Lista 1 – Álgebra Linear (LOB 1037) – Profa. Paula

Sejam um conjunto V e operações de adição entre vetores e multiplicação por escalar nele definidas. Verifique quais são espaços vetoriais e, para aqueles que não forem, cite os axiomas que não se verificam:

1.
$$V = \mathbb{R}^3$$
. Operações:
$$\begin{cases} (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \\ k(x_1, y_1, z_1) = (0, 0, 0) \end{cases}$$

2.
$$V = \mathbb{R}^3 = \{(x, 2x, 3x); x \in \mathbb{R}\}$$
. Operações usuais.

3.
$$V = \mathbb{R}^2$$
. Operações:
$$\begin{cases} (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \\ k(x_1, y_1) = (k^2 x_1, k^2 y_1) \end{cases}$$

4.
$$V = M(2,2) = \left\{ \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}; a, b \in \mathbb{R} \right\}$$
. Operações usuais.

Sejam os subconjuntos S a seguir. Em relação às operações usuais de adição entre vetores e multiplicação por escalar, verifique quais são subespaços vetoriais:

5.
$$S = \{(x, y); y = -x\}.$$

6.
$$S = \{(x, y); x \ge 0\}.$$

7.
$$S = \{(x, y, z); z = 2x - y\}.$$

8.
$$S = \{(x, y, z); x = z^2\}.$$

9.
$$S = \{(x, y, z); x + y + z = 0\}.$$

10.
$$S = \{(x, y, z); x \ge 0\}.$$

11.
$$S = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}; a, b, c \in \mathbb{R} \right\}$$
 (matrizes triangulares superiores).

12.
$$S = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix}; a, b, c \in \mathbb{R} \right\}$$
 (matrizes simétricas).

13.
$$S = \left\{ \begin{bmatrix} a & 1 \\ a & b \end{bmatrix}; a, b \in \mathbb{R} \right\}.$$

14.
$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; ad - bc \neq 0 \right\}$$
 (conjunto das matrizes inversíveis).

15. Sejam o espaço vetorial
$$V=M(2,2)$$
 e os vetores $M_1=\begin{bmatrix}1&0\\1&1\end{bmatrix}$, $M_2=\begin{bmatrix}-1&2\\0&1\end{bmatrix}$ e $M_3=\begin{bmatrix}0&-1\\2&1\end{bmatrix}$. Escreva o vetor $M=\begin{bmatrix}1&8\\0&5\end{bmatrix}$ como combinação linear de M_1 , M_2 e M_3 .

- 16. Escreve o vetor $\vec{0} \in \mathbb{R}^2$ como combinação linear dos vetores $\overrightarrow{v_1} = (1,3)$ e $\overrightarrow{v_2} = (2,6)$.
- 17. Expresse o vetor $\vec{u} = (-1,4,-4,6) \in \mathbb{R}^4$ como combinação linear dos vetores $\vec{v_1} = (3,-3,1,0), \ \vec{v_2} = (0,1,-1,2) \ e \ \vec{v_3} = (1,-1,0,0).$

18. Seja
$$S$$
 um subespaço de $V=M(2,2)$: $S=\left\{\begin{bmatrix} a-b & 2a \\ a+b & -b \end{bmatrix}; a,b\in\mathbb{R}\right\}$.

a.
$$\begin{bmatrix} 5 & 6 \\ 1 & 2 \end{bmatrix} \in S$$
?

b. Qual o valor de
$$k$$
 para que $\begin{bmatrix} -4 & k \\ 2 & -3 \end{bmatrix} \in S$?

- 19. Determine o subespaço gerado G(A) para $A = \{(1, -2), (-2, 4)\}$. O que esse subespaço representa geometricamente?
- 20. Mostre que os vetores $\overrightarrow{v_1} = (1,1,1)$, $\overrightarrow{v_2} = (0,1,1)$ e $\overrightarrow{v_3} = (0,0,1)$ geram o \mathbb{R}^3 .
- 21. Determine o subespaço de P_3 (espaço dos polinômios de grau \leq 3) gerado pelos vetores $p_1 = x^3 + 2x^2 x + 3$ e $p_2 = -2x^3 x^2 + 3x + 2$.

