

4300259 – Termo-estatística (DIURNO)

Revisão de Termodinâmica

Entropia

e

Segunda Lei da Termodinâmica

Entropia

A variação de entropia (dS) de um sistema a temperatura T que troca calor dQ <u>quase estaticamente</u> é definida como:

$$dS = \frac{dQ}{T}$$

Teorema de Clausius: *A variação de entropia em um ciclo (caminho termodinâmico fechado)* <u>quase estático</u> é nula:

→

$$\oint \frac{dQ}{T} = 0$$

Isso significa que a entropia é uma função de estado.

Usando esta definição de entropia, a 1a. Lei (dU = dQ - dW) pode ser reescrita como:

$$dU = TdS - PdV \implies dS = \left(\frac{1}{T}\right)dU + \left(\frac{P}{T}\right)dV$$

Entropia do Gás Ideal

Usando a expressão abaixo da 1a. Lei da Termodinâmica:

$$dS = \left(\frac{1}{T}\right)dU + \left(\frac{P}{T}\right)dV$$

e as relações para o gás ideal, $dU = nc_V dT$ e PV = nRT chega-se a:

$$dS = rac{nc_V}{T}dT + rac{nR}{V}dV$$
 Lembre que: R = 8,3 J/mol.K é a constante dos gases e c $_{
m V}$ é o calor espcífico molar [J/mol.K]

espcífico molar [J/mol.K]

Portanto a variação de entropia entre um estado A e B é:

$$\Delta S = nc_V ln\left(\frac{T_B}{T_A}\right) + nR ln\left(\frac{V_B}{V_A}\right)$$

Note que a entropia aumenta quando o sistema aquece e/ou expande.

Entropia e Temperatura

Vamos retomar a expressão para uma variação infinitesimal de entropia discutida na última aula:

$$dS = \left(\frac{1}{T}\right)dU + \left(\frac{P}{T}\right)dV$$

Do ponto de vista matemático, a expressão acima constitui o diferencial da função S(U,V), que tem a forma geral:

$$dS = \left(\frac{\partial S}{\partial U}\right)_V dU + \left(\frac{\partial S}{\partial V}\right)_U dV$$

Comparando as expressões:

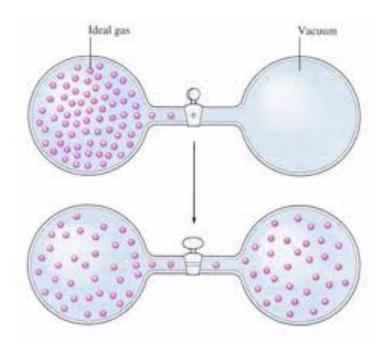
$$\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_{V}$$
 (Voltaremos a esta relação adiante na disciplina).

$$\frac{P}{T} = \left(\frac{\partial S}{\partial V}\right)_{U}$$

Expansão Livre

O sistema mostrado abaixo encontra-se isolado (mecânica e termicamente). Na situação inicial, uma quantidade de gás ideal encontram-se em equilíbrio no compartimento à esquerda. A válvula de contenção é então aberta, deixando o gás se expandir *rapidamente*. Após certo tempo, uma nova situação de equilíbrio é atingida, na qual o gás tem o dobro do volume inicial.

- (a) Calcule a variação de energia interna do gás entre as situações de equilíbrio inicial e final.
- (b) Calcule a variação de entropia entre as mesmas situações.



		nicial T,	V.P.n	
12.10		inal ?,	2V,?,n	0
T	o términament	10-0	I 1º Lei du	= 10-
Vácuo	D Fresistiva 20	dW=0	5 40 A	U=0
^	deal = U(n.T)=U(T)=	AT=0 =	T+=T,
	lacon	el.	a Like of Seaton (Contains	
final	T, 2V ?, n	PV=n	RT Pf=	<u> R</u>
final	T, 2V, P/2, n	had one	43.63	2
20	1 (1)	0	ation and a state of	Obs.
a) Re	sposta DU=	0 - 1	- 1- 1	40.00
- Como	So ma	trues y	051000	20
de pero	e AS dos e		quase-esta	(00, t
TALC.	al. TVP.	^	1	
final	T. 2V. P/	e n proce	guase-esta	Etico
	70	, ,	1	
AS=	new IF +	nRm/JE	- nRm.	2 > 0
	(Ti)	(Vi	/	4

(a) Estando o sistema isolado, por definição não haverá troca de calor (Q =0). Adicionalmente, no vácuo não há resistência a expansão, então não há força realizando trabalho (W = 0). Assim, pela 1ª. Lei a variação de energia interna será nula, ΔU = 0.

Desta forma, como consequência as temperaturas inicial e final serão iguais, pois para gases ideais vale $dU = nc_V dT$. Então $\Delta U = 0 \Rightarrow \Delta T = 0$.

