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We give an account and a critical analysis of the use of exact and inexact differentials in the early development
of mechanics and thermodynamics, and the emergence of differential calculus and how it was applied to solve some
mechanical problems, such as those related to the cycloidal pendulum. The Lagrange equations of motions are
presented in the form they were originally obtained in terms of differentials from the principle of virtual work. The
derivation of the conservation of energy in differential form as obtained originally by Clausius from the equivalence
of heat and work is also examined.
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1. Introduction

It is usual to formulate the basic equations of thermo-
dynamics in terms of differentials. The conservation of
energy is written as

dU = dQ − dW, (1)

where dU , dQ, and dW are the differentials of the internal
energy, the heat absorbed and the work performed by
a system. The conservation of energy is expressed by
equation (1) as long as dU is an exact differential, a
key feature that is not explicitly stated but is tacitly
understood. An exact differential such as dU means that
there exists a state function U such that its differential is
dU . An inexact differential such as dQ and dW , does not
hold this property. It should be pointed out that some
authors use a distinction notation to refer do to an inexact
differential. One of them is to cross the differential, a
procedure that becomes quite confusing and useless.

The differential of the work dW is written in terms
of exact differential. In the case of mechanical work, for
instance, dW = pdV where p is the pressure and dV is
the differential of the volume V . In an analogous way
the differential of heat can also be written in terms of
an exact differential. If a system is in thermodynamic
equilibrium than dQ/T is the exact differential dS of the
entropy S. This result allows us to write the relation
dQ = TdS between heat and entropy, which should be
understood as valid as long as the system is in thermo-
dynamic equilibrium.

Differentials appeared with the invention of calculus
in the second half of the seventeenth century. The differ-
ential dx was understood as a small increment of the
*Correspondence email address: oliveira@if.usp.br.

variable x. If another variable y depends on the indepen-
dent variable x, then the resulting increment dy of y is
its differential. The quotient of these two differentials,
dy/dx, was interpreted geometrically by Leibniz as the
ratio of the ordinate y of a point on a curve and the
length of the subtangent associated to this point.

The formulation of thermodynamics in terms of differ-
entials seemed to be a natural consequence of the applica-
tion of differential calculus at the time of the emergence
of thermodynamics around the middle of the eighteenth
century [1]. Clausius formulated the laws of thermody-
namics by the use of differentials [2]. The same can be said
about the development of mechanics in the eighteenth
century [3], particularly the formulation of analytical
mechanics by Lagrange [4].

Here, we give an account and an analysis of the devel-
opment of the concept of differential and its application
during the early development of mechanics and thermo-
dynamics. Our presentation starts with the introduction
of the differential and integral calculus by Newton and
Leibniz. Then we analyze the developments of the basic
rules of differential calculus and the concepts of integrat-
ing factor, exact and inexact differentials. Next we show
how the application of differential calculus was used to
solve mechanical problems such as the brachistochone
problem. In the second part, we analyze how the differen-
tials were used by Lagrange in his analytical mechanics
and by Clausius in his development of thermodynamics.

As a generic procedure of our exposition we try to use
the terminology and notation originally employed by the
authors. However, for the sake of a better understanding
by the reader, sometimes we use the modern terminology
and notation as long as they do not modify the original
meaning of the concept being described.
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2. Differential calculus

2.1. Basic rules

The differential and integral calculus was invented in-
dependently by Newton and Leibniz in the second half
of the seventeenth century [5–10]. They provided algo-
rithm procedures, including the basic rules of the calculus,
which were essential for the development of the concept
of derivative and integral [5]. Newton developed the cal-
culus in the years 1665-1666 but his first publication on
the subject, which was written in 1676, appeared only in
1704 as a mathematical appendix to his Opticks, although
portions of his Principia, published in 1687, contained
some of his achievements on calculus [11]. Leibniz de-
veloped the subject during the years 1673-1676 and the
accounts of his findings were published in two papers [8].
The first, in 1684, on differential calculus [12], the second,
in 1686, on integral calculus [13]. Leibniz also created a
convenient notation, without which the calculus could
not achieve its fundamental role in mathematics [7].

The differential calculus may have its origin in geo-
metric problems such as that of drawing tangents or
of locating the maxima and minima of curves [14]. Its
origins is found within the domain of analytic geometry
where geometry is studied by means of a coordinate sys-
tem. A curve drawn in a plane is represented in analytic
geometry by an equation involving two algebraic vari-
able, the abscissa and the ordinate, which in Cartesian
geometry are understood as the distances of a point on
the curve from two orthogonal axes. In his first publi-
cation on the differential calculus of 1684 [12], Leibniz
denoted the differential of a variable x by dx, the same
notation that is used today. It was interpreted as a small
increment in the abscissa x, which implies an increment,
or a differential, dy in the ordinate y, as represented
geometrically in figure 1. Leibniz states that the ratio
between dy and dx equals the ratio between the ordinate
and the subtangent.

