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The equipartition of energy in its simplest form, which is related to the translational motion of the molecules of
a gas, was announced independently by Waterston in 1845 and by Clausius in 1857. In its more general form,
it was formulated by Maxwell in 1860. Together with the relation between pressure and translational motion,
given by the kinetic theory of gases, one can derive the equation of state of an ideal gas. One can also derive the
Avogadro law, a fundamental law of physical chemistry as stated by Meyer and Mendeleev. From the equipartition
of energy Boltzmann could explain the experimental ratio « of the specific heats of diatomic gases, an explanation
that was countered by Maxwell. We discuss these two conflicting explanation, and present an account and a
critical analysis of the emergence of the law of equipartition of energy and other laws that preceded it but are
understood as consequences or related to it. Our account includes also the Laplace relation between the speed of
sound and =, and the Clément and Desormes experiment to determine ~.
Keywords: Equipartition of energy, Avogadro law, ratio of specific heats, diatomic gases, Clément and Desormes

experiment

1. Introduction

Around 1877, Maxwell and Boltzmann were involved
with the explanation concerning the specific heat of ideal
gases consisting of diatomic molecules [1},2]. From the
law of equipartition of energy (3], the ratio v between
the specific heat at constant pressure c, and at constant
volume ¢, was known to be v = (v +2) /v, where v is the
number of degrees of freedom of a molecule. A diatomic
molecule has three translational degrees of freedom and,
according to Boltzmann, only two rotational degrees of
freedom, which gives v = 5, and v = 1.4. This result was
very close to the experimental value of v observed for
the diatomic gases such as the atmospheric air. Maxwell
countered Boltzmann explanation on the grounds that
a diatomic molecule, being an extended body, should
have three and not two degrees of rotation. Although
Maxwell reasoning was in accordance with Newtonian
mechanics, it did not explain the experimental result of
7. This paradox remained unsolved until the emergence
of quantum mechanics.

In spite of the conflicting explanation given by Maxwell
and Boltzmann, concerning the diatomic gases, both
physicists considered the equipartition of energy to be
a significant law that could be derived from the kinetic
theory of gases. However, the attempts to derive the
law from pure mechanics were unsuccessful. A deriva-
tion became possible when probability reasonings were
incorporated into kinetic theory. From the probability
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distributions of equilibrium statistical mechanics, the
equipartition of energy follows straightforwardly [3].

The equipartition of energy in its simplest form, which
comprises only the translational motion of molecules,
was independently formulated by Waterston in 1845, and
by Clausius in 1857, and were stated in their respective
papers on the kinetic theory of gases. In a more general
form, which involves rotational motion in addition to
translational motion, the equipartition law was advanced
by Maxwell in 1860.

Here, we give an account and a critical analysis of the
emergence and the development of the equipartition of
energy. We also give an account and a critical analysis of
other laws that were discovered before the equipartition
law, which were found to be directly connected to the
equipartition law. These laws are those associated to
the ideal gas and comprise the equation of state of an
ideal gas, the Avogadro law and other laws related to
the specific heats as well as to their ratio. Our account
ends around the time Maxwell and Boltzmann gave their
respective explanations on the specific heats of molecules.
It comprises the period where the caloric theory [4H6]
was the prevailing theory of heat and the first decades
after the emergence of thermodynamics [6].

The ideal gas equation of state, which combines the
Boyle law and Gay-Lussac law of gas expansion, played
a relevant role in the development of the theory of heat
and the kinetic theory of gases. No significant deviation
of these laws were observed before the extensive and
thorough experiments conducted by Regnault starting
in the 1840s. The laws related to gases discovered before
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this time should thus be understood as related to ideal
gases. These include the law stating that pressure is
inversely proportional to its volume established by Boyle,
[7], the law of gas expansion and the volume law of
chemical combination introduced by Gay-Lussac [8], and
the molecular hypothesis postulated by Avogadro [9],

The ratio v between specific heats was the essential
feature of Laplace explanation of the velocity of sound
in gases [10]. A direct experiment to determine ~y experi-
mentally was provided by Clement and Desormes, from
which Laplace could test his theory. Once established,
the Laplace theory could be used to obtain v from the
speed of sound, which was the method adopted by Du-
long. It was the value of v determined by Dulong that
Mayer used in the method he devised to determine the
mechanical equivalent of heat [6].

It is our understanding that the description and expla-
nation of concepts and laws must be given in a way as to
preserve the terms originally employed. The replacement
of an original term by a modern term runs the risk of
modifying or misinterpreting its original meaning. How-
ever, when this risk does not exist, we will employ the
modern terminology for the sake of brevity and better
clarity. This is the case of modern names of substances,
and of the terms ’adiabatic’ and ’kinetic energy’. We will
also employ the notation for partial derivative that uses
a subscript to indicate which variable is being taken as
constant, and make use of the pressure-volume diagram,
even if this resource was not used originally.

It is well known that the measurement of a physical
quantity is always made in reference to a certain unit. In
the case of heat, usually the unit used was the quantity
of heat necessary to raise the temperature of a certain
amount of water by one degree. The unit corresponding
to raise the temperature of one kilogram of water by one
degree centigrade was called a ’calorie’, a French word,
by Clément before 1825 [11]. Mayer used the German
word ’Calorie’ in his paper of 1848 on the mechanical
equivalent of heat [11]. In 1852, Faber and Silbermann
used the term ’calorie’ as a unit of heat based on one gram
of water [11]. However, it was not common to employ
the term ’calorie’ and its use became widely spread only
during the second half of the nineteenth century. Here,
we use the term ’calorie’, abbreviated 'cal’, in the sense
given by Faber and Silbermann, even to refer to results
given in papers where the word is not explicit mentioned.
We also use the abbreviated terms for other units such
as °C for degree centigrade, and ¢ for liter.

2. Ideal gas

2.1. Equation of state

The ideal gas played a major role in the development of
the theory of heat and kinetic theory of gases. Its equation
of state was a result of investigations on the elastic and
thermal properties of gases that started in the middle

Revista Brasileira de Ensino de Fisica, vol. 41, n® 3, e20180307, 2019

Equipartition of energy, Avogadro law and ratio of specific heats

of the seventeenth century, after the discovery of the
atmospheric pressure and the invention of the barometer.
Experiments conducted by Boyle on elastic properties of
air, reported in 1662, led him to the law that the pressure
of a certain amount of air is inversely proportional to
its volume [12], as can be seen in Figure [I| where we
have plotted Boyle’s original data in the pressure-volume
diagram. Mariotte has also reached the same law but the
publication of his result occurred seventeen years after
that of Boyle [13].

Experiments on the expansion of gases by heat carried
out by Gay-Lussac allowed him to announce in 1802 the
following law: under the same increment of temperature,
all gases expand by the same amount, provided they
are subjected to the same conditions |14]. Dalton also
arrived at a similar law but Gay-Lussac’s experiments
were performed more carefully, taking the precaution
of working with dry gases. The choice of gases and the
temperature range studied by Gay-Lussac was better,
and the results were more clearly stated [8]. Sometimes
the law is unduly attributed to Charles because Gay-
Lussac mentioned by chance some unpublished results of
Charles [8].

The law of expansion announced by Gay-Lussac refers
to the fraction of volume and not to the volume itself. If
the volume increases from v to v’ when the temperature
increases from 6 to ¢, at constant pressure, the fraction
of volume increased per unit of temperature is

1v —w
LT o

Gay-Lussac measured the fraction increase (v — v)/v
between # = 0 °C and 6’ = 100 °C for several gases
including atmospheric air, hydrogen, oxygen, nitrogen,
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Figure 1: Pressure p, in inches of mercury, versus volume v of
atmospheric air from experimental data published by Boyle in
1662 [12]|. The unit of volume is that in which v = 1 at the
atmospheric pressure. The inset shows the same data plotted in
the diagram p versus 1/v.
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carbon dioxide, and ammonia, and found the same value
a = 0.00375 per °C for these gases [14]. The apparatus
used by Gay-Lussac is shown in Figure

According to an account given by Biot in 1816 [15],
Gay-Lussac also established that the expansion of a gas
at a constant pressure is proportional to the expansion
of mercury, which means to say that the volume varies
linearly with temperature in an isobaric expansion. From
this result, it follows that «, given by (|1} does not depend
on the difference 8" — 6 but depends only on the initial

temperature 6, so that « is also given by (1/v)(0v/96),.

Poisson [16] combined the Boyle and Gay-lussac laws
into a single equation in the form

p="bp(l+ ), (2)

where p is the pressure, p is the density, that is, the
mass per unit volume, 6 is the temperature in degrees
centigrade, and b and o are constants. Carnot [17], in his
memoir on the production of work by heat, also combined
the Boyle and Gay-lussac laws into a single equation
and was followed in this matter by Clapeyron [18] who
expressed the combined law in the for

pv=r(by +6), (3)

where v = 1/p is the volume per unit mass, 6 is the
temperature also in degrees centigrade, and r and 6y are

Figure 2: Apparatus used by Gay-Lussac in the experiment on
thermal expansion of gases reported in 1802 [14]. Gas coming
from the bell jar M is introduced into the flask B. With the tap
R opened, the flask is heated and part of the gas escapes from
the flask. When the temperature reaches 100 °C, the tap R is
closed and then the flask is submerged in water with ice. When
it reaches the temperature of 0 °C, the tap R is opened and a
certain amount of water flushes inside the flask. The volume of
water that entered the flask equals the increase in volume of the
gas when it is heated from 0 to 100 °C. The volume of water
is measured by weighting the flask B with water. Figure from
reference [14].

1Clapeyron wrote pv = R(267+t). The constant R in this expression
should not be confused with the universal gas constant. To avoid
confusion we are using in its place the letter . The employing of
letter R by Clapeyron may have induced the use of the same letter
R to represent the universal gas constant [19].
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constants. Comparing equations and , we see that
the constants ag and 6y are related by 6y = 1/ap.

From equation 7 it follows that the coefficient of
thermal expansion «, = (1/v)(0v/d0), is

- 1 - (7))
- 90+9_ 1+C¥00.