(b) A expansão do gás não é quase-estática, havendo apenas situações de equilíbrio inicial e final. Sendo a entropia uma função de estado, sua variação entre dois estados de equilíbrio não depende do caminho (processo) que conecta esses estados. Assim, como as temperaturas inicial e final são iguais, iremos calcular ΔS através de uma expansão isotérmica quase-estática para obter a variação de entropia:

$$dS = nc_V ln\left(rac{T_B}{T_A}
ight) + nR ln\left(rac{V_B}{V_A}
ight)$$
 $\Delta S = nR ln(2) > 0$

Segunda Lei da Termodinâmica

A entropia de um *sistema isolado* aumenta ou permanece constante (tende a um valor máximo):

$$\Delta S \geq 0$$
.

Em processo termodinâmico qualquer, não necessariamente quase estático, *a variação de entropia total* (sistema + ambiente) aumenta ou permanece constante,

$$\Delta S_{\text{universo}} \geq 0$$
.

OBS: Sendo $\Delta S_{\text{universo}} = \Delta S_{\text{sistema}} + \Delta S_{\text{ambiente}}$ (a variação de entropia do universo é igual à soma das variações do sistema e do ambiente, ou vizinhança, que troca calor com o sistema), vale enfatizar que a 2a Lei estabelece uma condição sobre $\Delta S_{\text{universo}}$. Nada impede que $\Delta S_{\text{sistema}} < 0$ ou $\Delta S_{\text{ambiente}} < 0$, desde que $\Delta S_{\text{universo}} \ge 0$.

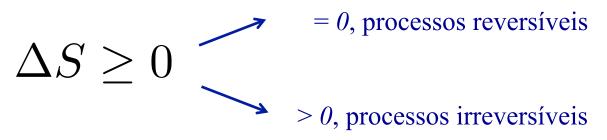
Exercício conceitual:

Se as afirmações abaixo são verdadeiras ou falsas:
() É impossível diminuir a entropia de um sistema isolado.
() Em um ciclo termodinâmico, a variação de entropia do sistema é
positiva.
() Em um processo isotérmico reversível, a variação de entropia de
um gás ideal é igual ao calor cedido ao gás dividido por sua
temperatura.
() Um sistema termodinâmico sujeito a uma transformação
adiabática (quase-estática) terá variação de entropia nula.
() Se um sistema termodinâmico composto por várias partes (em
contato térmico entre si) sofre um processo irreversível, não poderá
haver diminuição da entropia em nenhuma das partes.

- (F) É impossível diminuir a entropia de um sistema isolado.
- Se o sistema isolado estiver em equilíbrio, a entropia permanecerá constante. Caso contrário, aumentará (até que o equilíbrio seja atingido).
- (F) Em um ciclo termodinâmico, a variação de entropia do sistema é positiva.
- Como a entropia é uma função de estado, sua variação será nula em um ciclo. Desde que os estados inicial (e final, pois são iguais em um ciclo) seja de equilíbrio, a afirmação é verdadeira mesmo que o ciclo não seja quase estático.
- (V) Em um processo isotérmico reversível, a variação de entropia de um gás ideal é igual ao calor cedido ao gás dividido por sua temperatura.
- Partindo da definição dS = dQ/T, e lembrando que a temperatura é constante (digamos, $T_{\rm C}$), será trivial integrar $\Delta S = (1/T_{\rm C}) \int dQ = Q/T_{\rm C}$.
- (V) Um sistema termodinâmico sujeito a uma transformação adiabática (quase-estática) terá variação de entropia nula.
- Também segue da definição dS = dQ/T, pois dQ = 0.
- (F) Se um sistema termodinâmico composto por várias partes (em contato térmico entre si) sofre um processo irreversível, não poderá haver diminuição da entropia em nenhuma das partes.
- A entropia total (soma das entropias das partes) não pode diminuir, de acordo com a Segunda Lei. Isso não impede que alguma das partes (não isoladas) tenha $\Delta S < 0$.

Princípio da Irreversibilidade

- Processos reais são irreversíveis
- Apenas em processos quase-estáticos (idealizados) ocorre $\Delta S = 0$, isto é, apenas esses processos idealizados são *reversíveis*



- A entropia de um sistema isolado nunca descrece, portanto o equilíbrio de uma sistema isolado é um estado de entropia máxima.
- A interpretação microscópica deste princípio foi feita por Boltzmann, com bases estatísticas, ao identificar a entropia de um sistema de N partículas ocupando um volume V e tendo energia interna U, S(N, V, U).

Entropia (definição de Boltzmann)

$$S = k l n \Omega$$

 $k = 1,38 \times 10^{-23}$ J/K é a constante de Boltzmann; e

 Ω é o número total de microestados ou multiplicidade, ou seja configurações compatíveis com os vínculos externos impostos ao sistema. Na linguagem estatística, diz-se que o conjunto de valores (N, V, U) define um macroestado e $\Omega(N, V, U)$ é o número de microestados compatíveis com o macroestado.