The development of Leibniz calculus during the first
decades after its discovery was accomplished mainly by
Jacob Bernoulli and Johann Bernoulli, and the first book
on the subject was published in 1696 by l’Hôpital [15],
based on the works of Leibniz, Jacob Bernoulli, and spe-
cially on those of Johann Bernoulli. It contained the basic
rules of the differential calculus, and included procedures
for determining tangents, maxima and minima, inflex-
ion points, involutes and evolutes, and caustics of plane
curves.

L’Hôpital starts his exposition on differential calculus
by giving the basic rules of the subject, such as the
differential of the sum of two variables z = x + y,

dz = dx + dy, (2)

of the product of two variables z = xy,

dz = ydx + xdy, (3)

Figure 1: The dashed line TM is the tangent to the curve AMB
at the point M and QMm is a straight line that crosses the curve
at the same point. The segments AP and MP are the abscissa
x and ordinate y of the point M whereas Pp and Rm are the
differentials dx and dy. The ratio between dy and dx equals
the ratio between the ordinate MP and the subtangent TP. The
figure is based on figures 1 and 3 of reference [15].

of the quotient of two variables z = x/y,

dz = ydx − xdy

y2 , (4)

of a power z = xm,

dz = mxm−1dx, (5)

where m is a rational number, positive or negative.
The determination of the tangents of curves, requires

the calculation of the subtangent, the length of the seg-
ment TP of figure 1. If Pp (dx) is small, then Rm (dy) is
also small, the triangles MRm and TPM become similar
and as a consequence the length t of the subangent TP
is to y as dx is to dy,

y

t
= dy

dx
. (6)

The right-hand side is understood as the quotient between
the two differentials. In fact, this is the expression used
by Leibniz to define dy by introducing dx as an arbitrary
finite interval [12]. To find the maximum value of the
ordinate of a curve it suffices to set the expression of dy
obtained for a given curve equal to zero. L’Hôpital gives
the following example,

x3 + y3 = axy, (7)

which described a certain plane curve. According to the
basic rules,

dy = aydx − 3x2dx

3y2 − ax
. (8)

Setting this expression equal to zero he finds y = 3x2/a
which replaced in equation (7), gives x = (a/3) 3

√
2, the

value of x at which the curve has its maximum value.
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The determination of inflexion points of curves was also
considered by l’Hôpital. In this case it is necessary to find
the second differential d2y of the ordinate y, understood
as the differential of the differential dy and thus holding
the same rules of the first differential. As an example, he
considers the curve described by

y = ax2

x2 + a2 . (9)

From this expression, one finds

dy = 2a3xdx

(x2 + a2)2 . (10)

The second differential is also determined by the basic
rules, yielding

d2y = (2a5 − 6a3x2)dx2

(x2 + a2)3 . (11)

Setting the numerator equal to zero, he finds the values
x = a/

√
3 for the location of the inflexion point. The

corresponding ordinate is y = a/4.

2.2. Integrating factor

The differential calculus was by its origin a natural
method for solving geometric problems, the results being
expressed in terms of algebraic expressions [5]. In this
sense it was a method to solve problems in analytic ge-
ometry. This changed with Euler, who made the subject
a theory of functions without the need of a connection
with geometry [5]. Notice however that, for Euler the
meaning of function was a formal expression in terms
of variables and constants and did not have the present
meaning of a conceptual relationship between a quantity
and an independent variable [5].

In a paper presented in 1728, published in 1732 [16],
concerning a method to reduce second order into first
order differential equations, Euler introduces the inte-
grating factor. As an example, he considers the following
differential equation

dz + 2zdt

t − 1 + dt

t2 − t
= 0. (12)

To solve equation (12), Euler multiplies the equation by
the integrating factor (t − 1)2, obtaining

(t − 1)2dz + 2z(t − 1)dt + (t − 1)dt

t
= 0. (13)

The last term is the differential of t − ln t, and the first
two terms is identified as the differential of (t − 1)2z.
Thus the integration gives

(t − 1)2z + t − ln t = a, (14)

where a is a constant.

Equation (12) is of the general type

dz + zPdt + Qdt = 0, (15)

where P and Q are functions of t and can be solved in
like manner. According to Euler, the integrating factor is

x = e
∫

P dt. (16)

Multiplying equation (15) by x, and taking into account
that dx = xPdt, one finds

xdz + zdx + xQdt = 0, (17)

which after integration gives

xz +
∫

xQdt = a. (18)

This equation gives z as a function of t.

