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Most books on Thermodynamics explain what thermodynamic potentials are and how conveniently they describe
the properties of physical systems. Certain books add that, to be useful, the thermodynamic potentials must
be expressed in their “natural variables”. Here we show that, given a set of physical variables, an appropriate
thermodynamic potential can always be defined, which contains all the thermodynamic information about the
system. We adopt various perspectives to discuss this point, which to the best of our knowledge has not been

clearly presented in the literature.
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1. Introduction

Basic concepts are most easily understood when we dis-
cuss simple systems. Consider an ideal gas in a cylinder.
The cylinder is closed, its walls are conducting, and a
fluid at fixed temperature 7" surrounds it. The cylinder
contains a fixed number N of particles. Its volume V' can
nonetheless be varied, by means of a plunger. We push
the plunger and do work on the gas. Heat flows out to
maintain the gas at the temperature T. If, instead, we
slowly pull out the plunger, heats flows inwards.

In experiments, the pressure P applied to the plunger
can be controlled, and the fluid temperature 7" can also
be controlled. The variables P, T and V are not indepen-
dent. It has been known for centuries that this system
approximately obeys an equation of state, which binds
the three variables:

PV = NkgT, (1)

where kg is Boltzmann’s constant.

One might think that Eq. is all we need to describe
the ideal gas. The equation of state, nonetheless, tells us
nothing about other important properties of the system.
The Internal Energy U rises or drops as the temperature
changes. We might also be interested in the entropy S,
and so forth.

The ideal gas is a mathematical concept: a collection
of particles moving independently from each other and
bouncing elastically off the cylinder walls. The simple dy-
namics makes U directly proportional to the temperature
and number of particles. The proportionality to IV, a vari-
able that—except as explicitly indicated—we will keep
fixed, is an inherent property of the internal energy. The
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same statement cannot be applied to the temperature.
In real fluids, even in simple ones, the proportionality
to T is washed out, and the Internal Energy is more
conveniently expressed as a function of the entropy and
volume: U = U (S, V).

Experimentalists frown at this dependence, for en-
tropies are more difficult to measure than temperatures.
Moreover, they may have to let the plunger move back
and forth and adjust the cylinder pressure to that of the
environment. They would therefore prefer the variables
P and T, instead of S and V.

At this point, it would seem natural to say “Very well,
let us make the experimentalist happy. Determine the
entropy and volume as functions of 7" and P. Since U is
known as a function of S and V', all we have to do, then,
is to substitute S(7T, P) and V (T, P) for S and V. The
result will be U[S(T, P), V(T, P)], which expresses U as
a function of T and P

But then we would be at odds with good textbooks,
which prefer to define another extensive quantity, on
equal footing with the internal energy: the Gibbs Free
Energy G(T, P), a function of the experimentalist’s fa-
vorite variables. The Internal Energy and the Gibbs Free
Energy are thermodynamic potentials. As we shall see, a
simple expression relates G(T, P) to U(S, V). The Gibbs
Free Energy G must be expressed as a function of T
and P, just like the Free Energy U must be expressed
as a function of S and V. The temperature T and the
pressure P are called the natural variables of G. The
natural variables of U are S and V.

Once again, our inner voice interrupts the train of
thoughts to argue in favor of the experimentalist: “This
is all very well, but G is obtained from U. Therefore, in
order to compute G(T, P), we will first have to express
the entropy and volume as functions of temperature and
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pressure to compute U[S(T, P), V (T, P)]. Our friend, the
experimentalist, wants the Internal Energy as a function
of T and P. So give her U[S(T, P),V (T, P)]. Why waste
time computing G(T, P)? Who needs the Gibbs Free
Energy?”

Textbooks on Thermodynamics define the thermody-
namic potentials and associate them with their natural
variables. A few texts offer indirect answers to the two
questions we have posed. To explain why .S and P are the
natural variables of the Enthalpy, Schroeder shows that
changes in H have simple physical interpretation when
the pressure is held fixed [1]. To explain why T" and P are
the natural variables of the Gibbs Free Energy, Callen
shows that, for a system in contact with a pressure and
a temperature reservoirs, the equilibrium value of any of
its internal parameters will minimize G at the reservoir
pressure and temperature [2]. Callen also explains that
information is lost when a thermodynamic potential is
expressed not as a function of its natural variables, but
as a function of its derivative with respect to those vari-
ables [2]. To prop up the argument, the author presents a
geometrical depiction of this problem and of its solution
by means of Lagrange Transformations. This explanation
pleases experienced teachers. To the same extent, it dis-
appoints the students, who often regard the illustration
as an abstract solution to an abstruse conundrum.

