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Preface

Aeroelasticity is the study of the interaction of aerodynamic, elastic and inertia forces. For fixed wing
aircraft there are two key areas: (a) static aeroelasticity, where the deformation of the aircraft influences
the lift distribution, can lead to the statically unstable condition of divergence and will normally reduce
the control surface effectiveness, and (b) dynamic aeroelasticity, which includes the critical area of flutter,
where the aircraft can become dynamically unstable in a condition where the structure extracts energy
from the air stream.

Aircraft are also subject to a range of static and dynamic loads resulting from flight manoeuvres
(equilibrium/steady and dynamic), ground manoeuvres and gust/turbulence encounters. These load cases
are responsible for the critical design loads over the aircraft structure and hence influence the structural
design. Determination of such loads involves consideration of aerodynamic, elastic and inertia effects and
requires the solution of the dynamic responses; consequently there is a strong link between aeroelasticity
and loads.

The aircraft vibration characteristics and response are a result of the flexible modes combining with
the rigid body dynamics, with the inclusion of the flight control system (FCS) if it is present. In this
latter case, the aircraft will be a closed loop system and the FCS affects both the aeroelasticity and loads
behaviour. The interaction between the FCS and the aeroelastic system is often called aeroservoelasticity.

This book aims to embrace the range of basic aeroelastic and loads topics that might be encountered
in an aircraft design office and to provide an understanding of the main principles involved. Colleagues in
industry have often remarked that it is not appropriate to give some of the classical books on aeroelasticity
to new graduate engineers as many of the books are too theoretical for a novice aeroelastician. Indeed,
the authors have found much of the material in them to be too advanced to be used in the Undergraduate
level courses that they have taught. Also, the topics of aeroelasticity and loads have tended to be treated
separately in textbooks, whereas in industry the fields have become much more integrated. This book is
seen as providing some grounding in the basic analysis techniques required which, having been mastered,
can then be supplemented via more advanced texts, technical papers and industry reports.

Some of the material covered in this book developed from Undergraduate courses given at Queen
Mary College, University of London and at the University of Manchester. In the UK, many entrants
into the aerospace industry do not have an aerospace background, and almost certainly will have little
knowledge of aeroelasticity or loads. To begin to meet this need, during the early 1990s the authors
presented several short courses on Aeroelasticity and Structural Dynamics to young engineers in the
British aerospace industry, and this has influenced the content and approach of this book. A further major
influence was the work by Hancock, Simpson and Wright (1985) on the teaching of flutter, making use
of a simplified flapping and pitching wing model with strip theory aerodynamics (including a simplified
unsteady aerodynamics model) to illustrate the fundamental principles of flutter. This philosophy has
been employed here for the treatment of static aeroelasticity and flutter, and has been extended into the
area of loads by focusing on a simplified flexible whole aircraft model in order to highlight key features
of modelling and analysis.

The intention of the book is to provide the reader with the technical background to understand the
underlying concepts and application of aircraft aeroelasticity and loads. As far as possible, simplified
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mathematical models for the flexible aircraft are used to illustrate the phenomena and also to demon-
strate the link between these models, industrial practice and the certification process. Thus, fairly simple
continuum models based upon a small number of assumed modes (so avoiding partial differential equa-
tions) have been used. Consequently, much of the book is based upon strip theory aerodynamics and the
Rayleigh—Ritz assumed modes method. By using this approach, it has been possible to illustrate most
concepts using a maximum of 3 degrees of freedom. Following on from these continuum models, basic
discretized structural and aerodynamic models are introduced in order to demonstrate some underlying
approaches in current industrial practice. The book aims to be suitable for final year Undergraduate or
Masters level students, or engineers in industry who are new to the subject. For example, it could provide
the basis of two taught modules in aeroelasticity and loads. It is hoped that the book will fill a gap in
providing a broad and relatively basic introductory treatment of aeroelastics and loads.

A significant number of different topics are covered in order to achieve the goals of this book, namely
structural dynamics, steady and unsteady aerodynamics, loads, control, static aeroelastic effects, flutter,
flight manoeuvres (both steady/equilibrium and dynamic), ground manoeuvres (e.g. landing, taxiing),
gust and turbulence encounters, calculation of loads and, finally, finite element and three-dimensional
panel methods. In addition, a relatively brief explanation is given as to how these topics might typically
be approached in industry when seeking to meet the certification requirements. Most of the focus is on
commercial and not military aircraft, though of course all of the underlying principles, and much of the
implementation, are common between the two.

The notation employed has not been straightforward to define, as many of these disciplines have
tended to use the same symbols for different variables and so inevitably this exercise has been a com-
promise. A further complication is the tendency for aeroelasticity textbooks from the US to use the
reduced frequency k for unsteady aerodynamics, as opposed to the frequency parameter v that is often
used elsewhere. The reduced frequency has been used throughout this textbook to correspond with the
classical textbooks of aeroelasticity.

The book is splitinto three parts. After a brief introduction to aeroelasticity and loads, Part A provides
some essential background material on the fundamentals of single and multiple degree of freedom (DoF)
vibrations for discrete parameter systems and continuous systems (Rayleigh—Ritz and finite element),
steady aerodynamics, loads and control. The presentation is not very detailed, assuming that a reader
having a degree in engineering will have some background in most of these topics and can reference
more comprehensive material if desired.

Part B is the main part of the book, covering the basic principles and concepts required to provide
a bridge to begin to understand current industry practice. The chapters on aeroelasticity include static
aeroelasticity (lift distribution, divergence and control effectiveness), unsteady aerodynamics, dynamic
aeroelasticity (i.e. flutter) and aeroservoelasticity; the treatment is based mostly on a simple two DoF
flapping/pitching wing model, sometimes attached to a rigid fuselage free to heave and pitch. The chapters
on loads include equilibrium and dynamic flight manoeuvres, gusts and turbulence encounters, ground
manoeuvres and internal loads. The loads analyses are largely based on a three DoF whole aircraft model
with heave and pitch rigid body motions and a free—free flexible mode whose characteristics may be
varied, so allowing fuselage bending, wing bending or wing torsional deformation to be dominant. Part B
concludes with an introduction to three-dimensional aerodynamic panel methods and simple coupled
discrete aerodynamic and structural models in order to move on from the Rayleigh—Ritz assumed modes
and strip theory approaches to more advanced methods, which provide the basis for much of the current
industrial practice.

The basic theory introduced in Parts I and II provides a suitable background to begin to understand
Part I1I, which provides an outline of industrial practice that might typically be involved in aircraft design
and certification, including aeroelastic modelling, static aeroelasticity and flutter, flight manoeuvre and
gust/turbulence loads, ground manoeuvre loads and finally testing relevant to aeroelastics and loads.
A number of MATLAB/SIMULINK programs are available on a companion website for this book at
http://www.wiley/go/wright&cooper.
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Series Preface

This book addresses the science of aeroelastics as it applies to aircraft and air vehicle design and as such
is just one of a wide ranging variety of topics that contribute to the over-arching subject of aerospace
systems and their integrated solutions.

Over the past fifty years or so, a wealth of knowledge associated with aerospace systems has been
gleaned by many aerospace engineering specialists who have witnessed a unique transition of available
technologies including the invention of the transistor and its extension to the remarkable levels of solid
state electronics and software integration that we now take for granted. Many of these specialists who
have lived through these technology revolutions from mechanical, structural, electronic and aerodynamic
backgrounds are retiring from full time positions. It is important that the expertise established by this
community of gurus be captured and documented to support the up-coming generation of aerospace
engineers that consider a career in aerospace engineering to be both exciting and fulfilling.

The Aerospace Series by John Wiley & Sons provides a practical and topical series of books authored
by established experts in industry and academia that provide a unique insight into the issues facing the
engineering communities associated with the design development and certification of modern air vehicles.
The range of topics available from this Series is intended to provide a valuable background of knowledge
to industry professionals, operators, and professional institutions. The Series is also intended to be an
important source of aircraft systems knowledge and know-how to aspiring aerospace engineers at both
under-graduate and graduate levels.

Ian Moir, Allan Seabridge, and Roy Langton



Introduction

Aeroelasticity is the subject that describes the interaction of aerodynamic, inertia and elastic forces for
a flexible structure and the phenomena that can result. This field of study is summarized most clearly
by the classical Collar aeroelastic triangle (Collar, 1978), seen in Figure 1, which shows how the major
disciplines of stability and control, structural dynamics and static aeroelasticity each result from the
interaction of two of the three types of force. However, all three forces are required to interact in order
for dynamic aeroelastic effects to occur.

Acroelastic effects have had a major influence upon the design and flight performance of aircraft,
even before the first controlled powered flight of the Wright Brothers. Since some aeroelastic phenomena
(e.g. flutter and divergence) can lead potentially to structural failure, aircraft structural designs have
had to be made heavier (the so-called aeroelastic penalty) in order to ensure that structural integrity has
been maintained through suitable changes in the structural stiffness and mass distributions. The first
recorded flutter problem to be modelled and solved (Bairstow and Fage, 1916; Lanchester, 1916) was the
Handley—Page 0/400 bomber in 1916, shown on the front cover of this book. Excellent histories about the
development of aeroelasticity and its influence on aircraft design can be found in Collar (1978), Garrick
and Reid (1981) and Flomenhoft (1997), with surveys of more recent applications given in Friedmann
(1999) and Livne (2003).

Of course, aeroelasticity is not solely concerned with aircraft, and the topic is extremely relevant for
the design of structures such as bridges, Formula 1 racing cars, wind turbines, turbomachinery blades,

Inertia Forces

VAVAR

Stability
and Control

Vibration

Dynamic
Aeroelasticity

Elastic Aerodynamic

Forces \ / Forces

Static
Aeroelasticity

Figure 1 Collar’s aeroelastic triangle.



XX INTRODUCTION

helicopters, etc. However, in this book only fixed wing aircraft will be considered, with the emphasis
being on large commercial aircraft, but the underlying principles have relevance to other applications.

It is usual to classify aeroelastic phenomena as being either static or dynamic. Static aeroelasticity
considers the nonoscillatory effects of aerodynamic forces acting on the flexible aircraft structure. The
flexible nature of the wing will influence the in-flight wing shape and hence the lift distribution in a steady
(or so-called equilibrium) manoeuvre (see below) or in the special case of cruise. Thus, however accurate
and sophisticated any aerodynamic calculations that are carried out, the final in-flight shape could be in
error if the structure is modelled inaccurately; drag penalties could result and the aircraft range could
reduce. Usually static aeroelastic effects can also lead to a reduction in the effectiveness of the control
surfaces and eventually to the phenomenon of control reversal; here, for example, the aileron has the
opposite effect to that intended because the rolling moment it generates is negated by the wing twist that
accompanies the control rotation. There is also the potentially disastrous phenomenon of divergence to
consider, where the wing twist can increase without limit when the aerodynamic pitching moment on
the wing due to twist exceeds the structural restoring moment. It is important to recognize that the lift
distribution and divergence are influenced by the trim of the aircraft, so strictly speaking the wing cannot
be treated on its own.

Dynamic aeroelasticity is concerned with the oscillatory effects of the aeroelastic interactions, and
the main area of interest is the potentially catastrophic phenomenon of flutter. This instability involves
two or more modes of vibration and arises from the unfavourable coupling of aerodynamic, inertial
and elastic forces; it means that the structure can effectively extract energy from the air stream. The
most difficult issue when seeking to predict the flutter phenomenon is that of the unsteady nature of the
aerodynamic forces and moments generated when the aircraft oscillates, and the effect the motion has on
the resulting forces, particularly in the transonic regime. The presence of flexible modes influences the
dynamic stability modes of the rigid aircraft and so affects the flight dynamics. Also of serious concern is
the potential unfavourable interaction of the flight control system (Pratt, 2000) with the flexible aircraft,
considered in the topic of aeroservoelasticity (also known as structural coupling).

There are a number of textbooks on aeroelasticity, e.g. Broadbent (1954) Scanlan and Rosenbaum
(1960), Fung (1969), Bisplinghoff et al. (1996), Hodges and Pierce (2002) and Dowell et al. (2004).
These offer a comprehensive and insightful mathematical treatment of more fundamental aspects of the
subject. However, the approach in most of these books is on the whole somewhat theoretical and often
tends to restrict coverage to static aeroelasticity and flutter, considering cantilever wings with fairly
sophisticated analytical treatments of unsteady aerodynamics. All, except Hodges and Pierce (2002) and
Dowell ef al. (2004), were written in the 1950s and 1960s. The textbook by Forsching (1974) must also
be mentioned as a valuable reference but there is no English translation from the German original. There
is some material relevant to static aeroelasticity in the ESDU Data Sheets. A further useful source of
reference is the AGARD Manual on Aeroelasticity 1950-1970, but again this was written nearly 50 years
ago. Further back in history are the key references on aeroelasticity by Frazer and Duncan (1928) and
Theodorsen (1935).

Aeroelastic considerations influence the aircraft design process in a number of ways. Within the
design flight envelope, it must be ensured that flutter and divergence cannot occur and that the aircraft
is sufficiently controllable. The in-flight wing shape influences drag and performance and so must be
accurately determined requiring careful consideration of the jig shape used in manufacture. The aircraft
handling is affected by the aeroelastic deformations, especially where the flexible modes are close in
frequency to the rigid body modes.

Collar’s aeroelastic triangle may be modified to cater for loads (mainly dynamic) to generate a
loads triangle, as shown in Figure 2. Equilibrium (or steady/trimmed/balanced) manoeuvres involve the
interaction of elastic and aerodynamic effects (cf. static aeroelasticity), dynamic manoeuvres involve
the interaction of aerodynamic and inertia effects (cf. stability and control, but for a flexible aircraft,
elastic effects may also be important), ground manoeuvres primarily involve the interaction of inertia and
elastic effects (cf. structural dynamics) and gust/turbulence encounters involve the interaction of inertia,
aerodynamic and elastic effects (cf. flutter).
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Equilibrium manoeuvres concern the aircraft undergoing steady longitudinal or lateral manoeuvres,
e.g. a steady pull-out from a dive involving acceleration normal to the flight path and a steady pitch rate.
Dynamic manoeuvres involve the aircraft responding dynamically to transient control inputs from the
pilot or else to failure conditions. Ground manoeuvres cover a number of different steady and dynamic
load conditions (landing, taxiing, braking, turning) where the aircraft is in contact with the ground via
the landing gear. Finally, gust/turbulence encounters involve the aircraft responding to discrete gusts
(represented in the time domain) or continuous turbulence (represented in the frequency domain).

The different load cases required for certification under these four main headings may be considered
in one of two categories: bookcase refers to a load case where in essence a relatively artificial state of
the aircraft, in which applied and inertia loads are in equilibrium, is considered whereas rational refers
to a condition in which the aircraft dynamic behaviour is modelled and simulated as realistically as pos-
sible. Bookcase load cases apply primarily to equilibrium manoeuvres and to some ground manoeuvres,
whereas rational load cases apply to most dynamic and ground manoeuvres as well as to gust/turbulence
encounters. These load cases in the certification process provide limit loads, which are the maximum
loads to be expected in service and which the structure needs to support without ‘detrimental permanent
deformation’; the structure must also be able to support ultimate loads (limit loads x factor of safety of
1.5) without failure/rupture.

The resulting distributions of bending moment, axial force, shear force and torque along each
component (referred to in this book as ‘internal loads’), due to the distribution of aerodynamic and
inertial forces acting on the aircraft, need to be determined as a function of time for each type of loading
across the entire design envelope. The critical internal loads for design of different parts of the aircraft
structure are then found via a careful process of sorting the multitude of results obtained; the load paths
and stresses within the structure may then be obtained by a subsequent analysis process for the critical
load cases in order to allow an assessment of the strength and fatigue life/damage tolerance of the aircraft.
The aircraft response in taxiing and particularly in gust and turbulence encounters will influence crew
and passenger comfort. The flight control system (FCS) is a critical component for aircraft control that
has to be designed so as to provide the required stability and carefree handling qualities, and to avoid
unfavourable couplings with the structure; it will in turn influence the loads generated and must be
represented in the loads calculations. Manoeuvre load alleviation and gust load alleviation systems are
often fitted to the aircraft to reduce loads and improve ride comfort.
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There are a number of textbooks on classical aircraft structural analysis, but in the area of loads there
are far fewer relevant textbooks. The AIAA Education Series book on structural loads analysis (Lomax,
1996) is extremely useful and deals with aircraft loads in an applied manner, using relatively simplified
aircraft models that may be used to check results from more sophisticated approaches used when seeking
to meet certification requirements; it also aims to present somewhat of a historical perspective. The book
on aircraft loading and structural layout (Howe, 2004) covers approximate loading action analysis for the
rigid aircraft, together with use of results provided in initial load estimates and hence layout and sizing
of major structural members in aircraft conceptual design. The AIAA Education Series book on gusts
and turbulence (Hoblit, 1988) provides a comprehensive introductory treatment of loads due to gusts
and particularly due to continuous turbulence. Some of the classical books on aeroelasticity also include
an introductory treatment of gust response (Scanlan and Rosenbaum, 1960; Fung, 1969; Bisplinghoff
et al., 1996) and so partially bridge the aeroelasticity/loads fields. The ESDU Data Sheets provide some
coverage of loads in steady manoeuvres, linked to static aeroelastic effects, and also an introductory item
on gusts and turbulence. The AIAA Education Series book on landing gear design (Currey, 1988) provides
a very practical treatment of design issues but is not aimed at addressing the associated mathematical
modelling required for estimation of loads in ground manoeuvres. Niu (1988) provides a useful chapter
on aircraft loads but the main focus is on practicalities of airframe structural design. Donaldson (1993)
and Megson (1999) are primarily aimed at covering a wide range of aircraft structural analysis methods,
but also provide introductory chapters on loads and aeroelasticity.

Historically, loads and aeroelasticity have often been treated separately in industry, whereas in recent
years they have been considered in a much more integrated manner; indeed now they are often covered
by a single department. This is because the model for a flexible aircraft has traditionally been developed
for flutter calculations and the aircraft static and dynamic aeroelastic effects have gradually become more
important to include in the flight/ground manoeuvre and gust/turbulence load calculations. Also, as the
rigid body and flexible mode frequencies have grown closer together, the rigid body and FCS effects
have had to be included in the flutter solution. The flight mechanics model used for dynamic manoeuvres
would be developed in conjunction with the departments that consider stability and control/handling/FCS
issues since the presence of flexible modes would affect the aircraft dynamic stability and handling.
There also needs to be close liaison with the aerodynamics and structures departments when formulating
mathematical models. The models used in loads and aeroelastic calculations are becoming ever more
advanced. The model of the structure has progressed from a ‘beam-like’ model based on the finite element
(FE) method to a much more representative ‘box-like” FE model. The aerodynamic model has progressed
from one based on two-dimensional strip theory to three-dimensional panel methods and, in an increasing
number of cases, computational fluid dynamics (CFD).

The airworthiness certification process requires that all possible aeroelastic phenomena and carefully
defined range of load cases should be considered in order to ensure that any potentially disastrous scenario
cannot occur or that no critical load value is exceeded. The analysis process must be supported by a ground
and flight test programme to validate the aerodynamic, structural, aeroelastic and aeroservoelastic models.
The certification requirements for large aircraft in Europe and the United States are CS-25 and FAR-25
respectively. The requirements from Europe and the United States are very similar and use essentially
the same numbering system; here, for convenience, reference is made mostly to the European version of
the requirements.

In recent years there has also been an increasing interest in the effect of aerodynamic and structural
nonlinearities and the effect they have on the aeroelastic behaviour. Of particular interest are phenomena
such as limit cycle oscillations (LCO) and also the transonic aeroelastic stability boundaries. In addition
the FCS has nonlinear components. More advanced mathematical models are required to predict and
characterize the nonlinear phenomena, which cannot be predicted using linear representations. However,
in this book nonlinear effects will only be mentioned briefly.

This book is organized into three parts. Part I provides some essential background material on the
fundamentals of single and multiple degree of freedom vibrations for discrete parameter systems and
continuous systems (namely the Rayleigh-Ritz and finite element methods), steady aerodynamics, loads
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and control. The presentation is relatively brief, on the assumption that a reader can reference more
comprehensive material if desired.

Chapter 1 introduces the vibration of single degree of freedom discrete parameter systems, including
setting up equations of motion using Lagrange’s equations, and in particular the response to various types
of forced vibrations. Chapter 2 presents the equivalent theory for multiple degree of freedom systems
with reference to modes of vibration and modelling in modal space, as well as free and forced vibration.
Chapter 3 employs the Rayleigh—Ritz assumed shapes approach for continuous systems, primarily slender
structures in bending and torsion, but also considering use of branch modes and whole aircraft ‘free—
free’ modes. Chapter 4 describes the most common discretization approach for vibration of continuous
structures, namely the finite element method.

Chapter 5 introduces a number of basic steady aerodynamics concepts that will be used to determine
the flows, lift forces and moments acting on simple two-dimensional aerofoils and three-dimensional
wings, including two-dimensional strip theory. Chapter 6 describes simple dynamic solutions for a
particle or body using Newton’s laws of motion or D’Alembert’s principle and introduces the use of
inertia loads to generate an equivalent static problem, leading to internal loads for slender members
experiencing nonuniform acceleration. Chapter 7 introduces some basic concepts of control for open and
closed loop feedback systems.

Part II is the main part of the book, covering the basic principles and concepts required to provide
a link to begin to understand current industry practice. A Rayleigh—Ritz approach for flexible modes is
used to simplify the analysis and to allow the equations to be almost entirely limited to three degrees of
freedom to aid understanding. A strip theory representation of the aerodynamics is employed to simplify
the mathematics, but it is recognized that three-dimensional panel methods are more commonly used
in practice. The static and dynamic aeroelastic content makes use of wing models, sometimes attached
to a rigid fuselage. The loads chapters combine a rigid body heave/pitch model with a whole aircraft
free—free flexible mode (designed to permit fuselage bending, wing bending or wing torsional motions
as dominant), and consider a range of flight/ground manoeuvre and gust/turbulence cases.

Chapter 8 considers the effect of static aeroelasticity on the aerodynamic load distribution, resulting
deflections and potential divergence for a flexible wing, together with the influence of wing sweep and
aircraft trim. Chapter 9 examines the impact of wing flexibility on aileron effectiveness. Chapter 10
introduces the concept of quasi-steady and unsteady aerodynamics and the effect that the relative motion
between an aerofoil and the flow has on the lift and moment produced. Chapter 11 explores the critical area
of flutter and also how aeroelastic calculations are performed where frequency-dependent aerodynamics
is involved. Chapter 12 introduces aeroservoelasticity and illustrates the implementation of a simple
feedback control on an aeroelastic system.

Chapter 13 considers the behaviour of rigid and flexible aircraft undergoing symmetric equilib-
rium manoeuvres and a rigid aircraft experiencing simple lateral manoeuvres. Chapter 14 introduces
the two-dimensional flight mechanics model with body fixed axes and extends it to include a flexible
mode. Chapter 15 shows how the flight mechanics model may be used to examine dynamic manoeuvres
in heave/pitch and pure roll, and how the flexibility of the aircraft can affect the response, dynamic
stability modes and control effectiveness. Chapter 16 considers discrete gust and continuous turbulence
analysis approaches in the time and frequency domains respectively. Chapter 17 presents a simple model
for the nonlinear landing gear and considers taxiing, landing, braking, wheel ‘spin-up’/‘spring-back’,
turning and shimmy. Chapter 18 introduces the evaluation of internal loads from the aircraft dynamic
response and any control/gust input, applied to continuous and discretized components, and also loads
sorting. Chapter 19 describes potential flow aerodynamic approaches and how they lead to determination
of aerodynamic influence coefficients (AICs) for three-dimensional panel methods in both steady and
unsteady flows. Chapter 20 considers the development of simple coupled two- and three-dimensional
structural/aerodynamic models in steady and unsteady flows.

Finally, Part III provides an outline of industrial practice that might typically be involved in aircraft
design and certification. It references the earlier two parts of the book and indicates how the processes
illustrated on simple mathematical models might be applied in practice to ‘real’ aircraft.
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Chapter 21 introduces the design and certification process as far as aeroelasticity/loads are concerned.
Chapter 22 explains how the mathematical models used for aeroelasticity and loads analyses can typically
be constructed. Chapter 23 considers the calculations undertaken to meet the requirements for static
aeroelasticity and flutter. Chapter 24 presents the calculation process involved for determination of
loads in meeting the requirements for equilibrium and dynamic flight manoeuvres and gust/continuous
turbulence encounters. Chapter 25 introduces the analyses required for determining the ground manoeuvre
loads and loads post-processing, and finally Chapter 26 describes briefly the range of ground and flight
tests performed to validate mathematical models and demonstrate aeroelastic stability.
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AC aerodynamic centre

AC Advisory Circular

AIC aerodynamic influence coefficient
AMC Additional Means of Compliance
AR aspect ratio

CFD computational fluid dynamics
CoM centre of mass
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CRI certification review item

CS Certification Specifications

DL doublet lattice

DoF degree of freedom

EAS equivalent air speed
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FCS flight control system

FD frequency domain

FE finite element

FFT flight flutter test

FRF frequency response function

FT Fourier transform
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IRF impulse response function
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LE leading edge

MDoF multiple degree of freedom

NPA Notice of Proposed Amendment
PSD power spectral density

RMS root-mean-square

SDoF single degree of freedom

SRF step response function

TAS true air speed

TD time domain
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TF transfer function

WA wing aerodynamic (axis)

WF wing flexural (axis)

WM wing mass (axis)
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Vibration of Single Degree
of Freedom Systems

In this chapter, some of the basic concepts of vibration analysis for single degree of freedom (SDoF)
discrete parameter systems will be introduced. The term ‘discrete (or sometimes lumped) parameter’
implies that the system is a combination of discrete rigid masses (or components) interconnected by
flexible/elastic stiffness elements. Later it will be seen that a single DoF representation may be employed
to describe the behaviour of a particular characteristic (or mode) shape of the system via what are known as
modal coordinates. Multiple degree of freedom (MDoF) discrete parameter systems will be considered
in Chapter 2. The alternative approach to modelling multiple DoF systems, as so-called ‘continuous’
systems, where components of the system are flexible and deform in some manner, is considered later in
Chapters 3 and 4.

Much of the material in this introductory part of the book on vibrations is covered in detail in
many other texts, such as Tse ef al. (1978), Newland (1987), Rao (1995), Thomson (1997) and Inman
(2006) and it is assumed that the reader has some engineering background so should have met many
of the ideas before. Therefore, the treatment here will be as brief as is consistent with the reader being
reminded, if necessary, of various concepts used later in the book. Such introductory texts on mechanical
vibration should be referenced if more detail is required or if the reader’s background understanding is
limited.

There are a number of ways of setting up the equations of motion for an SDoF system, e.g. Newton’s
laws and D’ Alembert’s principle. However, consistently throughout the book, Lagrange’s energy equa-
tions will be employed, although in one or two cases other methods are adopted as they offer certain
advantages. In this chapter, the determination of the free and forced vibration response of an SDoF sys-
tem to various forms of excitation relevant to aircraft loads will be considered. The idea is to introduce
some of the core dynamic analysis methods (or tools) to be used later in aircraft aeroelasticity and loads
calculations.

1.1 SETTING UP EQUATIONS OF MOTION FOR SINGLE DoF SYSTEMS

A single DoF system is one whose motion may be described by a single coordinate, i.e. a displacement
or rotation. All systems that may be described by a single degree of freedom may be shown to have an
identical form of governing equation, albeit with different symbols employed in each case. Two examples
will be considered, a classical mass/spring/damper system and an aircraft control surface able to rotate
about its hinge line but restrained by an actuator. These examples will illustrate translational and rotational
motions.

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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Figure 1.1 SDoF mass/spring/damper system.

1.1.1 Example: Classical Single DoF System

The classical form of an SDoF system is shown in Figure 1.1, and comprises a mass m, a spring of stiffness
k and a viscous damper whose coefficient is c; a viscous damper is an idealized energy dissipation device
where the force developed is linearly proportional to the relative velocity between its ends (note that
the alternative approach of using hysteretic/structural damping will be considered later). The motion of
the system is a function of time ¢ and is defined by the displacement x (7). A time-varying force f () is
applied to the mass.

Lagrange’s energy equations are differential equations of the system expressed in what are some-
times termed ‘generalized coordinates’ but written in terms of energy and work quantities (Wells, 1967;
Tse et al., 1978). These equations will be suitable for a specific physical coordinate or a coordinate asso-
ciated with a shape (see Chapter 3). Now, Lagrange’s equation for an SDoF system with a displacement
coordinate x may be written as

d (3{) OT 33 dU _  d(BW) 0

al\ar) "t T T % e

where T is the kinetic energy, U is the potential (or strain) energy, J is the dissipative function, Q. is

the so-called generalized force and W is a work quantity.
For the SDoF example, the kinetic energy is given by

T = —mx?, (1.2)

where the overdot indicates the derivative with respect to time, namely d/dz. The strain energy in the
spring is

1
U:im? (1.3)

The damper contribution may be treated as an external force, or else may be defined by the dissipative
function

1
I = —ci’. (1.4)

Finally, the effect of the force is included in Lagrange’s equation by considering the incremental
work done §W obtained when the force moves through an incremental displacement 8x, namely

SW = féx. (1.5)

Substituting Equations (1.2) to (1.5) into Equation (1.1) yields the ordinary second-order differential
equation

mx + cx + kx = f(1). (1.6)
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Figure 1.2 Single degree of freedom control surface/actuator system.

1.1.2 Example: Aircraft Control Surface

As an example of a completely different SDoF system that involves a rotational coordinate system,
consider the control surface/actuator model shown in Figure 1.2. The control surface has a moment of
inertia J about the hinge, the effective actuator stiffness and damping values are k£ and ¢ respectively and
the rotation of the control surface is 6 rad. The actuator lever arm has length a. A force f(¢) is applied to
the control surface at a distance d from the hinge. The main surface of the wing is assumed to be fixed
rigidly as shown.

The energy, dissipation and work done functions corresponding to Equations (1.2) to (1.5) may be
shown to be

I ., 1 ) o1 -

T = 5]9 , U= Ek(aO) , J = Ec(a@) , W =(fd)s0, (1.7)
where the angle of rotation is assumed to be small, so that, for example, sin & = 6. The work done term
is a torque multiplied by a rotation. Then, applying the Lagrange equation with coordinate 6, it may be
shown that

JO 4 ca’d + ka*0 =d f(1). (1.8)

Clearly, this equation is of the same form as that in Equation (1.6). All SDoF systems have equations
of a similar form, albeit with different symbols and units.

1.2 FREE VIBRATION OF SINGLE DoF SYSTEMS

In free vibration, an initial condition is imposed and motion then occurs in the absence of any external
force. The motion takes the form of a nonoscillatory or oscillatory decay; the latter corresponds to the low
values of damping normally encountered in aircraft, so only this case will be considered. The solution
method is to assume a form of motion given by

x(1) = XeM, (1.9)

where X is the amplitude and X is the characteristic exponent defining the decay. Substituting Equation
(1.9) into Equation (1.6), setting the applied force to zero and simplifying, yields the quadratic equation

Mm+rc+k=0 (1.10)

The solution of this ‘characteristic equation’ for the oscillatory motion case produces two complex
roots, namely

A < Lif(k ( ¢ )2 (1.11)
= —_—— 1 — —_ —_— N .
12 2m m 2m
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where the complex value i = +/—1. Equation (1.11) may be rewritten in the nondimensional form

Mo = —Cw, Eivgy/1 — £2 = —Lo, + iog, (1.12)

where

k
Wy =4/ —, wg = w1 =22, ;= < (1.13)

m 2maw,

Here w, is the (undamped) natural frequency (frequency in rad/s of free vibration in the absence of
damping), wy is the damped natural frequency (frequency of free vibration in the presence of damping)
and ¢ is the damping ratio (i.e. c expressed as a proportion of the critical damping c.i(, the value at which
motion becomes nonoscillatory); these parameters are basic and unique properties of the system.

Because there are two roots to Equation (1.10), the solution for the free vibration motion is given
by the sum

x() = XeM' + Xe. (1.14)
After substitution of Equation (1.12) into Equation (1.14), the motion may be expressed in the form
x(t) =e 5" [(X) + X)) coswat + i(X, — X,) sinwgt] . (1.15)

Since the displacement must be a real quantity, then X;, X, must be complex conjugate pairs and
Equation (1.15) simplifies to one of the classical forms

x(t) = e " [A] sinwat + A, cos wat] or x(t) = Ae " sin(wgt + V), (1.16)

where the amplitude A and phase v (or amplitudes A, A,) are unknown values, to be determined from
the initial conditions for displacement and velocity. Thus this ‘underdamped’ motion is sinusoidal with
an exponentially decaying envelope, as shown in Figure 1.3 for a case with general initial conditions.

1.2.1 Example: Aircraft Control Surface

Using Equation (1.8) for the control surface actuator system and comparing the expressions with those
for the simple system, the undamped natural frequency and damping ratio may be shown by inspection

to be
J ke = (1.17)
Wy =+ — = . .
J 2/KJ

x(0)
x(0)

\/ t

Figure 1.3 Free vibration response for an underdamped single degree of freedom system.
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1.3 FORCED VIBRATION OF SINGLE DoF SYSTEMS

In determining aircraft loads for gusts and manoeuvres (see Chapters 13 to 17), the aircraft response to
a number of different types of forcing functions needs to be considered. These tend to divide into three
categories:

1. Harmonic excitation is primarily concerned with excitation at a single frequency (for engine or rotor
out-of-balance and as a constituent part of continuous turbulence analysis).

2. Nonharmonic deterministic excitation includes the ‘1-cosine’ input (for discrete gusts or runway
bumps) and various shaped inputs (for flight manoeuvres); such forcing functions often have clearly
defined analytical forms and tend to be of short duration, often called transient.

3. Random excitation includes continuous turbulence and runway profiles, the latter required for taxiing.
Random excitation can be specified using a time or frequency domain description (see later).

The aircraft dynamics are sometimes nonlinear (e.g. doubling the input does not double the response),
which complicates the solution process, but in this chapter only the linear case will be considered. The
treatment of nonlinearity will be covered in later chapters, albeit only fairly briefly. In the following sec-
tions, the determination of the response to harmonic, transient and random excitation will be considered,
using both time and frequency domain approaches. The extension to MDoF systems will be covered later
in Chapter 2.

1.4 HARMONIC FORCED VIBRATION - FREQUENCY
RESPONSE FUNCTIONS

The most important building block for forced vibration requires determination of the response to a har-
monic (i.e. sinusoidal) force with frequency w rad/s (or w/(2m) Hz). The relevance to aircraft loads is
primarily in helping to lay important foundations for behaviour of dynamic systems, e.g. continuous tur-
bulence analysis. However, the real-life cases of engines or rotors and propellers can introduce harmonic
excitation to the aircraft.

1.4.1 Response to Harmonic Excitation

When a harmonic force is applied, there is an initial transient response, followed by a steady-state phase
where the response will also be sinusoidal at the same frequency as the excitation but lagging it in
phase; only the steady-state response will be considered here, though the transient response may often
be important.

The excitation input is defined by

f(t)= Fsinwt (1.18)

and the steady-state response is given by
x(t) = X sin(wt — ¢), (1.19)
where F, X are the amplitudes and ¢ is the amount by which the response ‘lags’ the excitation in phase
(so-called ‘phase lag’). In one approach, the steady-state response may be determined by substituting

these expressions into the equation of motion and then equating sine and cosine terms using trigonometric
expansion.
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However, an alternative approach uses complex algebra and will be adopted since it is more powerful
and commonly used. In this approach, the force and response are rewritten in a complex notation as
follows:

f(t) = Fel*' = Fcoswt +iF sinwt,
) o - - - (1.20)
x(t) = Xel@=? = (Xe ¥)el = Xel' = Xcoswt +iXsinwt.

Here the phase lag is embedded in a new complex amplitude quantity X. Only the imaginary part
of the excitation and response will be used for sine excitation; an alternative way of viewing this is that
the solutions for both the sine and cosine excitation will be found simultaneously. The solution process
is straightforward once the concepts have been grasped. The complex expressions in Equations (1.20)
are now substituted into Equation (1.6). Noting that ¥ = iwXe’ and ¥ = —w?Xe®’ and cancelling the
exponential term, then

(—w’m +iwc + k)X = F. (1.21)
Thus the complex response amplitude may be solved algebraically so that

X=Xe "= F

= 1.22
k—w*m+iwc ( )

and equating real and imaginary parts from the two sides of the equation yields the amplitude and phase
as

F 4( wc )
X = and ¢ = tan — . (1.23)

Joom T

Hence, the time response may be calculated using X, ¢ from this equation.

1.4.2 Frequency Response Functions (FRFs)

An alternative way of writing Equation (1.22) is

1

X
H, === 1.24
p(@) F k—o*m+iowc ( )
or in nondimensional form
1/k 1/k w
Hp(w) = — = , where r = —. (1.25)
1 —(w/wy)” +i2¢ (w/w,) 1 —r?+i2¢r Wy

Here Hp(w) is known as the displacement (or receptance, (Ewins, 1995)) frequency response func-
tion (FRF) of the system and is a system property. It dictates how the system behaves under harmonic
excitation at any frequency. The equivalent velocity and acceleration FRFs are given by

Hy = iwHp, Hy, = —»*Hp (1.26)

since multiplication by iw in the frequency domain is equivalent to differentiation in the time domain
(i =-1).

The quantity kHp(w) is a nondimensional expression, or dynamic magnification, relating the dy-
namic amplitude to the static deformation for several damping values. The well-known ‘resonance’
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Figure 1.4 Displacement frequency response function for a single degree of freedom system.

phenomenon is shown in Figure 1.4 by the amplitude peak that occurs when the excitation frequency w
is at the ‘resonance’ frequency, close in value to the undamped natural frequency w,; the phase changes
rapidly in this region, passing through 90° at resonance. Note that the resonant peak increases in am-
plitude as the damping ratio reduces and that the dynamic magnification (approximately 1/2¢) can be
extremely large.