Qp (4)
At 0 °C, the coefficient of thermal expansion is cg = 1/6g
and, according to Gay-Lussac, independent of the nature
of the gas. The value found by Gay-Lussac, ag = 0.00375
per °C, gives 6y = 267 °C, after rounding, which was the
value used by Carnot and Clapeyron. In an experiment
carried out by Rudberg [20], reported in 1837, he found
g = 0.003646 per °C for the air, which gives 0y = 274.3
°C.

In his first paper on heat |21], Clausius also used the
form with the rounded value 6y = 273 °C, taken from
Regnault experimental results [22]. The value found by
Regnault for the thermal expansion for the air was ag =
0.003665 per °C, which gives 0y = 272.9 °C. Regnault
also confirmed that 6y is independent of the nature of
the gas by determining aq for several gases [22], some of
them presented in Table [I| It becomes thus legitimate
to define an absolute scale of temperature T' = 6y + 0,
which does not depend on the gas being measured. The
equation of state of an ideal gas can then be written as

po =17, (5)

where only the constant r depends on the nature of
the gas. In this form, the equation of state was used
by Clausius in 1862 [23]. It can also be written in the
equivalent form used by Laplace [24],

p=rpT. (6)

To determine the constant r it suffices to measure the
density p for a given temperature and pressure. At 0
°C and the pressure of 1 atm, Biot and Arago reported
in 1806 the experimental value p = 1/773 = 1.292307
g/¢ for the atmospheric air [25]. In 1809, Gay-Lussac

Table 1: Column 2: Thermal expansion ag per °C according
to Regnault [22]. Column 3: Temperature 6y = 1/ap in °C,
obtained from column 2. Column 4 and 5: Density p in g// at
0° C and 1 atm according to Gay-Lussac [26] and Biot and
Arago [25|; and according to Regnault [27,[28].

gas 100 0o p P

air 0.3665 272.85 1.29230 1.29318
oxygen 1.42617  1.42980
nitrogen 0.36682 272.61 1.25241 1.25616
hydrogen 0.36678  272.64 0.09461  0.08957
carbon monoxide 0.36667 272.72  1.25072 1.2510
nitric oxide 1.33929 1.3436
hydrogen chloride 0.36812  271.65 1.651 1.6131
carbon dioxide 0.36896  271.03 1.9637 1.97741
nitrous oxide 0.36763 272.01  1.96549 1.9721
sulfur dioxide 0.36696  272.51 2.927 2.9057
year 1842 1842 1809 1847/53
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published a list of densities of several gases obtained
experimentally by other researchers [26]. These densities,
which were given in units where the density of air is
unity, multiplied by the density of air given by Biot and
Arago yield the densities in g/¢ shown in Table [1} For
the same conditions, Regnault reported in 1847 the value
p = 1.293187 g/¢ for the atmospheric air [27]. The values
of p obtained by Regnault for other gases [27,[28] are
presented in Table

Deviations from the Boyle and Gay-Lussac laws were
observed only after 1840 when Regnault started to carry
out extensive and careful experiments on the expansion
and thermal properties of gases [22]. In the conclusion of
his report on the expansion of gases of 1842, Regnault
pointed out that in spite of the deviations, these laws
should not be excluded from science since they remain
valid in the limit of great dilatation, when the deviations
become negligible [22|. This is the case of permanent
gases, which are those that do not condense by the action
of pressure at room temperatures, such as atmospheric
air, oxygen, nitrogen, and hydrogen. The state of a gas at
great dilatation, when the Boyle and Gay-Lussac becomes
valid, Regnault called a perfect gaseous state [22]. Rankine
referred to a gas obeying these two laws as a ’perfect
gas’ [29] and Clausius as a 'perfect gas’ or as an ’ideal
gas’ [30].

2.2. Specific heat

The distinction between the concepts of quantity of heat
and intensity of heat, or temperature, which arose in the
middle of the eighteenth century [4], gave origin to the
concept of heat capacity, which is the quantity of heat
necessary to increase the temperature of a body by one
unit. The first attempt to measure the heat capacity of
gases was made by Crawford in 1777, but despite of his
considerable experimental ability the results obtained
were insignificant |5]. Crawford measurements were made
at constant volume and he believed that the heat capacity
would be distinct if the volume of the gas was allowed
to change. A clear distinction between heat capacity at
constant pressure and at constant volume was provided

Equipartition of energy, Avogadro law and ratio of specific heats

by Haiii in 1806, who also argued that the former should
be greater than the latter [31].

Usually, the heat capacity measured was that at con-
stant pressure. The experimental determination of the
heat capacity of gases at constant volume offered a diffi-
culty that was not overcome before the 1880s [5]. Only
indirect methods could give reliable values of the heat
capacity at constant volume, such as the experimental
determination of the ratio between the two kinds of heat
capacities.

The determination of the specific heat, the heat capac-
ity per unit mass, of gases was the subject of the prize
of the French Academy of Sciences for the year 1812,
motivated by its relevance in characterizing the thermal
properties of gases and by the discrepancies of previous
measurements [5]. The prize was won by Delaroche and
Bérard for their measurements of the specific heat of
several gases including the atmospheric air [32]. They
measured the specific heat at constant pressure ¢, find-
ing for the air the value ¢, = 0.2669 cal/g°C. For other
gases, they first measured the specific heats relative to
that of the atmospheric air, and then multiplied these
values by the specific heat of air. Their results are shown
in Table 2

To find the specific heat of a substance one needs to
measure both the mass and the heat capacity itself. If
instead of mass, one measures volume, which is easier in
the case of gases, one could determine the volume specific
heat, which is the heat capacity per unit volume. The
volume specific heat at constant pressure ¢, is related to
the ordinary specific heat by ¢, = ¢, p, where p is the
gas density. In their prize paper, Delaroche and Bérard
used this relation to calculate the volume specific heat
of some gases, shown in Table [2l They also discussed the
opinion of some physicists that the volume specific heat
might be the same for all gases, but they gave a negative
answer to this matter in view of their results.

The volume specific heat of some gases was also the
object of measurement by Haycraft and by Delarive
and Marcet. The experiments conducted by Haycraft in
1823 |33] led him to state that the volume specific heat of

Table 2: Specific heat ¢, and volume specific heat ¢, of gases obtained experimentally by Delaroche and Bérard (column 2 and
4) [32], by Delarive and Mercet [37] (column 5), and by Regnault (columns 3 and 6) [38]. Specific heat ¢, in cal/g°C. Volume

specific heat ¢, in units in which that of air is unity.

gas ‘p ‘p p Cp ‘p

air 0.2669 0.2375 1 1 1

oxygen 0.2361 0.2175 0.9765 1 1.0126
nitrogen 0.2754  0.2438 1 1 0.9971
hydrogen 3.2936  3.4090 0.9033 1 0.9933
carbon monoxide 0.2884  0.2450 1.0340 0.9979
nitric oxide 0.2317 1.0131
hydrogen chloride 0.1852 0.9823
carbon dioxide 0.2210 0.2163 1.2583 1.222 1.3924
nitrous oxide 0.2369 0.2262 1.3503 1.4514
sulfur dioxide 0.1544 1.4375
ethylene 0.4207 0.4040 1.5530 1.531 1.7288
year 1813 1853 1813 1835 1853
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atmospheric air, hydrogen, oxygen, nitrogen, and carbon
dioxide were the same. Delarive and Marcet, based on
their experimental results, reported in their publications
of 1827 and 1829 [34,35], extended Haycraft results to
all gases, in opposition to Delaroche and Bérard conclu-
sion. Later on, in 1835, taking into account the critics of
Dulong [36], and conducting new measurements, whose
results are shown in Table |2 Delarive and Marcet re-
stricted this law to two classes of gases, stating that [37]:

(1) At the same temperature and under the
same pressure, the simple gases and com-
pound gases which result from the combina-
tion of simple gases without a change of vol-
ume have the same volume specific heat.

The gases that are object of this law are identified as
diatomic gases.

Precise measurements of ¢, were carried out by Reg-
nault in 1853 [28,138]. He measured the specific heat
of several gases finding for air the value ¢, = 0.2379
cal/g°C. Values of the specific heat of some other gases
determined experimentally are shown in Table 2] These
experimental results of Regnault showed that the differ-
ences on the volume specific heats of simple gases as well
as of some compound gases are very small, as seen in
Table [2] leading him to accept law (1) of Delarive and
Marcet, as long as the gases obey the ideal gas equation.
Regnault commented that this law is an extension of the
Dulong and Petit law [39] according to which the product
cplt, where p denotes the atomic weight, is the same for
simple solid bodies. Indeed, the volume specific heat is
¢p = cpp and the gas density p is proportional to M so
that ¢, is proportional to ¢,u. Since law (1) of Delarive
and Marcet states that ¢, is the same, one concludes that
the product cpp is also the same. The proportionality
between p and p was taken for granted by Regnault, but
as we shall see it is a consequence of Avogadro law.

Based on his experimental data on the specific heat
of gases obtained in 1853 [38], Regnault could infer the
following laws concerning the ideal gases:

(2) The specific heat does not depend on the
volume.

According to Regnault, this result shows that the heat
capacity of an ideal gas is independent of the distances
that separate the gas particles. This law is equivalent to
say that the specific heat of an ideal gas depends only
on the temperature.

Regnault could also infer the following law [38]:

(3) The specific heats of the atmospheric air
and hydrogen do not vary with temperature.

This result was based on measurements on air in the inter-

val between —30 and 200 °C, and on hydrogen between
0 and 200 °C.
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2.3. Expansion and contraction

When air is rapidly compressed inside a vessel, its tem-
perature increases. If the vessel is in thermal contact
with the environment, then after the compression, heat
is released to outside and the gas reaches the environ-
ment temperature. The representation of this process is
shown in Figure |3] Analogously, if the gas is expanded,
its temperatures decreases, and after that it reaches the
temperature by absorbing heat from the outside. During
the rapidly contraction or dilatation, no heat is involved.
This phenomenon of heating by a rapid compression and
cooling by a rapid dilatation was described by Cullen in
1755 and independently by Darwin in 1788 [5].

In 1829, in his paper on the ratio of the specific heats of
gases, Dulong advanced a law concerning the expansion
and contraction of gases [36]:

(4) Equal volumes of all gases taken at the
same temperature and under the same pres-
sure, being compressed or suddenly dilated by
the same fraction of their volume, give off or
absorb the same absolute quantity of heat.