The purpose of this paper is to answer the two
questions directly, in a physical setting, that is,
to explain why it is better to work with G(T,P)
than with U[S(T,P),V(T,P)]. We will show that
U[T, P] =U|[S(T, P),V(T, P)] conveys less information
than U(S, V), or G(T, P). In order to preserve informa-
tion, we have to express each thermodynamic potential
as a function of its natural variables. Conversely, the vari-
ables of interest uniquely determine the thermodynamic
potential. In our example, the experimentalist would like
to work with 7" and P. She should then ask for G(T', P),
not for U(T, P).

2. Four thermodynamic potentials

As explained in Sec. [1} four physical variables are as-
sociated with the gas in the cylinder: T', P, S, and V.
When these variables are increased or reduced, the ther-
modynamic potentials U and G change. The changes dU
in the Internal Energy are especially simple to describe,
since the First Law of Thermodynamics states that any
dU is a linear combination of the changes in its natural
variables (3],

dU = TdS — PdV, (2)

with linear coefficients T' and P.
Given U(S,V), Eq. yields the temperature

_oU(S,V)

T = Ea—U

s as|,’
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and the pressure
oUu (S, V) _ou
oV ov |y’

Here we have adopted the traditional notation [2}/4],
which explicitly indicates the fixed quantity defining
the partial derivative. Since we work with fixed number
of particles, to simplify the notation we have avoided
adding a second, redundant subscript N to the partial
derivatives.

In view of Eq. , T and S are said to be conjugate
variables. Likewise, in view of Eq. , P and V are
conjugates. In a conjugate pair, one of the variables (T" or
P) is intensive, independent of the number of particles,
while the other (S or V) grows in proportion to the
number of particles and is, hence, extensive.

The dependence on extensive variables makes U some-
what special among the thermodynamic potentials. That
the Internal Energy is a (single-valued) convex function
of all its natural variables, S and V', was first pointed
out by Gibbs. Given the convexity and that S and V are
extensive, it is a simple matter to derive the Second Law
of Thermodynamics, as recalled by Wightman, in a re-
markably clear, succinct account of Gibbs’s reasoning [5].
The other thermodynamic potentials cannot be directly
related to the Second Law because they depend on one or
more intensive variables; while they are convex functions
of the extensive variables, they are concave function of
the intensive ones [2].

Nonetheless, practical considerations often focus one’s
interest on intensive variables. One must then turn to
thermodynamic potentials other than U (S, V). We have
already discussed one of them, the Gibbs Free Energy
G(T, P). Since we have four variables (S, V, T, and P),
there must be more than two thermodynamic potentials,
and can ask for the number of alternatives.

As illustrated by Eq. , the differential of a thermo-
dynamic potential is a linear combination comprising the
differentials of its natural variables; the linear coefficients
are the conjugates to the natural variables. Out of the
two conjugate pairs (S,T) and (V, P), we can construct
four pairs of natural variables: (i) S and V, (ii) S and P,
(iii) T and V, and (iv) T and P. We have, therefore, four
thermodynamic potentials. Two of them were introduced
in Sec. [I} The other two are the Helmoltz free energy
F(T,V) and the enthalpy H(S, P).

P=_

(4)

2.1. Expressions for the four thermodynamical
potentials

We now describe the schematic procedure determining
each of the thermodynamic potentials in Table [1} The
procedure is schematic because it does not explain how
the resulting quantities can be expressed as functions
of the pertinent natural variables, a task discussed in
Sec. 2.2

Consider the Helmholtz Free Energy, the thermody-
namic potential whose natural variables are T" and V. Our
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analysis starts with the First Law of Thermodynamics,
Eq. , which expresses changes in the Internal Energy
as a linear combination of the changes in T and V. We
want to substitute the variable T for S. To this end, we
subtract d(7'S) from the right-hand side of Eq. (2), to
show that

dF = dU — d(TS), (5)

from which we obtain an expression for the Helmholtz
Free Energy:

F=U-TS. (6)
Moreover, from Egs. and , it follows that
dF = —SdT — PdV, (7)

which expresses changes in the Free Energy as a linear
combination of the changes in its natural variables, T
and V.

