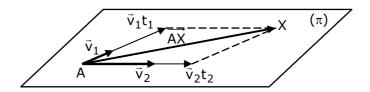
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

CAPÍTULO 6

PLANO

Definição: Seja A um ponto qualquer do plano (π) e \vec{v}_1 e \vec{v}_2 dois vetores LI (ou seja, não paralelos), mas ambos paralelos ao plano (π) . Seja X um ponto qualquer deste. Assim, os vetores $\{\vec{v}_1,\vec{v}_2,\overrightarrow{AX}\}$ são LD (coplanares). Logo existem escalares t_1 e $t_2 \in \Re$ tais que $\overrightarrow{AX} = \vec{v}_1t_1 + \vec{v}_2t_2$.



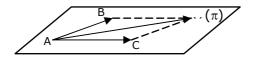
Da expressão $\overrightarrow{AX} = \vec{v}_1 t_1 + \vec{v}_2 t_2$ podemos escrever que $X - A = \vec{v}_1 t_1 + \vec{v}_2 t_2$. Então a equação $X = A + \vec{v}_1 t_1 + \vec{v}_2 t_2$, é chamada de **equação vetorial** do plano (π) para $\forall t_1 \ e \ t_2 \in \Re$, chamados de parâmetros.

O plano é constituído de pontos. Assim, para cada valor real de t_1 e t_2 substituídos na equação vetorial vamos obtendo os infinitos pontos X desde plano. Por exemplo. Considere o plano (π) : X = (2,1,2) + $t_1(1,1,0)$ + $t_2(-1,3,1)$, então: para t_1 = 0 e t_2 = 0 \Rightarrow X = (2,1,2) + 0 \cdot (1,1,0) + 0 \cdot (-1,3,1) \Rightarrow X₁ = (2,1,2) \in (π) ; para t_1 = 1 e t_2 = -1 \Rightarrow X = (2,1,2) + 1 \cdot (1,1,0) + (-1) \cdot (-1,3,1) \Rightarrow X₂ = (4,-1,1) \in (π) ;

 $\text{para } t_1 = -1 \text{ e } t_2 = 2 \ \Rightarrow \ \mathsf{X} = (2,1,2) + (-1) \cdot (1,1,0) + 2 \cdot (-1,3,1) \ \Rightarrow \ \mathsf{X}_3 = (-1,6,4) \in (\pi) \ ;$

Assim por diante.

Um axioma importante da geometria é aquele que diz "três pontos não colineares determinam um único plano". Assim, é possível escrever a equação vetorial de um plano dados três pontos não alinhados (não colineares) deste plano. Note que, pela definição anterior, para determinarmos um plano é necessário conhecermos um ponto e dois vetores LI (não paralelos) deste plano.



Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Portanto, dados três pontos não colineares A, B e C de um plano (π) podemos escrever $(\pi): X = A + \overrightarrow{AB} \cdot t_1 + \overrightarrow{AC} \cdot t_2$. A escolha do ponto e da orientação dos vetores não altera a determinação do plano, ou seja, poderíamos ter escolhido o ponto C e os vetores \overrightarrow{BC} e \overrightarrow{CA} para determinarmos o mesmo plano (π) da seguinte forma $(\pi): X = C + \overrightarrow{BC} \cdot t_1 + \overrightarrow{CA} \cdot t_2$.

6.1 Equações do Plano

Equações Paramétricas

Seja X(x,y,z) um ponto qualquer do plano (π) . Sejam também e conhecidos o ponto $A(x_0,y_0,z_0)$ e os vetores $\vec{v}_1=(x_1,y_1,z_1)$ e $\vec{v}_2=(x_2,y_2,z_2)$ vetores LI deste plano. Da equação vetorial $X=A+\vec{v}_1t_1+\vec{v}_2t_2$, $\forall t_1,t_2\in\Re$, substituindo as coordenadas de cada elemento teremos:

$$(x,y,z) = (x_0,y_0,z_0) + (x_1,y_1,z_1) \cdot t_1 + (x_2,y_2,z_2) \cdot t_2 \Rightarrow \begin{cases} x = x_0 + x_1t_1 + x_2t_2 \\ y = y_0 + y_1t_1 + y_2t_2 \\ z = z_0 + z_1t_1 + z_2t_2 \end{cases}$$

chamadas de **equações paramétricas** do plano, onde os parâmetros são os escalares t_1 e $t_2 \in \Re$.

