trade-off is an important principle underlying the design of feet.

The consequences of a stiff human foot are understood by juxtaposing them
against those of arboreal primates and human hands. Human hands and primate
feet are general purpose grasping appendages. An important function of human
hands is to grasp objects of varying sizes. Similarly, the feet of arboreal primates
are used for hanging on tree limbs of varying sizes. This involves conforming the
appendage by changing its curvature to the shape of the object being grasped. In
order for the muscles to not fight against the skeletal structure, the appendages
should be soft under bending so that the action of muscles can deform them
to the required shape. Indeed, feet of primates such as the chimpanzee are sig-
nificantly softer than humans, as seen from cadaveric bending tests (Ker et al.,
1987; Bennett et al., 1989) and from severe mid-foot deformation during walk-
ing (D’Août et al., 2002; Thompson et al., 2015). Although human feet have
soft padding that can accommodate small amounts of ground unevenness (e.g.,
small gravel), the overall foot is not soft enough for use in grasping. This makes
human feet well suited for propulsion, but poor for grasping. Such trade-offs in
function, arising from natural selection, were probably driven by the improved
energetic advantage of human-like walking gaits at the expense of adaptations
that benefit an arboreal lifestyle (Jungers, 1988; Wood and Collard, 1999; Bram-
ble and Lieberman, 2004).

7.1.5.2 Effect of the Foot Arches on Stiffness

Recall from the section on anatomy and evolution that unlike other primates,
human feet have a pronounced arched morphology. Two specific arches are
anatomically easily identifiable, the longitudinal and transverse (Fig. 7.1.2B).
The longitudinal arch is oriented from the heel to the toe, and the transverse
arch is approximately orthogonal to that direction. It is a long-standing hypoth-
esis that the longitudinal arch underlies the higher stiffness of the human foot
(Morton, 1924b; Ker et al., 1987; Williams and McClay, 2000), although its
importance in the context of walking is contested (Bennett et al., 1989; Bram-
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FIGURE 7.1.9 Soft skeletal tissues on the plantar (sole-side) of the human foot. (A) Three promi-
nent longitudinally oriented ligaments in the mid-foot region are shown. The attachment sites for
the calcaneocuboid and calcaneonavicular ligaments are evident from their names. The long plantar
ligament, the longest ligament in the midfoot region and one of the strongest (stiffest) in the foot,
attaches to the calcaneus at the proximal end. It splits into branches at the distal end, attaching to
cuboid and to the proximal heads of the 2nd, 3rd, and 4th metatarsals. Image adapted from Gray’s
Anatomy. (B) The plantar fascia are a band of tissue (aponeurosis), stretching from the calcaneus to
the phalanges.

FIGURE 7.1.10 A model of the foot to compare the relative contributions of the plantar fascia and
plantar ligaments to the stiffness of the longitudinal arch.

ble and Lieberman, 2004). In this section we first show that the plantar fascia
contributes to foot stiffness as much as the longitudinally oriented ligaments
holding up the bones. We then present an analysis to show that the contribu-
tion from the transverse arch most likely overshadows that of the longitudinal
ligaments, and therefore the plantar fascia. These mathematical arguments are
supported by data (Ker et al., 1987; Bennett et al., 1989; Huang et al., 1993)
from cadaveric dissection experiments, which show that the plantar fascia con-
tribute to only about 27% of the total foot stiffness.

Longitudinal Arch The longitudinal arch is spanned by a band of elastic tissue
called the plantar fascia (Fig. 7.1.9B). In terms of material properties, the plantar
fascia are distinct from both ligaments and tendons, and more closely resemble
aponeuroses that form the bridge from tendon to muscle. If the foot is deformed
by an external load, such as during push-off, the plantar fascia will be stretched.
To understand the relative contribution of the plantar fascia to overall foot stiff-
ness, we compare against the other mechanisms stiffening the foot through the
model shown in Fig. 7.1.10. In this model, contact with the ground is made only
at the forefoot G. The base of the heel B is supported by the net forces and
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torques at the point O , which represent the joint contact forces at the talotibial
joint (ankle), and also the forces exerted by the calf muscles and the Achilles ten-
don. The foot in this model consists of the tibiotalar joint (point O), the talus and
the calcaneus assumed rigid (OBC), and the metatarsals (CG). Changing the
angle BCG represents the mid-foot bending longitudinally. The plantar fascia
is represented by the spring BG, and the ligaments stiffening the midtarsal joints
that maintain the longitudinal arch are schematically shown as the red segment
LL′. The longitudinally oriented ligaments (Fig. 7.1.9A), which run parallel to
the plantar fascia, comprise of several plantar ligaments; the long plantar lig-
ament (from the calcaneus to the 2nd, 3rd, and 4th metatarsals), the plantar
calcaneocuboid ligament (short plantar ligament), the plantar calcaneonavicu-
lar ligament (spring ligament), and the plantar tarsometatarsal ligaments. These
plantar ligaments are much shorter in length and narrower in width than the
plantar fascia, and therefore stiffer than the plantar fascia. Together, the plantar
fascia and the plantar ligaments contribute to the longitudinal bending stiffness
of the foot.

We consider the foot to deform in longitudinal bending by increasing the
angle BCG in response to an applied ground reaction force at G. The stiffness
of the foot to bending (increasing the angle BCG) that arises from the plantar
fascia stretching is kBGh

2/a2, where kBG is the spring constant of the plantar
fascia, h is the moment arm of the plantar fascia about the point of rotation
C, and a is the moment arm of the vertical force at G about point C. This
spring constant may be estimated from the properties of the plantar fascia as
kBG ≈ EpfApf/Lpf, where Epf is the Young’s modulus, Apf is the approximate
cross sectional area, and Lpf is the length of the plantar fascia. Note that because
we seek an estimate, approximate representative values for the properties of the
plantar fascia suffice.

The ligaments maintaining the longitudinal arch of the foot also contribute
to the stiffness of the foot in longitudinal bending. This contribution to the
stiffness may be estimated as NkLL′ t

2/a2, where N is the number of these
ligaments, kLL′ is the spring constant for the ligaments, and t is the moment
arm of the ligaments about point of rotation C. The moment arm of these lig-
aments is approximated by the thickness of the tarsometatarsal joints, and for
purposes of this estimation, we assume these ligaments to be similar in length
and cross-sectional area. The properties of the ligaments in turn determine the
spring stiffness; we estimate kLL′ ≈EligAlig/Llig.

Our claim that the plantar fascia contributes to the mid-foot stiffness as much
as the longitudinal plantar ligaments is equivalent mathematically to the state-
ment that kBGh

2/a2 ≈ NkLL′ t
2/a2. Substituting kBG and kLL′ in terms of the

properties of plantar fascia and the ligaments respectively, this condition can be
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translated to EpfApf/Lpfh
2 =NEligAlig/Lligt

2. The ratio of the two sides scales
as

ρ = Epf

Elig

Apf

Alig

Llig

Lpf

(
h

t

)2 1

N
. (7.1.16)

Since both the tissues have similar modulus and similar cross-sectional areas,
the ratio simplifies to

ρ = Llig

Lpf

(
h

t

)2

. (7.1.17)

Using anatomical values for these lengths and heights (Gomberg, 1981), we find
Lpf ≈ 4Llig and h≈ 2t . Therefore,

ρ ≈ 1.

Transverse Arch The role of the transverse arch in the foot’s stiffness has
only recently been studied (Dias et al., 2015; Yawar et al., 2016), and has tra-
ditionally not been typically considered as important as the longitudinal arch.
This recent study (Dias et al., 2015) shows that the contribution of the trans-
verse arch is several fold higher than the longitudinal arch. The mechanics
underlying this is demonstrated from casual observation of thin elastic struc-
tures, like a dollar bill. Curling the dollar bill transversally to the bending
direction dramatically increases its stiffness (Fig. 7.1.11A). This principle im-
pacts many things in our everyday life, from inserting currency into vending
machines, eating pizza, to the design of measuring tape. This is because cur-
vature in the transverse direction couples longitudinal bending to transverse
stretching, and thin elastic structures are much harder to stretch in-plane than
to bend out-of-plane. In the context of the foot, this is evident in the form
of splaying of the distal metatarsal heads if you try to bear your weight us-
ing the balls of your feet, and is demonstrated by a foot-mimic with tunable
curvature (Fig. 7.1.11). This in turn stretches several short transversally ori-
ented ligaments such as the intermetatarsal ligaments. To make this heuristic
argument more rigorous, we model the foot as idealized by the schematics in
Figs. 7.1.11B and 7.1.12A. The structure consists of three rigid triangular and
rectangular elements analogous to the tarsal and metatarsal bones respectively.
The tarsals are assumed to be held rigidly in place by the rest of the foot,
the clamped boundary condition model for the proximal end of the foot. The
metatarsals are connected to the tarsal bones through a flexible joint, but the
permissible motion of the metatarsals is along directions misaligned by angle
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FIGURE 7.1.11 Effect of the transverse arch, demonstrated using (A) a continuum and (B) a dis-
crete mechanical structure. Introducing transverse curvature dramatically increases the longitudinal
bending stiffness in both cases. The underlying mechanics in both cases is a coupling of out-of-plane
bending with in-plane stretching of transversally oriented elastic elements because of curvature.

θ due to the nature of the tarsometatarsal joint, assigning the structure a trans-
verse radius of curvature of RT = �0/θ . A displacement δ of the metatarsal
heads in the normal direction is accompanied by a stretching of the distance
between them as � = �0 + δ tan θ and an energy storage of Es = ksδ

2 tan2 θ in
the two ligaments (not shown) with spring constant ks each spanning the distal
metatarsal heads. This energy is in addition to approximately Eb = 3k0(δ/L)

2/2
stored in the tarsometatarsal joint modeled here as three independent torsional
springs with spring constant k0. The restoring force exerted by the structure
F = d(Es+Eb)/dδ, predicts an effective stiffness to bending to be kb = F/δ =
2ks tan2 θ + 3k0/L

2. For small curvatures, tan θ ≈ θ , and the stiffness may be
approximated as

kb = 2ks�2
0

R2
T

+ 3k0

L2
or

kb

kb,0
=
(
R0

RT

)2

+ 1, (7.1.18)

where kb,0 = 3k0

L2
and R0 =

(
2ks
3k0

)1/2

�0L. (7.1.19)

Fig. 7.1.12B compares the experimentally measured stiffness of the discrete
structure shown in Fig. 7.1.11B with the predictions of Eq. (7.1.19). Only two
parameters are needed to accurately describe the stiffness dependence on the
transverse arch radius, viz. kb,0 and R0. The former governs the zero curvature
stiffness, whereas the latter governs the scale for the radius of transverse cur-
vature below which stiffening is predicted. For the experimental fit shown, the
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FIGURE 7.1.12 Curvature induced increased stiffness of a discrete structure mimicking the human
foot.

value of kb,0 was independently experimentally measured, and R0 is a fitting

parameter. The exact fit is less important than the agreement of the curvature

dependence, i.e., the slope of the line passing through the data points for small

radii of curvature.

If R0 RT , then the stiffness is dominated by the transverse curvature in-

duced bending-stretching coupling. If R0  RT for the foot, reinforcing the

transversally oriented ligament at the distal metatarsal head using external elas-

tic tape increases R2
0 , and therefore proportionally increases the stiffness of the

foot.

The analyses in the previous section, of the longitudinal arch and the plantar

fascia, showed that the effect of the plantar fascia is at most comparable to that

of the mid-foot ligaments. On the other hand, the transverse curvature appears

to show a dramatic increase in stiffness, at least for the physical model. Impor-

tantly, even slight transverse curvature appears to increase the bending stiffness

of the physical foot by nearly 100%. It remains to be shown where the transverse

curvature of the human foot falls. Nevertheless, this analysis presents an excit-

ing method to tune the stiffness of a foot in the robotic or prosthetic context.

Instead of using variable stiffness motors within the foot, modulating the trans-

verse curvature can lead to stiffening, without adding any additional mass to the

foot. In theory, the actuation necessary for modulating the transverse curvature

could reside outside the foot, in the shank of the leg, thereby further reducing

foot mass. Practical implementations of such a tunable stiffness design remains

to be developed.
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7.1.6 CONCLUSION

The foot plays a central role in mediating the interaction of the body with the
ground. Its importance in human evolution is well known, and yet, its mechanics
in only recently being understood better. The current state of the art in robotic
feet is relatively primitive, and often consist of partial mimics of biological feet
(Au et al., 2007), or simply a rigid foot (Collins et al., 2005; Caputo and Collins,
2014; Ananthanarayanan et al., 2012; Collins et al., 2015). Mimics of biological
feet are faced with the daunting complexity of the foot, and therefore choose to
mimic some elements and not others. Such mimics have been limited to intro-
ducing a longitudinal arch, but not the other elements that we examined in this
unit. Such design choices are presently not informed by the mechanics presented
in this unit, and it is in this context that a mathematical mechanician, one who
spans the areas of biomechanics, applied mathematics, and mechanisms design,
plays an important role. By distilling the complexity underlying biological feet
into unifying principles, it is possible to create control and design guidelines.
For example, controlling the landing location to be at the distal end of the foot
is a significant method to ameliorate the severity of ground collisions. Once
the foot is in contact with the ground, its stiffness is best modulated through
the transverse arch. Such findings are made possible only through a systematic
study of biological feet. Future robotic and prosthetic feet may benefit from
incorporating the principle of curvature-induced stiffening in their control and
design.3
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Chapter 7.2

Bioinspired Leg Design
Jonathan E. Clark
Department of Mechanical Engineering, FAMU/FSU College of Engineering, Tallahassee, FL,
United States

In this section we address the question of how to utilize our understanding of the
dynamics of legged locomotion to design and build robot limbs. We begin with
a review of the basic functional roles of legs, and then discuss how available
materials and actuators can be used to achieve these functions. The interplay
between leg form and function is considered as we review some common de-
signs for walking and running robots. We conclude with a discussion on design
philosophy as we move toward building robots capable of the fast and agile
motions that we currently only see exhibited by animals.

7.2.1 FUNCTIONS OF A LEG IN A ROBOT

7.2.1.1 Four Basic Functions

Essential to the operation of any legged robot is the structure and design of the
leg itself. Although leg design in biology and in robotics have taken a great va-
riety of forms there are a few basic functions that each leg fulfills, these include
the roles of a: strut, spring, damper, and actuator.

Whether the body is moving or it is stationary, each leg provides a role as
a strut, a structural element keeping the body from contacting the ground. In
vertebrates the bones and in invertebrates the chitinous exoskeleton provides
structural support that withstands the compressive forces generated by gravity
and the reaction forces from the ground. These forces peak during stance (often
at the midpoint of stance) and provide a functional lower limit on the mechanical
strength of the leg.

A second role that legs fulfill during locomotion is that of a spring – a mech-
anism that deflects during loading to store and return energy during locomotion.
Used in both walking and running systems, it appears that springs benefit loco-
motion in at least three distinct ways (Galloway et al., 2013):

Physical Robustness Leg springs act as low-pass filters on the impact forces
from ground contact, reducing the shock experience by the robot’s body,
significantly increasing the overall system’s physical robustness.
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Energetic Efficiency Springs act in concert with the rhythmically excited actu-
ators so that the system behaves as a tuned harmonic system, increasing the
efficiency of locomotion.

Dynamic Stability Properly designed spring elements alter the dynamics of the
overall mechanical plant, thereby contributing to the overall stability of the
robot against perturbative forces.

A third role of legs is that of an energy dissipative element – a damper.
The ability to selectively remove energy either through passive means such as
friction, or actively by doing negative work with actuators, is an essential tool
in creating stable gaits and recovering from perturbations that add energy to the
gait, such as going down a step. Whether included as inherent structural element
or included as needed through reactive or higher-level commands, the ability to
slow down the system and remove energy during a step is key to maintaining
balance in difficult environments.

The fourth role of legs is to provide actuation or energy to propel the animal
or robot forward. The active generation of force or torque through muscles in
animals and motors, pneumatics, hydraulics, or active materials in robots allows
the necessary accelerations to induce and maintain any motion.

7.2.1.2 Obstacle Clearance and Foot Scuffing

In addition to serving these four basic functional roles while they are contacting
the ground, each leg also needs to be able to move in a way that allows the robot
to clear obstacles and avoid foot scuffing during the swing phase in anticipation
of touchdown.

Most animal and robot legs undergo a combination of flight and stance
phases within each step. The flight phase repositions the leg for stance and needs
to move the foot in a motion high enough to overcome terrain variations. This
provides some limitations on the possible kinematics of legs. The three link se-
rial kinematic chain favored by most animals nicely allows for the retraction of
the foot to a position relatively near the body when obstacles are present. While
effective, many innovative robotic designs have found alternative kinematics or
other means to accomplish this essential task.

Another design consideration that follows from the cyclic succession of
stance and flight phases is the resulting impact forces that occur during touch-
down. Depending on the effective inertia of the leg at impact these forces can
be considerable. Even when these forces are mitigated, the legs need to be able
to support the increased ground reaction forces resulting from lower duty cy-
cles. In running gaits robot legs typically need to be able to support at least
three times the body weight. As discussed in other chapters these intermittent
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contacts also sometimes result in control complexity as controllers switch from
position control in flight to force control during stance.

7.2.1.3 Material and Manufacturing Considerations

While each of these basic roles are filled by legs in both biological and synthetic
systems, the manner in which they are manifested vary greatly. In particular, it
is worth remembering that the materials available for robots are fundamentally
different than those used in animals. This results in dramatically different design
decisions. The good news for roboticists is that there is a great variety of ma-
terials and manufacturing methods at our disposal. The bad news, on the other
hand, is that the properties and limitations of each of these methods differ from
those of the muscles, tendons, bones, etc., that make up the structure of our bio-
logical precedents. This limits our ability to directly mimic the elegant designs
used in nature and forces us to search for new and effective ways to combine our
available tools with our fundamental understanding of how locomotion works.

In particular, it should be noted that the primary structural materials used
in robots vary greatly depending on operational environment and scale. For ex-
ample, it is not uncommon to see robots being built from paper at small scales
(Birkmeyer et al., 2009), even thought it would fail if it were to operate in a wet
environment or if the same design were built at a larger scale.

A major limitation constraining the design of robots is in our current manu-
facturing processes. Although new techniques are being developed to overcome
this, our ability to fabricate anisotropic, small scale, and spatially varying ma-
terial properties limits our capacity to duplicate the design sophistication found
in animals. Recently there have been significant advances in, and use of, 3D
printing techniques. These include the use of stronger materials and the abil-
ity to print with multiple materials simultaneously. Although this is providing
additional options to designers, most of these machines are only able to print
plastics, restricting their use to smaller robot parts. For structural parts and larger
robots where scale dictates the use of metals, traditional machining and weld-
ing processes (and their limitations) still dominate. A similar set of trade-offs
associated with complexity and scale hold for actuators, which are discussed in
greater detail in the next section.

7.2.2 ACTUATION STRATEGIES

Just as the materials that engineers use to build their robots differ from biolog-
ical systems, so do the elements of actuation that are available to the designer.
A nice overview of how muscles work and their limitations is given in Sub-
chapter 8.1. It is worth noting here that while biological muscle generates force
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by contracting muscle fibers, mechanical actuators can create force either lin-
early (by pushing or pulling) or rotationally. Furthermore, rotational actuators
can have a much larger range of motion than is found in animals. Less obvious,
but equally important, are the differences in how force generation changes with
position and velocity. For biological tissue there is a well understood range of
positions (near the center of the range of motion) and velocities (speeds near
zero) where maximum force can be generated. These trade-offs also exist for
our mechanical compliments, but the details differ from actuator to actuator.

In this section we will consider first the most common actuation techniques:
fluidic and DC motor based systems. We will then briefly review some of the
more commonly used active (or “smart”) materials that have found use in robots
– mostly at small scales. Following this is a description of some of the tech-
niques or transmission strategies used to transfer the force from the actuators
to the joints of the limbs. Lastly we will briefly review recent robotic efforts
to introduce actuators that emulate the ability of natural systems to vary the
mechanical compliance of their limbs.

The approximate specific power, efficiency, and scale at which these classes
of actuators are commonly used is shown in the table below.

Actuator type Specific power Max efficiency Common scale

Hydraulic 105 W/kg 98% >50 kg

Pneumatic 104 W/kg 40% 500 g–50 kg

Electromechanical 102 W/kg 92% 10 g–50 kg

Smart materials 104 W/kg 99% <10 g

7.2.2.1 Pneumatics, Hydraulics, and DC Motors

Pneumatics, hydraulics, and DC motors are three of the most common actuation
schemes used in legged robots. Pneumatics are advantageous due their light
weight and built-in compliance. They do, however, require tubing and a source
of compressed air – often placed off-board. Consequently, they are typically
used in smaller robots in the lab, or on robots that weight tens of kilograms. Hy-
draulics are much more powerful, but are also heavier, messier, and also require
a compressor or off-board storage tank. These usually drive prismatic pistons
in the largest of legged robots. Electric motors are probably the most common
option due to their mechanical simplicity, ease of use, and low cost. Their con-
tinuous rotation allows (at least theoretically) infinite range of motion. Thus,
unlike muscles, their force generation is not usually position dependent. It is,
however, still velocity dependent. When prismatic motion is desired with mo-
tors some type of transmission mechanism in needed; a few common options are
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FIGURE 7.2.1 Common classes of DC motors: (A) servo, (B) brushed, and (C) hollow core brush-
less.

described in Section 7.2.2.3. By design, most motors operate at speeds higher
than needed for leg motions and therefore utilize gearboxes to increase their
available torque generation. While planetary gearboxes are quite compact, there
is still an additional layer of complexity and energetic losses. The use of gear
reduction also adds reflected inertia to the limbs. Fig. 7.2.1 shows three common
types of DC motors used in robots. Self-contained servo motors (Fig. 7.2.1A)
are simple to use, requiring only a PWM signal to specify position or speed
and are frequently used in smaller platforms. Brushed DC motors (Fig. 7.2.1B)
are probably the most common, with these feedback control is usually enabled
via an attached quadrature shaft encoder. Brushless motors can be stronger, but
required dedicated control electronics. Recently, hollow core brushless motors
(Fig. 7.2.1C) have become popular due to their high power density.

7.2.2.2 Active Materials

Especially at smaller scales where DC motors become inefficient (often when
they are less than 10 g), alternative actuation schemes, usually involving active
materials, become commonplace. Piezo-electric actuators can operate at high
frequency, have a high-power-to-weight ratio and are quite mechanically robust.
They, however, can only produce a very limited range of motion. To compen-
sate for that they are often connected in series or combined with a mechanism
to extend their stroke length. Electro-active polymers (EAP) provide a softer
and more flexible actuator alternative. These are also driven by high-voltage
electrical supply but they can undergo much larger deflections. They, however,
are usually only capable of moderate force generation. Several configurations
such as discs or rolls have been implemented in robotic designs. Smart mem-
ory alloys (SMA), most commonly nickel–titanium (NiTi), or nitenol, are very
light-weight actuators capable of generating large forces. Thermal heating of
the material (often in wire or spring form) causes compression and, depending
on the geometry, bending of the wire. The “memory” effect of material is some-
times used in medical stints, but is rarely utilized in robot legs. The primary
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FIGURE 7.2.2 Classes of common actuation schemes: (A) four-bar crank–rocker mechanism,
(B) schematic of a 5-bar pantograph leg.

limitation of this actuation scheme is in the low-frequency of operation due to
limits on thermal cooling.

7.2.2.3 Transmission Strategies

Rather than using tendons to compliantly anchor muscles to the skeletal (or
exoskeletal) system, robots rely on a number of mechanisms to connect their
actuators and structural members. For motors, these mechanisms convert high-
speed continuous rotation into motions that are more useful for locomotion.
Most commonly the first step in the transmission is a gear box which increases
the torque, but does so at a cost to speed, back-drivability, and efficiency and
increases the reflected inertia of the system. Fig. 7.2.2 shows a few examples of
linkages that have been used as transmission mechanisms in legged robots.

Fig. 7.2.2A shows a special case of four-bar linkage (a crank–slider) that is
often used to transform rotation of the coupler link (a) into linear motion of the
slider (x(t)). This particular diagram is utilized in iSprawl robot to drive the
three push–pull cables coming out of the left hand side of the figure (Kim et al.,
2006). Flexible cables are commonly used to apply force to a distal limb from
a proximally located motor. This arrangement allows for light-weight limbs,
especially near the distal segments where the velocities are the highest.

The schematic of a mechanism shown in Fig. 7.2.2B is a special class of
5-bar known as a pantograph (used, for example, by Waldron, 1986). The link-
age allows input from two actuators located, for example, on the body of the
robot (the motors indicated at the top of figure) to control the planar motion of
the distal end. When arranged properly the vertical and horizontal motion of the
foot can be decoupled, thereby allowing each motor to primarily control one
direction.

A hybrid linkage design was implement on the RiSE robot (Spenko et al.,
2008). This mechanism converts the motion of two motors via a differential to
control both the foot trajectory specified by the four bar linkage (when moving
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at the same speed) and to control the abduction–adduction of the leg (when

moving at different speeds).

7.2.2.4 Variable Stiffness Mechanisms

As animals traverse obstacles or rough terrain they often alter the effective com-

pliance or stiffness of their legs (Ferris et al., 1998). For robots, stiffness control

has been traditionally implemented via adjusting the controller gaits at the joint

or motor level (Semini et al., 2013; Hyun et al., 2014).

For high speed and dynamic running behaviors characterized by significant

impacts and unpredictable timing, the power limitations and bandwidth delays

inherent in motor control have led to the development and adoption of passively

compliant legs (e.g., Altendorfer et al., 2001; Poulakakis et al., 2005). Using

physical springs gives high-bandwidth response and allows energy to be stored

and returned, but effectively modulating or varying the natural frequency of

these limbs is more challenging.

Several different actuators or leg designs with variable passive compliance

have been developed over the years (Wolf et al., 2015). Some of these include:

mechanical stiffness control, antagonistic nonlinear springs, and structure-

controlled stiffness (Vanderborght et al., 2009). More details of these methods,

in particular how they have been applied in bipedal robots, can be found in

Subchapter 8.2. Some notable examples include the PPAM (pleated pneumatic

artificial muscles) (Van Ham et al., 2006), which uses a pair of opposing pleated

membranes that when pressurized with air contract longitudinally, and the biped

with mechanically adjustable series compliance (BiMASC) which uses antag-

onistic aligned nonlinear springs to adjust the stiffness of the leg. Another ex-

ample of mechanical stiffness control is provided by MACCEPA (mechanically

adjustable compliance and controllable equilibrium position actuator) (Beyl et

al., 2006), where each joint’s stiffness is controlled by a pair of servo motors.

One controls the equilibrium, or set point, while the other pretensions the spring.

A third approach to achieving variable mechanical stiffness, known as

structure-controlled, alters the effective length or compliance of an elastic el-

ement, such as a cantilevered beam or helical spring. The active length is mod-

ulated by a small, dedicated actuator. Several groups have developed structure-

controlled stiffness mechanisms (Morita and Sugano, 1995; Hollander et al.,

2005; Tabata et al., 1999). Galloway et al. (2013) have used this approach on the

C-shaped compliant legs of the hexapod RHex to show that varying the stiffness

of the legs can improve locomotive efficiency by over 40%.
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7.2.3 BIO-INSPIRATION: MORPHOLOGY

The actuation and transmission systems described in Section 7.2.2 have been uti-

lized and combined in a number of robot morphologies. Many of these designs

have been inspired by animals, at least in terms of the kinematic characteris-

tics of their legs. In this section we review a number of these designs that have

been used in walking robots. Most of these robots move slowly and carefully,

concentrating more on leg coordination and foot placement than center of mass

dynamics. In Section 7.2.4 the discussion turns to robot designs that focus more

on bio-like dynamic function, rather than form.

The adaptive suspension vehicle (ASV) was one of the first walking robots

that could traverse large outdoor obstacles. Even though it was one of the earli-

est autonomous walking robots, it is still one of the largest, weighing in at over

2,600 kg and about 5 m long. Its legs were powered by hydraulics and utilized a

5-bar pantograph mechanism to decouple the vertical and horizontal plane mo-

tions (Waldron, 1986). Another early legged robot, but built on a smaller scale,

was Boadecia which was pneumatically powered and borrowed its limb design

from the cockroach leg morphology. While it also used a pantograph mechanism

in the legs, it – like the cockroach – featured significant leg differentiation, with

the front legs only having 2 DOF, while the middle and hind legs had 3 DOF.

In addition, its feet had overlapping workspaces to increase the maximum stride

length (Binnard, 1995). Also biologically-inspired in terms of leg design, The

NU Lobster Robot used SMA wires to actuate its eight legs. Designed to op-

erate underwater and in surf regions, the legs were designed to be lightweight,

waterproof, and very stable (Ayers and Witting, 2007).

In what is now a common design, the CWRU robot II used a stick insect-

like 3-DOF serial chain leg with point feet. The proximal actuators controlled

the forward motion and the distal mass was kept extremely low to decrease mo-

tor loading (Espenschied et al., 1996). StarlETH uses compliant series elastic

legs to improve the efficiency and robustness of the classic 3-DOF leg design

(Hutter et al., 2012). With this design it is able to move faster than most other

robots with 3-DOF legs and can negotiate a range of environmental obstacles.

More recently, JPL’s Robosimian which competed in the 2015 DARPA Robotic

Challenge has extremely strong 7-DOF limbs. Each L-shaped leg segment is de-

signed with the same motor and gearbox. The modular nature of the limbs allows

for a variety of configurations, but the high distal mass makes rapid maneuvers

difficult. This ape-like robot excels at moving in very complex environments,

such as vehicle egress maneuvers (Hebert et al., 2015).
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FIGURE 7.2.3 Dynamic running robots with 1 active DOF legs: (A) iSprawl, (B) RHex. (C) Model
of the effective dynamics of compliant legs with rolling contact.

7.2.4 BIO-INSPIRATION: DYNAMICS

Another class of robots have been designed to capture the dynamics of ani-
mals’ motion, rather than their kinematic structure. While some of these leg
designs do not look like animal legs, they have been shown to accurately cap-
ture the center of mass dynamics of running in animals of different structure and
morphology, effectively realizing spring-loaded inverted pendulum (SLIP) and
occasional lateral-leg spring (LLS) running.

7.2.4.1 Single Active DOF Legs

The earliest dynamic running robots utilized simple leg designs featuring a sin-
gle active DOF. Successful examples of this approach include the RHex (Saranli
et al., 2001) (Fig. 7.2.3B) and iSprawl (Kim et al., 2006) (Fig. 7.2.3A) robots.
With only one actuator powering the leg, these devices had to choose whether to
generate force in a torsional or prismatic direction. The RHex family of robots
is an example of using a single motor at the hip to generate sufficient torques
to accelerate the body. The compliant legs compress, store, and then release the
their energy in second half of stance to generate a forward and upward accel-
eration. On the other hand, the Sprawl family of robots use prismatic actuators
in their legs to generate force, and relies on springs at the hips to redirect the
ground reaction forces into forward velocity.

It has been traditional in analytical studies to use the compliant, prismatic
legs characteristic of the SLIP model (Blickhan, 1989). However, these models,
due to their simplicity, abstract away many of the physical features that con-
tribute to the performance of legs such as the ones used on RHex or in human
prostheses. The dynamic effects of the C-shape of the leg, including: the change
in rest length, stiffness, and rolling contact point, all contribute to improved
running. Recently, several researchers have attempted to characterize running
with half-circle legs using a modified version of SLIP model (Sayginer, 2010;
Huang et al., 2014; Jun and Clark, 2012). Jun and Clark’s torque-driven and
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damped half-circle-leg (TD-HCL) model (Fig. 7.2.3C), for example, has shown
that curved feet promote better disturbance rejection and faster running (Jun and
Clark, 2012).

Since, as Asano and Luo have shown, that a rolling foot can act in a manner
similar to an ankle joint for walking (Asano and Luo, 2006, 2007), it will be
interesting to see if compliant monolithic legs with rolling contact can have
similar dynamics to the three link articulated limbs employed by animals.

7.2.4.2 2+ Active DOF Legs

Despite their success in achieving fast running motions, 1 DOF leg designs are
greatly constrained in their range of motion and the types of complex behaviors
that the legs can perform. To overcome these limitations a number of researchers
have developed running robots with more complex designs. These higher DOF
designs, however, still have to deal with the limited power density and the need
to understand how to coordinate the active DOFs to generate the desired (usually
SLIP-like) COM motions.

The most common morphologies for higher DOF legs are built around using
revolute actuators at the hips and then a selection of either prismatic legs or
adding a second active (rotary) joint at the knee. This allows a direct mapping
to a SLIP-like running model, and was the approach used by Marc Raibert in
the first dynamic running robots. These first hoppers where relied on the air in
the pneumatic pistons in their legs to store and return energy for each hop. The
inclusion of revolute joints in the knees, as done with, the KOLT robot (Nichol et
al., 2004), allows for greater obstacle clearance and has been shown to improve
stability (Rummel and Seyfarth, 2008). For KOLT, the primary energy addition
was done by prestretching an elastic member during flight and releasing it during
stance.

BigDog and most other robots built by Boston Dynamics utilize an onboard
hydraulic system to provide the necessary power for running. The use of hy-
draulics allowed them to implement a light-weight, serial-chain 3 DOF leg
design. Although noisy, the power provided by the hydraulic system enabled
subsequent robots such as Wildcat to achieve impressive running speeds (Raib-
ert et al., 2008). The MIT Cheetah robot, on the other hands, is smaller and
quieter due to its use of high-power density hollow-core DC motors. The leg
designs combine the range of motion of a serial chain morphology with a 5-bar
linkage in the upper limb. This allows for both the “hip” and the “knee” mo-
tors to be placed in the body, dramatically reducing the inertia of the leg. This
combined with compliant tendons connected to the lower limbs allows the robot
to reach high speeds and to leap over nearly hip-height obstacles (Park et al.,
2015).
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While robots that feature legs designs with both prismatic and revolute de-
grees of freedom have been successful, the specific advantages afforded by each
method of actuation are not well understood. Some preliminary investigations
have been undertaken to compare these approaches. These have included sim-
ulation studies comparing strictly prismatic or strictly torsional actuation of
modified SLIP like runners (Larson and Seipel, 2012) or studies that have uti-
lized multivariate optimization to examine hybrid systems (Remy et al., 2012;
Görner and Albu-Schäffer, 2013). Some of these have been able to accurately re-
produce several different animal-like gaits, just by altering the actuation scheme
or optimization criteria. In a study that explicitly looked at the relative effort
of prismatic and radial action in a SLIP-like model with damping, Miller et al.
(2014) found for certain types of running that instead of an even 50/50 split,
the optimal distribution of work between prismatic and torsional is about 70/30,
suggesting that designs that feature nonuniform actuator power distribution may
be preferable.

This brief survey has highlighted some of the successes in developing walk-
ing and running with 1 and 2-DOF legs. The discussion of human-like leg
designs with three or more active degrees of freedom is not covered here, but is
treated in some detail in Subchapter 7.3.

7.2.4.3 Climbing and Other Uses of Legs

In addition to walking and running over flat surfaces, animals are able to use
their legs to negotiate a wide variety of terrains. They use their limbs to jump,
climb, or even swim. The next subchapter includes a discussion of jumping
robots in the context of bi-articular muscles. Here we look particularly at climb-
ing. Climbing not only allows scaling of vertical objects, but also enables tran-
sitions to other modes of locomotion such as gliding or flapping flight (Paskins
et al., 2007; Byrnes et al., 2008; McGuire and Dudley, 2005; Sato et al., 2009).

The unique requirements of attaching to the surface and moving up in the
face of gravity have affected the limb designs for climbing robots, some of
which are more animal-like than others. For examples, the Ninja robot uses suc-
tion to attach to smooth vertical surfaces such as glass (Nagabuko and Hirose,
1994). Precise orientation and location of the footpads is important, so they uti-
lize a parallel mechanism in each leg. The DIG robot, on the other hand, is more
animal like and uses simple claws and directional in-pulling forces between the
feet to ensure attachment. A simple 3 DOF serial chain morphology and distal
claws allow it to climb prepared surfaces (such as wire mesh or screens) even
when inverted. The RiSE robot (Spenko et al., 2008) extends the use of direc-
tional adhesion to a wider range of surfaces by using arrays of microspines at
each foot. It uses a hybrid 2-DOF four-bar/differential leg mechanism to climb
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stucco, brick, and cinderblock walls. The four-bar linkage chosen allows for
straight line motion of the foot during stance, and trace a curved path during the
flight-phase for recirculation. Motion of the whole arm toward or away from the
wall is controlled by the relative speed of differential.

The Capucin robot climbs much like a human rock-climber, exploiting
hand-holds on the surface to propel itself upwards on flat surfaces (Zhang and
Latombe, 2013). The simplified attachment and need for a large workspace lead
to the use of a 2-DOF, planar serial-chain leg design. The Stickybot robot (Kim
et al., 2008) uses gecko-inspired dry adhesives to climb smooth hard surfaces
such as glass. It uses a servo-driven parallel four-bar mechanism in the legs to
provide the force to move the robot up the wall. Since it climbs smooth surfaces,
the alternating legs can be synchronized and it does not have to lift the feet very
far off the wall. The underactuated four-toed feet hyperextend off of the wall, al-
lowing for detachment at the end of the stroke and then to compliantly conform
to the wall to ensure adhesion at touchdown.

These robots highlight several different attachment mechanisms and legs de-
sign for climbing walls. In each case, however, the climbing speed is slow and
the power requirements for accelerating the robot are minimal. Much like for
running robots, the leg designs that have worked for rapid climbers are markedly
different. The models and mechanisms that work for these robots are described
in the following section.

Dynamic Climbing

While the SLIP model has been effective in describing running behaviors that
are orthogonal to gravity, moving into the face of gravity requires a different
mechanism and model. To address this, the Full–Goldman (FG) model of climb-
ing has been developed by Goldman et al. (2006) based on the dynamic climbing
behavior of geckos and cockroaches. This model – or template in the terminol-
ogy of Full and Koditschek (1999) – captures the fundamental pendular motion
and forces exhibited by these animals as they rapidly scale vertical surfaces.
Other models, such as brachiation (Bertram et al., 1999; Parsons and Taylor,
1977) or body-mass oscillation (Provancher et al., 2011), have also been used to
design robots for arboreal or scansorial settings.