2.3. Complete differential

In another paper, presented in 1734 and published in
1740 [17], Euler considers a function V of two variables
x and y. He writes the differential of V as

dV = Pdx + Qdy, (19)

where the first term is obtained by considering y constant
and the second by considering x constant. Writing dP =
pdx + rdy and dQ = qdx + sdy, Euler argues that q = r
[17]. Later, he introduces the notation [18]

r =
(

dP

dy

)
, q =

(
dQ

dx

)
, (20)

and writes the equality q = r as(
dP

dy

)
=

(
dQ

dx

)
. (21)

Euler warns that not all expressions of the type (19)
are differential of a certain function of x and y. If the
relation (21) does not hold, no function of x and y exists
such that its differential is Pdx+Qdy. An example given
by Euler is yxdx + x2dy.

In a paper published in 1742 [19], Clairaut shows that,
if Adx + Bdy represents the differential of a quantity
dependent on x and y, then

dA

dy
= dB

dx
, (22)

which is the condition (21) found by Euler. According to
Clairaut, this condition allows us to known if Adx + Bdy
is the differential of a certain quantity in two variables.
If the condition is fulfilled, Clairaut calls Adx + Bdy
a complete differential. As an example of a complete
differential he gives

ydx − xdy

x2 + y2 . (23)
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In his book on the figure of the earth published in
1743 [20], Clairaut states that the integral of a complete
differential is a function of x and y and he gives the
following two examples

ydx + xdy,
ydx + xdy

2
√

a2 + xy
, (24)

which have as integrals xy and
√

a2 + xy, respectively.
To integrate a complete differential Adx+Bdy, Clairaut

uses the following scheme [19]. One integrates one of the
members, say Adx supposing y constant, and to the re-
sult one adds a quantity C that depends only on y. Next
one calculates the differential of the sum, keeping x con-
stant, and subtract Bdy. The result is either zero or is
the differential of C, which can thus be integrated and
added to

∫
Adx.

If the expression Mdx + Ndy is not a complete differ-
ential, Clairaut explains that it is possible to render a
complete differential by multiplying the expression by
a factor µ dependent on x and y [19]. Assuming that
µMdx + µNdy is a complete differential, it follows from
the condition (22) that

d(µM)
dy

= d(µN)
dx

, (25)

an equation to be solved for finding µ.

2.4. Derivative

The differential and integral calculus as invented by New-
ton and Leibniz and developed by their immediate suc-
cessors was very successful, becoming the mathematical
basis of physical theories such was the case of Newtonian
mechanics. However, criticisms were raised concerning
its foundations particularly the employment of infinitely
small quantities [5] as occurs in the differential quotient
dy/dx. If the differential is a vanishing quantity then the
differential quotient would result in an indetermination
ratio of the type zero over zero. On the other hand, the
rules of the calculus established by Newton and Leib-
niz give well defined results for the differential quotient.
A crucial contribution toward the clarification of this
problem was presented by d’Alembert in his article on
differential contained in the Encyclopédie, where he ex-
plains how to find the differential quotient by using the
concept of limit [21].

As we have seen above the differential quotient is equal
to the ratio of the ordinate MP of a point M of a curve
and the subtangent TP as shown in figure 1. D’Alembert
shows this result by considering a straight line QMm,
which crosses the curve AMB at the point M. As the
point m approaches M, the point Q moves toward the
point T and as a consequence the ratio mR/MR, which
equals the ratio MP/QT, aproaches the ratio MP/TP
of the ordinate and the subtangent. D’Alembert gives
the example of a curve described in algebraic terms by
ax = y2. Denoting mR by z and MR by u, the ratio

mR/MR is a/(2y + z) which, as z decreases, approaches
the limit a/2y. According to the rules of the calculus,
adx = 2ydy, which gives also dy/dx = a/2y.

Up to the last decades of the eighteenth century the
differential calculus was centered on differentials. As we
have seen above, the differential equations were written
in terms of differentials. This state of affairs changed
with Lagrange. In his paper on differential and integral
calculus [22], published in 1774, and on his theory of an-
alytical functions [23], published in 1797, the prominent
role was played by the derivative, or derived function
in the terminology introduced by as Lagrange. He also
introduced the notation fx for a function of a variable
x, without parentheses, but we will write f(x). However,
he used parentheses in the case f(x + a).

Wishing to avoid differentials, Lagrange did not use
the ratio of differentials as the definition of derivative.
Instead he based his definition on the Taylor series. Taylor
wrote the series that bears his name by considering two
quantities z and x. When z increases to become z + v,
the quantity x becomes

x + ẋ
v

1ż
+ ẍ

v2

1.2ż2 + ...
x

v3

1.2.3ż3 + etc. (26)

Taylor published this result in 1715 [24] using the nota-
tion and terminology introduced by Newton. A quantity
x is called a fluent and its rate of change, denoted by ẋ,
is called the fluxion of x. Thus, in expression (26), the
ratio between ẋ and ż is the derivative of x with respect
to z; the ratio between ẍ and ż2 is the second derivative;
and so on.