Equação Geral

Como os vetores $\{\vec{v}_1,\vec{v}_2,\overrightarrow{AX}\}$ são coplanares, então, pela condição de coplanaridade temos: $[\overrightarrow{AX},\vec{v}_1,\vec{v}_2]=\begin{vmatrix} x-x_0&y-y_0&z-z_0\\x_1&y_1&z_1\\x_2&y_2&z_2\end{vmatrix}=0$. O desenvolvimento

deste determinante resultará numa expressão da forma ax + by + cz + d = 0 chamada de **equação geral** do plano.

Equação Segmentária

Da equação geral do plano (π) podemos escrever: ax + by + cz = -d. Se $d \neq 0$,

$$\text{vem:} \quad \frac{a}{-d}x + \frac{b}{-d}y + \frac{c}{-d} = \frac{-d}{-d} \,. \quad \text{Se} \quad a \neq 0, b \neq 0 \text{ e c} \neq 0 \quad \Rightarrow \quad \frac{x}{-\frac{d}{a}} + \frac{y}{-\frac{d}{b}} + \frac{z}{-\frac{d}{c}} = 1 \,.$$

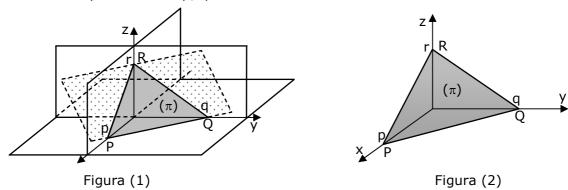
Fazendo $p = -\frac{d}{a}, \mathbf{q} = -\frac{d}{b}$ e $r = -\frac{d}{c}$, temos a **equação segmentária** do plano:

$$\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 1.$$

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

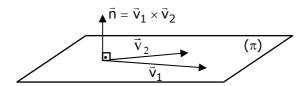
Os pontos P(p,0,0), Q(0,q,0) e R(0,0,r) são as interseções do plano (π) com os eixos coordenados Ox, Oy e Oz, respectivamente. O plano (π) ao "passar" pelo \Re^3 deixa "traços". Esses traços são as retas, interseção com os planos coordenados xy, xz e yz. Os traços do plano (π) são as retas: $(r_{PQ}): X = P + \overrightarrow{PQ} \cdot t$; $(r_{PR}): X = P + \overrightarrow{PR} \cdot t$ e $(r_{OR}): X = Q + \overrightarrow{QR} \cdot t$.

A equação segmentária nos ajuda a visualizar um esboço do plano (π) no \mathfrak{N}^3 . A Figura (1) representa um esboço do plano (π) um pouco mais elaborado, no entanto, poderíamos esboçar o plano (π) como na Figura (2), a qual exibe somente o octante determinado pelos valores p, q e r. Assim, o "triângulo" PQR representa somente a parte do plano (π) que é visível quando observado do octante determinado pelos valores p, q e r.



6.2 Vetor Normal ao Plano

Seja um plano (π) : $X = A + \vec{v}_1 t_1 + \vec{v}_2 t_2$. O vetor \vec{n} normal (ortogonal) ao plano (π) é ortogonal a qualquer vetor do plano, em particular aos vetores \vec{v}_1 e \vec{v}_2 da equação vetorial. Do produto vetorial entre dois vetores, tem-se que $\vec{n} = \vec{v}_1 \times \vec{v}_2$ é um vetor normal ao plano. Demonstrar-se que as coordenadas do vetor normal são iguais aos coeficientes a,b e c da equação geral do plano, ou seja, se (π) : ax + by + cz + d = 0 então $\vec{n} = (a,b,c)$.