1.4.3 Hysteretic (or Structural) Damping

So far, a viscous damping representation has been employed, based on the assumption that the damping
force is proportional to velocity (and therefore to frequency). However, in practice, damping measure-
ments in structures and materials have sometimes shown that damping is independent of frequency but
acts in quadrature (i.e. is at 90° phase) to the displacement of the system. Such an internal damping
mechanism is known as hysteretic (or sometimes structural) damping (Rao, 1995). It is common practice
to combine the damping and stiffness properties of a system having hysteretic damping into a so-called
complex stiffness, namely

k" = k(1 +1ig), (1.27)

where g is the structural damping coefficient or loss factor (not to be confused with the same symbol used
for acceleration due to gravity) and the complex number indicates that the damping force is in quadrature
with the stiffness force. The SDoF equation of motion amended to employ hysteretic damping may then
be written as

mi + k(1 +ig)x = f(1). (1.28)

This is a rather peculiar equation, being expressed in the time domain but including the complex
number; it is not possible to solve this equation in this form. However, it is feasible to write the equation
in the time domain as

mx + cegX + kx = f(2), (1.29)
where ¢ = gk/w is the equivalent viscous damping. This equation of motion may be used if the motion
is dominantly at a single frequency. The equivalent damping ratio expression may be shown to be

beq = g (%) (1.30)
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or, if the system is actually vibrating at the natural frequency, then
8
Coq = 5 (1.31)

Thus the equivalent viscous damping ratio is half of the loss factor, and this factor of 2 is often seen
when comparing flutter damping plots from the US and Europe (see Chapter 11).

An alternative way of considering hysteretic damping is to convert Equation (1.28) into the frequency
domain, using the methodology employed earlier in Section 1.4.1, so yielding the FRF in the form

Hw)=——=—"—— (1.32)

¢ 1

F k(1 +ig) — w?m

and now the complex stiffness takes a more suitable form. Thus, a frequency domain solution of a system
with hysteretic damping is acceptable, but a time domain solution assumes motion at essentially a single
frequency. The viscous damping model, despite its drawbacks, does lend itself to more simple analysis,
though both viscous and hysteretic damping models are widely used.

1.5 TRANSIENT/RANDOM FORCED VIBRATION - TIME
DOMAIN SOLUTION

When a transient/random excitation is present, the time response may be calculated in one of three ways.

1.5.1 Analytical Approach

If the excitation is deterministic, having a relatively simple mathematical form (e.g. step, ramp), then
an analytical method suitable for ordinary differential equations may be used (i.e. combination of com-
plementary function and particular integral). Such an approach is impractical for more general forms of
excitation. For example, a unit step force applied to the system initially at rest may be shown to give rise
to the response (or so-called ‘step response function’) s().

—Cwnt

Vs
NrS |

1.33
c (1.33)

s(t) = xsre(t) = % |:1 — sin(wqt + 1//)i| with tany =

Note that the term in square brackets is the ratio of the dynamic-to-static response and this ratio
is shown in Figure 1.5 for different dampings. Note that there is a tendency of the transient response
to ‘overshoot’ the steady-state value, but this initial peak response is hardly affected by damping; this
behaviour will be referred to later as ‘dynamic overswing’ when considering manoeuvres in Chapters 13
and 24.

Another important excitation is the unit impulse of force. This may be idealized crudely as a very
narrow rectangular force—time pulse of unit area (i.e. strength) of 1 N's (the ideal impulse is the so-called
Dirac-é function, having zero width and infinite height). Because this impulse imparts an instantaneous
change in momentum, the velocity changes by an amount equal to the impulse strength/mass), so the
case is equivalent to free vibration with a finite initial velocity and zero initial displacement. Thus it may
be shown that the response to a unit impulse (or the so-called ‘impulse response function’) h(¢) is

1
h(t) = X[Rp(t) = —C_(m“[ sina)dt. (134)
mawq
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Figure 1.5 Dynamic-to-static ratio of step response for a single degree of freedom system.

The impulse response function (IRF) is shown plotted against nondimensional time for several
dampings in Figure 1.6; the response starts and ends at zero. The y axis values depend upon the mass
and natural frequency. The IRF may be used in the convolution approach described in Section 1.5.3.

1.5.2 Principle of Superposition

The principle of superposition, only valid for linear systems, states that if the responses to separate
forces fi(t) and f,(¢) are x;(¢) and x,(r) respectively, then the response x(¢) to the sum of the forces
(@) = fi(t) + fo(z) will be the sum of their individual responses, namely x(¢) = x,(¢) + x(?).

1.5.3 Example: Single Cycle of Square Wave Excitation — Response Determined
by Superposition

Consider an SDoF system with an effective mass of 1000 kg, natural frequency 2 Hz and damping 5 %
excited by a transient excitation consisting of a single cycle of a square wave with amplitude A and
period Tyquare- The response may be found by superposition of a step input of amplitude 1000 N at r = 0,
a negative step input of amplitude 2000 N at f = T,quare/2 and a single positive step input of amplitude
1000 N at # = Tyquare, as illustrated in Figure 1.7. The response may be calculated using the MATLAB
program in appendix G in the companion website.

0.02
g 2% damping
§ 001HY W N o |77 5% damping | |
z — - - 10% damping
- Y BV ATE
= 0 e et e
2 V
2]
&
o —0.01 - 8
=
2
E -0.02 : :
0 5 10 15

No of System Periods

Figure 1.6 Impulse response function for a single degree of freedom system.
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Figure 1.7 Single cycle of a square wave described by the principle of superposition.

Figure 1.8 shows the response when Tyuae = 0.5's, the period of the system; the dashed line shows
the time scale of the input. In this case, the square wave pulse is nearly ‘tuned’ to the system (i.e. near
to the resonance frequency) and so the response is significantly larger (by almost a factor of 2) than for
a single on/off pulse. This is the reason why the number of allowable pilot control input reversals in a
manoeuvre is strictly limited.

1.5.4 Convolution Approach

The principle of superposition illustrated above may be employed in the solution of the response to
general transient/random excitation. The idea here is that a general excitation input may be represented
by a sequence of very narrow (ideal) impulses of different heights (and therefore strengths), as shown
in Figure 1.9. A typical impulse occurring at time ¢ = 7 is of height f(r) and width dr. Thus the
corresponding impulse strength is f(t)dt and the response to this impulse, using the unit impulse
response function in Equation (1.34), is

(1) = {f(r)d) kit — 1) = LD ot ot — 1) for 131

mawy

(1.35)
x(t) =0 for r<r.

Note that the response is only nonzero after the impulse at t = 7. The response to the entire excitation
time history is equal to the summation of the responses to all the constituent impulses. Given that each
impulse is dr wide, and allowing dr — 0, then the summation effectively becomes an integral, given
by

x(t) = /f f(T)h(t —1)dr. (1.36)
=0

Response (mm)

L L L L L L L
0 1 2 3 4 5 6 7 8
Time (s)

Figure 1.8 Response to a single cycle of square wave, using superposition.
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Figure 1.9 Convolution process.

This is known as the convolution integral (Newland, 1989; Rao, 1995) or, alternatively, the Duhamel
integral (Fung, 1969). A shorthand way of writing this integral, where = denotes convolution, is

x(t) = h(t) * f(t). (1.37)

An alternative form of the convolution process may be written by treating the excitation as a combination
of on/off steps and using the step response function s(z), thus yielding a similar convolution expression
(Fung, 1969)

x(0) = F(D)s(0) + / R j—f(f _ydr, (138)

This form of convolution will be encountered in Chapters 10 and 16 for unsteady aerodynamics and
gusts.

In practice, the convolution integrations would be performed numerically and not analytically. Thus
the force input and impulse (or step) response function would need to be obtained in discrete, and not
continuous, time form. The impulse response function may in fact be obtained numerically via the inverse
Fourier transform of the frequency response function (see later).

1.5.5 Direct Solution of ODEs

An alternative approach for solving the ordinary differential equation, not requiring a closed form solution
or performing a convolution, is to employ a numerical integration approach such as the Runge—Kutta
or Newmark-g algorithms (Rao, 1995). To present one or both of these algorithms in detail is beyond
the scope of this book. Suffice it to say that, knowing the response at the jth time value, the differential
equation expressed at the (j + 1)th time value is used, together with some assumption for the variation
of the response within the step length, to predict the response at the (j + 1)th time value.

In this book, time responses are sometimes calculated using numerical integration in the SIMULINK
package called from a MATLAB program. The idea is illustrated using the earlier superposition example.
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1.5.6 Example: Single Cycle of Square Wave Excitation — Response Determined
by Numerical Integration

Consider again the SDoF system excited by the single square wave cycle as used in Section 1.5.3. The
response may be found using numerical integration and may be seen to overlay the exact result in Figure
1.8 provided an adequately small step size is used (typically at least 30 points per cycle). The response is
calculated using a Runge—Kutta algorithm in a MATLAB/SIMULINK program (see companion website).

1.6 TRANSIENT FORCED VIBRATION - FREQUENCY
DOMAIN SOLUTION

The analysis leading up to the definition of the frequency response function in Section 1.4 considered
only the response to an excitation input comprising a single sine wave at frequency w rad/s. However,
if the excitation was made up of several sine waves with different amplitudes and frequencies, the total
steady-state response could be found by superposition of the responses to each individual sine wave, using
the appropriate value of the FRF at each frequency. Again, because superposition is used, the approach
only applies for linear systems.

1.6.1 Analytical Fourier Transform

In practice the definition of the FRF may be extended to cover a more general excitation by employing
the Fourier transform (FT), so that

X(w) _ Fourier transform of x(¢)

H(w) = = , 1.39
(@) F(w)  Fourier transform of f(t) ( )
where, for example, X (w), the Fourier transform of x(z), is given for a continuous signal by
+00 )
X(w) = / x()e' dt. (1.40)

The Fourier transform X(w) is a complex function of frequency (i.e. spectrum) whose real and
imaginary parts define the magnitude of the components of cos wt and — sin wt in the signal x(¢). The
units of X(w), F(w) in this definition are typically m s and N s and the units of H(w) are m/N. The inverse
Fourier transform (IFT), not defined here, allows the frequency function to be transformed back into the
time domain.

Although the Fourier transform is initially defined for an infinite continuous signal, and this would
appear to challenge its usefulness, in practice inputs of finite length 7 may be used with the definition

T
X(w) = %/ x(r)e" dr. (1.41)
0

In this case, the units of X(w), F(w) become m and N respectively, while units of H(w) remain
m/N. What is being assumed by using this expression is that x(¢) is in effect periodic with period 7';
i.e. the signal keeps repeating itself in a cyclic manner. Provided there is no discontinuity between the
start and end of x (), then the analysis may be applied for a finite length excitation such as a pulse. If a
discontinuity does exist, then a phenomenon known as ‘leakage’ occurs and additional incorrect Fourier
amplitude components are introduced to represent the discontinuity; in practice, window functions (e.g.
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Hanning, Hamming, etc.) are often applied to minimize this effect (Newland, 1987). The choice of the
parameters in the analysis must be made carefully to minimize this error.

1.6.2 Discrete Fourier Transform

When using the Fourier transform in solving real problems, the discrete version (as opposed to the
analytical version above) must be used. A detailed discussion of this is beyond the scope of the book, and
other references should be studied, but some of the ideas will be seen in the example to follow Section
1.6.3 and in the MATLAB program (see companion website). In summary, the data record of length 7'
(= N Av) is represented by a sequence {x(jA?), j =0,1,2,...,(N — 1)At}, with N (usually a power
of 2) values at equal time intervals Az s.

The resulting discrete Fourier transform (or DFT) is a sequence of discrete frequency domain values
X((j—DAS), j=1,2,...,N/2+ 1,i.e. from DC (zero frequency) to the so-called Nyquist frequency
(fnyg = 1/(2At)) at frequency intervals of Af = 1/T. The values at the DC and Nyquist frequency are
real but all the remaining values are complex, catering for the cosine and sine components.

It should be emphasized that it is important to understand the way in which the data are handled
when performing forward and inverse transforms and this is well worth checking, e.g. using a simple case
with a limited number of sine or cosine components and data points. Typically, the Fourier transform in
the frequency domain is stored in a vector of N numbers (mostly complex), namely

{XOXANHXQRAS) -+ X(fayg = ANDX(fray) X (fryg — AF) - XTQANHX (AN} (142

It can be seen that the so-called ‘negative’ frequency values are conjugates of the positive frequency
values (i.e. have the opposite sign for the imaginary parts, shown by =, which is not to be confused
with convolution). They are stored further along the transform vector in the reverse direction. Thus
the additional complex numbers provide no extra information, but when using numerical functions or
subroutines to carry out the inverse transform to return to the time domain, it is essential to retain the
data in this form. Again, a simple check may prevent considerable difficulty and possibly error later on.

1.6.3 Frequency Domain Response — Excitation Relationship

It may be seen that rearranging Equation (1.39) leads to
X(w) = H(w) F(w) (1.43)

and it is interesting to relate this to the time domain convolution Equation (1.37). The FRF and IRF are
in fact Fourier transform pairs, e.g. the FRF is the Fourier transform of the IRF. Further, it may also
be shown that by taking the Fourier transform of both sides of Equation (1.37), then Equation (1.43)
results, i.e. convolution in the ‘time domain’ is equivalent to multiplication in the ‘frequency domain’.
The extension of this approach for an MDoF system will be considered in Chapter 2.

A useful feature of Equation (1.43) is that it may be used to determine the response of a system,
given the excitation time history, by going via a frequency domain route. Thus the response x(¢) of a
linear system to a finite length transient excitation input f(¢) may be found by the following procedure
(taking care over data storage):

1. Fourier transform f(¢) to find F(w).

2. Determine the FRF H (w) for the system.

3. Multiply the FRF and F(w) using Equation (1.43) to determine X (w).
4. Inverse Fourier transform X (w) to find x(¢).
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1.6.4 Example: Single Cycle of Square Wave Excitation — Response Determined
via Fourier Transform

Consider again the SDoF system excited by a single square wave cycle as used in Section 1.5.3. The
response is calculated using a MATLAB program (see companion website). Note that only a limited
number of data points are used in order to allow the discrete values in the frequency and time domains to
be seen; only discrete data points are plotted in the frequency domain functions. The results agree well
with those in Figure 1.8 but the accuracy would improve as more data points were used to represent the
signals.

1.7 RANDOM FORCED VIBRATION - FREQUENCY DOMAIN SOLUTION

There are two cases in aircraft loads where response to a random-type excitation is required: flying through
continuous turbulence and taxiing on a runway with a nonsmooth profile. For continuous turbulence, it
is normal practice to use a spectral approach based on a linearized model of the aircraft (see Chapter 16).
When the effect of significant nonlinearity is to be explored, a time domain computation would need to
be used. However, for taxiing (see Chapter 17), the solution would be carried out in the time domain
using numerical integration of the equations of motion, as they are highly nonlinear due to the presence
of the landing gear.

When arandom excitation is considered, then a statistical approach is normally employed by defining
the so-called power spectral density (PSD) of the excitation and response (Newland, 1987; Rao, 1995).
For example, the PSD of x(¢) is defined by

T * T 2
Ser(w) = EX(Q)) X(w) = > |X ()|, (1.44)

where * denotes the complex conjugate (not to be confused with convolution). Thus the PSD is essentially
proportional to the modulus squared of the Fourier amplitude at each frequency and would have units of
density (m?/rad s if x(t) were a displacement). It is a measure of how the ‘power’ in x(¢) is distributed
over the frequency range of interest. In practice, the PSD of a time signal could be computed from a long
data record by employing some form of averaging of finite length segments of the data.

If Equation (1.43) is multiplied on both sides by its complex conjugate then

X () X*(@) = H@)F(0) H(@)F" (@)= |H@®)] F(w)F" () (1.45)

and if the relevant scalar factors present in Equation (1.44) are accounted for, then Equation (1.45)
becomes

Sux(@) = [H(@)|* Spr(w). (1.46)

Thus, knowing the definition of the excitation PSD Sgr(w) (units N?/rad s for force), the response
PSD may be determined given the FRF for the system (m/N for displacement per force). It may be seen
from Equation (1.46) that the spectral shape of the excitation is carried through to the response, but is
filtered by the system dynamic characteristics. The extension of this approach for an MDOF system will
be considered in Chapter 2. This relationship between the response and excitation PSDs is useful but
phase information is lost.

In the analysis shown so far, the PSD S,,(w), for example, has been ‘two-sided’ in that values
exist at both positive and negative frequencies; the latter are somewhat artificial but derive from the
mathematics in that a positive frequency corresponds to a vector rotating anticlockwise at @, whereas a
negative frequency corresponds to rotation in the opposite direction. However, in practice the ‘two-sided’
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(or double-sided) PSD is often converted into a ‘one-sided’ (or single-sided) function ®,,(w), existing
only at nonnegative frequencies and calculated using

(@) =28 (w), 0<w<oo. (1.47)

Single-sided spectra are in fact used in determining the response to continuous turbulence considered in
Chapter 16, since the continuous turbulence PSD is defined in this way.
The mean square value is the corresponding area under the one-sided or two-sided PSD, so

_ +00 _ +00
x2 = / P, () dw or x2 = / S (w) do, (1.48)
0 —

o0

where clearly only a finite, not infinite, frequency range is used in practice. The root-mean-square value
is the square root of the mean-square value.

1.8 EXAMPLES

Note that these examples may be useful preparation when carrying out the examples in later chapters.

1. An avionics box may be idealized as an SDoF system comprising a mass m supported on a mounting
base via a spring k and damper c. The system displacement is y(¢) and the base displacement is x (7).
The base is subject to acceleration ¥ (#) from motion of the aircraft. Show that the equation of motion
for the system may be written in the form mZz + cz + kz = —mX(t) where z = y — x is the relative
displacement between the mass and the base (i.e. spring extension).

2. In a flutter test, the acceleration of an aircraft control surface following an explosive impact decays
to a quarter of its amplitude after 5 cycles, which corresponds to an elapsed time of 0.5 s. Estimate
the undamped natural frequency and the percentage of critical damping. [10 Hz, 4.4 %]

3. Determine an expression for the response of a single degree of freedom undamped system undergoing
free vibration following an initial condition of zero velocity and displacement x.

4. Determine an expression for the time #, at which the response of a damped SDoF system to excitation
by a step force Fy reaches a maximum [w,f, = 7/4/1 — £2]. Show that the maximum response is
given by the expression xk/Fy = 1 + exp(—¢m/4/1 — ¢?), noting the insensitivity to damping at
low values.

5. Using the complex algebra approach for harmonic excitation and response, determine an expression
for the transmissibility (i.e. system acceleration per base acceleration) for the base excited system in
Example 1.

6. A motor mounted in an aircraft on four antivibration mounts may be idealized as an SDoF system of
effective mass 20 kg. Each mount has a stiftness of 5000 N/m and a damping coefficient of 200 N s/m.
Determine the natural frequency and damping ratio of the system. Also, estimate the displacement and
acceleration response of the motor when it runs with a degree of imbalance equivalent to a sinusoidal
force of £40 N at 1200 rpm (20 Hz). Compare this displacement value to the static deflection of the
motor on its mounts. [5.03 Hz, 63.2%, 0.128 mm, 2.02 m/s?, 9.8 mm]

7. A machine of mass 1000 kg is supported on a spring/damper arrangement. In operation, the machine
is subjected to a force of 750 cos wt, where w (rad/s) is the operating frequency. In an experiment, the
operating frequency is varied and it is noted that resonance occurs at 75 Hz and that the magnitude of
the FRFis 2.5. However, atits normal operating frequency this value is found to be 0.7. Find the normal
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operating frequency and the support stiffness and damping coefficient. [118.3 Hz, 2.43 x 10 N/m,
1.97 x10° N's/m]

. An aircraft fin may be idealized in bending as an SDoF system with an effective mass of 200 kg,

undamped natural frequency of 5 Hz and damping 3 % critical. The fin is excited via the control
surface by an ‘on/off” force pulse of magnitude 500 N. Using MATLAB and one or more of the
(a) superposition, (b) simulation and (c) Fourier transform approaches, determine the pulse duration
that will maximize the resulting response and the value of the response itself.

. Using MATLAB, generate a time history of 16 data points with a time interval Ar of 0.05s and

composed of a DC value of 1, a sine wave of amplitude 3 at 4 Hz and cosine waves of amplitude —2
at 2Hz and 1 at 6 Hz. Perform the Fourier transform and examine the form of the complex output
sequence as a function of frequency to understand how the data are stored and how the frequency
components are represented. Then perform the inverse FT and examine the resulting sequence,
comparing it to the original signal.

Generate other time histories with a larger number of data values, such as (a) single (1-cosine) pulse,
(b) multiple cycles of a sawtooth waveform and (c) multiple cycles of a square wave. Calculate
the FT of each and examine the amplitude of the frequency components to see how the power is
distributed.
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Vibration of Multiple Degree of
Freedom Systems

In this chapter, some of the basic concepts of vibration analysis for multiple degree of freedom (MDoF)
discrete parameter systems will be introduced, as there are some significant differences to a single degree
of freedom (SDoF) system. The term ‘discrete (or sometimes lumped) parameter’ implies that the system
in question is a combination of discrete rigid masses (or components) interconnected by flexible stiffness
and damping elements. Note that the same approaches may be employed when a modal coordinate system
is used (see later). On the other hand, ‘continuous’ systems, considered later in Chapters 3 and 4, are
those where all components of the system are flexible/elastic and deform in some manner.

The focus of this chapter will be in setting up the equations of motion, finding natural frequencies
and mode shapes for free vibration and determining the forced vibration response with various forms
of excitation relevant to aircraft loads. Some of the core solution methods introduced in Chapter 1 will
be considered for MDoF systems. For simplicity, the ideas will be illustrated for only two degrees of
freedom. The general form of equations will be shown in matrix form to cover any number of degrees
of freedom, since matrix algebra unifies all MDoF systems. Further treatment may be found in Tse et al.
(1978), Newland (1989), Rao (1995), Thomson (1997) and Inman (2006).

2.1 SETTING UP EQUATIONS OF MOTION

There are a number of ways of setting up the equations of motion for an MDoF system. As before in
Chapter 1, Lagrange’s energy equations will be employed. Two examples will be considered: a classical
‘chain-like’ discrete parameter system and a rigid aircraft capable of heave and pitch motion while
supported on its landing gears. The latter example will be used later when considering the taxiing case
in Chapter 17.

2.1.1 Example: Classical ‘Chain-like’ Two DoF System

A classical form of a two DoF system is shown in Figure 2.1. All other systems that may be described
by multiple degrees of freedom may be shown to have an identical form of governing equation, albeit
with different parameters. This basic system comprises masses 1, m,, springs of stiffness ki, k, and
viscous dampers of coefficient ¢y, ¢,. The motion of the system is a function of time ¢ and is defined by
the displacements x;(¢), x,(¢). Time varying forces f(¢), f>(¢) are also applied to the masses as shown.

Although there are now two DoF, and therefore two equations of motion, the energy and work terms
required are obviously still scalar and therefore additive quantities. Firstly, the kinetic energy is given by

T = im&f + tmai3. 2.1

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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Figure 2.1 Two degree of freedom chain-like mass/spring/damper system.

The strain energy in the springs depends upon the relative extension/compression of each and is given by
U = Lkix} + Lo (xo — xp)? (2.2)
and the dissipative term for the dampers depends upon the relative velocities and is written as
3= Lo + Lean — i) (2.3)

Finally, the effect of the forces is included in Lagrange’s equation by considering the incremental work
done §W obtained when the two forces move through incremental displacements x;, §x,, namely

SW = f| (SX| + f2 (SXz. (24)

Now, Lagrange’s equation for a system with multiple degrees of freedom N may be written as

d (oT\ oT 83 aU AW
(—) O 03 W W) =12, N (2.5)

a\55,) "o Taw ey, 9T a6
Then substituting Equations (2.1) to (2.4) into Equation (2.5) and performing the differentiations for
N = 2 yields the ordinary second-order differential equations

mi¥) + (cy + ) X1 — cady + (ki + ko) x1 — koxa = f1(2), 2.6)
Mmy¥y — CaXy + Xy — koxy + kaxy = fo(1). .

These equations of motion are most easily expressed in matrix form as

my 0 X atca —a|fin ki+ky —ky| | fi
.ot .t = 2.7
KA |4 R |4 A el U 4 R A
where the mass matrix is diagonal (so the system in uncoupled inertially) whereas the damping and
stiffness matrices are coupled. In general matrix notation this becomes

Mix + Cx + Kx = f(t) (2.8)

where M, C, K are the mass, damping and stiffness matrices respectively, and x, f are the column vectors
of displacements and forces. Note that the matrices are symmetric. In this book, the bold symbol will be
used to indicate a matrix quantity and bold italics for a vector, as seen in the above equation. It is assumed
that the reader is familiar with basic matrix concepts, and if not another reference should be consulted
(Stroud and Booth, 2007).
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Figure 2.2 Two degree of freedom rigid aircraft in heave/pitch supported on landing gear.

2.1.2 Example: Two DoF Rigid Aircraft

As an example of a completely different two DoF system that involves both translational and rotational
coordinates, consider the rigid aircraft supported on linear landing gears as shown in Figure 2.2. The
aircraft has mass m, pitch moment of inertia about the centre of mass /,, nose and main landing gear
stiffness K, Ky respectively, and viscous damping Cy, Cy;. In order to demonstrate how excitation
forces are treated, consider an arbitrary input excitation force f () to be applied vertically downwards at
the tail. The coordinates describing the motion are the centre of mass heave displacement z¢ (downwards
positive to be consistent with axes systems used often later on) and pitch angle 6 (nose up positive). The
geometry is shown in the figure.

The energy, dissipation and work functions corresponding to Equations (2.1) to (2.4) depend upon the
expressions for the extension/compression of the springs and dampers, and for small angles are given by

T=1m2+ 11,62, U=1KnGc— 0P+ LKu(zc + ub)

. . (2.9)
= 3Cn(c — N0 + 3CuGc + w02, W = f (8zc + [1d0).

23

Then, applying Lagrange’s equations with physical coordinates z¢ and 0, the aircraft equations of

motion are
m 0 fc + CN + CM —ZNCN =+ ZMCM 2(;
0 I ] —INCN + MCy II%CN —|—l§,lCM 0
i Ky + Ky —INKn + 1Ky | | ze | _ ) f@®
—INKx+ Ky REx+ 0K [0 ] T [ f©)

It can be seen clearly that this equation is of the same general form as that in Equation (2.8). Depending
upon the parameter values, the damping and stiffness matrices will in general be coupled whereas there
is no inertia coupling for this choice of coordinate system. Further analysis of this problem will be
shown later in this chapter and also in Chapter 17, where the taxiing problem will be examined.

} . (210

2.2 UNDAMPED FREE VIBRATION

Initially, the free vibration for the undamped MDOF system will be considered; the damped case will
be introduced later. Because of the compact nature of matrix algebra in illustrating the theory, where
possible any analysis will be carried out in matrix form for N degrees of freedom, and an example shown
for N =2.
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Rather as for the SDoF system, the solution method is to seek a form of free vibration motion given
by

x(t) = X sinwt, (2.11)

where X is the amplitude vector and w is the frequency of free vibration. All coordinates are assumed to
move in or out of phase at the same frequency. Substituting Equation (2.11) into Equation (2.8), setting
the damping and forcing values to zero and simplifying yields the expression

[K —’M]X = 0. (2.12)

The solution to this equation recognizes that X must be nontrivial and therefore that the matrix in brackets
must be singular (i.e. have a zero determinant). By setting the determinant ]K — ’M| to zero, an Nth-
order polynomial in @? is obtained. The solution of this polynomial yields roots w;, j = 1,2,..., N.
These are the so-called (undamped) natural frequencies of the system, one for each DoF, and are the
frequencies at which motion of the type described by Equation (2.11) may be found. They are a property
of the system.

For each natural frequency w;, the response may be characterized by the vector X ;, given by the
solution of

[K—-o'M]X; =0 forj=1,2,....N. (2.13)

These characteristic vectors may be found by solving Equation (2.13) directly, though only ratios of the
vector elements and not absolute values are obtained. This process will be illustrated later by an example.
As an alternative approach, Equation (2.12) may be rewritten as

KX=0MX or M 'KX=0X, (2.14)
which is equivalent to the classical eigenvalue notation
AX = ABX or AX =X, (2.15)

where A, B are symmetric matrices and A (= w?) is referred to as an eigenvalue. The eigenvalues are

Aj,J=1,2,..., N (leading to the corresponding natural frequency values w;, j = 1,2, ..., N), and
these are readily obtainable using matrix methods (Golub and van Loan, 1989). Also, it may be recognized
that the corresponding vectors X;, j =1,2,..., N, are in fact the eigenvectors, also known as the

(undamped) normal mode shapes of the system, a further property of the system. Each mode shape
yields the relative displacements of each of the physical coordinates when the system vibrates at the
corresponding natural frequency.

The so-called modal matrix is defined as the matrix having the mode shapes (i.e. eigenvectors) as
columns, so

¢ =[X1X,, ..., Xyl (2.16)

The undamped free vibration motion can be shown to be comprised of the sum of all the mode shapes,
each vibrating at its corresponding natural frequency, with amplitudes and phases determined by the
initial conditions. Because there is no damping, the motion will not decay.
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2.2.1 Example: Classical ‘Chain-like’ Two DoF System

Consider the example of the classical two DoF system shown in Figure 2.1 and introduced earlier in
Section 2.1.1. However, now assign numerical values as follows: m; = 2kg, m, = 1 kg, k; = 2000 N/m
and k, = 1000 N/m. Damping and force values are set to zero. Substituting these values into Equation (2.7)
to determine the equation of motion, and then using the mass and stiffness matrices in Equation (2.12)
yields

_ 2 _
[30201 ooéw 100508202 } { 2 } =0 2.17)
Setting the determinant of the matrix equal to zero,
(3000 — 2*)(1000 — w?) — (—1000)* = 0, (2.18)
leads to the quadratic equation in w?, namely
2(0*)* — 5000(w?) + 2000000 = 0. (2.19)

The two equation roots are w? = 500, w3 = 2000, so w; = 22.36, w, = 44.72 rad/s and so 3.56 and
7.12 Hz are the (undamped) natural frequencies at which the system will respond in free vibration when
disturbed.

To determine the mode shapes, the characteristic vector must be solved for each natural frequency.
For this two DoF system, Equation (2.17) may be used to find the ratio of X,/ X, from either of the two
equations, so

X 1000

—_— = 2.20
X, 3000 — 20? (2-20)

Now, substituting the values for each natural frequency into this equation yields the ratios

X X
<_'> =05 and (-‘) =—1. (2.21)
X5 Mode 1 X Mode 2

These ratios imply that in mode 1 the second mass moves twice as much as the first mass but in phase with
it; however, in the second mode both masses move an equal amount but out-of-phase. It is not possible
to assign absolute values to X, X, for each mode. The ratios may be written as mode shape vectors by
choosing some suitable form of normalization. Here the vector is written with a maximum element of
unity, e.g.

X, = {ois } and X, = { _11 } (2.22)
and so the modal matrix is

05 -1
q;:[1 1]' (2.23)

The same result would be obtained using an eigenvalue solver (see the MATLAB program in Appendix
G in the companion website).
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2.2.2 Example: Two DoF Rigid Aircraft

Consider further the example of the aircraft considered earlier in Section 2.1 and shown in Figure 2.2.
However, now assign numerical values as follows: m = 4000kg, /, = 12000kgm?, Iy = 4m,/\y = 1 m,
Kx = 40000 N/mand Ky; = 120 000 N/m. Damping and force values are set to zero for the determination
of natural frequencies and mode shapes. Substituting into Equation (2.10) yields the following mass and
stiffness matrices:

4000 0 160000 —40000
M:[ 0 12000] and K:[—40000 760000]' @29

The determinant |K — w2M| must be set to zero, so

_ 2 —
‘ 160000 — 4000w 40000 —o0. (2.25)

—40000 760000 — 12 000w?

Expanding the determinant and simplifying by dividing through by 10° yields a quartic polynomial which
is actually a quadratic in

48w* — 4960w” + 120000 = 0. (2.26)

This equation has roots w? = 38.65 and w? = 64.68 rad/s, so the undamped natural frequencies are 0.989
and 1.280 Hz. Solving Equation (2.13) for the mode shape vector yields

1 —0.405
X, = {0.135} and X, = { | } 2.27)
and thus the modal matrix is
1 —0.405
$= [0.135 1 } (2.28)

The mode shape vectors need to be interpreted physically since the two values in the vector refer
to the motion of the centre of mass (downwards positive) and the pitch angle (nose up positive). The
downwards motion at the nose and main landing gear positions, for example, may be found using zc — In6
and z¢ + Iy0 respectively; e.g. the values 1 and 0.135 imply that the corresponding nose and main gear
displacements in the mode shape are 0.460 and 1.135 whereas the values —0.405 and 1 imply nose and
main gear modal displacements of —4.405 and 0.595. These values may be shown graphically, as in
Figure 2.3, though it should be noted that these shapes have unknown absolute values and only show the
ratio between the deflections.

Each displaced shape is essentially a snapshot in time of the motion in the mode. Mode 1 is a motion
of heave down/up and pitch nose up/down with a stationary point (or ‘node’) at a position 7.407 m in front
of the centre of mass, whereas mode 2 is primarily a pitching motion with a node point 0.405 m behind
the centre of mass. Altering the value of the nose gear stiffness to 30 000 N/m would eliminate coupling
in the stiffness matrix and mean that the two modes would be pure heave and pure pitch respectively.

2.3 DAMPED FREE VIBRATION

Now consider the free vibration of a damped MDoF system. The mathematical form of the motion of the
damped system following release from an initial condition is rather complicated so will not be covered
in detail here.
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Figure 2.3 Mode shapes for the rigid aircraft example.

2.3.1 Form of the Damped Solution

Rather as for the SDoF system, if the response vector is assumed to be
x(t) = XeM (2.29)

and this solution is substituted into Equation (2.8) with no excitation and the exponent term cancelled,
then

[A>M +AC+K]X = 0. (2.30)

Since the matrix determinant is zero for a nontrivial solution, a 2N th-order characteristic polynomial in
A may be obtained and the N complex roots determined. Alternatively, the problem can be solved using
a matrix based approach by transforming to first-order (state space) form (illustrated later for flutter in
Chapter 11).

For systems where damping is small enough for oscillatory motion to occur in each mode, there will
be N complex conjugate pairs of roots of Equation (2.30) of the form A; = —a; +1ib;, A} = —a; — ib;
for j =1,2,..., N and corresponding (nominally) complex conjugate pairs of eigenvectors X ;, X j
for j =1,2,..., N. Because the constituent solutions for the free vibration in Equation (2.29) will
be governed by the term exp[(—a; £ib;)t] = exp(—¢;jw;t £iw; /1 — g“]-zt) then, somewhat akin to the
SDoF approach used in Chapter 1, the eigenvalues can be used to obtain the ‘effective’ natural frequency

and damping ratio values of w; = /a7 +b%, {; = a;/w; for j =1,2,...,N.

2.3.2 Proportional (or Rayleigh) and Nonproportional Damping

The behaviour of an MDoF viscously damped system is dependent upon the relationship between the
damping matrix and the mass and stiffness matrices. If the physical damping matrix C can be written as
a linear combination of the physical mass and stiffness matrices (M, K), e.g.

C =aM + BK, 2.31)

where «, 8 are scalar coefficients, then such a damping model is known as proportional (or Rayleigh)
damping (Rao, 1995; Thomson, 1997). If this relationship is not satisfied, then the damping is said to
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be nonproportional. The two DoF rigid aircraft example will be used to illustrate the effect of these two
damping models on the free damped vibration behaviour.

2.3.3 Example: Two DoF Rigid Aircraft with Proportional Damping

Consider the same two DOF rigid aircraft example as earlier, but now define nose and main gear damping
values of Cy = 400 Ns/m and Cy; = 1200 Ns/m; these values are 1 % of the corresponding numerical
stiffness values and so describe a proportional damping model with Rayleigh coefficients « = 0 and
B = 0.01. Thus the mass, proportional damping and stiffness matrices are

M — 4000 0 C— 1600 —400 K — 160000 —40000
1 o0 12000 |’ | =400 7600 |’ | —40000 760000 |-

(2.32)

Solution of the relevant eigenvalue problem (see Chapter 11) for the damped two DoF system gives
A = —0.193 £6.2141 and 1, = —0.323 £ 8.036i, leading to ‘effective’ natural frequencies of 0.989
and 1.280 Hz, with damping ratio values of 0.031 (i.e. 3.1 % critical) and 0.040 for the two modes. Note
that for this proportional damping case the ‘effective’ natural frequencies obtained are identical to the
undamped natural frequencies found earlier. The corresponding eigenvectors are found to be

< 1 < —0.405

These vectors X ; are termed the (damped) mode shapes; for the proportional damping case they are real
and are exactly the same as the undamped normal modes X ; found for the undamped case considered in
Section 2.2.2. Thus motion in any such mode will involve each coordinate being in-phase or out-of-phase,
with an invariant nodal point location and simultaneous maximum and minimum excursion of all the
coordinates.

The implication of these results is that the free vibration of a proportionally damped MDoF system
will consist of the summation of decaying responses in each of N normal modes with shape X ;, ‘effective’
natural frequency w; (rad/s) and damping ratio ¢;; thus in effect the general free vibration response is
expressed as the combination of modes, each behaving like SDoF systems. Each component in the
summation will have an amplitude and phase that depend upon the initial conditions.

2.3.4 Example: Two DoF Rigid Aircraft with Nonproportional Damping

Now consider the nose gear damping value Cy doubled to 800 N s/m, while the nose gear stiffness value
remains unchanged; this means that the damping will be nonproportional, with the damping matrix

2000 —2000
€= |:—2000 14000 ] ’ (2.3
The solution of the relevant eigenvalue problem for the damped MDoF system gives A; = —0.203 &

6.215iand A, = —0.630 + 8.0161, leading to ‘effective’ natural frequencies of 0.990 and 1.280 Hz, with
damping values of 0.033 and 0.078 for the two modes. Note that the ‘effective’ natural frequency is
now slightly different to the undamped natural frequency of the system, but nevertheless governs its free
vibration decay. The damping value has increased as expected. The corresponding eigenvectors are found
to be

% 1 - —0.416 — 0.061i
X'_{0‘138+0.016i} and Xz—{ 1 } 2.35)
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and these are clearly seen to be complex and different to the values in Equation (2.33). The vectors are
termed complex (or damped) mode shapes and are only the same as the undamped normal modes for the
proportionally damped case. A complex mode involves each coordinate having a fixed relative amplitude
and phase with respect to the other coordinates (usually different to 0 or 180°), points reaching their
maximum excursion at different instants of time and nodal point locations that vary with time during a
cycle of vibration. Note that the presence of complex modes will be found in the flutter solution (see
Chapter 11).