If one wishes to construct a Taylor series for a certain
function, one needs to know a priori the derivatives. How-
ever, the series can be obtained by other means without
reference to derivatives. If this alternative procedure is
employed, the derivatives could be obtained by compar-
ing with the Taylor series. This was the reasoning of
Lagrange, who considered the Taylor series as a way to
define the derivative of a function [5, 9]. He writes the
fraction

P = f(x + a) − f(x)
a

, (27)

and then sets a = 0 after performing the subtraction in
the numerator by the use of the power expansion in the
increment a [22, 23]. He denotes the result f ′x, but we
will write f ′(x), and calls it the derived function of f(x).
As an example, Lagrange considers f(x) =

√
x, from

which

P =
√

x + a −
√

x

a
= 1√

x + a +
√

x
. (28)

Setting a = 0, one finds f ′(x) = 1/2
√

x.
The definition of derivative given by Lagrange was

based on the assumption that a function f(x) could be
expanded in power series in the increment of x. Cauchy
noted that this is not always possible. He then advanced
a definition based on the concept of limit [9]. D’Alembert
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had already proposed this procedure but it lacked a
proper definition of limit, a concept that was given by
Cauchy in the following terms [25]:

When the values successively assigned to the
same variable approach indefinitely to a fixed
value, so as to end by differing from it as little
as desired, the latter is called the limit of all
the others.

His definition of derivative becomes the limit of the quo-
tient (28) when a approaches zero. This verbal definition,
Cauchy translated into the precise language of deltas,
epsilons and inequalities [26].

Cauchy also provided a meaning to the differential
dy of a function y = f(x) [25]. The differential of the
independent variable dx is a finite constant and

dy = f ′(x)dx. (29)

According to Cauchy, this relation is the reason to call
f ′(x) the differential coefficient [25], a terminology that
was introduced by Lacroix [5].

2.5. The concept of function

The word function was used by Leibniz as the meaning of
any quantity connected to a curve such as the locus, the
slope, or the radius of curvature [14]. Johann Bernoulli
and Euler regarded a function as an expression or a
formula involving variables and constants, which is the
concept usually held by the students of elementary math-
ematics courses [14]. The same concept of function was
used by Lagrange. In his treatise on analytical functions,
he writes [23]:

We call function of one or more quantities,
any expression of calculus in which these
quantities enter in any manner, mixed or not
with other quantities that we consider as hav-
ing given and invariable values, while the
quantities of the function can receive all the
possible values.

Fourier, in his investigation on the equation of heat
flows, departs from the notion of function as an ana-
lytic expression and approaches the modern concept of
function. In his treatise on the theory of heat, where he
develops the series that bears his name, he writes [27]:

In general, the function fx represents a se-
quence of values, or ordinates, each of which
is arbitrary. The abscissa x can receive an
infinity of values, there is an equal number of
ordinates fx. All have actual numeric values,
either positive, or negative, or zero. It is not
supposed that these ordinates are subject to
a common law; they succeed one another in
whatever manner, and each of them is given
as it were a single quantity.

Dirichlet improved the definition given by Fourier ar-
riving at a formulation that was based on the idea of
function as a relationship between two variables [14,28].
It can be stated as follows: if x and y be two variables
such that for each value assigned to x there corresponds,
by some rule which need not be an analytical expression,
then y is a function of x.

3. Mechanics

3.1. Laws of motion

The fundamental laws of motion were established by New-
ton in his treatise on mechanics, known as the Principia,
published in 1687 [29]. A translation from the original in
Latin was published later in 1729 [30]. Newton was not
the first to formulate laws of motion. Prior to Newton,
Galileo had formulated the law of inertia, which is one
the fundamental laws of Newtonian mechanics, and also
studied the motion of falling bodies, the trajectory of
projectiles and the oscillations of a pendulum.

In his Dialogues Concerning two New Sciences, Galileo
describes his observations of oscillations in the following
terms [31,32]:

Thousands of times I have observed vibra-
tions especially in churches where lamps, sus-
pended by long cords, had been inadvertently
set into motion.

These occurrences might have stimulated him to study
the oscillations of a pendulum. Galileo found that the pe-
riod of oscillations of a simple pendulum is proportional
to the length of the pendulum. He might have consid-
ered that the period is independent of the amplitude of
oscillations but there is no mention concerning this issue
on his writings [33].