A similar law was advanced by Carnot in his book on
the theory of heat published in 1824 [17], but the gas
undergoes an isothermal process:

(5) When a gas expands isothermally, from
a given volume and a given pressure until a
final volume, the quantity of heat absorbed is
independent of the nature of the gas.

This law is a consequence of the Carnot theory of heat
applied to a gas obeying Boyle and Gay-Lussac laws, as
we shall see below.

The theory of Carnot was developed in an analytical
form by Clapeyron in his memoir on heat of 1834 [18].
In this memoir, he states that law (5) was demonstrated
experimentally by Dulong. Since Dulong advanced law

4
p -

NS
I

Figure 3: Representation in the p-v diagram of a sudden com-
pression of a gas inside a vessel with heat conducting walls. The
gas is compressed adiabatically from state A to B, causing an
increase in its temperature. From B to C, the gas delivers heat
at constant volume and its temperature decreases. At states A
and C the gas has the same temperature, that is, the dashed
line is an isotherm.
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(4), and not law (5), it is implied that Clapeyron was con-
sidering law (5) as equivalent to law (4). To understand
Clapeyron, we should bear in mind that his reasoning
was based on caloric theory, that considered heat as a
state function. Accordingly, the heat delivered by the gas
should not depend on the process the gas is undergoing
but only on the final and the initial states. The conclu-
sion is that, within the caloric theory, the heat delivered
along the process ABC is the same as that given off by
the isotherm AC shown in Figure [3| The former process
is related to law (5) and the latter to law (4).

Law (5) was derived in an analytical form by Clapeyron
from Carnot theory, which assumes that the heat per
unit mass ¢ is a state function, which means to say that
q(v,p) is a function of two independent variables chosen
by Clapeyron to be v and p. Together with the equation
of state pv = rT', where T = 6y + 0, Clapeyron could
derive the following equation that gives the amount of
heat ¢ per unit mass in a gas [18]

g=rClnv+ A, (7)

where C' is a universal function of temperature 6 intro-
duced by Carnot, and A depends on the temperature. A
derivation of this equation is also given in reference [6].
From equation , we see that the isothermal increase
in heat ¢* between states with volumes v and v’ is

¢ =rCln(v'/v). (8)

If at the initial state, p, v and T are the same for all gases,
it follows from the ideal gas equation, pv = T, that r has
the same values for all gases, and equation becomes
the mathematical expression of law (5). This equation is
also the mathematical expression of law (4) because ¢*
in equation does not depend on the process but only
in the initial and final state.

Another consequence of the theory of Carnot applied
to a gas obeying the Boyle and Gay-Lussac laws con-
cerns the difference between the two specific heats. This
consequence was stated by Carnot as follows [17]:

(6) The difference between the volume specific
heat at constant pressure and constant volume
is the same for all gases at the same pressure
and temperature.

Within Carnot theory, the specific heats are given by
¢y = (0q/00), and ¢, = (0q/00),. From these definitions,
Clapeyron could find from equation (7)) that the difference
between the volume specific heats ¢, = pc, and ¢, = pc,
is

_rC
= T

Cp — Cy

9)

which is the mathematical expression of law (6) because
C does not depend on the nature of the gas.
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3. Ratio of specific heats

3.1. Laplace

In the first years of the nineteenth century, Laplace con-
ceived the idea that the rarefaction and compression
occurring in the propagation of sound in the air are pro-
cesses taking place without the exchange of heat [10].
This idea was distinct from that implicit in the calcu-
lation of the speed of sound by Newton in which the
rarefaction and compressions are isothermal. Based on
this idea, Laplace announced in a publication of 1816 [40]
that speed of sound v in a gas is the product of the speed
of sound given by Newton formula 1/p/p and the square
root of the ratio
Cp
V= (10)

Cy

between the specific heats, that is,

Yp/Ps (11)

where p is the pressure of the gas and p its density. The
factor v in this formula was viewed as a correction to the
formula advanced by Newton. A derivation of formula
within the caloric theory was given by Laplace in
1822 [24].

The speed of sound can be determined theoretically
from the wave equation that governs the changes of
pressure and densities of an elastic medium. In his treatise
on analytical mechanics, published in 1788 [41], Lagrange
derived from Newtonian mechanics the wave equation for
the propagation of sound and, assuming that the ratio
p/p between pressure and density is constant, he obtained
Newton formula for the speed of sound. From the ideal
gas equation, p/p is proportional to the temperature
implying that, in Lagrange derivation, the variations in
density and pressure occurs at constant temperature.

Stimulated by Laplace, Biot [42] examined in 1802
the influence that the variations of temperature that
accompany the dilatations and compressions of air might
have on the speed of sound. Assuming that p is a generic
function of p, and following a derivation similar to that of
Lagrange, Biot found that the speed of sound vy in a gas
is the square root of 9p/dp. If the variation is isothermal
then v2 equals (9p/dp)g, which for an ideal gas is p/p
and we get Newton formula. According to Laplace, the
variation occurs without the intervention of heat so that

where the index ¢ indicates that the derivative is carried
out at constant heat.

In the following we give a derivation of formula
using a procedure equivalent to that of Laplace [24],
starting from equation and taking into account
that, within the caloric theory, heat is a state function.
Following Laplace the heat per unit mass ¢(p,p) is as a
function of the independent variables p and p. Using the

Vg =
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usual rules of differential calculus, one finds

Op _ (8q/8p)p
<3p>q'_ (99/9p),’ (3
op\ _ _(06/9p)y
<6P>9 - (00/9p), (4
Taking the ration of these two equations we get
(9p/0p)q _ (9q/00), (15)
(9p/dp)e  (9a/09),

But the right-hand side of this equation is the ratio
¢p/cy = 7y from which we find

@), )

From the equation of an ideal gas, we find (0p/dp)g =
p/p, which replaced into equation gives

@ o

which allows us to reach Laplace formula for the
velocity of sound in a gas.

It should be remarked that the ratio v of the spe-
cific heats is identical to the ratio ky/k, between the
isothermal and the adiabatic compressibilities, that is,

fo_ %, (18)

Kq  Cu

The identity follows directly from equation and from

the definitions kg = (1/p)(0p/Op)e and kg = (1/p)(0p/0p)q-

From equation (12)) we see that the speed of sound is
related to the adiabatic compressibility, vZ = 1/ Php.

3.2. Poisson

The variations of temperature involved in the oscillations
in density and pressure in the propagation of sound was
also examined by Poisson in 1807 [43]. He used the same
method employed by Biot to show that the speed of
sound is the square root of Op/dp. Following Laplace, he
assumes that the variations in pressure and densities are
adiabatic, which implies the result for the speed of
sound. From , he derives the formula

vs =V (p/p)(1 + k), (19)

where k was a correction factor of Newton formula, given
by

1/«

k= 2 2
O +6’ (20)
where ag = —(1/v)(0v/98), is the fraction of volume

increased adiabatically per unit of temperature.
In the following we derive results and using a
procedure equivalent to that of Poisson, which assumes,
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in accordance to the caloric theory, that ¢ is a state
function, that is, ¢(p,p) is a function of the density p
and the pressure p. Using the usual rules of differential

calculus,
<a ) ( p)
o/, op), (9p)d0)g’

(), (%), (5),

which replaced in , gives

p =(1+k) op , (23)
), /g

(8p/89)p

—~

21)

—~

22)

where (9p/06)
P p
k=———7"—"+". 24
(0p/20), 29
Recalling that p = 1/v we may write
Qp
=2 2
o=, (25)

where o, = (1/v)(0v/00), is the fraction of volume
increased per unit of temperature at constant pressure.
For an ideal gas a, = 1/(6y + 6), which gives formula

(20, and (9p/dp)s = p/p, which gives
%) p
) = (1+k)E, 26
qu( )p (26)

which allows to reach Poisson formula , recalling that
the left-hand side equals v2.

Poisson did not measure experimentally o to obtain
k and vs. He used instead the value of k& that he obtained
from the experimental value of the speed of sound to
get oy,. The speed of sound used by Poisson was that
determined by the members of the French Academy of
Sciences in 1738, vy = 337.18 m/s at 6 °C, from which
follows the value k = 0.4254 from formula . He then
employed the value 8y = 1/0.00375 °C, which comes from
the Gay-Lussac measurements, to find a, = 1/116 per
degree centigrade at 6 °C from equation .

Comparing equations and , we see that the
ratio « of the specific heats is related to the ratio k of
thermal expansions by v = 1 + k. Taking into account
that the ratio of the compressibilities equals v, as we
have seen above, we reach the identity

P N0y % (27)
Cv  Kgq 0y
A relation between the three ratios, which is equivalent to
7 was derived by Poisson in his paper of 1823 on the
speed of sound [16]. It is worth mentioning that relation
(27), derived within the caloric theory, remains valid in
thermodynamics.
Assuming that v = 14k is constant, Poisson integrates
equation to find that pp~7 is constant along an
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adiabatic process, a result reported in another publication
of 1823 [44]. This result is equivalent to

pvY =K, (28)

a constant along an adiabatic process. Poisson concludes
that (6y + 0)vY~! is also constant.

3.3. Clément and Desormes experiment

To test his theory of sound, Laplace needed to know the
experimental value of v, that is, he needed to know the
experimental values of ¢, and ¢, to find v = ¢, /c,. As we
have commented before, the measurement of the specific
heat at constant volume offered a difficulty that was not
overcome before the 1880s, spoiling the determination
of v from its definition. An alternative form of finding -y
was provided by experiments carried out by Clément and
Desormes, reported in their memoir submitted to the
prize of the French Academy of Science for the year 1812.
The negative result of the judgment left them dissatisfied
and undermined their confidence in their results but not
enough to prevent them from publishing the memoir,
which occurred later in 1819 [45].