Exemplo (1): Dado um plano (π) que contém os pontos $A\left(-2,\frac{1}{2},1\right)$, $B\left(0,2,1\right)$ e $C\left(0,1,2\right)$, determine para o plano (π) :

- a) A equação Vetorial
- b) Equações Paramétricas
- c) Equação Geral
- d) Equação Segmentária

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

e) O vetor normal

f) Os traços

Solução:

- a) Tomando o ponto B(0,2,1) e os vetores $\overrightarrow{BA} = \left(-2, -\frac{3}{2}, 0\right)$ e $\overrightarrow{CB} = \left(0,1,-1\right)$, a equação vetorial é: $(\pi): X = B + \overrightarrow{BA} \cdot t_1 + \overrightarrow{CB} \cdot t_2 \Rightarrow X = (0,2,1) + \left(-2, -\frac{3}{2}, 0\right)t_1 + (0,1,-1)t_2$.
- b) Equações Paramétricas: (π): $\begin{cases} x=-2t_1\\ y=2-\frac{3}{2}t_1+t_2\;,\;\forall t_1,t_2\in\Re\;.\\ z=1-t_2 \end{cases}$
- c) Fazendo X(x,y,z) e tomando ponto B(0,2,1), temos que os vetores \overrightarrow{BX} , \overrightarrow{BA} e \overrightarrow{CB}

são coplanares, Logo:
$$\overrightarrow{[BX,BA,CB]} = \begin{vmatrix} x-0 & y-2 & z-1 \\ -2 & -\frac{3}{2} & 0 \\ 0 & 1 & -1 \end{vmatrix} = 0 \Rightarrow 3x-4y-4z+12=0$$

que é a equação geral do plano.

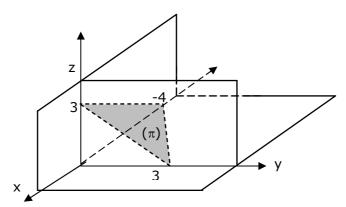
- d) Da equação geral temos: $3x 4y 4z + 12 = 0 \Rightarrow 3x 4y 4z = -12 \Rightarrow \frac{3}{-12}x \frac{4}{-12}y \frac{4}{-12}z = \frac{-12}{-12} \Rightarrow \frac{x}{-4} + \frac{y}{3} + \frac{z}{3} = 1$ que a equação segmentária.
- e) Da equação geral 3x 4y 4z = -12 vem que $\vec{n} = (3,-4,-4)$ é o vetor normal ao plano.
- f) Da equação segmentária $\frac{x}{-4} + \frac{y}{3} + \frac{z}{3} = 1$ temos que: $\begin{cases} p = -4 \\ q = 3 \end{cases}$ Então: r = 3

P(p,0,0) = (-4,0,0), Q(0,q,0) = (0,3,0) e R(0,0,r) = (0,0,3). Portanto, os traços sobre os planos coordenados são as reta:

$$(r_{PO})$$
: $X = P + \overrightarrow{PQ} \cdot t \Rightarrow X = (-4,0,0) + (4,3,0) \cdot t$

$$(r_{PR})$$
: $X = P + \overrightarrow{PR} \cdot t \Rightarrow X = (-4,0,0) + (4,0,3) \cdot t$

$$(r_{QR}): X = Q + \overrightarrow{QR} \cdot t \implies X = (0,3,0) + (0,-3,3) \cdot t$$



Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

6.3 Casos particulares de planos

- **1) Plano passando pelo origem:** Se o plano passa pela origem, então O(0,0,0) pertence ao plano. Na equação geral do plano temos $0x + 0y + 0z + d = 0 \Rightarrow d = 0$. Todo plano passando pela origem o termo independente é zero, logo sua equação é do tipo: ax+by+cz=0.
- **2) Plano paralelo a um dos eixos coordenados:** Quando na equação geral do plano o coeficiente de uma das variáveis for nulo, o plano é paralelo a eixo coordenado correspondente a esta variável. Assim:
- a) ax+by+0z+d=0 ou $ax+by+d=0 \Rightarrow c=0 \Rightarrow plano paralelo ao eixo Oz$
- b) ax+0y+cz+d=0 ou $ax+cz+d=0 \Rightarrow b=0 \Rightarrow plano paralelo ao eixo Oy$
- c) 0x+by+cz+d=0 ou $by+cz+d=0 \Rightarrow a=0 \Rightarrow plano paralelo ao eixo <math>0x$
- **3) Plano que passa por um dos eixos coordenados:** Quando na equação geral do plano o coeficiente de uma das varáveis e o termo independente forem nulos (d=0), representa que ele passa (contém) pelo eixo coordenado correspondente a esta variável. Assim:
- a) $ax+by=0 \Rightarrow c=d=0 \Rightarrow plano passa pelo eixo Oz$
- b) $ax+cz=0 \Rightarrow b=d=0 \Rightarrow plano passa pelo eixo Oy$
- c) by+cz=0 \Rightarrow a=d=0 \Rightarrow plano passa pelo eixo Ox
- **4) Plano paralelo a um dos planos coordenados:** Quando na equação geral do plano os coeficientes de duas variáveis forem nulos, representa que ele é paralelo ao plano coordenado formado por estas pelas variáveis. Assim:
- a) $ax+d=0 \Rightarrow b=c=0 \Rightarrow$ plano paralelo ao plano yz
- b) by+d=0 \Rightarrow a=c=0 \Rightarrow plano paralelo ao plano xz
- c) $cz+d=0 \Rightarrow a=b=0 \Rightarrow plano paralelo ao plano xy$