Classifique os subconjuntos em LD ou LI:

23.
$$\{(1,0), (-1,1), (3,5)\}$$

24.
$$\{(1,-1,1),(-1,1,1)\}$$

26.
$$\{(1,-1,-2),(2,1,1),(-1,0,3)\}$$

27.
$$\{-x^2 + x + 2.4x^2 - x - 4.2x^2 + x\}$$

28.
$$\{2x^2 + x - 1, x^2 - x, x^2\}$$

29.
$$\{(2,1,0,0), (1,0,2,1), (-1,2,0,-1)\}$$

30.
$$\{(0,1,0,-1),(1,1,1,1),(-1,2,0,1),(1,2,1,0)\}$$

31.
$$\{\operatorname{sen}^2(t), \cos^2(t), \pi\}$$

- 32. Determine k para que o conjunto $\{(-1,0,2), (1,1,1), (k,-2,0)\}$ seja LI.
- 33. Mostre que se \vec{u} , \vec{v} e \vec{w} são LI, então $\vec{u} + \vec{v}$, $\vec{u} + \vec{w}$ e $\vec{v} + \vec{w}$ também são LI.
- 34. Para que valores de k o conjunto $B = \{(1, k), (k, 4)\}$ é base do $V = \mathbb{R}^2$?

Verifique quais dos conjuntos de vetores formam base dos respectivos espaços vetoriais V:

35.
$$(1,1,-1), (2,-1,0), (3,2,0); V = \mathbb{R}^3$$

36.
$$(1,0,1), (0,-1,2), (-2,1,-4); V = \mathbb{R}^3$$

37.
$$1, x, x^2; V = P_2$$

38.
$$x + 1$$
, $-x^2 + x$, $-x^2 + 2x + 1$; $V = P_2$

- 39. Mostre que o conjunto $\{\begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} -3 & -2 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}\}$ é uma base de V = M(2,2).
- 40. Mostre que o conjunto $\{(1,1,0,0),(0,0,1,1),(1,0,0,3),(0,0,0,5)\}$ é uma base de $V=\mathbb{R}^4$.
- 41. Mostre que os polinômios $p_1 = -3x^2 + 2x + 1$, $p_2 = 2x^2 3x + 1$ e $p_3 = 5x^2 3x + 1$ x+2 formam uma base do espaço vetorial dos polinômios de grau ≤ 2 . Calcule p_B , dados: $p = -13x^2 - 9x - 2$ e $B = \{p_1, p_2, p_3\}$.
- 42. Determine o vetor-coordenada de $\vec{v} = (6,2)$ em relação às bases:

a.
$$A = \{(1,2), (2,1)\}$$

b.
$$B = \{(1,0), (0,1)\}$$

c.
$$C = \{0,1,(1,0)\}$$

Determine a dimensão e uma base para cada um dos subespaços vetoriais:

43.
$$S = \{(x, y, z) \in \mathbb{R}^3; y = 3x\}$$

44.
$$S = \{(x, y, z) \in \mathbb{R}^3; y = 5x, z = 0\}$$

45.
$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; b = a + c \right\}$$

45.
$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; b = a + c \right\}$$

46. $S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; c = a - 3b, d = 0 \right\}$

RESPOSTAS:

- 1. Não é. Falham A4 e M4.
- 2. É.
- 3. Não é. Falha *M*2.
- 4. É.
- 5. É.
- 6. Não é.
- 7. É.
- 8. Não é.
- 9. É.
- 10. Não é.
- 11. É.
- 12. É.
- 13. Não é.
- 14. Não é.
- 15. $M = 4M_1 + 3M_2 2M_3$
- 16. $\vec{0} = -2\vec{v_1} + \vec{v_2}$
- 17. $\vec{v} = -\overrightarrow{v_1} + 3\overrightarrow{v_2} + 2\overrightarrow{v_3}$
- 18. a) Sim. b) k = -2.
- 19. $S = \{(x, y) \in \mathbb{R}^2; y = -2x\}$. Reta que passa pela origem.
- 21. $S = \{ax^3 + bx^2 + cx + 3d; b = 5a + 3c, d = 11a + 8c\}$

b) $\vec{v}_B = (6.2)$ c) $\vec{v}_C = (2.6)$

- 22. LI
- 23. LD
- 24. LI
- 25. LD
- 26. LI
- 27. LD
- 28. LI
- 29. LI 30. LD
- 31. LD
- 32. $k \neq -3$
- 34. $k \neq \pm 2$
- 35. É base.
- 36. Não é base.
- 37. É base.
- 38. Não é base.
- 41. $p_B = (-4,5,1)$
- 42. a) $\vec{v}_A = \left(-\frac{2}{3}, \frac{10}{3}\right)$ 43. dim(S) = 2
- 44. $\dim(S) = 1$
- 45. $\dim(S) = 3$
- 46. $\dim(S) = 2$