The FG Model of climbing (see Fig. 7.2.4A) represents the body as a point
mass, with massless springs as arms. Each arm is prismatically actuated, and
pulls the body upwards in an alternating fashion. The body can swing during
each stance phase as the contact point is modeled as a revolute joint. A spring
in series with the actuator in each arm stores and returns the energy in each
stride and reduces the peak wall-reaction forces from each step. A schematic,
including the resulting COM trajectory, is given in Fig. 7.2.4A.
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FIGURE 7.2.4 (A) Schematic depicting the Full–Goldman template for dynamic climbing.
(B) DynoClimber, the first robotic platform shown to anchor the FG template and (C) BOB.

The first platform to instantiate the FG template, DynoClimber, can climb
at speeds up to 0.66 m/s (Lynch et al., 2012). The design of this 2 kg platform,
shown in Fig. 7.2.4B, demonstrates a close adherence the template morphology.
The design features single DOF legs that act prismatically via a crank–slider
mechanism. A spring in parallel with the linkage allows energy to be stored
during the flight phase and released during stance to aid the motor. Key to instan-
tiating the FG-template is the fact that the arms pull inwards on each stroke. The
same mechanism is used on a dynamically similar but smaller (200 g) version
of the bipedal climber, BOB (Dickson et al., 2015) which is driven by a single
motor. BOB has been shown to climb at up to 40 cm/s and using microspines
(Kim et al., 2005) can climb surfaces such as stone aggrogate, brick, and cin-
derblocks. Additional actuators, however, are required for steering, climbing on
curved surfaces, or climbing downwards (Miller et al., 2015). For both robots,
the horizontal bar at the bottom acts as passive rear legs to stabilize rolling mo-
tions not captured in the FG-template.

7.2.4.4 Multiuse Leg Designs

Most of the dynamic legged robots examined thus far are only capable of high-
speed motion in a single mode of operation. Animals, on the other hand, such
as the gecko Hemidactylus garnotii are able to nimbly switch, for example, be-
tween climbing and running on level ground without losing speed (Autumn et
al., 2006). While the animal maintains the same kinematic motions (Zaaf et al.,
2001) the force generation is switched from pushing laterally during running to
pulling inwards during climbing (Autumn et al., 2006). Similar adaptations are
observed for the cockroach Blaberus discoidalis (Kram et al., 1997; Goldman
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et al., 2006). In order to develop robots capable of achieving this kind of ag-
ile, multimodal locomotion, the limbs need to be designed in a way that allows
for both the range of motion and force generation for both modes of locomo-
tion. Combining these is particularly difficult in light of the limitations in power
density of current actuators.

Our experience with single-domain robotic limb designs suggest that these
robot legs will require sufficient degrees of freedom, tuned compliant ele-
ments, and properly allocated actuators. For example, a robot that can both
run and climb dynamically should be able to instantiate multiple templates.
Although structurally the SLIP and the FG templates are very similar (point-
mass body, simple spring legs), the dynamic constraints are distinct in at least
two ways. First, the direction of force generation is switched from pushing out-
ward to pulling inwards. Second, the magnitude of the effective limb compliance
changes significantly. In addition, the design and placement of the feet is differ-
ent for each mode.

The challenges could, in theory, be met simply by adding enough actuators.
In practice, however, this leads to a heavier payload and greater demands on
each actuator. It also significantly complicates the control problem.

Control vs. Design-Based Approaches

Attempts to resolve these constraints have generally fallen into one of two ap-
proaches, either (1) a control-based (CB) approach or (2) a design-based (DB)
approach.

In a control-based approach, the platform is designed for maximum flexibil-
ity. Serial-chain leg morphologies that maximize workspace are often chosen.
In order to simplify the design, robots such as Robosimian (Hebert et al., 2015)
and ANYmal (Hutter et al., 2016) even use the same motors to drive each DOF
in the leg. The first challenge here is to design a control strategy to coordinate
the limbs to create functional and adaptive gaits (Hyun et al., 2014; Semini et al.,
2013). Techniques such as hybrid-zero dynamics for asymmetric SLIP runners
(Poulakakis and Grizzle, 2009) or virtual chassis for snake robots (Rollinson et
al., 2012) are used to reduce or map the high DOF system to a low level template
for control purposes. The second challenge for CB robots is to provide sufficient
power density, as their motors tend to be heavily geared and each motor is not
being used to full capacity in each mode.

The design-based approach, on the other hand, explicitly attempts to en-
code the template dynamics into the structure of the body and legs. Robots such
as iSprawl (Cham et al., 2002), DASH (Birkmeyer et al., 2009), and Dyno-
Climber (Lynch et al., 2012) each have leg structures with passive dynamics
tuned to running or climbing in the desired domain. While these light-weight
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FIGURE 7.2.5 SCARAB, a quadrupedal running and climbing platform. (A) Running mode,
(B) close up of the leg design, and (C) in climbing mode.

robots are fast (sometimes exceeding the speed of their biological exemplar),
they lack the flexibility to adapt their motions as they change domains.

There have been some efforts to build legged robots capable of moving in
multiple modalities. The RiSE robot uses a combination of four-bar linkages,
a differential hip, and bi-directional springs (Saunders et al., 2006) to enable
both walking on the ground and the scaling of vertical surfaces. Weight and
power limitations, however, prevented it from moving dynamically without fur-
ther specialization (i.e., RiSE v3) (Haynes et al., 2009).

The quadrupedal platform, SCARAB, shown in Fig. 7.2.5, is an example
of following the iterative, DB-approach to achieve dynamic operation in mul-
tiple modalities. SCARAB’s legs combine the crank–rocker mechanism used
on iSprawl with hip joints that can rotate (Miller et al., 2015). As shown in
Fig. 7.2.5 each leg features a pair of springs: one that is compressed in running
and a softer one that is compressed during climbing. This configuration, com-
bined with the ability to adjust the leg angles and phasing of the legs, allows
for rapid motion in both horizontal and vertical domains. An assessment of the
velocity profiles of SCARAB suggests that the robot is capturing the biologi-
cally relevant SLIP, LLS, and FG dynamics. Overcoming large obstacles and
transitioning between running and climbing, however, is still a challenge.

7.2.5 SUMMARY AND FUTURE DIRECTIONS

While there are a wide variety of robotic leg designs, all of them provide a few
basic functions. Each leg acts as a strut, spring, damper, and actuator. Whether
actuated by pneumatics, hydraulics, DC motors, or smart materials, robots use
their legs to propel themselves forward during stance and raise the leg for re-
traction during the swing phase. Many of the differences in leg design revolve



502 PART | III Implementation

around the number and location of the active degrees of freedom. Kinematic
linkages have often been used to simplify the gait development process and this
in turn has lead to fast robots with a minimal number of actuators. Other de-
signs have used a more mammalian-like serial-chain leg morphology, allowing
for a larger workspace and dexterous foot positioning, but this makes achieving
desired whole-body dynamics more challenging.

In recent years, promising advances have been made in combining high-DOF
morphologies with powerful, proximally located actuators to anchor the reduced
order dynamic models that have guided the design of high-speed runners. As we
progress in our ability to combine the advantages of control-based add design-
based robot limbs we will enable a new generation of dynamic multimodal
legged robots capable of rapid motion in difficult, unstructured environments.
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To some extend, almost all bipedal robots that have been developed thus far are
inspired by the human figure. Indeed, robots in this family are designed with
the objective to reproduce certain features of human locomotion that are impor-
tant for automating tasks in typical human-centric or natural environments. The
approaches adopted by researchers in this field to incorporate such features in
a bipedal robot’s behavioral repertoire vary significantly, resulting in systems
with drastically different morphological and geometric characteristics, and ac-
tuation and control architectures. These differences manifest in the resulting
locomotion behaviors, with important consequences in mobility, versatility and
energy efficiency. For example, humanoid robots – perhaps the most visible to
the general public bipedal robots – are versatile platforms capable of accom-
plishing a diverse array of locomotion and manipulation tasks at the expense of
energy economy. On the other hand, passive dynamic walkers are champions
in energy efficiency but their locomotion behaviors are limited; the remarkable
elegance and energy efficiency of these systems comes at the cost of poor ability
in achieving tasks such as climbing stairs, turning or running.

This chapter begins with a brief overview of some of the different approaches
that have been adopted for the mechanical design, actuator architecture and con-
trol of bipedal robots. Our objective in this part is to provide a glimpse to the
different levels of biological inspiration that underlie the development of bipedal
robots. It is deduced that creating robots that share the same morphological
characteristics with their natural models – in this case, humans – does not nec-
essarily imply that the properties of the resulting robot locomotion behaviors
can faithfully capture those of the corresponding natural model. As we will see,
passive walkers are more “human-like” than humanoid robots, despite the fact
that humanoids are more anthropomorphic machines. Throughout this brief re-
view, attention is placed on the actuation approaches that are common in bipedal
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robots – i.e., electrical, hydraulic, and pneumatic – to motivate the discussion in
the second part of the chapter, which focuses on the role of biarticular muscle
units in powering locomotion on bipedal robots. The use of biarticular muscles
– that is, muscles that span more than one joints – serves as a concrete example
of a bioinspired robot architecture, and it represents a departure from the classi-
cal robotics actuation paradigm, in which each joint is actuated by one actuator.
The implications of this novel actuation approach are discussed in more detail.

7.3.1 MIMICKING THE HUMAN FIGURE

The history of designing and building modern bipedal robots can be traced back
in the 1960s. One of the earliest bipeds is WAP-1 shown in Fig. 7.3.1, an an-
thropomorphic, pneumatically actuated “pedipulator” developed by Prof. Kato
of Waseda University in 1969 (Lim, 2007). This robot was able to walk slowly
along a straight line, and was constrained to move within the sagittal plane.
The motivation underlying the development of WAP-1 has been to study and
understand the biomechanics of human walking, and to emulate such motions
in an engineered system. Due to the strong desire to mimic human movement,
the robot was actuated by artificial pneumatically-driven muscles. Following
WAP-1, a series of bipedal robots has been designed by the same group, leading
to WAP-3, a three-dimensional bipedal robot driven by pulse width modulation
(PWM)-controlled bag-like pneumatic actuators. The aforementioned robots
were controlled on the basis of a “teaching-playback paradigm” (Ito and Tsu-
tomu, 1983), and had no balancing capabilities. To provide such capabilities,
more involved feedback control schemes had to be implemented, and pneu-
matic actuation was dropped in favor of more powerful hydraulic actuator units,
which are capable of delivering control commands to the robot’s joints fast,
with minimal response time. As a result, more powerful control schemes could
be implemented based on a stability criterion that aims at maintaining balance
by keeping the center of pressure (COP) within the support plane. However, the
adoption of hydraulic actuators introduced dynamics that are markedly differ-
ent from the dynamics of the human-like pneumatic artificial muscles, thereby
shifting the focus from robots that mimic the structural properties of human
actuation units to robots that mimic function in terms of balancing and walking
motions. Yet, it is important to point out that one of the earliest bipedal machines
used pneumatic actuation.

Based on this work, Prof. Kato pointed out three research approaches for de-
signing and constructing bipedal robots (Kato, 1983). One approach emphasizes
mechanical design and dynamics, resulting in motions that are largely based on
the system’s capabilities with minimal – or, in some cases, without any – control
influence. A second approach is based on imitating the biomechanics of human
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FIGURE 7.3.1 The bipedal robot WAP-1, which was actuated by artificial pneumatically-driven
muscles (Lim, 2007) (courtesy of Atsuo Takanishi Lab., Waseda University).

motion by introducing robots that closely reproduce not only the morphology
but also the musculoskeletal structure of a human. Finally, a third approach re-
lies more on feedback control theory coupled with sufficient actuation authority
to ensure high-performance trajectory tracking that replicates the kinematics of
human motion. This categorization provides a basis for understanding the differ-
ent levels at which inspiration from human structure, morphology and dynamics
can be applied to bipedal robot design. We will briefly review these approaches,
but in a different order – starting from feedback-oriented methods, continuing
with mechanical design and dynamics methods, and finally concluding with bio-
mechanical approaches – to make the connection with the second part of the
chapter that deals with biarticular actuation.

7.3.1.1 Early Control-Based Approaches

One of the earliest bipedal robots capable of dynamic walking motions was de-
veloped by Miura and Shimoyama (1984). As shown in Fig. 7.3.2, the stilt biped
BIPER had small feet and heavy torso, and was modeled as an inverted pendu-
lum. Based on linearizing the equations of motion around a desired trajectory,
a linear feedback controller has been designed to stabilize the system. BIPER
was driven by electric motors, controlling the torque applied at each joint of the
robot. This robot did not share the geometric characteristics of the legs and torso
of a human. In fact, its legs had no knee and ankle joints, and the dynamics was
simplified so that the controller implemented based on the linearized equations
was effective. However, following this work, the inverted pendulum model and
its extensions have become standard in capturing the dynamics of balancing in
bipedal walking machines.
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FIGURE 7.3.2 The bipedal robot BIPER closely resembles an inverted pendulum (Miura and
Shimoyama, 1984).

Following Miura and Shimoyama (1984), a number of researchers devel-
oped bipedal robots with more human-like morphologies than BIPER and used
the inverted pendulum paradigm for designing control laws. The majority of
these robots were driven by electric motors controlled by computers with small
time delays. In general, though, the ability of electric motors to generate torque
is speed-dependent; typically, the magnitude of the torque that can be deliv-
ered to the motorshaft is small and the rotating speed is much faster than that
required in bipedal robot applications. Therefore, it is common to use transmis-
sion mechanisms – often, gearboxes – to reduce the rotating speed and increase
the output torque. The introduction of gearboxes in the drive train, introduces
dynamic effects that significantly affect the behavior of the robot. In particular,
the gear reducers tend to increase the friction of the joint and to add reflected
inertia, which, depending on the gear reduction ratio, can be significant. Hence,
joints that are driven by combined motor–gearbox actuation units can be diffi-
cult to move from the output side – that is, the side of the gearshaft – resulting
in systems that lack backdrivability.

The lack of backdrivability can be advantageous when one is interested in
precise control of each joint individually. Indeed, any disturbances that are de-
veloped at the gearbox output – either due to the motion of other joints and links
of the robot or due to its interaction with the environment – cannot significantly
affect the torque applied by the motor. As a result, each joint can be controlled at
a satisfactory degree without the need to take into account the whole dynamics
of the robot’s structure, and precise motion control can be achieved using only
local feedback (Sciavicco and Siciliano, 1996). The externally applied forces
are simply treated as disturbances that can be sufficiently attenuated by the non-
backdrivable nature of the combined motor–gearbox unit. While this property
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can be helpful in simplifying feedback design, robots the lack backdrivability
cannot produce highly dynamic movements, for such systems are very “stiff”
and insensitive to interaction forces. As an example, consider a running biped.
Following the impact of a leg with the ground, the corresponding knee joint
would have to bend as the center of mass of the system lowers and decelerates.
A non-backdrivable knee joint would not be able to realize this motion naturally,
and explicit control action would be required, which – beyond the energy cost
that it entails – is subjected to the bandwidth limitations of the motors involved,
especially at the touchdown instant when impulsive forces are developed.

We have seen thus far one of the great challenges in designing human-
inspired bipedal robots, which, as a matter of fact, permeates the development
of any biologically inspired robot. Although, we can reproduce the geometry
of the human figure at a satisfactory degree, and we can achieve high-precision
control of the joint motion according to desired human-like trajectories, it is ex-
tremely hard to capture the dynamic characteristics of human movement. This is
due to the fact that common engineering materials, actuation modules and con-
troller design approaches are characterized by limitations and capabilities that
are markedly different from those of bones, ligaments, tendons, muscles, and
the neural circuitry that controls the ensemble. Clearly, the challenge in repro-
ducing human-like locomotion behaviors on bipedal robots lies on the fact that
the technological means available to the designer are fundamentally different
from those used in animals, thereby resulting in dramatically different design
decisions.

7.3.1.2 Morphologically Inspired Bipeds and Quasistatic
Balancing

As we have seen, robots that are driven by combinations of motors and gear-
boxes do not exhibit significant joint back-drivability, making it possible to
control each joint individually to track desired trajectories. In this case, the be-
havior of the robot largely depends on the nature of the trajectories that are
imposed on its joints, and – owing to the availability of fast local feedback con-
trollers – can be easily altered by changing these desired trajectories. There are
several approaches on how to design desired trajectories for realizing walking
on bipedal robots. Perhaps one of the simplest ways is to record – for exam-
ple, by using a motion capture system – human joint trajectories during walking
and enforce properly scaled versions of them on the robot joints. However, in
most cases, this method would fail to realize stable walking motions. Indeed,
as was mentioned above, the robot’s dynamics is significantly different from
the dynamics of a human during walking, even when proper scaling is used to
match the geometric characteristics of the human figure. As a result, imposing
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human-like trajectories on bipedal robots does not automatically guarantee sta-

ble operation, unless special care is taken; see Ames (2014), for example.

Clearly, one of the principal problems of designing functional walking ma-

chines is locomotion stability. To avoid complexity and ensure that the robot

will not fall, many developers of bipedal robots – particularly humanoids – have

adopted a simple notion of gait stability. Indeed, for many of these robots, the

stabilization algorithm boils down to maintaining the center of pressure of the

ground reaction forces of the stance foot strictly within the convex hull of the

foot. Combined with simple pendulum-like models of human locomotion, the

ZMP stability criterion can be used to generate desired trajectories for highly

complex bipedal robots. For example, if the torso is relatively large, the dynam-

ics of the robot can be approximated by an inverted pendulum with a prismatic

knee joint, called the linear inverted pendulum model (LIP) (Kajita and Tani,

1991). One can then design the desired trajectory of the center of gravity (COG)

of the robot based on high-level motion planning objectives and then use the LIP

model to compute the corresponding evolution of the ZMP. Walking can then be

realized by the robot though the use of sensory feedback to track the calculated

ZMP trajectory (Kajita et al., 2002). Alternatively, one can utilize a ZMP-based

walking pattern generation to first design the ZMP trajectory and compute the

corresponding COG trajectory. The desired trajectories for the robot’s joints can

then be computed so that the COG trajectory is realized (Kajita et al., 2003).

Depending on the available sensory information about the ZMP, preview con-

trol can be implemented to modify the COG trajectory as in Kajita et al. (2003).

No matter how the COG or ZMP trajectories are generated, the resulting

walking motions are often flat-footed and distinctly not human like. This is

clearly visible in humanoid robots that typically employ controllers like the ones

described above. Humanoids are complex, high-degree-of-freedom prototypes,

developed as part of an effort to create robots that will be able to serve humans

– or even directly replace them – in tasks that may be dull or dangerous. As

such, humanoids involve a very broad-ranging development effort that includes

machine vision, portable power sources, artificial intelligence, force sensing,

durability, packaging, etc. Upright, stable bipedal locomotion is only one piece

of the overall effort, and – largely for reasons of expediency – the designers

of these robots have adopted ZMP-based notions of gait stability, that do not

faithfully capture human walking. Clearly, although these robots are inspired

by human morphology, they are limited in their ability to reproduce the natural

dynamics of human locomotion.
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FIGURE 7.3.3 McGeer’s passive dynamic walker.

7.3.1.3 Passive Walking and Dynamic Balancing

At the opposite end of the complexity spectrum – compared to humanoid robots
– are the passive dynamic walkers. In an exercise of “creative neglect” the de-
signers of these systems effectively seek to minimize the number of joints, links,
actuators and sensors that are required to realize a specific locomotion task. This
area was inspired by the groundbreaking work of Tad McGeer, who in the late
1980s and early 1990s, analyzed and built planar bipeds which could walk stably
(in the sense of possessing an exponentially stable periodic orbit) down a slight
incline with no sensing or actuation whatsoever (McGeer, 1990a,b). Although
the original passive dynamic walker does not have any torso, to some extent its
morphology is human like, as can be seen in Fig. 7.3.3. Its legs feature a passive
(unactuated) knee joint and a round-shape foot, and move freely in the sagittal
plane as rigid-body pendula under the influence of gravity. McGeer’s insight
has been that if the inertia and geometric properties of the system are tuned just
right, stable periodic walking motions can be generated without the need of any
feedback control law – this is in stark contrast with the feedback-based walk-
ing machines described above. Passive dynamic walking is purely the outcome
of the interplay between gravity and the geometric and inertia properties of the
robot.

Merely powered by gravity, McGeer’s original passive biped was capable of
walking downhill. Subsequent research efforts in this area, focused on devel-
oping (nearly) passive dynamic walkers that are able to walk on flat ground by
supplying the system with just enough power (Collins et al., 2005). An example
of such systems is the pneumatically actuated robot Mike shown in Fig. 7.3.4,
which was able to walk stably on flat ground with a simple and intuitive control
strategy (Wisse et al., 2005; Wisse and van der Linde, 2007). Inspired by the
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FIGURE 7.3.4 The (nearly) passive dynamic bipedal robots Mike (left) and Denise (right) (Wisse
and van der Linde, 2007).

rimless wheel paradigm of walking (Wisse et al., 2005), the objective of Mike’s
controller was to avoid falling down in the forward direction by rapidly placing
the swing leg at a proper angle in front of the stance leg. Albeit simple, this con-
trol strategy was very effective in increasing the basin of attraction of passive
walking motions with only the minimum amount of energy input required. Es-
sentially, Mike was mostly relying on its natural dynamics, continuously falling
on one leg and recapturing itself by the other in a manner that closely resembles
the dynamics of human walking. Indeed, this cyclic energy exchange between
kinetic and gravitational potential energies is known to be of fundamental im-
portance in explaining the economy of walking in humans (Margaria, 1976).
Following Mike – which was a sagittal plane walker – the three-dimensional
passive dynamic walking robot Denise was developed; see Fig. 7.3.4. Denise
was able to avoid sideways falling through suitable design of the shape of the
foot sole, much like a tumble doll. Mike and Denise were part of a series of
robots that have been developed in an increasing level of design complexity
with the objective to identify what each increase in complexity can contribute
to bipedal walking, in terms of versatility – such as flat ground versus inclines,
or spatial versus planar walking – and enhanced stability – such as the ability
to tolerate deviations in the walking surface without falling (Wisse and van der
Linde, 2007).

As can be seen from the examples of passive dynamic walkers presented in
Figs. 7.3.3 and 7.3.4, one common feature of these robots is their circular foot
design. It turns out that this shape is advantageous in at least two ways; first, by
generating a propulsive force as the foot rolls over the ground when the robot
falls forward, and second by promoting energy efficiency. It is very interesting to
note that the trajectory of the COP of a human with respect to a coordinate sys-
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FIGURE 7.3.5 The bipedal robot Pneumat-BB, which based on the design of passive dynamic
walkers.

tem fixed at the ankle joint also features a circular shape (Hansen et al., 2004).
Actually, it is more than just a coincidence that humans utilize their – much more
complex as we have seen in Subchapter 7.1 – feet to generate propulsive forces
in a similar manner as the simple bipeds discussed here. In fact, the circular foot
shape of passive walkers can be conceived as a simple design solution capable of
capturing aspects of the dynamics of human walking. An alternative foot design
has been proposed in Narioka et al. (2013), which investigated the effect of the
circular foot shape and deduced that similar propulsion forces can be generated
by a flat foot combined with a compliant ankle joint. To experimentally validate
this idea, the bipedal robot Pneumat-BB shown in Fig. 7.3.5 has been designed.
Similarly to the passive dynamic walkers – although Pneumat-BB is sufficiently
actuated – this robot takes advantage of its passive dynamics to generate robust
walking motions. However, in Pneumat-BB, ankle compliance was realized by
artificial pneumatic muscles; note that an electric motor emulating compliance
could also be used to actuate the ankle joint.

In a way, although McGeer’s original passive dynamic walker and other
robots in that category feature much fewer degrees of freedom and actuators
than more complex bipeds, they do capture certain key aspects of the dynamics
of human walking in a surprisingly – given their simplicity – good way. In these
highly underactuated machines, the emphasis is on achieving energy-efficient
walking through the effective use of the “natural dynamics” of the system. Note
also that taking advantage of the natural dynamics of the bipedal plant in a suit-
able way can drastically simplify the control problem as well. This does not
mean that feedback control is not used. For example, implementation of the leg
recirculation strategy to enhance sagittal plane stability in Mike requires event-
based triggering of the hip actuators (Wisse and van der Linde, 2007). Feedback
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control laws are present in a more subtle way as well; that is, by embedding them
in the mechanical design of the system. For example, the hip bisecting mecha-
nism used to stabilize the bipedal robot Max mechanically imposes a holonomic
constraint that reduces the problem of walking stability to one that can be ad-
dressed by simple leg recirculation control (Wisse and van der Linde, 2007).
Such “mechanical” solutions combined with minimal feedback control laws are
consistent with the design philosophy of passive or nearly passive bipedal walk-
ers. The flip side of the coin is that passive dynamic walkers exhibit a very
limited notion of locomotion. The remarkable elegance and economy of these
machines comes at the cost of their limited ability to achieve tasks other than
walking at a fixed speed. On the other hand, the impressive versatility demon-
strated by humanoid robots comes at the cost of increased power consumption,
heavy actuators, and expensive electronics. It is therefore natural to ask how
the efficiency and elegance of the minimalist walkers can be combined with
the versatility of humanoid robots. To address this challenge, novel design so-
lutions and feedback laws must be developed that work in concert with – and
not against – the natural dynamics of the system in realizing the intended loco-
motion behaviors. This is at the core of current research efforts in bioinspired
legged locomotion.

7.3.2 HUMAN-INSPIRED MUSCULOSKELETAL BIPEDS

In the previous section, we briefly examined just a few design approaches for
developing human-inspired bipedal robots capable of implementing walking
motions. We have seen that, although the underlying mechanism may be dras-
tically different from the structure, actuation and control of the corresponding
biological system, reliable locomotion behaviors that capture certain human-
like features can indeed be realized. In this section, we turn our attention to the
discussion of a novel actuator architecture that is inspired by biological systems
and it differs from the classical approach in robotic design; namely, biarticular
actuator units.

7.3.2.1 Biarticular Muscles: Biomechanics and Inspiration

In robotics, actuation is typically introduced in the robot’s mechanical struc-
ture so that each motor is devoted to the control of only one joint, the joint it
actuates. In the context of the musculoskeletal system, muscles that cross only
one joint are called monoarticular. In addition to monoarticular muscles, the
musculoskeletal system is supplied with muscles that cross two joints; these
muscles are termed biarticular. Focusing on the human leg, the rectus femoris
(RF), hamstrings (HAMS), and gastrocnemius (GAS) are examples of biartic-
ular muscles, each actuating two joints: RF flexes the hip and extends the knee
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FIGURE 7.3.6 Schematic representation of the musculoskeletal model of the human leg and its
primary muscles (Pandy et al., 1990). Symbols appearing in the diagram are: gluteus maximus
(GMAX), hamstring muscles (HAMS), rectus femoris (RF), vastus lateralis (VAS), gastrocnemius
(GAS), other plantar flexors (OPF), soleus (SOL), and tibialis anterior (TA).

joint, HAMS extends the hip and flexes the knee joint, while GAS flexes the
knee and extends and ankle joint. Measurements of the cross sectional area of
various human muscles indicate that monoarticular extensor4 muscles produce
more force than biarticular ones. The purpose of this section is to provide an
overview of the functions of biarticular muscles in human locomotion, and pre-
pare the ground for a discussion regarding the application of biarticular elements
in robotic devices. Since we are interested in legged robots, our focus will be
on biarticular muscle groups located in the legs, such as those mentioned above.
Restricting attention to actions that cannot be performed by an alternative pair
of monoarticular muscles, the following functions of biarticular muscles have
been proposed in the literature (van Ingen Schenau et al., 1990).

Coupling Joint Movements

Biarticular muscles couple the joints they cross in a way that can facilitate more
proximally located – and more powerful – monoarticular muscles to apply in-
direct actions on joints they do not directly affect. Consider, for example, the
RF, displayed in Fig. 7.3.6. If, the hip is extended by its monoarticular exten-

4. In general, extensor muscles are used to support the body weight against gravity, while flexor
muscles are used to lift the limbs. Flexors, therefore, are generally much smaller and generate sig-
nificantly less force than extensors.
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sors – e.g., by the gluteus maximus (GMAX), one of the largest and strongest
muscles in the human body – while the RF retains its length, the knee must
be extended as well, thus allowing the proximally located GMAX to indirectly
affect knee extension. In a completely analogous way, knee extension can be
coupled with plantar flexion through the biarticular GAS, eventually allowing
GMAX to support plantar flexion as the leg extends through the RF and GAS.
This type of coupling is characterized by limited contraction of the biarticular
muscles involved and is known as tendinous action due to the fact that, under
these conditions, the corresponding biarticular muscles can be largely regarded
as tendons. Coupling multiple joints through the tendinous action of the corre-
sponding biarticular muscles can offer several advantages by

• Enabling the transmission of the work of proximally located powerful mus-
cles to an extremity;

• Reducing the mass of more distant segments by placing larger and heavier
muscles closer to the trunk;

• Facilitating the coordinated control of multi-joint movement.

Clearly, these advantages are of interest to the design of robots, as we will see
below.

Low Contraction Velocity

During the simultaneous movement of two adjacent joints crossed by a biartic-
ular muscle – such “concurrent” movements cause the origins and insertions of
the muscle to move in the same direction – the corresponding muscle operates
at a lower shortening velocity than that of the monoarticular muscles involved.
For example, during simultaneous hip and knee extension the biarticular HAMS
have a lower shortening velocity than the monoarticular hip extensors, and the
biarticular RF has a lower shortening velocity than the knee extensors. As a
result, the biarticular muscles operate in a more favorable region of their force-
velocity characteristic compared to the case where origin and insertion do not
move in the same direction.

Transport of Energy

As was mentioned above, one of the advantages of the tendinous action associ-
ated with biarticular muscles is the transport of energy from proximally located
monoarticular muscles to the more distal joints. This action turns out to be
more prominent in explosive movements, such as vertical jumping. In van Ingen
Schenau et al. (1987), kinematic data and muscle activation patterns from ten ex-
perienced jumpers during counter movement jumps were analyzed. The results
demonstrate the role of the biarticular GAS in supporting plantar flexion prior
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FIGURE 7.3.7 Recorded EMG patterns of the vastus lateralis and mean of both heads of the
gastrocnemius (l.) and measured velocity differences during jumps (van Ingen Schenau et al., 1987).
Time is expressed in ms preceding liftoff.

to push off by transporting energy from the knee extensor – namely the monoar-
ticular vastus lateralis (VAS) – to the ankle joint. In more detail, joint position
measurements during a jump were used to calculate the difference between the
velocities of the hip and ankle joints, VHA, as well as the velocities of these two
joints with respect to the ground, V HG and V AG, respectively. In addition to the
kinematic data, ground reaction forces were measured and electromyographic
(EMG) patterns of the muscles involved were recorded. The average recorded
EMG patterns and calculated velocity differences are displayed in Fig. 7.3.7,
indicating that the GAS compensates for the inevitable decrease of the velocity
difference between the hip and the ankle joints, VHA, at the end of push-off. To
provide some intuition, note that the maximum V HA is reached prior to full knee
extension, at a mean knee angle equal to 132◦, due to geometric and anatomic
constraints (van Ingen Schenau, 1989).

• Geometric constraints. As the knee approaches its fully extended configu-
ration, the velocity difference V HA decreases to zero. Clearly, at this con-
figuration the hip and ankle joints move with the same velocity, and thus
it is impossible to maintain an increasing V HA up to full knee extension.
Furthermore, converting knee angular velocity to translational velocity dif-
ference V HA becomes less effective at large knee angles that correspond to
more straight leg configurations.

• Anatomic constraints. To avoid hyperextension of the knee, the knee angular
velocity should be decelerated to zero at full extension.

Given these constraints, the decrease of V HA toward the end of the contact phase
cannot be avoided. However, the biarticular GAS compensates for this decrease
by opposing knee extension and promoting plantar flexion. It allows the knee
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FIGURE 7.3.8 Actuator architecture of Achilles (left) and Achilles performing a squat experiment
(right) (Klein et al., 2008).

extensors to further contract and deliver power, which is not used to further in-
crease V HA through additional knee extension but for plantar flexion. Plantar
flexion accelerates V AG and thus contributes to V HG as well. Note that if only
monoarticular muscles were employed, the plantar flexors would have to con-
tract rapidly, and the further extension of the knee would be useless, resulting
only to power dissipated into heat. This is a typical example of how biarticu-
lar muscles can be recruited to transport energy to more distal joints. A similar
mechanism takes place in the upper leg, with the biarticular muscle RF. Several
simulations have also proven the importance of biarticular muscles in explosive
movements, including maximum height human jumping (Pandy et al., 1990)
and running (Jacobs et al., 1993).

7.3.2.2 Applications to Robotics

To better understand the coordination of mono- and biarticular muscles and to
test the idea of proximo-distal energy transfer in a robotic context, the anthro-
pomorphic leg of Fig. 7.3.8 has been constructed (Klein et al., 2008). The joints
of the leg – which is part of the bipedal robot Achilles – are actuated by a com-
bination of high-performance modular motors connected in series with Kevlar
straps, designed to mimic the action of a muscle. The muscle units incorporated
in Achilles’s leg are shown in Fig. 7.3.8, among which the RF and the GAS are
biarticular. The leg terminates at a passive toe and all the distances and prop-
erties of the limb segments closely follow those of the human leg. A number
of experiments were performed to access the contribution of the soleus (SOL)
and GAS to the ankle power, and to analyze the effect of the activation timing
of the SOL and GAS on peak power production. In these experiments, the leg
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FIGURE 7.3.9 The structure (left) and realization (middle) of JenaWalker I, and JenaWalker II
(right).

was commanded to lift itself up on its toe from a squat position, as shown in
Fig. 7.3.8. Measurements of the forces developed in the SOL and GAS were
used to calculate the work performed at the ankle when either or both muscle
units were activated. This analysis showed that the work at the ankle is increased
when both muscles are active, and that GAS delivers more power than the SOL,
demonstrating the effect of energy transport from the knee to the ankle when the
GAS was active. By varying the delay between the activation of the SOL and
the GAS, it was also found that the highest peak in power output at the ankle
occurred when the activation of GAS preceded that of SOL by 350 ms. This
slight delay between the activation of the SOL and GAS and its effect in opti-
mizing energy transfer at the ankle is consistent with measurements of muscle
activation in humans (Winter, 1990).

The function of biarticular muscles as power transfer mechanisms through
tendinous action can be captured in a minimalistic way by substituting these
muscles with biarticular tension springs5 as in the JenaWalker I, which is shown
in Fig. 7.3.9; see Iida et al. (2009) for details. The JenaWalker I represents the
mechanical realization of a spring–mass model that was proposed in Iida et al.
(2008) to study the salient features of the human musculoskeletal system in a
template setting. Each leg consists of three segments connected with passive
knee and ankle joints via four linear tension springs, as displayed in Fig. 7.3.9.
The springs represent the monoarticular tibialis anterior and biarticular rectus
femoris, biceps femoris, and gastrocnemius. Each leg is actuated by a single
motor, which is located at the corresponding hip joint and is controlled to track

5. Note that in animals such as the horse, a number of the biarticular muscles exhibit only limited
shortening capacity. Thus, they can be regarded largely as tendons (van Ingen Schenau et al., 1990),
justifying the simplification that they can be represented as tension springs.
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a sinusoidal trajectory. Simulation and experimental results show that the basic
motor oscillation signals excite the whole-body dynamics of the robot, which
converges to planar periodic gait cycles that correspond to human-like walking
and running motions. Interestingly, no sensory feedback is required, and the
resulting gaits are purely the outcome of the interaction between the robot’s
“musculoskeletal” system and the environment.

A number of additions and improvements to JenaWalker I led to JenaWalker
II (Seyfarth et al., 2009), which is shown in Fig. 7.3.9. JenaWalker II retains
the biarticular compliant elements of its predecessor. However, additional ser-
vomotors have been introduced above the hip with the purpose of tuning the rest
length of the biarticular springs – namely those representing the rectus femoris,
biceps femoris and gastrocnemius muscles – thus allowing for offline and on-
line postural adjustments of the legs. The stride frequency and step length can be
adapted at a given speed by appropriately changing the frequency and amplitude
of the sinusoidal signal driving the hip motors. Due to torque limitations of the
servo motors, only jogging with almost straight knees has been implemented by
tuning the gastrocnemius so that an extended foot position was obtained.

Although based on vastly simplifying assumptions regarding the structure
of the human musculoskeletal system, the JenaWalkers I and II showed how
biarticular muscles – reduced to simple compliant elements – could be imple-
mented in a robotic context to realize walking and jogging motions under the
condition that actuation is provided only by proximal motors located at the hip.
However, as was mentioned above, other muscle units – such as the SOL, for
example – play an important role in generating locomotion power, which cannot
be captured by JenaWalkers I and II. Aiming at a bipedal robot that reproduces
the human musculoskeletal system more faithfully by combining the biarticu-
lar elements of JenaWalkers I and II with additional monoarticular units, the
robot BioBiped I has been designed (Radkhah and von Stryk, 2011a,b); see
also Fig. 7.3.10. The leg structure of BioBiped I is shown in Fig. 7.3.10, and
it features three biarticular elements per leg – as in the JenaWalkers these rep-
resent the gastrocnemius, rectus femoris and biceps femoris muscles – and five
monoarticular structures. The biarticular elements and the monoarticular tibialis
anterior are passive, while the soleus and vasti lateralis are active, realized by
series elastic actuators (SEAs) (Radkhah and von Stryk, 2011a). The hips roll
and pitch degrees of freedom are driven by bidirectional SEAs or bionic drives
with fixed elastic elements but adjustable quasistiffness through active compli-
ance. The purpose of these actuators is to emulate the function of the GMAX
and the iliopsoas (ILIO) muscles; more details on the bidirectional SEAs can be
found in Chapter 8. The trunk is allowed to freely lean forward and backward.
All in all, the robot has nine degrees of freedom and nine motors. Finally, in
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FIGURE 7.3.10 (Left) The BioBiped I, and (middle-left) its leg actuation architecture; gray and
purple indicating active and passive components, respectively (Radkhah and von Stryk, 2011a).
(Middle-right) BioBiped III with active biarticular muscles (right) and its actuation architecture.

contrast to the JenaWalkers, which did not require any sensory feedback, Bio-
Biped features an inertial measurement unit, encoders at every joint, as well as
force contact sensors at the heel and ball (Radkhah et al., 2010). In preparation
to running, vertical hopping motions were realized on BioBiped I by suitably
constraining the robot’s pelvis motion along the vertical hopping direction. The
resulting hopping motions feature both alternating and synchronous leg move-
ments, with flight phase durations up to 200 ms with a duty factor of about 0.5
and ground clearance of up to 5 cm (Maufroy et al., 2011). In BioBiped III as
the latest version of BioBiped series robots the hip lateral DoF is removed and
three SEAs are added for biarticular muscles (RF, BF, and GA) to focus on their
contributions in stance, swing and balance control in sagittal plane (Sharbafi et
al., 2016).