Next, we want to calculate the Enthalpy, H = H(S, P).
We want, therefore, to substitute a term proportional to
dP for the term proportional to dV on the right-hand
side of Eq. . We then write

dH =dU + d(PV), (8)
which shows that
H=U+ PV. (9)

Equalities such as Eq. have simple physical inter-
pretations. An Enthalpy change AH at constant pressure
is the sum of the associated internal-energy change AU
with the work PAV that must be done on the surround-
ings to vacate the volume AV. One can likewise interpret
all the other thermodynamics potentials, as explained by
Schroeder [1].

From the practical viewpoint, it is more important to
express the changes in the Entropy as a linear combi-
nation of the changes in its natural variables, S and P.
With this goal in mind, we substitute the right-hand side
of Eq. for dU on the right-hand side of Eq. , which
yields the expression

dH = TdS + VdP. (10)

Experimentalists find Eq. very convenient. Work-
ing at fixed pressure, they only have to measure the heat
d@ = TdS that is exchanged with the environment to
determine the change in Enthalpy.

Finally, to determine the Gibbs Free Energy G(T, P),
we add d(PV) to and subtract d(T'S) from the right-hand

side of Eq. (2):
dG =dU — d(TS) + d(PV), (11)
which shows that

G=U-TS + PV. (12)
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Substitution of the right-hand side of Eq. for dU
on the right-hand side of Eq. then shows that

dG = —SdT + VdP. (13)

As we have already pointed out, these manipulations
are schematic. To make the equalities for F', H, and G
practical, we must express the right-hand sides of Egs. @,
@, and as functions of the natural variables (T, V),
(S, P), and (T, P), respectively. Section explains how
this can be done.

2.2. Expression of the four thermodynamical
potentials as functions of their natural
variables.

Consider, as an example, the expression for the Helmholtz
Free Energy derived in Sec. Eq. @ The first term
on the right-hand side, U, is known as a function of
the entropy and volume. Since we are interested in the
Free Energy, we want to express U, and also the entropy,
which is a factor in the last term on the right-hand side,
as functions of 7" and V. The following sequence solves
our problem:

Step 1 From T = gg) ,find T =T(S,V);
Step 2 Invert the expression obtained in Step 1 to find

S=S5(T. V)
Step 3 Substitute S(7, V) for S on the right-hand side
of Eq. (6) to find F(T,V).

As we shall see in Sec. no information is lost in this
procedure. Equation @, which defines the Helmholtz
Free Energy, is a Legendre Transformation, a proce-
dure designed to ensure that the resulting potential
[F'(T,V)] contain the same information as the original
one [U(S,V)].

Analogous algebra reduces Eq. @ to an expression for
H(S, P), and Eq. to an expression for G(T', P). For
a more detailed presentation, see Zia et al. [6].

The left-hand column of Table [ collects the central
results inSec. For each thermodynamic potential U,
F, H, and G, the right-hand column presents the expres-
sions for the two conjugate variables directly obtained

from Egs. 7 , , and , respectively.

3. Multiplicity of the thermodynamic
potentials

Equation covers systems with only two degrees of
freedom. It suits the gas in our cylinder well, which can
be described by two independent intensive variables: the
temperature T and pressure P. This, however, is not the
most general situation.

Consider, for instance, instead of the gas in the cylinder,
a stretchable wire. Its volume can be varied and hence
defines an additional degree of freedom. Let X = L — L
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Potential

Natural independent variables

Conjugate dependent variables

INTERNAL ENERGY

U
T=(2=
(5),

s,V
U _ (8U)
av )4
oF
HELMHOLTZ FREE ENERGY s=_(Z&
ar ),
TV
oF
F=U-TS p—_ (2
8 T
oOH
ENTHALPY 7= (22
25 )
s, P
(57)
H=U+PV v (22
o S
le]
GIBBS FREE ENERGY s=- (o=
T, P r
G=H-TS v (2¢
op ).,

Table 1: The four thermodynamic potentials in Sec. [2[ and the two conjugate physical variables determined from each.

be the length of the wire, measured from its equilibrium
length Ly, and V be its volume. Let f be the force
stretching the wire, and let T and P, as before, be the
temperature and pressure. Equation must then be
extended to the form

dU = TdS — PdV + fdX. (14)

In correspondence with the three degrees of freedom,
we now have three intensive variables, T', P and f, and
Eq. neatly pairs each one with an extensive vari-
able. In this case, there are three conjugate pairs: (S,T),
(V,P), and (X, f). Out of them we can construct eight
thermodynamic potentials, which are functions of (i) S, V'
and X, (ii) S,V and f, (iii) S, P and X, (iv)S, P and f,
(v) T,V and X, (vi) T,V and f, (vii) T, P and X, and
(viii) T, P, and f.