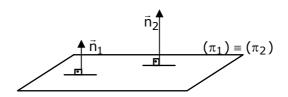
6.4 Posição relativa entre Planos

Há duas posições relativas entre dois planos: paralelos e concorrentes. Existem dois casos particulares: coincidentes (é um caso particular entre planos paralelos) e perpendiculares (é um caso particular entre planos concorrentes).

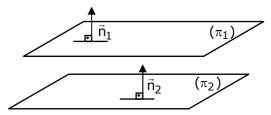
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Sejam (π_1) : $a_1x + b_1y + c_1z + d_1 = 0$ e $e(\pi_2)$: $a_2x + b_2y + c_2z + d_2 = 0$ as equações de dois planos com seus respectivos vetores normais $\vec{n}_1 = (a_1, b_1, c_1)$ e $\vec{n}_2 = (a_2, b_2, c_2)$. Analisando as posições relativas entre dois planos vem:

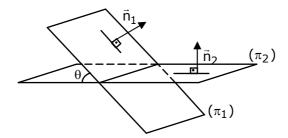
1) Planos Coincidentes: São planos superpostos e o ângulo entre eles é $\theta=0^\circ$. Analisando a dependência linear entre os vetores normais, vem que: $\{\vec{n}_1,\vec{n}_2\}$ LD (paralelos) e vale a relação: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}$



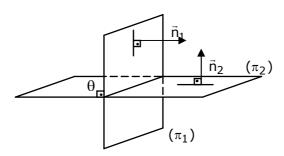
2) Planos Paralelos: São planos disjuntos (não existe interseção entre eles) e o ângulo entre eles é $\theta=0^{\circ}$. Analisando a dependência linear entre os vetores normais, vem que: $\{\vec{n}_1,\vec{n}_2\}$ LD (paralelos) e vale a relação: $\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\neq\frac{d_1}{d_2}$



3) Planos Concorrentes: Existe a interseção e o ângulo entre eles é $\theta \neq 90^{\circ}$. Analisando a dependência linear e o produto escalar entre os vetores normais, vem que: $\{\vec{n}_1, \vec{n}_2\}$ LI (não paralelos) e $\vec{n}_1 \cdot \vec{n}_2 \neq 0$.



4) Planos Perpendiculares: Existe a interseção e o ângulo entre eles é $\theta = 90^{\circ}$. Analisando a dependência linear e o produto escalar entre os vetores normais, vem que: $\{\vec{n}_1, \vec{n}_2\}$ LI (não paralelos) e $\vec{n}_1 \cdot \vec{n}_2 = 0$



Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

Resumo: Sejam (π_1) : $a_1x + b_1y + c_1z + d_1 = 0$ e (π_2) : $a_2x + b_2y + c_2z + d_2 = 0$ as equações de dois planos com seus respectivos vetores normais $\vec{n}_1 = (a_1, b_1, c_1) \ \vec{n}_2 = (a_2, b_2, c_2)$.

1) Planos Coincidentes: $\{\vec{n}_1, \vec{n}_2\}$ LD (paralelos) e $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}$.

2) Planos Paralelos: $\{\vec{n}_1, \vec{n}_2\}$ LD (paralelos) e $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \neq \frac{d_1}{d_2}$.