Clément and Desormes experiment is described as fol-
lows. A balloon was equipped with a tap and communi-
cated with a barometer intended to measure the pressure
inside the balloon, as shown in Figure ] Initially, the air
inside the balloon is rarefied by the use of a pneumatic
machine. At this state, the inside pressure is p; smaller
than the outside pressure py and the temperature is the
room temperature. The tap is opened, the outside air
rushes into the balloon, the temperature rises above the
room temperature and the pressure increases. When the
inside pressure reaches the outside pressure pg the tap is
closed. With the tap closed, the gas cools, reaching the
room temperature, and the pressure decreases to a final
value po, which is larger than the initial pressure p;.

The whole process of the Clément and Desormes ex-
periment can be better understood by the help of the
p-v diagram of Figure [3|in which p is the pressure and
v is understood as the volume per unit mass of the air
inside the balloon. The process AB from the initial state
A to the intermediate state B, when the tap is closed,
is understood as an adiabatic process and the variation
in pressure is pg — p1. From the intermediate state B
until the final state C, the gas cools down and BC is a
volume constant process because the tap is closed. The
final state C and the initial state A have the same tem-
perature and the variation in pressure is po — p1. In an
experiment carried out when the room temperature was
12.5 °C and the pressure was 766.5 mm Hg, they found
po — p1 = 13.81 and py — p2 = 3.611 mm Hg [45].

To estimate vy, we apply equation to the adiabatic
process AB in Figure [3| to obtain pg/p1 = (v1/vg)?. Tak-
ing into account that AC is an isotherm it follows by
the Boyle law that po/p1 = vy /vg. Therefore, py/p1 =
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Figure 4: Apparatus used by Clément and Desormes in their
experiment reported in 1819 [45]. AB is a glass flask with a
capacity of 28.4 £ with a tap M having an aperture of about 1.4
cm in diameter. The glass flask communicates to a pneumatic
machine through a tube NB. This tube also communicated with
two other tubes GF and CE, the first of which was immersed
in mercury and the second in water. The height of the water
in tube CE gives a measure of the pressure inside the flask as
the tap L is open with the taps B and M closed. Figure from
reference [45].

(p2/p1)”, which is written in the form

_Inpg —Inp;

- 2
Y= gy —Tnpy (29)

and ~ could be determined from the measurements of
the pressures pg, p1, and po. If the differences pg —p1 and
p2 — p1 are small compared to pg, this relation reduces
to
Po— PN
v = .
P2 —nN

The experiment of Clément and Desormes was not
intend to determine the ratio of the specific heats, but
Laplace used their results to obtain v = 1.3541 by the
use of formula [24]. Laplace also used the experi-
mental results obtained by Gay-Lussac and Welter who
employed a method similar to that of Clément and Des-
ormes, but they compressed the air inside the balloon
instead of rarefying it [24]. The two values of ~ are shown
in Table [3| together with the speed of sound determined
by equation . The method of Clément and Desormes
by compression was also used by Masson [46}47], by
Weisbach [48], and by Cazin [49] to get better values of
7 for the air, shown in Table [3] We point out that the
method of Clément and Desormes in fact measures the
ratio kg/kq between the compressibilities, which equals
the ratio v = ¢, /¢, of the specific heats, as we have seen
above.

Cazin [49] used a method in which he combined the
two ways of carrying out the Clément and Desormes
method, by compression and by expansion. Two vessels
of the same capacity contain the same type of gas at

(30)
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Table 3: Experimental values of the ratio v of specific heats, and the velocity of sound vs in m/s of the atmospheric air at the
temperature 0 in degrees centigrade. CD, Clément and Desoremes; GLW, Gay-Lussac and Welter; MVB, Moll and Van Beek; BM,
Bravais and Martins. The second column gives the year of publication of ~.

author year ¥ Vs 0

CD [45], Laplace [24] 1822 1354 3329 125
GLW, Laplace [24] 1822  1.37244 335.2 13
Masson [46,47) 1847  1.4196

Weisbach [48| 1859  1.4025

Cazin [49) 1862 1.408

Dulong [36) 1829 1.421 333 0

MVB |[51], Simons [50| 1830 1.4152 332.244 0

MVB [51], Rankine [29] 1850 1.40853 33225 0

BM [52], Rankine [29] 1850  1.40955 33237 0

D & B [32], Joule [58) 1847 1347 3338 0

Regnault 28|, Rankine [59] 1853  1.4094 332,35 0

Regnault 28|, Le Conte |60] 1864 1.41047  332.490 0

p

different pressures and at the same temperature, and
they are connected by a pipe containing a tap. The tap
is opened resulting in an equalization of the pressures;
one gas warms up and the other cools down. The gases
follows the adiabatic processes AB and A'B’ of Figure
After closing the tap, the temperatures equalize; and
the pressures of the gases become distinct. The gases
follow the constant volume processes BC and B’C. The
measurements of the pressures gives the value of v by
means of formula . The results of Cazin for the air
and other gases are shown in Table [4]

3.4. Ratio v from the speed of sound

Once Laplace formula is accepted, the ratio v can
be determined from the experimental values of the speed
of sound. In an experiment carried out by Dulong, re-
ported in 1829 [36], he determined the speed of sound for
several gases from the measurement of the frequency of
the fundamental mode of vibration and the wavelength
of a standing wave in a tube filled with a gas. From
the frequency and wavelength, he obtained for the atmo-
spheric air at zero degree centigrade the values of vs and
v, shown in Table [3| Results of Dulong for other gases
are shown in Table 4] Later on, in 1858, Masson [47]
used the value of vg that he determined experimentally

Table 4: Ratio 7y of specific heats for several gases determined by
Dulong [36], by Rankine [59], by Masson [47], and by Cazin [49].

author Dulong Rankine Masson Cazin
year 1829 1853 1853 1862
air 1.421 1.4094 1.4148 1.408
oxygen 1.415 1.4014 1.4148 1.408
nitrogen 1.4148 1.408
hydrogen 1.407 1.4150 1.4148 1.408
carbon monoxide 1.428 1.4047 1.4248 1.408
nitric oxide 1.4049

hydrogen chloride 1.4084

carbon dioxide 1.348 1.2714 1.2886 1.291
nitrous oxide 1.343 1.2813 1.285
sulfur dioxide 1.2619 1.262
ammonia 1.3146 1.328
ethylene 1.240 1.2708 1.257
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Figure 5: Representation in the p-v diagram of a processes
followed by the gases contained in two connected vessels. One
gas follows the process ABC and the other the process A’B’C.
The processes AB and A’B’ are adiabatic. The processes BC
and B’C are processes at constant volume. At states A, C, and
A’ the gases have the same temperature, that is, the dashed line
is an isotherm.

to get more precise values of v for the air and other
gases, as shown in Table 4} The method used by Masson
was similar to that of Dulong and was carried out by
resonating a copper or tin organ pipe placed in a glass
balloon of 25 £.

Values of v for the air were also determined by Simons
[50] and by Rankine [29], shown in Table |3} by the use of
Laplace formula and from the speed of sound obtained by
other authors [511[52] by a direct method, which consists
in the observation of the flashes of firearm shots between
two stations separated by a large distance.

4. Thermodynamics

4.1. Mayer and Joule

Mayer in 1842 [53] and Joule in 1843 |54] independently
formulated the fundamental law connecting heat and
work. According to this law the dissipation of work causes
the appearance of heat and that a certain amount of work
w yields the same quantity of heat ¢. The Mayer-Joule
law is represented by the relation w = Jgq, where J is a
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universal constant, called the mechanical equivalent of
heat. The same relation is valid when heat is transformed
into work. Subsequently, the Mayer-Joule law evolved
into or was understood as the law of conservation of
energy.

Joule used various methods to determine the mechani-
cal equivalent of heat such as the well known paddle-wheel
method [55]. In 1845 [56], he reported an experiment in
which the mechanical equivalent of heat was determined
by the compression of air. The apparatus he used is
shown in Figure [6] Dry air was compressed in a cooper
receiver immersed in water by the use of a pump. By mea-
suring the rise in the temperature of the water, he could
determine the quantity of heat g evolved by compression
of air. In one series of experiments, carried out with 300
strokes of the pump each, 2956 = v; cubic inches of air at
the pressure of 30.2 = p; inches of mercury is compressed
into the receiver of 136.5 = vy cubic inches. Assuming
an isothermal compression the work performed by the
pump is w = pyvy In(vy /ve), a result that is obtained
from the equation of state of an ideal gas, Joule finds
w to be equivalent to raise 11220.2 pounds by one foot.
From the rise in temperature of the water, it is found
that ¢ is the heat equivalent to increase by one degree
Fahrenheit 13.628 pounds of water. From the ratio of the
last two numbers, Joule finds J = w/q to be equivalent
to raise one pound by 823 feet. In modern units, this
corresponds to 4.43 J/cal.

According to Joule his experimental results were in
perfect accordance with Dulong law (4) [56]. However,
taken into account that his experiment corresponds to an
isothermal compression, it seems that he interpreted law
(4) in the same sense of Clapeyron, that is, as equivalent
to law (5).

In the same paper of 1845 [56], Joule also reported ex-
periments on the free expansion of air. He connected two
equal cooper vessels by a coupling nut with a stopcock,
as shown in Figure 7] One of the vessels was filled with
22 atm of dry air, the other was exhausted, and the two
were immersed in water. The stopcock was then opened
allowing the passage of air from one to the other vessel.
The temperature of the water was measured before and
after the expansion but no change of temperature was
observed. He concluded that

(7) No change of temperature occurs when
air is allowed to expand in such a manner as
not to develop mechanical power.

That is, in a free expansion of air, the temperature re-
mains constant.

The method conceived by Mayer to determine the
mechanical equivalent of heat J was distinct from that of
Joule and needed the experimental value of the ratio of
specific heats. He explained his method in a publication of
1845 [57]. When a gas is expanded at a constant pressure
p, it consumes a certain amount of heat ¢, and performs
a work pAv where Av is the increase in the volume of
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Figure 6: Apparatus of Joule to measure the heat evolved by
compression of the air [56]. The pump C and the cooper receiver
R are immersed in water contained in a vessel impermeable to
heat, in which there is a sensible thermometer. The pump is
operated several times, compressing dry air, which is admitted
through the pipe A, until the air inside the receiver reaches about
twenty two atmospheres, generating a certain quantity of heat
which warms the water. Figure from reference [56].