The free vibration response will now be a summation of the decaying complex mode responses as
opposed to normal mode responses for the proportionally damped system.

2.4 TRANSFORMATION TO MODAL COORDINATES

A particularly powerful feature of mode shapes of vibration is that they may be used to transform the
coupled equations of motion in physical coordinates into a different (principal/modal) coordinate form
where coupling is absent. The analysis will be presented in matrix form for a general MDoF system and
illustrated for the two DoF examples. Damping and excitation terms are now included since the approach
is generally applicable.

Firstly, define a coordinate transformation based on the modal matrix and ‘modal’ (or ‘principal’)
coordinates ¢q:

x = dg. (2.36)

Now substitute for x using Equation (2.36) in Equation (2.8) and pre-multiply by the transpose of the
modal matrix; therefore

¢"Mbi+ ¢ 'Chg+ ' Kbg=0" f
or (2.37)
M,j+Coq +K,q=0"f= f,,

where
M,=d'Mp,  C,=¢'ChH,  K,=dKd, f,="f. (2.38)

The matrices M, C,, K, are known as the modal mass, damping and stiffness matrices, and f,, is the
modal force vector. It may be shown that the modal mass and stiffness matrices are in fact diagonal (i.e.
uncoupled), with diagonal elements equal to the modal mass 7 ; and modal stiffness & ; for the jth mode.
This diagonalization occurs because the modes of vibration are ‘orthogonal’ with respect to the mass
and stiffness matrices (Rao, 1995); this is an extremely useful feature, as will be illustrated later. The
statement of orthogonality with respect to the mass matrix, for example, may be expressed as

XI.TMij{O’ A (2.39)
mj, i=j.

The properties of the modal damping matrix are less clear-cut. Provided that the physical damping matrix
C can be written as a linear combination of the physical mass and stiffness matrices (M, K), as described
above in Section 2.3.2, then the damping is proportional and the modal damping matrix C, will also
be diagonal. However, if the damping is nonproportional, then the modal damping matrix will include
cross-coupling terms. At the initial analysis stage, it is normal to assume proportional damping so that
the equations of motion expressed in ‘modal space’ in Equation (2.37) are in fact fully uncoupled.
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The power of the modal transformation defined by Equation (2.36) may now be seen by writing out
the modal equation of motion for the jth mode in Equation (2.37), with the assumption of proportional
damping, so that

mji['j—l—cji]j—l—quj:f,,j(t) for j:1,2,...,N, (240)

where m;, ¢;, k; and f;; are the modal mass, damping, stiffness and force for the jth mode. Using the
SDoF concepts introduced in Chapter 1, the damping ratio for each mode is given by {; = ¢;/(2m;w;),
where w; = /k;/m; is the jth mode natural frequency. The modal equation in nondimensional form is
_ f qj (t )
mi

J

G + 2804, + wjq; forj=12,....N. (241

The coupled MDoF equations of motion originally derived in physical coordinates have now been
expressed as a set of uncoupled single degree of freedom equations in modal coordinates. An MDoF
system may therefore now be treated as a summation of SDoF systems. All the SDoF concepts (e.g. forced
response) introduced in Chapter 1 may then be applied to each modal equation. Such a transformation
will later be seen to be a fundamental part of the analysis approach used for aircraft aeroelasticity and
loads calculations.

2.4.1 Example: Classical ‘Chain-like’ Two DoF System

To illustrate the transformation to modal coordinates, the classical two DoF system introduced earlier
in Section 2.1.1 will be used, together with proportional damping defined by o = 0 and 8 = 0.002, so
¢y =4 and ¢; = 2N s/m. The general physical forces fi, f, will be included, without numerical values
defined as yet. Firstly, the modal mass matrix defined in Equation (2.38) may be calculated as

T 105 1|2 0][05 —1| |15 0
M, = &M = |:—1 110 1 1 1| [0 3 (242
and it is clearly diagonal. Repeating this procedure for the modal damping and stiffness matrices yields
1.5 0] 750 0
C, = |: 0 12 and K, = |: 0 6000:| . (2.43)

Also, the modal force vector is given by

T __0.5 1 fi _ 0511+ f>
fo=df=| 1]{fz}_{—f1+fz} @44

Thus, writing out the two modal equations separately as illustrated in Equation (2.40) yields
1.5G1 + 1.5¢; +750q; = 0.5f1(t) + f2(1),

(2.45)
3Gs + 124> + 6000g, = — f1(¢) + f2(0).

The coupled two DoF equations in physical coordinates have been transformed into uncoupled SDoF
equations in modal coordinates. Each SDoF equation has the natural frequency for the corresponding
undamped normal mode, with each mode having an effective damping ratio of ¢; = ¢;/(2m w,), so
¢ = 0.022 (i.e. 2.2 % critical) and ¢, = 0.045. These results may be seen when running the MATLAB
program in the companion website.

Itis clear that values of force may be chosen to excite one or both modes; e.g. if the forces f;, f, are
equal then mode 1 can be excited but mode 2 will not be excited. This is in fact the principle of multiple
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exciter testing sometimes used to isolate and measure modes in the aircraft Ground Vibration Test (see
Chapter 26).

2.4.2 Example: Two DoF Rigid Aircraft with Proportional Damping

In this example, even though the physical coordinates are mixed translation and rotation, the transfor-
mation to modal coordinates is still possible. If damping is again proportional, defined by « = 0 and g
= 0.01, then Cy = 400 and Cy; = 1200 Ns/m, as described earlier. The tail force is applied at /t = 6 m.
After performing the modal transformation, the two modal equations may be shown to be

4219G, + 1631g, + 163060g, = 0.81 £ (1),
126576, + 81873, + 818 670¢, = —5.595f ().

(2.46)

The natural frequencies are 0.989 and 1.280 Hz, with modal dampings ¢; = 0.031 and ¢, = 0.040.

2.4.3 Example: Two DoF Rigid Aircraft with Nonproportional Damping
Pre- and post-multiplying the nonproportional damping matrix (equation 2.34) by the modal matrix gives

1715 —810
Ci= |:—810 15949]’ (247)

so clearly, although the mass and stiffness matrices would be diagonalized as for the proportional case
above, the resulting modal damping matrix is not diagonal. Thus the equations of motion in modal space
become

4219G; + 1715¢, — 8104, + 163060g; = 0.81 (1),
126574, — 8104, + 15949¢, + 818 670g, = —5.595 £ (¢).

(2.48)

Modal damping cross-coupling terms are now present, thus implying that excitation of one mode
causes a response in the other. Clearly, the equations have not been uncoupled using the classical normal
mode transformation; it is only possible to generate uncoupled equations using the first order form (Tse
et al., 1978).

2.4.4 Mode Shape Normalization

Note that it is important to recognize that the values of modal mass, and therefore modal damping,
stiffness and force, depend upon the normalization used in defining the modal matrix. Thus, for example,
modal mass does not have a unique value and the statement ‘this mode has a high modal mass’ needs
qualifying; it is quite meaningless unless the mode shape normalization employed when generating the
modal mass is also defined. However, provided the definitions used are consistent throughout the analysis,
it does not matter what normalization is used and the same final result will emerge for, say, the response
to an excitation.
Common normalization approaches for mode shapes are:

® mode shape normalized so as to generate a unit modal mass (‘mass normalized’ mode shape),
® mode shape normalized to a maximum value of unity or

® mode shape normalized such that the vector norm is unity.

In the above two examples, the modal quantities correspond to the mode shapes normalized to a maximum
value of unity. However, if, for example, the first mode for the aircraft system was to be defined by a
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unit modal mass, then the mode shape vector { I 0.135}T would need to be multiplied by 1/4/4219,
the square root appearing because the mode shape appears twice in the modal mass calculation.

2.4.5 Meaning of Modal Coordinates

At this point, it is helpful to consider the physical meaning of modal (or principal) coordinates. The
coordinate ¢; indicates the amount of the jth mode present in the motion. In the example of the aircraft,
¢ describes the dominantly heave mode while ¢, describes the pitch mode. Thus it is not possible to
place a transducer on the system and measure a modal coordinate — it defines a characteristic ‘shape’ and
the absolute value of the coordinate in any given response depends upon the mode shape normalization
employed.

2.4.6 Dimensions of Modal Coordinates

2.4.6.1 Consistent coordinates

The units of mode shapes, modal coordinates and other modal quantities are interesting to consider
as they can cause confusion. Consider first the chain-like two DoF system, where all the coordinates
have the same dimensions. It is sensible to think of the mode shape vectors as being dimensionless since
they have no absolute values; the consequence of this choice is that the modal mass has dimensions of
mass (kg), the modal coordinates have dimensions of displacement (m) and the modal equation is then a
force equation (N). If, instead, the mode shapes were taken as having displacement units, then the modal
coordinates would be dimensionless, modal mass would be in kg m? and the equation would be in terms
of moments; this is not consistent with a classical description of the terms, so the former approach is
preferable.

2.4.6.2 Mixed coordinates

However, the position is less clear when considering the aircraft example where the mode shapes have
mixed (i.e. both translational and rotational) coordinates. In order for the modal transformation and the
modal equation to be dimensionally consistent and produce a modal mass in kg and modal force in N,
the mode shapes will need to be treated rather differently to the earlier consistent coordinate case. In
fact, the mode shape vector needs to be nondimensionalized in some way, and since it cannot be nondi-
mensionalized independently in both displacement and rotation, it is normalized to, say, 1 m, and so the
mode 2 vector is { —0.405 1rad/m }". Thus only the displacement term has been made dimensionless;
when modal equations are considered, the dimensions are consistent with the simpler system.

2.4.7 Model Order Reduction

A further benefit in working in modal coordinates for systems with a large number of DoF (and therefore
many modes of vibration) is that it allows the number of modes included in a solution to be considerably
reduced. The frequency range of interest is limited and so it may be advantageous to reduce the scale of the
analysis by only considering a subset of the modes in the modal transformation. By reducing the number
of modes, the residual effect of higher frequency modes would be omitted, so it is normal to include
modes with natural frequencies somewhat higher than the maximum frequency of interest to make some
allowance for this effect. Consider only including n (< N) of the modes; therefore ¢, = [X; X, --- X,,]
would be the reduced modal matrix and the transformation to the reduced set of principal coordinates
would be

x=b,q,. (2.49)
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Figure 2.4 Two degree of freedom free—free system.

Thus the final set of transformed equations would simply be reduced to 7 instead of N SDoF equations.
For example, a system with 200 000 (V) physical degrees of freedom from a finite element analysis (see
Chapter 4) could be analysed using only 20 (n) modal equations.

2.5 ‘FREE-FREE’ SYSTEMS

A ‘free—free’ system is one that is not connected to ‘earth’ via any support stiffness, i.e. it is effectively
freely floating in space. An aircraft in flight is a typical example of a free—free system and it is therefore
important to recognize the particular features of such systems. Consider the simple chain-like two DoF
system in Figure 2.4.

The equations of motion may be shown to be given by

m; 0 X k —k X | _
KA | A I A G
where the stiffness matrix is singular. Applying the usual method for calculating natural frequencies
yields the quadratic equation

@’ [mimaw?* — k(m; + m»)] = 0. (2.51)

The natural frequencies of the two modes are w; = 0 and w, = /k(m + m,)/(mm,). The first mode
shapeis {1 1}T, which is known as a ‘rigid body’ mode, with both masses moving together and having
zero natural frequency. The second mode shape is {1 —pu }T, where i = m; /m, is the mass ratio; this
is a flexible mode with the two masses moving in opposite directions in such a way that there is no
net inertia force acting on the system. For these mode shape normalizations, the two modal masses are
my + my, the total mass, and m (1 4+ w) respectively. Similar features will be seen later in Chapter 3
when considering a free—free continuous system.

2.6 HARMONIC FORCED VIBRATION

The response to harmonic excitation may be determined via equations expressed in physical or modal
coordinates using a similar approach to that in Chapter 1, except that matrix algebra is appropriate.

2.6.1 Equations in Physical Coordinates

In this section, the solution will be based upon the equations of motion expressed in physical coordinates.
The similarity of the SDoF and MDoF expressions will be seen. The excitation and response are now
column vectors and in complex algebra form are assumed to be

ft) = Fe' and  x(r) = Xel', (2.52)
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Figure 2.5 Sample driving point and transfer FRFs for the chain-like two DoF system.

where again ~ indicates a complex quantity. The complex expressions in Equations (2.52) are now
substituted into the equation of motion (2.8) and after cancelling the exponential term the result is

[-o™M +i0C+K]|X = F. (2.53)
Thus the response may be solved using a matrix inverse operation so that
X=[-o"M+iwC+K|"'F or X =H()F. (2.54)
Here H(w) is the frequency response function (FRF) matrix, given by
H(o) = [~o’M +ioC + K], (2.55)

where the matrix inversion must be carried out at every frequency of interest. A typical term in the FRF
matrix Hy, (w) is a complex quantity representing the modulus and phase of coordinate k when a unit
harmonic force is applied at coordinate r at a frequency w. The diagonal terms H,,(w) are known as
direct or driving point FRFs whereas the off-diagonal terms H;, (w), k # r, are transfer FRFs. Sample
driving point and transfer FRFs are shown in Figure 2.5 for the two DoF chain-like system considered
above. The direct FRF shows antiresonance behaviour (i.e. a trough) between each pair of modal peaks,
which is characteristic for all systems; the transfer FRF behaviour depends upon the number of nodal
points between the excitation and response positions. The phase behaviour could also be examined using
the MATLAB program in the companion website.

2.6.2 Equations in Modal Coordinates

In Section 2.4, it was shown how a transformation to modal coordinates, based on the modal matrix, could
yield uncoupled SDoF equations of motion provided the damping was proportional. With such uncoupled
equations, a different approach to forced vibration is possible. Basically, the response of each mode may
be determined from Equation (2.40) or (2.41) using the SDoF methods introduced in Chapter 1; the
results can then be transformed back into physical coordinates using Equation (2.36). However, it is also
possible to write the response vector and the FRF directly from the full set of modal equations defined
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in Equation (2.37) using a similar approach to that taken above in Section 2.6.1. Now, in addition to the
physical force and response vectors defined in Equation (2.52) above, the modal response may be written
as

q(t) = Qe (2.56)

Applying the methodology used in Section 2.6.1 to Equation (2.37) then an equation of similar form to
Equation (2.54) will result and it may be seen that

0 =[-w’M, +iwC, + K, 'd"F. (2.57)
Transforming back to physical coordinates using Equation (2.36) then yields
X=¢p0=0[-o’M, +iwC, + K, '¢p"F, (2.58)
so by inspection the FRF matrix in physical space is
H(w) = ¢[-o’M, +i0C, + K, 'd". (2.59)

Note that if the damping is proportional, then the FRF matrix inverse in Equations (2.57) to (2.59) is
straightforward to compute since the matrix is diagonal. The FRF matrix may then be calculated by a
summation of the modal contributions and it may be shown that a typical [£,r] element of the matrix for
an N DoF system is

N
D, D,
Hy (w) = — 2.60
(@) ;kj—a)znz/»—{—la)cj (2-60)
where ®,; is the jth mode shape value at coordinate k. This expression is often used in curve fitting
experimentally derived FRF data in ground vibration testing (see Chapter 13). The FRF numerator shows
the importance of the mode shape at the excitation and response points in determining the contribution
of a particular mode to the FRF; the denominator shows how each mode contributes to the resonant
peaks.

2.7 TRANSIENT/RANDOM FORCED VIBRATION - TIME
DOMAIN SOLUTION

In Chapter 1, the methods available for solution of the response to transient excitation for an SDoF system
were discussed. In this section, the suitability of these methods for an MDoF system is considered briefly.

2.7.1 Analytical Approach

An analytical approach may still be used for the solution of the response of linear MDoF systems to
transient excitation, provided the excitation has a relatively simple mathematical form such that a closed
form solution is possible. In particular, when the damping is proportional, then the uncoupled SDoF
modal equations may be used to solve for the response to transient excitation. For example, since the
response to a step excitation is known for a linear SDoF system, then the modal response for each mode
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of an MDoF system to a step modal force may be determined and the results combined using the modal
transformation in Equation (2.36).

2.7.2 Convolution Approach

Convolution for a linear SDoF system (see Chapter 1) may be extended to a linear MDoF system to
relate the response vector x(¢) to the excitation vector f(¢) by using the matrix form of the convolution
equation, namely

x(t) = / h(t — 7) f(r)dr, (2.61)
=0

where h(z) is the IRF (impulse response function) matrix, the inverse Fourier transform of the FRF matrix.
A typical term in the IRF matrix is 4, (¢), the response of the kth coordinate due to a unit impulse at the
rth coordinate. The FRF and IRF matrices can also be calculated where aerodynamic terms are present.

2.7.3 Solution of ODEs

It is possible to solve the equations of motion for an MDOF system directly using a numerical integration
approach as explained briefly in Chapter 1. The algorithms are adapted to handle response and excitation
vectors instead of scalars. The approach is powerful and suitable for highly nonlinear systems, such as
would be encountered when landing gear dynamics or flight control systems are present.

2.8 TRANSIENT FORCED VIBRATION - FREQUENCY
DOMAIN SOLUTION

In Chapter 1, it was shown for an SDoF system that the response to a finite length general excitation
input could be determined by a process based upon the Fourier transform (FT) and multiplication in the
frequency domain. A similar approach is possible for an MDoF system, and potentially for a multiple
input-multiple output (MIMO) system, except that the analysis needs to be expressed in matrix form and
the FT of the excitation and response vectors are involved.

2.9 RANDOM FORCED VIBRATION - FREQUENCY DOMAIN SOLUTION

In Chapter 1, it was shown that the power spectral density (PSD) of the response of an SDoF system to a
random excitation input could be determined using a spectral approach, with the response and excitation
PSDs being related via the modulus squared value of the FRF. In the case of an MDoF system, multiple
independent random sources may be applied simultaneously and a matrix spectral relationship would
then be developed; however, in this book, such a case is not required. Since turbulence acts as a single
excitation source, each response can be treated separately using the relevant MDoF FRF. Thus the PSD
relationship is

S (@) = [Heo(@)* Sua(@), k=1,2,...,N, (2.62)

where the kth response term is being considered, H,(w) is the FRF relating the kth response to the source
and S,,(w) is the source PSD. It may be seen that all the modes will be included in the response via the
FRF.
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2.10 EXAMPLES

Note that these examples may be useful preparation when carrying out the examples in later chapters.

1. For the two DoF lumped parameter system shown in Figure 2.6, determine (a) the equations of motion
in matrix form, (b) the undamped natural frequencies and mode shapes, (c) the modal masses, (d) the
modal dampings and (e) the modal stiffnesses. Write the uncoupled equations in modal space. Repeat
the calculations using MATLAB (see companion website).

[(a) M = diag[m m],K =[2k —k;—k 2k], (b) v, =+/k/m, w, =+/3k/m and {1 1}, {1 -1},
(c)2m,2m, (d)2c, 6¢, (e) 2k, 6k]

k k k
A I
— F —F—

c L |_) c

X, X2
Figure 2.6

2. For the aircraft plus landing gear example investigated earlier in this chapter, obtain the equations
of motion written in terms of the vertical displacements zy, zy at the nose and main gears instead
of z¢, 6. (Note that the pitch rotation will need to be written in terms of the displacements in order
to obtain the kinetic energy of rotation.) For the parameter values used in the example, obtain the
undamped natural frequencies and mode shapes and show that they are the same as those determined
earlier. Determine the modal masses. Repeat the calculations using MATLAB.

M = [(Iy + ml3y), (mixh = 1); (mixha = 1), (I, +mi{)], K = [KnUx + bv)’,
0; 0, Kn(In + In)?], 0.989 and 1.280 Hz, {0.4405 1}, {1 —0.135}, 81870, 16310kg]
3. An aerofoil section has a mass m and moment of inertia /o about the point O, where it is supported in
heave and pitch by a linear spring k and a rotational spring K respectively (see Figure 2.7). The centre
of mass C is a distance e ahead of O. Determine the equations of motion for two coordinate sets (a)
z¢, 0 and (b) zo, 8, where z¢ o are measured downwards from points C and O respectively and 6 is
the nose up pitch angle. Note the different types of coupling term in the equations of motion.
[(a) stiffness coupled M = [m, 0; 0, (Io — me?)], K = [k, ke; ke, (K + ke?)] and
(b) inertia coupled M = [m, —me; —me, Io], K= [k, 0; 0, K]]

Figure 2.7

4. The system shown below in Figure 2.8 consists of two masses (m = 1 kg) mounted on a rigid member
of length 3a (a = 1 m), supported by springs (k = 1000 N/m) and dampers (¢ = 2N s/m). Determine
(a) the equations of motion in matrix form, (b) the undamped natural frequencies and mode shapes,
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g

(c) the modal masses and (d) the modal damping ratios. Note that expressions need to be determined
for the compressions of the springs in terms of z; 5.
[M = diag[2, 0;0, 1] and K = [5000, —4000; —4000, 5000], mode 1: 4.08 Hz, {1, 0.921},
2.848 kg, 0.0256, mode 2: 13.17 Hz, {1 —2.171}, 6.713 kg, 0.0826]

Figure 2.8

5. For the system in Example 4, write down the modal equations. Then, ignoring damping, using a
superposition of the modal responses, obtain an expression for the response of the system at point 1
due to (a) a 100 N step input at point 2 and (b) a sine input of 100 N at a frequency of 5 Hz (close to
the resonance of mode 1). Results from Chapter 1 may be helpful.

[(a) z;() = 0.0443 — 0.0492 cos 25.65t 4 0.0047 cos 82.72¢ and
(b) z1(t) = 0.083 sin(31.4¢ + 32.1°) — 0.0052 sin(31.4¢t — 20.1°)]

6. For the system in Example 4 without damping, determine expressions for the FRFs H),, H», using
both the (a) physical and (b) modal coordinate models. Sketch the amplitudes of these functions
against frequency.

7. Describe how the analyses in Examples 5 and 6 would change for the case where modal damping is
present in each mode. Sketch the changes in the responses and FRFs.

8. For the three DoF free—free system shown in Figure 2.9, with m = 100kg and & = 10000 N/m,
determine expressions for the undamped natural frequencies, mode shapes and modal masses.

[0,1.591 and 2.757Hz, {1 1 1},{—1 0 1},{—0.5 1 —0.5} and 300, 200 and 150kg]

k k

N Y R Ve I
L L, L,

X, X, X3

Figure 2.9
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Vibration of Continuous Systems —
Assumed Shapes Approach

In Chapters 1 and 2, some basic concepts were introduced for single and multiple DoF ‘discrete parameter’
systems, where motion was defined via displacement or rotation coordinates. However, for most problems
encountered in aircraft aeroelasticity and loads, the systems are ‘continuous’, involving mass and stiffness
properties distributed spatially over the system. An aircraft wing or fuselage may be considered as elastic
continuum components able to bend and twist, but these require a different analysis approach.

There are several ways of modelling ‘continuous’ systems, namely:

(a) an exact approach using the partial differential equations of the system to achieve exact modes,
(b) an approximate approach using a series of assumed shapes to represent the deformation or

(c) an approximate approach using some form of spatial ‘discretization’.

The exact approach is satisfactory for simple systems such as slender members under bending,
torsional or axial deformation, but is impractical for ‘real’ systems with complex geometry. (The term
‘slender member’ is used here in place of the many terms often used to describe what are essentially
similar members that experience different types of loading, namely beams, shafts, bars and rods. The
term ‘slender’ implies that their length is significantly greater than their cross-section dimensions.)

In this chapter, the Rayleigh—Ritz approach for modelling a system using a series of assumed
shapes will be introduced as a way of representing continuous systems with relatively simple geometries
(e.g. uniform built-in wings). Also, special cases where the assumed shapes are in fact normal modes
of the whole aircraft, or ‘branch (normal) modes’ of parts of the aircraft, will be considered. All these
approaches will yield models of the system expressed in terms of so-called ‘generalized’, and not physical,
coordinates; the generalized coordinates define the amount of each assumed shape present in the motion.
Such models will be used to demonstrate the basic concepts of aeroelasticity and loads in Part II of the
book, since by doing so the number and complexity of equations will be minimized to avoid obscuring
the underlying principles. It will then be seen that the MDoF methods introduced in Chapter 2 may
be employed to determine the vibration characteristics of the set of simultaneous ordinary differential
equations in the unknown generalized coordinates.

Before progressing with the Rayleigh—Ritz analysis, the difficult issue of which appropriate symbols
to use in expressing deformation will be discussed. It is normal in stress/structural analysis to consider
the geometric position coordinate using the symbol z and the bending deformation using the symbol w.
However, later in the book it will be seen that the symbol w is also used in the flight mechanics model to
denote downwards velocity and the symbol w, to denote the gust velocity. Also, in aeroelastic calculations,
the symbol z is often used to describe the downwards deformation of the aircraft. It has therefore been

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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decided to use a notation throughout that is more consistent with the aircraft usage. Therefore in this
chapter and the next, the bending deformation will be denoted using the symbol z; the context of a
particular analysis should clarify what is being considered in any given case. For convenience when
comparing the Rayleigh—Ritz treatments given here with that in other books, the bending displacement
will be considered as positive upwards. Later in Part I, when aeroelastic and loads models are considered,
a downwards positive displacement will be used.

3.1 RAYLEIGH-RITZ ‘ASSUMED SHAPES’ METHOD

The Rayleigh—Ritz approach is used to represent the deformation of the system by a finite series of
known assumed deformation shapes multiplied by unknown coefficients. The method (Tse et al., 1978;
Rao, 1995) was introduced when a practical approximate methodology was required in the absence of
computers. It is an extension of Rayleigh’s method (where only a single shape is employed).

3.1.1 One-Dimensional Systems

For a system where the deformation varies in only one dimension, the bending deformation z(y, f) (see
earlier remarks on notation) can be represented by the series

N
20,0 =) ¥ ¢;0), 3.1

=1

where v¥;(y) is the jth assumed deformation shape (a function of y), ¢;(¢) is the jth unknown coefficient
(the ‘generalized coordinate’), which is a function of time, and N is the number of terms in the series. The
idea is that this combination of shapes represents the true deformation of the system as closely as possible,
as shown in Figure 3.1 for N = 2. The more shapes used, the more accurate will be the approximation.
Also, the degree to which the shapes satisfy the boundary conditions (see later) is important. If the
assumed shapes are identical to the undamped normal mode shapes, then the generalized coordinate
q(1) is equivalent to the modal coordinate introduced in Chapter 2. The principle of assumed shapes
is somewhat akin to using a Fourier series to represent a time signal by the summation of a series of
sinusoids of different amplitude and phase.

S

Figure 3.1 Deformation of a slender member in bending (N = 2): z(y, t) = ¥1(¥)q1(t) + ¥2(y)qa(2).
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3.1.2 Two-Dimensional Systems

Where the deformation varies in two dimensions (e.g. a thin plate that can both bend and twist), the
assumed shapes may be a product of functions that vary along each dimension, for example ¢(x)y(y),
or else a combined shape accounting for deformation in both coordinates simultaneously, for example
x(x, y).

3.1.3 Choice of Assumed Shapes

The assumed shapes are classically of polynomial, trigonometric or hyperbolic form. It is essential that
each shape satisfies the geometric (or ‘kinematic’) boundary conditions of the system, e.g. no transverse
deformation at a simple/built-in support and also no rotation at a built-in support. However, the accuracy
of the representation will be improved if the shapes also satisfy the load (or natural) boundary conditions.
For a slender member built in at one end and under bending, the load boundary conditions at the free end
are zero curvature and zero rate of change of curvature (i.e. zero bending moment and shear force); for
the torsion case, the load boundary condition is a zero rate of twist (i.e. zero torque) at the free end. A
better choice of shapes implies that fewer terms are required for the same accuracy. However, whereas
the kinematic boundary conditions are relatively simple to satisfy, it is much more difficult to satisfy the
natural boundary condition.

The choice of shapes is better served by example than by attempting to generalize further. However,
because the aim in this book is simply to generate systems with a small number of equations that may be
used to demonstrate aircraft aeroelasticity and load concepts, only simple polynomial assumed shapes
will be employed. It is recognized that the results will be less accurate than if more terms in the series,
and better shapes, were to be used.

Having defined the assumed shapes, an energy principle is employed to minimize the error in the
approximation and so generate equations in the unknown generalized coordinates; Lagrange’s equations
will be used again.

3.1.4 Normal Modes for a Continuous System

When a continuous system is considered, then theoretically there are a near-infinite number of normal
modes, with each mode defined by a continuous mode shape and having its own natural frequency,
damping ratio and modal mass. When using a finite number N of assumed shapes, then the analysis will
yield estimates of N normal modes, with the accuracy being superior for the lower frequency modes.

3.2 GENERALIZED EQUATIONS OF MOTION - BASIC APPROACH

In this section, an analysis will be performed for a uniform built-in member (or ‘wing’) under bending or
torsional vibration, with one or two simple polynomial terms used in the series. Results will be compared
to those from an exact analysis. Later, the use of matrix algebra to set up the equations will be shown. It
should be recognized that when only a single shape is used, the method is actually Rayleigh’s method.

3.2.1 Built-in Member in Bending — Single Assumed Shape

The member shown in Figure 3.1 has length s, mass per length p, material Young’s modulus £ and
relevant section second moment of area for vertical bending / (sometimes incorrectly termed the second
moment of inertia). The product £/ is known as the flexural rigidity. A force f(f) is applied at position
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y = a as shown. No damping is included. Firstly, only one term in the series will be chosen and the
polynomial will be a simple quadratic function, namely

2
0.0 =y a0 =(2) 0. (3.2)

N

This function is shown in Figure 3.1 and satisfies the requirement for zero displacement and zero
slope/rotation at the clamped end (i.e. the kinematic boundary condition) but not the load boundary
condition at the free end (because the curvature there is finite, not zero). In this case, it may be seen that
the assumed shape has been chosen to be dimensionless, so the generalized coordinate has dimensions
of displacement.

The use of Lagrange’s equations, as described in Chapters 1 and 2, requires various energy and
work terms to be determined for discrete systems, but in this continuous case the quantities need to
be found by integration over the member. The kinetic energy dT for an element of length dy and mass
wdyis

dT = L(udy)z? (3.3)

2

and the kinetic energy 7 is calculated by summing up (i.e. integrating) the elemental energies; thus
A
T = 5/(; nzedy. (3.4)

Substituting the expression for z(y, ¢) from Equation (3.2) into Equation (3.4) and performing the inte-
gration yields

r=3f ()] as=toy (3.5)
=2 w|§)a]dy="T57" .
The strain energy in bending depends upon the curvature and flexural rigidity (Benham ez al., 1996) and
is
L[ 32\’
U=—- ([ EI|— | dy. 3.6
2 /0 <8y2> ' G0

Thus, substituting the expression for z(y, #) from Equation (3.2) into Equation (3.6) and integrating yields
the strain energy

1 2\ 2FI ,
U==| EI(=q)dy="4% (3.7)
2 Jo 52 53

Finally, the work done by the applied force moving through an incremental displacement 8z at y = a
will be

2
W = ) 6.0 = () (%) 8q. (3.8)

where it should be noted that the incremental physical displacement may be expressed in terms of an
increment §¢ in the generalized coordinate. The effectiveness of the force depends upon the value of the
assumed shape at the point of application; e.g. applying a force at a nodal point will have no effect.
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Taking Lagrange’s equation (see Chapters 1 and 2), rewritten in terms of generalized coordinates
qjs

d /0T oT 03 U a(w
( )_ + s_|_ (W) forj=1,2,...,N, 3.9

— (=) -+ =0, =
de \dq; ) 9q;  9q;  dq; ' 9(q))
and substituting the energy and work expressions for the single generalized coordinate ¢(¢) (N = 1) yields

ns 4E] a\? |
?q+ q=(;) J@) (3.10)

By inspection of this SDoF equation (see Chapter 1), the undamped natural frequency is given by

El
w =447 s G.11)

This is an overestimate by 27 % on the exact value of 3.516,/EI/(i s*) (Rao, 1995), the difference
occurring because the member is effectively constrained (or forced) into the assumed shape (i.e. by not
satisfying the tip load boundary conditions) and so is over-stiff. Note that this assumed shape has led to an
estimate of the lowest, or fundamental, natural frequency. One reason that this estimate is so much in error
is that relatively small errors in the assumed shape can make a significant difference when differentiated
twice within the strain energy expression. For a slender member problem, it can be shown (Thompson,
1997) that by evaluating the strain energy via the bending moment that corresponds to the distributed
inertia loading the errors are much smaller. However, the standard approach adopted here is simpler to
apply and using sufficient shapes will yield adequate results.

3.2.2 Built-in Member in Bending — Two Assumed Shapes

To show how the analysis changes and the accuracy improves, when more than a single shape is used,
consider the expression for displacement of the member in bending with two assumed shapes, given by

2 3
20:0 = ) 60 +120) a0 = (2) a0+ (2) a0, (3.12)

The second shape is now a cubic polynomial which also satisfies the kinematic boundary condition, as
shown in Figure 3.1, but not the load condition. The energy and work done terms may be determined in
a similar way to that in Section 3.2.1 above, but now there are two terms in the series. Thus the kinetic
and strain energies are

L[ Y\, T ws
2/0“[5 q1 + 5) | dy 101+14QZ+6¢11512

and (3.13)

1 2 6y 2EI , 6EI , GEI
U=3|[ E 2t S dy =Sht gat 00
0

The work done term is

SW = f(1) 8z(a, 1) = f(1) [(g)zaql i (g)zsqz], (3.14)
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where now increments in both generalized coordinates are required. Finally, applying Lagrange’s equa-
tions for the generalized coordinates ¢, and g, (N = 2) yields the simultaneous equations of motion,

uws . ns . 4EI 6EI a\?
— g1+ —q¢+ s—3Q1 + s_3q2 = (;) f@),

6El 12E1 (a

. (3.15)
) ro.

s s
— G+ =@t —a+—q=
6 q1 7 q2 3 q1 3 92
Note that it is possible to perform the differentiations required by Lagrange’s equations prior to
carrying out the integrals for the kinetic and strain energies; this would reduce the amount of integration
involved. This idea will be used later when the matrix approach is introduced. Equations (3.15) may be

rewritten in matrix form as

4E1  6El ( a )2

il | (el
ir 6EI 12EI | | g2 | —

(4)
53 s3 s

The equations are in the classical MDoF form shown in Chapter 2, with ‘mass’ and ‘stiffness’ matrices
and a ‘force’ vector. However, in this case both the matrices are coupled; this would not be the case if
the assumed shapes were identical to the normal mode shapes. Also, the ‘mass’ matrix, for example, is
not a classical mass matrix since the generalized coordinates are multipliers of assumed shapes and not
physical coordinates.

Using the approach introduced in Chapter 2 for determining the natural frequencies and undamped
mode shapes, the natural frequencies predicted using this approximate method based on two simple

shapes are
EI EI
w; =3.533 | — and w, =34.81 | — 3.17)
s st

The frequency values in Equation (3.17) may be compared to the exact values of

| EI | EI
Ol =3.516 | —  and @y, =22.03 [— (3.18)
ns uws

The first natural frequency is now predicted much more accurately (only 0.5 % overestimated)
because the combination of shapes approximate the true first mode shape more accurately; however, the
second natural frequency is overestimated by 58 %. To improve this latter estimate would require further
or better shapes; e.g. including a quartic shape would yield the second natural frequency to within 1 %
error and a further quintic shape would give the third natural frequency to within 2.5 %. Note that the
mode shapes for the first two bending modes of a built-in member are shown in Figure 3.2; these are

£(0). (3.16)

[T o2

nws
5

nws
6

Mode 1

Figure 3.2 Mode shapes for the first two normal modes.
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Jo(®)

Figure 3.3 Slender member in torsion.

the modes estimated using the Rayleigh—Ritz approach. The number of nodal points (see Chapter 2) will
increase with the mode number.

It can be seen that to obtain an estimate for the natural frequencies of a tapered built-in member
would be fairly straightforward since all that would be required would be to include the mass per length
0 and the flexural rigidity £/ as functions of y/s, with the same assumed shapes being used. If the mass
and/or stiffness properties varied along the member in a piecewise manner, this could be handled by
piecewise integration. To obtain equivalent exact results using the partial differential equation approach
for either of these nonuniform scenarios would be much more difficult.

3.2.3 Built-in Member in Torsion — One Assumed Shape

A related problem to bending is that of torsion, since commercial aircraft have high aspect ratio wings
that have often been treated as slender members (or ‘sticks’) under combined bending and torsion. Later
in the book, the importance of wing twist will become apparent, so an introduction to torsional vibration
analysis is appropriate.

The uniform member in Figure 3.3, built in at one end, now has a moment of inertia in twist per
unit length of x and a torsional rigidity GJ (G is the material shear modulus and J is the section torsion
constant, which is not equal to the polar second moment of area, as is sometimes incorrectly stated,
except for the special case of a circular section). Here, the assumed shapes describe the twist 8(y, t), so
for a single assumed shape then typically

000 =700 = (2) a. (3.19)

where a linear twist shape is assumed and ¢ is effectively the tip twist. This shape satisfies the kinematic
condition of zero twist at the root but not the load condition at the tip (zero torque and rate of twist
do/dy).

Given that the moment of inertia in torsion of an element dy is x dy, the torsional kinetic energy is
given by

) 11 Y \? XS
T =— 0*dy = - Zg) dy = £=¢° 3.20
Z/OX y 2/())((361) y="4 (3.20)

and the strain energy is (Benham et al., 1996)

s 90\’ s 1)? GJ
U==-| GiI|=)dy==] GJ|=q) dy = =—¢>. 3.21
2/0 (ay) v 2/0 (sq> V=90 G20
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Finally, a torque of value f;(7) is to be applied at position y = a, so the incremental work done is
a
SW = folr) 80(a) = folt) —3q. (3.22)

When Lagrange’s equations are used, the equation of motion becomes

K GJ a
i+ 2q="2 fuo). (3.23)
3 s K

The estimated natural frequency is therefore 1.73,/GJ/(xs?) and this value is a 10 % overestimate
compared to the exact value of 1.57,/GJ/(xs?). Clearly, the application to more than one assumed
shape is a straightforward extension and will improve the accuracy. Also, the analysis of a combined
bending/torsion problem is possible, using both bending and torsion shapes, since the energy terms are
scalar and therefore additive.