3) Planos Concorrentes: $\{\vec{n}_1,\vec{n}_2\}$ LI (não paralelos) e $\vec{n}_1\cdot\vec{n}_2\neq 0$.

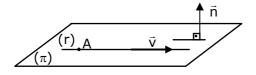
4) Planos Perpendiculares: $\{\vec{n}_1,\vec{n}_2\}$ LI (não paralelos) e $\vec{n}_1 \cdot \vec{n}_2 = 0$.

6.5 Posição Relativa entre Reta e Plano

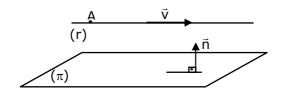
Há duas posições relativas entre uma reta e um plano: reta paralela ao plano e reta concorrente ao plano. Existem dois casos particulares: reta contida no plano (é um caso particular de reta paralela ao plano) e reta perpendicular ao plano (é um caso particular de reta concorrente ao plano).

Sejam uma reta (r): $X = A + t \cdot \vec{v}$, $\forall t \in \Re$ e um plano de equação geral (π) : ax + by + cz + d = 0. Tem-se que $\vec{n} = (a,b,c)$ é um vetor normal ao plano (π) . Analisando as posições relativas entre uma reta e um plano vem:

1) Reta contida no plano: Existe a interseção entre a reta (r) e o plano (π) , que neste caso é a própria reta (r) e o ângulo entre a reta e plano é $\theta = 0^{\circ}$. Nestas condições vem que: $\vec{v} \cdot \vec{n} = 0$ e $A \in (\pi)$.

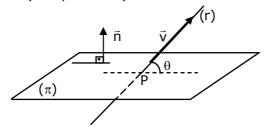


2) Reta paralela ao plano: Não existe interseção entre a reta (r) e o plano (π) e o ângulo entre eles é $\theta = 0^{\circ}$. Nestas condições vem que: $\vec{v} \cdot \vec{n} = 0$ e A \notin (π).

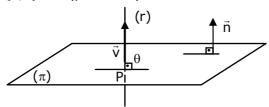


Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

3) Reta concorrente ao plano: Existe a interseção entre a reta (r) e o plano (π), que neste caso é um ponto P e o ângulo entre eles é $\theta \neq 90^{\circ}$. Nestas condições vem que: $\vec{v} \cdot \vec{n} \neq 0$ e $\{\vec{v}, \vec{n}\}$ LI (não paralelos).



4) Reta perpendicular ao plano: Existe a interseção entre a reta (r) e o plano (π) , que neste caso é um ponto P e o ângulo entre eles é $\theta = 90^{\circ}$. Nestas condições vem que: $\vec{v} \cdot \vec{n} \neq 0$ e $\{\vec{v}, \vec{n}\}$ LD (paralelos).



Resumo: Sejam uma reta (r): $X = A + t \cdot \vec{v}$ e um plano (π) : ax + by + cz + d = 0 com seu vetor normal \vec{n} .

1) Reta contida no Plano: $\vec{v} \cdot \vec{n} = 0 \ e \ A \in (\pi)$.

2) Reta paralela ao Plano: $\vec{v} \cdot \vec{n} = 0 \ e \ A \notin (\pi)$.

3) Reta concorrente ao Plano: $\vec{v} \cdot \vec{n} \neq 0$ e $\{\vec{v}, \vec{n}\}$ LI (não paralelos)

4) Reta perpendicular ao Plano: $\vec{v} \cdot \vec{n} \neq 0$ e $\{\vec{v}, \vec{n}\}$ LD (paralelos)

Exemplo (2): Verificar a posição relativa entre os planos (π_1) : 2x + 3y - 4 = 0 e (π_2) : 2x + 9y + 4z = 0. Determine a interseção, se houver.