-

—

Figure 7: Joule free expansion apparatus [56|. R and E are two
cooper receivers with capacities of 136.5 and 134 cubic inches.
The two receivers are connect by a pipe with a stopcock and
immersed in water contained in a vessel impermeable to heat.
Figure from reference [56).

the gas. Mayer argues that part of the heat consumed in
this isobaric process is transformed into work performed
by the gas and the other part, which is retained by the
gas, is equivalent to the heat ¢, that would be consumed
by the gas if its volume was kept constant. Using the
equivalence between heat and work, these reasonings lead
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to the relation

J(Qp - QU) = pAwv. (31)
For an ideal gas, pAv = rA#, at constant pressure, and
dividing relation by the increase in temperature A6,
Mayer finds the relation [57]
J(ep —cy) =T (32)
He applied the relation to the atmospheric air by com-
puting r = p/pT from the density of air at 0 ° and 1
atm. Mayer used the value of ¢, = 0.2669 cal/g°C deter-
mined experimentally by Delaroche and Bérard [32], and
~ = 1.421 determined experimentally by Dulong [36] to
get ¢, = ¢p/v. To heat one kilogram of water by one de-
gree centigrade he found that it was equivalent to the fall
of the same quantity of water by a height of 365 meters,
which in modern units is equivalent to 3.58 J/cal.
Instead of using v to determine J by means of equation
, as did Mayer, one could as well use J, obtained by
another method, to find . In fact, this was the method
used by Joule in 1847 58] to obtain ~ for the atmospheric
air. He determined r = p/pT from experimental results
and, for the mechanical equivalent of heat J, he used
a value that he had determined previously. This value,
which corresponds to the heat necessary to increase a
pound of water by one degree Fahrenheit, was equivalent
to raise one pound by 775 feet, which in modern units is
equivalent to 4.17 J/cal. He determined r/J and used the
value of ¢, determined experimentally by Delaroche and
Bérard [32], ¢, = 0.2669, from which he found ¢,, = 0.1977
by using result . From these specific heats, he finds
for the air at 32 degrees Fahrenheit the value v = 1.347.
From ~ he determined the velocity of sound by the use
of Laplace formula, results shown in Table [3] The result
for v was not so good due to the imprecise value of ¢,
determined by Delaroche and Bérard. The same scheme
was used later on by Rankine [59] and by Le Conte [60],
with a more precise value of ¢, = 0.2379, determined by
Regnault (28], which led to the values shown in Table
Rankine also determined ~, shown in Table [4] for other
gases by the same method and by using values of ¢,
determined by Regnault [28].

4.2. Clausius

The conservation of energy in differential form,
du = Jdg — dw, (33)

is one of the principles of the mechanical theory of heat,
or thermodynamics, that emerged in the middle of the
nineteenth century [6]. In contrast to the caloric theory,
heat is not a state function, which is equivalent to say
that dq is not an exact differential. Likewise, dw is not
an exact differential. On the other hand, du is an exact
differential, and is the expression of the conservation of
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energy. Another principle of thermodynamics, established
by Clausius, is [6}30]

dq/T is an exact differential, (34)

where T = 6y + 6 is the absolute temperature. In his
first paper on heat, Clausius showed that Jdq — dw is an
exact differential for an ideal gas through the use of the
following law, valid for an ideal gas [21]:

(8) When an ideal gas expands isothermally,
all the heat absorbed is converted into work
performed by the gas,

which, according to Clausius, is experimentally verified
as much as the ideal gas equation [21].

Once the conservation of energy in the form is
introduced as a principle of thermodynamics, valid for
any system, and together with expression , one may
derive law (8) and other laws concerning the ideal gas.

For a gas, dw = pdv, which replaced in equation
yields dg/T = (du + pdv)/JT, which being an exact
differential allows us to write

0(1/T) 9(p/T)
( o )u_( u >U' (35)
For and ideal gas, the right-hand side of this equation van-
ishes identically because p/T depends only on v, and we
may conclude that (0T /0v),, = 0, which is the expression
of law (7) if we bear in mind that in the free expansion
of a gas in the Joule experiment the energy remains con-

stant. This relation is equivalent to (Qu/dv)r = 0, which
states that

(9) The internal energy of an ideal gas de-
pends on the temperature but not on the vol-
ume.

From law (9), we see that in an isothermal expansion
the energy u remains constant so that J¢ = w which
is the mathematical expression of law (8). The heat
absorbed by an ideal gas along an isothermal process can
thus be determined by calculating the work performed by
the gas in this process. Along an isotherm between two
states with volumes v and vy the work is 7" In(vy /vg)
so that the heat absorbed ¢; is

Jq1 = rTn(vy/vg) = po In(vy /vg), (36)

which expresses Carnot law (5) because the right-hand
side does not depend on the nature of the gas.

Let us determine the heat related to law (4), under-
stood as the heat ¢ released along the process ABC
shown in Figure [3| which can be determined by calculat-
ing the work along the adiabatic process BA. Assuming
that v is constant, we use Poisson result that pv? is
constant along the adiabatic process to get

Jaz =52 (1= (v1/u0)"). (37)
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where k = v — 1. We see that the heat is not the same
for all ideal gases, which invalidate law (4), within ther-
modynamics. However, if the difference v; — vy is small
one obtains Jgy = Jq1 = p(v1 — v2), in which case law
(4) becomes valid and also equivalent to law (5).

Let us consider now the specific heats of an ideal gas.
From Jdq = du + pdv we find

ou v
p p

Joy = (2;1) (39)

For an ideal gas, u depends only on the temperature so
that the first term on the right-hand side of equals
the right-hand side of . In addition, for an ideal gas,
the second term on the right-hand side of equals 7,
and we conclude that

and

J(ep —¢y) = (40)

Multiplying this relation by the density p one finds
J(ép - Ev) = p/T, (41)

which is an expression of the Carnot law (6).

The two relations and were derived by Clau-
sius [21] in a manner distinct from that we have done here.
Relation was also derived by Mayer, as we have seen
above. The reasoning used by Mayer is equivalent to say
that (Ou/9T)p equals Je¢,, which is not in general correct.
However, as stated above, this equality becomes valid for
an ideal gas, making the Mayer procedure justifiable in
this case.

Taking into account that u depends only on the tem-
perature, the same happens to ¢,, and in view of relation
it also happens to ¢, a result that is equivalent to
Regnault law (2).

5. Avogadro law

The ideal gas also played a relevant role in the devel-
opment of the molecular theory of matter, specially in
determination of molecular weights and establishment of
chemical formulas. In 1809, Gay-Lussac announced the
law of combining volumes of gases. According to this law,
the volumes of the combining gaseous substances and
the volume of resulting gas substance are proportional
to small integer numbers [61]. For example, the volumes
of the combination of hydrogen with oxygen to produce
water vapor are in proportion to the numbers, 2, 1 and 2,
in which case there is a contraction of the total volume.
After the combination, the conditions, that is, pressure
and temperature, should be the same as before. This law
was taken over by Berzelius as the basis of his theory of
volumes for chemical composition. It helped Berzelius
do adopt the chemical formula HoO for water, which
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was interpreted by Berzelius as 2 volumes of hydrogen
combine with 1 volume of oxygen to produce water [62].
This interpretation is distinct from that given by Dalton
atomic theory [63] in two ways. In Dalton theory, the
symbols H and O represent the atoms, and not volumes,
of hydrogen and oxygen, and the atom of water was
represented by HO.

In 1811 Avogadro announced a molecular hypothe-
sis [9], called Avogadro hypothesis by Cannizzaro in
1858 [64] and Avogadro law by Naumann in 1869 [65],
which could conciliate Berzelius theory of volumes and
Dalton atomic theory. To state his law, Avogadro chose
the word ’molecule’ to represent the smallest part of
a pure substance. According to Avogadro law, equal
volumes of distinct gases under the same temperature
and pressure contain the same number of molecules [66].
Three years later, Ampere published an article containing
ideas similar to those of Avogadro, using the word "parti-
cle’ in the place of 'molecule’ [67]. In 1826 [68], Dumas
determined experimentally the atomic weight of several
substances from their densities at the gaseous state. To
this end he used a rule stating that, at the same pressure
and temperature, the molecules of all gases are placed
at equal distance, which we may understand as a conse-
quence of Avogadro law if we interpret equal distance on
the average. Similar ideas were proposed by Gaudin in a
paper of 1833 [69] in which he clearly distinguished atoms
and molecules, and proposed that the molecules could
be composed of one or more atoms, of the same kind or
distinct, which he called monatomic, diatomic, triatomic,
and so on. He proposed that some simple gases are di-
atomic and illustrated his ideas by the use of volume
diagrams as those shown in Figure [§] Gaudin did not
mention Avogadro and his theory received little scientific
recognition.

Avogadro law allows us to replace 'volume’ by 'num-
ber of molecules’ in the Gay-Lussac law of combining
volumes. For water it amounts to say that 2 molecules of
hydrogen combines with 1 molecule of oxygen to produce
2 molecules of water, which according to Berzelius is
represented by 2H+0O — 2H5O. But in this representa-
tion wee see that the total mass is not conserved. To
solve this problem, Avogadro makes the assumption that
the molecule of hydrogen and oxygen are composed by
two elementary molecules of the same type, and now
2H5+05 — 2H50, and the total mass is conserved. Thus,
Avogadro theory for atomic weights is not only based
on his law but also on the assumption concerning the
constitution of molecules of simple gases by elementary
molecules of the same species. It should be remarked
that Avogadro did not make use of chemical symbols in
his paper of 1811.