In his treatise on the pendulum clock, published in
1673, Huygens showed that a cycloidal pendulum is
isochronous, that is, the period is independent of its
amplitude [34]. In contrast to a simple pendulum, which
follows a circular path, a cycloidal pendulum follows a
cycloid, a curve traced by a point on the edge of a circle
rolling without sliding along a straight line, as shown in
figure 2. When the point K goes into the point M, the
disk rotates by an angle LOK so that MN equals the
displacement of the center of the disk, which is the arc
LK, plus LN, which gives ML equals the arc LK. Con-
sidering that CN is equal to the semi-circumference, it
follows that CM is equal to the arc LG minus LN, which
defines geometrically the cycloid. In modern notation
and in parametric form the cycloid is described by

x = r(1 − cos θ), y = r(θ − sin θ), (30)

where x and y denotes the distances BM and CM, θ is
the angle LOG and r is the radius of the disk. Huygens
demonstrated the isochronous properties of a cycloid by
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Figure 2: The curve AMKE is a cycloid generated by a point on
the edge of the disk which rolls without sliding along the straight
line AGE. The segments CM and BM are the abscissa y and
ordinate x of point M whereas nm and Mn are the differentials
dy and dx. The figure is based on figure 1 of reference [36].

showing that it is a tautochrone, a curve holding the
property that the time it takes for a body to descend to
the lowest point is the same regardless of the starting
point.

The cycloid is also the solution of the brachistochrone
problem, posed by Johann Bernoulli in 1696 [35]. The
problem is to find the curve which gives the fastest de-
scent of a sliding body moving between two points that
are not in the same vertical line. The solution given by
Johann Bernoulli himself was based on the Fermat princi-
ple of the least time, which he adapted to his mechanical
problem [36]. Accordingly, he used the sine law which is
obtained from this principle. This law states that the sine
of the angle of inclination of the curve at a certain point
with respect to the vertical is proportional to the velocity.
Referring to the figure 2, it is the ratio of the differentials
dy =nm and ds =Mm, which is thus proportional to the
velocity v, that is,

dy

v
= ds

a
, (31)

or ady = vds, which after squaring gives a2dy2 = v2ds2.
Taking into account that ds2 = dx2+dy2, where dx =Mn,
one finds (a2 − v2)dy2 = v2dx2 from which follows the
equation

dy = vdx√
a2 − v2

. (32)

To relate velocity and position, Johann Bernoulli uses
the relation found by Galileo in his investigation on the
fall of bodies according to which the velocity is pro-
portional to the square root of the altitude traversed
from the rest, v =

√
ax. Employing this relation, Johann

Bernoulli reaches the differential equation

dy = dx

√
x

a − x
. (33)

To shown that this equation describes a cycloid, he writes
this equation in the equivalent form

dy = dx
x√

ax − x2
= adx

2
√

ax − x2
− adx − 2xdx

2
√

ax − x2
. (34)

The integral of the second term is
√

ax − x2, which is
LN of figure 2, and the integral of the first term is the

Figure 3: The curve GLA is a semi-cubic parabola. The dashed
lines are tangents to the curve GLA at the points L and G. FH
and LH are the differentials dx and dy and BE and EL are the
abscissa x and ordinate y of the point L. The figure is based on
figure 1 of reference [38].

length of the arc GL. The total integral y = GL - LN,
which is the statement that AMK is cycloid as we have
seen above.

In 1687, Leibniz posed the following problem. Find a
line of descent, in which a heavy body descends uniformly,
and also approaches the horizontal line in equal time, that
is, with a constant vertical velocity [37]. The solution
is a semi-cubic parabola and a solution was given by
Jacob Bernoulli in a paper published in 1690 [38]. A
differential equation describing the curve was set up
by Jacob Bernoulli as follows. The straight lines AL
and MG are tangents to the points L and G of the
curve NLG shown in figure 3. The ratio of LH= dy and
FL=

√
dx2 + dy2 is equal to the ratio of the vertical

component of the velocity vy and the velocity v at the
point L,

dy√
dy2 + dx2

= vy

v
. (35)

A similar relation can be written for the point G,
a

b
= Vy

V
. (36)

Considering that the vertical velocity is the same, vy =
Vy, we find the following relation

b

a

√
dy2 + dx2

dy
= v

V
. (37)

Jacob Bernoulli uses the Galileo result according to which
the velocity is proportional to the square root of the
vertical altitude, to reach the result

a

b

√
dy2 + dx2

dy
=

√
y

√
a

. (38)

. After squaring,

a3(dy2 + dx2) = b2ydx2, (39)

the following differential equation is found

dx
√

a3 = dy
√

b2y − a3, (40)
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that describes the desired curve.
The integral found by Bernoulli is

x = 2
3

b2y − a3

b2
√

a3

√
b2y − a3. (41)

Replacing y − a3/b2 = z,

x2 = 4b2

9a3 z3, (42)

which describes a semi-cubic parabola.

4. Analytical mechanics

4.1. Principle of d’Alembert

Analytical mechanics was the name that Lagrange chose
for his book on mechanics to emphasize the analytical
framework on which rests his treatise on the subject [4].
He stressed his point of view by remarking that [4]

No figures will be found in this work. The
methods that expose in it require neither
constructions nor geometrical or mechanical
reasonings, but only the algebraic operations
inherent to a regular and uniform process.
Those who love analysis will, with joy, see
mechanics become a new branch, and I am
grateful that I have extended its domain.