More generally, the number n of intensive variables,
or of degrees of freedom, determines the number of ther-
modynamic potentials. The number of potentials is 2™.
Although this can be readily infered from the above rea-
sonings, for n = 2 and n = 3, we refer the more skeptical
reader to Adkins [7, page 111], for a formal proof.

An important example in the n = 3 category is the
extension of the thermodynamic potentials in Table 1| to
systems with variable number of particles. The intensive
variable conjugate to N is the chemical potential p. Just
as it is convenient to work with the temperature instead
of the entropy, it may be convenient to consider u, T,
and V as variables, instead of N, S, and V. Algebraic
manipulations analogous to the ones in Sec. then
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define the Grand Potential
Qu, T,V)=F(N, T, V) — uN, (15)

one of the thermodynamic potentials associated with the
conjugate pairs (S,T), (V, P), and (N, u).

On the basis of our discussion, above, we might expect
to define altogether eight thermodynamic potentials from
the four conjugate pairs. As Sec. @ will explain, however,
one of the functions vanishes identically. The number of
thermodynamic potentials is, therefore, seven.

4. Thermodynamic potentials and
natural variables.

We now have to come to grips with the question in Sec.
which bothers every serious student of Thermodynam-
ics. Given a thermodynamic potential, why must it be
expressed as a function of its natural variables? Two
answers can be offered.

4.1. Natural variables give easy access to all
physical properties.

The first answer can be found, for example, in Baierlein 3,
page 236], which shows that the natural variables are
special because they are the only ones giving immediate
access to the other physical variables. Table [1| shows how
T and P can be obtained from U(S,V), how S and P
can be obtained from F(T, V'), and so forth. Would it be
possible to likewise extract S and V from U(T, P)? The
answer is negative.
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The difficulty is not to express U as a function of 7" and
V. Suppose that we know U(S, V). Then, from Eq. ,
we can determine the temperature as a function of the
entropy and volume: T' = T'(S, V). Likewise, from Eq.
we can determine P = P(S,V). Inversion of these two
equalities yields S = S(T,P) and V = (T, P). Substi-
tution in the arguments of our expression for U(S,V)
finally yields U[S(T, P),V (T, P)] = U(T, P). That is as
far as we can go, however, because there is no simple
way to compute the other physical variables, S and V,
from U(T, P). By comparison, U(S,V) is much more
convenient.

It is, of course, possible to choose T and P as natural
variables. For that, however, one must define the appro-
priate thermodynamic potential, the Gibbs Free Energy
G(T, P). From G(T, P), the partial derivatives in Table ]]
yield the other physical variables.

One might follow an altogether distinct program and
measure, rather than compute, the internal energy U as
a function of variables other than S and V. Even then,
however, the other variables cannot be obtained from the
partial derivatives of the resulting U, simply because the
derivative of a function f does not uniquely determine f,
as pointed out by Callen [2]. Nor can we obtain the other
thermodynamic potentials from U(T, P), for instance, as
Section [4.2] will explain.

4.2. From a thermodynamic potential expressed
as function of its natural variables, all the
other potentials can be recovered.

We now turn to another answer to the question raised in
Sec. |1} If a potential is measured as a function of variables
other than its natural variables, one might hope that
adequate mathematical treatment would allow one to
express the same thermodynamic potential as a function
of its natural variables. If so, one could then derive the
other variables from the latter expression. Unfortunately,
that is not possible, as we now shall show.

Let us assume, for example, that U has been measured
as a function of T and P: U = Y (T, P). We want U(S, V).
To this end, we take advantage of the following relations,

from Table [T
oU
T <a . ) ) (16)

@ @

to write the partial differential equation

s (), () o

To solve Eq. , we would need boundary condi-
tions [8]. By itself, the function Y (T, P) cannot pro-

and
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vide such conditions. We would therefore need addi-
tional information to determine U(S, V). This is in strik-
ing contrast with the procedure that expresses T' and
P as functions of S and V and hence, provided only
that the resulting expressions can be inverted so that
S and V be found as functions of T' and P, determines
Y (T,P) =U[S(T,P),V(T, P)]. The road leading from
U(S,V) to Y(T, P) is a one-way street. This unexpected
asymmetry calls for an explanation, to which we now
turn, in a simpler context.
Suppose we are given a function

F = F(x), (19)
and want to generate a new function G, of the variable

dF(x)
=7 _F 20
y="0 = i) (20)
in such a way that from G(y) we can recover F(x).
We will assume, additionally, that Eq. can be
inverted:

z=g(y). (21)

Inversion is, of course, a simple matter if the relation
expressed by Eq. is the result of an extensive number
of measurements.