In spite of likely solving the existing inconsistencies of
the atomic theory, Avogadro law was neglected or misun-
derstood by the majority of the contemporary chemists
for almost five decades [9). Even when his law was men-
tioned, sometimes it was attributed to Ampere, some-
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Figure 8: Volume diagrams used by Gaudin [69]. Each one of the identical volumes (represented by squares) contains the same
number of molecules (just one molecule), in accordance with Avogadro law. Left: Chlorine and hydrogen giving hydrogen chloride,
Cla+H2 — 2HCI. Center: Oxigen and hydrogen given water vapor, O2+2H2 — 2H50. Right: Nitrogen and hydrogen giving ammonia,
N2+3H2 — 2NH3. Gaudin used Dalton symbols instead of chemical symbols.

times to Gay-Lussac, but seldom to Avogadro [70]. Fi-
nally, Avogadro’s theory was revived by Cannizzaro in
his paper on atomic weights of 1858 [64]. Influenced by
Gaudin [71], he provided a clear distinction between a
molecule and an atom which corresponds to the modern
understanding of these two concepts. He also interpreted
Avogadro’s idea concerning the constitution of molecules
of some elementary gases as composed by two atoms of
the same kind. Cannizzaro remarked that the differen-
tiation between atoms and molecules would clarify the
confusing state of affairs concerning atomic weights and
chemical composition [9]. From 1858 onwards, Avogadro
law began to be recognized and accepted by the chemists.
For instance, it was adopted as a fundamental law by
Meyer and by Mendeleev in their successful textbooks of
1864 and 1868, respectively [9]. In the second edition of
his textbook [72l[73], Meyer states that the Avogadro law
together with the law of Dulong and Petit [39] are widely
recognized as the bases for the determination of atomic
and molecular weights. Nernst adopts Avogadro law as a
fundamental law of theoretical chemistry as shown up in
the title of his book on the subject of 1893 [74].

A support for Cannizzaro interpretation of Avogadro
theory came from Clausius who established a connection
between Avogadro law and the kinetic theory of gases.
He also made a clear differentiation between atoms and
molecules, and also admitted that a molecule could be
composed of two identical atoms [9]. As a simple example,
Clausius considered the nitric oxide, assumed to have the
chemical formula NO. One volume of oxygen combines
with one volume of nitrogen to give two volumes of nitric
oxide. In accordance with Avogadro law, one molecule of
oxygen combines with one molecule of nitrogen to give
two molecules of nitric oxide, which is possible only if
the molecules of nitrogen and oxygen are formed by two
equal atoms.

By using Avogadro law, the molecular weight of a gas,
which is the mass of a molecule in relation to another
taken as standard, is determined by the measurement
of its densities. The density of a gas can be written as
p = Nm/V where m is the mass of a molecule and N
is the number of molecules in a volume V. According to
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Avogadro law, the ratio N/V is the same for all gases at
the same temperature and pressure leading to conclude
that p is proportional to m and thus proportional to the
molecular weight p. Therefore, the ratio of the densities
p/po of two gases at the same temperature and pressure
is equal to the ratio u/po of the molecular weights, that
is, i = pop/po- If we consider p as the density of a gas
with respect to atmospheric air, as did Avogadro and
Cannizzaro, and setting o = 2 for the hydrogen, then
to/po = 28.87, according to Cannizzaro [64], and the
molecular weight is p = 28.87p. The molecular weight of
several gases determined by Avogadro and Cannizzaro
are shown in Table|5|together with the chemical formulas
employed by Cannizzaro.

The equation of state of an ideal gas can be written
in a form which explicitly includes the Avogadro law.
Taking into account that p = Nm/V, equation @ is
written as p = (N/V)mrT. Since according to Avogadro
law, the ratio N/V is the same for all gases at the same
temperature and pressure, it follows that mr = k is a
constant independent of the nature of the gas, and the

Table 5: Column 2: Density p of gases in units where that of
air is taken as unity, according to Gay-Lussac [26]. Column 3:
Molecular weight ©* of gases with respect to molecular weight
of hydrogen taken as unity, according to Avogadro [66]. Column
4 and 5: Molecular weight i of gases with respect to molecular
weight of hydrogen taken as equal to 2, and chemical formulas
(cf), according to Cannizzaro [64].

gas P H* H cf
oxygen 1.10359 15.074 32 02
nitrogen 0.96913  13.238 28 N2
hydrogen 0.07321 1 2 H2
carbon monoxide 0.96782 13.22 28 CcO
nitric oxide 1.03636 14.156 30 NO
chlorine 2.468 33.74 71 C12
hydrogen chloride ~ 1.278 17.45  36.5 HCl
carbon dioxide 1.5196  20.75 4  CO?
nitrous oxide 1.52092  20.775 44 N20
sulfur dioxide 2.265 30.94 64 SO?2
ammonia 0.59438  8.119 17 NH3
year 1809 1811 1858 1858
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ideal gas equation reads
pV = NEKT, (42)

which incorporates Avogadro law, because k is a universal
constant. It should be remarked that this form of the
equation of state did not appear before the introduction
of the constant k£ by Planck in his paper of 1900 on energy
distribution of radiation [75].

Let Ny = p/m be the number of molecules of an
amount of gas of mass equal to p in grams. Since mr = k
is a universal constant it follows that ur = R is also a uni-
versal constant and R = kNy. In 1867, Guldberg reached
this conclusion, that ur is a constant, as a consequence of
the ”chemical theory of molecular volumes” [76], which
should be understood as the Avogadro law. Defining
n = N/Ny, we may write the gas equation as

pV =nRT. (43)

Next we define v = V/n, which is the volume of an
amount of gas of mass p, and equation becomes

pv = RT. (44)

In this form, the ideal gas equation was written by
Horstmannf| in 1873 [77].

Ostwald, in his book on physical chemical measure-
ments of 1893 78], called a mole (Mol in German) the
number of molecules in an amount of gas of mass p, which
is Np. He also determined the gas constant and foundﬂ
R = 8.308 J/mol°C. The volume v of an amount of gas
of mass p is also the volume of one mole of the gas and
n in equation is identified as the number of moles.
In his book on theoretical chemistry of 1893 |74], Nernst
wrote both forms and for an ideal gas and used
equation to determine R. The value of the molar
volume v = p/p was obtained from experimental data for
the densities of hydrogen, oxygen and nitrogen and from
their molecular weights. The average from these three
gases was 0 = 22.42 ¢/mol at 0 °C and 1 atm, which
yields the value R = 8.321 J/mol°C.

The discovery of argon by Rayleigh and Ramsay in 1894
is directed related to Avogadro law. Rayleigh noticed a
discrepancy between the density of the nitrogen obtained
from the atmospheric air and the nitrogen obtained from
nitrogen compounds. The densities of the former and the
latter were found to be 1.2834 and 1.2774, respectively,
which gives a ratio 1.0047 between the molecular weights
of the atmospheric nitrogen and the nitrogen. The dis-
crepancy, however small, was sufficient to indicate the
presence of impurity in the atmospheric nitrogen, which
lead to the discovery of argon [79)].

2Horstmann wrote pu = RT using the letter u for the volume.
3The value given by Ostwald was 84720 in units in which the
pressure is measured in g/cm?, and the volume in cm®. This figure
should be multiplied by the acceleration due to gravity to obtain
the value above.
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6. Equipartition of energy

6.1. Translational equipartition

The kinetic theory, which emerged around the middle of
the nineteenth century, aimed to derive the macroscopic
properties of bodies from the behavior of its microscopic
constituents. The constituents, which are molecules in
the case of gases, were assumed to follow the Newtonian
mechanics. The most simple object of study was an ideal
gas, that is, a gas at low densities so that the average
distance between molecules is large. This property results
in a small interaction between molecules so that the total
energy of the gas is just the sum of the kinetic energy of
each molecule. The first challenge of the theory was the
derivation of the known equation of state of an ideal gas.

The kinetic model for an ideal gas consists of molecules
that move in straight lines in any possible direction, strik-
ing with each other and with the walls of the container.
This model was proposed independently by Bernoulli in
1738, by Herapath in 1821, and by Waterston in 1845,
and was pursued by Joule in 1848, but it began to thrive
only after 1857 when Clausius published a paper entitled
”On the kind of motion which we call heat” [80]. The
publication of his paper was stimulated by a publication
by Kronig on the same subject in 1856 [81]. However,
Clausius’s conceptions about the nature of the motion
called heat arose before 1850 [80], and led him to an
independent and more thorough proposal of the kinetic
model.

Clausius assumes that the molecules moves with the
same speed c in arbitrary directions, and arrives at the
following relation between the pressure p of the gas and
the speed ¢ of the molecules

pV = échz, (45)
where V' is the volume of the vessel, N is the number
of molecules and m is the mass of each molecule. This
relation states that pV is 2/3 of the translational kinetic
energy of molecules.

Clausius reasonings was as follows. Consider a cubic
vessel of edge length L and let v,, v, and v, be the
Cartesian components of the velocity of a molecule. When
a molecule collides with a wall perpendicular to the z
axis the change in the momentum of the molecule is
2muv,. The time it takes for the next collision on the
same wall is L/v, so that the force is 2mv?/L which is
written as (2mc?/L) cos? 8 where 3 is the angle between
the velocity and the z axis. Since the direction of velocity
is arbitrary we take the average of this force over all
angles such that 3 > 7/2. The average of cos? 3 is

/2 1
/ cos? Bsin BdS = =, (46)
0 6

and the average force becomes mc?/3L. For N molecules
the force is Nmc?/3L and as the pressure p is this force
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divided by the area L? of a face of the cubic vessel, one
finds p = Nmc?/3V which is the result .

In his paper on the kinetic theory, Waterston also
arrived at the result but he missed the factor 1/3 [82].
In the same paper, he announced the law that in mized
media the mean square molecular velocity is inversely
proportional to the specific weight of the molecules [82],
which was considered by Rayleigh as the first statement
of the equipartition of energy for translational motion.
The paper was submitted in 1845 to the Royal Society of
London but it remained unnoticed until it was found by
Rayleigh who published the paper in 1893 [82]. However,
the law appeared in a short communication published in
1852 [83] ensuring to Waterston the priority of the law,
concerning the translational motion [84].

The derivation of the equipartition law carried out
by Waterston is far from being satisfactory [84] and
cannot be considered as a logical derivation from the
assumptions of the kinetic model, what does not mean
that the conclusion is necessarily incorrect. Additionally,
Waterston shows that the equipartition holds if the gases
have the same pressure and the same value of N/V [82],
which can be understood as the Avogadro law.

Clausius also arrived at the equipartition law for trans-
lational motion but he did not present any derivation
from the assumptions of the kinetic theory. He arrived at
the equipartition from Avogadro law, which he admitted
to be a very probable assumption, and by using relation
(45). In his words, when pressure and temperature are
the same and contain the same number of atoms in equal
volumes, it follows that the atoms of different gases must
have equal translational kinetic energy [80]. It should be
remarked that Clausius and Waterston used Avogadro
law but they did not mention the name of the Italian
physicist.