The analytical mechanics of Lagrange is founded on the
principle of virtual work, which was developed by Johann
Bernoulli, in the static version, and by d’Alembert, in
the dynamic version.

The principle of virtual work stated by Johann Bernoulli
generalized the previous formulations given by his pre-
decessor [3]. The principle gives the condition for the
static equilibrium of a mechanical system acted by sev-
eral forces. In a letter written in 1717 to Varignon, which
was reproduced in the treatise of Varignon on statics [39],
Johann Bernoulli states the principle of virtual work,
which he calls principle of virtual velocities, as follows:

In all equilibrium of any forces, in whatever
way they are applied, and in whatever direc-
tion that they act on each other, indirectly or
directly, the sum of the positive energies will
be equal to the sum of the negative energies
taken positively.

In this statement, energy means the product of the mag-
nitude of a force by a small displacement of the point
acted by the force. The small displacement is parallel
to the force, being positive if in the direction of the
force and negative in the opposite direction. It should
be noted that the small displacements Johann Bernoulli
called virtual velocities.

In his treatise on analytical mechanics, Lagrange adopts
the principle of virtual work, as a fundamental principle

of statics. He writes the principle in the analytical form
as ∑

i

Qidqi = 0, (43)

where Qi are forces acting along the lines that define
center of foces, and the differentials qi are small dis-
placements along the lines of forces, described by the
variables qi. Lagrange states that the equation (43) is the
condition of equilibrium of a system of forces. It should
be remarked that forces of reaction, which occurs for
instance when a body rests on a surface, do not enter
this equation because their works perform no work.

Lagrange supposes next that the expression in the left-
hand side of (43) is an exact differential dΦ of a function
Φ, which means that Φ is a function of the variables qi.
In modern terms, Lagrange assumes that the forces are
conservative, Φ being understood as the potential energy.
The condition for equilibrium becomes dΦ = 0, which
means that the systems is configured in such as way
that Φ is a maximum or a minimum. Lagrange shows
furthermore that if the function is a minimum then the
equilibrium is stable and the system will display small
oscillations. If on the contrary the function is a maximum,
the equilibrium is unstable and, being once disturbed,
the system will depart from equilibrium.

The static principle of virtual work of Johann Bernoulli
was extended to dynamic problems by d’Alembert [40].
According to d’Alembert, in dynamic problems one should
take into account the inertial forces in addition to the
actual forces. An analytical expression of the d’Alembert
principle was given by Lagrange, and was obtained as
follows. Lagrange argues that, the laws of motion of a
body will be reduced to the laws of equilibrium if, follow-
ing d’Alembert, one includes the inertial force, which is
the mass of the body multiplied by the acceleration [4].

If we denote by xi a Cartesian coordinate of a body
of mass m, the work of the inertial force along this
coordinate is m(d2xi/dt2)δxi. Adding the work of all
bodies and all Cartesian coordinates to the left hand side
of (43),

m
∑

i

d2xi

dt2 δxi +
∑

i

Qi δqi = 0, (44)

which is the analytical expression of the d’Alembert
principle according to Lagrange [4]. Lagrange remarks
that the differential signalized by δ, called variation,
describes arbitrary increments or decrements and should
be distinguished from the usual differential, signalized
by d, which describes increments or decrements caused
by the actual motion of the body.

4.2. Equations of Lagrange

The equations of motion were obtained by Lagrange from
the principle expressed by equation (44) as follows. One
starts by performing a change of variables from xi to
new variables ξj , not necessarily Cartesian. The relation
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between the differentials is

dxi =
∑

j

Aijdξj , (45)

where Aij = ∂xi/∂ξj are functions of the new variables
ξj , and an analogous relation holds between the variations

δxi =
∑

j

Aijδξj . (46)

The first relation gives

d2xi =
∑

j

(dAij)dξj +
∑

j

Aijd2ξj . (47)

From the last two relations one obtains∑
i

d2xiδxi = 1
2

∑
jk

(dBjk)dξjδξk +
∑
jk

Bjkd2ξjδξk, (48)

where
Bjk =

∑
i

AijAik, (49)

which depends on the new variables ξj only. Defining the
quantity

α = 1
2

∑
i

dx2
i = 1

2
∑
jk

Bjkdξjdξk, (50)

the following relations are obtained∑
k

d

(
∂α

∂dξk

)
δξk =

∑
jk

(dBjk)dξjδξk

+
∑
jk

Bjkd2ξjδξk, (51)

and ∑
i

(
∂α

∂ξi

)
δξi = 1

2
∑
jk

(δBjk)dξjdξk

= 1
2

∑
jk

(dBjk)dξjδξk. (52)