Solução: Os vetores normais aos planos são $\vec{n}_1=(2,3,0)$ e $\vec{n}_2=(2,9,4)$. Como $\{\vec{n}_1,\vec{n}_2\}$ são LI e $\vec{n}_1\cdot\vec{n}_2\neq 0$, os planos são concorrentes, existe a interseção entre eles que é uma reta. Para determinar a interseção devemos resolver o sistema linear com a equação dos dois planos e expressar duas dessas variáveis em função de uma terceira. Assim: $\begin{cases} 2x+3y-4=0\\ 2x+9y+4z=0 \end{cases}$ Da primeira equação temos: $2x=-3y+4 \quad (*).$ Vamos substituir este valor de 2x na segunda equação:

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

$$-3y + 4 + 9y + 4z = 0 \Rightarrow \Rightarrow z = \frac{-3y - 2}{2}$$
 (**). De (*) e (**) segue que:

$$\begin{cases} x = \frac{-3y+4}{2} \\ z = \frac{-3y-2}{2} \end{cases} \Rightarrow \begin{cases} y = \frac{2x-4}{-3} \\ y = \frac{2z+2}{-3} \end{cases} \Rightarrow$$

$$\frac{2x-4}{-3} = y = \frac{2z+2}{-3} \implies \frac{\frac{2x}{2} - \frac{4}{2}}{\frac{-3}{2}} = y = \frac{\frac{2z}{2} + \frac{2}{2}}{\frac{-3}{2}} \implies \frac{x-2}{\frac{-3}{2}} = y = \frac{z+1}{\frac{-3}{2}}. \text{ Logo a reta}$$

interseção de (π_1) e (π_2) é (r): $\frac{x-2}{\frac{-3}{2}} = y = \frac{z+1}{\frac{-3}{2}}$, cujo vetor diretor é

 $\vec{v} = \left(-\frac{3}{2},1,-\frac{3}{2}\right)$ Como o vetor diretor de uma reta pode ser qualquer vetor paralelo

a ela, então fazendo $\vec{w} = -2 \cdot \vec{v} = -2 \cdot \left(-\frac{3}{2}, 1, -\frac{3}{2}\right) \Rightarrow \vec{w} = \left(3, -2, 3\right)$. Portanto, a reta (r) pode ser escrita como: (r): $\frac{x-2}{3} = \frac{y}{-2} = \frac{z+1}{3}$.

Exemplo (3): Verificar a posição relativa da reta (r): $\frac{x-1}{1} = \frac{y-2}{3} = \frac{z-4}{2}$ e o plano (π) : x + 3y + 2z - 1 = 0. Determine a interseção, se houver.

Solução: Da reta temos: (r): $\begin{cases} A(1,2,4) \\ \vec{v} = (1,3,2) \end{cases}$ Da equação do plano, tem-se: $\vec{n} = (1,3,2)$ Como $\vec{v} \cdot \vec{n} \neq 0$ e $\{\vec{v},\vec{n}\}$ LD, a reta é perpendicular ao plano e a interseção entre eles é um ponto. Da reta temos: $\begin{cases} \frac{x-1}{1} = \frac{y-2}{3} \Rightarrow x = \frac{y+1}{3} \\ \frac{y-2}{3} = \frac{z-4}{2} \Rightarrow z = \frac{2y+8}{3} \end{cases}$

Substituindo na equação do plano temos: $\left(\frac{y+1}{3}\right) + 3y + 2\left(\frac{2y+8}{3}\right) - 1 = 0 \implies y = -1$. Portanto, $(r) \cap (\pi) = P(0, -1, 2)$.

Exemplo (4): Determine a equação do plano (π) que contém o ponto A(1,1,-2) e é perpendicular a reta $(r): \frac{X}{3} = -y = \frac{z-1}{-3}$.

Solução: Este exemplo é relativamente simples, mas importante, pois, ele mostra outra forma de determinar a equação de um plano, ou seja, quando tivermos um vetor normal ao plano e um ponto dele é possível determinar sua equação geral. De fato, se reta é perpendicular ao plano, seu vetor diretor é um vetor normal ao

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

plano. Então, seja $\vec{n}=\vec{v}=(3,-1,-3)$. Assim, na equação geral do plano teremos: $ax+by+cz+d=0 \Rightarrow 3x-y-3z+d=0$. Para determinarmos o termo independente d, basta substituir o ponto A na equação do plano, pois, se $A\in(\pi)$ então ele satisfaz a equação do plano. Logo, $3(1)-(1)-3(-2)+d=0 \Rightarrow d=-8$. Portanto, a equação do plano é 3x-y-3z-8=0.