The aforementioned bipeds are actuated by electrical motors and feature
compliant elements to reproduce certain structural characteristics of the human
musculoskeletal system, such as biarticular muscles. In parallel to the develop-
ment of these electrically actuated systems, a number of bipedal robots driven
by artificial muscles has been introduced. Although, the majority of these robots
utilized antagonistic artificial muscle pairs to drive joints, initially they did not
include biarticular muscles. One of the earliest robots that uses pneumatically
driven artificial muscles in both monoarticular and biarticular configurations
was the monopod Que-Kaku-K (an air-leg in Japanese), which is depicted in
Fig. 7.3.11 and detailed in Hosoda et al. (2010). As shown in Fig. 7.3.11, this
robot closely follows the musculoskeletal structure of the human leg in the
sagittal plane, featuring 9 muscles organized in 5 pairs. In accordance to the dis-
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FIGURE 7.3.11 A human-inspired monopod Que-Kaku-K. It has 6 monoarticular muscles
(3 pairs) and 3 biarticular muscles (Hosoda et al., 2010).

cussion in Section 7.3.2.1, the biarticular muscles in Que-Kaku-K were mainly
used for power transfer, while the more powerful monoarticular muscles – es-
pecially the antigravity ones – generated the power necessary to lift the body
up. A number of hopping experiments have been performed by changing the
tensile forces developed by the biarticular GAS and investigating its influence
on the direction of the hoping motion. The controller design does not rely on
any given desired trajectories; instead, only the balance of the biarticular mus-
cles has been altered to realize changes in the hopping direction, keeping the
control of the antigravity muscles unchanged for propulsion. It is important to
mention that the proposed controller does not utilize intense feedback, thus the
computational cost for realizing hopping is small. Hence, although pneumatic
artificial muscles have low bandwidth capabilities, fast hopping motions have
been realized in Que-Kaku-K without the need of feedback control. An exten-
sion of Que-Kaku-K is Pneumat-BB (Narioka et al., 2013), a planar bipedal
walker whose muscles are all actuated by pneumatics. As was mentioned above,
antigravity muscles are those primarily responsible for propulsion, but the an-
tagonistic muscles also play an important role in changing joint compliance. As
in passive bipedal walkers, Pneumat-BB has been designed so that its natural
dynamics is suitably tuned for walking motions. As a result, in closed loop with
a simple control law, the robot was able to realize reliable and efficient limit-
cycle walking gaits on a treadmill for more than 15 minutes.

To further investigate the influence of joint compliance on locomotion, the
bipedal robot Pneumat-BR shown in Fig. 7.3.12 (left) has been designed. Each
joint of Pneumat-BR is driven by a pair of muscles and thus the robot’s joint
compliance can be easily modified. As a result, a wider range of behaviors can
be realized. Indeed, Pneumat-BR is a 3D biped capable of walking, jumping
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FIGURE 7.3.12 Pneumat-BR, a biped runner (left) and Pneumat-BS, a human-like compliant
biped (right).

and running motions through suitably tuned joint compliance. Since this robot
is not confined to move in the sagittal plane, a stretch reflex controller in Soleus
has been incorporated to maintain frontal balance (Rosendo et al., 2015). Note
that the musculoskeletal structure of the robot enables us to evaluate the ef-
ficacy of such bioinspired control designs, rendering such robots an excellent
dynamic model of a human. Along the same philosophy with Pneumat-BR,
the biped Pneumat-BS shown in Fig. 7.3.12 (right) has been constructed. Up
to date, Pneumat-BS is perhaps the closest robot to the musculoskeletal struc-
ture of a human (Ogawa et al., 2011). It has a total of 40 pneumatic artificial
muscles, and, owing to its leg actuation structure, is also capable of 3D loco-
motion through biarticular muscles that extend form the pelvis to the knee joint
and contribute to knee flexion, hip flexion, hip external rotation, and hip abduc-
tion. The complexity of Pneumat-BS calls for more advanced control strategies
than those derived on basis of simplified functional locomotion models like the
SLIP, which cannot fully capture the fundamental behaviors of the robot. De-
spite this complexity however, the close resemblance of the musculoskeletal
structure of this robot with that of the human legs makes it an ideal platform
for studying the biomechanics of human locomotion in a more controlled set-
ting.

7.3.3 CONCLUSIONS

This section provided a brief overview of a different design philosophies for
human-inspired bipedal robots. Inspired by human locomotion, the objective of
these bipedal machines is to produce dependable walking motions in typical
human-centric and natural environments. Through this overview, we empha-
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sized the fact that reproducing the morphology of the human figure on a robot
is far from being a sufficient condition for capturing the dynamics of human
walking. For example, despite their mechanical simplicity, passive dynamic
walkers can capture the energy transformations underlying human walking mo-
tions more accurate than more anthropomorphic robot designs. Furthermore,
decisions on the actuation architecture and on the control system are fundamen-
tal to how the robot interacts with its environment, and thus significantly affect
the locomotion behaviors it can generate. One recent approach to actuation de-
sign which is inspired by biological systems relies on the use of biarticular
actuator units – namely actuators that span more than one joints – thus marking
a point of departure to traditional robot actuation design. The use of biartic-
ular muscles in robot design allows proximal placement of heavy motors and
enables the transmission of work to the extremities, all the while facilitating
multi-joint coordination. Both electrically and pneumatically actuated bipeds
have been constructed that employ biarticular muscle units, with encouraging
results in reproducing aspects of human locomotion dynamics.
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Chapter 7.4

Bioinspired Robotic Quadrupeds
Ioannis Poulakakis
Department of Mechanical Engineering, University of Delaware, Newark, DE, United States

Our focus in this chapter will be on dynamically-moving quadrupedal robots.
Compared to bipedal and hexapedal robots, robotic quadrupeds offer a good
tradeoff among (i) stability, (ii) load-carrying capacity, and (iii) mechanical
complexity. Such properties render machines of this kind an attractive alter-
native to conventional vehicles in many real-world applications that require
enhanced mobility and versatility. This has been recognized by the robotics
community, and sophisticated quadrupeds have been constructed; see, for in-
stance (Raibert et al., 2008; Wooden et al., 2010) for the recently constructed,
highly mobile, BigDog and also (Raibert, 1990; Poulakakis et al., 2005; Nichol
et al., 2004) for earlier robot designs. The objective of this section is to provide
a brief description of the role of the torso in dynamic quadrupedal locomo-
tion, and to offer an account on how biological observations in the context of
quadrupedal animals provided inspiration for the design of robotic quadrupeds.
It is important to emphasize upfront that our use of the term “bio-inspiration”
does not suggest an effort to copy the exact mechanisms by which animals
achieve a desired behavior in their natural environments. Nature uses its own
means – shaped through millions of year of evolution – to realize a wealth of
locomotion behaviors depending on the circumstances animals face in their ev-
eryday lives. As was discussed in the previous chapters, more often than not the
mechanisms available to roboticists in their effort to create machines capable of
realizing animal-like behaviors differ substantially from those employed by na-
ture. Hence, in this chapter “bio-inspiration” refers to extracting the principles
underlying a behavior of interest – in our case, a desired quadrupedal gait – and
to exploiting the properties of the means technology provides to reproduce this
behavior on a suitably designed robot.

7.4.1 PRELIMINARIES ON GAITS

The term gait simply means the way animals – or, in our case, bioinspired robots
– move. The study of gaits has a long and rich history, and gait descriptions have
been available since the late 18th century with the work of Goiffon and Vincent
(1779), who studied the gaits of horses by recording the ring pattern of a bell
system attached to their hooves. A detailed account of the history of gait studies
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would lead us too far astray; yet, it is important for our subsequent discussion of
quadrupedal robots to provide a brief description of some common quadrupedal
gaits that are also employed by running robots. More detailed descriptions of
gaits can be found in the relevant literature. The interested reader is referred
to the pioneering work of Hildebrand (1965, 1977), as well as to Gambaryan
(1974, Chapter 2) and to Bertram (2016, Chapter 2) for a more recent account;
mathematical treatments are also available in McGhee (1968) and Collins and
Stewart (1993).

When a legged animal or robot moves, its legs exhibit a progressive and ret-
rogressive motion with respect to the body. According to Muybridge (1957),
a step is an act that involves the motion of a leg as it goes through its regu-
lar functions in the course of supporting and propelling the body; that is, a leg
contacts the ground to provide support and generate propulsion, then lifts off
the ground and swings forward in preparation for the next step. A stride on
the other hand is a combination of actions that involves all legs, moving either
alone or in association with other legs. It begins and ends with two consecutive
footfalls of some reference leg, and it includes the contact of all other legs in be-
tween (Bertram, 2016, Chapter 2). Essentially, the term stride is used to denote
the fundamental repeating pattern within a regular gait.

Depending on the movement of the legs within a stride, a wide variety of
gaits can be observed. Gaits in which the footfalls of the left and right legs in
a pair – front or hind – are equally spaced in time are called “symmetrical”; in
these gaits, the legs in a pair contact the ground half a stride out of phase with
each other. According to this definition, the walk, the trot and the pace presented
in Fig. 7.4.1 are examples of symmetrical gaits. As can be seen in Fig. 7.4.1A, in
the walk, a front leg contacts the ground after the hind leg of the same side (lat-
eral sequence) has touched down, forming a sequence of independent footfalls
that enhances stability. On the other hand, legs on the same – in the pace – or op-
posite – in the trot – sides of the body swing more or less in unison, resulting in
a sequence of coupled footholds; see Figs. 7.4.1B and C, respectively. The coor-
dinated use of legs on the same side in pacing helps avoid interference between
the front and hind legs in animals with long limbs. Coupling diagonal legs in
trotting causes the line of support formed by the feet in contact with the ground
to pass near the center of mass, facilitating animals with splayed leg postures
or wide bodies. Hildebrand (1965) devised an effective system for quantifying
and classifying symmetrical quadrupedal gaits on the basis of a minimal set of
variables; namely, the stride duration, the duty factor and the relative phase. The
duty factor of a foot is the fraction of the stride duration over which that foot is
in contact with the ground. Typical “walks” have duty factors more than 50%,
implying that there is always at least one leg providing support, as in the walk-
ing gait of Fig. 7.4.1. Typical “runs”, on the other hand, have duty factors less
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FIGURE 7.4.1 Examples of symmetrical (left) and asymmetrical (right) gaits. The horizontal bars
indicate the period over which the corresponding leg is in contact with the ground. “L” stands for
left, “R” for right, “H” for hind, and “F” for front. The arrows in the footfall patterns on the left of
the gait diagrams show the succession of the legs touching the ground; e.g., starting with the “LH”
leg in the rotary gallop the “RH” touches the ground next followed by the “RF” and then the “LF”
legs in a sequence that rotates around the torso’s center, explaining the term “rotary gallop.” Footfall
patterns for the trot and bound gaits are not shown since the legs forming a pair touch the ground in
unison, and cannot be distinguished.

than 50%, indicating that there are periods in running when all the legs are in
the air (Collins and Stewart, 1993); examples include the running pacing and
trotting gaits of Fig. 7.4.1. In symmetrical gaits, knowledge of the stride dura-
tion and the duty factor of one of the legs in a pair – front or hind – completely
determines touchdown and liftoff of both legs within that pair. Yet, a number of
different gaits emerge depending on the temporal relationship between the front
and hind leg pairs. To capture this effect, the relative phase defined as the frac-
tion of the stride duration from the footfall of a rear leg until the front leg on the
same side of the body strikes the ground was proposed in Hildebrand (1965).

Contrary to symmetrical gaits, gaits in which the footfalls of the legs forming
a pair – front or hind – are unevenly spaced in time are called “asymmetri-
cal” (Hildebrand, 1977). In this case, we distinguish between the legs in a pair,
calling the leg that contacts the ground first6 trailing and the leg that touches
down next leading. Examples of asymmetrical gaits include the transverse and

6. The terminology emphasizes spatial position over temporal succession, and may appear confus-
ing since the leading leg contacts the ground after the trailing leg.
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rotary variations of the gallop and the bound; see Fig. 7.4.1. In the rotary gallop,
which is typical of the Cheetah, the leading legs of both the front and hind pairs
lie on opposite sides of the body, and the succession of footfalls “rotates” around
the body, as shown in Fig. 7.4.1. Conversely, in the transverse gallop, which is
characteristic of the Horse, the leading legs of both the front and rear pairs lie on
the same side. A limiting case in which there is no phase lag between the legs
within a pair – and thus no distinction to trailing and leading legs is needed –
corresponds to the bounding gait of Fig. 7.4.1, variations of which are observed
in smaller quadrupeds. Note that the bound is left–right symmetric, although it
is classified as asymmetrical in the sense of Hildebrand (1977) due to the fact
that the touchdown events of the legs forming a pair are not equally spaced
in time. As expected, more parameters than those used to quantify symmetri-
cal gaits are needed in the description and classification of asymmetrical gaits;
see Hildebrand (1977) for details. Asymmetrical gaits are typically employed
at high speeds and are characterized by the emergence of prolonged suspension
phases, in which all the legs are off the ground so that more distance can be
covered in a singe stride. Suspension phases typically occur after the front legs
take off the ground. These are often referred to as gathered suspension phases
due to the configuration of the legs that are collected toward the center of mass
of the body; see Fig. 7.4.3 below. On certain occasions, a second suspension
phase may emerge after the hind legs take off the ground; this phase is referred
to as an extended flight phase due to the fact that the legs are stretched out.

Animals employ different gaits depending on desired rate of travel, en-
ergy efficiency, stability and maneuverability. In transitioning between gaits,
irregular stepping patterns emerge, which are difficult to describe using Hilde-
brand’s approaches (Hildebrand, 1965, 1977). An alternative approach proposed
in Abourachid (2003) describes the gait as a succession of cycles, each com-
posed by sequences of contacts starting with the trailing front leg and propagat-
ing in an anterior–posterior fashion to the hind legs. The method does not rely
on the existence of clearly defined temporal boundaries of the gait pattern, and it
can be used to describe symmetrical and asymmetrical gaits (Abourachid, 2003)
as well as irregular gaits patterns (Abourachid et al., 2007) in a concise way.
Although the aforementioned gait description methods have been quite useful
in classifying and comparing gaits, they do not by themselves offer mechani-
cal explanations of the underlying force generation and energy transformation
mechanisms that characterize the emergence of an observed gait behavior7.

7. For example, as was mentioned above, contrary to typical “runs”, “walks” have duty factors
more than 50%, and thus walking and running could be distinguished merely on the basis of the
duty factor. While this distinction may hold most of the times and for most animals, McMahon and
Cheng (1990) pointed out in the context of human running that there are cases where it fails. A better
criterion for distinguishing walking and running in humans – and one that reflects the underlying
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Similarly to their counterparts in the animal world, robotic quadrupeds have
demonstrated several different gaits. Many research efforts have focused on
statically-stable robots, which avoid tipping by keeping the torso’s center of
mass over the polygon formed by the feet in contact with the ground; detailed
accounts on statically-stable quadrupeds can be found in Song and Waldron
(1989); Gonzalez de Santos et al. (2006). In this section, we focus on balancing
quadrupedal robots that can tolerate departures from static equilibrium, thereby
relaxing the rules on how the legs can be used for support (Raibert, 1986). The
most common quadrupedal gaits implemented in robots are the pace, the trot
and the bound, footfall patterns of which are depicted in Fig. 7.4.1. Character-
istic of these gaits is that pairs of legs – lateral legs in pacing, diagonal legs in
trotting and front and hind legs in bounding – are coordinated to work together.
Synergies of this kind significantly simplify controller design and implementa-
tion by effectively reducing the dimensionality of the system. In fact, the first
dynamically balancing quadrupedal robots designed by Raibert and his collabo-
rators in the mid-1980s realized paired gaits (Raibert, 1986). In Raibert’s highly
influential work, the collective action of a pair of legs that are used in unison
is represented by a single virtual leg, effectively mapping paired quadrupedal
gaits to equivalent bipedal gaits, which can be further simplified to one-foot
hopping gaits. This reduction drastically simplifies the control task by allowing
controllers for single-leg hoppers to be applied in the context of multi-legged
systems, as will be discussed below and is detailed in Raibert (1986, Chapter 4)
and in Raibert (1990). On the other hand, only a few robotic implementations
of the rotary and transverse gallop gaits can be found in the relevant literature –
see the early work in Smith and Poulakakis (2004), for example – reflecting the
difficulty associated with the purely three-dimensional nature of these gaits.

7.4.2 THE ROLE OF THE TORSO: OBSERVATIONS FROM
BIOLOGY

The torso (or trunk), incorporating the vertebral column and the muscle groups
that actuate it, is the main locomotion organ of vertebrates; see Fischer and
Witte (2007) and references therein for an evolutionary perspective and Witte
et al. (2000, 2004) for potential uses in robotic legged locomotion. In our brief
discussion of certain morphological characteristics of four-legged animals that
can be of interest to the design of quadrupedal robots, we will distinguish am-
phibians and sauropsides – particularly, quadrupedal reptiles such as lizards and
crocodiles, for example – from mammals. The source of this distinction lies on

mechanics and energetics – is that at mid-stride the center of mass of the body is at its highest
position in walking while it falls at its lowest position in running (McMahon and Cheng, 1990).
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FIGURE 7.4.2 Sprawled-posture lizards and diagonal trotting motions.

the movement of the torso, and on the arrangement of the legs and their connec-
tion to the torso. As we will see both configurations inspired the development
of machines with different properties.

As they emerged from the aquatic medium, the first terrestrial vertebrates in-
herited from their fish ancestors the lateral undulating bending motions of their
bodies. To convert these torso oscillations to propulsive forces on the ground,
the legs of sprawled-postured reptilian quadrupeds are arranged so that the prox-
imal limbs (upper arm, thigh) are horizontally attached to the torso, while the
distal parts (lower arm, shank) are vertically oriented, ending at attachment ap-
pendages at the points of contact with the substrate. This configuration favors lo-
comotion patterns in which lateral torso bending motions are synchronized with
a diagonally symmetric sequence of limb movements as Fig. 7.4.2 indicates;
such patterns proved to be beneficial both in terms of increasing step length and
of ensuring stability of the resulting gaits, and are characteristic of slow reptil-
ian quadrupedal locomotion. Evolutionary pressures for faster movement than
what the relatively slow, diagonally-symmetric walking gaits could provide re-
sulted in changes in the locomotion rhythm and in differentiation of leg function
with the hindlegs providing most of the propulsive forces. As a result, trot-like
gaits with predominance of the rear legs emerged, which at extremely high-
speed locomotion give rise to bipedal running.8 It is interesting to mention that
the differential leg function of sprawled-postured reptilian quadrupeds – such as
geckos – resembles that of sprawled-posture hexapods – such as cockroaches –
more than it resembles that of upright-postured quadrupeds (Chen et al., 2006).
In particular, sprawled-postured quadrupeds generate substantial lateral ground
reaction forces directed toward the midline of the animal with magnitudes that
exceed those of the fore-aft forces, contrary to upright-postured quadrupeds in
which the ground reaction forces are primarily concentrated in the fore-aft di-
rection.

By way of contrast to reptilian quadrupeds, four-legged mammals employ
vertical torso bending movements with their legs arranged vertically, in planes

8. As mentioned in Gambaryan (1974) the straddle configuration of the proximal parts of the legs
render lateral support phases prone to tipping instability, a fact that does not favor acceleration
through normal walking gaits where lateral support phases dominate.
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parallel to the sagittal plane. Sagittal-plane bending motions of the spine result
in flexions and extensions of the body axis, which become more pronounced
in carnivores and small therian mammals, and – at high running speeds – they
are associated with the regular use of asymmetrical gaits, such as the galloping
gait described in Section 7.4.1. A number of hypotheses have been put forward
concerning the contribution of the sagittal bending movements of the torso to
locomotion performance. In running quadrupedal mammals these movements
are believed to contribute to (i) faster traveling speeds; (ii) reduced metabolic
cost; and (iii) improved gait stability. In more detail:

• Faster traveling speeds. Running speed is the product of stride length and
stride frequency. Early studies (Hildebrand, 1959, 1961) on the cheetah (Aci-
nonyx jubatus) indicate how torso flexibility contributes to longer strides and
faster stride rates, resulting in the spectacular speeds achieved by these ani-
mals. While a detailed account can be found in Hildebrand (1959, 1961), it
worth mentioning here that flexion and extension of the torso drastically in-
creases the swing of the legs; see Fig. 7.4.3. As a result, more distance can be
covered during the suspension phases, which, in the cheetah, span a substan-
tial proportion of the gait cycle, thus dramatically increasing stride length.
Remarkably, as noted in Hildebrand (1959), relative to the shoulder height,
the length of the cheetah’s stride is more than twice that of the horse.9 An-
other point of interest regards the contribution of the muscles of the back to
advancing the legs more rapidly on the recovery stroke. As pointed in Hilde-
brand (1959), two independent groups of muscles – one located in the back
and the other inserted in the limbs – accelerate the segments of the legs as
they “unfold” during the swing phase. Compared to the case where only one
muscle group – the intrinsic limb muscles – recirculates the legs, recruiting
two muscle groups effectively accelerates the swing of the leg by sequen-
tially adding the relative velocities of its segments (Hildebrand, 1959).

• Reduced metabolic cost. It has been hypothesized that elastic structures lo-
cated in the back of galloping mammals can store and return in elastic recoil
part of the internal kinetic energy10 that is required to recirculate the legs;
see Alexander (1988b) and Alexander (2003, pp. 125–128) for details. The

9. Note that similar flexion/extension oscillations of the spine are employed by small ancestral
mammals to increase the spacial gain per movement cycle; for instance, the quadrupedal mammal
Pika (Ochotona rufescens) obtains up to 50% of the spacial gain by bending its torso for more than
40◦ (Fischer, 1998; Witte et al., 2004).
10. The difference between the role of compliance in the torso and that of the legs should be em-
phasized: the springs in the legs are responsible for saving energy that is used for propulsion – that
is, external kinetic energy – while the springs in the torso are responsible for saving energy that
is used to move parts of the body relative to itself – that is, internal kinetic energy; see Alexander
(2003) for details.
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FIGURE 7.4.3 Cheetah galloping. The length of the cheetah’s torso in its maximally flexed con-
figuration is approximately 67% of its length when fully extended. The pronounced flexion and
extension of the torso during the gathered and the extended flight phases contribute to the legendary
speeds achieved by cheetahs.

aponeurosis of the principal extensor muscle in the back and the lumbar part
of the vertebral column have been proposed as sites for elastic energy stor-
age (Alexander et al., 1985). Energy storage in the back may explain the
economy of asymmetrical gaits – such as galloping – that are employed at
speeds that are higher than those typically realized by symmetrical gaits. In-
deed, as the speed increases, larger fluctuations in the internal kinetic energy
are observed due to the fact that the legs swing back and forth at faster rates.
Switching to asymmetrical gaits at higher speeds further amplifies the fluc-
tuations of the internal kinetic energy due to the oscillations of the torso.
Hence, if no elastic energy could be stored in the back, the emergence of
asymmetrical gaits could only be justified at extreme speeds, where energy
economy is not a concern. However, such gaits are not only observed at the
highest running speeds, but also at more modest speeds. A plausible expla-
nation of this fact is that the increased internal kinetic energy fluctuations
are balanced – at least in part – by elastic energy storage in the back that
facilitates the forward and backward swinging of the legs. Because this en-
ergy storage mechanism is available only in asymmetrical gaits – through the
coordination of the legs with the movement of the torso – such motions be-
come energetically more attractive than symmetrical gaits at relatively higher
speeds (Alexander, 1988b).

• Improved gait stability. The coordinated motion of the torso and legs in
asymmetrical gaits has been suggested as a means for enhancing stability in
high-speed locomotion. Recent studies of the kinematics of the spinal mo-
tion in small mammals implementing asymmetrical gaits in Hackert (2002);
Hackert et al. (2006); Schilling and Hackert (2006) reveal that sagittal spine
movements may improve gait stability through the effective implementation
of self-stabilizing mechanisms that rely on swing leg retraction (Seyfarth et
al., 2002, 2003). In particular, using high-speed cineradiography to study
the intervertebral joint movements, it was observed in Schilling and Hackert
(2006) that the maximum flexion of the spine occurs during the last third of
the swing phase implying that spinal extension begins prior to touchdown,
thereby resulting in a retraction of the pelvis and hence of the rear legs –
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either the trailing or leading leg of the rear pair in galloping or both the rear
legs in the half bound – as they strike the ground. Leg retraction during the
later stages of the swing phase, in anticipation of touchdown, is known to sig-
nificantly improve stability, as was observed based on numerical return maps
studies of conservative spring–mass models like the spring-loaded inverted
pendulum (SLIP) by Seyfarth et al. (2003). Note also that the sagittal plane
movements of the torso in asymmetrical gaits induces cyclic horizontal dis-
placements of the center of mass (COM), which can be interpreted as ways
to adjust the optimal leg angle of attack, a mechanism that also contributes
to self-stabilization (Hackert, 2002; Hackert et al., 2006).

In general, both the reptilian and mammalian morphologies have inspired the
development of successful robotic quadrupeds. In what follows we will focus
exclusively in models and robots inspired by the vertical torso and leg arrange-
ment of mammals; for robots inspired by the reptilian morphology see Ijspeert
et al. (2007).

7.4.3 MODELING: TEMPLATE CANDIDATES FOR
QUADRUPEDAL LOCOMOTION

As we have seen in previous chapters, simple point-mass, pendulum-based
models, such as the spring-loaded inverted pendulum (SLIP), have been instru-
mental in uncovering basic principles of legged locomotion. Clearly though,
distinct morphological characteristics of quadrupedal runners indicate that the
standard SLIP (Blickhan, 1989; Full and Koditschek, 1999) and its immedi-
ate extensions (Hyon and Emura, 2004; Cherouvim and Papadopoulos, 2005;
Ghigliazza et al., 2005), cannot capture certain key aspects of quadrupedal run-
ning;11 namely, leg sequencing and coordination through the torso’s movement.
Broadly speaking, two general classes of models have been proposed in the rel-
evant literature to describe the dynamics of running quadrupeds in a template
setting; namely, simple spring–mass models and collisional models. Collisional
models have been proposed recently to provide insight in leg sequencing and
its implications to the energetics of quadrupedal running gaits; more informa-
tion about models in this family can be found in the recent book of Bertram
(2016). Spring–mass models on the other hand have been found useful in de-
signing controllers for quadrupedal robots, and will be discussed below in more
detail.

11. This is particularly true in the gallop and bound gaits (Blickhan and Full, 1993). For example,
to realize bounding, Raibert et al. (1986) observed that the legs cannot be organized to form a single
virtual leg that places the effective point of support close to the torso’s COM; see also Murphy
(1985) and Raibert (1986, p. 193). As a result, Raibert’s original three-part controller that regulates
the system’s high-level behavior through the notion of the virtual leg had to be modified to control
bounding.
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FIGURE 7.4.4 Reducing the dynamics of bounding to a planar spring–mass model. The front and
rear virtual legs of the model represent the collective effect of the front and rear physical leg pairs,
respectively.

7.4.3.1 Spring–Mass Models for Quadrupedal Locomotion

To keep the development simple, we restrict our attention to the bounding gait;
see Fig. 7.4.1. As was mentioned in Section 7.4.1, bounding is an asymmetrical
gait, and it can be thought of as a “limiting” case of galloping, where the front
and rear physical legs touch and lift off the ground in unison. This assumption
greatly simplifies analysis. Indeed, it implies that the essentials of the motion
take place in the sagittal plane, and thus the fundamental aspects of the locomo-
tion behavior of the system can be captured by a planar model, as indicated in
Fig. 7.4.4.

Simple spring–mass models12 similar to the one shown in Fig. 7.4.4 have
been proposed in the relevant literature to study various aspects of quadrupedal
running. An early example can be found in Nanua (1992) and in Nanua and
Waldron (1995), with the purpose of studying the energetics of trotting, bound-
ing and galloping. In a way analogous to Fig. 7.4.4, this model was composed
of a rigid torso and prismatic, massless, springy legs. Focusing on stability in
the sagittal-plane, a similar model was used in Poulakakis et al. (2003, 2006)
to explain the success of minimalistic controllers on realizing bounding gaits
on the Scout II quadrupedal robot (Poulakakis et al., 2005). Echoing the self-
stability of the SLIP (Seyfarth et al., 2002; Ghigliazza et al., 2005), it was found
in Poulakakis et al. (2003, 2006) that, for suitable parameters and initial condi-
tions, the model was able to reject perturbations passively, provided – of course –
that these perturbations do not alter the total energy of the system. At first sight,
it may appear surprising that an activity so apparently complex as bounding can
be stably realized in a simple model without employing any control law specif-
ically designed for that purpose. In a way entirely analogous to self-stability

12. Note that, at the opposite end of modeling complexity, more detailed quadrupedal models
have also appeared in the relevant literature. These models provide a detailed biological account
of quadrupedal gaits (Herr and McMahon, 2001), or are grounded to the morphology of specific
platform designs (Ananthanarayanan et al., 2012). Due to space limitations, this section does not
discuss such higher-dimensional models.
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of passive dynamic walkers (McGeer, 1990; Collins et al., 2005) and of the
SLIP (Seyfarth et al., 2002; Ghigliazza et al., 2005), this observation indicates
that quadrupedal running may simply be a natural mode of a properly tuned
mechanical system,13 thereby explaining the success of simple control laws in
exciting and sustaining running motions in quadrupeds like Scout II (Poulakakis
et al., 2005). Loosely speaking, these results are in agreement with experimen-
tal observations in biology (Kubow and Full, 1999), suggesting that mechanical
feedback is important in simplifying neural control, and it becomes dominant
at top locomotion speeds that challenge the ability of the nervous system to
respond on time, as happens in the rapid running cockroach Blaberous dis-
coidalis (Full et al., 1998), for example. information

Guided by the structural form of the majority of existing robotic quadrupeds,
many of the relevant modeling efforts – including all the models mentioned
above – focus predominantly on systems with rigid, nondeformable torsos. On
the other hand, as was discussed in Section 7.4.2, torso flexibility may enhance
locomotion performance in a number of ways. To investigate the influence of
spinal flexion and extension on quadrupedal running, reduced-order, sagittal-
plane models with segmented torsos have been introduced. In these models,
the torso consists of two segments connected via a spinal joint, as shown in
Fig. 7.4.5. An early example of such models can be found in Nanua (1992),
which considered a passive flexible spinal joint and massless springy legs. How-
ever, the additional degree of freedom in the torso rendered the computation
of periodic motions difficult, and lead to the conclusion that torso flexibility
without actuation may make the realization of running motions overly complex.
Subsequent efforts in Culha and Saranli (2011) and Pouya et al. (2012) focused
on actuated spinal joints, while Deng et al. (2012) considered a quasipassive
case in which an otherwise passive spinal joint can be “locked” when it reaches
its maximum flexion and extension. The possibility of generating bounding in a
completely passive setting has been investigated in Seipel (2011) using a model
corresponding to the particular geometry of two spring loaded inverted pendula
connected through a rotational spring. A similar model was used in Haynes et al.
(2012b) which focused only on the stance dynamics without considering cyclic
motions and in Satzinger and Byl (2013) which provided preliminary results
toward the control of bounding with a passive flexible spine.

To investigate the implications of torso flexibility on quadrupedal running
in a unified fashion, a hierarchy of planar models with increasing complexity
has been proposed in Cao (2015). These models are presented in Fig. 7.4.5, and

13. More generally, how to optimally exploit the inherent properties of the mechanical system in
robot design and control has also been examined in the relevant literature; see Remy et al. (2010);
Remy (2011), for example.
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FIGURE 7.4.5 A hierarchy of sagittal-plane models for quadrupedal bounding with a flexible
torso. (Center) A three-dimensional virtual prototype. (A) A passive model with massless springy
legs used to generate self-stable motions; (B) The template in (A) with an input toque at the torso
joint for feedback coordination. (C) The template in (A) with nontrivial leg mass and hip actuation to
capture energy efficiency; (D) The template in (C) with a control input at the torso joint for feedback
coordination.

they all include compliant legs and a segmented flexible torso. At one end of the
complexity spectrum, the conservative model of Fig. 7.4.5A has been proposed
in Cao and Poulakakis (2012) to study conditions under which bounding can be
generated passively, as the outcome of a properly tuned compliant mechanical
system. Furthermore, for suitable torso and leg stiffness values, the existence
of passively stable cyclic bounding motions has been established in Cao and
Poulakakis (2013a). It worth noting that the emergence of self-stability in the
context of the model of Fig. 7.4.5A is not as straightforward as it may seem
given the self-stable motions in the SLIP (Seyfarth et al., 2002; Ghigliazza et
al., 2005) and in the rigid-torso bounding model of Poulakakis et al. (2003,
2006). This is due to the additional degree of freedom in the torso of the mod-
els of Fig. 7.4.5, which introduces a large number of spurious solutions that do
not correspond to physically relevant bounding motions. At the next level of the
modeling hierarchy, an active torque component is introduced in parallel to the
torso spring of the model in Fig. 7.4.5A, resulting in model Fig. 7.4.5B. The
purpose of this input is to actively coordinate the torso’s flexion and extension
oscillations in response to the motion of the legs, thereby enhancing the stabil-
ity and robustness of passively generated bounding gaits (Cao and Poulakakis,
2013a,b). With this being the only input available, it was shown in Cao and
Poulakakis (2013a,b) that significantly large disturbances can be rejected with
minimal control effort, further supporting the idea that a properly tuned mechan-
ical system is essential in simplifying feedback control.



Legged Robots with Bioinspired Morphology Chapter | 7 539

In the spirit of the SLIP, the models in Figs. 7.4.5A and 7.4.5B feature mass-
less springy legs. As a result, they cannot capture adequately well the effect of
torso flexibility on gait energetics, for they do not address the energy that is
required to recirculate the legs during flight in anticipation to touchdown. This
cost contributes significantly to the total cost of transport, and should be incor-
porated in any model that intends to capture the contribution of torso flexibility
in the economy of running. To address this need the model of Fig. 7.4.5C has
been proposed, which differs from the models of Figs. 7.4.5A and 7.4.5B in
that it includes nontrivial leg mass. Comparisons of this model with rigid-torso
models in terms of the mechanical cost of transport documented in Cao and
Poulakakis (2014, 2015) reveal that torso compliance promotes locomotion effi-
ciency, but only at speeds that are sufficiently high. Furthermore, by considering
nonideal torque generating and compliant elements with biologically reason-
able efficiency values, Cao and Poulakakis (2015) showed that the flexible-torso
model of Fig. 7.4.5C can predict the metabolic cost of transport for different an-
imals, as this cost estimated using measurements of oxygen consumption. The
hierarchy of models depicted in Figs. 7.4.5 has been found effective in unifying
a number of observations regarding the stability and energetics of quadrupedal
running gaits in the presence of torso flexibility, and extensions of these mod-
els have been used to study feedback control strategies for gait transitions as
in Cao et al. (2015); Cao and Poulakakis (2016); see also Cao (2015). Next, we
study the model of Fig. 7.4.5A in more detail, as an example of a template for
bounding quadrupeds with compliant torso and legs.

7.4.3.2 A Passive Template Candidate for Bounding With a
Flexible Torso

We consider the model of Fig. 7.4.5A, which features a segmented torso with
two identical rigid bodies connected via a rotational spinal joint; see Koutsoukis
and Papadopoulos (2015) for the case of a prismatic joint at the torso. To sim-
plify the development, we assume that the torque produced by the torsional
spring follows Hooke’s law

τtorso = ktorso(θa − θp) (7.4.1)

where θa, θp are the pitch angles of the two segments, as shown in Fig. 7.4.6,
and ktorso is its stiffness. As in the SLIP, the mass of each legs is assumed to
be negligible, and the legs are represented by prismatic springs with stiffness
kleg and natural (uncompressed) length l0. The interaction between the toe and
the ground is modeled as an unactuated, frictionless pin joint. The flexible-
torso model of Fig. 7.4.6A can be considered as an extension of the standard
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FIGURE 7.4.6 (A) A flexible-torso model for studying bounding. (B) Bounding phases and events.

SLIP, suitable for studying torso–leg coordination in quadrupedal running with
a bounding gait. The bounding gait considered here is shown in Fig. 7.4.6B. De-
pending on the state of the legs – whether on the ground or in the air – and the
configuration of the torso, the bounding cycle can be divided into four phases:
the posterior stance phase, “sp”; the anterior stance phase, “sa”; the extended
flight phase, “fe”; and, the gathered flight phase, “fg.” A mathematical model
for bounding will thus be composed by the continuous phases mentioned above
separated by discrete events. To derive such model – which falls in the category
of multiphase hybrid systems – we proceed as follows.

Continuous-Time Dynamics In each stance phase i ∈ {sp, sa}, the configura-
tion space Qi can be parameterized by the length of the leg in contact with the
ground, the corresponding leg angle relative to the torso, and the pitch angles of
the torso’s segments. Hence, with reference to Fig. 7.4.6A, we have14

qsp = (lp, ϕp, θp, θa)
′ and qsa = (la, ϕa, θp, θa)

′ (7.4.2)

for the stance-posterior and the stance-anterior phases, respectively. During the
flight phases, the configuration space Qi , i ∈ {fe, fg} can be parameterized by
the Cartesian coordinates of the COM of the posterior part of the torso and the
corresponding pitch angles. Hence, with the definitions of Fig. 7.4.6A,

qi := (xp, yp, θp, θa)
′ (7.4.3)

14. Notation: To avoid cluttering, we denote the transpose of a matrix A by A′ instead of the com-
monly used symbol AT.
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for i ∈ {fe, fg}. Defining xi = (q ′i , q̇ ′i ), the dynamics can be written in state-space
form as

d

dt

[
qi

q̇i

]
=
[

q̇i

−Di(qi)
−1 (Ci(qi, q̇i)q̇i +Gi(qi))

]
⇔ ẋi = fi(xi) , (7.4.4)

where, for each i ∈ {sp, sa, fe, fg}, Di(qi) is the mass matrix, and Ci(qi, q̇i )q̇i ,
Gi(qi) are vectors containing the centrifugal and Coriolis forces and the gravi-
tational forces, respectively.