Comparing (48) with (51) and (52) one reaches the result∑
i

d2xiδxi =
∑

k

(
d

∂α

∂dξk
− ∂α

∂ξk

)
δξk. (53)

The crucial step in the derivation of equation (53) is
found in the second equality of equation (52). To show
its validity it suffices to determine δ(dxi) from (45) and
d(δxi) from (46). Since these two quantities are equal,
the following relation is obtained∑

j

δAijdξj =
∑

j

dAijδξj , (54)

where the equality δ(dξj) = d(δξj) has taken into account.
Using this result and the relation (49) between Bij and

Aij , it is straightforward to reach the second equality of
equation (52).

Lagrange considers next the case where the forces Qi

in equation (44) are such that

dV =
∑

i

Qidqi (55)

is a complete differential and V will be a function of qi.
If V is expressed in terms of the variables ξi, we may
write

δV =
∑

i

∂V

∂ξi
δξi. (56)

The replacement of this expression and the expression
(53) in equation (44), yields the result

∑
i

(
d

∂T

∂dξi
− ∂T

∂ξi
+ ∂V

∂ξi

)
δξi, (57)

where
T = m

2
∑

i

dx2
i

dt2 (58)

Lagrange concludes that if the variables ξi are inde-
pendent, each coefficient of δξi will vanish, that is,

d
∂T

∂dξi
− ∂T

∂ξi
+ ∂V

∂ξi
= 0, (59)

which are the Lagrange equations of motion.

5. Thermodynamics

Thermodynamics emerged around the middle of the nine-
teenth century and presented two changes in the way the
heat was conceived [1]. The first was the recognition that
heat should be understood as a form of work, which lead
to the law of conservation of energy. The second was the
way in which heat was transformed in mechanical work,
which allowed Clausius to define entropy and lead to the
law of the increase in entropy.

The heat absorbed minus the work performed by a
system along a thermodynamic process is equal to the
increase in the internal energy, and is independent of the
trajectory connecting the the final and initial states. The
energy is a state function which means to say that differ-
ential dQ − dW is a exact differential. In his first paper
on thermodynamics [41], Clausius showed that dQ − dW
is an exact differential by the use of the equivalence
between heat and mechanical work.

Clausius starts his reasoning by assuming that a small
quantity dQ of heat exchanged when the volume V and
temperature T of a gas changes by dV and dT is given
by

dQ = MdV + NdT, (60)

where M and N are functions of V and T . Then he
considers the total heat exchanged in a clockwise cycle.
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Figure 4: A small Carnot cycle in the pressure-volume diagram.
The lines ab and dc are isotherms whereas the lines ad and bc are
adiabatics, and ef = dV , fg = dV3, eh = dV2, and hg = dV1.
The figure is based on figure 2 of reference [41].

Considering that the cycle is small Clausius argues that
the heat exchanged is(

∂M

∂T
− ∂N

∂V

)
dV dT, (61)

which he says is a second order differential.
To reach result (61), Clausius argues as follows. Along

the isotherms of the small cycle shown in figure 4

dQ = MdV, dQ1 = M1dV1, (62)

and along the adiabatic lines

MdV2 − NdT = 0, M2dV3 − N2dT = 0. (63)

The last two equations together with the relation dV +
dV3 = dV2 + dV1 allows us to write

dV1 = dV +
(

N2

M2
− N

M

)
dT. (64)

The quantities M1 and M2 are related to M by

M1 = M + ∂M

∂V
dV2 − ∂M

∂T
dT, (65)

M2 = M + ∂M

∂V
dV, (66)

and N2 is related to N by

N2 = N + ∂N

∂V
dV. (67)

From these relations we find

M1 = M +
(

∂M

∂V

N

M
− ∂M

∂T

)
dT, (68)

dV1 = dV + 1
M

(
∂N

∂V
− ∂M

∂V

N

M

)
dV dT. (69)

These two results give

M1dV1 = MdV +
(

∂N

∂V
− ∂M

∂T

)
dV dT. (70)

The subtraction of dQ1 = M1dV1 from dQ = MdV gives
the result (61).

An analogous result for the net work was obtained by
Clausius. Starting from the expression dW = pdV , where
p is the pressure of the gas, he finds(

∂p

∂T

)
dV dT, (71)

for the net work performed by the gas in a small cycle. We
remark that, in his paper of 1850, one finds RdV dT/V
instead of (71) because he used the ideal gas equation
p = RT/V [41]. However in a comment to this paper [2]
he writes the general expression (71).