The translational equipartition can be demonstrated
from Avogadro law as follows. We have seen that equa-
tion incorporates Avogadro law because k being
a universal constant the ratio V/N is the same for all
gases at the same temperature and pressure. Comparing

equations and we find
3
—mec” = ikT' (47)

Since k is universal, that is, it does not depend on the
gas, we see that the translational kinetic energy of a
molecule mc? /2 is the same for all gases at the same tem-
perature and equals (3/2)kT. We see that c? is inversely
proportional to mass of the molecule, which is the way
Waterson announced the equipartition, mentioned above.

The kinetic theory of gases conceived by Clausius
[80] differed in a fundamental aspect from the previ-
ous theories. In addition to the translational motion,
the molecules could have other types of motion such as
rotation and vibration motions, which Clausius called
motions of the constituents. This aspect was essential in
the description of the specific heat of gases composed by
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diatomic molecules. In spite of the additional types of
motion, the pressure of a gas is caused by the transla-
tional motion only and is given by equation . That
is, the translational kinetic energy,

1
K = §Nm02, (48)

is related to the pressure by pV = (2/3)K.

Assuming that the specific heat ¢, of an ideal gas is a
constant ¢, Clausius shows that the total kinetic energy
U has a constant ratio to the translational kinetic energy
K, that is,

K 3

525(7—1)~ (49)

Indeed, the total energy can be written as U = M JcT
because ¢, is a constant and M is the mass of the gas.
From relation , we see that the ratio of the specific
heats is v = 1 + pV/U. Taking into account the relation
pV = (2/3)K, one reaches equation (49). This relation
can be understood as a partition of the energy but not
the equipartition of the energy. Clausius applied this
relation to ”"simple gases, and compound gases that suffer
no decrease in volume in the combination”, which are
identified as diatomic gases. For these gases v = 1.421
and K/U = 0.6315.

6.2. Maxwell equipartition of energy

In his first paper on kinetic theory of 1860 [85], Maxwell
considers a gas model which was an improvement on
Clausius model. In Maxwell’s model, the particles, which
are perfectly elastic spheres, move with distinct speeds
in arbitrary directions. In the first part of the paper
he consider the particles to be perfectly elastic spheres.
According to Maxwell the distribution of the velocities is
the same as that of errors in measurements. The idea of
using statistics in physics was not knew since Laplace and
Gauss employed it in the theory of errors, but Maxwell
used statistics to describe physical processes themselves,
which turned out to be an original idea and "marks the
beginning of a new epoch in physical sciences” [86]. In
this sense, the introduction of statistical approach in
physics is due to Maxwell [87].

Denoting by v,, v, and v, the Cartesian coordinates
of the velocity, the Maxwell probability distribution of
these variables is

Plvz vy, v:) = be~ (e, (50)
where a is a constant and b = (am)~%/2 is the normal-
ization factor. From equation , Maxwell derives the
distribution of the speeds v = (v + v; + v2)1/2,

ps(v) = 4mb v2e v /e, (51)
It should be mentioned that the derivation of the dis-

tribution of velocities provided by Maxwell in his paper
of 1860 cannot be considered as a valid derivation from
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pure mechanics [88]. Lacking a proper derivation, the
distribution may be introduced as a postulate of the
kinetic theory of gases, that is, a law that is considered
to be true without the need of demonstration.

Maxwell showed that equation is also valid within
his kinetic theory. It suffices to interpret ¢ as as the
average of the square of the velocity of a particle, ¢ =
(v?).

In the second part of his first paper on kinetic theory
[85], Maxwell also considers a gas consisting of two types
of particles and reaches the equipartition of translational
energy in the form

—myici = —macs, (52)

where m; is the mass and ¢? = (v?

#) is the mean square
velocity of particles of type i. A molecule with greater
mass moves on the average slower than one with a smaller
mass. Form of equipartition is equivalent to the
translational equipartition that we have considered above,
in which two distinct gases are at the same temperatures.
From the translational equipartition, Maxwell reaches the
Avogadro law, which he calls chemical law, but does not
mention the name of the Italian physicist [85]. In other
papers [89H91], Maxwell states that it is a relevant law,
known as law of equivalent volumes, and a necessary and
important consequence of the the kinetic theory of gases,
although he incorrectly says that the law was established
by Gay-Lussac from chemical considerations. Avogadro
law was also derived from the translational equipartition
by Naumann in a publication of 1869 [65].

In the third part of the first paper on the kinetic
theory [85], Maxwell considers the case of particles that
are perfectly elastic bodies of any form. In this case, in
addition to translational motion, the particles may have
rotational motion. Here, Maxwell reaches an equipartition
of energy with respect to translational as well as to
rotational motion, that is,

1 1 1
§m<v§> §m<v§> = §m<v§> =
1 1 1
= 511<W%> = §I2<W§> = §I3<w§>7 (53)

where Iy, Is, I3 and wy, w1, we and w3 are the moments
of inertia and angular velocities around the principal
axes of the body.

The equipartition of energy is sometimes referred to as
a theorem, that is, a proposition that is a logical deriva-
tion from some given premises, which in the present case
are the laws of motion of Newtonian mechanics. In this
sense, the derivation presented by Maxwell in the paper
of 1860 [85] of the equipartition of energy as given by
equation or by equation is unsatisfactory [82]
and cannot be considered as valid derivation from pure
mechanics [92]. The demonstrations of the equipartition
of energy that came latter by Maxwell in 1867 [89] and
1879 [93], by Boltzmann in 1868 [94] and 1871 [95], and
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by Watson in 1877 [96] were based on the use proba-
bilistic approach to kinetic theory, and cannot either be
considered as demonstrations from pure mechanics.

In his paper on thermal equilibrium of polyatomic
gases of 1871 [95], Boltzmann states that a consequence
of the translational equipartition is that all gases at the
same pressure and temperature have the same number
of particles per unit volume, a result which is confirmed
with experience. This is the Avogadro law, but he did
not mention Avogadro’s name.

From the results given by equation , Maxwell con-
cludes that the translational kinetic energy is half of the
total energy, that is, K/U = 1/2. On the other hand, if,
following Maxwell, one replaces the experimental value
~ = 1.408 in Clausius formula , one finds the value
K/U = 0.612. Maxwell concludes his paper of 1860 by
stating that the theoretical value 1/2 of K/U does not
agree with 0.612 obtained from the experimental value
of ~, but gives no reason for the discrepancy.

The equipartition given by formula was obtained
by Maxwell considering a molecule as a rigid body. In
1871, Boltzmann gave a similar result by considering a
molecule as consisting n atoms, each one being a material
point, showing that the kinetic energy of each atom is
the same [95]. Using this result, Boltzmann finds for a
diatomic gas, n = 2, the same result found by Maxwell
for the ratio between the translational kinetic energy
and the total kinetic energy, that is. K/U = 1/2. From
Clausius formula (49)), v = 4/3 which is distinct from the
experimental value v = 1.41 for the air. Like Maxwell,
Boltzmann gives no explanation for the discrepancy ex-
cept a possible interaction with the ether, which did not
solve the problem either.

In view of the discrepancy shown by diatomic gases,
Kundt and Warburg found it appropriate to study a sim-
pler case, namely, that of the mercury vapor, which was
known by the chemists to be a monatomic gas. The value
of v for mercury vapor, obtained by Kundt and War-
burg in 1875 from the experimental value of the speed
of sound, was v = 1.67 |97]. If this result is replaced
in Clausius equation the result is K/U = 1 which
means that the total energy coincides with the transla-
tional kinetic energy or, in other terms, the molecules
possess only translational motion. Kundt and Warburg
concluded that a monatomic molecule acts like a mate-
rial point [97]. However, the problem of diatomic gases
remained unsolved.

6.3. Equipartition and degrees of freedom

In a lecture delivered at the Chemical Society in 1875 [91],
Maxwell presented the following formula relating the ratio
~ and the number of degrees of freedom v of a molecule

=1+ (54)

v+e’

where e is a term related to the vibration of the molecule,
which takes the value e = 0 when the molecule is rigid.
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Formula was also obtained by Watson in 1876 [96]
and Boltzmann [98]. To reach this relation, Maxwell
consider that the kinetic energy related to each degree of
freedom is the same, which we denote by a. The energy
u of a molecule is the sum of its kinetic enery va plus a
term ¢ that depends only on temperature, which comes
from the potential energy of the atoms of a molecule,
that is, v = va + ¢. According to equation , the
translational energy per molecule is (3/2)kT, which gives
a = (1/2)kT, because there are three degrees of freedom
related to translational motion. The heat capacities per
molecule are ¢, = (v/2)k + ¢’ and ¢, = ¢, + k, which is
the relation analogous to . The ratio v = ¢p/c, gives
relation where e = 2¢'/k. If the molecule is rigid,
e=0and

2
r=1+". (55)

From the value of v determined by Kundt and War-
burg for mercury vapor, oliveira Boltzmann found from
formula that v = 3 and e = 0, confirming that a
monatomic molecule acts like a material point, which has
v = 3 degrees of freedom [98]. By analogy Boltzmann
assumes that a diatomic molecule consists of two con-
nected spheres, or a dumbbell, acting as two material
points and thus having v = 5 degrees of freedom [98].
When v = 5, formula gives 7 = 7/5 = 1.4, a value
which is very close to the experimental values found for
air and other diatomic gases, as shown in Table 3] and [

The rigid dumbbell model for a diatomic molecule was
also proposed independently by Bosanquet in 1877 [99).
According to Bosanquet, such a molecule would have five
equal parts of kinetic energy, three due to translation and
two to rotation, given a ratio K/U = 3/5, which from
Clausius equation Bosanquet oliveirafinds y = 7/5 =
1.4. This explanation, says Bosanquet, ”is so obvious that
it is impossible to suppose that it has not occurred before
to the eminent men who have dealt with the subject” [99].