The physical parameters in (7.4.4) include the inertia {m,J }, geometric
{l0,L}, and stiffness {ktorso, kleg} properties of the model, and their number can
be reduced by writing the equations of motion (7.4.4) in non-dimensional form
using dimensional analysis. Let τ be the characteristic time scale defined by

τ :=√l0/g , (7.4.5)

where l0 is the nominal leg length and g is the gravitational acceleration. Then,
the configuration variables (7.4.2)–(7.4.3) and their derivatives with respect to
time become

ζ ∗ := ζ

l0
, ζ̇ ∗ := τ ζ̇

l0
, ζ̈ ∗ := τ 2ζ̈

l0
, (7.4.6)

for ζ ∈ {xp, yp, xcom, ycom, lp, la} and

ψ∗ :=ψ, ψ̇∗ := τ ψ̇, ψ̈∗ := τ 2ψ̈ , (7.4.7)

for ψ ∈ {ϕp, ϕa, θp, θa, θ}. In (7.4.6)–(7.4.7), the superscript “∗” denotes a di-
mensionless quantity. Substitution of (7.4.6) and (7.4.7) into (7.4.4) results in
the dimensionless form of the continuous-time dynamics (7.4.4),

d

dτ
x∗i = f ∗i (x∗i ), (7.4.8)

where x∗i := ((q∗i )′, (q̇∗i )′)′ and i ∈ {sp, sa, fe, fg}. In this dimensionless setting,
the parameters of the model are reduced to the following four dimensionless
quantities

I := J

mL2
, d := L

l0
, κtorso := ktorso

mgl0
, κleg := klegl0

mg
, (7.4.9)

corresponding to the dimensionless moment of inertia I , the relative hip-to-
COM distance d , and the relative torso κtorso and leg κleg stiffness. It is empha-
sized that (7.4.8) does not depend on the choice of units.
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Event-Based Transitions The continuous-time phases are separated by the
event-based transitions; namely, the touchdown and liftoff events shown in
Fig. 7.4.6B. Touchdown occurs when the height of the toe of either the pos-
terior or the anterior leg becomes zero. To realize this condition, we assume that
the legs touch the ground at their nominal (uncompressed) length l0 and that the
corresponding touchdown angles are γ td∗

p for the posterior and γ td∗
a for the ante-

rior leg; the values of these angles will be specified below. Hence, the threshold
functions that signify the touchdown of the posterior and the anterior legs are
given by

Hfg→sp(x
∗
fg, α

∗)= y∗p −
d

2
sin θ∗p − cosγ td∗

p and

Hfe→sa(x
∗
fe, α

∗)= y∗p +
d

2
sin θ∗p + d sin θ∗a − cosγ td∗

a , (7.4.10)

respectively, where α∗ = (γ td∗
p , γ td∗

a )′. To model liftoff, it is assumed that the
contact between the ground and the toe of the stance leg is broken when the
acceleration of the stance leg end is positive – that is, directed upwards – and
the ground force becomes zero. Due to the assumption of massless legs, the
stance-to-flight condition can be simplified so that liftoff occurs when the stance
leg, as it extends, achieves its natural length l0. In our dimensionless setting, the
zeroing of the threshold functions

Hsa→fe(x
∗
sa)= l∗a − 1, l̇∗a > 0 and Hsp→fg(x

∗
sp)= l∗p − 1, l̇∗p > 0,

(7.4.11)

signifies transition from the stance-anterior and stance-posterior to the subse-
quent flight phases, respectively.

Existence and Stability of Cyclic Bounding Gaits To study the existence and
stability of bounding gaits according to the phase sequence of Fig. 7.4.6B, the
method of Poincaré is used (Guckenheimer and Holmes, 1996). The Poincaré
section is taken at the apex height of the extended flight, when the vertical ve-
locity of the torso joint is zero, i.e.,

S∗apex :=
{
x∗fe ∈ TQ∗fe | ẏ∗p + d/2θ̇∗p cos θ∗p = 0, θ∗a > 0

}
. (7.4.12)

As in Altendorfer et al. (2004) and Poulakakis et al. (2006), since we are in-
terested in periodic bounding gaits, in constructing the Poincaré map we will
not consider the horizontal coordinate x∗p that increases monotonically with
time. A further dimensional reduction – inherent to Poincaré’s method (Guck-
enheimer and Holmes, 1996) – can be achieved by projecting out ẏ∗p , which
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always satisfies the condition defining S∗apex in (7.4.12). Thus, the state vector is
reduced to “locomotion-relevant” variables

z∗fe := (y∗p , θ∗p , θ∗a , ẋ∗p , θ̇∗p , θ̇∗a )′. (7.4.13)

The Poincaré map P∗ can then be constructed numerically by starting with
the states z∗fe[k] at the kth apex height as initial conditions and integrating
forward the dynamics (7.4.8) for all the phases according to the sequence of
Fig. 7.4.6B and until the next apex height event occurs. This process results in
the nonlinear discrete-time control system

z∗fe[k + 1] = P∗
(
z∗fe[k], α∗[k]

)
. (7.4.14)

It worth emphasizing that, despite the fact that the touchdown angles α∗ =
(γ td∗

p , γ td∗
a )′ are not part of the state vector (7.4.13), they directly affect the value

of P∗. The appearance of α∗ = (γ td∗
p , γ td∗

a )′ in (7.4.14) is a consequence of the
dependence of the threshold functions (7.4.10) on the values of the touchdown
angles. It is apparent from (7.4.14) that the touchdown angles are (kinematic)
inputs available for “cheap” control, since, in general, it is relatively easy to
place the legs at their target angles during the flight phases.

With (7.4.14), periodic bounding motions can be computed by solving

z̄∗fe =P∗
(
z̄∗fe, ᾱ∗

)
, (7.4.15)

to compute a fixed point z̄∗fe at a given value ᾱ∗. Finally, to analyze the local
stability properties of bounding, we linearize (7.4.14) at a fixed point (z̄∗fe, ᾱ∗)
obtaining the companion system

�z∗fe[k+ 1] =A�z∗fe[k] +B�α∗[k], (7.4.16)

where �z∗fe = z∗fe − z̄∗fe, and �α∗ = α∗ − ᾱ∗, and A = ∂P∗
∂z∗fe

∣∣∣
z∗fe=z̄∗fe,α∗=ᾱ∗

, and

B = ∂P∗
∂α∗
∣∣∣
z∗fe=z̄∗fe,α∗=ᾱ∗

. When the eigenvalues of A are all within the unit disc,

the corresponding fixed point is locally exponentially stable.15

Using the aforementioned procedure, a large number of fixed points can
be computed and their local stability properties can be evaluated. Fig. 7.4.7A
presents snapshots of the bounding motion associated with one such fixed point,
and Fig. 7.4.7B shows the corresponding evolution of the relative pitch angle

15. Note that one of the eigenvalues is always equal to 1 due to the conservative nature of the
system. If all the remaining eigenvalues are within the unit circle, the system is exponentially stable
within a constant total energy level.
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FIGURE 7.4.7 Evolution of the torso bending angle computed as θ∗a − θ∗p for fixed point with
one (Fig. 7.4.7B) and multiple (Fig. 7.4.7C) torso flexion-extension oscillations. The labels in
Fig. 7.4.7B correspond to the sequence of phases in Fig. 7.4.7A. From (a) to (h): apex height, ante-
rior leg touchdown, torso flat, anterior leg liftoff, minimum torso bending, posterior leg touchdown,
torso flat and posterior leg liftoff.

θ∗a − θ∗p . It can be seen that the anterior and posterior leg stance phases ef-
fectively “translate” the configuration of the torso from convex to concave and
vice versa in order to prepare the system for the gathered and extended flight
phases, respectively. Note, however, that computing passively generated bound-
ing motions that correspond to physically realistic torso bending oscillations
– like those in Fig. 7.4.7B – is not a straightforward task. This difficulty has
been pointed in previous work by Nanua (1992) and Deng et al. (2012), and
is attributed to the sensitive dependence of the motion on the combination be-
tween the torso stiffness and the leg stiffness. Even when fixed points can be
computed – which is not always the case – they may correspond to spurious
motions in which the torso exhibits multiple oscillations within a single stride.
Fig. 7.4.7C presents an instance of such motions when the leg stiffness and the
torso stiffness are not properly tuned.

Let us consider the effect of the relative torso and leg stiffnesses on
the system’s motion in more detail, for these parameters are of key impor-
tance to the leg–torso coordination. Fig. 7.4.8 shows how the spectral radius
ρ(A) :=maxi |λi | of the matrix A in (7.4.16) changes as a function of the pair
(κleg, κtorso) defined in (7.4.9) keeping the rest of the (dimensionless) parameters
constant. The gray area in Fig. 7.4.8 corresponds to periodic motions with torso
bending movements similar to those of Fig. 7.4.7C for which multiple torso flex-
ions and extensions exist within one stride. These types of periodic behaviors
appear for small values of leg stiffness. Clearly, a softer leg requires a relatively
longer time period to go through a complete compression and decompression
cycle during stance, thereby allowing the torso to oscillate multiple times within
one stride, as in Fig. 7.4.7C. An interesting observation from Fig. 7.4.8 is that
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FIGURE 7.4.8 Fixed points computed for the same total energy (E∗t = 7.95), average speed
(Fr = 2.41), and hopping height (y∗tj = 0.82) and for different values of dimensionless leg and
torso stiffness. The color code corresponds to the values of the spectral radius of A.

the range of values of the relative leg stiffness over which bounding gaits –
not necessarily stable ones – can be generated passively depends strongly on
the torso stiffness. Fig. 7.4.8 also illustrates that self-stable bounding motions
emerge for particular combinations of the relative torso and leg stiffness. These
motions correspond to a small fraction (less than 1%) of the bounding gaits that
can be generated passively. Note that self-stability in the presence of a flexible
segmented torso does not immediately follow the existence of such self-stable
motions in quadrupedal models with rigid torso (Poulakakis et al., 2006; Chatza-
kos and Papadopoulos, 2009). The reason is that torso bending movements may
cause divergent behavior when they are not properly coordinated with the hy-
brid oscillations of the legs. While, in the rigid-torso case, the inertia properties
of the torso – captured by the dimensionless moment of inertia of the torso –
dominate self-stability (Poulakakis et al., 2006; Chatzakos and Papadopoulos,
2009), in the flexible-torso case, the combination of the stiffness properties of
the legs and the torso appears to be the dominant factor. These observations re-
flect the significance of suitably tuning the properties of passive elements used
in the system so that the desired behavior is generated. Below we will see that
the use of passive compliant elements has a number of benefits when it comes to
robot design, but it does restrict the versatility of a robot by imposing constraints
on how these elements are selected and inserted in the robotic platform.

7.4.4 QUADRUPEDAL ROBOT DESIGN: RIGID OR FLEXIBLE
TORSOS?

In striking contrast to their counterparts in nature – which owe much of their
remarkable locomotion performance to their flexible torsos and limbs – the vast
majority of running robotic quadrupeds incorporate rigid, nondeformable torsos.
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Yet, as we will see in this section, some of these robots demonstrated impressive
rough terrain mobility (Raibert et al., 2008) and high-speed running (Boston
Dynamics, 2013), at a level that is comparable to those of running animals.
The performance of these robots brings up a classical dilemma regarding the
design and control of bioinspired machines. That is, to what extent should ani-
mal morphological characteristics be reproduced in robotic platforms to enable
high-performance, natural-like behaviors in these robots?

7.4.4.1 Robots With Rigid Torso

Raibert and his collaborators were the first to report on actively-balancing
legged robots, including quadrupeds (Raibert, 1986). Their quadrupedal robot
depicted in Fig. 7.4.9A comprises a nondeformable torso and four legs, each
having three hydraulically actuated DOFs. Two actuators are located at the hip
and they are responsible for placing the leg fore-aft (protraction–retraction) and
sideways (abduction–adduction). One actuator is placed inside the leg, and it
acts in series with an air spring to maintain the resonant bouncing motion and to
shorten the leg after liftoff to ensure adequate toe clearance. Based on the con-
cept of a virtual leg, dynamic gaits that employ legs in pairs – namely, trotting,
pacing and bounding – have been realized experimentally by mapping them
into virtual bipedal gaits (Raibert, 1990). The underlying control algorithm is
organized on two levels. On the low level, control action is responsible for syn-
chronizing the physical legs that form a pair, so that their combined action can
be represented by an equivalent virtual leg. On the high level, the control sys-
tem manipulates the virtual legs to regulate task-level variables such as forward
velocity, hopping height and torso attitude; details on the control strategy can be
found in Raibert (1986, 1990).

In high performance, power autonomous running robots, deciding how to
distribute control authority is extremely important. This is not only for energy
efficiency, but also for reasons associated with the fact that corrective action in
these robots must be developed over time intervals that are sufficiently small to
challenge the ability of the control system to react on time. It is thus desirable
that the controller works in concert with the natural dynamics of the system
to generate and sustain the desired motion. For example, to stabilize bounding
one might expect that significant control effort should be devoted to regulating
the oscillatory pitching motion of the torso. It turns out, however, that this is
not necessarily true. It depends on the geometric and inertia properties of the
torso in a way that is captured by the dimensionless moment of inertia I =
J/mL2, where J is the moment of inertia of the torso, m is its mass and L is
half the distance between the hips; see also (7.4.9). As was observed in Murphy
and Raibert (1985) and further supported theoretically in Berkemeier (1998),



Legged Robots with Bioinspired Morphology Chapter | 7 547

FIGURE 7.4.9 (A) Raibert’s quadruped. (B) Bounding and the dimensionless moment of inertia,
which effectively describes the “resistance” to rotational versus translational motion due to mass
distribution. The distance at which the point masses m/2 are located corresponds to the radius of
gyration. When the point masses are located between the hips so that I < 1, the ground force F

transferred through the leg spring at the back hip tends to rotate the torso clockwise more than it
pushes it upwards, thereby favoring bounding (Murphy and Raibert, 1985).

if I < 1 the natural dynamics favors bounding, and the torso pitch oscillations
can be passively stabilized without the need of a feedback control component
specifically dedicated to it; Fig. 7.4.9B provides an intuitive explanation of the
stabilizing effect of the torso.

Motivated by the need to explore the limits of the mechanical system in stabi-
lizing highly complex dynamic running motions, the Scout II quadruped shown
in Fig. 7.4.10 has been introduced (Papadopoulos and Buehler, 2000; Talebi
et al., 2001; Poulakakis et al., 2005). Scout II demonstrated efficient bounding
gaits using only one actuator per leg located at the hip. In more detail, each
of Scout’s legs consists of a lower and an upper segment connected via a pas-
sive, prismatic spring to form a compliant, unactuated knee joint, as shown in
Fig. 7.4.10. It was found that simple control laws that excite the robot’s nat-
ural dynamics by merely placing the legs at desired touchdown angles during
flight and sweeping them backwards to propel the robot during stance – see
Fig. 7.4.11 – are sufficient to generate robust and highly efficient bounding gaits
at top speeds 1.2 m/s (Papadopoulos and Buehler, 2000; Talebi et al., 2001;
Poulakakis et al., 2005). It worth mentioning that the controller of Fig. 7.4.11
does not require any task-level feedback, and the resulting bounding motion is
purely due to the interaction of the natural dynamics of the system and its envi-
ronment.

Scout II is an example of a minimalistic approach to robot design. Beyond
mechanical simplicity, the benefits of this approach lie in exposing the key el-
ements that underlie specific locomotion behaviors, and in forcing controllers
to exploit the natural dynamics of the system in realizing these motions. De-
spite its simple minimally-actuated structure, Scout II demonstrated various
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FIGURE 7.4.10 The Scout II quadruped and its leg design.

FIGURE 7.4.11 Phases and corresponding control action during bounding with Scout II.

behaviors beyond bounding, including dynamic compliant walking (de Lasa
and Buehler, 2001) and step climbing (Talebi, 2000). Similar design and control
ideas have subsequently been implemented to generate bounding in a modi-
fied (one-actuator-per-leg) version of the SONY AIBO dog (Yamamoto et al.,
2001), and in the hexapedal RHex (Campbell and Buehler, 2003). On the other
hand, analogously to passive dynamic walkers (McGeer, 1990; Collins et al.,
2005), robots like Scout II are often limited in the behaviors they can generate,
and modifications to the mechanical platform may be inevitable for realizing
different gaits. For example, to generate a walking trot, Scout’s legs had to be
modified through the addition of a rotational knee joint (Hawker and Buehler,
2000).

Generally, incorporating additional features in a robotic platform – e.g., ex-
tra degrees of freedom, actuators or compliant elements – comes at the cost
of increasing the complexity of the system. It is thus desirable that this addi-
tional complexity contributes to extending the operational capabilities of the



Legged Robots with Bioinspired Morphology Chapter | 7 549

FIGURE 7.4.12 Examples of quadrupeds with rigid torso. (A) StarlETH; (B) HyQ; (C) MIT
Cheetah v.2.

robot. For example, the ability to actively shorten the swing leg during the early
stages of its flight is essential for ensuring sufficient toe clearance, which is
necessary, particularly in rough terrain locomotion. Thus, unlike Scout II, the
majority of quadrupedal robots incorporate actuators dedicated specifically to
shortening the swing leg. Examples include the Patrush (Kimura et al., 1999)
and Tekken (Fukuoka et al., 2004) quadrupeds, which, owing to their con-
troller design and compliant structure demonstrated some degree of adaptability
to natural terrain (Kimura et al., 2007). The addition of an actuated abduc-
tion/adduction degree of freedom further enhances mobility by providing the
robot with three dimensional capabilities as it allows placing the legs sideways.
As was mentioned above, Raibert’s quadruped features legs with actuated ab-
duction/adduction. Other platforms include KOLT (Nichol et al., 2004), which
experimentally realized planar pronking and trotting gaits through a differen-
tial leg thrust controller (Estremera and Waldron, 2008). The fully-autonomous
quadrupedal robot StarlETH shown in Fig. 7.4.12A also features three actuated
degrees of freedom per leg (Hutter et al., 2012, 2013). The robot is driven by
12 (three per leg) precisely torque controlled Series Elastic Actuators (SEAs),
whose springs essentially act as “mechanical capacitors” that store elastic en-
ergy during stance (Remy et al., 2012). StarlETH demonstrated a variety of
static and dynamic walking and running gaits under different terrain conditions
using a cascade control architecture organized into a motion generator and a
motion controller (Gehring et al., 2013, 2014).

Regardless of the leg actuation scheme, a common design choice in all the
aforementioned quadrupeds is the use of passive elastic energy storage elements
– in the form of mechanical or pneumatic springs – intended to recover part
of the negative work performed during the early stages of the support phase,
where the body lowers and decelerates. Elastic energy storage in compliant el-
ements is of central importance in explaining the mechanics and efficiency of
running in animals (McMahon, 1984; Alexander, 1988a). Indeed, ground reac-
tion force profiles and metabolic energy activity measured in experiments with
diverse animals cannot explain the high efficiency of running without assuming
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the existence of elastic energy storage mechanisms (McMahon, 1984; Alexan-
der, 1988a). However, inserting passive compliant elements in a robot’s structure
entails some critical design decisions, for such elements may limit the system’s
locomotion capabilities. In more detail, springs introduce low-frequency reso-
nant modes, which have to be tuned according to a specific task. For example, to
maximize energy efficiency at a given running speed, the stiffness of the spring
needs to be well tuned with the natural dynamics of the system so that the rate at
which energy is stored in the spring and returned to the system matches the stride
frequency. As a result, extending the range of the achievable running speeds
without compromising energy economy requires stiffness adjustment capabili-
ties (Hurst and Rizzi, 2008), which can increase the complexity of the design.
Furthermore, even in the case of SEAs where stiffer springs are typically used,
the mere existence of the spring reduces the bandwidth of the actuator, thus lim-
iting the use of the system in tasks the require precise movements. Finally, from
a control design perspective, if compliance is added in series with actuators, it
increases the degree of underactuation, and thus it may reduce the authority of
the controller over the system. For example, in compliant leg designs where the
spring is inserted in series with a motor – typically the knee motor – the inter-
action forces between the robot and its environment cannot be regulated in a
direct way. In general, as we have pointed out in Section 4.7.6.4, the addition
of explicit compliant elements poses strict requirements on controller design so
that control action works in concert with the physical springs (Poulakakis and
Grizzle, 2007; Poulakakis, 2008).

If energy efficiency were not a concern, the complexity introduced by pas-
sively compliant legs could be eliminated. In this case, active regulation of the
forces developed at the port of interaction of the robot with its environment
could be achieved by exploiting the hip and knee actuators so that each leg
behaves as a virtual impedance element. Subject to actuator bandwidth limita-
tions, this approach enhances control authority over the system, and it offers
additional flexibility since the parameters of the virtual impedance – e.g., the
stiffness and damping coefficients – can be adjusted in real time by the con-
trol software. As a result, platform versatility is significantly enhanced. An
example of a quadrupedal robot that can actively regulate leg impedance is the
torque-controlled Hydraulic Quadruped, HyQ (Semini et al., 2011, 2015) de-
picted in Fig. 7.4.12B. HyQ does not have any physical springs and dampers;
the required impedance of the leg is tuned by the control software and imple-
mented through high-performance hydraulic servovalves that enable joint-level
torque and position control with excellent tracking capabilities (Boaventura et
al., 2012). Experimental studies in Semini et al. (2015) indicate that active com-
pliance can emulate passive elements in the dynamic range relevant to legged



Legged Robots with Bioinspired Morphology Chapter | 7 551

locomotion tasks. As a result, this approach can combine the advantages of vari-
able stiffness actuators without the complexity associated with them, and has the
potential to enable legged robots to execute a range of difference tasks that re-
quire different interaction dynamics with the environment.

We have seen that active impedance control may remove the constraints as-
sociated with the use of passive elements at the cost of increasing the energy
requirements. But are these two highly desirable requirements mutually exclu-
sive? The electrically actuated MIT Cheetah robot (Hyun et al., 2014) shown in
Fig. 7.4.12C proves that this is not the case, and that high locomotion efficiency
can be combined with enhanced control authority over the system. Through
careful analysis of the energy flow in dynamic legged robots, a set of design
principles has been proposed and implemented at the MIT Cheetah robot (Seok
et al., 2015). In more detail, three principal sources of energy dissipation have
been identified and for each source a solution has been suggested, as follows.

• Heat dissipation losses. Fast, dynamic legged locomotion requires the devel-
opment of large forces, which entail energy losses in the form of heat at the
actuators. For example, when electromagnetic motors are used, the demand
for high torque requires larger currents and the energy dissipated due to Joule
heating increases. To cope with these losses, the use of high torque-density
motors – here, the term refers to high mass-specific continuous torque τ/m

– is suggested in Seok et al. (2015) as a means to decrease the current re-
quired to provide the necessary torques for the locomotion task. Note also
that legged locomotion is an inherently dissipative process and there are in-
evitable periods where negative work is performed. In the absence of elastic
members, the actuators would have to supply the energy lost when nega-
tive work is performed. As an alternative solution to mechanical springs for
storing energy, the MIT Cheetah incorporates electrical regeneration imple-
mented through a motor driver designed to act like a three-phase generator
when the motors perform negative work.

• Transmission losses. These correspond to the energy lost as the actua-
tor torques are transmitted to the joints. To minimize these losses, a low
impedance (back-drivable) transmission is adopted, and is realized in the
MIT Cheetah through the selection of a single stage, low gear ratio trans-
mission. This design choice results in low reflected inertia and damping.
Beyond decreasing the friction losses, keeping the mechanical impedance of
the transmission small facilitates proprioceptive force control.

• Interaction losses. These include the energy lost at the impacts of the legs
with the ground; that is, at the interface between the robot and its environ-
ment. To cope with these losses, a low inertia bioinspired leg design has been
proposed and implemented through a composite bone-like structure (Anan-
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thanarayanan et al., 2012), while all actuation has been placed in the torso.
The leg architecture is also discussed Subchapter 7.2.

The MIT Cheetah employs programmable leg impedance and high bandwidth
control without series compliance. High-speed bounding gaits at 6.4 m/s have
been realized with a sequentially organized controller that addresses the com-
plexity of the platform (Park et al., 2017). At the core of the controller process
lies an impulse-based gait design module, which relies on impulse scaling (Park
and Kim, 2015) to provide feed-forward force profiles for a wide range of
running speeds. This gait design module is followed by a gait stabilization mod-
ule and an additional control layer that incorporates implementation specifics;
see Park et al. (2017) for details.

7.4.4.2 Robots With Segmented Torsos

Despite consensus that torso flexibility improves performance in quadrupedal
mammals, only a few quadrupedal robots incorporate a flexible torso and are
capable of animal-like locomotion performance. This is primarily due to the
complexity associated with the design and control of systems with segmented
torsos in view of the additional degrees of freedom associated with the torso,
their mechanical realization and feedback control.

Quadrupedal robots with articulated torsos appeared in the mid-1990s with
the work of Leeser at the MIT Leg Lab (Leeser, 1996). Following a minimal-
istic design approach, the objective of this work was to explore the role of
torso articulation in quadrupedal running using the minimum hardware neces-
sary. As a result, the robot was planar – essentially the sagittal-plane half of
a quadruped, as shown in Fig. 7.4.13 – constrained to move in the plane by a
planarizing mechanism. The articulated torso of the robot had three segments
so that both standing and traveling wave behavior could be exhibited, and the
corresponding joints were actuated. Finally, as in other MIT Leg Lab robots,
this planar quadruped featured hydraulically actuated telescopic legs with air
springs located in series with the actuators. This simple arrangement is capable
of capturing the dominant leg–torso behavior found in bounding, which as was
mentioned in Section 7.4.1 can be considered as a limiting case of gallop; see
Fig. 7.4.1. Experiments with the planar quadrupedal design of Fig. 7.4.13 sug-
gest that thrusting with the back can be used to amplify the thrust provided by
the legs. Furthermore, the motion of the back effectively modulates the energy
of the leg springs and the impedance characteristics of the legs, which has been
found useful in developing bounding controllers for the robot.

Contemporary examples of quadrupedal robots with articulated torsos in-
clude Canid (Haynes et al., 2012a; Pusey et al., 2013), Bobcat (Khoramshahit
et al., 2013; Spröwitz et al., 2013), and the flexible-torso version of the MIT
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FIGURE 7.4.13 The planar quadruped, one of the earliest robotic quadrupeds with a segmented
torso.

Cheetah (Folkertsma et al., 2012). Let us consider these robots in more detail.
Bobcat is depicted in Fig. 7.4.14A, and is a relatively small-sized quadruped
composed of springy kneed legs and a segmented torso that features a spinal
joint actuated by a single RC servo motor. The torso can be reconfigured by
locking a pin at the spinal joint so that no relative motion is permitted between
the two segments. This simple modification allows for direct comparisons be-
tween segmented and rigid torso configurations. A large number of bounding
gaits with different spinal joint activities has been generated on Bobcat using a
CPG-based controller. Careful analysis of the resulting data revealed that active
spinal joint movements tend to increase the maximum achievable speed and that
larger amplitudes of the corresponding oscillation contribute directly to higher
speeds (Khoramshahit et al., 2013). Furthermore, it was observed that active
spinal oscillations resulted in less foot sliding and better directional accuracy,
indicating that a segmented torso can enhance gait stability. On the other hand,
the realization of faster gaits through spine actuation results at a higher cost
of transport, as may have been expected due to the additional actuated degree
of freedom in the spinal joint (Khoramshahit et al., 2013). It worth mentioning
however that comparisons between bounding gaits generated with fixed and ac-
tively controlled spinal joint showed that the average of the horizontal impulse
per stride in the latter configuration has been three times lower than that corre-
sponding to fixed spine gaits. Given that an active spinal joint can result in faster
gaits, it has been deduced that suitably coordinated torso oscillations allow to
redirect the impulse into forward motion, implying better mechanical energy
management.16

The Canid platform shown in Fig. 7.4.14B has been developed as part of
an effort to realize the advantages of elastic elements in the torso in generating

16. Note that this improvement in the mechanical cost of transport did not significantly reduce the
electrical (total) cost of transport in Bobcat, which – in general – highly depends on the hardware
realization of the platform.
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FIGURE 7.4.14 Examples of quadrupeds with segmented torsos: (A) Bobcat; (B) Canid; (C) MIT
Cheetah.

highly dynamic locomotion (Haynes et al., 2012a; Pusey et al., 2013). Follow-
ing the minimalistic design philosophy underlying the Scout II (Poulakakis et
al., 2005) and RHex (Saranli et al., 2001) robots, Canid comprises four com-
pliant semicircular (C-shaped) legs with one actuator per leg located at the
hip joint. Its segmented torso differs from Bobcat’s in that it incorporates an
elastic energy storage element – a leaf spring – placed in parallel with the
torso actuators (Haynes et al., 2012a; Pusey et al., 2013). The goal of Canid’s
spine design has been to experimentally assess the contribution of torso compli-
ance in high-power thrusting and energy harvesting, and thus in promoting gait
speed and efficiency. An index capturing the robot’s body energy has been pro-
posed as an empirically accessible measure of the robot’s readiness to perform
work rapidly (Pusey et al., 2013). Coupled with an open-loop control strategy
that implements predetermined actuator set points, Canid has been capable of
highly-energetic, power autonomous leaping behaviors. However, the lack of
exact coordination between the posterior legs when they touch the ground re-
sulted in the excitation of undesirable oscillations in the highly elastic spine
that severely disturb the robot’s motion to the point that steady-state bounding
could not be realized. Clearly, the complexity added by the elastic nature of the
spine, and the corresponding difficulty in achieving the desired level of coordi-
nation between the dorsoventral oscillations of the torso and the movement of
the legs – which are also highly compliant structures – call for more powerful
closed-loop control laws. Transforming Canid’s highly-energetic leaping behav-
iors into steady-state locomotion is at the core of current research efforts with
this platform.

The early design of the MIT Cheetah depicted in Fig. 7.4.14 is one more
example of a quadrupedal robot that exhibits torso flexibility. Its spine consists
of several hard plastic vertebrae alternated with softer polyurethane interver-
tebral discs. In contrast to Canid and Bobcat, which incorporate direct torso
actuation – either with or without springs – the motion of the torso of the MIT
Cheetah is mechanically coupled with its rear legs through a differential mecha-
nism (Folkertsma et al., 2012). Inspired by the coordinated motion between the
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torso and the legs of a running cheetah – see Fig. 7.4.3 – this mechanism effec-
tively “slaves” the spine so that it flexes or extends in response to the rear legs
moving in phase forward (protraction) or backward (retraction), respectively;
that is, in-phase rear leg protraction causes spinal flexion while in-phase rear
leg retraction causes spinal extension. Furthermore, the differential mechanism
ensures that no significant spinal flexion and extension oscillations are produced
when the left and right legs of the rear pair move out of phase. Essentially, this
mechanically imposed coordination ensures that spinal flexion and extension
occurs during bounding and that such oscillations are not present in walking
or trotting gaits. Using a programmable impedance controller that recruits the
leg motors to actively introduce and tune virtual leg springs, the MIT Cheetah
has been able to trot at high speeds. However, since the two rear legs move out
of phase in trotting, the flexible torso remained in its neutral configuration and
did not contribute to the robot’s motion during these experiments (Kim, 2013).
Despite the fact that torso bending capabilities were present in this early de-
sign of the MIT Cheetah, these capabilities were not exploited in experiments
to enhance the robot’s performance in terms of gait speed. In fact, subsequent
research on the MIT Cheetah resulted in substituting the earlier flexible torso
design with a rigid torso – as in the robots of Section 7.4.4.1 – and high-speed
bounding motions have been realized in the more recent rigid-torso version of
the platform depicted in Fig. 7.4.12C. These results demonstrate that torso flex-
ibility may not be necessary for high-performance quadrupedal robot running.

To summarize the discussion above, the introduction of torso flexibility un-
doubtedly complicates the mechanical design of the robot. It also complicates
the design of the control system, which needs to regulate the additional degrees
of freedom to produce reliable locomotion behaviors that realize the potential
advantages of the flexible torso. Bobcat, Canid and the flexible-torso version
of the MIT Cheetah represent early steps toward the experimental realization
of highly dynamic quadrupeds that mimic their biological counterparts in that
they feature – and exploit – torso flexibility. Along this direction, Boston Dy-
namics released a video of their hydraulically actuated Cheetah robot galloping
on a treadmill with the help of a support mechanism at the record speed of
29 mph (Boston Dynamics, 2013). While this result demonstrates the potential
of realizing fast quadrupedal running motions in the presence of a segmented
torso, only limited information on how torso bending movements actually af-
fect locomotion is available in the context of this platform. The extend to which
torso flexibility enables performance enhancement that is significant enough to
overcome the cost associated with the added complexity still remains a mystery.
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7.4.5 CONCLUSIONS

This chapter provides a brief overview of a few topics that are relevant to the
design of bioinspired robotic quadrupeds, with particular emphasis on the role
of the torso. A number of studies in biology and biomechanics suggest that torso
movements contribute significantly in locomotion performance. As a concrete
example, we have focused on sagittal-plane torso bending motions, which are
believed to be of fundamental importance in achieving faster running speeds,
in reducing metabolic cost and in enhancing gait stability in quadrupedal mam-
mals when they run at high speeds. A hierarchy of simple mathematical models
has been proposed to capture and quantify some of these biological observa-
tions. By way of contrast, however, the vast majority of robotic quadrupeds
feature rigid, nondeformable torsos. We have examined in this chapter a few
of these quadrupeds with varying levels of mechanical complexity and control
authority, and with different actuation architectures. These robots constitute rep-
resentative examples of design philosophies that emphasize different – but not
mutually exclusive – objectives, such as fast locomotion, energy efficiency and
platform versatility, and have been highly successful in realizing dynamic gaits.
On the other hand, much fewer experimental results are available in the context
of quadrupedal robots with flexible torsos. Although, torso flexibility appears to
be advantageous – especially at high speeds – the specifics of the mechanical re-
alization of a flexible torso undoubtedly increase the complexity of the platform.
Realizing the expected performance enhancement is the subject of ongoing re-
search efforts.
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Chapter 8

Actuation in Legged
Locomotion
Koh Hosoda, Christian Rode, Tobias Siebert, Bram Vanderborght,
Maarten Weckx, and D. Lefeber

How the actuation provides energy to the body governs resultant locomotion.
This chapter describes actuation in legged locomotion, both in natural and ar-
tificial, for understanding how the muscle-like actuation is advantageous. It
begins with understanding mechanism of the natural biological muscles, which
is energy-efficient, effective, and redundant. Then, the joint stiffness and com-
pliance by electric motors is carefully investigated. Finally, artificial muscles in
current Robotics are described to mimic properties of natural muscles.

Muscles are the main source for biological agents to provide energy for loco-
motion. Therefore, to understand locomotion of biological agent, the character-
istics of muscles must be revealed in order to reproduce the patterns and forces
by artificial agents. In this chapter, we will elucidate the features and character-
istics of biological muscles and their structure consisting of muscles and bones.
Robotic counterparts will be described to design and build artificial agents.

A living muscle behaves not only as a passive element, but also as a combi-
nation of actuation and passive elements (Abbott and Aubert, 1952), and exerts
complicated dynamics. The complex characteristics of the muscle will be dis-
cussed in Subchapter 8.1. In particular, we will discuss muscle’s morphological
function, which contributes to the generation of the animal’s adaptive locomo-
tion. For example, the compliance of the muscle plays an important role in the
so-called preflex (Loeb, 1995), i.e., the production of rapid reaction to impact
with the ground (Alexander, 2003). The physical compliance can cope with the
collision without any time delay. The impact energy can be conserved in the
compliance, and utilized for next step, which is crucial for the animal’s rapid
and robust motion. When we design an artificial agent that emulates the ani-
mal’s behavior, such compliance must be taken into account.

Electric motors are widely used for actuating artificial agents; however, in-
trinsic compliance is not inherent in the motor. Because normally an electric
motor itself does not have enough torque to drive a joint directly, a gear is used
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for multiplying it. As a result, the rotational speed will decrease, always keeping
the power constant. Now the problem is not speed, but friction and inertia if large
gearbox ratios are employed. Because of the friction in the gear transmission,
the joint driven by the electric motor tends to be nonbackdrivable: it requires
large torques to turn the joint, which results in high stiffness values. Because of
its importance for adaptive locomotion it is beneficial to add compliance to the
motors. This can be done in series or in parallel, as we will clarify in more detail
below. Fixed compliance devices are relatively easy to be realized, and variable
impedance actuators can also be designed to change characteristics depending
on the current state of the environment. In some situations, only a simple locking
principle would work. Subchapter 8.2 will be devoted to these issues.

Finally, in Subchapter 8.3, the engineering counterpart of living muscles will
be discussed. The point is, how to determine the key functions of the muscles or
rather the entire musculoskeletal system so that engineering alternatives can be
found to realize animal-like locomotion. One of the questions is at what level
we want to imitate the animal’s behavior. Do we simply want to reproduce the
joint motion, or are we also interested in replicating the underlying mechanisms
of how the movements come about? In order to achieve artificial legged loco-
motion, depending on our degree of mimicry, we have to carefully observe and
measure the behavior of the animals so that we can recreate their movements,
forces, and compliance. We have to select the level of biomimicry very care-
fully considering the currently available technology. Robots can be driven using
electric motors, hydraulics, pneumatics, artificial pneumatic muscles, etc., all of
which instantiate a different degree of biological realism.
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Chapter 8.1

Muscle-Like Actuation for Locomotion
Christian Rode∗ and Tobias Siebert†

∗Department of Motion Science, Friedrich-Schiller-Universität Jena, Jena, Germany †Institute of
Sport and Motion Science, University of Stuttgart, Stuttgart, Germany

8.1.1 FUNDAMENTAL PHENOMENOLOGICAL MUSCLE
MECHANICS

In humans, about 600 skeletal muscles enable complex movement tasks like
locomotion or laughing. Unlike pneumatic actuators used increasingly in pros-
thetics and robotics (e.g., Ferris et al., 2005), skeletal muscles exhibit volume
constancy during contraction (Swammerdam, 1737). Regardless of their shapes
and sizes, they share the same typical hierarchical structure (Fig. 8.1.1). The
muscle belly consists of hundreds of fascicles (muscle fiber bundles) that are
visible by the naked eye in cooked meat. Thousands of muscle fibers are ar-
ranged in parallel within each fascicle, and each fiber in turn consists of about
thousand myofibrils in parallel that contain sets of highly ordered, longitudinally
arranged long, slender filaments. The whole muscle belly, fascicles, and fibers
are surrounded by epimysium, perimysium, and endomysium, respectively, con-
nective tissue sheets mainly formed by collagen fibers.