One might think that our problem has a simple solu-
tion [2]: all we have to do is to substitute g(y) for « on
the right-hand side of Eq. to generate an ordinary
differential equation for F(z).

F=r) =rao) =6 (7). @)
x

Unfortunately, Eq. is insufficient to determine
F(x). There are infinitely many solutions, which differ
from each other by a constant. Since that constant is
unknown, we cannot find F(x). Information was lost
when we switched variables, from = to y.

We have likewise lost information in our derivation of
Eq. . The solutions to Eq. differ from each other
by arbitrary functions. We would therefore have to know
the pertinent function to determine the internal energy
U(S,V) from U(T, P).

The Legendre transformation offers an elegant solution
to this problem. To describe the procedure, we try again
to generate a function G(y), with y given by Eq. (20),
such that F(x) can be directly retrieved from it.

The Legendre transform of the function F'(x) is defined
by the equality

L{F(x)} ==

— F(z). (23)

Reference to Egs. and yields the alternative
expression

L{F(z)} = g(y)y — F(g(y)), (24)
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which defines the transformed function
G(y) =9(y)y — F(Q(y))- (25)

It is now a simple matter to show that G(y) retains
the information in F'(x). We only have to compute the
Legendre transform of G(y), in analogy with Eq. (23)):

L{ew)} =150 - Gy, (26)

The derivative in the first term on the right-hand side
of Eq. can be extracted from Eq. :
dG(y) _ dg(y) ~ dF(g) dg(y)

- dy y+9(y) a0 dy

Equation now reminds us that the derivative
dF(g)/dg in the second term on the right-hand side of
Eq. is our variable y. With this, the latter equality
reduces to the form

W g0, (28)

and since g(y) = x, we conclude that Eq. is equiva-
lent to the expression

L{G(y)} = yz — G(y). (29)

Substitution of the right-hand side of Eq. for G(y)
on the right-hand side of Eq. then shows that

L{G()} = F(9(v))- (30)

We can see that the Legendre transform of G(y) brings
us back to F(z). The Legendre transform is involutive:
the transform of the transform is the original function.
More importantly for our purposes, the function G(y)
contains exactly the same information as F'(x).

The First Law of Thermodynamics, given by equalities
such as Eq. or Eq. , depending on the number
of degrees of freedom, identifies the natural variables for
the internal energy U. For example, the natural variables
for the wire associated with Eq. are S, V, and X.
The Legendre transforms of U are the seven thermody-
namic potentials whose natural variables are the partial
derivatives of U with respect to S, V, or X. Another ex-
ample, derived from Eq. (2)), is found in Table[l} the last
three rows in its first column displays the three thermo-
dynamic potentials defined by the Legendre transforms

of U(S,V).

(27)

4.3. Adoption of variables other than the
natural ones calls for additional information

Sections and have argued that the expression of a
thermodynamic potential as a function of variables other
than its natural variables contains less information than
the expression of the same potential as a function of its
natural variables. Here, we will discuss two examples. In
the first example, the Third Law of Thermodynamics
offers the missing information. In the second, the Third
Law is insufficient to fill the gap.
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4.3.1. Internal energy as a function of 7" and V

The first illustration considers an experiment in which
the internal energy has been measured as a function of
volume and temperature [9]. It results that U = v(T, V).
Inspection to Table [1| shows that V is a natural variable
of U, while T is not. We would therefore like to obtain
U(S,V) from the function v(T, V). This, as we shall see,
is only feasible because the Third Law of Thermodynam-
ics provides the missing information.

The procedure determining U(S,V) comprises four
steps:

1. Find the potential with natural variables T and V.
Table [1f indicates that the desired potential is the
free energy F(T,V). We will try to find F(T,V)
and then Legendre transform it to obtain U(S, V).