Este é uma definição estatística da entropia.

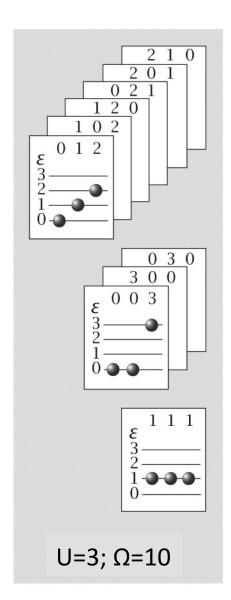
Vamos utilizar sistemas modelo simples para calcularmos a entropia usando esta definição de Boltzmann.

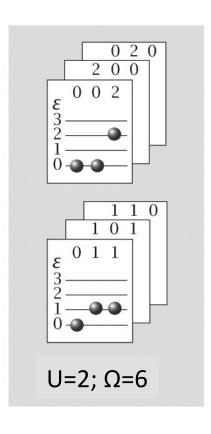
Modelos Simplificados

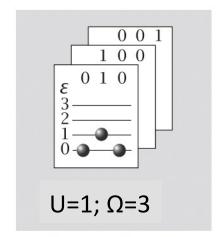
Exercícios:

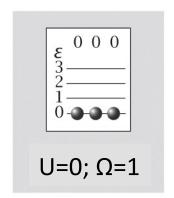
- 1) Vamos considerar um sistema com 3 partículas (N=3) não interagentes num volume V fixo. Cada partícula pode ter energia interna $\varepsilon=0, 1, 2$ ou $3\varepsilon_0$. Portanto como a energia interna U deste sistema é a soma da energia interna das 3 partículas $(U=\varepsilon_1+\varepsilon_2+\varepsilon_3)$, a menor energia interna do sistema será 0 (zero) e a maior é $9\varepsilon_0$, ou seja $0 \le U \le 9\varepsilon_0$. Determine:
- (a) a quantidade de microestados para macroestado A, $U_A = 2\varepsilon_0$, para o macroestado B, $U_B = 4\varepsilon_0$ e para o macroestado C, $U_C = 8\varepsilon_0$.
- (b) a variação de entropia para o sistema ir do estado A para B e do estado B para C.
- (c) Sabendo que para um sistema de partículas não interagentes a energia interna só depende de N e T, U(N,T), então estas variações de entropia são compatíveis com o conhecimento termodinâmico da entropia?

Modelos Simplificados









Permutação com repetição = número de sequências ordenadas de diferentes formas que podem ser formados por N elementos sendo a deles indistinguíveis, b deles indistinguíveis, c deles indistinguíveis, até z deles indistinguíveis:

$$\Omega = P_N^{(a,b,c,\cdots,z)} = \frac{N!}{a!b!c!\cdots z!}$$

Figure 3.12 Molecular Driving Forces 2/e (© Garland Science 2011)

Exercício 1) S estatística
Sα ln Ω onde Ω = nº de micro estados (multiplicida)
Sistema de Nos particulas identicas e not interagentes
$U = \sum_{i=1}^{\infty} \mathcal{E}_i = \mathcal{E}_1 + \mathcal{E}_2 + \mathcal{E}_2$
estado A Un= 260 \ \Q = PN= N! estado B Ug= 460 duplicou a! b! estado C Uc= 860 UNIDOT também duplicou
estado C $V_c = 8E_3e$ $V(N,T) \circ T$ também duplicou duplicou $\Delta S = ncv \ln (I_E) + nR \ln (I_E)$ estado A $2 = (0+0+2) \circ U(0+1+1)$ $\Delta S \propto \ln(2)$ $\Delta = P_3^2 + P_3^2 = 3! + 3! - \ln (3) + \ln (2)$
estado B $4 = (0+2+2)$ ou $(0+1+3)$ ou $(1+1+2)$ $-2B = P_3^2 + P_3 + P_3^2 = 3! + 3! + 3! - 3+6+3=12$
estado C $8 = (2+3+3)$ $-2c = R_3^2 = 3! = 3$
Estados 2 hos
B 12 25 $OS = k \ln \frac{\Omega_B}{R} - k \ln \frac{12}{R}$
OSAB = kh(2) = DS & h(2) compativel
ASac x ln (Oc) x ln (3) = ln (1) = ln (4)
(12) Inegativo

STQQSS	Preencher a tabela ao lado
0 0	h_Ω * ε=nεο n=0,1,2 e3 V=ε,+ε=+ε= 0 ∠ U ∠ 9εο
2 3 4 5	# Outra situação Ei=não n=0,1,200
6 7 8	Maximizaçã ha
9	
	7