When viewed under the microscope with polarized light, the typical stri-
ation pattern of skeletal muscle is recognizable on the level of muscle fibers
and myofibrils. This pattern results from the serial repetition of half-sarcomeres
(Fig. 8.1.1), the basic contractile units of the muscle (Campbell et al., 2011).
The dark stripe, with its higher refractive index, is the A-band formed by the
(thick) myosin filaments, while the light, isotropic I-band contains the (thin)
actin filaments. Half-sarcomeres are bordered by the Z-discs, a thin meshed
filament structure (Knappeis and Carlsen, 1962) running through the middle
of the I-bands, and the M-lines, which run through the middle of the A-band
(Fig. 8.1.1). The half-sarcomere mainly consists of the actin and myosin fila-
ments, and the titin molecules. Active muscle force is produced by the interac-
tion of myosin heads – which are distributed along the myosin filament − with
the actin filaments (Fig. 8.1.1).

The signal for the contraction to begin is the sudden release of calcium ions
from the sarcoplasmic reticulum into the cytoplasm induced by action poten-
tials transferred from the motoneuron to the muscle fiber (for a detailed review
of the excitation–contraction coupling, see MacIntosh et al., 2006). The regula-
tory protein, Troponin C, captures calcium ions and undergoes a conformational
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FIGURE 8.1.1 Muscle structure. Ratio of myosin to actin to titin filaments is 1:2:4. Actin and
myosin filaments slide relative to each other due to forces generated by cross-bridges. For further
explanations, see text.

change that moves the tropomyosin molecule away from the actin filament.
Thereby, binding sites on the actin filament are exposed onto which the myosin
heads can attach (Fig. 8.1.1). The myosin head binds to actin, performs a power
stroke generating about 2–10 pN force (Huxley, 2000), dissociates from actin,
and enters a state of pretension prior to the next cycle at the cost of one adenosine
triphosphate (ATP). The action of myriads of cross-bridges causes the muscle
to contract.

Muscle force depends on the number and size of recruited muscle fibers
and the individual motoneuron firing rates. The most important force regulation
mechanism, called the “size principle”, states that motor units are recruited in
order of increasing size (Henneman et al., 1965). If low force is required, small
motor units comprising a comparably low number of slow twitch fibers are re-
cruited. With increasing force, larger motor units (activating fast twitch muscle
fibers) are progressively recruited. The second mechanism is the dependency
of motor unit force on the stimulation frequency. Single action potentials pro-
duce a short twitch, because ATP driven pumps transport calcium ions back to
the sarcoplasmic reticulum. For instance, in rat muscle M. triceps brachii, force
is completely abolished between single twitches when electrically stimulated
at 12 Hz. As the stimulus frequency increases, twitches overlap until smooth
tetanic contractions are achieved at 120 Hz.

Maximal tensions in mammalian skeletal muscles are in the range of 15
to 30 N per cm2 physiological cross-sectional area (CSA, Nelson et al., 2004;
Siebert et al., 2015). Many human muscles are fusiform, i.e., fibers lie in the
force axis, and their length approximates muscle belly length. Their CSA equals
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FIGURE 8.1.2 Two different arrangements of muscle fibers. Schematic of a unipennate (A) and
bipennate (B) muscle architecture. Much more complex 3D fascicle traces (colored lines) deter-
mined by manual digitization are given exemplarily for unipennate rabbit M. soleus (green) and
bipennate M. gastrocnemius (caput mediale, dark red; caput laterale, light red). Data were provided
by Kay Leichsenring and Carolin Wick. Ff and Fm are muscle fiber force and muscle force, re-
spectively; α, pennation angle. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this chapter.)

the anatomical cross-sectional area perpendicular to the force axis. CSA in-
creases with pennation angle α with respect to the force axis (Fig. 8.1.2) because
pennation leads to smaller lengths of muscle fibers and thus to more fibers per
muscle volume. This effect typically overcompensates the loss in force due to
misalignment of fibers and force axis. However, due to shorter fibers, pennate
muscles have a smaller working range as well as lower absolute shortening ve-
locities compared with fusiform muscles.

Much more complex 3D muscle architectures exist featuring different mus-
cle compartments (De Ruiter et al., 1995; English and Letbetter, 1982), tube-
and sail-like inner aponeurosis structures (Böl et al., 2015), or in series ar-
rangement of muscle fibers within muscles (Loeb et al., 1987). Considering that
muscles are incompressible three-dimensional force generators and that most
muscles are packed within other muscles, bones and connective tissue, one can
speculate that the 3D muscle architecture has many more functions than longi-
tudinal force generation like, e.g., stabilization of the spine by transversal back
muscles’ forces (Morlock et al., 1999; Rupp et al., 2015) or minimization of mu-
tual transversal loading within muscle groups during active muscle deformation.
Thus, models of muscle packages are required to understand the complexity of



568 PART | III Implementation

FIGURE 8.1.3 Influence of the ratio of fiber (lCC ) to serial elastic component length (lSEC) on
the active force–length relation. (A) Three muscles with lCC/lSEC ratios 1:0 (black, corresponding
to no or rigid SEC), 1:1 (dark gray), 1:10 (light gray), respectively. (B) Active force–length (fiber
length + SEC elongation) relations. (C) Typical nonlinear force-strain relation of an aponeurosis /
tendon, here used for the SEC. The transition between the nonlinear foot region and the linear region
is marked by a circle. Tendon strain at maximal isometric force is 5%.

3D muscle architecture as well as transverse interaction of muscles with each
other (Siebert et al., 2016; Yucesoy et al., 2003).

Typically, muscles exert forces via aponeuroses and tendons to the bone
(Figs. 8.1.1, 8.1.2B). In the simplest model, this structure is described as a
force generating contractile component (CC) that comprises the fibers, and a
serial elastic component (SEC) that lumps the effects of tendon and aponeuro-
sis. Skeletal muscles exhibit vastly different ratios of CC to SEC length. For
example, M. plantaris of wallabies has short contractile fibers and a long tendon
(ratio= 1/14.8, Biewener et al., 2004), while M. pectoralis of pigeons consists
of long fibers and a short tendon (ratio about 3:1, Biewener, 1998). More-
over, tendon compliance decreases during growth by a factor of 2.5 (Nakagawa
et al., 1996) and varies dependent on the muscle function (Bogumill, 2002;
Siebert et al., 2015). In Fig. 8.1.3, we illustrate the influence of the CC to SEC
length ratio on the isometric force that the muscle can produce at a certain length
(length here includes length of the CC and SEC elongation). Elasticity results
in a rightward shift of the optimal length associated with the maximum active
isometric force. For a more detailed treatment of how the fiber to SEC length
ratio impacts contraction dynamics see Morl et al. (2016).

Some muscles resist passive stretching more than others, and it can be rel-
evant to include a parallel elastic component (PEC, lumping effects of, e.g.,
connective tissue and titin) in the muscle model. For example, when calculating
the active muscle force from measurements of total force (obtained typically
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FIGURE 8.1.4 Effect of two different arrangements of the parallel elastic component (PEC) on
estimated active muscle force (Factive). When stimulated, muscle force increases from passive force
(Fpassive) to total force (Ftotal) during an isometric contraction of the muscle (bottom left). In con-
trast to model [CC+SEC] (top left), the length of the PEC decreases with contractile component
(CC) shortening by �l in model [CC] (right column). Hence, Fpassive decreases by �F during
electrical stimulation, and the estimated active force is higher by �F than the active force estimated
with model [CC+SEC] (Rode et al., 2009b). For this estimation, the constitutive laws of the series
elastic component (SEC) and the PEC (bottom right) must be known.

under supramaximal electrical stimulation of the muscle) and passive muscle
force, it is relevant to consider the passive forces in accordance with the struc-
tural situation in the muscle (Fig. 8.1.4, right column). Only then, the obtained
active force is consistent with the theoretical sarcomere force–length relation-
ship (Gordon et al., 1966; Rode et al., 2009b).

Now we go into more detail with the dynamic contractile properties of mus-
cle fibers. It is well known that the force a muscle can produce depends on the
contraction velocity. Hill (1938) measured the relation between muscle force
(F ) and velocity (vCC ) for concentric contractions of frog M. sartorius. The
resulting hyperbolic force–velocity relation (Fig. 8.1.5A) is a fundamental prop-
erty of muscles and can be described with the following equation:

fv(vCC)= F(vCC)

Fim
= 1 vCC

vCCmax

1+ vCC
curv·vCCmax

vCC > 0, (8.1.1)

where Fim is the maximum isometric force, F/Fim is the normalized muscle
force, and vCCmax > 0 is the maximum shortening velocity. The parameter
curv = a/Fim = b/vCCmax (damping increases with decreasing curv; −a and
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FIGURE 8.1.5 Force–velocity relation of muscle normalized to maximum isometric force (Fim)
and maximum shortening velocity (vCCmax ). (A) Concentric force–velocity relation of slow twitch
fibered rabbit M. soleus (SOL, black line), and mainly fast twitch fibered M. gastrocnemius (GAS,
gray line) and M. plantaris (PLA, black broken line). (B) Eccentric and concentric force–velocity
relation of rat M. gastrocnemius medialis (parameters from Till et al., 2008).

−b describe the force and velocity asymptotes, respectively; see Hill, 1938) is
an inverse measure of the relation’s curvature.

Slow muscles (ST – slow twitch), e.g., the rabbit M. soleus (Fig. 8.1.5A),
exhibit a larger curvature of the force–velocity relation corresponding to a
smaller curv value of 0.15 than fast muscles (FT – fast twitch), as, e.g.,
M. plantaris (curv = 0.41) and M. gastrocnemius (curv = 0.47, Close, 1972;
Siebert et al., 2015). The maximum shortening velocity is mainly determined
by the fiber type (Jones et al., 2004). FT fibers are able to shorten two to three
times faster than ST fibers. For human muscles, maximum shortening velocities
are about two and six fiber lengths/s [l0/s] for ST and FT muscles, respec-
tively (Faulkner et al., 1986). By comparison, mouse, rat, and rabbit muscles
are much faster (ST, 6–13 l0/s; FT, 9–24 l0/s; Close, 1964, 1965; Luff, 1981;
Ranatunga and Thomas, 1990; Siebert et al., 2015). With decreasing mass of the
animal vmax ∼m−ks increases, where ks is the scaling coefficient ranging from
0.125 to 0.33 (McMahon, 1984; Rome et al., 1990).

For eccentric contractions (v < 0), the force–velocity relationship
(Fig. 8.1.5B, gray line) is commonly also modeled as a hyperbolic relation-
ship (e.g., van Soest and Bobbert, 1993; Fig. 8.1.5B). For increasing eccentric
speed muscle forces exceed Fim reaching an eccentric force limit in the range
of 1.3 to 1.8 Fim (Curtin and Edman, 1994; Katz, 1939; Rijkelijkhuizen et al.,
2003). However, as at least two different mechanisms contribute to the eccentric
force generation (Pinniger et al., 2006), it is difficult to extract the eccentric
force–velocity relation from experimental data. As a consequence, there is
few data concerning the eccentric force–velocity relation, and the variation of
the determined eccentric force–velocity parameters is much higher (Nigg and
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FIGURE 8.1.6 Influence of two different muscle fiber configurations (m1 [gray] vs. m2 [black])
on the force–length (A), force–velocity (B, thick lines), and power–velocity relation (B, thin lines).
Power = force · velocity. The velocity axis corresponds to muscle shortening. Muscles m1 and m2
share the same volume, and m2 has half the physiological cross-sectional area but twice the fiber
length of m1. Thus, m2 generates half the maximum isometric force, has a larger working range,
and twice the maximum shortening velocity (vmax) of m1. For the used typical curvature parameter
(curv= 0.25), maximum power (pmax) is generated at 0.3 vmax .

Herzog, 2007). Considering the role of titin during eccentric contraction (see
Section 8.1.2), Till et al. (2008) suggested a model based method to determine
realistic parameters for the eccentric force–velocity relation (Fig. 8.1.5B).

Muscle growth is related to an increase in muscle mass. As the number of
muscle fibers remains constant after birth (Mozdziak et al., 2000), growth is re-
lated to an increase in fiber diameter (hypertrophy) or length increase of muscle
fibers. Hypertrophy takes place by synthesis of new myofibrils in parallel in a
muscle cell. Change in fiber length is accompanied by a change in the number
of sarcomeres in series within a fiber. An increase in the number of sarcomeres
in series can be induced by eccentric muscle contractions (Proske and Morgan,
2001) or surgical lengthening of a muscle by bone lengthening (Boakes et al.,
2007). In contrast, fixation of a muscle at short length results in a reduction of
the sarcomere number in series (Tabary et al., 1972). Furthermore, the muscle
fiber length and thus the number of sarcomeres in series seems to depend on
the typical working range at which the muscle is used in daily life (Herzog et
al., 1991). The influence of an increase in CSA or in fiber length on the force–
length, force–velocity, and power–velocity relation is illustrated in Fig. 8.1.6.

8.1.2 ACTIVE AND SEMIACTIVE MECHANISMS OF
FORCE-PRODUCTION

This section will review the classical theories of contraction and recent mod-
ifications of these theories that alter our view of muscle fiber structure and
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FIGURE 8.1.7 Muscle fiber structure. (A) Cross-striation of muscle fibers under polarized light
(photo provided by Andre Tomalka). (B) Schematic of a half-sarcomere that is bounded by the Z-
disc (left, black zigzag line) and the M-line (right, blue vertical line). At optimal length, it spans
about 1 µm in width and length. The lateral spacing of filaments depends on muscle length because
of isovolumetricity of the intact muscle and is of the order of 10 nm. Green and red indicate opposed
polarity of the respective filaments. Cross-sections below show known (from left to right: Knappeis
and Carlsen, 1962; Huxley HE, 1957; Trombitas and Tigyi-Sebes, 1985) different actin (small cir-
cles) and myosin filament (big circles) arrangements. (C) Proposed myofilament and titin (orange)
arrangement near the Z-disc (Rode et al., 2016). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this chapter.)

functioning. For this, we go a bit deeper into structure of the fibers before intro-
ducing the classical and recent theories.

As stated in Section 8.1.1, the typical striation pattern on the level of muscle
fibers (Fig. 8.1.7A) and myofibrils results from a serial arrangement of half-
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sarcomeres (Fig. 8.1.7B). Within these half-sarcomeres, giant titin molecules
run through the myosin filaments and connect to adjacent Z-discs, and the dis-
tance from the tips of the myosin filaments to the Z-discs is called titin’s free
molecular spring region (Fig. 8.1.7B). Myosin filaments are cross-linked in the
center of the anisotropic band at the M-line. Cross-sections of vertebrate my-
ofibrils reveal hexagonal actin filament lattice with myosin filaments centered
in the hexagons (Fig. 8.1.7B, middle cross-section, myosin to actin filament ra-
tio 1:2) in typical overlap regions (e.g., Huxley HE, 1957), and square-cut actin
filament lattice near the Z-disc (Fig. 8.1.7B, left cross-section), where α-actinins
cross-link actin filaments to form the Z-disc (e.g., Knappeis and Carlsen, 1962).
Because two titin molecules connect to each actin filament at the Z-disc (Zou et
al., 2006), four titin molecules must run through each myosin filament. A novel,
suggested myofilament and titin arrangement near the Z-disc for short muscle
lengths (Rode et al., 2016) is illustrated in Fig. 8.1.7C.

In 1954, two research groups (Huxley and Hanson, 1954; Huxley and
Niedergerke, 1954) independently concluded that the myofilaments slide rel-
ative to each other during fiber contraction (now known as sliding filament
theory) and – considering the linear slope of the isometric force–length rela-
tionship (FLR) at long muscle lengths (Fig. 8.1.8) – they suggested that inde-
pendent force generators along the myosin filaments (the myosin heads) lead
to fiber contraction (cf. Fig. 8.1.1). Huxley HE (1957) identified 15 to 20 of
such possible force generators spaced at 40 nm along a half-myosin filament
projecting towards each of six surrounding actin filaments. At the same time,
Huxley AF (1957) formulated mathematically the cross-bridge theory that as-
sumes cyclical binding of myosin heads to actin filaments and the generation
of a pulling force by these so-called cross-bridges. By adjusting the attachment
and detachment rates of the myosin heads, he could explain the phenomeno-
logical force–velocity relationship (see Section 8.1.1, Fig. 8.1.6) and the rate
of energy liberation during concentric muscle contractions known at that time
(Hill, 1938). A geometric model of filament overlap (Gordon et al., 1966) could
predict straightforwardly parts of the FLR, in particular the descending limb,
the plateau, and the point of slope change on the ascending limb of the force–
length relationship (where myosin filaments reach the Z-disc). The shallow part
of the ascending limb is explained with inhibition of cross-bridges due to actin
filaments of the opposite half-sarcomere entering the half-sarcomere of interest
(Fig. 8.1.7B, right cross-section), and the steep part of the ascending limb is typ-
ically explained with compression or folding of myosin filaments at the Z-disc.
To date, the sliding filament and cross-bridge theories shape our understanding
of muscle fiber structure and function.

Interestingly, even before the sliding filament and cross-bridge theories were
proposed, experimental results seemingly contradicted these theories. In 1940,
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FIGURE 8.1.8 Active isometric force–half-sarcomere length relation of frog muscle fiber. Force
is given as a fraction of maximum isometric force Fim (data by Gordon et al., 1966, is approximated
as straight lines; data by Ramsey and Street, 1940, is shown for two specimens as squares and
triangles, respectively). The foot region at short lengths can be explained by a geometric model of
filament overlap (black line) incorporating myosin filament sliding through the Z-disc (Rode et al.,
2016). The gray area marks the range where myosin filaments are proposed to have entered the
adjacent half-sarcomere instead of being compressed or folded as classically assumed. Following
this assumption, specific filament overlap changes occur at lengths l1 to l8. The length of classical
zero force is marked by a circle.

Ramsey and Street reported a pronounced foot region of the FLR for extended
stimulus duration (Fig. 8.1.8). Furthermore, fibers did not restore their resting
length after cessation of activation. These observations cannot be explained with
compression of filaments or with the recently proposed decrease of active force
due to increasing filament spacing (Williams et al., 2013). Moreover, in 1952,
Abbott and Aubert showed that the force in an isometric phase after active
muscle shortening/lengthening was lower/higher than the active force in an iso-
metric contraction at the same final length (Fig. 8.1.9). These effects are called
force depression/force enhancement, and are summarized as contraction his-
tory effects. These effects were reported for muscles (Abbott and Aubert, 1952;
Siebert et al., 2015), fibers (e.g., Edman, 1975; Edman et al., 1982), and my-
ofibrils (Joumaa et al., 2008; Joumaa and Herzog, 2010) and they range up to
20% of maximum isometric force for force depression and up to 200% for force
enhancement (Leonard and Herzog, 2010).

To explain the behavior of fibers at short muscle lengths, Rode et al. (2016)
proposed that myosin filaments are not compressed at the Z-discs but that they
slide through them (Fig. 8.1.10). From available micromechanical data they es-
timated that the myosin filaments are too stiff to be folded or even compressed
by the muscular force. Moreover, myosin filament sliding through the Z-discs
would explain the basic structure of the Z-disc. By conversion from hexagonal
lattice in regular overlap to tetragonal lattice at the Z-disc, the actin filament
lattice can accommodate twice the number of myosin filaments at the Z-disc,
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FIGURE 8.1.9 Force enhancement (A) and force depression (B) experiments of rabbit M. soleus.
Upper figure and lower figure represent force–time and corresponding muscle length–time traces, re-
spectively. Force enhancement (difference between white triangles) and force depression (difference
between black triangles) are the force differences between ramp experiments (black) and isometric
reference contractions (gray) determined two seconds after the end of the ramp (te), shown exem-
plarily for a ramp velocity of 0.35 optimal muscle lengths per second.

FIGURE 8.1.10 Proposed myosin filament sliding through the Z-disc and proposed myofilament
arrangement. Myosin filaments (thick) of adjacent half-sarcomeres (shown in green and red, respec-
tively) slide through the Z-disc formed by actin filaments (thin) cross-linked with α-actinins (black
and gray). Titin and other molecules are omitted. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this chapter.)

which is required for an orderly sliding process. Further, this mechanism sug-
gests a specific arrangement of titin molecules that could support the transition
to a checkered pattern of myosin filaments within the actin filament lattice near
the Z-disc (Fig. 8.1.7C).

A geometric model of filament overlap accounting for myosin filament slid-
ing through the Z-disc (Rode et al., 2016) predicted the strikingly linear steep
part of the FLR’s ascending limb and the occurrence of a foot region (Fig. 8.1.8).
Moreover, the model also reproduced the steep, linear decline of maximal con-
traction velocity of the sarcomere from the point below the length where myosin
filaments reach the Z-disc and the constant contraction velocity above this length
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(Edman, 1979). Hence, the whole force–length relationship is in accordance
with the sliding-filament and cross-bridge theories, and the “strange behavior”
of fibers reported by Ramsey and Street (1940) could be explained with the
assumption that myosin filaments slide through the Z-disc.

Another challenge to the classic theories of contraction arises from the ob-
served history effects. Numerous experiments have been performed to assess de-
pendencies of history effects on contraction distance, velocity, force, or activa-
tion (e.g., Abbott and Aubert, 1952; Marechal and Plaghki, 1979; Edman, 1975;
Edman et al., 1982; Herzog and Leonard, 1997). For example, force enhance-
ment depends linearly on stretch distance and is independent of stretch velocity,
while there is no unanimous opinion for the dependence of force depression on
contraction distance and velocity. Although some history effects can be repro-
duced with multiple sarcomere models and the assumption of strong and weak
half-sarcomeres (Morgan, 1990), evidence adds up that strongly suggests a very
important activation-dependent non-cross-bridge contribution to muscle force
production and a minor effect of contraction conditions on the cross-bridges
themselves. The non-cross-bridge contribution to muscle force production is
probably due to titin (Noble, 1992; Rode et al., 2009a; Nishikawa et al., 2012).
We will briefly explain the concept and explain current models of this mecha-
nism. Please, see Herzog et al. (2008), Campbell and Campbell (2011), Edman
(2012), or Siebert and Rode (2014) for a review of the dependencies of history
effects on contraction conditions and suggested mechanisms related to force en-
hancement and force depression.

In the presence of calcium, titin can attach to the actin filament (Fig. 8.1.11;
e.g., Bianco et al., 2007). This would reduce its free molecular spring length
and would lead to vastly increased titin forces during stretch. Also, such a con-
nection would induce decreased forces during shortening (Rode et al., 2009a,
2009b). Actin filament winding upon activation as suggested in Nishikawa et al.
(2012) would facilitate binding of titin’s PEVK-region to actin. The principle
of so far published molecular models to explain force enhancement is simi-
lar. However, only the “sticky-spring” model (Rode et al., 2009a) accounts for
limited forces of actin–titin bindings (Bianco et al., 2007), and is formulated
mathematically to be applicable to muscle shortening.

The physiological role of such semiactive titin behavior is not clear. On the
one hand, such attachment and forces enable stable half-sarcomere operation
when working on the descending limb of the total force–length relationship
(Heidlauf et al., 2016). On the other hand, this behavior may simplify neural
control as the muscle reacts like a linear spring during stretch (Tomalka et al.,
2017). Further, it remains to be investigated to what extent the energy can be re-
covered after active stretch. The molecular mechanisms proposed so far would
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FIGURE 8.1.11 Schematic of a half-sarcomere stretching (middle) and shortening (bottom) from
some initial length (top). When activated, titin’s PEVK-region attaches to myosin binding sites on
actin. During stretch, the number of cycling cross-bridges decreases; however, the force in titin
increases as its PEVK region is stretched along the actin filament. During shortening, first passive
forces decrease and then even become negative, counteracting the cross-bridge forces. Further, some
cross-bridges are inhibited during shortening.

create hysteresis and thus loss of a part of the stored energy. Moreover, the mech-
anism would be counterproductive in muscles producing positive work during
principal daily activities. Indeed, there is some evidence that muscles vary in
the development of history effects (Pinniger et al., 2006; Stienen et al., 1992;
Siebert et al., 2015) and that muscles are possibly able to adapt their actin–
titin binding according to their use (Lindstedt et al., 2002). McBride et al.
(2003) observed differential expression of titin isoforms in weight- and pow-
erlifters in comparison to untrained non-athletic individuals. Beside training
induced changes in fiber type, muscle strength and size (Hortobagyi et al., 1996;
LaStayo et al., 2000), adaptation of actin–titin interaction might be a fur-
ther mechanism to adjust our neuromuscular system to specific task dependent
movement requirements.

8.1.3 HOW HUMAN MUSCLES WORK AS ACTUATORS IN
LOCOMOTION

Muscles are versatile actuators. During locomotion, muscles can work as mo-
tors to inject energy, as brakes, e.g., to dissipate energy for control of inertial
movements (Biewener and Roberts, 2000; Ahn and Full, 2002) or to prevent
potentially dangerous high frequency force oscillations in tendons, e.g., in the
horse (Wilson et al., 2001), and as springs to increase the efficiency of locomo-
tion (Biewener and Roberts, 2000; Roberts et al., 1997). The tendon introduces
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an internal degree of freedom to the muscle. Tendon stiffness, which is mainly
determined by the muscle fiber–tendon length ratio, governs the amount of in-
terplay between the fibers and the tendon. This important parameter may be
tuned to the main task of the muscle (Mörl et al., 2016). For example, this ra-
tio should be low (i.e., the tendon should be long and compliant) for muscles
working primarily as springs, and large for muscles working primarily as mo-
tors. However, the ability of muscles to be activated at any time during a certain
movement allows for more complicated tasks and even task switching during
one motion (like the vastii in the long jump, see next paragraph) or in differ-
ent types of locomotion. Last but not least, muscles provide wobbling mass that
can significantly reduce impacts in jumping or running (Gruber et al., 1998;
Günther et al., 2003).

The force that muscles produce is not only regulated by the level of acti-
vation. Muscles are special actuators with built-in properties (cf. Sections 8.1.1,
8.1.2) that make them respond instantaneously to perturbations of, e.g., position.
These instantaneous responses, e.g., due to their force–length or force–velocity
relationships, have been termed preflexes (Loeb et al., 1999; see Subchapter 6.5),
and they can reduce the control effort (i.e., they can reduce the information
[bit] that has to be processed in order to generate a movement; see Häufle
et al., 2014). One figurative example of the way how muscle properties can
affect our motion without control is the operation of the vastii in the long
jump. During knee flexion, the vastii work eccentrically, exploiting the ability
to generate very high eccentric forces due to the force–velocity relationship and
storing energy in the tendon (Seyfarth et al., 2000). In the subsequent phase,
where the knee extends, the muscle can still contract eccentrically in the be-
ginning and then concentrically at a low velocity because the tendon accounts
for a large part of the total muscle length change during knee extension. This
leads to higher muscle force during knee extension as a consequence of the
force–velocity relationship compared with a muscle without tendon. Today, it
seems that further mechanisms like the semiactive titin (see Section 8.1.2),
or the organization of muscles in muscle packages (Siebert et al., 2015;
Reinhardt et al., 2016) also influence the contraction dynamics and the force
that is exerted to the locomotor system. The functional role of these properties
is not completely understood. However, inclusion of the semiactive titin spring
in parallel to the contractile component, enables the contractile component itself
to react like a spring during eccentric contractions, and thus to save and re-
lease energy. Additionally, inclusion of semiactive titin reduces half-sarcomere
length inhomogeneity and thus contributes to stability on the muscle level, too
(Heidlauf et al., submitted). Understanding the muscle as a three-dimensional
structure surrounded by other tissues (e.g., neighboring muscles or bones) and
generating forces not only in longitudinal direction, transversal muscle forces
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(Siebert et al., 2016) may have functional relevance in locomotion. For example,
work performed transversally on adjacent muscles during muscle deformation
may be saved and released subsequently. In addition to energy savings in se-
ries (Biewener and Baudinette, 1995) and parallel elastic structures (Rode et
al., 2009a), this may represent an additional way of recovering energy during
cyclical locomotion. Further, transversal forces may be functionally relevant re-
garding, for example, stabilization of the spine by back muscles (Morlock et
al., 1999). Models often concentrate on classic force–length and force–velocity
relationships and demonstrate their beneficial effects in achieving a desired mo-
tion. For example, the force–velocity relationship stabilizes hopping in the sense
of a preflex that is tunable by activity (Häufle et al., 2010).

In an example of a postural task, we will show how the force–length and the
force–velocity relationships can simplify the task of, e.g., balancing a tray dur-
ing walking. Despite the perturbations induced by stepping, the tray should be
held still. We use a Hill-type model with constant activation and force–length
and force–velocity relations ignoring history effects and the tendon. In our sim-
ple model of the mechanical systems shown in Fig. 8.1.12A, gravitational force
and inertia acting on the mass are counterbalanced via a lever arm by the mus-
cular force (Fig. 8.1.12B). Activation of the muscle can be tuned to achieve a
stable equilibrium on the ascending limb of the force–length relationship due
to its positive stiffness in this range. In this case, small perturbations can be
negotiated without any neural response or reflexes changing the activation of
the muscle. The system can be overdamped (no oscillations after perturbation,
which may be desired in the task of balancing a tray) or underdamped (oscil-
lations after perturbation). The specific dynamic response to the perturbation
is determined by muscle properties and the gearing ratio of mass lever arm b

divided by muscle lever arm a.
Interestingly, the maximum isometric force, that is associated with the most

common adaptation of muscle, a change in cross-sectional area, does not neces-
sarily influence the response of the system to a perturbation because activation
is tuned to achieve equilibrium, i.e., if, for instance, the muscle is stronger, less
activation is needed. Only if at the same time the proportion of fast and slow
muscle fibers changes, the curvature of the force–velocity relation may change
and this would influence the response of the system to a perturbation. Other
adaptations of the muscle such as an increase in sarcomeres in series decreases
the stiffness of the muscle, but the associated increase in maximal contraction
velocity overcompensates this effect leading to a more underdamped behavior
of the system. A further adaptation that is only accessible to evolution or to
surgery in some cases of spasms is related to the gearing ratio. The surface in
Fig. 8.1.12C shows the relative force value where critical damping occurs. If the
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FIGURE 8.1.12 The influence of muscle preflexes on a postural task. (A) Similar postural tasks.
(B) Model of postural tasks. Muscle force Fm counteracts gravitational force Fg and inertia m · ẍ
via a gearing ratio G = b/a. Equilibrium is achieved by tuning muscle activation. (C) Surface of
static muscle force (normalized by maximum isometric force Fim) that corresponds to critical damp-
ing. Muscle force is Fm = Act ·Fim · fl · fv , with Act the activation, fl and fv the force–length
and force–velocity relationships. fx̂ = 1− x̂2, fv̂ (a hyperbola of curvature curv, cf. Section 8.1.1;
smaller values of curv correspond to stronger damping), and v̂max are the dimensionless scaled
versions of fl , fv , and vmax (the maximum contraction velocity of the muscle), respectively. To
determine the critical values fx̂_crit , the system is linearized at the equilibrium point, and the eigen-
values of the Jacobian matrix are investigated. Increasing width of fl decreases v̂max . Muscles with
slow fibers and lower curv values like the soleus of the cat tend to overdamp the system while
muscles with fast fibers and higher curv values tend to underdamp the system.

equilibrium point is at a higher or a lower value, then the system is overdamped
or underdamped, respectively.

Muscles with their preflexes and sensors of fiber length, velocity, and force,
the vestibular and visual sensors, and the morphology of the biological system
can be considered at the bottom of an essentially hierarchical, biologically rel-
evant model of sensorimotor control, where the spinal cord is in the middle,
and the brain at the top (Loeb et al., 1999). Muscle activation is generated via
motor commands from the spinal cord or from the brain (mediated by interneu-
rons in the spinal cord). Reflex feedback loops are associated with information
processing solely at the level of the spinal cord, and central pattern generators
residing likewise in the spinal cord are thought to provide rhythmic activity (as
the outcome of a dynamical system of neuron pools) to leg muscles in loco-
motion. Initiation of motor programs or intermittent tuning of parameters of
central pattern generators as a consequence of afferent signal processing is as-
sociated with the brain (see Subchapter 6.2 for a discussion of central pattern
generators). Independent of the level of control (high or low), feedback control
is characterized by continual processing of afferent information (e.g., reflexes),
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and feedforward control is adapted intermittently as a consequence of afferent
information (Riemann and Lephart, 2002).

The biological control problem in moving animals differs remarkably from
the technical control problem of industry robots (Loeb et al., 1999): in contrast
to motors, muscles react slowly towards changes in neural stimulus, but, due to
preflexes, quickly when kinematic conditions change. Instead of routing feed-
back signals to individual actuators, signals from a large number of slow and
noisy sensors converge with signals from many command centers before they
are routed to motoneurons. Biological performance of muscles is often subopti-
mal, but adequate in a range of circumstances, instead of optimal with respect to
a single criterion for nominal conditions (Loeb, 2012). Also, biological systems
seem to employ types of feedback that are uncommon in technical applications.
Geyer et al. (2003) demonstrated with a simple model of hopping that a positive
feedback of force or length could stabilize hopping.

Today many aspects of biological control of human locomotion remain to
be investigated. For example, it is still disputed whether central pattern gener-
ators shown to exist in many animals (Delcomyn, 1980) exist in humans, too.
Geyer and Herr (2010) published a model of human walking using a seven-link
model with segment mass that, aside from negative feedback trunk control and
some special events, was driven exclusively by reflexes with no need of a cen-
tral pattern generator. Also, the tuning or interdependencies of different types
of control remain elusive. Häufle et al. (2012) could show that a combination
of positive feedback (reflexes) and feedforward control (central pattern genera-
tor signals) improved stability of a simple hopping model. Despite the apparent
complexity of the human locomotor system that evolved for millions of years,
it seems possible to identify important mechanisms at different structural levels
that enhance stability or locomotion efficiency. Still, the understanding of the
interplay of these mechanisms is far from being completely understood. Thus,
we can expect a series of discoveries in this area in the next years.

8.1.4 REDUNDANCY OF THE ACTUATION SYSTEM –
FUNCTIONALLY RESOLVED?

First we clarify what redundancy in the actuation system means. Joints in the
musculoskeletal system are not ideal pivot joints and may function differently
in different configurations. For example, the human knee can bend and extend,
and its ability to rotate increases when it is flexed. Therefore, several monoar-
ticular muscles spanning one joint (e.g., the vastii) may contribute differently to
extension and rotation, and they would not necessarily be redundant but have
distinct functional meaning. However, in this section we concentrate on the
sagittal plane and simplify joints to pivot joints. In this circumstance, redun-
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dancy describes the fact that monoarticular muscles exist for each joint of the
human leg and that they are complemented by biarticular muscles, for example,
the rectus femoris (RF) and the group of the hamstrings (HAM).

Biarticular muscles can fulfill a number of functions as discussed in earlier
sections of the book (see, e.g., Section 7.3.2) that also illustrate their potential
use for robotics. Among them is the coordination of joint movements (tendi-
nous, or ligamentous action; see Cleland, 1867) and associated with this is the
ability to transfer energy from one joint to the other (e.g., Bobbert et al., 1987;
van Ingen Schenau, 1989). With that they can synchronize the motion of adja-
cent joints without the need for sensory feedback and high bandwidth actuators
(e.g., Niiyama et al., 2007; Hosoda et al., 2010; Scholz et al., 2012). Moreover,
they can resolve the singularity of the knee in explosive motions (e.g., van Soest
et al., 1993), and they can decrease the amount of required energy when creating
torques about two different joints, even more so in animals during leg extension
due to a more favorable working condition (decreased muscle contraction ve-
locity associated with higher force). Biarticular muscles might also facilitate the
control of the swing phase (Dean and Kuo, 2009) that is associated with oppo-
site torques in adjacent joints (DeVita and Hortobagyi, 2000) corresponding to
activity in swing phase initiation (RF) and swing leg retraction (HAM; Prilutsky
et al., 1998). Here, we want to put forth some ideas and provide evidence that
there are further important functions that might help to explain and resolve the
redundancy in the human actuation system.

Let us consider the concept that the leg function can be decomposed into
two sagittal-plane components, the axial leg function (mainly associated with
body support and bouncing) and the perpendicular leg function (mainly associ-
ated with control of upper body orientation, Fig. 8.1.13, left). Both components
can contribute to fore-aft acceleration. The perpendicular leg function can for
example be exploited for this by leaning the trunk forward to increase walking
or running speed, or especially in amputees wearing passive leg prostheses us-
ing the positive hip work (Czerniecki et al., 1991). From standing to walking,
to running, and hopping, the axial function increasingly dominates (Maykranz
et al., 2013). If the central nervous system would be capable of accessing these
functions conveniently, this might reduce the effort of learning new movements
and varying movement conditions (e.g., locomotion speed), that is, the balance
problem might be solved in a very elegant way.

Considering complex dynamics of segmented legs, it seems not trivial to
access these leg functions by the central nervous system. For example, during
stance (with low inertial effects) the monoarticular hip extensors create force
along the shank (Hof, 2001). Hence, they contribute to axial and perpendicular
leg function, and this contribution varies nonlinearly with the knee angle. Mus-
cle dynamics (see Sections 8.1.1, 8.1.2) further complicate the scenario. In con-
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FIGURE 8.1.13 Axial (ALF) and perpendicular leg functions (PLF). The contour lines show hip to
knee moment arm ratios of biarticular thigh muscles depending on the knee angle (180° is straight)
and on the ratio of axial and perpendicular leg force (cross-talk) that biarticular muscles produce at
the distal end of a two-segmented leg. The more the leg is extended, the more the cross talk increases
for moment arm ratios deviating from 2:1. By symmetry, the gastrocnemius also produces purely
perpendicular force for ankle to knee moment arm ratio of 2:1; however, in contrast to the thigh
muscles, its effect on angular momentum is low.

trast, the biarticular HAM, that likewise extend the hip, would simultaneously
exert a knee bending torque that would reduce their axial force contribution. For
equal thigh and shank lengths (as approximated in humans), the hip to knee ratio
of muscle moment arms of 2:1 would allow the HAM and RF to produce only
perpendicular ground reaction force contributions independent of the knee an-
gle (Fig. 8.1.13, right). For deviations from this ratio, the coupling of axial and
perpendicular leg forces increases, especially for extended leg configurations as
commonly used in human locomotion (Fig. 8.1.13, right).