3.2.4 Flexural Axis and Shear Centre

In the above examples, bending and torsional vibrations were assumed to occur independently (i.e. be
uncoupled). This means that the axis about which the bending displacement and twist were defined is the
so-called flexural axis, the locus of the shear centres of each cross-section along the member. The shear
centre is the point in the cross-section where a transverse (or shear) load causes no twist and a torque
causes no bending (Megson, 1999). Also, for no coupling to occur, the mass and flexural axes must be
coincident. If the member mass axis is offset from the flexural axis, then the bending and torsion motions
will be coupled by inertia terms.

3.3 GENERALIZED EQUATIONS OF MOTION - MATRIX APPROACH

Having seen how the process works for more than one assumed shape, it is possible to approach the
problem in a general form using matrix algebra. This approach is particularly useful when using large
numbers of shapes or considering exact modal representations (see later). The idea will be illustrated for
the one-dimensional slender member problem in bending with two assumed shapes, considered earlier
in Section 3.2.2.

3.3.1 Representation of Deformation

Firstly, the assumed series expression must be written in matrix form, so

N
0= i g =v"g or ¢,
j=1

where (3.24)
V() = (Y1) ¥a(y) - YN}, q(1) = {qi(1) g2(0) -~ gn (D))"
Note that because 1 and ¢ are column vectors and z(y, 7) is a scalar, the inner product of these vectors

may be written in either order, as shown in Equation (3.24). In the above N = 2 example, these vectors
will be given by

_ ()’/S)2 _Ja
e={om ] e={a] a2
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3.3.2 Kinetic Energy

The kinetic energy may now be written in matrix form as

1=t [ sy =t [ pa@weoa,
0 0

SO
T=3q" [ / ™) dy] q=14"™,4, (3.26)
0

where the order of the vector products is chosen carefully so that the vectors of generalized coordinates
may be taken outside the integral since they are not functions of y. Note that the expression for 7 is a
quadratic form involving the generalized mass matrix M, . In the two shape notation, the kinetic energy
would be given by

q
{ & } (3.27)

~[T oS

ws
1. |5
T=5{f11 q»} s
6

3.3.3 Strain Energy

The strain energy may be written in a similar way, involving the generalized stiffness matrix K, as

v=! / ‘a (3_22)2dy . f I ) dy
2 Jo 3)’2 2 )y ’

SO
1
2

where the dash notation — indicates partial differentiation with respect to y.

1 s
U= 5qT [ / EIp" ") dy] q=-q9"Kq. (3.28)
0

3.3.4 Incremental Work Done

The incremental work done for force f(#) applied at position y = a is expressed as a vector inner product
SW = f(1) 8z(a. 1) = [8¢"p(@)] f(0), (3.29)

where () is the shape vector at y = a. For the two assumed shape examples, P(a) = {(a/s)* (a/s)*}T.

3.3.5 Differentiation of Lagrange’s Equations in Matrix Form

Lagrange’s equations may also be expressed in matrix form, namely

d<£> aT 33 AU W) (3:30)

a\ag) 5g T 9s T ag =27 960

and since energy and work terms are available in matrix form, an efficient approach is to use matrix differ-
entiation rules (Graupe, 1972). Energy terms E (scalar) may be expressed in the quadratic form, namely
E = xTAx, and if A is symmetric then dE /dx = 2Ax. Work terms W (scalar) are in the inner product
form W = a"x = xTaand then dW /dx = a. These expressions may be proven by expanding into scalar
form and carrying out the differentiations recognizing that, for example, dE /dx = {dE /dx, dE /dx, }T.
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Following the rules of matrix differentiation for the kinetic and strain energies (quadratic form) and
work terms (inner product), the N equations in matrix form for this slender member in bending are given
by

[[fu(wuﬁﬁw]q+ﬁénﬂﬁww“)d4 g = P f). (3.31)

It should be noted that the integrals for a plate or other type of structure would differ but the principles
would be the same. Equation (3.31) may then be written in the generalized matrix form

M, § +K,q = (@) f(0). (3.32)

When the series with two assumed shapes is used, the result using this equation may be shown to
be identical to that in Equation (3.16), the equations obtained by the longhand method. However, such a
matrix approach is more compact and because the N by N matrices are symmetric, some integrals need
not be calculated. If the chosen assumed shapes 1 corresponded to the exact normal mode shapes, which
are orthogonal, then both the ‘mass’ and ‘stiffness’ matrices in Equation (3.32) would be diagonal since
the generalized coordinates would in fact be the same as modal coordinates (see Chapter 2).

The remainder of this chapter addresses some of the issues encountered when analysing an aircraft
structure made up of simple slender members.

3.4 GENERATING AIRCRAFT ‘FREE-FREE’ MODES
FROM ‘BRANCH’ MODES

In some aircraft applications, the modes of vibration are determined from separate models of parts (or
‘branches’) of the structure, each constrained in some way as illustrated in Figure 3.4, e.g. wing with
root built in. However, it is possible to ‘free’ such constraints in order to generate a model for a free—free
(unconstrained) structure by effectively introducing additional rigid assumed shapes (i.e. effectively rigid
body modes). The process is also known as component mode synthesis (Cook et al., 1989), where the
structure is divided into components or substructures.

Consider the simple example of an aircraft consisting of two uniform flexible wings of mass per
length pw and flexural rigidity E1, plus a rigid fuselage of mass my as shown in Figure 3.5. The aircraft
of mass m is assumed not to undergo any pitch motion so the wings only bend and the fuselage only
heaves. Assume that the first two exact normal ‘branch’ mode shapes (subscript b), for a single wing
constrained/built in at its root, are known and given by the functions v, and V.

>
%

Figure 3.4 Aircraft ‘branches’.
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Symmetric
Branch Modes

Figure 3.5 Aircraft with ‘branch mode’ representation for the wing.

In order to ‘free’ the aircraft so that it behaves as a free—free structure, and so be able to determine the
equivalent free—free flexible modes, the constraints must be ‘released’. This can be achieved by assuming
that the displacement of the aircraft is a combination of the exact flexible branch modes ¥, » and a rigid
body heave assumed shape (or heave mode) vy,. Thus the assumed total displacement along the wing
(y = 0) is given by

2(y, 1) = Yn(gn(?) + Yor1(3)qo1 (D) + Yro(y)ge2(t) - where Yr(y) =1 (3.33)
and the constituent shapes are shown in Figure 3.5. Now, recognizing that the two wings move in-phase

(if only symmetric modes are required) and that the fuselage width is ignored in the integrals, the total
kinetic energy is

T hireraft = TWings + TFuselages (334)
where
Tings = 2 <% / pwz’ dy) =2 |:% / sw(Undn + Vor1Go1 + Yeodn) dy] , (3.35)
0 0
Trusetage = 3ME2(0)* = 3me (Yngn + Yo1(0)go1 + V2(0)gn2)* = Sme (Yngn)* (3.36)

because the value of the branch mode shapes (built in at the root) is zero at y = 0. Also, since strain
energy is only present in wing bending for this simple system then

U=2 (% / EIZ" dy) =2 [% / EICW g + Wi qor + Yiagn)* dy] ) (3.37)
0 0

Since the additional rigid shape has no elastic deformation, then v,” = 0, which will simplify the final
expression. When Lagrange’s equations are used, it may be shown that the generalised equations of
motion are

my  2mppr 2Mypy dn 0 0 0 Gh
2mpp; - 2mpy 0 Gor (+10 2kyy O qv1 ¢ =0, (3.38)
2mppa 0 2my, G2 0 0 2k qm

where

N s
mp =m = mg + 2[Lws, Mppj = / Uw ¥, dy, myj = / 'U“ngjdy and
0 0

kbjzf Ely";dy,  j=1.2
; .
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Firstly, it may be seen that there are no stiffness terms associated with the rigid shape as there is no
corresponding strain energy (i.e. zero top left-hand corner term in the stiffness matrix). Then, because the
branch mode shape vy, is the exact jth normal mode shape for the built in wing, it should be noted that the
terms my,; and ky,; are in fact the modal mass and stiffness for the jth branch mode and so ky; = w? My,
where wy,; is the natural frequency of the jth branch mode. The orthogonality of these modes means
that there are no mass or stiffness cross-coupling terms between the branch modes as seen in Equation
(3.38). However, there is an inertia coupling term my;,; between the rigid body and the jth flexible branch
mode; it is this coupling that enables the aircraft flexible motion to be ‘released’ and free—free modes
produced.

If the eigenvalue solution of Equation (3.38) is carried out, then three generalized mode shapes will
result, expressed as the proportion of each of the three constituent shapes. In this example, there will be
one rigid body mode (with no contribution from the flexible branch modes) and two free—free flexible
modes (involving flexible branch and rigid heave components). Note that the analysis approach may be
extended to more modes, to include overall aircraft motions other than heave (e.g. pitch, roll), and also
antisymmetric modes.

3.4.1 Example

Consider the above example with values of mr = 1200 kg, w = 50 kg/m, s = 6 m and EI = 500 000 Nm?.
However, in order to solve the eigenvalue problem in Equation (3.38), the exact mode shapes must be
known for a continuous member built in at one end. From the exact partial differential equation analysis
approach (Bishop and Johnson, 1979; Rao, 1995; Thomson, 1997), not covered in this book, it has been
shown that for the built-in member of length s and mass per length 11, built in at one end, the jth mode

natural frequency is given by
(Bjs) & (3.39)
wpj = (B , .
* ! pws*

where for the first two modes B;s = 1.875, f.s = 4.694. The natural frequencies corresponding to the
parameters chosen in this example are 1.55 and 9.74 Hz. The corresponding mode shapes (Bishop and
Johnson, 1979) are given by

Yp;(y) = (cosh B;y — cos B;y) — o;(sinh B;y — sin B;y), (3.40)

where
0j = cos B;s + cosh B;s/sin B;s + sinh f;s.

The modal mass values for these mode shapes are given in Bishop and Johnson (1979) asm; = m; = puws.
Thus, knowing the branch mode natural frequencies, the modal stiffness values may be calculated. By
integrating the mode shapes, the mass coupling terms may be shown to equal ny,; = 0.73414ws, My =
1.018 s

Then, solving the eigenvalue problem based on Equation (3.38), the rigid body heave mode has a
frequency of 0 Hz and generalized mode shape {1, 0, 0}. The natural frequencies of the two free—free
elastic modes of the aircraft are 1.74 and 10.15 Hz and the generalized mode shapes are {—0.261, 1,
—0.004} and {—0.183,0.147, 1}. These generalized mode shapes are the proportion of each of the three
shapes in the series used; when the three shapes are weighted by these values, then the resulting free—free
flexible mode shapes are sketched in Figure 3.6. When additional branch modes are added in, these
frequencies barely alter.
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Rigid Body

Flexible
Modes

Figure 3.6 Aircraft ‘free—free’ mode shapes.

3.5 WHOLE AIRCRAFT ‘FREE-FREE’ MODES

In Section 3.4, it was shown that the branch modes for one or more built in components, such as a
wing, could be combined with rigid body shapes for the whole aircraft to generate free—free rigid body
and flexible modes for the combined system. In the approach used, the number of modes calculated
for each branch was reduced, before combining with modes from the other branches and with the rigid
body displacements, so as to generate the final solution, thus economizing on computing requirements.
However, in practice nowadays, the aircraft is usually modelled as a whole using a discretization approach,
such as the finite element method (see Chapter 4), and rigid body and free—free flexible modes are then
produced for the whole aircraft in a single calculation.

In later parts of the book, simple whole aircraft flexible models composed of rigid body and free—free
flexible modes will be used, particularly in manoeuvre and gust load calculations, to illustrate the effect
of flexibility. In this section, the form of such models will be introduced.

Consider the ‘stick’ representation of a flexible aircraft shown in Figure 3.7, with only symmetric
deformations shown for simplicity. However, this time the displacement will be expressed in matrix form
as a summation of the whole free—free aircraft rigid body (subscript r) and flexible/elastic (subscript e)
normal modes:

2y, D=9/, +9.q. = 9'q. (3.41)

where ¢ are normal mode shapes and ¢ are generalized/modal coordinates; simple examples of the
aircraft free—free modes were shown in Figure 3.6. Following the usual approach of writing the

Figure 3.7 Flexible aircraft with free—free symmetric modes.
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kinetic and strain energy terms and using Lagrange’s equations, it may be shown that the equation

of motion is
m 0 q. 0 o0 q. | _
|:0 me]{qe}+|:0 ke]{qe}_o’ (.42

where the modal mass matrices for the rigid body and flexible modes are given by
m, = /(prT(pr dm = diag[m,, my, .. .], m, = /(pg(pe dm = diag[me;, me; .. .] (3.43)

and where integrations are taken over the entire aircraft. It should be noted that these modal mass matrices
are diagonal and that the mass coupling terms seen for the branch mode analysis in Equation (3.38) are
zero, because the rigid body and flexible modes are orthogonal. The modal stiffness matrix k. is also
diagonal, being found from the modal mass and the modal frequencies; there is no rigid body modal
stiffness.

As an example of such equations, consider an aircraft undergoing heave and pitch motion in two
dimensions. If the rigid body free—free mode shapes are given by pure heave and pitch motion about the
centre of mass, namely ¢,; = 1 and ¢, = —x, it may be shown that the modal mass terms are equal to the
aircraft mass m and pitch moment inertia /, respectively (see Appendix A). Clearly, the corresponding
generalized coordinates are equal to the vertical motion of the centre of mass and the nose up pitch angle,
namely ¢,; = z¢ and ¢, = 6. Adding a single flexible mode, governed by the generalized coordinate g.
(subscript e) with modal mass m. and stiffness k., would then lead to the equations of motion (without
aerodynamics present)

m 0 0 ZC 0 0 0 Zc
0 I, 0 6 t+[0 0 0 6 ¢t =0. (3.44)
0 0 Me ée 0 0 ke qe

This result, and others similar to it, will be used later in Part II of the book to show how the flexible
aircraft may be treated when experiencing ground or flight manoeuvres, or when encountering gusts or
turbulence.

3.6 EXAMPLES

Note that some of these examples may be useful preparation when carrying out the examples in later
chapters.

1. A wingisidealized as a uniform slender member of semi-span s, mass per length x and flexural rigidity
EI, built in at one end. Find an expression for the natural frequency of the fundamental bending mode
using each of the following assumed bending deformation shapes:

(@ z(y, 1) =(1 —cos wy/s)q(t) and ) z(v, )= (/)3 — y/9)q().

Compare the results with those for the basic quadratic shape and the exact result, both quoted earlier in
this chapter. Consider how well these three assumed shapes satisfy the kinematic and load boundary
conditions.

[(a) w = 5.70{/El/(i s*) and (b) w = 3.57\/EIl /(1 s*); cf. 4.47 for polynomial shape and 3.52 exact]

2. A wing is idealized as a uniform slender member of semi-span s, moment of inertia in twist per length
x and torsional rigidity GJ, built in at one end. Find an expression for the natural frequency of the
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fundamental torsional mode using each of the following assumed torsional deformation shapes:
—sin (™ - 2
@ 6(v.n=sin(T)q) and  (®) 00,0 =0/5)3 -/ Iq0).

Compare the results with those for the basic linear shape and the exact result, both quoted earlier in
this chapter. Consider how well these three assumed shapes satisfy the kinematic and load boundary
conditions.

[(a) 1.571/GJ/(xs?) and (b) 1.572y/GJ/(x s?); cf. 1.73 for linear shape and 1.571 exact]

3. For auniform slender member of length s, moment of inertia in twist per length x and torsional rigidity
GJ, built in at one end, find an expression for the natural frequency of the fundamental torsional mode
using a deformation with two assumed shapes, namely 6(y, t) = (y/s)qi(t) + (v/s)* g2(0). Repeat
the analysis using matrix algebra. Note that the eigenvalue calculation could be performed using the
‘eig” MATLAB function once the symbols had been ignored (see Appendix A).

[1.576y/GJ/(xs?); cf. 1.571 exact]

4. Anaircraftisidealized as arigid fuselage of mass 1200 kg with two wings, each represented as a flexible
member of mass per length 50 kg/m, length (or semi-span) 6 m and flexural rigidity 500 000 N m?, built
in at the fuselage. Assume that the series representation for the bending deformation of the wings is a
combination of arigid body heave and a flexible ‘branch’ shape, namely z(y, 1) = qo(¢) + (y/ s)? q1(1).
Obtain an estimate for the frequency of the free—free bending mode of the aircraft. If desired, the matrix
form of analysis may be used. Note that the mass matrix is not diagonal because the assumed shape
for the wing deformation is not a free—free mode shape and therefore is not orthogonal to the rigid
body shape. Note also that the result may be compared to the example in Section 3.4 where exact
mode shapes for the built-in member were used.

[2.19 Hz; cf. 1.74 Hz when the exact built-in mode shape was used]

5. Anunswept, rectangular wing has a semi-span s, chord ¢, bending rigidity £/ and torsional rigidity GJ.
The shear centre (centre of twist) and the mass centre lie at distances of 0.35¢ and 0.45¢ respectively
aft of the leading edge. The mass per unit length of the wing is @ and the moment of inertia per
unit length about a spanwise axis through the mass centre is x = 0.1c?. Assuming that the wing
is built in at one end and that the bending deflection z, measured from the flexural axis, and angle
of twist ¥ (positive nose up) are given by z(y, t) = (y/s)2 qv(t) and 9 (y, t) = (y/s) q.(t), obtain the
coupled equations of motion in generalized coordinates. For values of the parameters given by mass
per length of 50 kg/m, semi-span 6 m, chord 1.2 m, torsional rigidity 240 000 N m? and flexural
rigidity 500 000 N m?, determine estimates for the first two natural frequencies. By noting the mode
shape in generalized coordinates, indicate whether the modes are dominantly bending or torsion. Note
that, as a check, the coupling term in the generalized mass matrix is —0.1 pcs/4.

[2.16 and 8.39 Hz with generalized mode shapes {1 0.045} and {—0.16 1}]

6. Using Example 5, determine the expressions for the two generalized forces corresponding to a force
F acting upwards on the leading edge at mid-span.

[0y = F/4and Q, = 0.35F¢/2]

7. A wing/tip store combination may be idealized as a uniform member, built in at one end, with an
offset tip store (e.g. fuel tank). The wing has a mass per length of 75 kg/m, moment of inertia in twist
per length 25 kg m?/m, span 6 m, flexural rigidity 2 x 10® N m? and torsional rigidity 5 x 10° N m?.
The tip store has a mass of 100 kg and moment of inertia in pitch of 25 kg m? about its centre of
mass, which itself is offset by 0.5 m forward of the wing centre line. Using simple quadratic bending
and linear torsional assumed shapes, estimate the first two natural frequencies of the combination and
sketch the expected mode shapes. Assume that the flexural and mass axes both lie along the mid-chord.
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Note that the inertia coupling term will be given by tip mass x distance forward of the mid-chord =
450 kg m, with the sign depending upon the twist sign convention; a sign error will be shown by
incorrect mode shapes.

[2.18 and 5.48 Hz]

. Anidealized wing structure built in at the root (y = 0) has a semi-span of 2L and the internal structure
is such that the flexural stiffness is nonuniform, being 2E/, for the inner half of the wing (L > y > 0)
and El, for the outer half (2L > y > L), whereas the mass per unit length u is constant. Using
two assumed shapes in the form of simple quadratic and cubic functions, determine the fundamental
natural frequency and mode shape. Write down the additional terms that would need to be included
in the analysis if a landing gear of stiffness K was positioned at mid-span?

[0.2V/Ely/(j1L?); mode shape in generalized coordinates {1, —0.174} and in physical coordinates
{0.33 at mid-span and 1 at the tip}]
. For a nonuniform tapering member, built in at one end, with mass per length and flexural stiffness

distributions u(y) = uo (1 — y/s), EI(y) = Ely (1 — y/s), use a quadratic assumed shape to estimate
the fundamental natural frequency in bending.

[3.87vEl/(1to5%)]
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Vibration of Continuous
Systems — Discretization Approach

In Chapter 3 the vibration of continuous systems was considered using a summation of assumed shapes to
describe the motion. The approximate analysis led to differential equations of motion expressed in terms of
the unknown coefficients (or generalized coordinates) that multiply each assumed shape. Standard MDoF
analysis approaches as described in Chapter 2 could then be employed to solve for natural frequencies,
normal modes and the response to various forms of excitation.

In this chapter, the vibration of continuous systems will be approached using a physical discretization
of the system, i.e. the structure is divided into finite width strips (or elements) and the motion of the struc-
ture is described via the displacements and rotations of the strips. An early approach to this discretization
was using the flexibility influence coefficients (Rao, 1995), but this was superceded by the finite element
(FE) approach (NAFEMS, 1987; Cook et al., 1989; Rao, 1995). In this chapter, the FE method will
be introduced, where the deformation within each strip (or so-called ‘finite element’) is approximated
using a polynomial representation and the distributed stiffness and mass behaviour is represented by
stiffness and mass matrices for each element. The FE approach will be illustrated upon simple slender
‘beam-like” members (e.g. representing a wing or fuselage by a ‘stick-like’ model). Such approaches
have been traditionally employed in the aerospace industry for high aspect ratio wings. However, it is
now common practice to develop a more comprehensive finite element model of the structure (see later
in this chapter and in Chapter 22 where the application of the finite element approach to more complex
structural representations will be considered briefly); specialist texts and papers should be referenced for
further detail. The move towards using the finite element method has been aided by the availability of
many dedicated software packages.

4.1 INTRODUCTION TO THE FINITE ELEMENT (FE) APPROACH

The finite element (displacement) approach (NAFEMS, 1987; Cook et al., 1989; Rao, 1995) is the most
widely used method for static and dynamic theoretical modelling of aircraft structures, providing the
basic equations involving mass and stiffness terms for both aeroelastic and loads calculations. The idea
of the finite element (FE) method is to ‘divide’ the structure into so-called ‘finite elements’ (effectively
strips when a wing is analysed as a beam), connected together at discrete points on the elements called
‘nodes’. The displacements (and, where relevant, rotations) at the nodes become the unknowns for which
the equations of motion are formulated, so the continuum structure is reduced to a discretized one with
finite DoF. It is important to recognize that damping can be incorporated into an FE model but only as
an approximation based on past experience or measured data.

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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Figure 4.1 Built-in beam represented by two finite elements.

For typical commercial aircraft with high aspect ratio wings, there are two main approaches to FE
modelling of the thin-walled box-like (or tube-like) nature of the major aircraft components (e.g. wing,
fuselage):

® torepresenteach component by a ‘beam-like’ model using beam ‘elements’ of known bending, torsional
and shear properties or

® to represent each component using a full structural model with membrane + bar or shell + beam
elements, with the ‘box-like’ nature of the component (and relatively detailed load paths) retained.

However, in this chapter, for simplicity only the ‘beam-like’ representation will be discussed in any
detail. An example of a beam represented by two beam finite elements joined at a node is shown in
Figure 4.1; note that the term ‘beam’ is commonly used in FE theory, and in general refers to a member
including bending, shear, axial and torsional effects. Later on in this chapter and in Chapter 22, the more
comprehensive representation of the full structural model will be considered briefly, since this is current
aircraft industry practice.

The FE solution approach is firstly to determine the dynamic properties of each element in the
form of element stiffness and mass matrices and then to assemble all the elements to form global (or
overall structure) mass and stiffness matrices from which modes and responses may be determined. The
assembly process satisfies exact compatibility of displacements/rotations between elements (i.e. the nodes
common to adjacent elements have the same displacements/rotations); however, equilibrium is normally
only satisfied in an approximate manner over the entire structure except for very simple problems (such
as the uniform beam under point loading) where there are no approximations.

The stiftness and mass matrices for each finite element are obtained by an energy approach, assuming
a form for the displacement variation within the element. This is somewhat similar to the Rayleigh—Ritz
approach, described in Chapter 3, except that in the latter the displacement variation over the whole
structure is represented by a summation of assumed shapes. Thus the finite element methodology is
rather like a ‘piecewise’ Rayleigh—Ritz approach, as illustrated in Figure 4.2, where three assumed
shapes are compared with two finite elements, each having an assumed cubic displacement variation (see
the next section). The advantages of the finite element method are that more elements may be used in
regions where the displacement and/or stress is expected to vary more rapidly and that more complex
geometries and problems may be handled.

4.2 FORMULATION OF THE BEAM BENDING ELEMENT

4.2.1 Stiffness and Mass Matrices for a Uniform Beam Element

For simplicity, bending in only one plane, with no shear deformation or torsion, is considered. A typical
uniform beam element of length L, mass per unit length  and flexural rigidity £/ is shown in Figure 4.3.
It should be noted that in this chapter, the bending deformation will again be denoted using the symbol
z; the context of a particular analysis should clarify what is being considered in any given case.
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Figure 4.2 Complete versus piecewise displacement representation.

4.2.1.1 Element shape functions

The nodal ‘displacements’ (it is usually implied that some are rotations) are denoted by the vector
d=1{d d, di d,)". Inorder to write the strain energy and the kinetic energy terms for the element,
the variation of displacement within the element will need to be expressed as a function of the nodal
displacements. Itis assumed that the variation of the transverse displacement z(y) along the beam element
is expressed as a cubic polynomial iny, namely

z=a0+a1y+a2y2+a3y3, “4.1)

where ay, ..., a3 are unknown coefficients that must be determined such that the assumed polynomial
matches the nodal displacements at the ends y = 0, L. When the displacements and slopes at each end
of the beam, determined from the polynomial, are equated to the nodal displacements dj, ..., d4, then
the following equations are found:

y =0 displacement d; = ay,

y=0 slope d,=a,

y =L displacement ds =ay+a,L +a,L*+ a3;L>,
y=L slope d;=a;+2aL+3a3L>.

(4.2)

d

d,
II \)dz \D d,
N> :

Figure 4.3 Two-node beam bending element.
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Figure 4.4 Shape functions for a two-node beam element.

Equations (4.2) may be solved to yield expressions for the polynomial coefficients ay, . . ., as in terms of
the nodal displacements dj, ..., d4. The final polynomial may then be written in the following form:

7 = Nid, + Nady + N3ds + Nuods = N'd, 4.3)

where N is a column vector of the so-called ‘shape functions’ Ny, ..., N4, each being a cubic polynomial
in y. For example, it can be shown that the shape functions Ny, N, are given by the polynomials

L

1
Ny = Z(l - Q2+ ), Ny = 2 (1= (1 +n), “4.4)

where n =2y/L (+1 > n > —1) is a nondimensional local coordinate commonly used in FE analysis
(see Figure 4.3); the shape functions N3, N, are very similar to N, N,. The shape functions, shown in
Figure 4.4, have distinctive shapes in that N is the polynomial corresponding to dy =1 and d; =0,
j#k.

The fact that the displacement is assumed to vary as a cubic function of y along the element means
that the bending moment (proportional to curvature), and therefore the bending stress, will vary linearly
along the element. Thus in a complex problem, sufficient elements must be used to allow the exact
stress variation along the beam to be represented reasonably well by a piecewise linear approximation.
The accuracy of the FE method depends upon the number and type of elements used; e.g., the assumed
polynomial is a quintic for the higher order three-node beam element.

4.2.1.2 Element equation of motion

In the FE representation, forces and moments may only be applied to the element at the nodes, as
shown in Figure 4.5; these are termed nodal ‘forces’ (usually implied that some are moments) P =
(P, P, P; P,;)". Theelement equation relating nodal forces, displacements and accelerations will
then be sought. The mass and stiffness matrices are known for each element and may be assembled for
any structure of interest.

To determine the equation of motion for the beam element, Lagrange’s equations may be used, with
nodal displacements d acting as the coordinates, so ensuring that equilibrium applies on average over
the element. The strain and kinetic energy terms are the same as those used in Chapter 3, but with the

P, Py

b

Figure 4.5 Nodal forces for a two-node beam element.
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revised displacement description in Equation (4.3) being used. Thus the strain energy is

1 L 322 : 1 L T a7/l »T 1 T L 1 T
U=-|[| EI|=—) dy== | EId"N)N""d)dy, so U=-d EIN'N"")dy |d,
0 ay? 2 Jo 2 0

(4.5)

where the shorthand notation ” = /9y is used, and the kinetic energy is

1 [t 1 (e . 1. L .
=3 / nidy= / wd NYN'd)dy, so T = EdT [ f L(NNT) dy] d (46
0 0 0

Here the matrix approach introduced in Chapter 3 has been used. The incremental work done by the
applied nodal forces acting through the nodal displacements will be given by

W = P8d, + P,8d, + P38ds + Pydd, = PT6d. 4.7)

When Lagrange’s equations are employed, the differential equation of motion for the element may be
written as

md +kd = P, (4.8)

where m, k are the element mass and stiffness matrices respectively, given by

L L
m= [ / L(NNT) dy] and k= [ / EIIN'N"" dy:| . (4.9)
0 0

Note that the transformation from y to  would need to be carried out on these integrals. Introducing
the relevant shape function polynomials Ny, ..., N4 into Equations (4.9) and performing the matrix
multiplications and integrations, it may be shown that, for a uniform beam element, these matrices are
given by

156 22L 54  —13L 12 6L —12 6L
uwL | 22L 412 13L  —-3L? EI'| 6L 4L* —6L 2L?

m= = , k=— . (4.10)
420 54 13L 156  —-22L L3 —-12 —6L 12 —6L
—13L -3L* -22L 4L* 6L 2L* —6L 4L°

Here it may be seen that both the matrices are symmetric. The matrices quoted are only in this precise
form provided that the ordering and sign convention of the element displacements and rotations are
preserved. Clearly, a tapering beam element may be handled by using the nonuniform functions (y)
and EI(y); normally the integrations are performed numerically over 7 varying from —1 to +1.

This mass representation is known as a ‘consistent’ mass matrix because it is the most accurate,
matching the kinetic energy corresponding to the assumed deformation of the element. An alternative
mass representation is the more simple ‘lumped’ mass model, where for a two-node beam element,
half the mass is ‘lumped’ at each node. The other rotational terms may be zero or else take on some
intermediate value to allow for rotary inertia effects (Cook et al., 1989). The lumped mass matrix is
diagonal, namely

uL .
IM Lumped_No_Rotary _Inertia = E dlag [ 12 0 12 0 ]
or 4.11)

L
IM Lumped_Rotary _Inertia = l;—4dlag [ 12 L 12 Lz] .
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Figure 4.6 Kinematically equivalent nodal forces for a two-node beam element under distributed
Loading.

However, although the consistent mass matrix is the rigorous approach to handling distributed inertia, it
should be noted that when an aircraft component (such as a wing) is idealized using FE beam elements,
then the masses will tend to be lumped at or offset from each node (see Chapter 22) and so are not consis-
tent; by employing sufficient elements, the errors involved using this approximation will be considered
small.

4.2.1.3 Kinematically equivalent nodal forces

When forces are distributed over the structure then, as part of the FE idealization, they need to be replaced
by forces acting at the nodes themselves, usually called ‘kinematically equivalent nodal forces’. Such
nodal forces are defined on the basis that they do equivalent work to the true distributed forces when the
element experiences its assumed deformation. For the two-node beam element example, if a uniformly
distributed force of ¢ per length is applied over the element, as shown in Figure 4.6, then the distributed
load needs to be represented by nodal loads acting at each node. The principle involved is that the
distributed and nodal forces do the same work when acting through the assumed displacement variation
for the element. The vector of so-called ‘kinematically equivalent nodal forces’ (Cook et al., 1989) may
be shown to be given by

L L L)'

Similar equivalent nodal forces need to be determined to account for other effects distributed over
the element, such as thermal loading, initial strains, etc. However, although the kinematically equivalent
loading is the rigorous approach to handling distributed loading and will be considered further in Chapter
20, it should be noted that when an aircraft component (such as a wing) is idealized using FE beam
elements, then the inertia and aerodynamic loads will tend to be added at each node (see Chapter 22)
and so are not kinematically equivalent; by employing sufficient elements, the approximation will be
considered as small.

4.3 ASSEMBLY AND SOLUTION FOR A STRUCTURE WITH
BEAM ELEMENTS

Once the element mass and stiffness matrices have been determined for all the elements on the struc-
ture, the matrices may be assembled to generate the global mass and stiffness matrices for the entire
structure. This process is automated when an FE package is employed, with the user providing the
structure geometry, properties, boundary conditions, and the element type and topology (i.e. how the
elements are interconnected).
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Figure 4.7 Built-in beam assembly with two elements.

4.3.1 Structure and Element Notation

Atthis introductory stage, the assembly process will be shown longhand using the two-element/three-node
built-in beam example shown in Figure 4.7; the structure (‘global’) displacements at the three nodes are
givenbyr = {ry,r, ..., r6)T and the structural forces by R={R,R,,..., Re}". The element (‘local’)
nodal displacements are given by d1, d,, where the subscripts 1 and 2 refer to the two elements, and
the element nodal force sets by P, P,. The structure forces are either applied (e.g. applied point loads
at nodes, distributed loads represented by kinematically equivalent nodal forces) or reactive (supplied
via the supports). Note that nodal forces are a combination of external loads and the equal and opposite
forces acting between the elements.

4.3.2 Imposing Compatibility

For compatibility of displacements between the assembled elements, the nodal displacements of all the
elements meeting at a common node must be equal to each other, and for consistency must also equal
the structure displacements at that node. Thus, referring to Figure 4.7, the displacements at nodes {1 2}
for elements 1 and 2 must map on to structure nodes {1 2} and {2 3} respectively, so

{d“ dy dy dy | = {r. o3 r4} for element 1
, (4.13)
{d12 d22 d32 d42 :{r3 Fg T5 r6} for element 2
or, in matrix form,
I r
dll 1 0000 O I d12 001 0 00 ra
_d21_010000 B _ _d22_000100 3| _
G=1a(=loo 100 0| m(=T" “=Va[T]l0o000 1 0|)n(=T"
dyy 00 01 00 s dy 00 0 0 0 1| ]|rs
T6 76
(4.14)

The jth element ‘maps’ on to the structure viad ; = I';r, where I';, j = 1, 2, is the assembly matrix.
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4.3.3 Assembly of the Global Stiffness Matrix — Imposing Equilibrium

The imposition of equilibrium at each structure node is essentially a statement that the structure force
is ‘shared’ between the elements at that node and when combined with the element load/displacement
relationships will yield the structure load/displacement relationship based on assembled element stiffness
matrices. More formally, equilibrium is imposed because the incremental work done by the two equivalent
sets of loads moving through the corresponding incremental displacements must be equal, so

2
SW=56r"R=> 58d}P;. (4.15)

j=1

If the mass terms are ignored at this stage in order to simplify the equations, the relationship between the
nodal forces and displacements for the two elements is

P,=kd; j=12, (4.16)

where Kk, k; are the 4 x 4 element stiffness matrices derived earlier. What is being sought is the global
force/displacement relationship for the structure, namely

R=K,r, 4.17)

where K, is the 6 x 6 structure stiffness matrix (prior to boundary conditions being imposed). Now, com-
bining Equations (4.15) to (4.17) with the compatibility relationship in Equation (4.14), and simplifying,
yields

2 2
SW =8r"K,r =) 8(T;r) (k;Tyr) = 6r" [Z r}k,rj}r

Jj=1 j=1

and so

2
K, =) TkT;. (4.18)
j=1

In practice, the complete assembly matrices are not stored, and the matrix operation in Equation
(4.18) is not actually carried out, because of the considerable number of zero values present in the assembly
matrices. Instead, it may be seen that the effect of Equation (4.18) is that the element stiffness matrices
are ‘added into’ the structure stiffness matrix in positions corresponding to the ‘mapping’ between the
structure and element displacements, i.e. the so-called ‘element topology’ defined by the nonzero values
in the assembly matrices.

4.3.4 Example of Stiffness Matrix Assembly for the Two-Element Beam

Consider the two-element example in Figure 4.7 with the length of each element being taken as / for
convenience. Using the element stiffness matrix derived earlier in Equation (4.10) and substituting into
the assembly Equation (4.18) yields the assembled 6 x 6 structure stiffness matrix

2 6 -2 6l 0 0
6 42 —el 22 0 0
EI| —12 —6] 12412 —6l+6/ —12 6l
K=%16a 222 —e1+61 42 -6 21 (4.19)
) 6l 12 —el

0 0 6l 217 -6l 4l*
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On careful examination, it may be seen that the first element stiffness matrix appears in rows/columns
1-4 and that the second element stiffness matrix is added into rows/columns 3—6; this matrix structure is
defined by the assembly matrices. An equivalent result may be obtained for the assembled mass matrix.

4.3.5 Global Matrix Equation for the Assembled Structure

The mass matrix is included into the assembly process by adding the inertia terms from Equation (4.8)
into Equation (4.16). The final equation of motion for the assembled elements in the structure is

M,# +K,r = R, (4.20)

where M, is the structure mass matrix and R represents all the assembled external applied forces.

4.3.6 Solution Process

Once the structure mass and stiffness matrices have been assembled, the solution can proceed as follows:

(a) The ‘boundary conditions’ need to be defined (corresponding to zero or prescribed nodal displace-
ments). Since the beam is built in at node 1, as shown in Figure 4.7, the boundary conditions are
r1 = r, = 0. The forces R;, R, are the corresponding reaction forces required to prevent support
movement.

(b) The applied loads need to be defined at unconstrained nodes 2 and 3. Loads may be applied directly
at the nodes or be distributed over the structure, when the kinematically equivalent condition defines
nodal forces.

(c) Once the boundary conditions and applied loads are defined, the solution of the structure equations of
motion is best seen by partitioning the equation of motion in (4.20) so as to separate out the equations
for reactions and those for unknown responses, namely

Maa Mab ia Kaa Kab L Ra
. = , 4.21
|:Mba Mbb]{rb}+[Kba Kbb]{rb} {Rb} ( )

where a and b refer to the partitioned quantities. In this equation, r, are the known (or prescribed) support
displacements (i.e. 7y, , (= 0) in the above example), R, are the corresponding unknown reactions at
the supports (or the forces required to impose any prescribed displacements), R, are the known applied
forces and ry, are the corresponding unknown displacements. Once the partition has been defined, the
solution can proceed. The second equation in Equation (4.21) may be written

My.i*y + Mooy + Kooy + Kooy = Ry (4.22)
and assuming thatr, = 0 (i.e. fixed support), then Equation (4.22) may be rewritten as
Moy + Kppr's = Ry, (4.23)

where this is in essence a four DoF set of equations for this example. For a static problem where R,
is known, then Equation (4.23) may be solved for the unknown displacements r,,. The result may then
be substituted back into the first equation in Equation (4.21) in order to find the corresponding support
reactions R, if required. If the applied load is time varying, then the dynamic response may be determined
by solving the equations by numerical integration, for example. If there is no applied force, then the normal
modes of the structure may be determined using classical matrix eigenvalue methods (see Chapter 2).
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4.3.7 Examples of Solution for the Built-in Beam

Consider now the solution of the two-node built-in beam example used above in Figure 4.7 to illustrate
the assembly process. Assume that the beam has length s = 2/ = 10 m, flexural rigidity E/ = 4 x 10° N m?
and mass per length 1 = 100 kg/m and that the elements have equal length / = 5 m. Two examples will
be considered, namely a static load and a normal modes analysis. Increasing the number of elements will
be considered. In both examples, the assembled stiffness matrix shown earlier in Equation (4.19) will be
used.