Clausius carried out an original derivation of results
(61) and (71), but they can be understood as a direct
application of a theorem formulated by Cauchy in 1846
[42]. According to this theorem of Cauchy, the contour
integral of a region in a plane is related to an integral
over this region as follows∮

(Xdx + Y dy) =
∫ (

∂Y

∂x
− ∂X

∂y

)
dxdy. (72)

In the particular case where Xdx + Y dy is an exact
differential, Cauchy reminds that ∂Y/∂x = ∂X/∂y and
the integral vanishes.

Next Clausius uses the law of Mayer and Joule ac-
cording to which the work is always transformed in the
same quantity of heat. If a certain quantity of work W
is dissipated, the quantity of heat generated q = AW
where A expresses the equivalent of heat in terms of
mechanical work. The reciprocal of A is the mechanical
equivalent of heat. Here, we use a practice that became
common in thermodynamics which is to express heat in
terms of mechanical unit which is equivalent to say that a
quantity if heat Q is related to q by Q = q/A. Using this
procedure, the law of Mayer and Joule becomes Q = W ,
which results in the equality of expressions (61) and (71),

∂M

∂T
− ∂N

∂V
= ∂p

∂T
. (73)

Since ∂p/∂T is nonzero, the left-hand side of (73) is
nonzero and dQ given by (60) cannot be an exact differ-
ential, concludes Clausius.

If we define the quantity c = M − p, it follows from
(73) that ∂c/∂T = ∂N/∂V , which is the condition for
cdV + NdT being an exact differential. Clausius calls
this differential dU and writes

dU = (M − p)dV + NdT. (74)

As it is, equation (74) cannot be integrated unless one
knows M , N and p as a function of V and T . This was
accomplished by Clausius for an ideal gas. In addition to
the equation of state, Clausius relies on another law which
he says is valid as much a the equation of state. When
an ideal gas expands isothermally, the heat absorbed is
entirely transformed into work, from which follows that
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dQ = dW = pdV or dU = 0 along an isotherm. In an
equivalent form (∂U/∂V )T = 0, that is, the function U
is independent of V , depending only on T .

Recalling that dQ = MdV + NdT , equation (74) is
written in the form dQ = dU + pdV and we see that the
heat capacity at constant volume is

Cv =
(

dQ

dT

)
V

= C, (75)

where C = dU/dT , and depends only on T , and that the
heat capacity at constant pressure is

Cp =
(

dQ

dT

)
p

= C + R, (76)

from which follows Cp = Cv + R, that is, the difference
in the heat capacities of ideal gas is a constant.

The way in which heat is transformed in mechanical
work was the main subject of research on heat carried out
by Carnot. His investigations lead him to the following
fundamental principle. When a system undergoes a cyclic
process composed by two isothermal and two adiabatic
processes the ratio of the work produced and the heat
depends only on the two temperatures. In this principle
of Carnot, heat was understood as a conserved quantity
which in this case descends from a high temperature
to a low temperature. Clausius modified this principle
by replacing heat by heat absorbed. In addition he uses
the law of Mayer and Joule to state that the work W
is the heat absorbed Q1 by the system at high temper-
ature minus the heat Q2 released by the system at low
temperature, or more precisely, Q = Q1 − Q2.

The modified principle of Carnot was written by Clau-
sius in the form Q1/T1 = Q2/T2 where T1 and T2 are
the absolute temperatures corresponding to the two
isotherms. The generalization of this expression for any
cycle lead Clausius to the result that dQ/T is a exact
differential [43]. Later on, he wrote dS = dQ/T and called
S the entropy [44]. The infinitesimal heat absorbed by a
system in equilibrium becomes related to the differential
of entropy by dQ = TdS and

dU = TdS − pdV, (77)

which is the conservation of energy in differential form,
where all differentials involved are exact differentials.

6. Conclusion

We have analyzed the role of exact and inexact differen-
tials in the early developments of mechanics and ther-
modynamics. We have also examined the evolution of
differential calculus in relation to the concepts related
to exact and inexact differentials. Euler introduced the
concept of integrating factor, which he used to solve an
ordinary linear differential equation of the first-order.
Euler also found the condition for a complete differen-
tial by examining the differential of a function of two

variables. In an independent way, Clairaut also reached
the same condition. When this condition is not fulfilled
the differential is incomplete or inexact. In the analyti-
cal treatment of mechanics, Lagrange considered forces
whose differential work is an exact differential, in which
case it is possible to define a work function and reach
the conservation of energy.

When the differential is inexact, it is possible to trans-
form it into and an exact differential as long as an inte-
grating factor can found. The fundamental law of equi-
librium thermodynamics introduced by Clausius stating
that dQ/T = dS can equally be formulated by declaring
that 1/T is an integrating factor related to the inex-
act differential dQ. The law of conservation of energy
was also written by Clausius in terms of exact differ-
entials. The process of finding exact differentials was a
fundamental procedure which allowed the formulation
of thermodynamics in terms of state functions such as
energy and entropy.
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