The theory of Boltzmann for diatomic molecules justi-
fies law (1) of Delarive and Marcet by recognizing that
"simple gases, and compound gases which result from the
combination of simple gases without a change of volume”
are diatomic gases. The volume specific heat at a constant
pressure of a diatomic gas is ¢, = C,/V = (5/2)(N/V)k.
Since, from Avogadro law, N/V = p/kT has the same
values for all gases at the same temperature and pressure,
then ¢, has the same value for all diatomic gases, which
is law (1) of Delarive and Marcet.

The ratio of specific heats was used by Rayleigh and
Ramsay to establish that the gas argon was monatomic.
After the discovery of the gas argon by them in 1894, they
had reasons to believe that it was a chemical element.
From the measurement of its density it was found that
the molecular weight of argon was 39.8, if that of the
oxygen is taken as 32. The next problem was to determine
whether the gas argon was diatomic like the other simple
gases. To this end Ramsay, using the method of Kundt
and Warburg, determined the ratio « of the specific
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heats from the measurement of the speed of sound. The
value found was v = 1.649, which was distinct from 7/5
of diatomic molecules, but close to 5/3 of monatomic
molecules, establishing argon as a monatomic gas with
an atomic weight 39.8 [79).

6.4. Equipartition theorem

We have seen that the attempt by Maxwell to demon-
strate the equipartition of energy from pure mechanics
was not successful. The demonstrations that came later,
by Maxwell [89], by Boltzmann [94], and by Watson [96]
were based on the use of a probability distribution. Since
the derivation of a probability distribution from pure
mechanics has not been accomplished, one cannot either
say that these derivations of the equipartition come from
pure mechanics. In fact, the difficulty of deriving the
probability distribution lead to the postulation of the
distribution as occurred with the Gibbs microcanonical
and canonical distribution of statistical mechanics of
systems in thermodynamic equilibrium. Sometimes the
equipartition of energy is referred to as a theorem. It
is indeed a theorem of statistical mechanics but not a
theorem of pure mechanics.

Next, we show that the equipartition can be derived
from any probability distribution P which is a function
of the energy, or more precisely, of the Hamiltonian
H, which are the cases of the Gibbs microcanonical an
canonical distribution. We denote by ¢ the collection of
the coordinates and by p the collection of their conjugate
momenta and write

P(q,p) = F(H(q,p)), (56)

that is, P(q,p) depends on the dynamic variables (g, p)
through H(q,p). We consider an ideal gas so that # is a
sum of terms H;, one for each molecule,

H=> M. (57)

We assume the following form for the molecule Hamil-
tonian

Hi = ZAiijZj + Bi, (58)

J

where A;; and B; depend only on the coordinates corre-
sponding to molecule 7. Next we define new momenta &;;

by
&ij = pij\/ Aij- (59)

The new coordinates 7;; are chosen as the canonical
conjugates of &;;, which implies that the Jacobian of the
transformation from the from the old to new variables
equals the unity. In the new variables the Hamiltonian
of a molecule is

Hi = Zf?] + Cz'7 (60)
J
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where C; depends only on the new coordinates 7;;, and
the total Hamiltonian is

H=> &+C, (61)
ij

where C'is the sum of C;. In the new variables, collectively
denoted by (&,n), the probability distribution is

P(&n) = F(H(E,m)). (62)

Now we integrate in 7 to find the probability distribu-
tion of &,

Pr(&) = F* ()& (63)
ij

where F* is another function. That is, the probability
distribution depends on £ only through the sum of f?j.
We see that P*({) is invariant under the exchange of
any pair of momenta &;;, a property which allows us to
conclude that the average (£7;) is independent of (i, j).
Therefore the average (A;;p7;) is independent of (i, j),
which constitutes the equipartition of energy.

If the probability distribution is the Gibbs, canonical
distribution, that is, if F'(#) is proportional to e A%
where 8 = 1/kT it follows that (¢7;) = kT'/2, or

1
(Aijp;) = S+ T (64)

The same reasoning can extended to the case where the
molecules interact with each other, giving again the same
equipartition of the kinetic energy .

Let us consider the case of a gas of diatomic molecules,
each one being a rigid body of mass m; consisting of
two material points, and v = 5 degrees of freedom. The
moment of inertia about the axis connecting the two
material points is zero and the other two are equal and
denoted by I;. The Hamiltonian of each molecule is a
sum of the translational and rotational, given by

1 1
Hi= o5 —(0f + P +05) + o7 (0 + via), (69)

Qmi 2]2 sinQ (91'
where p;1, pi2, and p;3 are the Cartesian components
of the linear momenta and p;4 and p;5 are the angular
momenta.

From the equipartition theorem, it follows at once that

(D) — (P Py By _Ps Ly (gp)
2m; 2m; 2m; 21; 21I; sin? 0;

has the same value kT'/2 for any ¢. From this result
it follows that the average energy per molecule will be
u = bkT'/2.

The reasoning above can be extended to the case where
each molecule is a rigid body such as an spheroid, which
has three rotational degrees of freedom in addition to the
three translational degrees of freedom making a total of
v = 6 degrees of freedom. The resulting average energy
per molecule is u = 6kT"/2.
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7. Maxwell and Boltzmann

The model of a molecule used by Boltzmann [98] to
describe a diatomic ideal gas was a rigid body with
cylindrical symmetry, like an spheroid or a dumbbell.
Such a rigid body has three rotational degrees of freedom.
However, Boltzmann argued that the rotation about the
axis of symmetry would not be activated by collisions
so that the body would act like having two rotational
degrees of freedom, as happens to the rigid molecular
model analyzed in the previous section, consisting of
two material points. The total degrees of freedom being
v = 5 gives for the ratio of specific heats the value
v = 7/5 = 1.4, in agreement with the experimental
results for diatomic gases. Boltzmann also explained
that the vibrations need not to be taken into account
because they occur only briefly during the collisions
of two molecules, analogous to the vibration occurring
when two billiard balls strike each other, thus making
the molecule as if it were a rigid body [98].

Although the explanation given by Boltzmann was
in agreement with the experimental results, it was not
accepted by Maxwell [100]. He argued that any extended
rigid body of any shape has three rotational degrees of
freedom in addition to the three translational degrees
of freedom, making v = 6, and v = 4/3. Moreover, if
a molecule could vibrate, as the spectroscopy at that
time showed, the value of 7, as given by formula (54),
would be even smaller than 4/3, incompatible with the
experimental value for diatomic gases.

The reasoning of Maxwell, although correct from the
point of view of Newtonian mechanics, did not explain
the experimental results. The reasonings of Boltzmann
explained the experimental results, but his explanation
of the absence of both the rotation about the axis sym-
metry and vibration did not convince Maxwell. It is
meaningful that the disagreement between these two
physicists extended to their styles of communication, al-
though they had a great appreciation for each other’s
work. Boltzmann said that Maxwell was difficult to un-
derstand because of its great brevity [94]. Maxwell in
his turn said that Boltzmann was hard to understand
because of the opposite reason. Boltzmann’s length was
an equally stumbling-block to Maxwell [101].

The paradox of the specific heats was solved after
the emergence of quantum mechanics, which treats the
energy of rotation as well as that of vibration as quantized.
Consider the rotation about the axis of symmetry of a
spheroid or a dumbbell. According to quantum mechanics,
the energy of rotation is quantized and given by

1 2
By = S h2(0+ 1), (67)

where £ = 0,1,2... and I is the moment of inertia around
the axis of symmetry, and & is the Planck constant. If T
is small, the energy of the first excited state, By = h?/I,
will be great. If the energy of collisions is not large enough,
a molecule will not be raised to the excited states and
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remain in the ground state, acting as if it did not rotate
about the axis of symmetry, as wished Boltzmann. This
reasoning applies only to the rotation about the axis of
symmetry. The rotation about the other two axes will
occur because the other momenta of inertia are much
greater than I.

The same quantum explanation can be extended to
vibrational degrees of freedom. Consider one of the several
modes of oscillation of a molecule characterized by a
angular frequency w. The corresponding quantized energy
of this mode is

1
E, :hw(n+§)7 (68)
where n =0,1,2,.... Again, if the energy of collisions is

not large enough, a molecule will not be excited and will
remain in the ground state, as if it did not vibrate, as
wished Boltzmann.

8. Conclusion

We have given an account and a critical analysis of the
development of laws concerning the ideal gas, comprising
the period where the caloric theory was the prevailing
theory of heat and the first decades after the emergence
of thermodynamics. During this period, the elastic prop-
erties of gases and the specific heats, including their ratio,
were the main concerns of the experimental investigation
on gases. We have described the relation of the laws
related to the elastic and thermal properties of gases
among themselves and with the law of equipartition of
energy.

The kinetic theory, as presented by Clausius and Maxwell
in their respective first papers on the subject aimed to
explain the macroscopic laws of gases by assuming that
the molecules follows the laws of Newtonian mechanics.
Indeed, it was possible to derive from these assumptions
the law that relates pressure to the translational kinetic
energy, given by equation . The law of equipartition
of energy, related to translational motion, appeared in the
papers of Waterston and Clausius on the kinetic theory.
In a more general form, which included the rotational
motion, the equipartition was formulated by Maxwell in
connection with the kinetic theory. These three physicists
showed, by the use of equation , that the Avogadro
law is a consequence of translational equipartition of
kinetic energy. From this result, it follows the ideal gas
equation in the form or .

The attempts to derive the equipartition of energy from
pure mechanics, for instance, the translational equiparti-
tion given by equation , were not successful. However,
the equipartition could be derived from statistical me-
chanics, which uses statistical description of a system.
This approach was used by Maxwell and Boltzmann to
derive the law of equipartition. Instead of presenting their
derivation, we have carried out a simplified derivation
starting from a probability distribution that depends
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only on the energy, which are the case of the Gibbs mi-
crocanonical and canonical distributions. This derivation
reveals that the equipartition comes from the invariance
of probability distribution under the exchange of two
parts of the Hamiltonian. This is possible because the
probability distribution depends on the dynamical vari-
ables through the Hamiltonian, a feature that describes
systems in thermodynamic equilibrium.

It should be noted finally that the probabilistic dis-
tribution of statistical mechanics are introduced as fun-
damental principles, which means that they are not or
need not to be derived from pure mechanics.
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