4.3.7.1 Static loading analysis: two elements

Consider an applied force F = 1000 N acting upwards at the tip and a distributed load of ¢ = 100 N/m
acting over the entire length. Using the earlier result for kinematically equivalent loads, the applied force
vector is

ql I ! ql ! I

RT={R, R, 0 0 F 0}+= - - = Z S
{R R }+2{161 6oo}+2{00161 6}
(4.24)

Here the first term in the expression is for the point loads, with R;, R, being the unknown reactions,
whereas the second and third terms are the kinematically equivalent forces for the two elements; the
component of the distributed load at the support is ignored as it acts at a fixed point.

Once the equations are partitioned and boundary conditions imposed, the final load/displacement
equation is

2+12 —6l+60 —12 6 7 (r gl
B El| —6l+6] 42 -6 28 ||r| _ 0
Kpro =Ry or 71—y —6l 12 =6l [\ [ VFt+ap( @
6l 22 6l 42 | | e —ql?/12

Using the numerical parameter values leads to a value for tip displacement (rs5) of 32.7 mm, agreeing
with the exact value. The theoretical displacement is a quartic function, matched well by the two cubic
functions.

4.3.7.2 Normal modes analysis: two elements

The structure stiffness matrix may now be combined with the mass matrix to yield normal modes for the
structure. Using Equation (4.10) and the assembly process to assemble the full structure mass matrix,
and then partitioning it, yields the consistent mass matrix for the structure

3120 54 —13l
ul 0 812 131 =32
420 | 54 131 156 =221

—131 =312 221 4

My, = (4.26)

Performing an eigenvalue analysis based on this matrix and the stiffness matrix in Equation (4.19)
yields the normal modes for the beam. Using the numerical parameter values gives the first two natural
frequencies of 2.095 and 13.23 Hz; this compares to the exact values of 2.094 and 13.12 Hz. The
equivalent result for the lumped mass representation is that the frequencies are (a) 1.808 and 8.61 Hz
for the case where rotary inertia effects are included or (b) 1.879 and 9.68 Hz for the case where rotary
inertia effects are ignored. The consistent mass approach yields more accurate results than the lumped
mass representation, as expected.
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Figure 4.8 Variation of modes 1 to 3 natural frequencies with number of elements for consistent and
lumped masses (no rotary inertia effects) (- - - - - exact values).

4.3.7.3 Normal modes analysis — effect of increasing the number of elements

The accuracy of the results for these, and higher, modes may be improved by introducing more elements.
It is good practice to increase the number of elements until the results of interest stabilize, as seen in
Figure 4.8 for the consistent and lumped mass matrix representations, where the natural frequencies
for the first three modes are shown plotted against the number of elements used. The exact values are
also shown and clearly the consistent mass results converge far more quickly than for the lumped mass.
However, what is somewhat surprising is that the results shown for the lumped mass matrix are with the
rotary inertia effects ignored, and these are better than the results for the rotary inertia included.

4.4 TORSION ELEMENT

So far, the focus has been on two-node beam bending elements. However, in aircraft applications, it is
important to model torsional behaviour of slender members and so a brief introduction will be given
here. A typical two-node torsion element is shown in Figure 4.9. In the same way that the displacement
variation for a bending element may be represented by a cubic polynomial, the twist for a two-node
torsion element varies linearly along its length. The two shape functions are therefore linear polynomials
and the element stiffness and mass matrices may be evaluated as before; the strain and kinetic energy
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2 Q
M
Figure 4.9 Two-node torsion element.

terms for a member under torsion are the same as used earlier in Chapter 3. It may be shown that the
element stiffness and consistent mass matrices are as follows:

GIT1 -l xLT2 1
k_T[_l 1], m_?[l 2] 4.27)

where GJ is the torsional rigidity, L is the length and y is the torsional moment of inertia per unit length.

It may also be shown that the element stiffness and mass matrices for a two-node bar element under
axial extension/compression are the same as those for the torsion element except that the axial rigidity
EA replaces the torsional rigidity GJ and the mass per unit length u replaces the torsional moment of
inertia per unit length .

4.5 COMBINED BENDING/TORSION ELEMENT

Having obtained the element mass and stiffness matrices for the beam bending and torsion elements
based on using independent notations for nodal displacements, the elements may be combined using an
integrated set of nodal displacements to obtain a single element having 6 x 6 matrices and able to bend
and twist. The nodal displacements are conveniently defined with reference to the flexural axis (i.e. the
axis where a bending load causes no twist and a torque causes no bending). The form of the matrices
depends upon the numbering system for the nodal displacements. For example, if {dl d, dy ds }
corresponds to the bending displacements/rotations and {d; dg} to the twists, as shown in Figure 4.10,
this would lead to matrices where the bending and torsion terms are interspersed, as shown later in
Chapter 20. There would be no stiffness coupling in the stiffness matrix and no mass coupling if the mass
and flexural axes are coincident.

However, if the mass axis does not coincide with the flexural axis then there will be inertia coupling
present, so that inertia forces associated with bending acceleration will cause torsional motion and
vice versa. Then, whether the mass is distributed or else lumped and attached to each node via a rigid
connection (often the case for an aircraft, as discussed in Chapter 22), a mass matrix will be generated

Mass Axis

Figure 4.10 Combined bending/torsion element.
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having bending/torsion coupling terms involving the mass offset (i.e. the product of the mass and the
offset distance, with an appropriate sign, but negative if the mass axis is aft of the flexural axis).

4.6 COMMENTS ON MODELLING

4.6.1 ‘Beam-Like’ Representation of Slender Members in Aircraft

When an aircraft component such as a wing or fuselage is to be represented by a ‘beam-like’ model using
the FE method, a three-dimensional beam element, more complete than the two-dimensional bending
version considered in this chapter, needs to be developed. The element will have bending in two directions,
axial extension and torsion defined by six DoFs per node, plus allowance for shear deformation. In effect,
the final 12 x 12 element stiffness and mass matrices for the three-dimensional element may be built up
using a combination of two 4 x 4 matrices for bending in the two orthogonal directions, a 2 x 2 matrix
for torsion and a 2 x 2 matrix for axial extension/compression. The location of these submatrices within
the full matrices will depend upon the numbering system for the nodal displacements/rotations. Note that
a simple example of bending / torsion will be considered in Chapter 20.

Clearly, models may be set up for individual ‘branches’ (called substructures) or for the whole
aircraft (see Chapter 3). If the free—free modes of the aircraft are required, then the boundary conditions
are fully free for all nodes and six rigid body modes with zero frequency will be found. Note that since
the stiffness matrix is singular for a free—free structure, the eigenvalue problem needs to be formulated
using the inverse of the mass matrix instead of the stiffness matrix.

4.6.2 ‘Box-like’ Representation of Slender Members in Aircraft

So far, the emphasis has been upon the analysis of slender structures (such as wings) using a ‘beam-
like’ representation. The distributions of flexural and torsional rigidities (El and GJ) along the wing
have traditionally been estimated from the structural stiffness behaviour of the wing box boom/skin
model (Donaldson, 1993; Megson, 1999; Sun, 2006). However, to perform more accurate analyses, it is
important to represent the stiffened structure and its complex load paths more comprehensively in the FE
model. In order to do this, the structure may be represented by a ‘box-like’ FE model such as the simple
untapered and unswept box shown in Figure 4.11.

Here booms are represented by axial (or rod/bar) elements that react the axial loads (i.e. tension/
compression), and cover skins/spar webs/rib webs are modelled using membrane elements that carry

Cover Skin

Spar Boom
/ ‘Box-Like’

Spar Web Representation

Rib Web

‘Beam-Like’
Representation

Figure 4.11 Simple ‘box-like’ representation of a wing box structure.
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Figure 4.12 ‘Low order’ axial and membrane finite elements.

in-plane axial and shear loads. Typical two-node axial and four-node membrane elements are shown
in Figure 4.12; these elements are known as ‘low order’ elements, because the assumed variation of
displacement within the element is linear and so the variation of stress (NAFEMS, 1987) may be shown
to be (approximately) constant. On the other hand, the ‘higher order’ three-node axial and eight-node
membrane elements are more accurate, since the displacement variation within the element is represented
as a quadratic function and the stress variation as (approximately) linear. It is also possible to represent the
booms by beam elements and the skins by shell elements, where these elements allow for local bending
of the booms and skin; shell elements allow for both membrane and plate bending/twisting effects. It
should be remembered that the two-node beam element considered earlier had a cubic displacement and
linear bending moment and bending stress variation along the element.

In practice, the aircraft wing is much more complex than the simple geometry shown here, so the
model has to use significant approximations of local structural features. For example, a stiffened cover
panel with holes may be represented by a uniform panel of equivalent thickness; once the load paths (i.e.
how the loads are distributed through this panel) are known from a preliminary FE analysis using the
relatively coarse type of model discussed above, a local FE or other type of analysis (e.g. a plate buckling
analysis or an analysis based on data sheets) may be performed on a more detailed representation of the
panel. It should be noted that for a complex aerospace type structure, many parts of the FE model are
not suitable for direct extraction of stresses due to the approximations made in the idealization. Instead,
nodal forces are obtained and employed to define the external loads acting on the relevant local structure.

Having obtained such a box-like model, it is possible to use an approach known as static ‘conden-
sation’ (see Chapter 22 and Appendix D) to reduce the size of the FE model and to replace the box-like
model by an equivalent beam, as illustrated in Figure 4.11 (see also Chapter 22); this beam can be used
in the aeroelasticity and loads analyses (see Chapter 20), being coupled with inertia loads (see Chapter 6)
and aerodynamic loads (obtained using strip theory or panel methods, see Chapters 5, 19 and 22). Thus
a ‘beam-like” model may now be extracted from a more realistic ‘box-like’ FE model, and will be much
more accurate than if a traditional beam with crudely estimated stiffness properties were employed from
scratch.

4.7 EXAMPLES

1. Using the same approach as taken above for developing the element stiffness matrix for a two-node
bending element, determine the shape functions and hence the 2 x 2 stiffness and consistent mass
matrices for a two-node torsion element of length L, torsional rigidity GJ and torsional moment of
inertia x per unit length. (An equivalent result may be obtained for a two- node bar element, i.e. one

under axial loading.)
k= GIl 1 ~1 _xLl2 1
Tl 1] "Te 2



EXAMPLES 67

: (A
@ @ %o Tip

2J,2
Root %o
343y,

Figure 4.13

2. Consider a clamped—clamped component with length 4/, flexural rigidity £/ and mass per length p.
The fundamental natural frequency is to be obtained and since the corresponding mode shape will be
symmetric, only half of the component needs to be modelled, in this case using 2 two-node bending
finite elements. Determine the 3 x 3 overall stiffness and consistent mass matrices, recognizing
the zero slope boundary condition at the line of symmetry. Then determine the fundamental natural
frequency and mode shape using MATLAB (the symbols may be ignored in the calculations and
added in later).

[1.400/EI/ul*; cf. exact 1.398]

3. The element stiffness and consistent mass matrices for the two-node torsion element shown in Ex-
ample 1 above may be used in this question. In order to estimate the first torsional natural frequency
of a tapered unswept wing, the wing is modelled by three equal length uniform torsion elements of
different dimensions, as shown in Figure 4.13. The wing is clamped at the root. The relevant parame-
ters for each section are shown on the diagram, i.e. the torsion constants for the three sections are 3J,
2J, J (root to tip) and the equivalent torsional moments of inertia per unit length are 3xo, 2x0, Xo-
Determine the 3 x 3 stiffness and consistent mass matrices for the overall system after boundary
conditions have been applied. Use MATLAB to determine the natural frequency estimates (again
ignoring symbols and adding in later) and the mode shape. If a tank with moment of inertia /; in
torsion were to be added to the wing tip, explain how the analysis would change.

[K=GJ/s[l15 -6 0;,-6 9 -—-30 -3 3]
M= x/6[10 2 0;2 6 1,0 1 2],1.209y/GJy/Ips;
cf. 1.225 using Rayleigh—Ritz with linear assumed shape and piecewise integration]

4. A wing/tip store combination may be idealized as a uniform member, built in at one end, with an
offset tip store (e.g. fuel tank). The wing has a mass per length of 75 kg/m, moment of inertia in
twist per length of 25 kg m?/m, span 6 m, flexural rigidity 2 x 10° N m? and torsional rigidity 5 x
10° N'm?. The tip store has a mass of 100 kg and moment of inertia in pitch of 25 kg m? about its
centre of mass, which itself is offset by 0.5 m forward of the wing centre line. It may be assumed
that the flexural and mass axes coincide at mid-chord so there are no couplings between the bending
and torsional behaviour for the basic wing. Using a single finite element comprising both bending
and torsional behaviour (this 6 x 6 matrix is a simple combination of the 4 x 4 bending and 2 x 2
torsional matrices), obtain the 3 x 3 stiffness and mass matrices for the built-in member. Then add
suitable mass terms to the mass matrix in order to account for the store inertia. One approach for
doing this is to consider the inertia forces and moments acting on the store, then apply them to the FE
model as right-hand side forces and express the force vector as a matrix multiplied by an acceleration
vector; rearranging the equations then yields a mass matrix augmented with the store effect. Use
MATLARB to obtain the first two natural frequencies and sketch the mode shapes. Compare the results
with those from the Rayleigh—Ritz assumed modes of Example 7 in Chapter 3.

[1.81 and 5.00 Hz; cf. 2.18 and 5.48 Hz]
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Introduction to Steady Aerodynamics

Aircraft are able to fly because the lift generated by the airflow over the wings and horizontal tail surfaces
supports their weight. For a flexible aircraft, these lift forces give rise to deflections in the aerodynamic
shape, which in turn change the characteristics of the airflow, hence leading to aeroelastic phenomena
and affecting the dynamic loads. An understanding of how aerodynamic flow around a two-dimensional
aerofoil (a section of a typical wing profile) or a three-dimensional aerodynamic surface generates the
forces and moments that are applied to aircraft during flight is very important in order to be able to
develop mathematical models that describe the aeroelastic behaviour. In this book, the majority of the
mathematical treatment concerns lifting surfaces that are described as continuous, but in some cases the
surfaces are discretized, as discussed earlier in Chapter 4.

In this chapter, some of the fundamentals of fluid mechanics and aerodynamics are reviewed,
with particular emphasis on the lift/drag forces and moments that occur when air flows around a two-
dimensional aerofoil or three-dimensional aerodynamic surface (i.e. wing, tailplane or fin). Other parts
of the chapter examine the atmosphere, as well as the effect of adding camber and control surfaces to the
wing. The final sections briefly discuss supersonic and transonic flows. Both continuous and discretized
wings are considered. More detail about the material in this chapter can be found in Anderson (2001)
and Houghton and Carpenter (2001).

5.1 THE STANDARD ATMOSPHERE

Aircraft fly at a range of altitudes and air speeds. It will be shown that the aerodynamic forces and
moments that act upon the lifting surfaces (e.g. wings, tail) depend in part upon the air density and
pressure, and therefore these quantities must be determined at all altitudes. However, the characteristics of
the atmosphere vary with altitude, position on the globe, time of day and time of year (Anderson, 2001).
Consequently, the International Standard Atmosphere (ISA) has been defined, which enables aircraft
performance to be related to a common reference. The ISA has been determined from experimental
measurements and relates temperature, air density and pressure to the altitude above sea level (hy = 0 m).
Atextremely high altitudes, the varying values of the acceleration due to gravity also need to be considered,
but they will be ignored here and gravity will be assumed to remain constant at all altitudes. Table 5.1 shows
the values of a number of important atmospheric parameters for the International Standard Atmosphere
(ISA) in both SI and Imperial units.

Here, only the range of altitudes from sea level to 11 000 m (33 528 ft), known as the troposphere,
will be considered. In this range, the temperature 7 (in degrees Kelvin) of the standard atmosphere
decreases with altitude / (in m) in a linear manner such that

T =288.15—-0.0065 h =Ty — xh, (5.1)

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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Table 5.1 International Standard Atmosphere properties

T, (sea level temperature) 288.16 K 518.69 R
P, (sea level air pressure) 101325 N/m? 21162 Ibf/ft?
po (sea level air density) 1.225 kg/m?3 0.0023769 slug/ft3
ay (speed of sound at sea level) 340.29 m/s 1116.43 ft/s
R (gas constant) 287.05 m?*/s* K 1716 f*/s> R
cp specific heat at constant pressure
y=-2L= : 1.4 1.4
Cy specific heat at constant volume

where constant x = 0.0065 (i.e. the temperature decreases by 6.5 °C for each 1000 m climbed). Equation
(5.1) can be rewritten to relate the change in temperature d7 to the height above sea level, so that

AT =T —Ty = —x h. (5.2)

Assuming that the atmosphere behaves as a perfect gas, then the state equation, and the hydrostatic
equation that relates the change in pressure dP due to a change in height, can be written as

P = pRT and dP =P — Py = —pgh, (5.3)

where P is pressure, p is air density, R is the gas constant and g is the acceleration due to gravity. Then,
combining Equations (5.2) and (5.3) to eliminate altitude and integrating gives an expression that relates
the pressure to the temperature, such that

P dp Tdar P [T\
/_:i — s == . G4
r P xR Jgy, T Py Ty

0

A similar approach can also be used to determine how the density changes with temperature. Applying
the state Equation (5.3) at some given altitude and at sea level gives

P ,OT T 8/xR o T 8/(xR)—1
== (—) > = (—) . (5.5)
Py poTo Ty £0 Ty

Thus, using Equations (5.1), (5.4) and (5.5) it is possible to determine the temperature, pressure and air
density for any altitude within the troposphere. At 11 000 m, the temperature, pressure and air density
reduce to 75.19, 22.3 and 29.7 % respectively of the sea level values.

A further property of the atmosphere that has an important effect on the aerodynamic properties is
the speed of sound, defined by the symbol a. The speed of sound is a function of the ratio of specific
heats of air y, the gas constant R and the ambient absolute temperature 7', and is defined as

[y P | T
a=,/yRT = %:ao ?0, (5.6)

where ay is the speed of sound at sea level. Hence, the speed of sound reduces with increasing altitude,
for instance at 11 000 m it is 86.7 % of the sea level value.



EFFECT OF AIR SPEED ON AERODYNAMIC CHARACTERISTICS 71

5.2 EFFECT OF AIR SPEED ON AERODYNAMIC CHARACTERISTICS

The airflow and the resulting pressure distribution around a two-dimensional aerofoil changes depending
upon the air speed and altitude. These characteristics can be defined in terms of several dimensionless
quantities.

5.2.1 Mach Number

One particularly important influence upon the characteristics of all fluid flows is the compressibility of
the air at the air speed of interest, which alters depending upon the ratio between the local flow velocity
V' at some point in the flow and the speed of sound a. This ratio is known as the Mach number (M),
defined as

M = (5.7)

Vv
7
The value of M has a significant effect on the flow characteristics around aerofoils, and specific flow
regimes can be defined approximately as shown in Table 5.2 (note that the symbol M will be used in
different ways in the book, particularly for pitching or bending moment, but the context will indicate the
usage).

Shock waves (or ‘shocks’) appear in transonic and supersonic flows and effectively act as boundaries
across which there are significant abrupt changes in Mach number and pressure. A commercial jet aircraft
will typically cruise in the transonic regime at around M = 0.85, while fighter aircraft often fly at around
M =2.

5.2.2 Reynolds Number

The Reynolds Number (Re) is a further nondimensional quantity that influences the flow around aerofoils
and is defined as

Re = —, (5.8)

where ¢ and p are the aerofoil chord and air viscosity respectively. The Reynolds number defines whether
a viscous flow, particularly in the boundary layer (region close to the aerofoil surface where the flow
velocity is slowed down due to the surface friction) is laminar (i.e. flow velocity varies smoothly close

Table 5.2 Flow regimes defined by Mach number

M < 0.75 Subsonic No shocks present in the flow Gliders/propeller aircraft/some
jet transports
0.75 < M < 1.2 Transonic  Shocks are attached to the aerofoil ~ Civil transports (typically
M =0.8t00.9)
M=1 Sonic Flow at the speed of sound Fighter aircraft
12<M <5 Supersonic  Shocks present but not attached to  Fighter aircraft
the aerofoil
M >S5 Hypersonic Viscous interaction, entropy layer, =~ Missiles
high temperature effects become
important
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to the surface of the aerofoil) or turbulent (i.e. flow velocity varies randomly and irregularly close to the
surface). It is in effect the ratio of inertia to viscous forces in the flow.

5.2.3 Inviscid/Viscous and Incompressible/Compressible Flows

The simplest form of aerodynamic modelling, the so-called inviscid flow, assumes that there are no effects
from the viscosity of the air. This assumption implies that the flow past an aerofoil, even at the surface,
incurs no friction. In practice, viscosity does have an effect on the flow (viscous flow) and this is most
notably demonstrated by the presence of the boundary layer, where the flow slows down from the velocity
in the free stream to zero velocity on the surface.

A common simplification is to assume that the density of the air is constant (i.e. incompressible)
throughout the flow, and this is valid for flows where M < 0.3. Beyond this Mach number, compressibility
effects need to be taken into account and the density will vary through the flow field.

5.2.4 Dynamic Pressure

The dynamic pressure q is defined as % pV?2, where the density p and velocity V need to be defined
consistently. It is common practice to define it in terms of the equivalent air speed Vgas, which is the
speed at sea level that gives the same dynamic pressure as at some altitude, i.e.

1 1 0
SPVi=smVias = Ves= [V =VoV, (5.9)
Po

where o is the ratio of the air density at some altitude to the sea level density pg. Strictly, V should be
referred to as Vas, the true air speed, when p is the density at altitude. These air speeds will be referred
to later in the book when aeroelasticity and loads are considered.

5.3 FLOWS AND PRESSURES AROUND A SYMMETRIC AEROFOIL

An aerofoil is a two-dimensional shape that is the cross-section of some three-dimensional aerodynamic
surface; two-dimensional flows are fundamental for gaining understanding whereas three-dimensional
flows are more complex and are what occur in practice. The flow over an aerofoil moving in a fluid at
rest is said to be steady when the velocity at any fixed point is constant with time. Figure 5.1 shows how
‘streamlines’” map the fluid motion around a symmetric aerofoil at zero angle of incidence. There is no
flow across the streamlines; however, the velocity and pressure can change along them. Any element of
fluid experiences a static pressure from adjacent elements as it is moving.

Figure 5.2 shows the same streamlines but this time with the aerofoil at some small positive angle
of incidence «, defined as the angle between the chord line and the free-stream direction of the oncoming
flow. It can be seen how the flow is altered by the change of incidence, and how the symmetry of Figure 5.1

Figure 5.1 Flow around a symmetric aerofoil at zero incidence.
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Figure 5.2 Flow around a symmetric aerofoil at a small angle of incidence to the flow.

is lost. Lift occurs because the flow is deflected downwards by the aerofoil; this leads to the flow over
the upper surface being faster than that on the lower surface. Note that this difference in speeds is not
because the upper surface flow has further to travel but rather due to the aerofoil shape. Point S is the
stagnation point where the flow is brought to rest.

Making use of Newton’s laws of motion (see Chapter 6) and neglecting gravitational effects,
Bernoulli’s equation (Anderson, 2001) for constant p (incompressible flow) can be derived to relate
the pressure, density and velocity such that

P+ %,OVZ = constant. (5.10)

For compressible flow it can be shown that Bernoulli’s equation, again neglecting gravitational effects,
becomes

P 1
<L> — + —V? = constant. (5.11)
y—1)p 2

Consider the flow along a typical streamline starting in the free stream at pressure P, and velocity Vi,
and then changing to pressure P and velocity V at some point close to the aerofoil. Applying Bernoulli’s
equation gives

P+ 3pV2 =P+ 1ipV? = P=Po+ip(V2-V?). (5.12)
Hence for a velocity V > V, pressure P < P, so an increase in velocity leads to suction (pressure
reduction); for velocity V = Vi, pressure P = P ; and for velocity V < V, pressure P > P, S0 a
decrease in velocity leads to compression (pressure increase).

The maximum pressure occurs at the stagnation point S where the flow comes to rest on the aerofoil
(V =0), so

Py =P+ 1pV2. (5.13)

It is usual to describe the pressure distribution in terms of the nondimensional pressure coefficient C,,
which is defined for a point in the flow (or on the aerofoil) as

P — Py %
Cp=— = —(V—> (5.14)

which is a measure of the ratio of the local static pressure on the aerofoil (relative to the free stream
pressure P) to the free stream dynamic pressure. In terms of C,, the pressure distribution of a typical
symmetric aerofoil at an angle of incidence below stall (see later) is plotted in Figure 5.3.
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Figure 5.3 Typical pressure distribution for a symmetric aerofoil at a small angle of incidence.

Note that the pressure always acts normal to the surface. A common way of presenting the pressure
distribution on both surfaces is shown in Figure 5.4, where it can be seen that the lift is dominated by
suction on the upper surface. The ratio of chordwise distance from the leading edge normalized to the
aerofoil chord is x/c. There is a greater rate of change in pressure close to the leading edge.

5.4 FORCES ON AN AEROFOIL

For an aerofoil moving at velocity V in a fluid at rest, the pressure distribution acting over the surface
of the aerofoil gives rise to a total force. The position on the chord at which the resultant force acts is
called the centre of pressure, as shown in Figure 5.5. If the angle of incidence « (angle between the mean
airflow and the chord line of the aerofoil, measured in radians) alters, then the pressure distribution over
the aerofoil changes, which leads to a repositioning of the centre of pressure. The changing centre of
pressure position with respect to different angles of incidence leads to difficulties in any simple aeroelastic
analysis, since the forces and moments need to be recalculated continually. For convenience, the net force
is usually replaced by two resultant orthogonal forces, acting at a chosen reference point on the aerofoil,
and a moment as seen in Figure 5.5.

The lift (L) is the force normal to the relative velocity of the aerofoil and fluid, the drag (D) is the
force in the direction of relative velocity of the aerofoil and fluid, and the pitching moment (M) is the

G

>

-3

1 Suction

O\\% o
1

Figure 5.4 Pressure coefficient representation for a symmetric aerofoil at a small angle of incidence.
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Figure 5.5 Resultant aerodynamic force acts at the centre of pressure.

moment due to offset between the centre of pressure and the reference point (4-ve when pushing the nose
upwards as shown in Figure 5.5).

It is usual to use coefficients which relate the above quantities to the dynamic pressure and chord
for a unit span of aerofoil (since it is two-dimensional), so that the lift, drag and moment coefficients are
defined as

Lift L __ Drag D Co — Pitching moment M

CL= M = 1
50V2c?

N %szc’ b %szc’

respectively, where c is the aerodynamic aerofoil chord and lift, and drag and pitching moment are defined
per unit span of the aerofoil. It is often more useful to use the coefficients rather than the total lift, drag
and pitching moment per unit length as they are normalized by dynamic pressure and the aerofoil chord.
Note that the forces and pitching moment can be defined with reference to any point on the chord.
Aerofoil sections usually have unsymmetric cross-sections and incorporate camber, as shown in
Figure 5.6, to improve the lift performance. Later on, equivalent coefficients will be defined for the entire
three-dimensional lifting surface (e.g. wing) and these will be based upon the total force (or moment)
and normalized by the wing area instead of the chord for a unit span of the two-dimensional aerofoil.

5.5 VARIATION OF LIFT FOR AN AEROFOIL AT AN ANGLE
OF INCIDENCE

Figure 5.7 shows the variation of lift coefficient with incidence. The lift coefficient C|. is seen to increase
linearly with an increase in the angle of incidence « from the zero lift angle until stall is reached, when
the flow detaches and the lift drops off. The maximum lift coefficient obtained is Cp,,,. Also, at some
angle of incidence known as the zero lift angle wy, all aerofoils have zero lift, with ¢y = 0 for a symmetric
aerofoil. Note how the use of a cambered aerofoil enables Cy to be increased, but at the expense of stall
occurring at lower angles of incidence.

Hence, in the linear range

CL =a (Ol - 0[0) = CL =ap+ a«, (515)

where a; = dCy /da is the two-dimensional /ift curve slope, which has a theoretical value of 27/rad.
However, measurements show that in practice this has a value between 5.5 and 6 per radian and a value
of a; = 5.73 is often taken as this corresponds to 0.1 per degree (Houghton and Brock, 1960). Note that
ay is the lift at zero angle of incidence, having a value of zero for a symmetric aerofoil.

Figure 5.6 Cambered aerofoil.
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Figure 5.7 Variation of the lift coefficient with the angle of incidence.

As the Mach number M increases, compressibility of the air has a greater influence on the aerody-
namic forces and changes the two-dimensional lift curve slope to become
1= ! 5.16
a, = mﬂ]. ( . )
It is usual to ignore compressibility effects for M < 0.3, and in this book, for simplicity, Mach number
effects will be ignored in any modelling.

5.6 PITCHING MOMENT VARIATION AND THE AERODYNAMIC CENTRE

If the pitching moment coefficient Cy; is determined about the leading edge for a varying angle of
incidence and hence lift coefficient, then the results shown in Figure 5.8 are found. Note that Cyy, is the
moment coefficient at the zero lift condition.

The relationship between the moment and lift coefficients below stall can be represented by a straight
line, so

Cmy = Cnip + bC, G.17)
a
»C, 0 |0 >
o CMOI
Cho \ . h N
. Symmetric . Symmetric
", Cambered ™,
Conr , Conr \ Cambered

Figure 5.8 Variation of the moment coefficient about the leading edge with the lift coefficient and angle
of incidence.
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Figure 5.9 Forces and moments acting on an aerofoil for different reference points.

where it is found that b = dCy;, ,/dC. ~ —0.25 for all aerofoils and therefore
Cwmy = Cymy — 0.25C1. (5.18)

The pitching moment value and coefficient depend upon where the reference point for the lift and drag
are chosen, with Figure 5.9 showing three possible arrangements that must be statically equivalent, i.e.
at the centre of pressure, leading edge and a general point. Considering the forces and moments acting
on the aerofoil shown in Figure 5.9 and taking moments about the leading edge, then

_LXCP = MLE = Mx — Lx. (519)

Dividing by % pV%c gives the equivalent expression in coefficient form:

Xcp

X
—CL Cyvy =Cwm, — CLEs (5.20)

o=
and comparison of Equations (5.18) and (5.20) shows that for x = 0.25¢ (quarter chord) then Cy, =
Cy, = constant.

This quarter chord point is called the aerodynamic centre and is where the pitching moment coeffi-
cient Cyy, equals Cyy, and does not vary with Cy, or incidence unlike any other point on the chord. The
aerodynamic centre position is independent of incidence and section shape, and is the point where any
incremental lift due to any incremental change in incidence acts. Note that for a symmetric aerofoil sec-
tion, Cyy, is zero and therefore the centre of pressure would be at the quarter chord. These characteristics
make it convenient to use the aerodynamic centre for the aeroelastic and load modelling covered in later
chapters.

5.7 LIFT ON A THREE-DIMENSIONAL WING

So far, most of the attention has been focused on the flow around two-dimensional aerofoil sections and
on the forces and moment acting; however, now the aerodynamic behaviour of a wing will be considered.
In practice, the lifting surfaces on an aircraft (e.g. wing) are three-dimensional and there will be changes
in the behaviour. Most of the focus in this book will be on unswept and untapered wings to keep the
mathematics as simple as possible.

5.7.1 Wing Dimensions

Dimensions of a tapered but unswept wing are shown in Figure 5.10; here the semi-span is s and the root
and tip chords are cg, cr. The mean chord is ¢ and the wing planform area is given by Sw = 2sc, thus
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Figure 5.10 Dimensions of an unswept wing.

including the section of wing passing though the fuselage. The aspect ratio of the wing is a measure of
the slenderness of the wing planform and is given by

AR= 2 _ B
C SW

(5.21)

Commercial aircraft tend to have relatively high aspect ratio wings (~6 to 8) for reasons that will become
apparent later when drag is considered.

5.7.2 Lift Curve Slope of a Three-Dimensional Wing

There are a number of simple adjustments that can be made to the value of the lift curve slope for a
two-dimensional aerofoil in order to account approximately for finite span wings and also the effects of
compressibility. For three-dimensional finite span wings, the value of the lift curve slope is given the
symbol ay.

Assuming that the lift distribution across a three-dimensional wing of aspect ratio AR is elliptically
shaped, with lift falling off to zero at the wing tips (see later), then the effective wing lift curve slope can
be shown to take the form (Fung, 1969)

ay

= (5.22)
14+ a,/(mrAR)

aw

so the lift curve slope reduces for a finite span wing, with the largest reduction for low aspect ratio wings.

5.7.3 Force and Moment Coefficients for a Three-Dimensional Wing

Sectional lift, drag and pitching moment coefficients were defined earlier for the two-dimensional aerofoil
in terms of force/moment per unit span. For a three-dimensional wing, the equivalent coefficients may
be defined in terms of the total lift, moment, etc., over the wing. The wing lift and pitching moment
coefficients are defined by

= L Cu = M (5.23)
o %pVZSW’ M '

CL = T
%pV‘ch

where L, M are the total lift and pitching moment for both wings. The drag coefficient C, may be defined
similarly.
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Strip

S

Figure 5.11 Aerodynamic ‘strip’ on a continuous rectangular wing.

5.7.4 Strip Theory for a Continuous Wing

There are a number of different ways of modelling the spanwise lift distribution of a wing. In this first part
of the book the simplest, known as strip theory, will be considered, initially for a continuous untapered
wing and then for a discretized wing.

In strip theory, the wing is considered to be composed of a number of elemental chordwise ‘strips’
and it is assumed that the lift coefficient on each chordwise strip of the wing is proportional to the local
angle of incidence o(y) and that the lift on one strip has no influence upon another. In its basic form, root
and tip effects are ignored along with the effects of compressibility. In practice these assumptions imply
that the air speed is low (M < 0.3) and that the wing has a high aspect ratio (AR > 6). Note that strip
theory cannot be used for drag calculations.

Consider an elemental strip of the wing, having width dy and chord ¢ as shown in Figure 5.11. Then
the lift dL on the strip is taken to act at its aerodynamic centre (i.e. quarter chord) and is defined as

dL = 1pV?c dy aja(y), (5.24)
so in essence the two-dimensional lift curve slope value is employed. Thus, the total lift acting on a single
wing of semi-span s is found by integrating the effect of all the strips, so

Lrow. = [ L =bpvear [ atay. (5.25)
0 0

If the wing had been tapered, then the chord would be a function of the spanwise coordinate ¢(y) and
would be included under the integral. Note that an expression for the wing pitching moment about, for
example, the leading edge or axis of aerodynamic centres (i.e. quarter chord) could be obtained using a
similar approach. Also, the rolling moment about the root could be obtained.

Strip theory in its basic form assumes that the lift on each strip of the wing is the same as if the
strip were part of an infinite span two-dimensional wing, i.e. that aerofoil sectional properties would be
used. However, when applied to a finite wing, the presence of lift in the tip region implies a pressure
discontinuity at the tip that cannot occur in practice. The suction on the upper surface and compression
on the lower surface must be equal at the wing tip. In practice, as shown in Figure 5.12, the spanwise lift
distribution falls off to zero at the tip. A consequence of the difference in pressures between the upper
and lower surfaces in the tip region is the ‘trailing tip vortex’ that occurs on all wings due to the flow
around the tip from lower to upper surfaces (see the later section on drag).

For elliptically shaped or tapered wings, where the lift predicted by strip theory drops off towards
the wing tip due to the reduced chord, the finite wing effect can be accounted for through the use of
Equation (5.22) to adjust the value of the lift curve slope and then using ay in place of a; in Equations
(5.24) and (5.25). However, for wings without a significant taper, then strip theory may be modified
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Figure 5.12 Spanwise lift distribution for a realistic wing and strip theory model.

(Yates, 1966) to account for the reduction towards the tip. In this case, the lift curve slope may be varied
across the span, either by assuming functions of the form

2 2
aw(y) = a; |:1 — <X> j| or aw(y) =a, [l — (Z>] or aw(y)=acos (H) (5.26)
s s 2s

to replace ay, or by using a more sophisticated aerodynamic theory. Alternatively, experimental pressure
measurements can be used to determine the variation of lift curve slope and aerodynamic centre position
along the span.

5.7.5 Strip Theory for a Discretized Wing

In Chapter 4, the treatment of slender members was considered where a discretization was employed. If
a method such as strip theory (or modified strip theory) is to be employed in conjunction with a finite
element ‘beam-like’ model (see later in the book, Chapters 20 and 22), then the continuous expressions
used above will need to revised. In effect, the wing will be treated as if it is divided into N sections (i.e.
finite width ‘strips’) of width Ay.

Consider the kth ‘strip’ (or section) located at a distance of y, from the root. Following the previous
approach for the elemental strip on the continuous wing, the lift force acting upon the kth strip will be
given by the expression

Ly = 5pV7cAy awa(y), (5.27)
th ;
Ay k™ section
Yk 1Ly

Figure 5.13 Aerodynamic ‘strips’ on a discretized rectangular wing.
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where again the local chord could have been used for a tapered wing and the lift curve slope ay is
corrected in some way. Thus the total lift on the single starboard wing would be given by

N
LyoraL = ZLk' (5.28)
k=1

A pitching moment per section could also be calculated. Again, the lift curve slope could be adjusted
over the sections and the section width need not be constant.

5.7.6 Panel Methods

Even with the use of modified strip theory, there are still inaccuracies primarily due to the lack of
interaction effects between different parts of the lifting surfaces (for instance, T-tails cannot be modelled
with a strip theory approach) and more sophisticated approaches must be used instead. Current industry
practice is to make use of the so-called panel methods whereby the lifting surface is divided up into panels
and the lift distribution is modelled using potential flow elements such as vortices or doublets acting over
each panel. The key calculation in such an approach is to determine the aerodynamic influence coefficients
(AICs) that determine the aerodynamic effect that each panel has on another. These methods are described
in more detail for both steady and unsteady flows in Chapter 19 and applied to simple aeroelastic models
in Chapter 20. Further comments are made on the practical implementation in Chapter 22.