2. Relate the function identified in step 1 to the in-
ternal energy, care being taken to eliminate any
variables other than T and V' from the relation.
The first cell in the second row of Table [I] shows
that

U=F+TS. (31)

With help of the third cell in the same row, we
then see that

UzF—T(ZJ;)V. (32)

3. Conwvert the result into an explicit expression for
the potential in step 1 as a function of the variables
T and V. We divide both sides of Eq. by T?
to show that
O(F/T) U
or —  T? (33)
Integration of both sides of Eq. now yields the
sought expression:

T /
F(T,V) = —T /0 %drw(vm (34)

As expected, this result calls for additional infor-
mation, to determine the unknown function ¢(V).

4. Use additional information to determine the ther-
modynamic potential. The Third Law of Thermody-
namics states that the entropy vanishes at T' = 0,
for any volume. To take advantage of this informa-
tion, we differentiate both sides of Eq. with
respect to T'. Since S = —(0F/0T)y, we can then
see that

S(T, V) = /0

From the Third Law of Thermodynamics, we know
that the left-hand side of Eq. 35 vanishes as T — 0.

(v, 1)

TdT/ +

oV, 7)
o).

(35)
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It follows that

(o)
o) = Jim (). 0
which brings Eq. to the closed form
T !
_ o\ T") - (v(V,T)
(37)

We can then Legendre transform F(T, V') to deter-
mine U(S, V).

Ideal gas The internal energy of an ideal gas is inde-
pendent of volume and proportional to the temperature.
The internal energy of a monoatomic gas, for instance,
is given by the equation

U =o(T,V) = S NksT. (38)

With this function, the integral in the first term on
the right-hand side of Eq. diverges at the lower-
limit. Equation is, therefore, inapplicable. One may
find that hardly surprising, given that the ideal gas is a
mathematical model that was developed well before the
Third Law of Thermodynamics.

The more inquisitive reader will nonetheless be dis-
appointed in the inadequacy of Eq. . She will be
pleased to know that an expression derived when Quan-
tum Mechanics was still under construction eliminates the
divergence. The entropy of the ideal gas was determined
in 1912, by Otto Sackur and Hugo Tetrode. Enlighten-
ing, comprehensive accounts of their work have been
presented by Grimus [10]. The Sackur-Tetrode equation
reads

3. U v
S(U,V,N) = /fBN(5 log - +log -

3 4mm 5
+§1 +7)7

%83z T3 (39)

where h and m are Planck’s constant and the particle
mass, respectively.

Equation presents the entropy as a function of
the Internal Energy and volume, and hence deserves a
brief digression. Inversion yields the equality

3h? (3xts-3 (K)*%

U(S,V) = 3753 (L (40)

d™m
which expresses the Internal Energy as a function of
its natural variables, S and V. The equalities in the
last cell in the first row on Table [I] then determine the
temperature and pressure.

We can now go back to the problem of computing the
ideal-gas Helmholtz Free Energy from Eq. . Substitu-
tion of the right-hand side of Eq. for U on the right
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hand side of Eq. (39)), yields the following expression for
the entropy as a function of temperature and volume

3 1%
S(T,V,N) = kBN(5 log kT + log

3 2mrm 5
+§ log 2 + 5), (41)
which can be rewritten in the form
S(T,V,N)=kgN| lo Vv 4—§ (42)
s Vo — kB g N}\% 2 )
where
h

vV 27kaBT

is the de Broglie thermal length of the gas particles.

The factor A3 in the denominator of the logarithm on
the right-hand side of Eq. can be regarded as the
volume of a cube with side equal to the de Broglie length
Ar. The entropy of the ideal gas measures the number of
scales separating the per-particle volume V/N from the
volume of the de Broglie cube. Consider, for example, a
gas of He atoms under standard temperature and pressure
conditions. The per-particle-volume is the ratio between
the molar volume and Avogadro’s number, and the de
Broglie length can be computed from Eq. . It results
that V/N = 4 x 1072 m?® and A} = 1.0 x 1073 m3.
The two volumes are therefore split by five orders of
magnitude, and the per-particle entropy is substantial.

As the gas is cooled at fixed volume, the de Broglie
length grows. At a sufficiently low temperature Tj, the
de Broglie cube becomes larger than V/N by a factor
exp(5/2), and the right-hand side of Eq. vanishes.
If He were an ideal gas, its entropy would vanish at
THe — 1 % 102K.

Back to Eq. , we can now see that the lower limit
of the integral on the right-hand side should be T' = Ty,
not 7' = 0. This infrared cutoff ensures convergence of
the integral and determines the Free Energy.