Exercícios Propostos

1) Dados os planos (π_1) : -7x + y + 4z + 9 = 0 e (π_2) : x + 3y + z - 6 = 0, verificar a posição relativa entre eles. Determine a interseção, se houver.

Resp: perpendiculares e
$$(\pi_1) \cap (\pi_2)$$
 é a reta $\frac{x-3}{-1} = y = \frac{z-3}{-2}$

- 2) Determine a equação do plano (θ) que é paralelo ao plano (π) : x-2y+4z-7=0 e passa pelo ponto P(-1,0,-1). Resp: (θ) : x-2y+4z+5=0
- 3) Determine a equação do plano (θ) definido pelas retas (r): $\frac{x-4}{4} = \frac{y-3}{2} = z-2$ e (s): 2x-10 = y-5 = -z. Resp: (θ): 2x-3y-2z+5=0
- 4) Achar as equações simétricas da reta que passa pela origem, é paralela ao plano $(\pi): 3x-2y+z-2=0 \text{ e intercepta a reta } (r): x-1=\frac{y+2}{3}=z \text{ .}$

Resp:
$$\frac{x}{9} = \frac{y}{17} = \frac{z}{7}$$

5) Determine na forma simétrica a equação da reta que passa pelo ponto P(2,3,-1) e é paralela aos planos (π_1) : 2x - 3y + z - 1 = 0 e (π_2) : x + 2y + 3z + 8 = 0.

Resp:
$$\frac{x-2}{11} = \frac{y-3}{5} = \frac{z+1}{-7}$$

COMENTÁRIOS IMPORTANTES

- 1) Não existem planos reversos e nem ortogonais. Da mesma forma, não existe reta reversa ao plano e nem reta ortogonal ao plano. Portanto, cuidado com as afirmações feitas a respeito das posições relativas entre planos e entre retas e planos.
- 2) O vetor normal \vec{n} a um plano (π) é facilmente obtido da equação geral. Porém, qualquer outro vetor \vec{w} paralelo a \vec{n} , ou seja: $\vec{w} = \alpha \cdot \vec{n}$, também é um vetor normal ao plano (π) . Assim, qualquer vetor \vec{w} normal ao plano pode ser usado para a construção da equação geral do plano (π) .

Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru

3) Deve-se notar que um plano é constituído de pontos. Como estamos introduzindo os conceitos vetoriais para definirmos e trabalhamos com os planos, é muito comum, quando utilizamos suas equações, confundir o que são pontos do plano e o que são vetores paralelos ou contidos no plano. Por exemplo: Considere o plano de equação geral (π) : 2x - y + 4z - 7 = 0, logo seu vetor norma é $\vec{n} = (2,-1,4)$. Como é comum representar um vetor expressando somente suas coordenadas por $\vec{v} = (x, y, z)$, isso pode causar confusão com as coordenadas x, y e z dos pontos do plano, ou seja, as coordenadas x, y e z que aparecem na equação geral (bem como nas outras equações) 2x - y + 4z = 0, são as coordenadas dos pontos do plano e não de um vetor paralelo ou contido nele. Um vetor \vec{v} só será paralelo ou estará contido no plano se $\vec{v} \cdot \vec{n} = 0$. No entanto, para que um ponto pertença ao plano é necessário que ele satisfaça a equação do plano. Note que o ponto $P(2,1,1) \in (\pi)$, pois: $2 \cdot 2 - 1 \cdot 1 + 4 \cdot 1 - 7 = 0 \implies 0 = 0$, mas o vetor $\vec{v} = (2,1,1)$ não é paralelo ao plano, pois $\vec{n} \cdot \vec{v} = 2 \cdot 2 + (-1) \cdot 1 + 4 \cdot 1 = 7 \neq 0$. Já o vetor $\vec{w} = (1,6,1)$ é paralelo ao plano, pois $\vec{n} \cdot \vec{w} = 2 \cdot 1 + (-1) \cdot 6 + 4 \cdot 1 = 0$, mas o ponto de coordenadas $Q(1,6,1) \notin (\pi)$, pois: $2 \cdot 1 - 1 \cdot 6 + 4 \cdot 1 - 7 = 0 \Rightarrow -7 = 0$ o que é uma contradição.