5.8 DRAG ON A THREE-DIMENSIONAL WING

As well as generating lift, wings also produce drag. Commercial aircraft designers aim to achieve a
maximum lift/drag ratio as this gives the maximum flight range. There are two main contributions to
drag: profile drag and induced drag. Noting that the total drag D can be defined as

D = ;pV*SCp, (5.29)

the drag coefficient can be defined as

ci

Cp =Cp, +Cp, =Cp, + — AR’

(5.30)

Now Cp, is the profile drag (the drag that is inherent from the aerofoil shape, i.e. when there is zero lift,
C. = 0). However, Cp, is the induced or lift-dependent drag that is mainly due to the presence of the wing
tip trailing vortex, but also includes the effects of the fuselage and engine nacelles and is proportional
to the (lift)®. The value e’ is the span efficiency factor, which is unity if the wing planform is elliptical.
For typical commercial aircraft, the value is within the range 0.85 < ¢’ < 0.95. Note that the induced
drag can be decreased by increasing the aspect ratio and by using as close to an elliptical wing planform
as possible (tapered wings can give a good approximation of an elliptical planform). The addition of
winglets effectively increases the aspect ratio and so reduces the drag.

Figure 5.14 shows how both types of drag vary with dynamic pressure. At low dynamic pressures,
the induced drag dominates, whereas at high dynamic pressures the profile drag dominates. Figure 5.15
shows how the drag polars of Cp versus Cy, vary for increasing Mach number. Although the drag does not
directly affect most aeroelastic calculations, the static aeroelastic wing bending deflection and twist in
flight do have a significant effect on the drag and are one of the key components in efficient aerodynamic
wing design (see Chapters 8 and 23). Drag will also have an impact upon aircraft handling via the
flight mechanics equations (see Chapter 14) and therefore indirectly upon loads. Once the transonic
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Figure 5.14 Variation of drag with dynamic pressure q.
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Figure 5.15 (| versus Cp, for different Mach numbers.

flight regime is reached, the presence of shock waves creates the onset of wave drag, which produces a
significant increase in the overall drag.

5.9 CONTROL SURFACES

Control surfaces are used primarily to manoeuvre the aircraft by changing the pressure distribution over
the aerofoil. Consider the two-dimensional aerofoil and control surface, shown in Figure 5.16, where the
control angle B (not to be confused with later usage for a sideslip angle in Chapter 13) is taken as +ve
downwards.

Figure 5.17 shows how the Cy, versus « curves vary for changing S. It can be seen that the lift
coefficient is increased by increasing g while the slope of each curve remains the same. Consequently,
the application of the control surface increases the effective camber of the aerofoil. Note also that the
stall speed decreases and Cyy,, becomes more negative.

alk—
v N4

Figure 5.16 Two-dimensional aerofoil with a control surface.
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Figure 5.17 Variation of the lift coefficient for different incidence and control surface angles.

Figure 5.18 shows how the pressure distribution changes with the applied control surface, with the
centre of pressure moving aft. Application of the control surface therefore increases the lift but imparts
an additional nose down pitching moment. The influence of the control surface on the lift coefficient and
pitching moment about any point in the section can be modelled as

CL=ay+aa+af and Cm = by + bia + b3, (5.31)

where a, is the control surface lift slope and b, is the control surface pitching moment slope. The
coefficients a, and b, for a two-dimensional aerofoil are defined (Fung, 1969) as

azz%[cos"(l—ZE)—i—%/E(l—E)] and bzz—%(l—E),/E(l—E) (5.32)

where E is the ratio of the control surface chord to the total chord. When strip theory is applied to the
entire three-dimensional wing in Chapter 9, then subscripts 1 and 2 become W and C respectively.

5.10 SUPERSONIC AERODYNAMICS - PISTON THEORY

In many aspects, the analysis of supersonic flows is simpler than subsonic flows and the simplest approach
for the analysis of supersonic flows using piston theory is analogous to modelling subsonic flows using
strip theory. Consider a steady supersonic flow passing over the unit chord two-dimensional aerofoil

Figure 5.18 Pressure distribution for an aerofoil with an applied control surface.
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Figure 5.19 Supersonic flow over an aerofoil.

shown in Figure 5.19. The pressure acting upon the aerofoil section can be approximated using the
so-called piston theory (Dowell ez al., 2004) at high speeds (M >> 1) to be
pV?
P =paVa =—u, 5.33
paVao B (5.33)
where p, a and M are the air density, speed of sound and Mach number respectively. The lift acts uniformly
over the chord and therefore the aerodynamic centre is positioned at the semi-chord.

Piston theory is a very simplified modelling approach and typically the so-called Mach box method
is used in industry whereby the lifting surface is divided into panels and aerodynamic interaction effects
between the panels calculated. The extension from piston theory to the Mach box method is analogous
to moving from strip theory to panel methods for subsonic flows.

5.11 TRANSONIC FLOWS

The transonic flight regime is characterized by the presence of shock waves on the wing surface. The
shocks represent a sudden change in the pressure and their position is dependent upon the flight condition
and also the chordwise wing geometry. It is consequently not possible to model accurately the transonic
pressure distributions using either strip theory or the potential flow panel methods that will be covered
in Chapter 19 since neither approach enables shock waves to be modelled. No further mention will be
made in this book about transonic flows, except to consider their effect on the flutter speed and possible
nonlinear aeroelastic effects in Chapter 11 and to mention some relevant applications of computational
fluid dynamics (CFD) in Part II1.

5.12 EXAMPLES

1. Write a MATLAB program to determine:
(a) the temperature, air density and pressure at any given altitude;
(b) the Mach number for a given air speed and altitude;
(c) the air speed for a given altitude and Mach number.

2. Calculate P/Py, p/po and T/T for the standard atmosphere at 7 = 3, 7 and 11 km.

3. The aerodynamic centre for an aerofoil is at 27 % chord, and the pitching moment coefficient at zero
lift Cy, is —0.05. What is the pitching moment coefficient about the mid-chord point when C;, = 1.5,
assuming that Cy. and Cy; vary linearly with incidence?

[0.295]

4. Find the values of Cp. for which the centre of pressure of an aerofoil is (a) at 30 % chord behind the
leading edge and (b) at the trailing edge, if the aerodynamic centre is at 25 % chord and Cy;, = —0.03.

[0.6,0.04]
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5. Anaerofoil was suspended from a balance in a wind tunnel and its nominal lift and drag were measured
normal to and along the wind tunnel axis. The balance readings indicated that at a value of C. of 0.6
the lift/drag ratio for the aerofoil was 20. However, it was found subsequently that in the working
section in the region where the model was suspended the air stream was inclined downwards by 0.5°
relative to the tunnel axis. Find the correct value of the lift/drag ratio. (Note that since the model is
suspended in the tunnel, positive lift is downwards.)

[17]

6. An aerofoil of 2 m chord has Cy, = —0.02, «g = —1°, a; = 5.7/rad. The aerodynamic centre is at
0.25¢ behind the leading edge. It is at an incidence of 5° in a wind speed of 50 m/s (p = 1.225 kg/m?).
Find the lift and pitching moment about the leading edge per unit span when a trailing edge flap angle
is set at 10°. Take b, = 2.0/rad and assume that the lift increment due to the flap acts through the
mid-chord point.

[2897N, 2107 Nm (nose down)]

7. The above aerofoil with the flap at 10° is found to stall at « = 12° and Cy, varies linearly with « up to
the stall. The aerofoil is then fitted with a leading edge slat of chord 0.15¢ and the stall is consequently
delayed to o = 17° (a; and b, being unchanged by the presence of the slat). Find Cy,,, and Cy, . at
the stall with the slat in operation. It may be assumed that the pitching moment coefficient increment
due to the slat is given by ACy;, = 0.9 slat chord/wing chord. (Note that all coefficients are still
referred to the same chord c¢).

[2.140, —0.508]

8. For arigid wing of root chord 2 m and semi-span 6 m with incidence 2°, write a MATLAB program to
compare the different lift distributions obtained using strip theory and modified strip theory described
in Equation (5.26). Determine the taper ratio that gives the closest strip theory lift distribution compared
to the modified strip theories.
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Introduction to Loads

In this book, the topics covered divide naturally into those related to (a) stability (e.g. flutter), (b) static
deformation (e.g. static aeroelastic effects, steady flight manoeuvres) and (c) dynamic response (e.g.
manoeuvres, gusts, turbulence). The aircraft dynamic response needs to be calculated for ground ma-
noeuvres (e.g. taxiing, take-off and landing), flight manoeuvres (e.g. response to control movements) and
gust/turbulence encounters. However, once the response deformations and accelerations are obtained, the
loads and stresses generated in the aircraft must also be determined so that the strength and fatigue/damage
tolerance behaviour may be assessed.

‘Loads’ is a general term that incorporates both forces and moments, discrete and distributed, ex-
ternal and internal. In this chapter, various basic concepts relevant to loads in general will be introduced,
including Newton’s laws of motion for a particle and their generalization to a body, D’ Alembert’s princi-
ple (leading to discrete inertia forces/couples and distributed inertia forces), externally applied/reactive
loads, free body diagrams (FBDs), loads generated internally within a structure (i.e. internal loads) and
intercomponent loads. It will be shown how loads within a structure may be determined in an accelerating
slender member by introducing distributed inertia loads so as to bring the structure into an effective static
equilibrium condition.

In this chapter, the way in which internal loads (or so-called ‘stress resultants’, such as bending
moments and shear forces) are determined for slender members subject to uniformly or nonuniformly
distributed loading will be explained; both continuous and discretized members will be considered. Then
the classical way in which stresses are obtained from these internal loads for simple structures will be
outlined. However, for complex aircraft structures, this classical approach is not always suitable; the
different methodology for such structures, and the potential confusion in terminology, will be explained
later in Chapters 18 and 24.

The treatment in this chapter aims to serve as a reminder of key concepts and an introduction to
analysing loads on structures experiencing uniform or nonuniform distributions of acceleration; other
texts should be referred to for more information and further explanation of basic concepts if required
(Donaldson, 1993; Benham et al., 1996, Megson, 1999). The examples given in this chapter will be for
simple continuous slender members under uniformly or nonuniformly distributed loading, so as to allow
a fundamental understanding to be gained of the kind of analyses relevant to slender wing and fuselage
structures, represented in either a continuous or discretized manner. The application of these approaches
to aircraft loads will be covered later in Chapter 18.

6.1 LAWS OF MOTION

In Chapters 1 and 2, and indeed later on in the book, Lagrange’s equations are normally used to set up the
differential equations of motion. However, Newton’s second law of motion could have been used instead
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to achieve the same end. In this chapter, Newton’s laws will be introduced for completeness (as well as
being sometimes simpler to employ) and because they are important for loads purposes.

6.1.1 Newton’s Laws of Motion for a ‘Particle’

Newton’s laws (Meriam, 1980) are originally stated for a ‘particle’, a body of negligible dimensions but
finite mass, such that acceleration occurs in translation, but without any rotation. The laws may be stated
as follows:

1. Every ‘particle’ continues in a state of rest or of uniform motion unless acted upon by a net force.

2. When a net force acts upon a ‘particle’, it produces a rate of change of momentum equal to the force
and in the same direction.

3. To every action, there is an equal and opposite reaction.

The second law is the most commonly used, and states mathematically that

d dv dm
F=_ — it B
dt(mv) mdz +v a (6.1)

where F is the net force acting, m is mass and v is velocity. If the rate of change of mass is insignificant,

as is the case in most practical situations (except, for example, in rockets), then Equation (6.1) reduces
to the better known form

d
F = m—v = ma, (6.2)
dr

where a is the acceleration. When a ‘particle’ is not accelerating, there must be no net force, so F' = 0
and the forces acting on it must be in equilibrium, a most important concept for loads.

Strictly speaking, acceleration should be measured with respect to an inertial axes system (i.e. one
fixed relative to the stars). However, for most engineering analyses, the motion of the earth may be
ignored so that an axes system fixed to the earth may be used; this is obviously inappropriate for space
flight. When expressed in two dimensions, Equation (6.2) is written for components aligned with two
orthogonal axes. Also, the double dot notation seen in earlier chapters will be employed to represent
acceleration in most of the book, but in this chapter the simple symbolic representation for acceleration
often used when introducing basic dynamic principles will be retained.

6.1.2 Generalized Newton’s Laws of Motion for a ‘Body’

When the applied forces cause both translation and rotation of a body of finite size, then Newton’s second
law as expressed for a particle no longer strictly applies. However, if the body is considered as an assembly
of particles with equal and opposite forces acting between them, then it may be shown (Meriam, 1980)
that this law can be extended to cover a body that is both translating and rotating.

6.1.2.1 Translation

For a body accelerating in translation, the generalized Newton’s second law may be stated (in two
dimensions) as

F. = ma,, Fy = ma,, (6.3)

where the subscripts x and y refer to the components acting in the O xy axes directions and the acceleration
is that of the centre of mass of the body. Thus, Newton’s second law for a particle may effectively be
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used for a finite sized body, but only provided that the accelerations are considered at its centre of mass;
the net force may be considered along any axis direction although usually two orthogonal axes are used.

Note that the term ‘centre of mass’ is used in this book to describe the point where the mass of a
body may be assumed to act; it is a property of the body and remains the same whatever gravitational
field the body is under. However, in aerospace applications, the term ‘centre of gravity’ is also in common
usage; strictly speaking, this has a different definition to centre of mass in that the centre of gravity will
change if the gravitational field is nonuniform, but the two are synonymous if a uniform gravitational
field acts over the system.

6.1.2.2 Rotation

For a body accelerating in rotation, the generalized Newton’s second law may be stated (in two dimen-
sions) as

M, = lLa, (6.4)

where M. is the applied moment about the centre of mass, « is the angular acceleration (rad/s?) and I is
the moment of inertia about an axis through the centre of mass. It is very important to recognize that for
dynamic problems, this equation only applies for moments about the centre of mass (Meriam, 1980); the
only exception is that moments may be taken about any fixed pivot point in the body (if one exists), with
subscript ‘o’ replacing ‘c’ in Equation (6.4). If the body is not accelerating, then these two equations
reduce to the equations of equilibrium and moments may then be taken about any axis. Note that for a
body in three dimensions, the net force is usually expressed in three orthogonal directions and moments,
about the three orthogonal axes that are employed.

6.1.3 Units

In using the second law of motion as defined above, it is essential that consistent sets of units are used,
given that both metric (SI) and Imperial units are still in use within the international aerospace industry.
For Newton’s equation in translation, the appropriate units of force, mass and acceleration are given in
Table 6.1.

The term kilogram (or pound) force refers to the force produced by a kilogram (or pound) mass
acting in the gravity field (the so-called ‘weight’ associated with the mass); however, ‘Ib’ is often used to
denote force instead of ‘Ibf’, though the authors would prefer to use ‘Ib’ for mass only and to retain the
symbol ‘Ibf” for force. It may be seen that the definition of ‘slug’ for mass in Imperial units derives from
the second law. Clearly the unit sets A, D and E defined by kg m s N, slug ft s Ibf and 1b ft s poundal are
suitable for use in Newton’s law for translation (and indeed rotation), though Ibf is far more common than
poundal in Imperial use; they also yield consistent results when used in natural frequency calculations
involving mass and stiffness. However, the other two sets of units B and C are deemed unsuitable for
dynamic calculations.

Table 6.1 Units for force, mass and acceleration

Unit set A B C D E
A force of 1 N (Newton) 1 kgf (kilogram 1 1bf (pound 1 Ibf 1 poundal
force) force)
accelerates 1 kg (kilogram) 1kg 1 1b (pound Islug(=3221b) 11b
a mass of mass)

at 1 m/s? 9.81 m/s* (1g) 32.2 fu/s? 1 f/s* (1g) 1 f/s?
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If the reader is ever faced with needing to convert between SI and Imperial units, then conversion
factors are readily available for most common units. Alternatively, a procedure based on introducing
conversion ratios of basic units may be employed as shown in the example following for a moment (or
work done) unit, namely

fit ft? b\ ,/ft)*1
1Ibfft =1 (slug— ) ft =32.1741b— =32.174kg|( — |m° | — ) =
s? s? kg m) 2

Ib ) ft \*1 32.174 kgm?
= 32.174kg m == =1.3558Nm.
2.20461b 3.2808ft) s \2.2046 x 3.28082 ) 52

(6.5)

6.2 D’ALEMBERT’S PRINCIPLE - INERTIA FORCES AND COUPLES

In this section, D’ Alembert’s principle will be introduced to show how a dynamic problem may be
reduced to an equivalent static one via so-called ‘inertia forces (and couples)’, even for a flexible aircraft
in accelerated flight (see Chapter 18). This approach will allow the internal loads for a dynamic problem
to be determined.

6.2.1 D’Alembert’s Principle for a Particle

D’ Alembert’s principle (Meriam, 1980) allows the dynamic problem solved by Newton’s second law to
be converted into an equivalent static problem by changing the reference axes system from an inertial set
to one fixed in the particle (or ‘body’) and accelerating with it. The effect of the acceleration is handled by
introducing a fictitious ‘inertia force’ equal to (mass x acceleration), acting in the opposite direction to
the acceleration vector. The applied force and the inertia force are then simply in equilibrium (‘dynamic
equilibrium’), as the problem has been reduced to an equivalent static one. In essence, the observer
accelerating with the particle/body considers it to be in equilibrium and concludes that an inertia force
must be acting to balance the applied force.

The idea is illustrated for a particle, and compared with Newton’s law, in Figure 6.1. Thus the
equation of equilibrium associated with D’ Alembert’s principle becomes

F — Fineria = 0, (66)

where Flnenia = ma. Note of course that this gives exactly the same result as may be found using Newton’s
second law. Newton’s law and D’ Alembert’s principle are equivalent in outcome, and care should be taken
not to use them together in a problem — otherwise the effective mass may end up being doubled.

@ (b)

F F inertia

x L
y

Figure 6.1 Comparison of (a) Newton’s law and (b) D’ Alembert’s principle for a particle in translation.
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The reader might wonder whether there is any point in using D’ Alembert’s principle; indeed Meriam
(1980) recommends against using it. However, it is particularly powerful when determining the internal
loads of a flexible accelerating body such as an aircraft. By employing D’ Alembert’s principle, a complex
dynamic problem, with different parts of the aircraft accelerating by different amounts, is reduced to an
equivalent static problem where simple static analysis methods may be employed. Indeed, so established
is this approach in determining aircraft loads that the airworthiness requirements refer to the use of inertia
forces and couples (CS-25 and FAR-25).

6.2.2 Application of D’Alembert’s Principle to a Body

The approach described above for a particle may also be employed for a rigid body of finite size under the
action of an applied force, except that the inertia forces must be introduced at the centre of mass. Also,
a body subject to a net moment M, about the centre of mass, and experiencing a rotational acceleration,
is handled by introducing an inertia couple Miyenia €qual to moment of inertia about the centre of mass
I.x angular acceleration «, acting at the centre of mass and in the opposite direction to the angular
acceleration, so

M. — Meria = 0, (67)

where Myperia = I.a. The two approaches are illustrated in Figure 6.2.

Note that a ‘couple’ is a pure moment, such as would be provided by turning a screwdriver. It derives
in essence from the effect of two parallel and equal forces acting in opposite directions and has the effect
of rotating a body but providing no tendency to translate.

6.2.3 Extension to Distributed Inertia Forces

The concept of a discrete inertia force (or couple) was introduced above for a body accelerating under an
applied force (or couple). However, the idea of inertia forces is extremely powerful when considering the
internal loads (see later) present in a body under an accelerated condition because inertia forces can be
distributed over the body and the problem can be reduced to one that is in equivalent static equilibrium.
The use of distributed inertia forces will be illustrated for the problem of a rigid continuous member for
two different load cases.

(a) (b)

a ¥ ma

ma,

Figure 6.2 Comparison of (a) Newton’s law and (b) D’ Alembert’s principle for a body.
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a (=F/uL)
T Mass per length u
T Length L
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dy
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Figure 6.3 Distributed inertia forces on a body under uniform acceleration.

6.2.3.1 Translation

Consider firstly the example of a uniform continuous rigid body (or slender member) of length L and
mass per length u, accelerating in the horizontal plane (to avoid having to consider gravity) under the
action of a force F applied at the centre of mass as shown in Figure 6.3. In the steady condition, the
whole member, and thus every element dy of it, experiences a uniform acceleration of a = F/(uL).
Thus, using D’ Alembert’s principle for each element of mass ;dy means that an elemental inertia force
dI?Inenia giVeH by

dFInerlia = (Md)/)a (68)

may be considered as acting on each element of mass (in the opposite direction to the acceleration), as
shown in Figure 6.3. The inertia force per unit length is given by w; = pa. The member is then effectively
in static equilibrium because the applied force F' and the total inertia force Fiyenia (Obtained by integration
of Equation (6.8)) are in balance. What is particularly useful, as a consequence of introducing distributed
inertia forces, is that the internal loads for the member in the steady accelerating condition may be
examined just as if it was subjected to a central static force, balanced by a uniformly distributed load.

6.2.3.2 Rotation

A further example allows the ability of the approach to cater for a nonuniformly distributed acceleration
to be shown. Consider the same uniform rigid member, but it is now accelerated in rotation by a moment
M. applied at the centre of mass as shown in Figure 6.4. Since the moment of inertia of a uniform slender
member about its centre of mass is given by I. = uL>/12, the angular acceleration of the member is

(6.9)

Hence the acceleration of a typical element dy, at distance y from the centre of mass, will be given by

a=auay, (6.10)
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b\

- )
M. dy
\ o

w,=uay per length

Figure 6.4 Distributed inertia forces on a member under nonuniform acceleration.

and this may be seen to vary linearly with the distance from the centre of mass. Thus, when inertia
forces are introduced for each element then, as shown in the figure, the inertia force per unit length varies
linearly and is given by w; = pay. The applied couple is then in equilibrium with the net moment of
the inertia forces acting on all the elements. Once again the internal loads could be determined by static
methods, but this time an approach based on integrating elemental contributions will be required; this
process is relevant to the real aircraft in dynamic response and will be illustrated in Chapter 18.

6.3 EXTERNALLY APPLIED/REACTIVE LOADS

6.3.1 Applied Loads

Externally applied loads are defined as loads that may be considered as acting on the whole body (and
not a part of it), and may be constant or vary with time. They may be categorized as being:

(a) Distributed over a surface (e.g. aerodynamic pressure loads),
(b) Discrete (e.g. engine thrust) or
(¢) Distributed over the body volume (e.g. weight and inertia forces, see later).

In practice, no force ever acts precisely at a ‘point’ but may often be represented as doing so for conve-
nience of analysis (e.g. thrust will be considered as a discrete force for overall aircraft handling and load
calculations but is actually distributed, and a discrete force representation is inappropriate for engine load
considerations).

6.3.2 Reactive Loads (i.e. Reactions)

For an aircraft, many of the load cases involve the aircraft being airborne and so there would be no
reactions to the ground. However, ground manoeuvres such as taxiing, landing, turning and braking
involve the aircraft being in contact with the ground via the landing gear. Any such support arrangement
has the effect of constraining one or more displacements and/or rotations, usually to zero, as shown in
Figure 6.5 for a two-dimensional scenario with several different constraint arrangements. This concept
readily extends to the three-dimensional case.
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Figure 6.5 Constraints and reactions in two dimensions.

When analysing a body supported in some way, the body must be ‘released’ from the support (or
ground) and equal and opposite reactions considered, corresponding to Newton’s third law. The effect of
the support on the body is replaced by the unknown equal and opposite reactions provided by the support
to the body, shown in Figure 6.5; every constrained component of motion (translation or rotation) must be
replaced by a reactive force or moment. A free body diagram (FBD) is then drawn (see the next section);
the reactions are added to the FBD and the magnitudes determined using equilibrium considerations. An
example is shown in the next section.

6.4 FREE BODY DIAGRAMS

A free body diagram (FBD) is a diagrammatic representation of the forces acting on a whole body, or
part of it. The body is isolated from its supports and all the applied and reactive forces are drawn on a
diagram of the body, positioned at their effective points of action (e.g. centre of mass for inertia forces,
centre of pressure for aerodynamic forces). This is because only their total effect is required for overall
considerations; however, when the internal loads are required (see later), then the distributed nature of the
loads will need to be retained. Once an FBD is available, then generalized Newton’s laws of motion may
be applied so as to yield relationships between the forces and any resulting accelerations; alternatively,
D’ Alembert’s principle may be applied.

As an example of an FBD, consider an aircraft supported against vertical motion at the nose and
main landing gear positions but free to roll horizontally, as shown in Figure 6.6; it is accelerating forward
under thrust loading with friction effects ignored. The mass is m, weight W(= mg), thrust 7 and total
support reactions Ry, Ry . The acceleration at the instant of interest is @ = 7'/m. The dimensions are
shown in the figure with the centre of mass being a distance d above the thrust line and 4 above the
ground. The forces acting are shown on an FBD in the lower part of the figure. The arrows are the
forces acting upon the aircraft if the generalized Newton’s law were to be employed. On the other hand,
were D’ Alembert’s principle to be applied, an additional horizontal inertia force ma would need to be
present (not shown here). There is no pitch acceleration or inertia moment because both landing gears
are assumed to remain in contact with the ground. Consider determining the nosegear reaction using
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Figure 6.6 Free body diagram example when using Newton’s law.

Newton’s law; the equations for translation and rotation about the centre of mass are
T=ma, RN+RM—W=0, RNb—RMC‘-’—Td:ICC(:O, (61])

and solving for the nose gear reaction yields

Ry = e Td 6.12
NE e (6.12)
If, on the other hand, moments are taken about the point of contact of the main landing gear with the
ground instead of about the centre of mass, then the resulting reaction would be incorrect because the
basis of the generalized Newton’s law is that moments must be taken about the centre of mass for a
dynamic problem (this is a common error). However, if D’ Alembert’s principle were to be employed,
the inertia force ma is included in the FBD and the problem is a static one, so it is immaterial where
moments are taken.

6.5 INTERNAL LOADS

So far, the external loads present on a body have been considered. However, in order to see whether the
body can sustain the external loads applied to it, the so-called ‘internal loads’ present within the body
must be determined. These internal loads will depend upon the distribution of the external loads over
each component, and not simply on their net values. Internal loads may be determined for steady or
dynamic load cases, for the latter by employing D’ Alembert inertia forces/couples in order to create an
effective static equilibrium condition.

Typical internal loads for a relatively slender body (or member/beam/shaft/rod/bar, see Chapter 3) are
shear force, bending moment (hogging/sagging), axial force (tension/compression) and torque (twisting
moment) — a suitable acronym might be ‘MAST’ loads (moment/axial/shear/torque). The examples
considered in this chapter will only cover shear force and bending moment, with the others introduced
later in Chapter 18. More detailed coverage of internal loads may be found in many references, e.g.
Benham et al. (1996), but here the focus will be on members with distributed loads such as those
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induced by inertia loading. Internal loads are sometimes referred to as ‘stress resultants’ since they are
the aggregate of the stresses acting. The body will be treated initially as continuous and later a discretized
representation will be considered.

6.6 INTERNAL LOADS FOR CONTINUOUS REPRESENTATION
OF A STRUCTURE

The treatment of a slender member (such as a wing) represented as a continuous structure will be
considered for uniformly and then nonuniformly distributed loadings. Later, discretized members will
be considered.

6.6.1 Internal Loads for Uniformly Distributed Loading

The idea of internal loads and how they can be determined will be illustrated for the earlier dynamic
example of the uniform member in effective static equilibrium under a uniform accelerating condition
as shown in Figure 6.3.

6.6.1.1 ‘Exposing’ internal loads

To ‘expose’ and so determine the internal loads at a particular point on a member, then the analyst must
‘imagine’ the member as being ‘cut’ into two subsections at this point. However, when doing so, equal
and opposite ‘internal loads’ must be introduced at the ‘cut’ to represent the effect of the missing structure
(i.e. what has been ‘cut’ away); this is in effect a consequence of Newton’s third law. The internal loads
are then determined by considering the equilibrium of one or other subsection.

The FBDs for the two subsections generated by the ‘cut” AA at position y from the centre of mass are
shown in Figure 6.7, with equal and opposite internal ‘shear force’ Q and ‘bending moment” M (a pure
couple) introduced; these internal loads quantities will be discussed below. In order to simplify the
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Figure 6.7 Free body diagrams showing internal loads on a member with uniformly distributed loading.
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resulting equilibrium expressions, a different coordinate measured from the right hand end will be used
in place of y, namely yr = L/2 — y. There are two versions of the FBD shown for the right-hand cut
section, one with the distributed load per unit length w; shown explicitly and the other showing the net
force due to the distributed load acting on the relevant subsection; it is this latter version which is used
for analysis and because the force is uniformly distributed, the net force w;yr on the cut subsection may
be placed at the centre of the subsection as shown.

6.6.1.2 Determining internal loads via equilibrium of ‘cut’ sections

Each ‘cut’ subsection must be in equilibrium under the relevant external and internal loads acting on it.
In this example, it is simpler to apply the equilibrium condition for the right-hand subsection, namely
that there will be no net force or moment (moments are usually taken about the ‘cut’ to avoid including
the shear force Q), so

0 —wyr =0, M — waRy—R =0, (6.13)

Note the function of the two types of internal load introduced; the shear force Q balances the distributed
external load wyygr and the bending moment M resists the tendency of the member to rotate due to the
offset of the net force from the cut. Rewriting the equations leads to expressions in terms of y or yg,
namely

L 1, 1 /(L ’
0 = wpr or wi E—y R MZEwaR or Ewl E—y (6.14)

Exactly the same expressions would have been obtained were the equilibrium of the left-hand subsection in
Figure 6.7 to have been considered instead, but the applied force F'(= palL) would have been included.
Note that the internal load expressions only apply for the subsection of the member covered by cut
AA, namely y > 0 or yr < L/2; the internal loads in the left-hand half of the member (y < 0) could
be obtained by repeating the process for a cut in the left hand half, or more simply by exploiting
symmetry.

The variation of these internal loads along the entire member is shown graphically in Figure 6.8. It
may be seen that the shear force varies linearly and the bending moment quadratically with an increase

wiL/2
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Force _
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M

Figure 6.8 Internal load diagrams for a member accelerating under a central force.
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in yg, and that the maximum internal loads occur at the centre where the external load is applied and
there is a step change in shear force. Note that the signs of these internal loads depend upon the sign
convention chosen. What is important is to be consistent with the choice of sign convention within a
particular problem.

So far, internal loads have been shown for the dynamic load case of steady acceleration using a
simple continuous, rigid and uniform body. In practice, an aircraft will be subject to transient dynamic
loading and will be flexible; also the loads (inertia and aerodynamic) will be nonuniformly distributed.
Resulting deformations and internal loads would then be required as a function of time and maximum
values found. Such a problem may be treated as in the above example but the effective static equilibrium
condition needs to be considered at every instant of time. Also, calculation of internal loads for a structure
with nonuniform loading will require an integral approach, as shown later in this chapter. The calculation
of loads for a rigid or flexible aircraft under steady/dynamic manoeuvres or gusts will be considered in
Parts II and III of the book.

6.6.2 Internal Loads for Nonuniformly Distributed Loading

In this section, the analysis shown above will be extended to a member with time-varying applied loads
and nonuniformly distributed inertia loading. The focus will be on how to handle the nonuniformly
distributed loading when determining internal loads. Consider a uniform continuous rigid member of
length L, mass per length 1, mass m and moment of inertia /., subject to centrally applied dynamic loads
F(t) and M.(t), as shown in Figure 6.9. The acceleration over the member varies nonuniformly and is
defined by a(n, t) = ao(t) + a(t)n, where ao(t) = F(t)/m, a(t) = M.(t)/1. and n is the distance from
the centre of mass.

F() T

M.(1) - Acceleration

Distributed inertia force
W =ua(y.y)

op.t) dn
Mt) 1|

y dr Inertia

L2

Figure 6.9 Internal loads for nonuniformly distributed loading — continuous member.
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6.6.2.1 Distributed inertia forces for a continuous structure

Knowing that the acceleration at time ¢ of an element dn of the member at position 1 from the centre is
given by the function a(n, t), introduce a distributed inertia force to bring the member into effective static
equilibrium at a chosen instant of time ¢ (based on D’ Alembert’s principle). The inertia force acting on
the element is

dFinertia(n7, 1) = dm a(n, t) = pdna(n, 1), (6.15)

which acts in the opposite direction to the acceleration as shown in Figure 6.9. Thus the distributed inertia
force per unit length is w; = u a(n, t) and this will have a non-uniform spatial distribution.

6.6.2.2 Internal loads for a continuous structure under nonuniform loading

Consider a ‘cut” AA in the member at position y (> 0) and introduce an instantaneous shear force Q(y, t)
and bending moment M(y, t), as shown in Figure 6.9. For equilibrium of the right-hand subsection at
time ¢, there will be no net force or moment about the cut. Previously, where the loading was uniformly
distributed, the net load could be positioned at the centre of the cut section. However, the effect of the
nonuniformly distributed inertia force needs to be included by integration (or summation) of the elemental
contributions over the right-hand subsection, so that

L2 L2
Q(y’ 1) = / dFInertia(nv 1) = /‘v/ a('l, t)dﬁ
n=y n=y
and (6.16)
L2 L2
M(y, 1) = / (1 — Y)dFineria(m, ) = M/ (n — y)a(n, t)dn.
n=y n=y

Knowing the time histories for the applied force, and hence the acceleration along the member, the shear
force and bending moment at every position along the member and at every instant of time may be
calculated. Results are typically plotted against time for each internal load of interest at critical positions
in order to determine maximum values for design (see Chapters 18 and 25).

6.6.2.3 Example of nonuniformly distributed loading for a continuous structure

Consider the case where only the pure moment M. (¢) is applied, so F(¢) = 0. The linearly varying
acceleration of the member at position 7 is a(n, t) = na(t), where a(t) = M.(t)/I. and I, = L3 /12 for
a uniform member. If these values are substituted into Equation (6.16), then the internal loads are given
by

o= [36(3)] woo-m[3-1()e2()] e

The shear force and bending moment at every position along the member may then be calculated
as a function of time, and antisymmetry may be employed for the left-hand half of the member. The
variation of internal loads along the member at a particular instant of time is shown in Figure 6.10; note
in this case that there is a step change in moment at the centre due to the presence of the applied moment.

Clearly, for an aircraft in flight, some applied forces will be aerodynamic in origin, a function of the
response, and will also be distributed over the component in question. Also, the mass will not be uniformly
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o)

M)

Figure 6.10 Internal loads for a member under rotational acceleration due to a central couple.

distributed. Thus the analysis for the aircraft case will be more complex than in these examples, but the
principles will be the same.

6.7 INTERNAL LOADS FOR DISCRETIZED REPRESENTATION
OF A STRUCTURE

The above analysis applies to continuous bodies, i.e. where both the structure and distributed loads are
treated as continuous and the internal load expressions required integration over the member. However,
for a real structure such as an aircraft, while the structure and loading are still nominally continuous, they
are far too complex to treat as analytic functions. Since only a finite set of loads is required, the structure
is idealized by dividing it into discrete sections/elements, with the loads being applied to each section.
The analysis is approximate, with the analytic integral being replaced by a summation, but provided an
adequate number of sections are used, the accuracy should be satisfactory. The idea will be illustrated
for the earlier example of a member under the action of a central force and moment, but this time the
treatment is discretized. It should be recognized that the treatment of a discretized member is essentially
the same whether the loading is uniformly or nonuniformly distributed, since in either case a summation
approach would be required. Note that discretized structures were considered in Chapters 4 and 5, and
will be considered further in Chapters 18 and 20.

6.7.1 Distributed Inertia Forces for a Discretized Structure

Consider the uniform rigid member of length L and mass per length p, subject to a centrally applied dy-
namic load F(¢) and moment M. (¢), as shown in Figure 6.11. The member is approximated by discretizing
itinto N sections/elements, each of equal length Ay(= L/N) and mass m; = pL/N; the left-hand end
of the kth element is at a distance y; from the centre of the member. The mass is lumped at the centre
of each section. D’ Alembert’s principle may then be applied to this discretized structure by introducing,

F
A MW ] w2 2 1
T e | SRR ]
mydy ¥ mya, ma,

Figure 6.11 External loads for nonuniformly distributed loading — discretized member.
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at the kth section/element, an inertia force equal to the product of the section mass m; and the section
acceleration a,(¢) at a chosen instant of time 7. The inertia force on the kth element at time ¢ is then given
by

Flncrtia_k([) = mydg (t) (618)

The inertia forces are shown in Figure 6.11 and the structure is in static equilibrium under the applied
and inertia forces. The acceleration at each mass point can be found using the structure mass m =y my
and moment of inertia I, = ) my r,f, where r; is the distance from the centre of mass to the kth mass
point.

6.7.2 Internal Loads for a Discretized Structure

For a discretized member, the internal loads are only determined at the interfaces between the sec-
tions/elements. Consider a cut in the right-hand half of the member at the interface between the jth
and (j + 1) th elements, with internal loads Q;(t) and M;(t) introduced to the subsection, as shown
in Figure 6.12. For equilibrium of the right-hand subsection, there is no net force or moment at the
cut, so

J
Q) = Z Flnertia_x () — Fapplicd
=1

and (6.19)

4 A L
M;(t) = Z Frnertia_x () ()’k + 7}’ - }’j> — Fapplied (E - }’j> .

k=1

Thus the approach is the same as for the continuous system, except that integration is replaced by
summation.

6.7.3 Example of Distributed Loading — Discretized Structure

The above case will now be considered using numerical values. Consider the example of the member
under uniform acceleration from an applied force alone (no couple acting), with N = 10 sections, u =
100 kg/m, L = 1 m (i.e. total mass of 100 kg) and F = 1000 N, so that Ay = 0.1 m, m;_jo = pu Ay =
10kg, aj_19 = F/uL = 10 m/s?> and Fiueriai—10 = 100 N. Applying Equation (6.19) yields the internal

Fopplied
ipplie
0;(1)
j k 2 1
%m(ﬂ | I R R
I
Flﬂ?r)‘m,.’ F[Vlf‘vlla,]
F, Inertia_k
Vi
Vi
Ay/2

Figure 6.12 Internal loads for nonuniformly distributed loading — discretized member.
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Figure 6.13 Internal load diagrams for a member accelerating under a central force.

load diagram shown in Figure 6.13. The results may be compared to those in Figure 6.8 for the continuous
member and there is good agreement.