4.3.2. Free energy as a function of temperature
and pressure.

The derivation of Eq. relied on information provided
by the Third Law of Thermodynamics. We now show
that the Third Law is not always sufficient to provide
the information that is missing from the expression of
a thermodynamic potential as a function of variables
other than the natural ones. In fact, since the Third
Law determines a property (the entropy) at a given
temperature (7' = 0) and any volume V', the information
it provides is only sufficient to calculate the Free Energy,
whose natural variables are 7" and V.

Imagine now, for contrast, that the Free Energy be
known as a function of pressure and volume, F' = Y (P, V),
instead of its natural variables T" and V. It seems advis-
able to follow the prescription that proved successful in
our derivation of Eq. .
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In other words, we try to determine the Gibbs Free
Energy G, whose natural variables are P and V. From
Table [[] we can see that

Y(T,P)=G(T,P)-P (?HC;Y)T, (44)

both sides of which can be divided by P? to yield the
equality

d(G/P) Y (T, P)
=— . 45
oP P2 (4)
Integration over pressure then yields an explicit ex-
pression for the Gibbs Free Energy:

Py (T, P

o3 dP’ + P o(T), (46)

where ¢ denotes an unknown function.

To determine the function ¢(T") on the right-hand side
of Eq. , we need additional information. We may
try to extract that information from the Third Law of
Thermodynamics. For that, we have to turn Eq. into
an expression for the entropy. We therefore differentiate
both sides with respect to T" and recall, from Table
that S = (0G/0T)p. It results that

P /oy (T, P
-P — P’
/0 P2 ( oT )P,d

dT

S(T, P) =

(47)

At T = 0, the left-hand side vanishes, and Eq.
reduces to an equality that determines the derivative
dq@/ dTl at T = 0. At low temperatures, substitution of
the Taylor expansion for ¢(7') on the right-hand side of
Eq. therefore yields an approximate expression for
G(T, P), within an unknown additive constant. At higher
T, however, that expression becomes unreliable, and
Eq. , essentially useless. Only at low temperatures
does the Third Law of Thermodynamics determine the
Gibbs Free Energy.

5. Maxwell’s relations

Even when none of the potentials for the system of inter-
est are known, in either analytic or tabular form, we can
take advantage of the thermodynamic potentials, because
we know their differentials to be exact. The differential
of the Internal Energy, for instance, is given by Eq. ,
from which follow the two equalities in the first-row, last-
column cell on Table[l} Since U is an analytic function
of its natural variables, partial differentiation of the first
equality with respect to V' and of the second with respect
to S yields the expression

oT oP
) (%),
S 14
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Analogous expressions can be derived from the other
thermodynamic potentials and, together with Eq. ,
are known as Mazxwell’s Relations. They show that the
physical variables associated with a system cannot be var-
ied independently, because they are constrained by Ther-
modynamics. Given their conceptual relevance, Maxwell’s
Relations are extensively discussed in textbooks.

More significant from the practical viewpoint are equal-
ities relating physical properties, such as heat capacities,
to other measurable coeflicients. We shall discuss two
illustrations.

Our first illustration focuses on the Internal-Energy
differential. Consider, again, the system described in Sec-
tion [I} a gas in a cylinder. If its temperature is increased
by dT, the gas will absorb a differential amount of heat:

dQ = Cy dT + \dV. (49)

We have chosen the independent variables 7" and V.
The coefficient Cy on the right-hand side of Eq. is
the heat capacity at fixed volume, while A is the latent
heat, that is, the heat absorbed when the volume changes
at fixed temperature.

Since d@ = TdS, it now follows from Eq. that

dU = Cy dT + (A — P)dV, (50)

and hence that

(3,57, o

()= (), (), o

On the other hand, since dS = dQ/T, we can write
equally well rewrite Eq. in the form

s = @dT+ Zav, (53)

or

to obtain the expression

(50,5, o

from which it follows that

oCy o)) A
vy —(22) 2 55
(aV>T <6T>V T (%)
Comparison with Eq. (52]) then shows that
oP
T
vor () -

And substitution of the right-hand side for A in Eq.
yields an expression for the derivative of the heat capac-

ity:
acy\ . (0°P
(), =7 (), G0
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Thermodynamics, as we can see, relates the heat capac-
ity and latent heat to thermal derivatives of the pressure.