The conceptual morphology (equal thigh and shank lengths, 2:1 hip to knee
biarticular thigh muscle moment arms) was tested for its explanatory power for
muscle EMG (electromyography) activity (Tokur et al., 2015). Subjects were
exposed to an external force applied at different positions of the body in the
sagittal plane, and were instructed to hold their position. Biarticular muscles
consistently increased in EMG accordingly, whereas the monoarticular muscles,
which might, for example, compensate for muscle moment arms of biarticular
muscles deviating from the conceptual 2:1 morphology, did not (Fig. 8.1.14).
Also, in perturbed walking experiments, HAM immediately controlled angular
momentum (Pijnappels et al., 2005). This illustrates what is inherent to its incre-
mental principle: the access to the perpendicular leg function still works even if
biarticular muscles are used for the support of the axial leg function at the same
time. These results suggest the relevance of the concept for balance in humans.

To test the relevance of these theoretical findings for robotic applications,
control of ground reaction force direction was implemented in the humanoid
legged robot BioBiped3 (Sharbafi et al., 2016) using monoarticular versus biar-
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FIGURE 8.1.14 Static perturbation experiment. Subjects stand on one leg; external force F is ap-
plied at a distance r to the joints of the free leg. Signed magnitudes of static torques T applied at
knee and hip joints, drawn in a color corresponding to the leg (broken lines). Statistically signifi-
cant EMG increase (orange) is found in accordance with the predictions for the biarticular muscles
(middle), but not for the monoarticular ones (right). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this chapter.)

ticular actuators in static (standing with different knee angles) and in dynamic
(squatting) conditions. In both cases, biarticular muscles outperformed monoar-
ticular ones by not only tracking the GRF direction better but also by producing
less variations in the GRF magnitude and knee angle while reducing energy
consumption.

To further test whether the conceptual morphology could facilitate balance,
we implemented this design in a 7-link rigid-body model (trunk and three-
segmented legs; see Lakatos et al., 2014) with series elastic actuators (biarticular
thigh and shank actuators, monoarticular knee actuator). With the elastic decou-
pling of axial and perpendicular leg function, human sagittal-plane running was
decomposed into a set of tasks which could be directly addressed. The benefit
of this architecture for keeping balance was demonstrated with a simple con-
trol scheme enabling bipedal running of the model. On a side note, combining a
spring loaded inverted pendulum model for the stance leg and a double pendu-
lum for the swing leg, Sharbafi et al. (2017) have shown that the human swing
leg motion could be reconstructed by just setting appropriate rest lengths and
stiffness of biarticular springs.

The conceptual leg architecture follows simply from the idea that balance
control can be facilitated by direct access to axial and perpendicular leg func-
tion. Perpendicular leg function requires opposite joint torques (flexion and
extension) within adjacent joints. These requirements predict the existence of
biarticular muscles, biarticular muscle moment arm ratios of 2:1 for hip to knee
and ankle to knee, and equal segment thigh and shank segment lengths. Humans
approximate this architecture to some extent (existence of biarticular muscles,
nearly equal thigh and shank lengths, approximate 2:1 ratio for gastrocnemius
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and HAM, but rather 4:3 for RF in extended leg configurations, Winter, 2005).
Notably, the biarticular antagonist for the gastrocnemius is missing, reflecting
an asymmetry introduced by the flat foot. These predictions together with exper-
imental and simulation results suggest that the human leg architecture is adapted
to simplify balance.

Seemingly, the advantages of biarticular muscles add up and may be used
and exploited in future prosthetic, orthotic, or robotic designs.
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Chapter 8.2

From Stiff to Compliant Actuation
Maarten Weckx, Bram Vanderborght, and Dirk Lefeber
Department of Mechanical Engineering, Vrije Universiteit Brussel, Brussels, Belgium

This chapter discusses the evolution from using stiff servomotors in humanoid
walking to the inclusion of virtual compliance and eventually physical com-
pliance. Firstly, the addition of compliant elements in series with a motor and
possible drive train will be discussed. This is followed by a discussion on the
expansion towards variable physical compliance and the categorization regard-
ing variable stiffness actuators (VSAs). Subsequently, the possibility of adding
parallel compliant elements to an actuator scheme is discussed. The chapter
is finalized with a discussion on the use of locking mechanisms in actuator
schemes and the implementation of compliant actuators in multi-DoF joints of
humanoids.

8.2.1 STIFF SERVOMOTOR

Most of the robotic systems consist of traditional stiff servomotors. They consist
of an electric motor connected with a high-gear transmission to reduce the ro-
tational speed and increase the torque. The motors are controlled by a feedback
loop, often with a high gain PD, based on the measurement of motor position.
Their ideal working principle is that the desired position is quickly reached and
maintained, regardless of the external forces exerted on the actuator; within the
force limits of the device (Hogan, 1985). The aim for each joint is to be as
stiff as possible or to approach infinite impedance. The motor is consequently
a position source and the behavior is excellent when a desired trajectory must
be tracked with a high bandwidth and with high accuracy. These properties are
advantageous for industrial robots where precise and fast position control must
be achieved, but due to their dynamical properties they cannot match the re-
quirements of robots that need to interact with humans and with an unknown,
dynamic environment. The dynamic properties of the motor, for instance, mass,
inertia, and stiffness, heavily influence the control of the entire robotic system.
The actuators cannot achieve comparable motion, safety, and energy efficiency
of a human. Position control in any task in which a robot interacts with the en-
vironment is not a properly posed problem because the controller is dependent
on parameters that cannot represent the interaction. As a result, industrial robots
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with servomotors are often placed in cages since the robot cannot “feel” an inter-
action with the dynamic environment and will deploy its full power to continue
the position commands.

Advantages of servomotors are the facts that it is compact, easy to fit in a
design and easy to control with a PD controller. Main advantage is the excellent
behavior when a desired trajectory must be tracked with a high bandwidth and
with high accuracy. A servomotor has several disadvantages too:

• Shocks introduce large forces in the mechanism since impedance is infinite;
• The servomotors are not safe for human–robot interaction or for interaction

with any dynamic environment in general;
• Since no compliant element is implemented in the hardware, a servomotor

cannot store and release energy. As a result they cannot be loaded for explo-
sive motions and they have to deliver energy for both positive and negative
powers.

The HRP-3 (Matsui et al., 2005) and KHR-3 (HUBO) (Park et al., 2006) hu-
manoids use local high gain PD position controllers of which the latter’s tracking
controller runs at 1000 Hz. RABBIT uses a similar PD control to ensure the
tracking of trajectories (Sabourin et al., 2006). Mahru-III uses servo controlled
DC motors, but incorporates active impedance control for landing and uneven
terrain walking (Kwon et al., 2007).

8.2.2 STIFF SERVOMOTOR WITH ACTIVE COMPLIANCE

Position control in a task in which a robot interacts with the environment is not
a properly posed problem, as previously mentioned. The controller is namely
dependent on parameters that are out of the control potential. On the other hand,
controlling the impedance and the so-called equilibrium position is a well-posed
problem. Within certain boundaries, this can be done without knowledge of the
environment. Compliant actuators allow for deviations from their equilibrium
position, depending on the applied external force. The equilibrium position of a
compliant actuator is defined as the position of the actuator where the actuator
generates zero force or zero torque. This concept is specifically introduced for
compliant actuators, since it does not exist for stiff actuators (Van Ham et al.,
2009).

This trend was started by Hogan in 1984 (Hogan, 1985) with his work on
impedance control which was of particular interest for robotics that had to han-
dle objects in a dynamic environment. Since the compliance is implemented in
the controller software and not in the hardware it is referred to as active compli-
ance. The actively controlled compliance will mimic the behavior of a spring.
Based on the measurements of the external force or torque, a certain deviation is
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calculated and set by the stiff actuator. A deviation from the desired position is
thus allowed and artificially implemented by means of a desired and controlled
compliance. This type of compliant actuator requires an actuator, a sensor, and
a controller which are all fast enough for the application. The main disadvan-
tage of active compliant actuators is the continuous energy dissipation, due to
the inherent continuous control and the absence of a physical elastic element, in
which energy can be stored and subsequently released. The limited bandwidth
of the controller results in the disability of the actuator system to absorb shocks.
Exploiting the natural dynamics of the actuated system in an energy efficient
way, as is done for passive dynamic walkers, is not possible since energy is re-
quired to move. Furthermore, the controller is quite complex and the dynamics
of the system need to be known very well. An advantage of active compliance is
that the controller can make the quasistiffness online adaptable in a theoretical
infinite range and with infinite speed. In a similar way as stiffness is imple-
mented, the controller can also incorporate damping into the system, resulting
in an active impedance actuator (VIA).

This radical new concept of active compliance opened a vast amount of re-
search directions which led for example only recently to the commercialization
of the DLR lightweight arm by KUKA. We can state that the technology is ma-
ture and the commercial version is used in many applications (Albu-Schaffer
et al., 2008). TORO, which evolved from the DLR-Biped (Ott et al., 2012),
is a humanoid with impedance-controlled legs driven by stiff electrical drives
(Englsberger et al., 2014). SARCOS’s CB (Herzog et al., 2014) and Petman
(Nelson et al., 2012) have torque-controlled hydraulic actuators. The humanoid
Mahru-III is driven by stiff servomotors and uses an impedance controller for
landing and walking on uneven terrain (Kwon et al., 2007). The planar 4-DoF
biped Amber uses torque-controlled DC motors and is able to walk over inclined
surfaces and uneven terrain (Yadukumar et al., 2012). HyQ is an example of a
hydraulic quadruped that is torque-controlled (Boaventura et al., 2012).

An active compliant actuator is equal to a servomotor concerning its hard-
ware and thus also has the advantage of being compact and easy to fit in a design.
The impedance control provides a certain level of safety for human-robot inter-
action, nonetheless due to the limited bandwidth of the controller no shocks can
be absorbed, e.g., hitting the system with a baseball bat will not be handled by
the control and probably the system will simply break. It also requires torque
sensors, which can be quite expensive. Furthermore, an active compliant actu-
ator has the disadvantage, like servomotors, that no energy can be stored in the
actuation system.
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FIGURE 8.2.1 Scheme of the SEA.

8.2.3 SERIES ELASTIC ACTUATOR (SEA)

A logic extension of Hogan’s work on implementing impedance by control
was to introduce intrinsic compliant elements to robotic hardware. This started
with using hydraulic springs in hopping robots (Raibert, 1986). Next, Pratt and
Williamson introduced the series elastic actuator (SEA) (Pratt and Williamson,
1995) which consists of a servomotor with gear train in series with a spring
as shown in the scheme in Fig. 8.2.1. The introduction of spring elements in
robotic actuation was inspired by biology, for example, the work of Alexander
(1988) and Geyer et al. (2006) explains the importance of elasticity in animal
and human locomotion. The equilibrium position is the only controllable param-
eter, hence at least one motor is required. The introduction of a passive elastic
element has several advantages with respect to a stiff servomotor:

• The passive elastic element can store and subsequently release energy. As a
result, the peak power and energy requirements for a certain application can
be lowered;

• Due to the passive compliance, SEAs allows certain deviations from the
equilibrium position which makes them safer for human–robot interaction;

• The passive elastic element has an infinite bandwidth for shock absorption.

Of course, there are some disadvantages too:

• The system becomes more complex since the elastic element needs to be
added;

• The system might store large amounts of energy in the elastic element
that can potentially create an unsafe situation when released quickly (Van
Damme et al., 2009).

When the impedance becomes zero, an extreme case arises where the actua-
tor becomes a force/torque source like gravity. Examples are constant torque
springs and direct-drive motors. The latter are used in the MIT Cheetah
(Folkertsma et al., 2012) and in a leg consisting of two direct-drive dc motors
coupled to a symmetric five bar linkage (Kenneally and Koditschek, 2015).

The planar biped Flame possesses bidirectional SEAs in the hip and knee
joints. Whereas unidirectional SEAs with passive return springs are used in the
ankles. The motor for the ankle actuators are placed in the upper body for a
more favorable mass distribution in the limbs and are connected to the springs



Actuation in Legged Locomotion Chapter | 8 595

in the ankles by means of Bowden cables (Hobbelen et al., 2008). The planar
BioBiped has bidirectional SEAs in the hip joints. These consist of a belt–pulley
transmission of which the driving pulley is connected to the joint via small com-
pression springs in an inner ring aligned around the joint. Unidirectional SEAs
are used in the other leg joints, which consist of DC motors that wind up a cable
on a pulley to pull a spring that is attached to a lever (Radkhah et al., 2012).
The preceding JenaWalker I and II used the same actuation concept (Seyfarth
et al., 2009). The sagittal knee joints and frontal ankle joints of COMAN are
driven by SEAs that centralize all components in a compact module and utilize
small compression springs as well (Li et al., 2013). The NASA-JRC Valkyrie
humanoid uses a mix of rotational SEAs with custom-made torsion springs and
ball–screw driven SEAs with compression springs placed between the DC motor
and the ground, as opposed to between the DC motor and the load (Paine et al.,
2014, 2015). Herbert’s SEAs are based on ball–screw driven belt–pulley trans-
missions. The inside of the output pulley of those transmissions is machined
to become a torsion spring. Thus, the output pulleys serve as the compliant el-
ement and are directly connected to the joint axes (Pierce and Cheng, 2014).
Samsung’s Roboray uses similar ball–screw driven belt–pulley transmissions,
but with elastic wires substituting normal timing belts and acting as the com-
pliant elements (Kim et al., 2012). The planar running robot ScarlETH with
electrical SEAs employs compliant with high damping position control during
flight phase and torque control during stance phase (Hutter et al., 2013).

8.2.3.1 Example: SEA in an Ankle Prosthesis

Since the passive compliant element, typically a spring, in an SEA can store and
release energy, the peak power (PP) and energy requirements (ER) for the mo-
tor in certain applications can be lowered by storing negative work and releasing
this energy during periods of positive work. In order to clearly indicate this, an
example comparing the use of an SEA to a stiff servomotor in an ankle pros-
thesis is simulated. The simulations are inspired by previous work by Grimmer
and Seyfarth (2011) and have been published by Mathijssen et al. regarding the
potential of the series–parallel elastic actuator (SPEA) in an ankle prosthesis
(Mathijssen et al., 2013).

The requirements of a sound human ankle (torque, speed, and power) are
taken from Winter (1984) and summarized in Fig. 8.2.2. In case the ankle pros-
thesis is actuated by a stiff servomotor, the requirements for this motor would
logically be identical to Winter’s data.

The power curve in Fig. 8.2.2 clearly shows a high positive peak which is
required to generate the push off. During the first 40% of the gait cycle, the
ankle produces negative power. The total required energy (by taking the integral



FIGURE 8.2.2 Data of a sound ankle (Winter, 1984).
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of the power curve) is 35 J, of which 25 J are required to deliver the positive
power and 9 J to deliver the negative power.

Regarding energy requirements, an “ideal actuator” should store the 9 J re-
quired to deliver the negative work and release this during periods of positive
work. As a result, theoretically this ideal actuator only requires 16 J.

An SEA can reduce the peak power by storing and releasing energy so that
the motor speed can be reduced. It is important to note, however, that the torque
requirements can never be changed. Of course the torque requirements can be
scaled down by means of a gearbox, but the shape of the torque curve cannot be
changed. Due to the possibility of reshaping the speed curve, the power curve
can be reshaped as well and as such the peak power can potentially be lowered.

Fig. 8.2.3 summarizes the results of a simulation regarding the actuation of
an ankle prosthesis with a stiff servomotor or an SEA. Main goal is to show
that the peak power and energy requirements can be lowered, and that for both
a minimum of the spring stiffness in the SEA can be found. The upper left
plot indicated that indeed a minimum can be found regarding the peak power.
When the stiffness is smaller, the peak power raises since this corresponds to
high speeds since large spring extensions are required. When the stiffness is
bigger, the peak power increases too, with an asymptote towards infinity. This is
logical, since an infinite stiffness corresponds to a stiff servomotor and thus the
peak power goes toward 280 W which was the peak power of Winter’s data in
Fig. 8.2.2.

Fig. 8.2.3 also clearly indicates that the motor torque requirements do not
change, regardless of the change in stiffness. The speed requirements on the
other hand do clearly change and as a result the peak power can be reduced
(dashed curves) and the energy requirements too (dashed–dotted curves).

8.2.4 VARIABLE STIFFNESS ACTUATOR (VSA)

The SEA discussed previously is a passive compliant actuator with fixed stiff-
ness. The most basic scheme consists of only one motor that enables to change
the equilibrium position of the actuator. A variable stiffness actuator (VSA) is a
passive compliant actuator that has a controllable stiffness. As a result, at least
two motors are required for controlling both the equilibrium position and the
stiffness. In the literature they have been referred to with varying terminology,
e.g., actuators with passive variable stiffness, controllable stiffness or adjustable
compliance. In 2009 Van Ham et al. (2009) categorized the VSAs in four groups
according to the mechanism that is used to change the stiffness. This reasoning
is further extended by Vanderborght et al. (2013). The new categorization is
summarized in Fig. 8.2.4. In the following subsections these categories will be
briefly discussed. For designing an application like a biped, Grioli et al. (2015)



FIGURE 8.2.3 Different minima for the spring stiffness in an SEA can be found to either minimize the PP or the ER (Mathijssen et al., 2013).
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FIGURE 8.2.4 Categorization of VSAs (Vanderborght et al., 2013).

provide design procedures and data presentation of how a generic VSA could be
organized so as to minimize the engineer’s effort in choosing the actuator type
and size that would best fit the application needs.

8.2.4.1 Spring Preload

A way of changing the stiffness of a VSA is by adjusting the preload of a spring.
This can be done in three ways. An example of each of the three is presented in
Fig. 8.2.5.

The first mechanism, shown in Fig. 8.2.5A, utilizes an antagonistic setup of
actuators, whether they are artificial muscles or SEAs. At least two nonlinear
springs are required in such a setup to obtain an actuator with variable com-
pliance (Van Ham et al., 2006). In general, this is a disadvantage. Opposing
movement of both motors changes the preload of the spring and changes the
stiffness. Movement in the same direction, on the other hand, changes the equi-
librium position. The main disadvantage of this working principle is that both
motors need to work synchronously to control the equilibrium position or the
stiffness separately. This means that the motors cannot be separately dimen-
sioned for the equilibrium position control task and the stiffness modulation
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FIGURE 8.2.5 Three different setups for a VSA with spring preload mechanism. Antagonis-
tic springs with antagonistic motors in (A). Antagonistic springs with independent motors in (B).
Preload adjustment of single spring in (C) (Vanderborght et al., 2013).

task. Examples are the VSA-II (Schiavi et al., 2008), the VSA-cube (Catalano
et al., 2011), and the BAVS (Friedl et al., 2011). The following bipeds are exam-
ples of the implementation of this type of antagonistic actuators: Pneumat-BB
using McKibben muscles (Narioka et al., 2012) and Lucy using pleated pneu-
matic artificial muscles (Vanderborght et al., 2008).

A second mechanism, shown in Fig. 8.2.5B, uses a different arrangement of
motors in an antagonistic spring setup to at least partially decouple the equilib-
rium and stiffness control. In this case one of the motors is dedicated to changing
the springs’ preload. Examples are the quasiantagonistic joint (Eiberger et al.,
2010) and the AMASC (Hurst et al., 2004). The compliant asymmetric antag-
onistic actuator, on the other hand, has a dedicated motor for driving the joint
and a second, smaller motor dedicated to store potential energy in a rubber-type
elastic cord for release in the joint (Roozing et al., 2015).

A third mechanism, shown in Fig. 8.2.5C, does not require an antagonis-
tic setup and uses only one spring. Again the preload of the spring is adjusted
to change the stiffness of the VSA. The MACCEPA (Van Ham et al., 2007) is
an example of a VSA that is based on this mechanism. It consists of a lever
arm that controls the equilibrium position. The lever arm is connected to a
fixed pivot point on the output link by means of a spring. When the lever arm
and the output link are aligned, the exerted spring force is aligned with out-
put link and no torque is exerted. When a deviation angle between the lever
arm and the output link exists, the exerted spring force possesses a perpendicu-
lar component relative to the output link and a torque is exerted on the output.
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FIGURE 8.2.6 Three possibilities of controllable transmission ratio: changing force, changing
spring, and changing pivot point (Vanderborght et al., 2013).

While the antagonistic setups require nonlinear springs or designs that trans-
form linear springs into nonlinear elastic mechanisms, the MACCEPA just re-
quires a linear spring. Its torque–angle characteristic is quasilinear. Furthermore,
both equilibrium position and stiffness are controlled independently. The MAC-
CEPA 2.0 (Vanderborght et al., 2011) uses a cam shaped lever arm allowing to
shape the torque–angle relation according to the application. The MACCEPA
has been implemented in three bipeds (Mao et al., 2007; Huang et al., 2013;
Weckx et al., 2014; Rodriguez Cianca et al., 2015).

8.2.4.2 Changing Transmission Between Load and Spring

The stiffness can also be controlled by controlling the configuration of a lever
mechanism. This can be done in three ways as shown in Fig. 8.2.6: changing
the force, changing the spring, and changing the pivot point. Several actuators
described in the literature use one of these mechanisms. In the automatic rigid-
ity/compliance switching VSA (Cui et al., 2014) and the HVSA (Kim and Song,
2012) the force and pivot point are kept fixed, while the spring point is changed
to change the stiffness. In the AWAS-II (Jafari et al., 2012) and the vsaUT-II
(Groothuis et al., 2014) the force and the spring point are kept fixed but instead
the pivot point is changed. The biped walkers Blue and miniBlue are actuated
with VSAs that vary the spring point in order to change the joint stiffness (Enoch
and Vijayakumar, 2015).

8.2.4.3 Changing the Physical Properties of the Spring

The variations in stiffness of the spring are obtained by changing the effective
physical structure of the spring. This is best explained via the standard elastic
law in Vanderborght et al. (2013):

F = EA

L0
�L = K�L (8.2.1)

where F is the force, E the material modulus, A the cross-sectional area, L the
effective beam length, and �L is the extension, respectively. The material mod-
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ulus can logically not be changed by the structure. But F , A, and L can be
changed structurally and can thus be used to change the stiffness. Many designs
are discussed in literature. Changing the cross-sectional area can, for example,
be done by rotating a beam with an aspect ratio that differs from one. Another
way to change the stiffness is to vary the effective length of the spring. For ex-
ample, by changing the number of active coils of a spring, as done in the Jack
spring actuator (Hollander et al., 2005). The arched flexure VSA changes the en-
gaged length of a nonuniform cantilever beam (Schimmels and Garces, 2015).
Similarly the engaged length of a custom spline shaft torsion spring is varied
in Schuy et al. (2013). A different example is the EPAIA that uses a hydraulic
torsion spring of which the stiffness can be changed by adjusting the internal
pressure (Misgeld et al., 2014).

8.2.5 PARALLEL STIFFNESS

This section will discuss the use of additional passive parallel elements that span
a joint. Previously some examples were given to demonstrate that the use of an
elastic element in series with the motor can reduce peak power (PP) and the en-
ergy requirements (ER) of the motor. As shown in Fig. 8.2.3, this can be done
by reshaping the velocity curve of the motor. The torque curve of the motor,
however, cannot be reshaped, only rescaled by changing the gear ratio. This,
however, can be done by adding an elastic element in parallel to the actuator,
which is often called load cancellation. The most common implementation of
a load cancellation mechanism is in an everyday lamp where the springs coun-
teract gravity in each joint and divert the gravity load on each link towards the
base. Modern excavators are also equipped with a piston parallel to their boom
assembly for gravity compensation. The gravity balancers are also referred to in
literature as static balancers. Just Herder finished his PhD on statically balanced
spring mechanism at the Delft Technical University (Herder, 1998). Static bal-
ancers are interesting for human friendly robots since they remove significant
loads from the system by static balancing of gravity forces. The personal robot
PR-1 from Willow Garage, for example, uses a gravity balancer system based
on the work of Herder. Because the joint motors do not need to handle gravity
loads, they can be low-torque and have small and efficient gear reduction which
makes the PR-1 strong, yet light, and safe. Mettin et al. (2010) studied the use
of springs in parallel to a direct drive that drives a planar underactuated double
pendulum and called this a parallel elastic actuator (PEA). In this article, the au-
thor follows the intuitive idea of having spring-like elements generating most of
the nominal torque of the target motion, while the control efforts of the original
actuators are spent mainly in achieving feedback stabilization and uncertainty
compensation. Mettin also showed that the passive parallel spring mechanisms
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have to be configured for specific sets of trajectories and they are particularly
useful for repetitive or cyclic robot motions. It is indeed not possible to find
spring configurations with only passive parallel springs that give arbitrary qual-
itative and quantitative torque functions, which means they are not always an
option for complementary actuation.

In Wang et al. (2011) the potential of an SEA and a PEA in the hip, knee,
and ankle of an exoskeleton were studied. In their exoskeleton, four degrees
of freedom (DOFs) were actuated: the hip flexion/extension (F/E), hip ab-
duction/adduction (A/A), knee flexion/extension (F/E), and ankle dorsi/plantar
flexion (D/PF). Theoretical optimization results (Fig. 8.2.7) show that adding
parallel springs can reduce the peak torque by 66%, 53%, and 48% for hip
flexion/extension (F/E), hip abduction/adduction (A/A), and ankle dorsi/plan-
tar flexion (D/PF), respectively, and the RMS power by 50%, 45%, and 61%,
respectively. Adding a spring in series (forming a series elastic actuator, SEA)
reduces the peak power by 79% for ankle D/PF and by 60% for hip A/A. An
SEA does not reduce the peak power demand at other joints. Remarkable is the
fact that the SEA and PEA do not improve the motor requirements at the knee.
This is because the quasistiffness changes dramatically after heel-off, which
means the motor has to produce large torques during swing phase if a PEA with
fixed spring stiffness is added. For the ankle, a unidirectional PEA is proposed.

Au et al. solved this issue by implementing a unidirectional parallel spring
in his prosthesis (Au et al., 2009). Like this, the required powers and torques in
the stance phase are reduced while in the swing phase the parallel spring does
not counteract the desired motion.

For the other joints (flexion/extension hip and knee, and inversion/eversion
hip), similar results can be found. This is indicated in Fig. 8.2.8. The motor
torque and power clearly decreases. For the frontal hip DOF the results can
probably be improved a lot if the parallel spring would be decoupled during
swing phase (since here the torque graph was originally zero).

Haeufle et al. developed a PEA that uses a clutch to engage and disengage
a spring in parallel to a stiff servomotor. One-legged periodic hopping experi-
ments with the PEA driving the knee joint showed a reduction of 80% in energy
consumption and a reduction of 66% in peak torque requirements of the motor.
During normal locomotion the clutch is ideally engaged at touchdown and dis-
engaged at takeoff (Haeufle et al., 2012). The inclusion of parallel springs into
the stiff servomotor driven biped walker STEPPR was investigated in Mazumdar
et al. (2015). The biped has 3-DoF hips, 1-DoF knees, and 2-DoF ankles. The
investigation was done for three gait types:

1. Human gait data, the “golden standard” for humanoids
2. Dynamic human-like robot walking simulation gaits
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FIGURE 8.2.7 PEA optimization for the ankle for minimum peak power.

3. More static gaits, i.e., crouched gaits, that were typical for early humanoids

The authors concluded, based on simulations, that for all three gaits the sagittal
ankle joint and the frontal hip joint benefit from a parallel spring. Under the con-
dition that the parallel spring in the ankle is only engaged during stance phase.
They furthermore conclude that the sagittal hip and knee joints only benefit from
a parallel spring when gait type 1 applies. Subsequently, the frontal hip spring
for gait type 3 and the sagittal ankle spring for gait type 2 were experimentally
validated on a dedicated test bench. This resulted in the addition of the inves-
tigated parallel springs to the STEPPR biped. The inclusion of PEAs was also
investigated with MIT’s quadruped Cheetah, which also showed improvements
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FIGURE 8.2.8 Spring stiffness optimization of the PEA for frontal and sagittal hip movement
during normal walking.

in power consumption and the need for switchable parallel springs in certain
joints (Folkertsma et al., 2012). One important disadvantage of a spring in par-
allel with a stiff servomotor is the fact that the PEA as a whole is still a stiff
actuator. This is logical since the overall stiffness of two elements in parallel is
the sum of the stiffness of each element. And since the servomotor is infinitely
stiff, the overall stiffness of the PEA is as well. A high backdriveability is there-
fore desired when using a PEA. This can be achieved by low gear ratios for the
motor, as is done in MIT’s Cheetah and the STEPPR biped.

Eslamy et al. presented an extensive simulation study of different actuation
schemes for ankle actuation using human gait measurements of walking and
running at different velocities (0.5, 1, 1.6, 2.1, and 2.6 m/s). In the study they
combined a stiff servomotor and an SEA with either a parallel spring or a unidi-
rectional parallel spring. An SEA without any parallel spring was also included
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in the study. For every combination they subsequently optimized the spring stiff-
ness and in case of a unidirectional parallel spring the engagement angle per
measured gait type. The optimizations were done once by minimize the peak
power requirements of the motor and once by minimizing the energy require-
ments of the motor. Finally, per optimization criteria they compared the peak
power and energy requirements of the motors in every combination for the dif-
ferent speeds of walking and running. They conclude that the best selection of
combination depends on the type of gait and the velocity (Eslamy et al., 2012).

8.2.6 LOCKING MECHANISMS

The two main reasons for using locking devices in robotic systems are energy
management and reconfiguration. The most common use of locking devices
in robotics is related to decreasing energy consumption. For instance, in the
fields of mobile robotics, prosthetics, and exoskeletons energy consumption is
paramount for performance. The advantage of the evolution towards compliant
actuation in robotics is the possibility of storing and subsequently releasing en-
ergy from springs. As previously mentioned, this can lower the energy consump-
tion of the actuators. The springs, however, are noncontrollable energy buffers.
A solution to control the release of energy from springs is the use of continu-
ous variable transmissions. These devices are, however, still in the development
phase and are not readily available for use in robotic applications. Another solu-
tion is using locking devices to control the release of energy. A second common
reason for using locking devices is to reconfigure a robotic system. Such systems
consist of multiple modules that can be connected and disconnected to form dif-
ferent configurations that perform different tasks. Those modules are connected
and disconnected using locking devices of various designs. An ideal locking
mechanism possesses following properties: adjustable locking positions, un-
locking while under load, low energy consumption, lockable in any position,
compact, lightweight, short switching time, inexpensive, and high locking force.
Locking devices can be categorized in three main categories. Mechanical lock-
ers lock and unlock based on the position of a mechanical component, e.g.,
wedges or paws. Friction-based lockers engage or disengage two friction sur-
faces to lock or unlock a joint. Singularity lockers exploit singular positions of
the device to lock or unlock a joint. Singularities of a mechanism result in in-
finite transfer ratios and in such positions the device can lock and unlock the
joint with an infinitely high and low force, respectively. All categories can be
implemented in an active or a passive way. Active lockers require an actuator to
control the locking timing, position, or force. Passive devices require no addi-
tional actuator, control, or electronics, but rather lock and unlock based on for
instance the joint’s position or direction of velocity. In the following paragraph
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some examples of locking devices in legged robotics will be discussed. For a full
review on all types of lockers in the main categories and their implementation
in robotic systems, please, refer to Plooij et al. (2015).

Usage of a latch to lock the knees of a biped during specific walking phases
can be found in two examples (Collins and Ruina, 2005; Wisse et al., 2007).
The bipedal running robot Phides, on the other hand, uses a latch to attach a
parallel spring to the knees during the stance phase and detach it during flight
phase (Karssen and Wisse, 2012). Multiple passive latches are used in a knee–
ankle prosthesis to control the energetic coupling between the ankle and knee
joint during locomotion (Unal et al., 2010). An active latch is used in the weight
acceptance mechanism of a knee–ankle prosthesis to engage a spring parallel
to the knee joint during the stance phase (Flynn et al., 2015). In the AMP-Foot
1 a ratchet is used to change the internal configuration of the foot between the
loading and push-off phase (Brackx et al., 2013). The energy storage device of
a spherical hopping robot uses a passive ratchet (Li et al., 2009). A clutch is
used to engage and disengage a parallel spring in a knee exoskeleton (Elliott
et al., 2013) or to switch between ground mode and flight mode of robots
(Kossett and Papanikolopoulos, 2011). Recently a mutilated gear mechanism
was used as a cam-based locker to lock parallel springs of a compliant actu-
ator (Mathijssen et al., 2015). Electromagnetic brakes were used to lock the
joints of a bipedal walker during stand-still to effectively decrease the energy
consumption (Sugahara et al., 2002). A strategy that is also implemented in a
knee prosthesis that engages a clutch to bypass the required reaction torque re-
quired by the motor in an SEA when the spring releases energy (Rouse et al.,
2014). Overrunning clutches have been used in orthotics and prosthetics to en-
gage support springs (Shamaei et al., 2013), energy harvesting (Li et al., 2008),
and control the energy storage and release of springs (Collins and Kuo, 2010).
Examples of singularity lockers can be found in a bipedal walker to lock its
knees (Van Oort et al., 2011), in transfemoral prostheses to lock a spring during
loading by a smaller motor (Cherelle et al., 2014), and for engaging a spring in
the weight acceptance mechanism in the knee of the Cyberlegs alpha prototype
(Flynn et al., 2015).

8.2.7 MULTI-DOF JOINTS

Since humans posses multiple degrees of freedom joints, bio-inspired robotic
applications often require multiple degrees of freedom actuators with variable
stiffness. The three-dimensional shoulder and wrist joints of the human arm
provide a large workspace and dexterity to the arms. During human locomo-
tion, 23% of the total hip work is done in the frontal plane, while 74% of
the total hip work is done in the sagittal plane (Eng and Winter, 1995). The
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hip work in the frontal plane is done to support the body weight when the
body mass is shifted laterally and to counteract a destabilizing gravitational
moment in order to keep the pelvis and trunk erect (MacKinnon and Winter,
1993). One of the strategies the human body uses to cope with perturbations
of the center of mass, particularly in the frontal plane, is widening the stance
(Goodworth and Peterka, 2010) by utilizing the frontal degrees of freedom in
hips and ankles. These degrees of freedom, furthermore, allow for locomotion
over surfaces inclined in the frontal plane and are used to adapt the gait when
walking over irregular surfaces (Manz et al., 2003). Because of the importance
and use of multiple degrees of freedom joints in the human body, bio-inspired
robotic applications often require multiple degrees of freedom actuators with
variable stiffness. In cases where multiple degrees of freedom are wanted in
one joint, however, cascades of single-degree of freedom actuators are usually
used. The VSA-CubeBot is an example in which a robot’s multiple degrees
of freedom joints are formed by directly connecting variable stiffness actua-
tors in series (Catalano et al., 2011). Another way to achieve this is by moving
some parts of the actuator away from the joint, e.g., the motors, and using trans-
missions to drive the joint and/or change its stiffness (Hobbelen et al., 2008;
Gallego et al., 2010). The research on multiple degrees of freedom actuators
with variable stiffness is still limited. One of the few examples is the multiple
degrees of freedom actuator with variable stiffness based on two antagonistic
setups of ANLES actuators. The ANLES actuator drives a linear torsion spring
that wraps around a nonuniform cylinder. As a result, the engaged part of the
torsion spring varies, which yields an overall nonlinear elastic behavior. It is
used in a 3-DoF wrist joint (Koganezawa and Yamashita, 2010). This actuator
has, however, the same disadvantages as other antagonistic setups previously
mentioned. Another example, but with no possibility of stiffness modulation,
couples two custom-made spring elements to a spherical mechanism and is also
used as a 2-DoF wrist joint (Chu et al., 2014). Different from variable stiff-
ness actuators is the two-degree of freedom variable damping actuator, using
electro-rheological fluids, proposed by Sakaguchi and Furusho (1999). Further-
more, there are few examples of spherical electric motors without any physical
compliance, but with the possible option of being used as direct drives with
active compliance through control (Wang et al., 2003; Rossini et al., 2013;
Kim et al., 2015). A 2-DoF ankle prosthesis is described in Ficanha and Rast-
gaar and couples the movement of two DC motors that drive a Cardan joint
through a nylon cable. The nylon cable provides some compliance, but no vari-
able stiffness can be obtained. A novel variable stiffness actuator, based on the
MACCEPA principle, to be specifically used in a 2-DoF joint has been pre-
sented in Weckx et al. (2014). This actuator has been used for the joints of a
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biped (Rodriguez Cianca et al., 2015). The biped TORO possesses 2-DoF Car-
dan joints in its ankles. Two direct drives with active impedance control drive
the Cardan joint. The frontal motor is incorporated within the joint, while the
sagittal motor is placed in the shank and connected to the joint by means of a
parallel bar mechanism (Englsberger et al., 2014). This arrangement of actuators
can also be found in the ankles of COMAN, with the exception that COMAN
is driven by compact SEAs (Li et al., 2013). The biped Valkyrie also possesses
2-DoF Cardan joints in its ankles that are driven by two linear SEA’s, which are
both placed more towards the biped’s calves (Paine et al., 2015).
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Chapter 8.3

Actuators in Robotics as Artificial
Muscles
Koh Hosoda
Department of System Innovation, Graduate School of Engineering Science, Osaka University,
Toyonaka, Japan

What is required for substituting the function of the biological muscles with ar-
tificial ones? If we suppose the biological muscles are the actuators driving joint
motion through the muscular-tendon structure, the artificial muscle should exert
a force to the link through tendons. The simplest engineering solution is using
motors driving links though wires as we reviewed in the previous section. In this
section, we begin with more muscle-like actuators used for humanoid robots.

In this section, we will focus on muscle-like actuators for realizing loco-
motion, electric-motor based actuators, hydraulic and pneumatic actuators, and
their hybrid actuators. They can generate large force enough for driving hu-
manoid robots. We also have some artificial muscles that can only generate small
forces: e.g., EAP (electro-active polymer) (Bar-Cohen, 2005), SMA (Shape
Memory Alloy) (Cho et al., 2007), and piezo-electric actuators (Ueda, 2012).
They can also realize locomotion in appropriate scale according to ability of
each actuator. But, since we are focusing on animal behavior like a human, we
will ignore small scales in this section.