6.8 INTERCOMPONENT LOADS

A body is often composed of several interconnected major components (e.g. wing, fuselage, tailplane, fin,
landing gear and engines for an aircraft). It can be helpful to consider a particular component in isolation
from the rest of the body; this is achieved by ‘cutting’ it away and introducing equal and opposite
‘intercomponent’ loads at the interface — actually the internal loads there. Thus Figure 6.14 shows, in
two dimensions only, an example where the FBDs for the two components are shown separately, with
intercomponent forces and moments introduced. Once such diagrams are drawn and the external loads
applied to each component are known, each component may then be analysed separately in order to
determine the intercomponent loads. A further example of ‘separating’ a wing and fuselage is shown in
Chapter 18.

T
o

Inter-component
loads

Figure 6.14 Intercomponent loads example.
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6.9 OBTAINING STRESSES FROM INTERNAL LOADS - STRUCTURAL
MEMBERS WITH SIMPLE LOAD PATHS

The process of obtaining internal loads, described so far in this chapter, is essentially the first stage of
a calculation aimed eventually at obtaining stresses. For a slender member with well-defined load paths
(e.g. a circular tube or T-section member), once any moment, axial, shear and torsion (‘MAST’) internal
loads present have been determined at any cross-section, it is then possible to determine the stresses at that
cross-section from basic stress analysis theory using the cross-sectional properties (Benham ez al., 1996).

As an example, the direct stress o for bending about the neutral axis (i.e. the axis in the cross-section
where this stress is zero) of a member is given by

=2 6.20
o 7 (6.20)

where M is the bending moment, / is the cross-section second moment of area and y is the distance from
the neutral axis (Benham ez al., 1996). Similar expressions apply for other loadings on simple structures
(Young, 1989; Benham et al., 1996) and for simple aerospace structures (Donaldson, 1993; Megson,
1999), but a treatment of stress analysis is beyond the scope of this book. Such methodologies may be
employed for structures with well-defined load paths.

However, it should be noted that such classical formulaic approaches are not suitable for complex
aerospace structures where the load paths are not well defined. Instead, additional analyses will need to
be carried out to determine loads and stresses in structural elements using the ‘MAST’ internal loads
described earlier; this will be explained briefly in Chapters 18 and 21.

6.10 EXAMPLES

Note that the signs of the internal loads depend upon the sign convention used.

1. Convert the following quantities into SI or Imperial units as appropriate: (a) 10 N m, (b) 5 Ibf ft, (c)
10 N/m?, (d) 5 Ibf/ft, (e) 10 kg m? and (f) 5 slug ft*.

[7.376 1bf ft, 6.779 N m, 0.209 1bf/ft?, 239.4 N/m?, 7.376 slug ft*, 6.779 kg m?]

2. Draw the free body diagram and find the support reactions in magnitude and direction for the member
shown in Figure 6.15.

[left-hand support 1.73 kN upwards and 5.50 kN to the left and right-hand support 0.87 kN upwards;
do not forget the moment produced by the horizontal 5 kN force]

SkN 2kNm

0.5m 0.5m :‘} I
e
1KN 0.4m
R = = w—
3kN
30°
0.5m 0.5m
«— re—»

Figure 6.15
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3. A nose landing gear is subject to a set of loads as shown in Figure 6.16. Find the force and moment
reactions at the support.

[11 kN down, 4 kN to the right and 4.75 kN m anticlockwise]

ANANNNNN

4 kN

Figure 6.16

4. Replace the lift force L acting at the centre of pressure (CP) on the aerofoil shown in Figure 6.17 by
an equivalent force and couple arrangement at the aerodynamic centre position (AC). Hint: place a
pair of equal and opposite forces L at AC and replace one parallel force pair by a couple.

[force L and couple L/ nose down]

L

h

Figure 6.17

5. For the built-in slender member shown in Figure 6.18, draw each ‘cut’ part together with external and
internal loads. Use equilibrium to determine expressions for the shear force and bending moment at
each cut. Then draw the internal load diagrams and find the support reactions.

[maximum bending moment —10 kN m at 9 kN load position, reactions 4 kN and 2 kN m at root]

5kN T 9KN

2m 3m

W

Y 3
A
Y 3

\ 4

Figure 6.18
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6. For the simply supported slender member shown in Figure 6.19, determine the reactions and draw
each ‘cut’ part together with external reaction components and internal loads. Use equilibrium to
determine expressions for the shear force and bending moment at each cut. Then draw the internal
load diagrams and indicate the support reactions.

[maximum bending moment 12 kN m at the left-hand support, reactions 10 kN up at the left-hand
support and 4 kN down at the right-hand support]

a

6kN

A

2m 3m

777/

F 3

Figure 6.19

7. For the simply supported slender member shown in Figure 6.20, determine the reactions and draw
each ‘cut’ part together with external and internal loads. Use equilibrium to determine expressions
for the shear force and bending moment at each cut. Then draw the internal load diagrams and
indicate the support reactions.

[bending moment varying parabolically, with maximum 5.625 kN m at centre, reactions 7.5 kN at

P LL soom

Figure 6.20

8. A uniform member of length L and mass per length p is subject to applied forces ¥ /2 acting normal
to the member axis at a distance b/2 either side of its centre. Determine the inertia loading distribution
and draw an FBD for the member in effective static equilibrium for an accelerated condition. Then
determine the bending moments at the centre and at one load point. Sketch the bending moment

variations for values of b/L = 0, %, %, 1 and note how the load position influences the behaviour.

[load point (—FL/8)(1 — b/L)* and centre (FL/4)(b/L — %)]

9. For the built-in slender member shown below in Figure 6.21, draw each ‘cut’ part together with
external and internal loads. Use equilibrium to determine expressions for the shear force and

Pttt
Z
SKkNm 2

T om A 3m i

Figure 6.21
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bending moment at each cut. Then draw the internal load diagrams and indicate the support
reactions.

[bending moment is constant at 5 kN m in the left-hand section, changing parabolically to —4 kN m
at the support, where the other reaction is 6 kN]

10. The slender member shown in Figure 6.22 is built in at point A and loaded by torques at points B
and C. Draw each ‘cut’ part together with external and internal torsional loads. Use equilibrium to
determine expressions for the torque at each cut. Then draw the internal load diagrams and indicate
the support reaction.

[torque is 4 kKN m at root, essentially the same diagram as for the shear force in Example 5]

9kNm

5kNm

Figure 6.22

11. A uniform member of length 10 m and mass per length 200 kg/m is subject to an applied force
of 10 kN acting normal to the member axis at its centre. Determine the inertia loading distribution
and draw an FBD for the member in effective static equilibrium for this accelerated condition. Then
determine the bending moment at the centre (a) assuming the member is continuous and (b) assuming
the member is discretized into 10 sections.

[both 12.5 kN m]

12. A uniform member of length L and mass per length u is subject to an applied force F acting normal
to the member axis at one end of the member. Determine the inertia loading distribution and draw an
FBD for the member in effective static equilibrium for this accelerated condition. Then determine
the bending moment at the centre.

[centre 3F L /8]
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Introduction to Control

Control systems are used in a wide range of engineering applications and industries, to enable a system
(e.g. an aircraft) to respond in some desired way when subjected to some form of external input. For
example, a gust load alleviation system might use acceleration measurements on the aircraft to detect
the motion due to turbulence and then employ the control surfaces in such a way as to reduce the loads
acting on the aircraft structure. Other inputs could be provided by the pilot and the control system
could limit the loads generated. The systems used on aircraft for control in flight may be electrical,
mechanical, hydraulic or pneumatic and perform a widely differing range of tasks, e.g. provision of
required stability and handling properties, carefree handling, manoeuvre load alleviation, etc. Modern
aircraft have extremely sophisticated flight control systems (Pratt, 2000) that play an important role in
the aeroelastic and loads behaviour of the aircraft, so it is important to understand key issues of control.

This chapter will examine some of the basic control tools and definitions that need to be understood
before the application of control systems to aeroelastic systems, the science of aeroservoelasticity (or
structural coupling), which will be tackled in Chapter 12. The aircraft flight control system will be
considered further in Chapters 14 and 22. Many textbooks cover basic control theory, e.g. Raven (1994)
and Dorf and Bishop (2004).

7.1 OPEN AND CLOSED LOOP SYSTEMS

Consider the system in Figure 7.1 that responds in some way, known as the output, to some given input.
This representation of the resulting output due to an applied input could, for example, be used to describe
the direction that an aircraft flies in, subject to the application of the control surfaces.

A controller can be added to the set-up, as shown in Figure 7.2, and is used to define the control
inputs needed in order to manoeuvre the aircraft so that it flies on a particular heading. This is known as
an open loop system. The controller may be designed using trial and error or past experience to dictate
what control surface deflections are needed to change the direction of the aircraft. However, no account
is made of any external influences, e.g. the wind direction and speed, and the consequent effect this has
on the aircraft.

In order to steer the aircraft accurately, a continually updated comparison between the required
direction and that actually being flown needs to be made. The aircraft’s heading can be continually
changed until the difference between the required and actual direction is zero. Figure 7.3 shows this
set-up, known as a closed loop system, where it can be seen that the output is fed back into the system
and compared with the desired input value. The difference (error) between the two is then passed through
the controller element which is designed to produce the required output from the system. Such a closed
loop system is the basis of all control systems, e.g. flight control systems, but there are many different
ways of implementing the control.

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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Input —» System [——» Cutput

Figure 7.1 Basic open loop system.

The ratio between any two points in the system (often the output and input) in either the Laplace or
frequency domains (Raven, 1994) is known as the transfer function (TF). Note however, that in vibration
analysis the ratio between output and input signals is also commonly called the frequency response
function (FRF; see Chapter 1).

7.2 LAPLACE TRANSFORMS

The Laplace transform is one of the key mathematical tools used to model control systems. Essentially,
it is simply a mathematical transformation that enables functions of time 7 to be reformulated in terms
of the so-called Laplace operator s. One particular benefit is that differential equations in ¢ can be
expressed as algebraic expressions in s, which can then be used to determine the system transfer function
with or without a control system present. The transfer function then enables the stability and dynamic
characteristics of the system to be investigated. A further advantage of employing the Laplace approach
is that, by the use of a transformation between s and w, the transfer function can be expressed in the
frequency domain.
The Laplace transform F'(s) of a time function f(¢) is defined as

LUF()) = F(s) = / Fledr, a1
0

where the usual convention of time functions being written in lower case and Laplace operator functions
written in upper case is followed. It is also possible to invert the process so that the corresponding time
function for a given Laplace function can be found.

In general, the integral does not have to be solved since tables are available giving the Laplace
transforms of the most common functions, some of which are shown in Table 7.1. More complicated
expressions can be tackled through the use of simple rules that apply to linear systems (Raven, 1994).
Note in the table that f(0), for example, is the initial condition of f(¢).

7.2.1 Solution of Differential Equations using Laplace Transforms

As an example of the use of Laplace transforms, the solution of differential equations will be illustrated
with a single degree of freedom system, subjected to a unit step function at time r = 0 (with initial
conditions x(0) = 0, ¥(0) = 0). As was determined in Chapter 1, the equation of motion is
f@

m

mi ek +kx = f(t)  or ¥4 20w.k + iy = (7.2)

and for this example f(¢) is taken as the unit step function.

Input —»| Controller —»| System —— Output

Figure 7.2 Open loop system with open loop controller.
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Input +

Output

Controller —» System

Figure 7.3 Closed loop system.

The idea of the analysis is to use the Laplace transform to transform a differential equation in time
into an algebraic equation in the Laplace variable. The algebraic equation may be solved readily and
transformed back to the time domain to yield the response solution.

Transforming each term in Equation (7.2) using the Laplace transforms given in the above table
leads to

m[s?X(s) — sx(0) — x(0)] + c[s X (s) — x(0)] + kX (s) = % (7.3)
or, with zero initial conditions,
(ms> +cs +)X(s) = m(s2 4+ 2¢w,s + a)ﬁ)X(s) = 1 (7.4)
s

This algebraic equation shows that a differential equation in time has been transformed into an algebraic
expression in s. Rearranging this equation yields

1
ms <s2 + 2¢w,s + a)ﬁ)

X(s) = (7.5)

This expression now needs inverse transformation to get back to the time domain, but the form of the
expression needs modifying so as to be able to use the table below. Rewriting Equation (7.5) in terms of
a partial fraction expansion gives

X(s) 1 A+ Bs+C
S)= — — _
m\'s  $24+20wys + 0}

>_ 1 A(sz+2§wns+w§)+BSZ+Cs 7.6)
T m 5 (52 + 20 wps + w?) ' '

Table 7.1 Example time functions and corresponding Laplace transforms

Time domain Laplace domain Time domain Laplace domain

function f(r) function F(s) function f(r) function F(s)

. . . 1
Unit impulse 1 Unit step function -

K

Exponential decay e~ ! sin wt and cos wt @ and u

P Y s+a s24w? s+ w?
d d? df(0)
—f( sF(s)— f(0 —f( $2F(s) — sf(0) — =
AL SF(s) — f(0) 0 SF(s) = sf(0) ~ =

. 10} s—a

e sin wt e’ cos wt

(s —a)* + w?

(s —a) + w?
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where the unknown constants A, B and C are found by comparing coefficients of s in Equation (7.5).
Thus the partial fraction expansion becomes

X(s) = 1 (l _ &) . (7.7)

mw2 \'s  s2+20w,s + w2

The final step is to transform back into the time domain, using the relationships shown in Table 7.1, thus

1 w, _ .
x(t) = - |:1 — e ten’ sin(wqt + w):| , (7.8)
k wq

which is the same answer as found using the analytical approach described in Chapter 1. Responses to
other inputs may be obtained using a similar approach. Note that it is usual nowadays to use software
such as MATLAB and SIMULINK to solve such systems rather than relying upon the solution using
Laplace transforms.

7.3 MODELLING OF OPEN AND CLOSED LOOP SYSTEMS USING
LAPLACE AND FREQUENCY DOMAINS

The control of a system is achieved through either open or closed loop control systems. If the Laplace
transform of the open loop system is G (s) in Figure 7.1, then the transfer function (TF) between the input
X (s) and output Y (s) is given as

Yo

TFsystem = G(S) - X(S) .

(7.9)

The inclusion of a controller H (s) as part of the open loop system as shown in Figure 7.2 results in the
transfer function between the output and input
Y(s)

TFopen loop = FS‘) = H(s)G(s). (7.10)

However, if the system is made closed loop so that the output to the system G(s) is fed back into the
input via a controller in the feedback path represented by H (s), as shown in Figure 7.4, then it becomes
possible to influence directly the input to the system in order to control the output. This system makes use
of negative feedback shown by the minus sign on the feedback loop, and the error is input to the system.

There are two separate transfer functions to consider for each part of the system shown in
Figure 7.4:

® between the input E(s) to the system and the output Y(s), G(s) = 28,

® between the output Y(s) and the feedback path output F(s), H(s) = %

Input X(s) + E(s) [ System Output ¥(s)
. G(s) !
F(s)
Controller
H(s)

Figure 7.4 Closed loop system with controller in the feedback loop.
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In addition the relationship between the actual input X(s), the error signal E(s) and the feedback path
output F(s) can be written as

E(s) = X(s) — F(s). (7.11)

Rearranging these expressions gives the overall TF of the closed loop system as

Yo 6w

S D — (7.12)
X(@s) 14+G(s)H(s)

TFjosed loop —

The transfer functions of far more complicated systems can be determined simply by following
the above approach. It will be seen later how it can be useful to convert transfer functions based in the
Laplace domain into the frequency domain simply through the use of the transformation s = iw, where
i = +/—1 is the complex variable used in this book (though the symbol j is normally used by control
engineers).

7.4 STABILITY OF SYSTEMS

Control systems are used to influence the behaviour of the system that is being controlled, in particular
to manipulate the response to different inputs. Care must be taken that the characteristics of the closed
loop system are favourable and that instabilities do not occur due to the interaction between the feedback
control and the system. For example, the use of an incorrectly designed flight control system on an aircraft
might result in flutter (refer to Chapter 12). Although time simulations of the system could be used to
determine whether the application of a particular control loop results in a stable response, this is a very
inefficient approach, particularly when the effect of changing many system and control parameters needs
to be investigated.

In this section, a range of commonly used tools are described that can be used to determine whether
a system is stable or not, and also to determine what the critical conditions are that define the boundary
between stable and unstable behaviour.

7.4.1 Poles and Zeros
Consider the representation of the transfer function of a general closed loop system

K" 4 byys" " 4 bys + by)

G(s) -
ST+ ap_ 18" +---+as+ap

(7.13)

where K is known as the gain of the system. This equation can be written in terms of the roots of the
denominator p;, known as poles (TF reaches a peak at these roots), and the roots of the numerator z;,
known as zeros (TF reaches a minimum at these roots), such that

K(s —z)(s —22) -+ (8 — Zm)

G(s) = .
(s = p)(s—p2)--(s = pn)

(7.14)

The poles are the roots of the characteristic equation of the system, which is found by setting the denom-
inator of the TF to zero; they determine the stability of the closed loop system. For an oscillatory system
(as usually encountered in aeroelastic or mechanical systems), the roots occur in complex conjugate pairs
of the form

ot+if =—Ctwtioyl —? (7.15)
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a. Stable System  b. Critically Stable System c¢. Unstable System
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Figure 7.5 Relation of position of poles to system stability.

It can be shown that the system becomes unstable if the real part of any of the poles is positive (o > 0).
Figure 7.5 shows s plane plots (Argand diagrams) for three different cases of a single degree of freedom
oscillatory system and the corresponding time response to an initial disturbance. Since this is a second
order system, there are two poles that occur as a complex conjugate pair. When there are negative real
parts of the poles (o < 0), a stable time response occurs, as seen in Figure 7.5(a). Figure 7.5(b) shows the
result for poles with a zero real part (6 = 0) and this leads to a critical response whereby the amplitude
of the time history remains constant. Finally, in Figure 7.5(c), when the poles move to the right-hand
side of the s plane the system response becomes unstable. If the imaginary part of a pole is zero (6 = 0),
then the motion relating to this pole cannot be oscillatory (but could still become unstable in a static sense
if the real part is positive). For an MDoF system, the motion with all of the poles being damped is far
more complicated than that shown in Figure 7.5(a). However, the motion of a single critically stable, or
unstable, mode will dominate the response of an MDoF system and the resulting motion will be similar
to that in Figures 7.5(a), (b) and (c) respectively.

7.4.2 Routh-Hurwitz Method

Although the roots of a polynomial can be determined using numerical software such as the ROOTS
function in MATLAB, there can be occasions when the stability of a system needs to be determined
without explicitly calculating the roots. The Routh-Hurwitz method (Bisplinghoff ez al., 1996) can
be used to check whether a system is stable just by considering the coefficients of the characteristic
polynomial. The technique will be used later on in Chapter 11 as a means to determine when flutter
occurs. Only the method, and not the proof, will be described here.

Any nth-order polynomial

aps" +ap_1s" "+ Fais+ay=0 (7.16)

will have stable roots if all the coefficients @; > 0 and the n determinants 7 - - - T,, > 0 where T, is the
n x n determinant that takes the form

ni Gy-3 -~ 0 0 O

ay, danr - ag 0 O

0 an—1 -+ A 0 0
o g oa O (7.17)

as dp 0

0 0 as dy Ay
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The subdeterminants 7 - - - T,,_; are found as

ap—1 dpn-3 dp_s
s T = a, dn— dp—4 |, etc. (7.18)
0 dpn—1  dp-3

dn—1  dn-3

T, = |ag_1l, T, =
an an—2

A comparison of Equations (7.17) and (7.18) shows how these subdeterminants are formed. An increasing
number of terms from the n x n determinant are taken, starting at its top left-hand corner. Note that if
the subscript of any of the above terms is negative, then the term is taken as zero.

For example, consider the quartic equation a,s* + a3s® + as® + a5 + ay = 0 and set up the de-
terminants up to 4 x 4 in size; therefore

a a 0 O o a0
3 1
as dy Ao 0 as d)
Ty = , T3=|ay a aol, T, = , T, = as.
0 az d 0 0 ay  dp
as a

0 a4 dy Ay

The polynomial has stable roots if @; > 0 for i = 0,1,2,3,4 (includes T} > 0), aza, — ajas > 0 () and
ajayas — apai — atay > 0 (T3). There is no need to calculate the largest determinant 7y as this is equal
to a0T3.

7.4.3 Frequency Domain Representation

When designing a control system, it is often of interest to examine the effect of changing the gain and/or
phase of the system in order to determine if and when stability is lost. Such investigations can be carried
out in the Laplace domain using root locus plots or in the frequency domain using Nyquist or Bode plots.
The figures can also be used to define how much the gain or phase can be increased before instability
occurs.

7.4.3.1 Root locus

Root locus plots are used to show the effect of changing the control system gain on the position of the
closed loop poles (the so-called root loci) (see Figure 7.6). Instability occurs when any denominator root
crosses the imaginary axis and the real part becomes positive. The gain at which oscillatory roots become
nonoscillatory (i.e. the imaginary part becomes zero) can also be determined. It is possible to use the root
locus plot to adjust the open loop zeros and poles in order to affect the behaviour (damping, frequencies
and occurrence of instabilities) of the closed loop poles.

There are a number of rules for drawing the root loci by hand (Raven, 1994). However, as it is usual
nowadays to simply plot them out using numerical software, they will not be considered here.

As an example, consider the closed loop feedback system shown in Figure 7.4. The open loop
transfer function is taken as G(s) = K /[s(s?> + 4s + 8)] with a feedback loop term H(s) = 1 and gain
K. This gives a closed loop transfer function using the approach defined earlier as

Y(s) K
X(s)  $3+4s2+8s+K'

(7.19)

Figure 7.6 shows how the root loci change with values of gain K varying from 1 to 40. It can be seen that
there is an oscillatory pair of (complex conjugate) poles and a single nonoscillatory pole (zero imaginary
part). The system is stable for all values of K < 32 (this can be verified using the Routh—Hurwitz criteria).
However, beyond this critical value the system becomes unstable and the real parts of the complex poles
become positive. Note that as the poles change, the values of the corresponding frequency and damping
ratio of the closed loop system alter as well.
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Figure 7.6 Root loci trends for different gain values.

It can be seen from the above example that the introduction of a feedback loop has allowed the
system characteristics to be altered from those of the basic system. In control design, the form and gain
of the feedback controller H (s) are chosen to achieve the desired closed loop characteristics, such as
overshoot, rise time and settling time. These requirements vary for different types of system.

7.4.3.2 Stability analysis using Nyquist and Bode plots

By application of the transformation (s = iw) the transfer function in the Laplace domain is transformed
into the frequency domain and thus Equation (7.12) becomes

G(iw)

1 + G(iw)H (iw)” (7.20)

TFjosed loop () =

It is usual to display this type of representation in terms of the Bode plot (gain (dB) and phase angle
versus frequency) or the Nyquist plot (real part versus imaginary part for different frequencies).

Considering the denominator of the above expression for the transfer function, then a system can
be shown to be stable if the term G(iw)H (iw) has an amplitude ratio on the Bode plot less than 0 dB
when the phase angle is —180°. On the Nyquist diagram this is equivalent to an amplitude ratio of less
than —1 at a phase angle of —180°; thus the transfer function must not enclose the point (—1) on the real
axis. Figure 7.7 shows typical Nyquist plots for a stable and an unstable system.

It is useful for control law design to determine how far from instability the system is, and this can
be defined by the gain and phase margins. The gain margin defines at the —180° phase how much the
magnitude is below 0 dB (Bode) or 1 (Nyquist), whereas the phase margin defines at 0 dB (Bode) or
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Figure 7.7 Nyquist representations of stable and unstable systems.

amplitude of 1 (Nyquist) how much the phase is greater than —180°. Schematic representations of the
gain and phase margins for both Bode and Nyquist plots are shown in Figures 7.8 and 7.9.

Returning to the above example, defined by Equation (7.19), and making use of the substitution
s = iw, then Bode and Nyquist plots of G(iw)H (iw) are shown for gain values of 20 and 32 in Figures
7.10 and 7.11. Note that they both have the same phase plot as the gain does not affect the phase in this
case. It can be seen that when K = 32 the system is marginally stable, with the TF magnitude of O dB
corresponding to the —180° phase.

Airworthiness certification regulations define the amount of gain and phase margins that must be
present when flight control systems are used for civil and military aircraft.

Magnitude
(dB)

0 {_Gain Margin ©
Phase

0° w

gl Margin

Figure 7.8 Bode plot showing gain and phase margins.
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Figure 7.9 Nyquist plot showing gain and phase margins.

7.4.4 Time Domain Representation

The alternative to performing a control system analysis in the Laplace or frequency domains is to use the
time domain, often deriving models in terms of acceleration, velocity or displacement.

7.4.4.1 State space representation

For a time domain analysis, it is convenient to make use of the so-called state space models, which
are based upon the so-called system states. The states are any sets of variables that must be linearly
independent and sufficient in number to define the dynamic behaviour of the system, but cannot be the
system inputs (or linear combinations of the inputs). State space models can be used to model any set of
differential equations.

For example, consider a second-order mechanical system with input # and output y in the form

Y+ 2wy +wpy =u, (7.21)
which can be rewritten in terms of two first-order differential equations with the states defined as x; = y
and x, = y such that
X =x,

(7.22)

Xz =u— a)ﬁxl — 2§‘a)nx2‘
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Figure 7.10 Bode plot for a system with two different gain values.
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Figure 7.11 Nyquist plot for a system with two different gain values.
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In matrix form, these equations may be expressed as

f(l _ 0 1 X1 0 B X
{xz} - [—wg —2;w":| {x2}+ [1]{14} and {y}=[10] {x2}+[0]{u}. (7.23)

Equations (7.23) are in the form of the so-called state space equations:
x = Ax+Bu and y = Cx+Dgu, (7.24)

where for an Nth-order system with N/ inputs and NO outputs, x is the N x 1 state vector, u the input
vector NI x 1, y the NO x 1 output vector, A, the N x N system matrix, B, the N x NI input matrix,
C, the NO x N output matrix and Dy the NI x NO feedforward matrix.

The use of the subscript ‘s’ for these matrices is nonstandard for state space analysis, but the subscript
is added to avoid confusion with different matrices in the general aeroelastic and loads equations presented
later.

The state space Equations (7.24) can then be solved in the time domain using numerical integration
to obtain the response of the system to any input. For multivariable problems they are a succinct method
for describing the dynamics, and advanced matrix tools can be used to analyse the systems. Note that the
eigenvalues of the system matrix A are the same as the poles of the Laplace domain transfer function.
Also, the number of first-order state space equations is twice that of the second-order representation.

It is a straightforward operation to transform from a state space model to a transfer function model.
Taking Laplace transforms of Equation (7.24), with zero initial conditions, gives

sX(s) = AX(5) +BU(s) = X(s) = [sT — A7 BU(s). (7.25)
Hence
Y(s) = (Cs[sT — A,]7" B+D,) U(s) = G(s)U(s), (7.26)
where, of course, G(s) is now, in general, a matrix of transfer functions corresponding to the multiple
inputs and outputs.

There is a large body of work devoted to the use of digital control systems (Kuo, 1995) as opposed
to the continuous time model considered above. However, these are beyond the scope of this book.

7.5 PID CONTROL
The simplest and most commonly used type of control strategy typically sets the controller of the system
in Figure 7.3 as linear multiples of the error £ (proportional) along with its integral (I) and derivative

(D) multiplied by some gain values. Hence the proportional-integral-derivative (PID) controller can be
written as

dE
hPID([)zKpE‘FKi/Edl“"KdE, (7.27)
where K, Kj, K are the proportional, integral and derivative gains. In the Laplace domain this becomes
K;
H(s) = K, + — + Kgs. (7.28)
s

There are various empirical schemes that can be used for setting the three gain values, but tuning of the
gains often still has to be executed in order to get optimal performance. The proportional term determines
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the speed of the response, the integral term improves the accuracy of the final steady state, while the
derivative term helps to stabilize the response.

State feedback control typically used the set-up in Figure 7.4 with the controller feedback equal to
—Kx. Such an approach leads to optimal control techniques (Whittle, 1996), which specify that the gain
matrix K is such that some cost function is minimized.

7.6 EXAMPLES

1. For the feedback control system in Figure 7.3, determine the closed loop transfer function for the
combinations of G(s) and H(s) given below.

G(s) H(s)
K
_— 1
s2+35+9
K

s(s2+3s5+9) s+ D
S S— (s +Ds+2)
s(s+ D(s+3)

K(s+2)

K;
_ K —+K
s(s2+3s+9) ot s +Kas

[\

. Repeat Example 1 but this time using the control system shown in Figure 7.4.

W

. By plotting out the root locus, determine when the above systems in Example 1 become unstable.

~

. By plotting Bode and Nyquist plots, determine the gain and phase margins of the above systems in
Example 1.

5. Use the Routh—Hurwitz method to determine whether the roots of the following polynomials are
stable:

X+x+4=0, X+ 2x+1=0, 3P+ 20 +1=0
and
43+ 2+ 2x+1=0.

6. Use the Routh-Hurwitz method to determine the values of p for which the roots of the following
polynomials are stable:

X4 pxt42x+1=0, X4+ px+1=0, 422 42x+p=0
and
42+ x4+ x4+ p=0.

7. Confirm the results of Example 3 using the Routh—Hurwitz method.
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Static Aeroelasticity — Effect of Wing
Flexibility on Lift Distribution
and Divergence

Static aeroelasticity is the study of the deflection of flexible aircraft structures under aerodynamic loads,
where the forces and motions are considered to be independent of time. Consider the aerodynamic lift and
moment acting upon a wing to depend solely upon the incidence of each chordwise strip (i.e. strip theory;
see Chapter 5). These loads cause the wing to bend and twist, so changing the incidence and consequently
the aerodynamic flow, which in turn changes the loads acting on the wing and the deflections, and so on
until an equilibrium condition is usually reached. The interaction between the wing structural deflections
and the aerodynamic loads determines the wing bending and twist at each flight condition, and must
be considered in order to model the static aeroelastic behaviour. The static aeroelastic deformations are
important as they govern the loads in the steady flight condition, the lift distribution, the drag forces, the
effectiveness of the control surfaces, the aircraft trim behaviour and also the static stability and control
characteristics. The aeroelastic wing shape at the cruise condition is of particular importance as this has
a crucial effect on the drag and therefore the range.

Through the elimination of time-dependent forces and motion, the inertial forces can be ignored
in the equilibrium equations as these are dependent upon acceleration. Also, only steady aerodynamic
forces need to be included in the analysis. Consequently, the modelling of static phenomena is much
easier than dynamic aeroelastic phenomena where unsteady aerodynamic effects must be considered (see
Chapter 10).

There are two critical static aeroelastic phenomena that can be encountered, namely divergence
and control reversal. The latter will be considered in Chapter 9. Divergence is the name given to the
phenomenon that occurs when the moments due to aerodynamic forces overcome the restoring moments
due to structural stiffness, so resulting in structural failure. The most common type is that of wing
torsional divergence. On a historical note, it is thought that Langley’s attempt to fly some months before
the Wright Brothers’ successful flights in 1903 failed due to the onset of divergence (Collar, 1978; Garrick
and Reid, 1981). When the Langley aircraft was rebuilt some years later by Curtis with a much stiffer
wing structure, the aircraft flew successfully. In general, for aeroelastic considerations the stiffness is of
much greater importance than the strength.

In modern aircraft, the flutter speed (the air speed at which flutter, a dynamic aeroelastic instability,
occurs; see Chapter 11) is usually reached before the divergence speed (the air speed at which divergence
occurs) so divergence is not normally a problem. However, the divergence speed is a useful measure of
the general stiffness of the aircraft structure and must be considered as part of the certification process
(CS-25 and FAR-25).

In this chapter, the aerodynamic lift distribution acting upon a flexible wing fixed at the root will
be considered using a simple aeroelastic model involving wing twist, and the divergence condition will

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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be shown. The influence of the aircraft trim on the divergence speed and lift distribution for a simple
heave/pitch model combined with a flexible wing torsion branch mode will also be considered. Later, in
Chapter 13, aircraft trim and the related issue of the equilibrium manoeuvre will be examined using a whole
aircraft heave and pitch model with a free—free flexible mode, including other features such as the steady
pitch rate, accelerated flight condition, wing camber, thrust and drag out-of-line, and downwash effects
on the tailplane. Later in Chapter 18, the internal loads (see Chapter 6) in the manoeuvre will be obtained.

8.1 STATIC AEROELASTIC BEHAVIOUR OF A TWO-DIMENSIONAL
RIGID AEROFOIL WITH SPRING ATTACHMENT

The static aeroelastic behaviour is considered initially using an iterative approach and then a direct
approach.

8.1.1 Iterative Analysis

As a first example of static aeroelastic behaviour, consider the two-dimensional aerofoil in Figure 8.1
with unit span and chord c. The rigid aerofoil section is symmetric (so has no inherent camber) and is
attached to a torsional spring of stiffness K, at a distance ec aft of the aerodynamic centre on the quarter
chord. The lift-curve slope is a;. The aerofoil has an initial incidence of 6, and twists through angle 6
due to the aerodynamic loading.

The lift acting on the aerofoil at air speed V (true air speed, or TAS) and initial angle of incidence
0 causes a pitching moment of

M = [%szcaIGO] ec = %szeczaleo = qeczal% (8.1)
to act about the flexural axis, where ¢ is the dynamic pressure (not to be confused with the later usage of
q for the pitch rate and ¢, for the flexible mode generalized coordinate) and p is the true air density. The
equation for the aerofoil will be obtained using Lagrange’s equations, introduced in Chapter 1. Since
only static aeroelastic effects are being considered, the kinetic energy term can be ignored. The potential
(or strain) energy U is found from the twist of the torsional spring, namely

U =1K,0°. (8.2)

The generalized moment may be obtained from the incremental work done by the pitching moment acting
through the incremental angle 56 and is given by

W) 9 (q ec*a 6586) o
Qo =%6e = ape  _decab (8.3)

Lift

Figure 8.1 Two-dimensional aerofoil with a torsional spring.
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Then application of Lagrange’s equations for coordinate 6 gives

2
ecta
K0 =¢q ecza190 = 0= g !

9() = qR00 (84)
[4

where R = ec?a;/K,. Thus having applied the initial aerodynamic loading, the aerofoil has twisted
by angle 6, as determined in Equation (8.4). In performing this calculation, it has been assumed that
the pitching moment has not changed due to the twist. However, as a consequence of the twist, the
aerodynamic moment now changes to allow for the new angle of incidence. This new loading, in turn,
causes the aerofoil twist to change again, leading to a further modification in the aerodynamic loading,
and so on.

The stepping between application of the aerodynamic load on the aerofoil, changing the aerofoil
twist and then determining the new aerodynamic loading illustrates the fundamental interaction between
a flexible structure and aerodynamic forces that gives rise to aeroelastic phenomena.

8.1.1.1 First iteration
The incidence of the aerofoil now includes the initial incidence and the estimate of twist, so the revised
pitching moment becomes

M = q ec’a,(0y + qROy) (8.5)

and, since the potential/strain energy term remains the same as in Equation (8.2), application of Lagrange’s
equations gives a revised elastic twist angle of

1 +gR
K" 8 = qR(1 + qR)b0. (8.6)
0

0=q ecta,

8.1.1.2 Further iterations

Repeating the above process continues by using the updated elastic twist value in the pitching moment
and work expressions, leading to an infinite series expansion for the elastic twist in the form

0 =gR[1+qR + (qR)’ + (4R’ + (qR)* + -] bo. (8.7)
Now, remembering that the binomial series is written as
T=—x)"=14+x+x24+x3+--- with |x| <1, (8.8)

in the limit, the aerofoil twist becomes

R
= g,
1—g¢gR

(8.9)

This example will be reconsidered in the next section, but using an approach that enables deter-
mination of the twist in a single calculation. It should be noted, however, that the single step (strongly
coupled) approach is only feasible if there is a direct mathematical relationship between the aerody-
namic forces and the deflections. If advanced static aeroelastic calculations for an entire aircraft, in-
volving the coupling of computational fluid dynamics (CFD) methods with finite element methods,
are applied, then such an approach requires use of a loosely coupled approach somewhat similar to
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the iterative process shown above. However, the more common and traditional methodology for static
aeroelastic calculations is a single step approach.

8.1.2 Direct (Single Step) Analysis

Consider the same two-dimensional aerofoil as above, but let the angle of incidence include the unknown
aeroelastic twist 6. The lift acting on the aerofoil at dynamic pressure ¢ and initial angle of incidence 6
causes a pitching moment

M = qecta,(6y +0), (8.10)

where the unknown twist has been included. The potential/strain energy term is the same as Equation
(8.2).

The generalized moment, based on the incremental work done by the pitching moment acting
through the incremental angle 50 is

(W) 3 [gecta (6 +6)50]

2
= = = 0o + 0). 8.11
Q 530 550) qec a6+ 0) 8.11)

Then, application of Lagrange’s equations for coordinate 6 gives
K0 = qec’a (6 + 0) = (Kg —q ecza]) 0 = q ec’aby, (8.12)

where it may be seen that the effective structural stiffness is reduced by the aerodynamic term. Solving
this equation leads to the twist

q ec’a, qR
0 = =
Ky — qec?a 1 —¢gR

0. (8.13)

When Equations (8.9) and (8.13) are compared, it may be seen that both approaches give exactly the
same value of the elastic twist for a given dynamic pressure ¢g. The elastic twist becomes infinite as ¢
approaches 1/R, and this defines the so-called divergence speed, as

~1_ % (8.14)
qaiv = R - eczal .
and hence Equation (8.13) becomes
— ﬂgo (8.15)
1 —q/qqv

This analysis demonstrates the physical phenomenon of divergence when the aerodynamic pitching
moment overcomes the structural restoring moment. Infinite deflections are not possible, and in practice
the structure will fail. Figure 8.2 shows a plot of the ratio of elastic twist to initial angle of incidence
against the ratio of dynamic pressure to that at divergence; it can be seen that, for this simple example,
the elastic twist equals the initial incidence at ¢ = ¢q;y/2 and then increases markedly beyond this point.

In the following sections on static aeroelastic behaviour, the direct (single step) approach will be
used.
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Figure 8.2 Typical twist behaviour for a two-dimensional aerofoil with torsion spring.