Our second illustration deals with the Enthalpy. We
begin with an expression analogous to Eq. :

dQ = CpdT + \dP, (58)

where C), is the heat capacity at constant pressure and A
is another latent heat, the heat absorbed as the pressure
is varied at fixed temperature.

From Eqgs. and we have that
dH = CpdT + (A + V)dP. (59)

Since the Enthalpy H is an analytic function of its natural
variable T and P, we can see that

(), =), o

equivalent to the equality

8Cp> ( o)) ) (3V>
| =\s=] T|l5] - (61)
< OP ) T ) orT ) p

On the other hand, recalling that dS = dQ/T, we can
rewrite Eq. in the form

%dT +2ap, (62)

T
which implies that
(7)) _[°(z)
A7) _[%\z) )
opP | or ’

T P

as =

a result that can be immediately reduced to the form

CHRIC

Comparison with Eq. now shows that

A=-T (?;;)P, (65)

and substitution of the right-hand side for X in Eq.
yields the relation

2
<5Cp> _ 7 <5V> _ (66)
op )r oT? )
Similarly, the other thermodynamical potentials yield

relations between physical properties of experimental
interest.
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6. Concluding remarks

Thermodynamics relates energy changes in physical sys-
tems to the changes in other physical properties. Capi-
tally important is the First Law, which relates differential
changes in the internal energy to the exact differential
of the entropy and exact differentials of other variables.
Examples are Eqs. and . For definiteness, this
summary will refer to the former, and hence consider S
and V as the natural variables of U. We can then make
the following statements.

3.1 Postulate. The Internal Energy U = U(S,V), ex-
pressed as a function of its entropy S and volume
V', contains all thermodynamic information about
a simple fluid system.

U=U(S,V) can be inverted to yield S = S(U,V),
which likewise contains all the thermodynamic in-
formation about the system.

3.2 Changes of variables. Instead of the pair (S, V),
we may work with any of the pairs (T, V), (S, P)
or (T, P). While the solution of equations such
as or may be inverted to yield the entropy
or volume as functions of other variables, and hence
determine U as functions of P or T, information is
lost in these algebraic transformations. Only with
assistance of additional information can we recover
the content of U(S, V). The derivation of Eq. ,
aided by the Third Law of Thermodynamics, is an
example.

3.3 Legendre transforms. The Internal Energy is
a thermodynamic potential. The other thermody-
namic potentials, defined as Legendre transforms
of U(S,V), are functions of other physical vari-
ables—their own natural variables—that preserve
the information in the function U(S,V). As il-
lustrated by Eq. , the Legendre transform of
a function is defined with respect to one of its
variables. The Enthalpy H(S, P) is the Legendre
transform of U(S, V') with respect to V, and the
Helmholtz Free Energy F(T,V) is the Legendre
transform of U(S, V') with respect to S, while the
Gibbs Free Energy G(T, P) can be obtained either
as the Legendre transform of F/(T, V') with respect
to V or the Legendre transform of H(S, P) with
respect to S. Table [1] displays the definitions, nat-
ural variables, and partial derivatives of the four
thermodynamic potentials.

As indicated in item 3.1, the function U = U(S,V)
can be inverted to yield S = S(U,V). The Leg-
endre transforms of S(U,V') define the Massieu
functions, which are equivalent to the thermody-
namic potentials. As explained, for example, by
Callen [2], Thermodynamics can be formulated ei-
ther in the Energy representation U(S, V') or in the
equivalente Entropy representation S = S(U,V).
The Second Law of Thermodynamics requires the
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internal energy to be a convex function of its natural
variables.

3.4 Void thermodynamic potential.

As explained in Sec. [2] simple considerations show
that, if U has n natural variables, then the Legendre
transform procedure yields 2" distinct thermody-
namic potentials. Table [1| ratifies this reasoning
for n = 2. For n = 3, however, one of the eight
potentials may be void, as we now discuss.

If we again consider a system with variable number
of particles, Eq. acquires the more general form

dU = TdS — PdV + udN, (67)

and the Internal Energy becomes a function U =
U(S,V,N). The last term on the right-hand side of
Eq. is the variation of Internal Energy when
the number of particle changes by dN. On the
basis of the Legendre Transformation procedure,
it is then straightforward to define a thermody-
namic potential that is a function of 7', P and pu.
Nonetheless, the resulting thermodynamic poten-
tial vanishes identically. For a discussion of this
issue and its relation to the Euler Theorem, the
reader is referred to Callen [2, page 148].
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