8.3.1 MUSCLE-LIKE ACTUATORS DRIVEN BY ELECTRIC
ROTATIONAL MOTORS

In the previous Subchapter 8.2, we mainly reviewed rotational actuators driving
tendon wires. They typically use a pulley on the motor shaft to wind up the
wires. Using a pulley enables us to keep moment arm constant, which in general
simplifies control (a moment arm is the length between the joint axis and the line
of force acting on that joint). However, to emulate the mechanism underlying
the behavior of humans and animals more closely, such actuators are needed
that can generate longitudinal forces when they contract, similar to biological
muscles. In biology, as a muscle contracts, its moment arm changes according
to the angle of the joint. Furthermore, some biological muscles not only exert
force between two bones (links), but among three or more bones (links), which
are called biarticular muscles or triarticular muscles.

Some muscle-like actuators steered by electric motors have been proposed
and muscular-skeletal humanoid robots have been developed which still utilize
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FIGURE 8.3.1 A muscle-like actuation driven by an electric motor.

FIGURE 8.3.2 Torso of an anthropomorphic robot Roboy. It has several artificial muscle actuators
inside (courtesy of Rolf Pfeifer).

them. The motor of such an actuator winds up the wire so that it can generate
a longitudinal force and displacement. It eventually includes a series elastic el-
ement so that it can emulate the dynamics of the biological counterpart at least
to some extent.

The muscular-skeletal humanoid robot CRONOS was developed by Holland
and Knight in 2006 (Holland and Knight, 2006) at the University of Essex in the
UK. It is driven by muscle-like electric actuators and has a similar muscular-
skeletal structure as a human. The sketch of the actuator is shown in Fig. 8.3.1.
The actuator has a series elastic element in the form of a shock cord, and a mo-
tor winds up the kiteline on the spindle, the joint angle changes. Since the force
generated by the actuator is not very large, the robot CRONOS and its offspring
ECCE robot could only move their upper torsos, but they did not have legs.

A similar actuation principle is implemented in Roboy, a “boy robot” de-
veloped by Pfeifer and his team at the University of Zurich (Fig. 8.3.2). The
structure of the actuator is similar to that of CRONOS. Springs are adopted in-
stead of shock cords for providing series elasticity. The robot legs are too weak
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FIGURE 8.3.3 The artificial muscle unit of JSK laboratory, the University of Tokyo (courtesy of
Yuki Asano).

to support the upper torso since the actuators cannot generate sufficient speed
and force.

JSK laboratory of the University of Tokyo is continuously developing
muscular-skeletal humanoid robots driven by artificial muscle actuators. Their
actuators also consist of electric motors and wires (Fig. 8.3.3) (Asano et al.,
2015). The wire is wound by the motor connected to a load cell that can be used
to measure tension. It can generate a longitudinal force of up to 583 [N], con-
tinuously up to 338 [N]. The actuator unit also has a thermal sensor to monitor
the temperature of the motor, which is very important to prevent over-heating,
and a hall sensor is used to measure motor rotation angle, from which the wire
length can be calculated. Monitoring such states of the artificial muscle unit is a
crucial problem.

Applying some conventional scheme, the rotational angle of the motor can
be precisely controlled. Therefore, the length and tensile force of the wire can
be easily controlled based on the sensor measurement. On the other hand, this
method has a trade-off between winding speed and the generated torque. If more
speed is needed, the generated torque will be smaller. If we increase the diameter
of the winding pulley, winding speed will increase, but the generated force will
be smaller. For example, JSK’ s artificial muscle unit can generate 338 [N], but
it is not sufficient for walking of a human-size humanoid robot. As a result, the
walking motion of these robots is very slow or almost impossible.

8.3.2 LINEAR ACTUATORS WITHOUT SLACK

The biological muscle is driving bones with tendons: it can only contract but not
expand since the tendon slacks when it expands, which is why there is always
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FIGURE 8.3.4 Bidirectional electromagnetic muscle-like actuator developed by Nakata et al., and
jumping monopod driven by the actuator (courtesy of Yoshihiko Nakata) (Nakata et al., 2012; Ryu
et al., 2016).

a flexor and an extensor. On the other hand, there are a number of linear actua-
tors without slack, e.g., magnetic linear actuators and hydraulic and pneumatic
cylinders. These actuators can generate forces in two directions.

Nakata and his research team in Osaka University developed a 3-phase
direct-drive synchronous linear motor (Fig. 8.3.4) (Nakata et al., 2012; Ryu et
al., 2016) based on electromagnetic effect, which can generate a force of 5.7 [N]
when applied current is 1 [A]. They built a jumping monopod by using the ac-
tuators as mono- and biarticular muscles (Fig. 8.3.4). Note that the actuator is
bidirectional, therefore, one joint can be driven by one actuator. Actuator A1
drives the hip joint, and A3 is corresponding to a biarticular muscle between the
knee and the hip. They needed a large torque for the knee joint for jumping, so
they applied two actuators for the knee. The force of the actuator is controlled
by the current; therefore, it can be precisely controlled. Since the shaft is sup-
ported by a magnetic force, we have to apply feedback control based on the
sensor measurement for realizing series elasticity (no physical elasticity exists
in the actuator). The actuator is stiff in the radial direction and it exerts a reaction
moment when it is bent, which is very different from a biological muscle.

Hydraulic and pneumatic cylinders are also linear actuators without slack.
These actuators can generate larger forces than the electromagnetic ones, and
are used to build whole body humanoid robots. For example, Cheng and his
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research team in ATR, Japan, developed a whole-body humanoid robot CB-I,
which employed hydraulics (Cheng, 2007). It could walk with its two legs. A US
company, Boston Dynamics (http://www.bostondynamics.com/) also developed
several whole-body humanoid robots, e.g., PETMAN and ATLAS based on hy-
draulic actuators. Because they are capable of producing large power, and are
precisely controllable, they can be used to implement balance and gait control.
ATLAS serves as a common platform for DRC (DARPA Robotics Challenge)
competition. HyQ, a quadruped robot developed by Semini et al. at Italian Insti-
tute of Technology (Semini et al., 2011).

Pneumatic cylinders are used to build humanoid robots as well, but their
power is less than that of hydraulics. They are naturally compliant since the
working fluid, air, is compressive, their energy efficiency is less than that of hy-
draulic ones. Asada and his research team at Osaka University developed a large
baby robot CB2 (Ishiguro et al., 2011) and a small baby humanoid robot Af-
fetto (Ishihara and Asada, 2015), which were driven by linear and rotational air
cylinders. Both baby robots did not have enough power to support their weight,
therefore could not move on their legs.

In sum, these slackless actuators can be controlled precisely and are energy
efficient, which is why they are ideally suited for realizing walking of humanoid
robots. However, we need further discussion on whether they are good candi-
dates for emulating biological muscles. As mentioned above, biological muscles
can only generate a contraction force, but they cannot actively expand. Let us
now think about whether these characteristics are fundamental qualities of mus-
cles or not.

8.3.3 PNEUMATIC ARTIFICIAL MUSCLES

The McKibben pneumatic artificial muscle, one of the most famous artificial
muscles, was originally patented in the 1950s by Gayload (1958). Its structure
is very simple (see Fig. 8.3.5). The tube is covered with a sleeve with a rhom-
boidal mesh that can transform the growing air pressure inside the tube into
a longitudinal force and displacement. Since the artificial muscle is driven by
compressive fluid, air, it is naturally compliant, and when there is no tension, it
will slack.

McKibben artificial muscle can generate a large force, large enough for driv-
ing a same-size robot as a human. Quality of end-caps on both ends of the
actuator determines applicable highest pressure, and as a result, a maximum
generated force. The maximum force is also dependent on the diameter of the
actuator. Typically, it can exert around 800 [N] when 7 [MPa] compressed air is
applied. The diameter also determines the volume of the muscle, and as a result,
the time to fill the actuator with the air. In conclusion, it is a trade-off between

http://www.bostondynamics.com/
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FIGURE 8.3.5 McKibben pneumatic artificial muscles.

the generated force and response time. Human’s Achilles tendon can convey a
tensile force around 2000 [N], therefore, even the artificial muscle is not strong
enough for realizing human-compatible locomotion.

By using McKibben artificial muscles, human-like muscular–skeletal struc-
tures can be realized and their functions can be investigated in a constructivist
approach that we could call “understanding by building.” Some robots driven by
McKibben artificial muscles have already been introduced in Chapter 5.

The characteristics of McKibben pneumatic artificial muscles have been
carefully investigated (Chou and Hannaford, 1996; Klute and Hannaford, 2000).
If we close the valve and keep the amount of air constant, they act like linear
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FIGURE 8.3.6 Pleated pneumatic artificial muscle (PPAM) developed by Vanderborght et al. in
Free University of Brussels.

springs within a certain range of the applied force. They are subject to hystere-
sis resulting from the friction between the inner tube and the sleeve. The static
relation among the inner pressure, its length, and tensile force is theoretically
calculated in Chou and Hannaford (1996) and is extended to nonlinear models
(Klute and Hannaford, 2000; Sugimoto et al., 2013). In short, one out of three
variables is determined when two of them are given, e.g., the length is deter-
mined when the pressure and the tensile force are given. However, in reality,
depending on how the artificial muscles are produced, their characteristics will
dramatically change. For example, if we apply pretension to the inner tube, we
can change the spring constant of the actuator; if we reduce the size of the both
end-caps, we can increase the contraction ratio; if we put some particles in the
inner tube, we can reduce the air consumption. Since the actuator is made from
soft material, it is very difficult to control the properties of the muscles. In this
sense, the McKibben pneumatic actuator is not a great tool in terms of traditional
engineering.

There are several variations of pneumatic artificial muscles: FESTO, a Ger-
man pneumatic device company developed FESTO fluidic muscles. A flexible
tube contains reinforced fibers in the form of a rhomboidal mesh. This structure
is free from friction between the tube and the fiber, which drastically reduces
hysteresis. The end-caps are well-engineered so that the muscle can be applied
relatively large pressure, up around 1 [MPa], which enables the muscle generate
a large force.

The pleated pneumatic artificial muscle (PPAM) was developed to over-
come dry friction and material deformation, which is present in the widely used
McKibben muscle. The essence of the PPAM is its pleated membrane structure
which enables the muscle to work at low pressures and at large contractions (see
Fig. 8.3.6) (Villegas et al., 2012). Another advantage is that it generates higher
forces at lower pressures and no threshold of pressure is needed. With the PPAM
a biped robot Lucy and a knee exoskeleton Knexo (Vanderborght et al., 2008;
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FIGURE 8.3.7 A straight-fiber-type artificial muscle developed by Tomori et al. (2013)

Beyl et al., 2011) is powered. The group also experiments with self-healing ma-
terials so cuts and damages can be healed (Terryn et al., 2015).

Nakamura and his research team at Chuo University developed what they
call a straight-fiber-type artificial muscle (Fig. 8.3.7) (Tomori et al., 2013). This
artificial muscle is also a tube reinforced by a fiber, and several rings are put on
the tube so that they increase contraction ratio and a tensile force. The contrac-
tion ratio is 1.5 times more than a normal McKibben artificial muscle, and the
tensile force is approximately 3 times more, respectively.

8.3.4 ARTIFICIAL MUSCLE EMULATING DYNAMICS OF
BIOLOGICAL MUSCLE

There is a trial to produce an artificial muscle precisely emulating the dynamics
of the biological muscle (Klute, 2000). As stated above, force–length proper-
ties of the McKibben pneumatic artificial muscle are similar to those of the
biological muscle. If it is used under the isometric condition, therefore, it is a
good model of the biological muscle. On the other hand, its dynamic properties,
force–velocity properties are very different. Klute et al. put a hydraulic damper
parallel to the pneumatic artificial muscles so that they intended to consist of an
actuator with similar dynamic properties as a biological muscle. They also put
springs in serial to the pneumatic actuator to emulate the tendon dynamics.

They developed an artificial muscle–tendon system shown in Fig. 8.3.8, and
tried to reproduce the same property as the triceps surae. While the force–
velocity relationship of the system can be qualitatively similar to that of the
triceps surae, the actuator cannot be stretched beyond its resting length, and the
force–velocity curve has a concave shape while the curve of the biological mus-
cle has a convex one. It is very challenging to reproduce the dynamics of the
biological muscle by the artificial one.
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FIGURE 8.3.8 An artificial muscle–tendon system to emulate the dynamics of the biological mus-
cle (Klute, 2000).
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Chapter 9

Conclusion
Maziar A. Sharbafi, David Lee, Thomas G. Sugar, Jeffrey Ward, Kevin
W. Hollander, Koh Hosoda, and André Seyfarth

As the conclusion of the book, state-of-the-art research regarding legged loco-
motion and the application to daily activities are presented in this chapter. By
comparing engineered legged systems with animals we address how far we are
from nature. The recent technologies on assistive devices demonstrate the appli-
cability of the scientific methods to fill this gap by developing products usable
in human life. An overview of current research on legged locomotion presented
in this chapter depicts the roadmap for future research.

Within this book we presented concepts on legged locomotion related to
both biological and engineered systems. Currently, the biologically motivated
principles do still not sufficiently explain many details on the organization of the
locomotor systems in humans and animals. At the same time, for some of the
already established principles, a direct transfer into robotic or other engineered
platforms is still missing. Most of the bioinspired hardware systems focus on the
implementation of biological design principles regarding the mechanical design.
Only a few approaches exist which also implement biological actuator design
and control.

Rather than “just” using the biological solutions as templates for technical
locomotor systems for gait generation, nature could also be understood as a
valuable source of a large variety of approaches, which may inspire novel design
and control approaches in engineering. Sometimes, limitations in biology (e.g.,
due to evolutionary constraints) could even be bypassed in engineered systems,
as shown in modern prosthetic leg technologies, which are at the transition to
outperform their biological counterparts (e.g., in the case of the amputee long
jumper Markus Rehm, who won the German competition in 2014).

In this conclusion chapter, we highlight different aspects regarding the state-
of-the-art in this field of research and the potential progress that can be achieved.
First, a comparison of biological and engineered locomotor systems is given,
illustrating the gaps between them. Then, recent products are reviewed regard-
ing their applicability for daily life. Finally, some recent and ongoing research

Bioinspired Legged Locomotion. http://dx.doi.org/10.1016/B978-0-12-803766-9.00012-9
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projects are presented to provide a perspective on the future of legged locomo-
tion science and technology. By identifying the limits in the current state-of-
the-art, we point to the challenges for the future research on bioinspired legged
locomotion.
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Chapter 9.1

Versatility, Robustness and Economy
David Lee
School of Life Sciences, University of Nevada, Las Vegas, United States

This book has considered the principles, models, and application of legged loco-
motion in robotic and biological systems. It is clear from observation of legged
robots, whether in YouTube clips or in structured competitions such as the Darpa
Robotics Challenge (DRC), that the performance of biological systems exceeds
that of existing robots. However, this can only be quantified when a common
set of metrics is applied to animals and machines. Ideally, such metrics would
represent economy, robustness to perturbation, and versatility of the locomo-
tor system. In order to improve the performance of legged robots, it is useful
to first consider the available “parts”, working constraints, and developmental
processes of biological systems – as well as the fundamental principles of dy-
namics and control that we have been able to learn from nature. Competitions,
such as DARPA challenges and the W Prize, can act as an impetus for robotic
advancements that achieve survival within a defined environment, much as nat-
ural selection acts on biological systems.

It is readily apparent that natural selection produces better locomotor perfor-
mance than that achieved by existing robotic systems. However, evolution does
not produce optimal organisms – only designs that are good enough for survival
in their environment, for competition with other individuals of the same species,
and for reproduction to pass their genes on to the next generation. So why do en-
gineered systems fall short of our own locomotor capabilities? The answers are
many and, like our understanding of biological systems, incomplete. Nonethe-
less, some basic features of biological systems juxtaposed with functional levels
of the locomotor system defined in Fig. 2.0.1 could help inform engineered sys-
tems (Table 9.1.1).

Such biological observations may provide engineers with a different per-
spective and perhaps inspire new approaches to developing robots. Nature pro-
duces organisms capable of locomotion in their respective environments but is
also faced with many constraints including available materials and actuators,
as well as constructional and developmental processes inherited from their an-
cestors. Engineers, on the other hand, have a broad range of options, including
synthetic materials and actuators, and they can move between options quickly
with a broad range of constructional and design processes at their disposal. De-
spite this flexibility, we struggle to produce robots capable of locomotion in the
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TABLE 9.1.1 Biological observations with reference to functional levels of
locomotor systems from Fig. 2.0.1

• Nature produces integrated systems in which the parts work
together in every stage of development – in other words, the
developmental process is itself under selection.

[Processes]

• Living organisms can remodel their musculoskeletal and
motor control systems throughout development and, to a
lesser extent, in adulthood.

• Biological systems learn about their own dynamics and store
this information in the central nervous system.

High Level
Control

• Nerve conduction velocities by action potentials are
arbitrarily slow (10–100 ms−1) compared with electrical
signals and are directly proportional to axon diameter.
Animals with longer legs have longer conduction times.

Low Level
Control

• For a given motor unit, a single motor neuron may innervate
fewer than ten or thousands of muscle fibers.

• In vertebrates, motor units are incrementally recruited, from
small units with slow-twitch muscle fibers to large units with
fast-twitch muscle fibers.

• Muscle is the only actuator used in animal locomotion. Its
efficiency is about 25% but its force density is high across a
range of velocities, declining rapidly from negative to zero
velocity, then hyperbolically with increasing positive velocity.

Actuators

• A muscle can be “geared” in favor of force or velocity by
changing the number of sarcomeres for a given muscle length
(invertebrates only), myofibril type, and whole muscle
architecture – i.e., parallel or oblique attachments muscles to
their tendons of origin and insertion.

• Muscle force is greatest at intermediate lengths, declining
gradually as sarcomeres lengthen and declining more
abruptly due to extreme shortening.

• Muscle force is history dependent and is enhanced by active
preloading, as in the eccentric countermovement of a jump.

• Animals are limited to relatively few available biomaterials,
tissues, and constructional processes.

Biomechanics

• Muscle–tendon systems act through skeletal transmissions
that, together with ligaments, constrain the translation and
rotation of joints.

• Synovial joints of animals achieve lower friction than any
engineered joint.

• The mechanical advantage of muscles with respect to reaction
force from the environment is increased in larger mammals
and birds primarily by adopting a straighter limb posture.

• Chemical energy (ATP) is the only energy source available to
animals and its sustained rate of use is limited by oxygen
delivery.

[Energetics]
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real world. These observations underscore the key idea, emphasized throughout
this text, that advances in robotic locomotion will depend upon knowledge of
fundamental principles used in biological systems.

The performance discrepancy between biological and robotic systems is ob-
vious and unchallenged, yet there are few consistent metrics to quantify this
claim. Coarse parameters such as speed and leg kinematics are often reported,
however, metrics of versatility (the ability to accomplish varied tasks), robust-
ness (the rejection of perturbations), and economy (the mechanical work or total
energy used to move a system’s weight a unit distance) of legged robots in com-
parison to animals are varied and inconsistent across the literature. The limited
examples discussed in this conclusion consider economy in terms mechanical
and total cost of transport, and robustness in terms of the depth of vertical sub-
strate drop that can be sustained during locomotion. Unless otherwise noted
throughout this section, biological data are compared with experimental results
from actual rather than simulated robots.

Learning underlying biological dynamics and control strategies, instead of
simply the effects of those strategies, is critical to bridging the gap between the
capabilities of biological and robotic systems. Given the vast resources avail-
able to human designers, such an approach will allow scientists and engineers
to not only meet but exceed the locomotor performance of biological systems.
For example, MIT Cheetah uses electric motors capable of converting about
60% of the (negative) work done on the motors into electrical energy, thereby
achieving a total cost of transport of 0.50, which is slightly less than that pre-
dicted for a running animal of similar size (Seok et al., 2015). Using regenerative
motors instead of physical springs, this robot captures the compliant leg func-
tion and energy return typical of mammals and birds larger than about 5 kg,
while avoiding the constraints imposed by physical springs discussed in Chap-
ter 7. Small animals such as kangaroo rats use muscular actuators in series with
relatively stiff tendons that store minimal elastic strain energy during hopping
(Biewener et al., 1981). Like MIT Cheetah, these animals avoid the constraints
of using physical springs, so a small hopping robot using regenerative motors
in place of muscles should realize even greater improvement over biological
economy.

Robustness of robots is sometimes quantified by the vertical step-down that
can be negotiated without falling. As discussed in Chapter 4, passive dynamic
walkers can step down only about 1–2% of their leg length (Wisse et al., 2005).
In contrast, running guinea fowl are robust enough to traverse unseen vertical
drops 30% of their leg length (Daley et al., 2006). Despite dynamic differences
between walking and running, this highlights at least an order of magnitude
difference in robustness between passive dynamic robots and birds. Whereas
crouched limb posture and muscle dynamics provide intrinsic robustness to



628 PART | III Implementation

birds (Daley and Biewener, 2006; Daley et al., 2009), rigid-legged passive dy-
namic walkers rely heavily on their controllers to avoid falling. In contrast,
using compliant legs controlled by a simple spring–mass model, the Atrias biped
has been simulated to run bipedally across obstacles 25% of its leg length but
this has not yet been realized in the actual robot (Wu and Geyer, 2014). The
Atrias monopod, however, has been shown to hop vertically into and out of a
gravel-filled pit 17% of its leg length (Hubicki et al., 2016). As informed by key
experiments on guinea fowl, compliant legs and actuators with appropriate dy-
namics, as discussed in Chapter 8, are improving the robustness of legged robots
without increasing the complexity of their control. Animals remain substantially
more robust and capable of rough terrain locomotion and, like some robots; they
also plan their foot placements on steps and in steep or broken terrain.

Competitions that seek to overcome the performance disparities between
robotic and animal locomotion, such as the DRC, allow direct comparison to
humans or other animals performing the same task. Staging such an event pro-
vides a publicly visible assay of the state-of-the-art in robotics. From a technical
perspective, the tasks achieved by humanoid robots are staggering; however, a
casual observer might scoff at the several minutes needed for the winning robot
to step out of a vehicle. The versatility required to perform a multitude of dif-
ferent tasks is key to success in such competitions, as well as in natural and
human environments – and this is something we take for granted as integrated
biological systems.

The “W Prize” represents an alternative type of robotics competition, which
focuses on achieving highly economical real-world locomotion of legged robots.
Competitors must complete a 10 km course with occasional obstacles, achieving
an average speed no less than 1 ms−1 and total cost of transport no greater than
0.10. This economy is unachievable by humans because our total metabolic cost
of transport assessed by oxygen consumption is 0.41 during walking at 1 ms−1

and increases by about 20% on uneven surfaces (Voloshina et al., 2013). If we
ignore the oxygen consumed and consider our mechanical cost of transport of
about 0.06 during walking at 1 ms−1, our whole system efficiency would have
to be 61%, compared with 15% based upon center of mass work and the actual
metabolic cost of walking. We can also add the work done by the legs against
one another using the individual limbs method (Donelan et al., 2002), which
increases the mechanical cost of transport by about one-third and requires an
even greater whole-system efficiency of 82%. Given that muscles are only 25%
efficient, the cocontraction of antagonistic muscle pairs and only modest elastic
energy return during walking, it is clear that robots will be the only contenders
for the W Prize.

The previous discussion highlights the conundrum of whole system effi-
ciency, which rewards the mechanical cost that we usually seek to minimize
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(e.g., Srinivasan and Ruina, 2006). For example, as shown in Section 2.2.1, hu-
man runners triple their mechanical cost of transport (Lee et al., 2013) during
running compared with walking, yet their total metabolic cost of transport in-
creases by less than one-fourth, based upon data from Rubenson et al. (2007)
and Voloshina et al. (2013). This suggests perversely that running is about three-
times more efficient than walking. Rather than elevate their mechanical cost,
animals and robots really seek to reduce their total cost of transport – thereby
achieving meaningful efficiency.

The world’s most economical bipedal robot, Cornell Ranger, set the en-
durance record of 65 km for legged robots using a single battery charge
(Bhounsule et al., 2014). This robot has a leg length of a tall human and achieves
a mechanical cost of transport of 0.08 (including both positive and negative
work) – but at a speed of only 0.6 ms−1 – whereas the W Prize requires a
minimum average speed of 1 ms−1. Cornell Ranger’s total (electrical) cost of
transport is between 0.19 and 0.30, depending upon the controller used, so this
robot is capable of walking on level ground with a total cost of transport one-
half that of humans, albeit at only one-half of our typical walking speed. Cornell
Ranger would need to cut its total cost of transport in half and nearly double its
walking speed to compete for the W Prize. Such improvements are made doubly
hard by an inverse relationship between power and speed in rigid-legged bipeds
(Garcia et al., 1998). Despite its long legs, Cornell Ranger’s body mass of 9.91
kg is nearly an order of magnitude less than that of a human. Using data com-
piled by Rubenson et al. (2007), total cost of transport for walking mammals
scales as body mass to the −0.31 power, just as it does for running mammals
and birds (Taylor et al., 1982). Applying this exponent and extrapolating, the
total cost of transport for a more human-like 80 kg Cornell Ranger is a con-
venient 0.10. In comparison, the 62 kg ATRIAS biped walks at 0.9 ms−1 with
a total cost of transport of 1.13 (Hubicki et al., 2016) – eleven-fold too high
for the W Prize – and has a modeled mechanical cost of transport of 0.19 (in-
cluding both positive and negative work) at 1 ms−1 (Ramezani et al., 2014). As
we have seen, the MIT Cheetah achieves high economy while trotting ten-times
faster than Cornell Ranger walks, yet its total cost of transport is still five-fold
too high for the W Prize. Boston Dynamic’s Atlas biped is often used by DRC
teams for its astounding real-world versatility, yet it pays a steep price for these
capabilities with a total cost of transport 50-fold too high for the W Prize.

Although it’s our most economical contender, Cornell Ranger could not even
begin to negotiate the obstacles on the W-Prize course because its underactu-
ated, passive dynamic design trades versatility for walking economy. Assessing
the ability of our best robots to compete for the W Prize highlights the ongo-
ing struggle to achieve real-world locomotion capabilities with high economy.
One might ask if the W Prize is achievable by any robot of human scale and



630 PART | III Implementation

the answer is a qualified yes – well-placed springs and regeneration by motors,
as well as careful attention to dynamics and control will probably be needed in
combination to reach a total cost of transport less than 0.10 during level walking
at 1 ms−1. Despite nature’s seamless integration of economy and versatility, sur-
mounting the obstacles on the W Prize course presents formidable challenges in
actuation and control. Considering economy and versatility together in a single
design concept sets a high bar for legged robotics but might also yield unex-
pected synergy. The W Prize is just one concept and we need many more like it
– for example, another award could emphasize speed and terrain-adaptability at
a total cost of transport no greater than one.

Thinking of the minimum criteria for awards and challenges conjures up
the process of natural selection acting upon a legged animal’s abilities to evade
predators, capture prey, compete, forage, and migrate – using the least energy
possible. Like animals, robots just need to be good enough, for example, to
achieve a set of metrics, to complete specified tasks, or to serve as experimen-
tal platforms for testing ideas. Unlike nature, we set the criteria that determine
whether a robot is good enough. Matching human motion during a particular
task, for example, is unlikely to result in robust systems, but requiring a robot to
move quickly through a field of cobbles would likely result in robust systems.
Choosing the right performance criteria for a specific technical challenge will
motivate designers to create innovative solutions that can match or surpass cer-
tain aspects of biological systems. The collective knowledge from many such
efforts may someday result in robotic “all-rounders” that can keep up with (or
be worn by) organisms in the real world.
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Chapter 9.2

Application in Daily Life (Assistive
Systems)
Thomas G. Sugar∗, Jeffrey Ward†, and Kevin W. Hollander†

∗Fulton Schools of Engineering, The Polytechnic School, Arizona State University, AZ, USA
†SpringActive, Inc.

Legged robotic systems are allowing users to walk and move around the world:
powered rehabilitation robots mounted on treadmills assist in stroke and spinal
cord rehabilitation, people with spinal cord injuries are able to stand up and walk
in clinics with wearable robots, passive and powered ankle foot orthoses assist
users with drop foot, passive and powered prosthetic ankles allow users to walk
naturally over ground, wearable robots are assisting users to sit, stand, and walk
in manufacturing environments, and lastly, wearable robots are moving into the
recreation environment assisting gait and even making it easier to ski.

9.2.1 REHABILITATION

Roboticists have been developing devices to assist gait of stroke survivors
and people with spinal cord injuries. Systems include: the Lokomat, Au-
toAmbulator, Gait Trainer, Haptic Walker, GaitMaster, G-EO System, Loko-
Help, LOPES (Lower Extremity Powered Exoskeleton), ARTHur (Ambulation-
Assisting Robotic Tool for Human Rehabilitation), POGO (Pneumatically Oper-
ated Gait Orthosis), PAM (Pelvic Assist Manipulator), ALEX (Active Leg Exo-
skeleton, and ALTACRO (Actuated Compliant Robotic Orthosis) (Pennycott et
al., 2012; Diaz et al., 2011). These systems allow the user to walk, assisted on
a treadmill to perform repeated walking movements. The repetitive task train-
ing has shown some success in improving gait after stroke (Pennycott et al.,
2012). Many of these systems such as the LOPES are relying on springs to
compliantly interact with the human. Principles of energy storage and release
and impedance control are used to allow the system to naturally interact with
the human.

9.2.2 SPINAL CORD INJURY

Wearable robots are allowing users to get up and walk for a couple of hours a day
in the clinic and over ground. Systems include robots from: Ekso Bionics, Parker
Hannifin, ReWalk, Rex Bionics, Wandercraft, US Bionics, Technaid, Institute
for Human Machine Cognition (IHMC), and ExoAtlet (Esquenazi et al., 2012;
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FIGURE 9.2.1 Robots allow spinal cord injured people to walk over ground, Ekso Bionics and
ReWalk, courtesy, www.eksobionics.com and www.rewalk.com.

Farris et al., 2011; Strickland, 2012; Aach et al., 2014). These systems use hy-
draulic or electrical motor servo systems to control the motion of the hip, knee
and ankle (Del-Ama et al., 2012), see Fig. 9.2.1. It is important to note that these
systems are used only for part of the day; however, because the user stands up,
secondary complications are reduced such as pressure sores. Currently most of
these systems use predefined gait trajectories from biomechanical literature to
drive motor patterns at the hip and knee. Also, most systems use brushless DC
motors connected to large gear ratios with harmonic transmissions. Concepts
such as energy storage and release using springs to reduce reflected inertia to the
user could be used to make these systems more compliant and efficient. Lastly,
most systems do not actuate the ankle which is important for human locomotion
during push-off and stability and balance during standing.

9.2.3 PASSIVE ANKLE FOOT ORTHOSES

New, carbon fiber, ankle foot orthoses (AFO’s) are being developed that allow
controlled roll over at the ankle joint while assisting drop foot, see Fig. 9.2.2.
These systems tune the stiffness for natural roll over. Manufacturers include
Ossur, Otto Bock, Endolite, Freedom Innovations, etc. A group of scientists
at the Center for the Intrepid at Brooke Army Medical Center have been
investigating the tuned stiffness needed at the ankle (Esposito et al., 2014;
Patzkowski et al., 2012). This group is able to tune the stiffness of a strut that
links a cuff mounted at the shank to a footplate mounted inside the shoe. These
systems make use of the natural dynamics while walking. As the leg rolls over
the ankle during early stance, the torsional stiffness at the ankle joint stores en-
ergy. This energy is then used to help propel the person forward during push-off.

http://www.eksobionics.com
http://www.rewalk.com
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FIGURE 9.2.2 Carbon fiber ankle foot orthoses are designed to assist with drop foot. The angular
stiffness of the system is tuned to the user. The carbon fiber brace on the left assists with drop foot,
courtesy, www.alimed.com. The brace in the figure on the right is called IDEO for Intrepid Dynamic
Exoskeletal Orthosis (Esposito et al., 2014; Patzkowski et al., 2012).

FIGURE 9.2.3 A powered ankle foot orthoses have been designed to assist push-off and lift the
toes during the swing phase (Blaya and Herr, 2004; Hollander et al., 2005; Bharadwaj et al., 2004,
2005).

9.2.4 POWERED ANKLE FOOT ORTHOSES

Powered ankle foot orthoses allow for a natural push-off and lift the toe during
swing to assist foot-drop. Research into developing powered systems for stroke
survivors was started by Herr and Sugar, see Fig. 9.2.3 (Blaya and Herr, 2004;
Dollar and Herr, 2008; Hollander et al., 2005; 2006; Ward et al., 2007,
2008, 2011). Typically, these systems store energy as the leg rolls over the an-
kle for regenerative braking and use this energy plus additional motor energy
to achieve a good push-off at the end of the stance phase. Secondly, and im-
portantly, these systems pick the toe up during the swing phase for people with

http://www.alimed.com
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FIGURE 9.2.4 A carbon fiber foot, Vari-Flex®, used for walking, courtesy of www.ossur.com. On
the right, a carbon fiber foot tuned for running, courtesy of www.ossur.com.

drop-foot. By picking the toe up, the foot does not scuff the ground and there is
less hip circumduction. These systems have been shown to work in the labora-
tory but have not been sold commercially as of yet.

9.2.5 PASSIVE PROSTHETIC ANKLES

Passive energy storage and release feet allow for energy storage during early
and mid-stance and release energy at push-off. Typically one foot is tuned for
walking and a different foot is tuned for running, see Fig. 9.2.4. The new carbon
fiber feet allow for energy storage and good moment profiles. However, because
there is no hinge joint, there is little plantarflexion at the end of stance and the
push-off power is delayed and weak (Ferris et al., 2012; Harper et al., 2014).

9.2.6 POWERED PROSTHETIC ANKLES

Powered ankle systems allow for more natural walking by adding energy
into the gait cycle, powering push-off, lifting the toe during swing, and re-
ducing the metabolic cost of walking for amputees (Hollander et al., 2006;
Hitt et al., 2010a; Hitt and Sugar, 2010; Hitt et al., 2007, 2009; Hitt et al., 2010b;
Holgate et al., 2008; Au et al., 2008), see Fig. 9.2.5. Research into powered
systems has been done by Goldfarb, Grimmer, Herr, Rastagaar, Seyfarth, Grim-
mer, Sugar, Voglewede, Wang, Lefeber, Cherelle, Q. Wang, B. Vanderborght,
and others (Versluys et al., 2009; Cherelle et al., 2014). Very good review ar-
ticles have been written by Grimmer, Seyfarth, Lefeber, Cherelle, Wang and
Vanderborght (Grimmer, 2015; Grimmer and Seyfarth, 2014). The goal of the
powered ankle systems is to mimic able body gait motion and add energy into
the gait cycle at push off. These systems allow users to walk, run, jump, ascend
and descend stairs as well as inclines. Researchers are now studying the kine-

http://www.ossur.com
http://www.ossur.com
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FIGURE 9.2.5 The Odyssey ankle is shown on the left and the Bionix ankle is shown on the right,
courtesy of www.springactive.com and www.bionix.com.

matics and kinetics while wearing these powered devices (Ferris et al., 2011,
2012; Grabowski and D’Andrea, 2013; Sinitski et al., 2012). These devices have
shown positive outcomes with increased push-off and reduced metabolic cost.
These ankle systems are using bio-inspired controllers and mechanical designs
to achieve their performance. For example, springs can be tuned to the motion
or clutched based on gait principles. In the Robotic Tendon, the spring is tuned
to the body mass to store and release energy similar to the human’s Achilles
tendon (Hitt et al., 2007, 2009, 2010b). In Cherelle’s ankle, springs are clutched
to store additional energy needed for push off (Cherelle et al., 2012, 2014).

9.2.7 WEARABLE ROBOTS FOR MANUFACTURING

Robotic devices are making it easier to walk and carry loads. Devices are being
designed to carry heavy tools such as grinders, see Fig. 9.2.6. Hip exoskeletons
are being developed to assist gait when carrying luggage in an airport. Full leg
exoskeletons are being developed that power the hip, knee, and ankle. Current
passive systems use springs for gravity compensation. Constant force mecha-
nisms are designed to reduce the effects of gravity and make carrying a tool
easier. Powered hip exoskeletons add assistive torques to make it easier to walk
and lift objects. Controllers for these systems are a challenge because the user’s
intention is difficult to determine. Many researchers are using surface EMG sen-
sors or IMU’s to determine the user’s motion.

9.2.8 WEARABLE ROBOTS FOR RECREATION

Lastly, systems are being built for the recreation market and everyday use.
Collins and Sawicki have developed a passive ankle device that makes it eas-
ier to walk (Collins et al., 2015), see Fig. 9.2.7. The spring reduces the muscle

http://www.springactive.com
http://www.bionix.com
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FIGURE 9.2.6 The Lockheed Martin Fortis device is shown on the left. It is a passive exoskeleton
that transfers the load of the grinder to the ground, courtesy of http://www.lockheedmartin.com/us/
products/exoskeleton/FORTIS.html. A hip exoskeleton makes it easier to carry luggage, courtesy of
http://www.cyberdyne.jp/english/.

FIGURE 9.2.7 A passive ankle foot orthosis makes it easier to walk, reducing metabolic cost
(Collins et al., 2015). The figure on the right shows an exoskeleton that reduces the load at the knees
when skiing, courtesy of www.againer-ski.com.

forces as the tibia rolls over the ankle reducing metabolic cost. Other exoskele-
tons are being developed to make it easier to go over the bumps on ski slopes,
see Fig. 9.2.7.

Wearable robotic systems are assisting, enhancing, and replacing limbs to
allow users to move around the world. Systems are being developed for reha-
bilitation as well as passive and powered orthoses and prostheses. Exoskeleton
systems are being developed to assist in manufacturing operations as well as car-
rying loads. Lastly, systems will move into our everyday lives allowing people
to walk easier or walk faster.

http://www.lockheedmartin.com/us/products/exoskeleton/FORTIS.html
http://www.cyberdyne.jp/english/
http://www.againer-ski.com
http://www.lockheedmartin.com/us/products/exoskeleton/FORTIS.html
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Chapter 9.3

Related Research Projects and Future
Directions
Maziar A. Sharbafi‡,§, André Seyfarth§, Koh Hosoda¶, and Thomas
G. Sugar‖
‡School of Electrical and Computer Engineering, College of Engineering, University of Tehran,
Iran §Lauflabor Locomotion Laboratory, TU Darmstadt, Germany ¶Department of System
Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan ‖Fulton
Schools of Engineering, The Polytechnic School, Arizona State University, AZ, USA

Different methods in modeling, design, and control of legged systems were pre-
sented in this book. In this chapter we explained some applications in daily life
and provided a comparison of artificial and biological legged systems’ perfor-
mance, efficiency and robustness. Here, we summarize some recent research
projects related to legged locomotion. There are also other prominent associa-
tions investing legged locomotion and especially humanoid robots like NASA
with the Robonaut2 (http://www.nasa.gov/robonaut2), HONDA with the Asimo
robot (http://asimo.honda.com/), and Boston Dynamics with the new ATLAS
robot (http://www.bostondynamics.com/robot_Atlas.html).

9.3.1 EUROPEAN PROJECTS

The European Union’s Seventh Programme for research (FP7) supports different
projects related to application of bioinspired legged locomotion in daily life. In
the following we present some of the related projects.

BALANCE: Balance Augmentation in Locomotion, through Anticipative, Nat-
ural and Cooperative control of Exoskeletons.

BALANCE (http://balance-fp7.eu) is funded by FP7 from 2013 to 2017.
Research topics include development of exoskeleton (design and manufactur-
ing, adaptive robot control), human motor control (simulation studies, human
experiments), gait mechanics, biomechanical sensing and balance assessment
technology. Eight partners from different institutes and companies in Europe
are involved in this project (Table 9.3.1).

The goal of this project is to realize a robotic exoskeleton to support hu-
mans balance in standing and walking especially in challenging situations like
occurence of perturbations or for assisting patients. Existing exoskeleton robots
can mainly support the body weight or additional loads, or guide impaired legs
through a step-like motion. So far, however, they do not support maintaining

http://www.nasa.gov/robonaut2
http://asimo.honda.com/
http://www.bostondynamics.com/robot_Atlas.html
http://balance-fp7.eu
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TABLE 9.3.1 BALANCE project consortium

Participant name Country

1 Tecnalia Research & Innovation Spain

2 Technische Universität Darmstadt Germany

3 University of Twente The Netherlands

4 CEA LIST France

5 Eidgenössische Technische Hochschule Zürich (ETHZ) Switzerland

6 Imperial College London, United Kingdom

7 XSENS 3D Motion Tracking The Netherlands

8 University Rehabilitation Institute Slovenia

FIGURE 9.3.1 (A) EMY exoskeleton developed by CEA List within BALANCE project.
(B) WALK-MAN robot, a humanoid robot developed within the EU FP7 project WALK-MAN.

postural balance, especially if the user has remaining control and the robot has
to cooperate with the human. This is addressed in the BALANCE project.

The novel exoskeleton developed by CEA List (Fig. 9.3.1A) is designed to
support the user and take over the control if needed, e.g., in difficult conditions
or in case of malfunction of the user. The project aims at improving the under-
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TABLE 9.3.2 BioMot project consortium

Participant name Country

1 Agencia del Consejo Superior de Investigaciones Científicas Spain

2 Vrije Universiteit Brussel Belgium

3 Università degli Studi di Padova Italy

4 Ossur hf Iceland

5 Fundación del Hospital Nacional de Parapléjicos Spain

6 RIKEN Japan

7 Universidad Miguel Hernández de Elche Spain

8 Technaid S.L. Spain

standing of human postural control, its functionality and robustness in healthy
or impaired people, which provides the basis for enabling the exoskeleton to
support human postural control. In this project, locomotion subfunction concept
(Chapter 2), bioinspired conceptual models and some control concepts like VPP
(Chapter 3), stability indices and impedance control (Chapter 4), torque control
(Chapter 5) and also Neuromuscular control (Chapter 6) are used to develop
novel exoskeleton functions.

BioMot: Smart Wearable Robots with Bioinspired Sensory–Motor Skills

This project (http://biomotproject.eu) founded by FP7 from 2013 to 2016,
includes 8 research partners as shown in Table 9.3.2. The main objective of
BioMot is improvement of existing wearable robotic exoskeletons exploiting
dynamic sensory–motor interactions with the focus on developing cognitive ca-
pabilities that can lead to symbiotic gait behavior in the interaction of a human
with a wearable robot. Real-time human-like adaptability and flexibility to cope
with natural perturbations are a missing part in most advanced wearable robots,
due to voluntary control or environmental constraints. In this project a cognitive
architecture is proposed for wearable robots exploiting neuronal control and
learning mechanisms to enable positive coadaptation and seamless interaction
with humans.

They use a neuro-musculoskeletal model for computing neuromuscular ac-
tivity (EMG) to predict joint moments, prescribe the exoskeleton function and
estimate human efforts in real-time to be able to support the body with the ex-
oskeleton when it is necessary. In addition, brain signals (EEG) and kinetic and
kinematic sensors are employed for gait detection and decision making, han-
dling transitions or task violations. Finally, local reflex-based joint controllers
are designed to allow for automatic adaptation when confronting changes in the
interaction. At the physical level, intrinsically compliant actuators are developed

http://biomotproject.eu
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TABLE 9.3.3 SYMBITRON project consortium

Participant name Country

1 University of Twente Netherlands

2 Ecole Polytechnique Fédérale de Lausanne (EPFL) Switzerland

3 Technical University of Delft Netherlands

4 Imperial College London United Kingdom

5 Santa Lucia Foundation Italy

6 Össur Iceland

to exploit natural dynamics of movement, orchestrated by the control system for
economy and stability. A global learning scheme modulates joint compliance as
a function of gait efficiency and semantic signals inferred from user demand.

BioMot’s goal is “to improve the efficiency in the management of human–
robot interaction in over ground gait exoskeletons by means of mixture of
bioinspired control, actuation and learning approaches.” Therefore, bioinspired
motion control techniques besides efficiency and robustness concepts (Chap-
ter 4), torque control (Chapter 5), neural control (Chapter 6) and bioinspired
(compliant) actuation mechanisms (Chapter 8) are the key ingredients in this
project “to show how the embodiment of bioinspired and architectural mecha-
nisms can allow a user to conveniently alter the behavior of wearable robots for
walking.”

SYMBITRON: Symbiotic man–machine interactions in wearable exoskeletons
to enhance mobility for paraplegics

SYMBITRON is another FP7 project running from 2013 to 2017 with
6 research partners (see Table 9.3.3). The main goals of Symbitron project
(https://www.symbitron.eu) are:

i. To develop a safe, bio-inspired, personalized wearable exoskeleton that en-
ables spinal cord injured (SCI) patients to walk without additional assis-
tance, by complementing their remaining motor function

ii. To develop training environments and training protocols for SCI patients
and their clinicians

iii. To provide clinical proof of concept for safety and functionality of the sys-
tem

CYBERLEGs: The CYBERnetic Lower-Limb Cognitive Ortho-prosthesis

CYBERLEGs is a Collaborative Research project funded by the European
Commission under the 7th Framework Programme with five partners from three

https://www.symbitron.eu
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TABLE 9.3.4 Cyberlegs project consortium

Participant name Country

1 Scuola Superiore Sant’ Anna Italy

2 Université Catholique de Louvain Belgium

3 Vrije Universiteit Brussel Belgium

4 Univerza v Ljubljani Slovenia

5 Fondazione Don Carlo Gnocchi Onlus Italy

different EU countries (Table 9.3.4). This project (http://www.cyberlegs.eu)
started in February 2012.

The aim of the CYBERLEGs project is to develop an artificial cognitive
system for trans-femoral amputees’ lower-limb functional replacement and as-
sistance. CYBERLEGs wanted to find ways of cognitive control, motivated and
validated through the ortho-prosthesis scenario, of a multi-degree-of-freedom
system with both lower-limb replacing and assistive capacities. CYBERLEGs is
a robotic system constituted of an active cognitive artificial leg for the functional
replacement of the amputated limb and a wearable active orthosis for assisting
the contralateral sound limb which allows the amputee to have different maneu-
vers of locomotion (e.g., walk backward/forward, stairs climbing, move from
sit-to-stand, and vice versa) with a minimum cognitive and energetic effort.

Main scientific and technological challenges of the CYBERLEGs project
are: (i) design and development of an energy-efficient lower-limb ortho-
prosthesis with tunable passive compliant joints allowing passive energy transfer
from knee to ankle joint (related to Chapters 4, 7 and 8); (ii) modeling based on
motor primitives capturing human behavior while executing locomotion-related
tasks (Chapter 3); (iii) transfer the primitive-based model into a controller for
CYBERLEGs and make the control simple and intuitive (Chapter 4 and 5).

H2R: Integrative Approach for the Emergence of Human-like Locomotion

H2R (http://www.h2rproject.eu) is one of the FP7 projects with 6 partners
(Table 9.3.5), started in 2011 to investigate drawbacks of existing walking
bipeds regarding stability, energy consumption, and robustness to unknown
disturbances in comparison with healthy humans (see Sect. 9.1). Therefore,
H2R project attempted to demonstrate human-like gait and posture in a con-
trolled compliant bipedal robot as a result of a combination of the most rele-
vant motor control and cognitive mechanisms found in humans. In that respect,
they adopted a three-fold process which can help better understand bioinspired
legged locomotion and apply it on robotics: (i) investigating the human be-
havior in order to formalize the most crucial biomechanical and neuromotor

http://www.cyberlegs.eu
http://www.h2rproject.eu
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TABLE 9.3.5 H2R project consortium

Participant name Country

1 Consejo Superior de Investigaciones Científicas Spain

2 University of Kaiserslautern Germany

3 Vrije Universiteit Brussel Belgium

4 University Medical school Göttingen Germany

5 Universitaetsklinikum Freiburg Germany

6 Technaid S.L. Spain

TABLE 9.3.6 WALK-MAN project consortium

Participant name Country

1 Istituto Italiano di Tecnologia (IIT) Italy

2 Ecole Polytechnique Fédérale de Lausanne (EPFL) Switzerland

3 The Università di Pisa Italy

4 Karlsruhe Institute of Technology (KIT) Germany

5 Université Catholique de Louvain Belgium

principles of walking and standing, (ii) testing the formalized biological con-
cepts, by their integration into currently existing robotic platforms and devel-
oping a new biped (H2R biped), by iteratively including the components and
methods successfully tested, and (iii) introducing a new internationally vali-
dated benchmarking scheme to test the human-like properties of robotic bipeds
(http://benchmarkinglocomotion.org).

WALK-MAN: Whole-body Adaptive Locomotion and Manipulation

WALK-MAN (https://www.walk-man.eu/) is a 4 year integrated project (IP)
funded by the European Commission started on September 2013 with 5 partners
(Table 9.3.6) and has the goal to develop a robotic platform (of an anthropo-
morphic form), which can operate outside the laboratory space in unstructured
environments and work spaces as a result of natural and man-made disasters.
The robot (shown in Fig. 9.3.1B), demonstrates new skills including:

i. Dexterous, powerful manipulation skills, e.g., turning heavy valves
ii. Robust walking (or crawling) over uneven terrains

iii. Autonomous operation regarding enhanced perception and cognition.

Even if the complete autonomous operation is not required, the ability to be
functional with reduced level of teleoperation is very important. The reason is
that communication limitations for remote control is expectable due to limited
channel bandwidth. The robot is designed to demonstrate human levels of lo-

http://benchmarkinglocomotion.org
https://www.walk-man.eu/
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TABLE 9.3.7 EXO-LEGS project consortium

Participant name Country

1 University of Gävle Sweden

2 Karlsruhe Institute of Technology Germany

3 Universidad Politécnica de Cartegena Spain

4 Chas A Blatchford & Sons Limited United King-
dom

5 Hocoma AG Switzerland

6 GIGATRONIK Technologies GmbH Germany

7 MRK Systeme GmbH Germany

8 Proyecto Control Montaje, S.L. Spain

9 Mobile Robotics Sweden AB Sweden

10 Gävle kommun and other Gävleborg partners Sweden

comotion, balance and manipulation and to be validated in realistic challenge
tasks outside the laboratory environment.

EXO-LEGS: Exoskeleton Legs for Elderly Persons

EXO-LEGS (http://www.exo-legs.org/) is a three year project which started
in October 2012 with funding under the Ambient Assistive living (AAL) pro-
gramme. This project was performed as a collaborative work of 10 research
partners from 5 different countries (Table 9.3.7), in which they tried to solve the
progressive nature of impairments in elderly people which often leads to loss
of independence and influences the quality of life. EXO-LEGS targeted devel-
oping a range of active lower-limb exoskeletal assistive solutions for improving
indoor and outdoor mobility. Different locomotion tasks are considered in this
project such as normal walking, standing up, sitting down, stepping over objects,
walking on soft and uneven ground and walking up- and down-stairs.

KoroiBot: Improving humanoid walking capabilities by human-inspired math-
ematical models, optimization and learning

This project (http://www.koroibot.eu/) was funded by EU from 2013 to 2016
in which 7 research institutes (Table 9.3.8) are involved beside an external
collaborator (Philipps-Universität Marburg, Germany). The goal of KoroiBot
project is to enhance the ability of humanoid robots to walk in a dynamic, ver-
satile and human-like fashion. Moving on difficult situations like rough terrains
or in perturbed condition is the main challenge of humanoids locomotion. In
this project human walking in different conditions is studied (e.g., on stairs and
slopes, on soft and slippery ground or over beams and seesaws), to develop
mathematical models. New optimization and learning methods for walking on

http://www.exo-legs.org/
http://www.koroibot.eu/
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TABLE 9.3.8 KoroiBot project consortium

Participant name Country

1 Universität Heidelberg Germany Germany

2 Centre National de la Recherche Scientifique France

3 Karlsruhe Institute of Technology Germany

4 Istituto Italiano di Tecnologica Italy

5 Technische Universiteit Delft The Netherlands

6 Weizmann Institute Israel

7 Universität Tübingen Germany

TABLE 9.3.9 AXO-SUIT project consortium

Participant
number

Participant name Country

1 Aalborg University Denmark

2 University of Gävle Sweden

3 University of Limerick Ireland

4 Welldana A/S Denmark

5 Bioservo Technologies AB Sweden

6 MTD Precision Engineering LTD Ireland

7 Hjälpmedelsteknik Sverige Sweden

8 COMmeto BVBA Belgium

two legs can be implemented in practice on real robots or even be applied in
medicine, e.g., for designing and controlling intelligent artificial limbs or ex-
oskeletons.

AXO-SUIT

AXO-SUIT (http://www.axo-suit.eu/) is a three year project started on Oc-
tober 2014 and is funded under the Ambient Assisted Living (AAL) Joint Pro-
gramme. Three universities and five companies from four different European
countries work on this project (Table 9.3.9). With their research experience on
assistive devices, AXO-SUIT is to comprehensively supplement the strength of
elderly persons with feasible exoskeletons in undertaking volunteer work (e.g.,
maintaining gardens or carrying groceries as well as participating in local social
activities). The AXO-SUIT integrates recent advances in assistive technology
to study and design exoskeletons and to meet the challenges in helping elderly
workers. Novel exoskeletons are developed which consist integrative modules to
realize prototypes for upper-, lower- and full-body assistive suits. The exoskele-

http://www.axo-suit.eu/
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tons could also be extended to be utilizedd for weak or disabled adults, or elder
employees with similar their needs.

9.3.2 RESEARCH PROJECTS IN NORTH AMERICA

There are several research foundations and funding agencies in US support-
ing research related to bioinspired legged locomotion. We have selected few
research activities in the following.

9.3.2.1 National Science Foundation (NSF)

NSF provides funding for fundamental research projects in US. Among these
projects, several projects are addressing legged locomotion. In the following we
present some selected research in this area.

Biped Locomotion Control. This project was performed in University of
Michigan from 2000 to 2003. Its objective was to develop a coherent math-
ematical framework in which asymptotically stabilizing feedback controllers
for biped systems may be rigorously analyzed and synthesized. The proposed
work was based on a recent breakthrough in locomotion stability analysis by
Grizzle, Abba, and Plestan (see HZD controller in Subchapter 4.7). For the im-
portant special case of an under actuated biped with a torso and stiff legs (i.e., no
knees), these researchers provided the first mathematical proof of the asymptotic
stability of a feedback-controlled walking motion. This project systematically
explored feedback stabilization and design for a sequence of more realistic biped
models. The models have been selected on the basis of their applicability to
robotics, biomechanics and prosthetics, and permit largely under-actuated de-
signs.

Passivity Based Control in Bipedal Locomotion. This project (2005–2008)
has been conducted by Mark Spong at the University of Illinois at Urbana-
Champaign. The goal was to investigate passivity based control in bipedal
locomotion. The project explored several extensions of bipedal locomotion in
the context of passivity based hybrid nonlinear control and investigated speed
regulation, the use of alternate potential functions to increase the basins of at-
traction of stable limit cycles, the effect of control saturation and underactuation
in passivity based control, and the efficiency of passivity based control meth-
ods compared to true energy optimal control. In addition, this was tested for
control of gait transitions, including gait initiation and stopping. Besides devel-
opment of new concepts and the design of provably correct control algorithms
the project aimed to integrate the theoretical tools of passivity based analysis
and control with studies of balance and locomotion in human subjects in order
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to supplement the descriptive research typical in those studies with more analyt-
ical methods. The practical application of this research project is on the design
of walking robots that have improved performance capabilities over existing
machines. From a broader perspective, the analysis and design tools developed
in this project also contribute to a better understanding of human locomotion,
which can result in applications in biomechanics and biomedicine, such as the
design of improved prosthetic devices, the development of falls prevention pro-
grams for the elderly, and rehabilitation techniques.

Unified Model and Robotic Implementation of Bio-Inspired Walking and
Running. This project was funded by NSF Dynamical Systems Program from
2011 to 2016 as a collaborative work of Hartmut Geyer at Carnegie Mellon
University and Jonathan Hurst at Oregon State University. The research objec-
tives are to develop and implement a biomechanically relevant, unified theory of
legged dynamics that spans walking and running, and to demonstrate this theory
on a new bipedal robot, called ATRIAS.

To date, a legged machine whose dynamic behavior can approach the per-
formance of human walking and running, including transitions between these
two gaits, does not exist. The research results in principled models of gait and
gait transitions with human-like leg dynamics, in generalized models for manip-
ulating cyclic hybrid dynamic systems to achieve different goal behaviors, and
in the verification and demonstration of this new scientific understanding with
a bipedal robot. The research progresses from analyzing simplified gait models
that capture the essential dynamics of human locomotion to integrating these
modules in a core dynamic model of human gait. The results of this research
can provide the opportunity to create control algorithms for powered legged
systems that enable functionally versatile behaviors similar to animals and hu-
mans. Examples include prosthetic legs and exoskeletons that provide human
users with human-like leg dynamics during walking, running, and the transi-
tions between these gaits. Other examples include legged robots that achieve
robust and efficient dynamic turning behaviors.

9.3.2.2 Defense Advanced Research Projects Agency (DARPA)

In 2015, DARPA established a new competition called DARPA Robotics Chal-
lenge (DRC) to address reducing rescue risk in disaster relief by promoting
innovation in humanoid robotic technology. The primary technical goal of the
DRC was to develop human-supervised ground robots capable of executing
complex tasks in dangerous, degraded, human-engineered environments. To
achieve its goal, the DRC was advancing the state-of-the-art of supervised au-
tonomy, mounted and dismounted mobility, and platform dexterity, strength, and
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endurance. Improvements in supervised autonomy, could facilitate control of
robots by non-expert supervisors and allow effective operation despite degraded
communications (low bandwidth, high latency, intermittent connection).

The DRC program (http://www.theroboticschallenge.org) provides high-
lights, including the DRC Trials held in December 2013 and the DRC Finals
in June 2015. DARPA also supports many other projects in this field. Some of
them are presented in the following.

Efficient, Agile and Robust 3D Bipedal Walking and Running The project
was funded by the DARPA Maximum Mobility and Manipulation Program from
2011 to 2016. The goal was to develop bipedal robots that navigate natural, un-
even terrain with agility, speed and robustness to disturbances. This project was
a collaboration between research groups of Hartmut Geyer (Carnegie Mellon
University), Jonathan Hurst (Oregon State University), and Jessy Grizzle (Uni-
versity of Michigan). Different types of expertise were combined in this research
project to follow a reproducible path from principled models of legged locomo-
tion to robotic implementation, feedback control, and experimental verification.

9.3.2.3 CAREER: Robust Bipedal Locomotion in Real-World
Environments

This project runs from 2013 to 2017 and is executed by Katie Byl’s Group at
University of California, Santa Barbara, who also was one of the finalists in
DRC. The objective of this Faculty Early Career Development (CAREER) Pro-
gram grant is to develop tools for analyzing and optimizing quasiperiodic biped
gaits for high-dimensional models of both humans and humanoid devices. The
inverted-pendulum dynamics (Chapter 3) that enbles highly maneuverable up-
right walking under desired control inputs also make it highly susceptible to
destabilization. This model becomes more complex by the discontinuities of
impulsive footsteps that vary in both width and height, resulting in a “quasiperi-
odic” gait. In this project, dimension reduction and machine learning techniques
are used for control policy evaluation and improvement to quantifiably estimate
fall rates, energy consumption, and speed for bipedal walking on stochastic ter-
rain.

This modeling approach provides means of quantifying the reliability for
systems with high dimensionality and complexity for which traditional mea-
sures of stability cannot be guaranteed. This method can be applied to estimate
the risk of falling (e.g. for a stroke survivor) or to design smart lower-limb pros-
theses.

http://www.theroboticschallenge.org
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9.3.2.4 MIT Cheetah Robot

After focusing on body design (leg and tails, (Ananthanarayanan et al., 2012;
Briggs et al., 2012)) in the compliant MIT Cheetah robot, Sangbae Kim and
his colleagues introduced MIT Cheetah 2 robot with a new actuation technol-
ogy and without any physical elastic element (Seok et al., 2015). Because of the
high bandwidth actuation in Cheetah 2, the ground reaction force can be con-
trolled similar to what is observed in SLIP model without having a real spring
in the legs (Ananthanarayanan et al., 2012). This robot is a unique research to
study dynamic locomotion capabilities experimentally benefiting from previous
research on the MIT Cheetah I robot and optimal actuator design. As a result,
efficient running at speeds from 0–6.4 m/s, mild running turns and autonomous
jumping over obstacles up to 40 cm in height (80% of leg length) were achieved.

Further information can be found in http://biomimetics.mit.edu/research/
dynamic-locomotion-mit-cheetah-2.

9.3.3 RESEARCH IN ASIA

There is an increasing number of research institutes studying legged locomotion
in Asia (e.g., in Japan, South Korea, Iran and Singapore). Here, we present some
of the institutes and projects.

9.3.3.1 Humanoid Robotics Institute, Waseda University

Prof. Kato is a pioneer in humanioid robotics who started to build bipedal robots
around 1970 in Waseda University. The laboratory has a long history and de-
veloped a variety of humanoid robots, starting from WABOT series (1970),
Humanoid Project (Wabian, 1995). In 2000, Prof. Takanishi started the Hu-
manoid Robotics Institute.

9.3.3.2 JST Laboratory, University of Tokyo

Professors Inoue and Inaba started to build miniature humanoid robots around
1990. These robots did not carry their computers (their “brains”) with them
(called “remote-brain project”). The project developed many kinds of small
humanoids that can achieve a variety of bipedal movements. In the follow-up
Humanoid Project, the so-called H-series humanoid robots driven by electric
motors were developed. Around 2000, Kenta, Kotaro, Kojiro, Kenzoh, Kenshiro,
and Kengoro started to build muscular-skeletal robots. These robots use electric
artificial muscle actuators as described in Chapter 8.

http://biomimetics.mit.edu/research/dynamic-locomotion-mit-cheetah-2
http://biomimetics.mit.edu/research/dynamic-locomotion-mit-cheetah-2
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9.3.3.3 Honda Robotics

Honda has a long history of developing humanoid robots. They started to build
biped robots from 1986 but they kept the development secret until the disclosure
of P2, which is the first completely independent bipedal robot released in De-
cember 1996. After P2, they continued to develop humanoid robots, and finally
they released HONDA ASIMO in 2000 (http://world.honda.com/ASIMO/).
Honda claims that ASIMO is the most advanced humanoid robot in the world
(http://asimo.honda.com/).

9.3.3.4 Humanoid Robotics Project (HRP)

The Humanoid Robotics Project was launched by Prof. Inoue at the Univer-
sity of Tokyo in 1998. The project was supported by Ministry of International
Trade and Industry and Ministry of Economy, Trade and Industry together with
NEDO, MSTC, and AIST for 5 years. Their goal was to demonstrate useful-
ness of the humanoid robots in the real working environment. The first platform
was HRP-1 that was designed based on Honda P-3. Afterwards, they developed
HRP-2 in 2003. After that project, Kawada Industry and AIST continued to
build the next generations of these humanoid robots with HRP-3P and HRP-4C.
This project is still leading in the development of life-size humanoid robots.

9.3.3.5 HUBO Project, KAIST

Professor Jun-Ho Oh developed HUBO, a life-size walking humanoid robot.
They started research in 2000 and developed the KHR series. They took part in
the DARPA Robotics Challenge and won the first prize in 2015.

9.3.3.6 Adaptive Robotics Laboratory, Osaka University (Hosoda
Laboratory)

Adaptive Robotics Laboratory (directed by Prof. Hosoda) has been studying
humanoid robots since 2000. Study on bipedal walking started in 2003. They de-
veloped a series of bipedal robots based on passive dynamics, which are called
Air-Leg series, driven by McKibben pneumatic artificial muscles. Utilizing the
compliance of the actuator, they developed bipedal walking robots called Pneu-
mat and a jumping monopod Que-Kaku-K that has a similar muscular-skeletal
structure as humans. They developed a whole-body pneumatic-driven humanoid
robot Pneumat-BS in 2011, described in Chapter 8. In 2011, they started a
project, namely “Understanding Human’s Adaptive Bipedal Walking by Using a
Cadaver Feet / Artificial Muscular-Skeleton Hybrid Robot” together with Prof.
Naomichi Ogihara, studying the function of the foot by observing the behavior
of the cadaver foot in the context of walking.

http://world.honda.com/ASIMO/
http://asimo.honda.com/
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9.3.3.7 Surena Bipedal Robot Series

Surena project, founded by different research foundations (e.g., R&D Society
of Iranian Industries and mines and Industrial Development and Renovation Or-
ganization (IDRO) of Iran) is led by Dr. Yousefi-Koma, the head of the Center
for Advanced Systems and Technologies (CAST) in University of Tehran. In
this project, a series of bipedal robots was developed with a human-like height
and weight. Surena robots do not have the level of mobility and dexterity of ad-
vanced robots like ATLAS, ASIMO or participants in DARPA Challenge. How-
ever, this Iranian national project has a smooth progress starting from Surena
I, a wheeled robot with 8 DOF in 2008, continuing Surena II with 22 DOF in
2010, able to do super slow walking at 0.03 m/s and releasing Surena III with
31 DOF walking 10 times faster and able to walk on stairs and rough terrains.
Recently, Surena Mini (50 cm tall) was developed by the same research group.
More details about this project can be found in http://surenahumanoid.com.

9.3.4 NOVEL TECHONOLOGIES

9.3.4.1 Soft Exosuit

In Harvard Biodesign Lab (directed by Prof. Wash) a new generation of
soft wearable robots is under development (http://biodesign.seas.harvard.edu/
soft-exosuits). They use innovative textiles to provide a more conformal, un-
obtrusive, and compliant means to interface to the human body. These robots
augment the capabilities of healthy individuals (e.g., improved walking effi-
ciency) in addition to assisting people with muscle weakness or patients who
suffer from physical or neurological disorders. Their exoskeletons are expected
to provide advantages compared to traditional ones. The wearable parts are de-
signed to be lightweight and remove rigidity resulting in unconstrained (user)
joints. These properties minimize the suit’s unintentional interference with the
body’s natural biomechanics and allow for more synergistic interaction with
the wearer. The innovative textiles are inspired by human biomechanics and
anatomy. These wearable garments provide a means to transmit assistive torques
to a wearer’s joints without the use of rigid external structures. These systems
yield new challenges like the need to design appropriate force transmission sys-
tems. A key feature of exosuits is that if the actuated segments are extended,
the suit length can increase so that the entire suit is slack. With this, wearing an
exosuit feels like wearing a pair of pants and does not restrict the wearer. Re-
garding actuation, the focus is on cable driven electrical motors. More recently,
also pneumatic McKibben actuators are examined.

http://surenahumanoid.com
http://biodesign.seas.harvard.edu/soft-exosuits
http://biodesign.seas.harvard.edu/soft-exosuits


654 PART | III Implementation

9.3.4.2 Superflex

Superflex is another new soft exosuit, a full-body suit filled with soft muscle-
like actuators that detect body movements and give them a boost. Such an
assistance mechanism allows the user to walk normally in physical therapy, or
prevents a soldier from fatigue when carrying heavy loads on backpacks. Rich
Mahoney with many years of experience in assistive robotics is the founder
of Superflex company. The nonprofit research organization SRI International
supported Superflex as a spin-off company. The suit was originally part of the
DARPA Warrior Web Project aiming at helping soldiers who have to carry heavy
loads over extended distances. Similar to the Harvard Exosuit, it pulls at the
bootstraps and applies a force at the back of the heel. Both of them can assist
movement in passive mode (all motors turned off).

9.3.4.3 JTAR from SpringActive

SpringActive developed JTAR, a joint torque augmentation system based on
motors and springs at the hip and at the ankle. A joint torque augmentation
robot (JTAR) was developed to aid walking. Two systems were developed, one
that powered the hips and one that powered the ankles. The actuation unit is
based on a unidirectional, spring based actuator that stores and releases energy.
For example, at the ankle, the spring stores energy as the leg rolls over the ankle
and the motor pulls on the spring to store additional energy. The spring energy is
released in a controlled burst at push-off. Because the system is used to navigate
uneven terrain, extra passive degrees-of-freedom were added to allow full ankle
motion. Metabolic savings were shown when wearing the device.

9.3.4.4 Bionics at MIT

MIT biomechatronics lab (directed by Prof. Herr) at MIT media lab focuses
on seeking to restore function to individuals who have impaired mobility and
developing technologies that augment human performance beyond what nature
intends. In this lab the scientific discipline of organismal and cellular neurome-
chanics are combined with the technological discipline of bionic device design
in two main aspects: (i) leg prostheses and (ii) muscular system synthesis.

The focus of the leg prostheses research is on adaptation to different gait
conditions (e.g., speed). For example, a powered lower limb exoskeleton that
emulates the function of a biological ankle during level-ground walking, specif-
ically providing the net positive work required for a range of walking velocities.
Walking with the bionic prosthesis resulted in metabolic energy costs, preferred
walking velocities and biomechanical patterns that were not significantly differ-
ent from people without an amputation (Mooney et al., 2014).
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9.3.4.5 Quadrupedal Robots of Boston Dynamics

BigDog is a quadrupedal robot designed to navigate rough terrain that walks,
runs, climbs and carries heavy loads. Compared to BigDog, the more recent
Spot quadruped is 30% lighter. Spot picks its feet off the ground with dainty
precision and keeps pace with running humans by adopting an equine canter.
With its smaller size, Spot becomes more practical than its big ancestor. It can
be used both indoors and outdoors and my help search and rescue, mapping, or
accessing disaster zones.

Another system developed at Boston Dynamics is the Orthotic Joint Braces.
The recently patented Brace system is composed of a medial brace and a lateral
brace securable via cross members, each brace having an upper part, a lower part
and a hinge assembly between those two parts. The brace system also includes
a force differential actuator subsystem connected to both the medial and lateral
braces. With this, the orthotic knee brace can aid in the treatment of people
suffering from joint injuries.

9.3.4.6 SRI PROXI Humanoid Robot

To meet both the high-performance and high-efficiency requirements set out by
the DARPA Robotics Challenge, the development of the SRI Humanoid (https://
www.sri.com/engage/products-solutions/proxi-high-efficiency-humanoid-
robot-platform) is following a three-pronged approach:

(i) Design of a novel transmission, which reduces friction and increases
efficiency to 97% (60–70% efficiency in current modern commercial transmis-
sions).

(ii) Electric batteries connect directly to low-cost electric motors, enabling
throughput of a significant amount of current without overheating.

(iii) The walking gait is dynamically stable by incorporating springs in the
legs to store and release energy, and resembles the natural gait of a human as
opposed to the standard slow, squatted, methodical gait employed by current
humanoids.

In addition, energy from the robot’s impact with the ground is stored as me-
chanical energy in the springs, and does not get converted into another form of
energy, resulting in added efficiency.

9.3.4.7 SCHAFT Biped Robot

SCHAFT which was developed at the JSK Robotics Laboratory at the University
of Tokyo is owned by Google’s Alphabet. Their most recent biped robot is able
to traverse uneven terrain and stairs, and carry up to 60 kg.

https://www.sri.com/engage/products-solutions/proxi-high-efficiency-humanoid-robot-platform
https://www.sri.com/engage/products-solutions/proxi-high-efficiency-humanoid-robot-platform
https://www.sri.com/engage/products-solutions/proxi-high-efficiency-humanoid-robot-platform
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This humanoid robot has a very different design to Alphabet’s other robots
made by Boston Dynamics, with a compact two-leg design and central body that
can be moved up or down to cope with different tasks. Unlike Alphabet’s larger
bipedal robots designed either to interact in a human-like fashion with the world
– the humanoid Atlas – or to be a robotic packhorse for the US military or dog’s
plaything,1 the Schaft robot is designed to be lower cost, lower power, and to
be used by civilians, carrying up to 60 kg over uneven terrain and stairs. The
robot was successfully demonstrated being able to dealing with real-time foot
placement adaptations, standing on a moving pipe and walking on shingle.

9.3.4.8 “Spring–Mass” Technology in the Future of Walking
Robots

This study was conducted by Jonathan Hurst at Oregon State University. The
goal was to achieve a realistic robotic implementation of human walking dynam-
ics with human-like versatility and performance. The system design is based on
the theoretical concept of “spring–mass” walking (BSLIP; see Subchapter 3.6).
The work has been supported by the National Science Foundation, the Defense
Advanced Research Projects Agency and the Human Frontier Science Program.

The technologies developed at OSU have evolved from intense studies of
both human and animal walking and running, to learn how animals achieve a
fluidity of motion with a high degree of energy efficiency. Animals combine a
sensory input from nerves, vision, muscles and tendons to create locomotion
that researchers have translated into a working robotic system.

This robot was pioneered by MABEL (Sreenath et al., 2011) which became
the world’s fastest bipedal robot, setting a record of 10.9 km/h or 6.8 mph, in
2011. MABEL, or Michigan Anthropomorphic Biped Electric Leg, is part of a
research project (“Control Designs for Bipedal Walkers and Runners”) funded
through the NSF ECCS/EPAS Program. The objective of this research project
is to develop systematic, model-based feedback design procedures for a class of
bipedal robots that take advantage of compliance in order to enhance locomotion
efficiency and robustness when running on smooth terrain and walking on rough
terrain.

9.3.4.9 Summary

Bioinspired legged locomotion has become an important research field in both
fundamental and applied studies. Main domains of applications are legged
robots and assistive devices. Still, the existing systems are much less robust

1. See https://www.theguardian.com/technology/2016/mar/01/top-dog-watch-what-happens-when-
a-real-canine-meets-a-robo-pooch.

https://www.theguardian.com/technology/2016/mar/01/top-dog-watch-what-happens-when-a-real-canine-meets-a-robo-pooch
https://www.theguardian.com/technology/2016/mar/01/top-dog-watch-what-happens-when-a-real-canine-meets-a-robo-pooch
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and versatile compared to human and animal locomotion. Also, the hardware
designs and locomotion control approaches are often very system-specific and
cannot be easily reused in other systems. Taking advantage of biological de-
sign and control principles for legged locomotion can help design future legged
systems which are able to support humans in daily activities with high level
of energy efficiency and adaptability to the user’s needs. To further progress in
this research field, a tight interaction with adjacent research topics like cogni-
tive science, actuator and sensor technology, material science, and human motor
control will be required.
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Bio-inspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, 
bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive 
overview of the fi eld. With comprehensive coverage, each chapter comprises abstract, introduction, detailed 
explanation of the concepts and methods, new developments, and a summary.  

The book is divided into three parts:
Part I: The fi rst chapter begins with our defi nition of bio-inspired legged locomotion and presents the philosophy 
and organization of the book. It is followed by the introduction of the three fundamental subfunctions of locomotion, 
namely stance, swing, and balance. After providing a detailed overview of diff erent studies on locomotor subfunctions, 
a presentation of conceptual models for legged locomotion is provided. 

Part II: For stable legged locomotion, control architecture is required to employ the locomotion concepts. Hence 
we need to know the corresponding control concepts and how to learn from biology to simplify control. Chapter 
4 presents diff erent aspects of control concepts and several engineering control methods, which can also be 
employed in a bio-inspired manner. In the next chapter we focus on torque control required to interact with the 
environment. It is more signifi cant when the articulated locomotor system needs to interact with humans. On a 
higher level, legged locomotion requires motor control based on sensory feedback. This control organizes the 
interaction between the current state of the body and the actuator commands such as task-specifi c refl ex pathways 
that shape the neuromuscular system dynamics. 

Part III: In order to benefi t from bio-inspired locomotion concepts and control that can be used for implementation 
on robots or assistive devices, key characteristics of legged mechanisms need to be identifi ed. In this part, fi rst, 
body morphology and actuators, which can be also employed to simplify control, are discussed in two chapters. 
Chapter 9 introduces applications of bio-inspired legged locomotion design and control methods to daily life 
with qualitative comparison between engineered and biological locomotor systems. It also highlights the state-
of-the-art research, which may help better anticipate potential future research directions in the fi eld. Here the 
editors share their perspective on the future directions of each area. This will help researchers in both academia 
and industry formulate a better understanding of bio-inspired legged robotic locomotion and apply the concepts 
on research or industrial developments.

The book covers the following additional features:

• State-of-the-art control approaches in relation to the biological system

• Principles of organization of biological locomotion

• Organization of complex systems based on low-dimensional motion concepts and control

• A reference for future robots/assistive devices with legged architecture

• A bibliography of related research articles
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