8.2 STATIC AEROELASTIC BEHAVIOUR OF A FIXED ROOT

FLEXIBLE WING

127

A more realistic example of static aeroelastic behaviour is now examined for a flexible wing fixed at the
root. Consider the wing to be rectangular, with semi-span s, chord ¢, a symmetric aerofoil section and
no initial twist, as shown in Figure 8.3. The flexural axis lies at a distance ec aft of the aerodynamic
centre on the quarter chord and the wing torsional rigidity is GJ. The lift curve slope is taken as aw, with
aerodynamic strip theory being used (see Chapter 5). It is also assumed that the wing root incidence 6,
is fixed; this final assumption does not take into account the trim of the aircraft in steady flight (to be

considered later on).

For simplicity, assume that the wing twist behaviour is characterized by the idealized linear

relationship

0 = =or,

Figure 8.3 Flexible rectangular wing with a fixed root.

(8.16)
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where Ot is the twist at the wing tip (often called a generalized coordinate as it defines the amount of the
shape present) and thus the twist increases further away from the wing root. Using such an assumed shape
to carry out an approximate analysis is the basis of the Rayleigh—Ritz method introduced in Chapter 3.

8.2.1 Twist and Divergence of the Fixed Root Flexible Wing

The lift is taken as acting at the aerodynamic centre and, because the section is symmetric, there is no
pitching moment at zero incidence (see Chapter 5). Using an expression for the lift that takes both the
root incidence and aeroelastic twist into account, then the lift on an elemental strip is given by

dL = ¢ caw (90 + XeT) dy, (8.17)
N

and thus the lift increases with distance from the wing root. The total lift on the wing is found by
integrating over the semi-span, so that

L =/0quw (90+§9T) ds = q caw (590+%6T). (8.18)

As there is no motion of the wing, the kinetic energy 7 = 0. The potential energy occurs from the strain
energy due to twist (see Chapter 3), which is given by

1 [ do\? 1 61> GJ
U=—/ GI{=) dy = —/ GI{=2)dy = 6 (8.19)
2 Jo dy 2 Jo s 2s

Now, consider an incremental twist angle being expressed in terms of an incremental generalized coor-
dinate, so that

56 = 86 (8.20)
N

The work done by the aerodynamic forces is determined by considering the pitching moment acting upon

each strip doing work through this incremental twist angle. The total incremental work §W is obtained
by integrating these work terms across the entire wing semi-span. Thus

SW = / dL ec89:/> qcaw(Go—l—XGT)dyecS@
0 0 s

s 6 56
- / g Caw (90 + XeT) dy e280r = g eclaw [ 22 + 20 s6r, (8.21)
0 s K 2 3

and for the generalized coordinate 6, Lagrange’s equations yield

GJ6r 5 <s90 s9T>
=gqec ay —
N

GJ [
+ — —q eczawE Or=q eczaws—o. (8.22)
2 3 s 2

3

Here again the structural stiffness is seen to be reduced by the aerodynamic term and hence the elastic
tip twist is found to be
3q ec’s’aw

gr = 1TV
T 6GT — 2q ec?s’aw 0

(8.23)
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The tip twist increases with dynamic pressure and behaves in a similar manner to that shown in Figure 8.2.
When the divergence condition is reached the twist tends to infinity; however, in reality, structural failure
will occur first. For this fixed root wing, the dynamic pressure at divergence gy is found as

3GJ

ec?s?ay

qw = (8.24)

It is possible to make some deductions as to how the dimensions and material of this simplified
wing affect the divergence speed, and what design rules could be used to ensure an increase in its value
so that it does not occur within the desired flight envelope:

® The smaller the distance between the aerodynamic centre and the flexural axis, and/or the greater the
flexural rigidity GJ, the greater the divergence speed becomes.

® [f the flexural axis lies on the axis of aerodynamic centres there is no twist due to aerodynamic loading
and divergence will not occur.

® Should the flexural axis actually lie forward of the aerodynamic centre, the applied aerodynamic
moment becomes negative; thus the tip twist is nose downwards and divergence cannot occur.

Unfortunately, these last two design scenarios are not generally possible to implement in practical wing
designs, so divergence must always be considered for aeroelastic design, and adequate torsional stiffness
is crucial.

8.2.2 Variation of Lift along the Fixed Root Flexible Wing

Having determined the wing twist, the corresponding lift distribution along the fixed root flexible wing
may be determined. Combining Equations (8.17) and (8.23), the lift per unit span of the wing is found as

dL (9 +26 ) dqecsiaw v, (8.25)
— =gca ~0r) =qca -— , .
dy g caw % s acaw 6GJ 2q ec*s’aw s 0

and this can be rewritten in terms of the divergence dynamic pressure so that

dL _ <1+ 3(q/qw) X)

dy YU T 20 = (q/qw s

(8.26)
When the lift per unit span is plotted against the spanwise distance in Figure 8.4, it can be seen that the
lift per span increases linearly along the wing span. This is due to the assumed linear twist shape and
would differ if a more complicated shape were chosen or if the wing tapered or if modified strip theory
were used. As the dynamic pressure increases, the spanwise slope of the lift distribution increases. The
lift at the wing root depends solely upon the root incidence.

The total lift is found by integrating Equation (8.26) across the entire wing semi-span, giving

_ 3(q/qw)
/ —dy q csay [l + 10— q/qw)} 6. (8.27)

More lift is generated as the air speed (and hence dynamic pressure) increases. As the dynamic pressure
q approaches divergence for this fixed root wing model, then the total lift actually becomes infinite.

8.3 EFFECT OF TRIM ON STATIC AEROELASTIC BEHAVIOUR

The above example shows that increasing the air speed leads to a greater wing twist, and thus increased
lift. However, in practice, a change in the air speed will require the trim of the aircraft to be adjusted via
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Figure 8.4 Lift per unit span for different dynamic pressures.

the elevator in order to maintain equilibrium of aerodynamic and inertia forces. The following example
of a simple flexible aircraft model with a symmetric wing and in-line thrust and drag illustrates how the
divergence and load distribution behaviour is changed when the balance of overall forces and moments
is preserved; the model has heave and pitch motions, together with the flexible wing effect, represented
by adding in a torsional wing branch mode (see Chapter 3).

Later in Chapter 13, where equilibrium manoeuvres are considered, more advanced models, includ-
ing cambered wing, thrust and drag out-of-line, and downwash effects at the tailplane, will be investigated
for accelerated manoeuvres with a steady pitch rate for both rigid and flexible aircraft models.

Note that because the content in the book on static aeroelasticity and flutter has employed the
notation in classical texts, there will be some differences in notation in the later parts on manoeuvres
where different notation is standard.

8.3.1 Effect of Trim on the Divergence Speed of a Simple Model

Consider the idealized aircraft of weight W in steady level flight as shown in Figure 8.5. The fuselage
is rigid, able to undergo heave and pitch motions, and the wings are the same as discussed in the above
examples, i.e. wings include flexible motion in torsion and are in effect branch modes for a fixed wing
root (as discussed in Chapter 3). Downwash effects of the wing tip vortices at the tailplane are ignored
and both the wings and tailplane have symmetric sections, so the tailplane centre of pressure is at the
quarter chord and is unaffected by changes in wing root incidence. Also, thrust and drag are assumed to
be in line and so do not contribute to the pitching moment terms.

The equations of motion are determined once again using Lagrange’s equations. As noted before for
the flexible wing, the wing twist € is taken about the flexural axis, distance ec aft of the wing aerodynamic

Figure 8.5 Aircraft in steady flight.
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centre; the corresponding generalized coordinate is the twist at the wing tip 61. However, in this whole
aircraft case, the incidence 6, and the heave displacement z (positive downwards) at the centre of mass
also need to be included as coordinates.

The kinetic energy is zero and the potential/strain energy for both wings is

s do\? S 700\? GJ
U= 2—/ GI{—) dy= GJ/ T) dy = =62 (8.28)
2 Jo dy 0 \US s

Consider the work done through incremental displacements for incidence §6,, wing tip twist 60 and
heave §z:

OW = —L1(8z + [186p) + Wbz 42 / (q caw(by + 0)dy) (=82 + w86y + ecd)
0

6 6
—L1 (82 4 11860 + W 8z + 2q cs aw (90 + %) (=82 + lwd6y) + 2q ec*sav (50 + %) 80r.

(8.29)

Application of Lagrange’s equations for each of the three coordinates z, 6 and 0 gives the following.
Firstly,

_a6wW)
T A(82)

h

o
=—Lt+ W —2gcsay (90 + %) , (8.30)

which is the equilibrium equation equivalent to resolving forces in the vertical direction and effectively
imposes the constraint in steady level flight that the weight of the aircraft is equal to the wing plus
tailplane lift. Secondly,

6w
T80y

%
Q4 =0 —Lrlr +2q cs aw (eo 1 g) Iw. (8.31)

which is the moment equilibrium equation equivalent to the zero pitching moment about the centre of
mass. Finally,

2GJ 6 6
0o = —2-0r = 2g ec*say (50 + §T> , (8.32)
S

which is the elastic mode equilibrium equation. The three unknowns in these equations are 0, Ot and Ly
(effectively involving the elevator angle for trim; see Chapter 13); note that z does not appear explicitly
because the vertical position of the aircraft does not affect the steady lift. In order to solve these equations,
Lt may be eliminated from Equations (8.30) and (8.31), because it is the wing behaviour that is of most
interest here, therefore

2q csaw q cs aw p Wiy
5 GJ R G SR (8.33)
q ec’saw <§q e’ say — 2—) Or 0
s

For the trimmed aircraft, the simultaneous Equations (8.33) are solved to determine the combination of
incidence and wing twist that give rise to the equilibrium condition, giving the tip twist as

_ Wir/(lw + It) _ Wir/(lw + I1)
T 4GJ/(ecs) —qesaw/3  AGI/[1 — q/(4qw)l(ecs)

T (8.34)



132 STATIC AEROELASTICITY — EFFECT OF WING FLEXIBILITY

_0)
[9%)
(=]

Tip Twist/Tip Twist (q
= 8

I -
0
0 0.5 1 15 2 2.5 3 35 4
a/q,
20
aQ
o 101
Il
= k
No 0 ———
3 .
T
& \
[}
£ 20
0 0.5 1 L5 2 25 3 35 4

a/q,,

Figure 8.6 Wing tip twist and incidence for an aircraft with a flexible wing in trim.

whereas the root incidence variation is found to be

G = (6GJ* 2q eczszaw) Wir/Ur+1w)  Wip/Ur +1w) (1 = q/qw) (8.35)
0 g csay (IZGJ —q eczszaw) 2q cs aw [1 — q/(4qw)] ’

Clearly, the tailplane lift required for trim could also be determined from the earlier Equation (8.31).
The variation of normalized values of O and 6, versus normalized dynamic pressure are shown in Figure
8.6. As before, an increase in the air speed leads to an increase in the wing tip twist; however, it can be seen
that the incidence decreases with air speed, and beyond the fixed root wing divergence speed it becomes
negative. Beyond this air speed the inboard sections of the wing are at negative angles of incidence.

Considering the denominator of Equations (8.34) shows that the trimmed aircraft divergence speed
occurs when

=—5— =4%w, (8.36)

where g, is the trimmed aircraft divergence speed and gw is the divergence speed for the fixed root
flexible wing (this latter value can be obtained from Equations (8.33) by constraining 6, and ignoring the
first equation). Thus, for this case where trim is maintained at increasing air speed, the dynamic pressure
at divergence ¢4 is four times that of the fixed root flexible wing case (i.e. double the divergence speed).
At this air speed both the tip twist and the root incidence tend towards infinity, so again structural failure
will occur. In practice, it is unlikely that the divergence speed will be achieved as the aircraft will run out
of trim at a lower air speed, i.e. more and more elevator will need to be applied to maintain trim.

Note that including the effects of wing camber, downwash at the tailplane, thrust and drag out-of-line,
steady pitch rate, accelerated flight condition, etc., to the model will alter all these results.



EFFECT OF TRIM ON STATIC AEROELASTIC BEHAVIOUR 133

Lift Per Unit Span

| | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalised Position on Chord

-5 I I I

Figure 8.7 Lift distribution for a flexible rectangular wing with aircraft trim.

8.3.2 Effect of Vertical Trim on the Variation of Lift Along the Wing

Substituting the above expressions for 6 and 01 as functions of the dynamic pressure into Equation
(8.25) for the lift distribution (lift per unit span) leads to

dL Wit/ (v +Iw)[2+q/qw By/s = 2)]

(8.37)
dy 4s [1 —q/(4qw)]

For lines of normalized dynamic pressure, as shown in Figure 8.7, the lift increases linearly from the root
to the tip. It can be seen that above the fixed root wing divergence speed, negative lift occurs close to the
root because of the negative incidence required. The position of the net wing lift force is seen to shift
outboard as the air speed increases. Since trim has to be maintained, then the total wing and tailplane lift
must remain constant. Because the wing lift is independent of air speed for this simple case (see Section
8.3.3), then the area under each line in this figure remains constant. With the lift shifting outboard, the
corresponding wing root bending moments (see Chapters 6 and 18) will increase, and hence these internal
loads become greater with increasing air speed due to the aeroelastic effect.

8.3.3 Effect of Trim on Wing and Tail Lift

To maintain trim, the vertical force and moment equilibrium equations must hold at all flight cases. For
this special case where the wing has a symmetric section (i.e. no camber), it may be shown that the wing
and tailplane lift force remain constant with changes in air speed. However, as will be seen in Chapter 13,
the presence of wing camber adds a pitching moment and means that these forces will actually change
with air speed, though their sum will still equal the weight.

Assuming that St is the tailplane area, ar is the lift curve slope for the tail, ag is the lift curve slope
for the elevator and 7 is the elevator angle, the tailplane lift can be expressed in the form

Lt = qSr(arby + aen) , (8.38)

so that once the tailplane lift force is determined, then the elevator angle for trim may be found. In this
simple example, it may be shown that  must be increased at higher air speeds in order to maintain trim.
In practice aircraft will run out of available elevator trim before divergence can occur.
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8.4 EFFECT OF WING SWEEP ON STATIC AEROELASTIC BEHAVIOUR

Most aircraft are designed with swept-back wings. The reasons for this are mainly aerodynamic, since
for subsonic aircraft sweep-back increases the air speed at which shock waves are formed on the wings,
so delaying the associated increase in drag. The sweep also reduces the effective thickness to chord ratio.
Supersonic aircraft are designed with the wings swept inside the Mach cone, which also decreases the
associated wave drag (Anderson, 2001).

Similar improvements in drag reduction could be obtained through the use of swept-forward wings,
which enables other benefits. For swept-forward wings, flow separation occurs initially near the wing
root, thus preserving aileron control at the wing tip, whereas for swept-back wings flow separation
occurs first towards the wing tips. Very few aircraft (e.g. X-29, Sukhoi-47), however, have been built
with swept-forward wings. The main reason for this is the static aeroelastic behaviour of swept wings
and in particular the detrimental effect that wing sweep has on the divergence speed.

This section introduces some simple aeroelastic wing models that demonstrate how wing sweep
changes the static aerodynamic lift and aeroelastic behaviour. The differences between wings with for-
wards or backwards sweep are emphasized. Comments on the effect of sweep on the equilibrium ma-
noeuvre and the trimmed condition for a flexible aircraft are included in Chapter 13.

8.4.1 Effect of Wing Sweep on Effective Angle of Incidence

In order to illustrate the effect of wing sweep on a flexible wing, consider the rectangular wing shown
in Figure 8.8 subjected to an upwards bending displacement along the mid-chord line (for simplicity);
the wing can be unswept, swept-forwards or swept-backwards. Wing bending has a much greater effect
on the effective angle of incidence compared to wing twist, but, the actual mode of divergence is still
torsion. Of particular importance is the effective angle of incidence of the streamwise strips when the
sweep angle is changed (Broadbent, 1954).

The streamwise sections become AC, AD and AB for the no-sweep, sweep-back and sweep-forward
cases respectively. When the wing is considered to bend upwards, the following occurs:

(a) For the unswept case (AC), the incidence is unchanged due to bending.

(b) For the sweep-back case (AD), the effective streamwise angle of incidence reduces since point D
moves upwards more under bending than point A.

(c) For the sweep-forward case (AB), the effective incidence increases (point A moves upwards more
than point B).

Consequently, swept-forward wings have a decreased divergence speed compared to wings with no sweep
due to increased effective incidence, whereas swept-back wings have an increased divergence speed.

A
A A
BCD
BCD
Be )
No Sweep Sweepback Sweepforward

Figure 8.8 Streamwise strips for wings with no sweep, sweep-back and sweep-forward.
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Figure 8.9 Rigid untapered wing attached to the root with pitch and flap springs.

8.4.2 Effective Streamwise Angle of Incidence Due to Flapping/Pitching

Consider now the untapered wing with chord ¢, semi-span s and sweep angle A (taken as positive for
sweep-back) in a flow of speed V with an initial root angle of incidence 6y, as shown in Figures 8.9
and 8.10. Both bending and twisting type deflections need to be included in order to achieve a realistic
behaviour; consequently a different mathematical model will be used compared to that in the previous
sections. This model will also be used in Chapter 11 on flutter, but without any sweep.

The wing is taken to be rigid, but with two rotational springs at the root, one of stiffness K, which
controls the flapping motion (i.e. bending about the root) and the other of stiffness Ky which restrains
the pitching motion. The flexural axis is set at the mid-chord (see Chapter 13 for further comments on
the effect of sweep on the flexural axis). Flap and pitch motions are assumed to act along and about the
flexural axis y’ regardless of the sweep angle. Once again strip theory aerodynamics is assumed, with
strips aligned in the streamwise direction. Note that, by convention, the span and streamwise chord (and
hence wing area) will be kept constant with changes in sweep angle.

Consider the flow over an elemental streamwise strip of width dy at spanwise distance y. The change
in the effective angle of incidence depends upon the difference in the deflection of the two ends of the
strip (points p and r), and also upon the geometry of points p, q and r. If the wing pitches through angle
6 about the flexural axis (leading edge upwards), then the increase in angle of incidence of the strip with
sweep-back A is seen from Figure 8.11 to be

cOcosA

Abpien = = 0cosA, (8.39)

Figure 8.10 Untapered wing with sweep.
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Figure 8.11 Effect of sweep on flap and pitch deflections of a streamwise strip.

since the leading and trailing edges move up and down the same vertical distance about the flexural
axis. So for pitch about the flexural axis, sweeping the wing either forwards or backwards decreases the
effective angle of incidence.

Applying the same approach as above, but this time for a flap angle downwards of « (to be consistent
with later models) implies that points p and g move downwards by y'« = y«/ cos A whereas pointr moves
downwards by (y" + ¢ sin A)x. The resulting angle of incidence increase for flapping downwards can be
seen in Figure 8.11 to be

ck sin A
AgFlap =

= KksinA (8.40)

Examination of Equation (8.40) shows that sweeping the wing backwards increases the angle of incidence
due to the downwards flapping motion, whereas sweeping it forwards reduces the angle of incidence.
However, in steady level flight, the wing will flap upwards (negative «), leading to a consequent decrease
in the effective angle of incidence due to flapping for the swept-back case and an increase for the swept-
forward case.

Consider the more realistic case of a flexible wing undergoing bending and twisting, as opposed to
flapping and pitching in the simple model above. The larger bending deflections of a wing dominate the
changes in the effective angle of incidence compared to those from wing twist. However, the twisting
degree of freedom must also be included in any mathematical model as this is still part of the mechanism
that gives rise to divergence.

8.4.3 Effect of Sweep Angle on Divergence Speed

For the same swept untapered wing as above, with an initial root angle of incidence 0, the lift acting at
the quarter chord of the elemental strip of area ¢ dy when flapping and pitching are considered together
is

dL = gawcdy [(6y + 0)cosA + ksinA]. (8.41)

Thus the work done due to this lift acting through the displacements caused by the incremental angles
8k and 80, when integrated along the span of the wing, is

y n csin A
cos A 4
ccos A

SW = —/ gawcdy [(6y + 6)cos A + k sin A]

) Sk vertical movement of lift
0

N
+/ gawcdy[(By 4+ 0)cos A + k sin A] 80 moment + ve nose up
0

5 cos A 2 sin A
= gawc [0 +0)cos A +rsin A]| S8 B sg (£ L ESMBN s
4 2cos A 4

(8.42)
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The potential (or strain) energy is solely due to the two springs, as the wing itself is rigid, so

U= 1K+ 1Kq0% (8.43)

-2

Application of Lagrange’s equation for generalized coordinates « and 6 leads to

. cs? s sin A
K.k = —qaw [(6p + 6)cos A + k sin A] + )
2cos A 4
(8.44)
c?scos A .
Kp0 = qaw——— [(6o +0)cos A + K sin A],
which can be rearranged into matrix form as
K. + (s’tan A N cssin® A NEs n cssin A cos A
S A ) 4 ) 4 K
—gawsc? sin A cos A gawsc? cos® A 0
K, - W 2 2
4 4
<s2 n cs sin A cos A)
—qayc | =+ ————
_ 2 4 b (8.45)
gawsc? cos® A
4

These equations can be solved to give the flap and pitch deflections for a given air speed and root angle
of incidence. Note that trim is not taken into account since only the impact of sweep is being considered.

Divergence for the flapping/pitching swept wing occurs when the determinant of the left-hand side
square matrix becomes zero; thus

s2tanA  cssin® A gawsc? cos® A
K. +qawc 2 + 2 Ky — —

5 8in A cos A <s2 cs sinAcosA)
4

+ (qaw)* sc =0 (8.46)

2 " 4

and, since the terms in ¢ cancel out, the dynamic pressure at divergence can be found. Thus the divergence
speed may be shown to be

2K,K,
Vv = u — (8.47)
paw [K. sc?cos? A/4 — Kq (cs?tan A/2 + 2 sin* A/4)]

Figure 8.12 shows how the divergence speed, normalized with respect to the divergence speed for the
unswept wing, increases with sweepback (A > 0) and decreases for the sweep-forward case (A < 0). This
reduction of the divergence speed becomes the limiting case for sweep-forward designs and consequently
very few exist. Experimental aircraft such as the X-29 were only able to have swept-forward wings due
to the use of aeroelastic tailoring, where the wing characteristics were altered using composite laminates
oriented in such a manner that an upwards bending deflection resulted in a nose down twist.

Note that when there is no sweep (A = 0) then the divergence speed becomes

Viw =

s (8.48)
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Figure 8.12 Effect of sweep angle on normalized divergence speed.

and this is the divergence speed for the case where only the pitching degree of freedom is included in
the rigid wing model with a root rotational spring. This result is to be expected as the flapping degree of
freedom has no effect on the steady aerodynamic lift of a streamwise section for the unswept case.

It should be remembered that earlier in this chapter it was shown that by allowing for the trim of
the aircraft, the divergence speed changed and a similar effect is found for the swept wing case.

8.4.4 Effect of Sweep Angle on Lift Distribution

The effect of sweep angle on the divergence speed is due to the change in the lift on each streamwise
strip, and this will be the same for all strips in this simple case of a rigid wing attached at the root by
two springs. By determining the flap and pitch deflections from Equation (8.45) and substituting them
into the lift Equation (8.41), the lift on each streamwise strip (i.e. lift per unit span) can be found. Figure
8.13 shows the variation of the lift per unit span with sweep angle (normalized to the zero sweep case);
it behaves exactly as expected, with sweep-back reducing the lift for this fixed root incidence case. This
analysis for the effect of sweep angle can be extended to take trim effects into account; it may be seen
then that the total lift will obviously be independent of sweep but for a swept-back wing the centre of
pressure will move inboard, so reducing the wing root bending moment due to lift (see Chapter 13).
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Figure 8.13 Effect of sweep angle on streamwise lift per unit span.
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8.4.5 Comments

It should be remembered that there are a number of significant assumptions in the above analysis. Sweep-
back (or sweep-forward) will increase the aerodynamic interactions between different parts of the wing,
which will make the strip theory aerodynamics more inaccurate. It has been assumed that the wing
behaves as a beam-like structure, and consequently that the flexural axis remains parallel to the axis of
sweep along the mid-chord line. In cases where the wing behaves more like a plate, such as for low aspect
ratio tapered swept wings, the structural bending/torsion coupling effects for the swept wing must also
be included.

8.5 EXAMPLES
1. Determine the lift distribution and divergence speed of a fixed root rectangular wing of semi-span s,
chord ¢ and torsional rigidity EI using modified strip theory such that aw(y) = aw(1 — y?/s%).

2. Determine the lift distribution and divergence speed of a fixed root tapered rectangular wing of semi-
span s and chord ¢ = ¢o(1 — y*/s?) and torsional rigidity GJ = GJo(1 — y*/s?). Use strip theory.

3. Repeat Examples 1 and 2 but this time for the case where whole aircraft trim is taken into account.

4. Determine the divergence speed and lift distribution for a rectangular fixed root wing of semi-span s,
chord ¢, bending rigidity £/ and torsional rigidity GJ for wing sweep A. Use strip theory.

5. Repeat Example 2 with bending rigidity EI = Elp(1 — y?/s*) and wing sweep A.
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Static Aeroelasticity — Effect of Wing
Flexibility on Control Effectiveness

It was shown in Chapter 5 how the use of control surfaces changed the effective camber of an aerofoil
and that this could be used to change the lift. Thus, control surfaces (e.g. ailerons, rudder) are used to
manoeuvre an aircraft in flight and their sizing is an important issue when the aircraft is designed. It is
important to know how sensitive an aircraft is to application of the control surfaces and what loads are
generated. This is of particular significance for military aircraft where the need to manoeuvre rapidly is
essential, but is also of course important in terms of the performance of commercial aircraft.

This chapter will consider the effect that aeroelastic deflections of the flexible wing have on the
aerodynamic influence, or effectiveness, of the control surfaces in comparison to the rigid wing. It will
be shown that as the speed increases the effectiveness reduces until at some critical speed — the reversal
speed — there is no response to application of the control surface. At speeds greater than the reversal speed,
the action of the controls reverses, a phenomenon known as control reversal. Although not necessarily
disastrous, it is unacceptable that at speeds near to the reversal speed, the aircraft responds either very
slowly or not at all to application of the controls, and that the opposite response to that demanded occurs
beyond the reversal speed.

There are two basic ways that the aircraft industry considers these static aeroelastic phenomena
(although there is motion it is considered to be steady) and these will be illustrated by considering a wing
rolling at a constant rate and a wing with a fixed root experiencing a control deflection; in both cases a
simple rectangular wing plus aileron is used. In Chapter 13, where equilibrium (or so-called bookcase)
manoeuvres are considered, the steady application of the elevator to a whole aircraft flexible model is
considered; also the steady roll case is revisited and the yaw case examined briefly, both for the whole
aircraft. Also, in Chapter 15, the dynamic (or so-called rational) manoeuvre using the flight mechanics
model allows the flexible aircraft dynamic response to a transient application of a roll or pitch control to
be considered, with nonlinear effects able to be included.

Note that static aeroelastic calculations are employed fairly early in the design process to size the
control surfaces. However, later on when the flight control system (FCS) has been designed, the flight
mechanics model allows rational calculations to be performed in order to see the control effectiveness
with nonlinear effects included. The deployment and performance of the controls would then be fine tuned
via the FCS to gain the characteristics required; clearly it would then be too late to change the control size.

9.1 ROLLING EFFECTIVENESS OF A FLEXIBLE WING - THE STEADY
ROLL CASE

Consider a flexible wing of semi-span s and chord ¢ with a symmetric section (i.e. no camber), a root
incidence 6, and a rigid full span aileron whose rotation angle is 8; this symbol is used as standard in the

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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Figure 9.1 Wing with a full span aileron undergoing steady roll.

classical flutter books (e.g. Fung, 1969), but is not to be confused with the usage later in Chapters 13 to
15 for the sideslip angle in the flight mechanics model. The wing undergoes a steady roll rate ¢ about an
axis at the root, as shown in Figure 9.1 (fuselage dimensions are ignored). To avoid problems with signs
at this early stage, the port wing with down aileron is considered whereas later in Chapter 15 the normal
convention of y positive on the starboard wing will be used.

As in Chapter 8, assume that the wing is flexible in twist, which is taken to vary linearly as

o = (%)GT. ©.1)

The twist is defined as nose up about the flexural axis, taken at distance ec aft of the aerodynamic centre
on the quarter chord. Note that no fuselage or tailplane effects are considered. In essence, as in Chapter
8, the aircraft is considered to have a rigid body roll motion, together with a wing torsion branch mode
(behaving antisymmetrically on the two sides of the aircraft).

Using the results in Chapter 5, for any section of the wing plus control, the lift and moment (defined
positive nose upwards and referred to the flexural axis) coefficients are

CL=ap+aw+0)+acf  and  Cy = by+ bw(6 +6)+ beh, 9.2)

where ay = by = 0 for the symmetric aerofoil and by = awe. Figure 9.2 shows the effect of applying
a downwards aileron deflection on a flexible (or elastic) wing. Note that the incremental lift due to
the control rotation acts towards the aileron hinge line, around the two-third to three-quarter chord.
Thus, any applied control rotation provides not only a lift force introducing roll but also a nose down
pitching moment, leading to nose down twist for an elastic wing and therefore a reduction in the angle
of incidence.

Lift and Moment Lift and Moment
Due to Wing Cue to Contral Surface

Figure 9.2 Effect on lift distribution of applying a control surface rotation.
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Figure 9.3 Change of incidence due to the downwash from rolling motion.

9.1.1 Determination of Reversal Speed for Steady Roll Case

The lift force and pitching moment acting upon an elemental strip dy for a down aileron application on
the port wing are

dL = gcdy [aw (90 + Z6p — ﬂ) +ac,3] and dM = gc’dy [bw (90 + eT - ﬂ) +bcﬂ] ,

9.3)

where ¢ is again the dynamic pressure and ¢y/V is the reduction of incidence associated with the
downwash due to the rate of roll (port wing moving upwards), as seen in Figure 9.3.
The total work done that is associated with incremental twist §6 and roll §¢ angles is

SW = (dL ys¢ + dM 80)

wing

= 2qc/s [aw (XHT — ﬂ) +acﬁ]y8¢dy + 2qc2 /S |:b ( Or — ﬂ) +bcﬁ]89 dy, (9.4)
0 s \% 0 vV

where a factor of 2 has been applied to include the effect of the starboard wing and the 6, terms cancel
out on the two sides of the aircraft. Thus the generalized forces in the ¢ and 0y generalized coordinates
are

AW s 2
Qs = 3((6¢>)) = 2qc/0‘ [aw (yTGT - %) +acﬂy]dy

_ 52 ¢v acps?
and
Ca6w) / ¥ _Q) bcﬂy] - [ (5 _ﬁ) bcﬁS}
O = S0 ~ ¢ [bw< T R e e A C R T R
0
9.6)

Since the roll motion of the aircraft is steady, the kinetic energy terms associated with roll ¢ and twist
0 are constant and do not contribute inertia terms to the roll or twist equations. The potential (or strain)
energy for a single wing is the same as in Chapters 3 and 8 so that

GJ
U= 39%. .7
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Thus, using Lagrange’s equations, and evaluating the strain energy for both wings, the relationship
between the rate of roll, tip twist and aileron angle is found as

2g cs*aw —2q cs’aw s 3ac
3V 3 ) |4 cs’ac P 1 -1 7 _ ] 2aw P
2q c*s’by 2GJ  2qcPsby or | | qcPshe e (u—e) P B & '

3V s 3 ' 2ay
9.8)

where
3GJ
q c2s’aw

Note that the fixed wing divergence speed may be found again by setting the roll rate to zero.

Solving Equations (9.8) leads to the expressions for the roll rate per control angle, which will provide
a measure of the rolling effectiveness when compared to the rigid aircraft result, and also for the tip twist
per control angle

It is common practice to define the control effectiveness in roll I as
X = ((.p./'g)ﬁexible’ ©.11)
(#/B)siga
and since for the rigid wing GJ — oo and u — oo, then
5 = OB _ 1BV/Qusawllactu =) +bel _ acu —e) +be ©9.12)

(d’/ﬂ)rigid B 3Vac/2saw uac

where it should be noted that © > 0, ac > 0, bec < 0.

Typical plots of the control effectiveness and tip twist per control angle are shown in Figure 9.4 as
a function of velocity normalized to the reversal speed, and demonstrate that the control effectiveness
reduces from a value of unity with increasing air speed, reaches zero at the reversal speed and then
becomes increasingly negative. Military aircraft are sometimes designed to take advantage of this effect
to achieve high manoeuvrability through the use of an active control system that takes into account
the opposite effect of the controls beyond reversal. The tip twist also becomes increasingly negative
(nose down) and therefore nose down (since b¢ is negative) for increases in control angle and dynamic
pressure.

At the reversal speed, there is no change of roll rate with respect to control angle, i.e. ¢/8 = 0,
which occurs when [ac(u — ) + bc] = 0. Thus the dynamic pressure at the reversal speed, ¢y, is found
as

3GJ ac
rev — 9.13
4 czszaw(eac — bc) ( )
with a corresponding tip twist per aileron angle of
Orey _ _ 3ac 9.14)

B 2ay
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Figure 9.4 Roll effectiveness and tip twist/control angle against velocity normalized to the reversal
speed.

At the reversal speed, the pitching moment due to the angle of incidence of the wing is exactly cancelled
out by the pitching moment generated by the control angle. Combining Equations (9.12) and (9.13) leads
to a different expression for the control effectiveness purely in terms of the dynamic pressure, so that

y=1--21. (9.15)
quV
Finally, comparing the fixed wing divergence speed to the reversal speed gives
aw _ 3GJ /(ec’s’aw) _ edc — bc 9.16)
drv  3GJac/lc*s*aw(eac — be)l eac

and, since bc is negative, the reversal speed is always less here than the fixed wing divergence speed.

9.1.2 Lift Distribution for the Steady Roll Case

Consider the lift acting upon a chordwise elemental strip at distance y from the root. The incremental
lift on each chordwise strip dy due to the twist, roll rate and control rotation (i.e. ignoring the steady
contribution from the root incidence ) is given by
dL = ge [aw (XGT - ¢—Vy> + acﬁ] dy. 9.17)
s
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Figure 9.5 Lift per unit span/(gcacf) along the semi-span.

Substituting the expressions for the roll rate (9.13) and wing twist (9.14) at the reversal condition into
this equation leads to the lift per unit span expression at the reversal speed

dL

_ _¥
G =aca (1 zs)ﬂ' (9.18)

Although the lift per unit span increases linearly with dynamic pressure and control angle, Figure 9.5
shows how the lift per unit span reduces with distance from the wing root due to the negative (nose down)
twist caused by the control action. In the outboard wing, beyond two-thirds of the semi-span, the lift per
unit span is negative and this counteracts the positive lift inboard to give no rolling moment at reversal.

The total lift on one wing at reversal is found by integrating the lift on each strip across the entire
wing, such that

. s 3y gcsac
Total lift = gcac |1 — — | Bdy=——8. (9.19)
0 2s 4

The corresponding rolling moment about the wing root can be found as

s 3y SZ SZ
geac (1- 22 ) Bydy = geac (5 — = ) B =0, (9.20)
A 2s 2 2

which is to be expected as the achieved rate of roll is zero at reversal.

9.2 ROLLING EFFECTIVENESS OF A FLEXIBLE WING - THE FIXED
WING ROOT CASE

Consider the same flexible wing model with a full span aileron as used earlier in Section 9.1, but now
with the wing root fixed instead of the wing being allowed to undergo a steady roll rate. The effect of
applying a control rotation on the lift distribution, and particularly on the wing root bending moment, is
of interest.
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9.2.1 Determination of Reversal Speed
As the wing is fixed then ¢ = ¢ = 0. The lift and pitching moment on the elemental strip dy due to the
fixed root incidence 6y, twist 6 and control rotation 8 are

dL = gedy [aw (90 i %9T> + ac,s] and  dM = gc*dy [bw (90 n feT) n bcﬂ] . 921

The work done by the lift is zero since the wing is not allowed to roll. However, the work done by the
pitching moment acting through an incremental twist §6 for the single wing is found as

W= [ dMso =qc fo [bw (90 + %HT) + bC/eHseT dy (9.22)

wing
and thus the generalized force in twist is

06W) _ o (bw, . bw
Yoo+ Yo
T R U ot ’3

Qo = (9.23)

The potential (or strain) energy for a single wing follows as before as in Equation (9.7), and so applying
Lagrange’s equation gives the expression

GJ by . b
by = qc3s (700 + %% + ﬁ) (9.24)

The wing tip twist is then given by

2 2.2
cs (bybo + bep) = ——1=~

Or = =
17 (2GJ /s —2qc?sbw /3) 2GJ (1 — q/qw)

(bw6y + bcp) . (9.25)

Now consider the effect due to control rotation in isolation from the root incidence effect (examined
in Chapter 8). Since b¢ is negative, a nose down twist will result from an increased control angle or
dynamic pressure. The lift per unit span due to control rotation alone can be determined as

dL
S =qelawior +ach), (9.26)
dy s

and substituting in the relevant part of the expression for the wing tip twist in Equation (9.25) gives

dL qc’s’ay y
BandUPAR R S X 9.27
ay 1 [ZGJ(I “alaw) s € +“C] b ©-2

The total lift acting on the single wing due to control rotation is

L _/ L= _gaw B (9.28)
W 4GJ (1 = q/qw) ¢ '

and, in a similar way, the total root bending moment (see internal loads in Chapters 6 and 18) due to
application of control rotation is

qc’s*ay ac ) qbc ac
=yd bet+ L\ p= . 9.29
/ yer= [6GJ(1—CI/CIW) - ]ﬁ “ [264w(1—4/4w)+ 2}’3 029
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There is zero total bending moment at the wing root due to control rotation at the reversal speed, so
reversal occurs when

2.2
qc*s’ay ac
_— — =0. .30
6GI (1 —q/qw) T 2 (30

Then, following some algebraic manipulation, the dynamic pressure at reversal can be found as

qwedc

—_— 9.31
edc — bc ( )

Grev =

which is exactly the same as the constant roll rate case in Equation (9.16). The tip twist at reversal is also
the same as for the constant roll rate case in Equation (9.14). Note that the root bending moment due to
control rotation is equivalent to the total rolling moment, but the former term is more appropriate for a
fixed root wing.

9.2.2 Rolling Effectiveness — Fixed Wing Root Case

As for the constant roll rate case, the rolling effectiveness is obtained by comparing the root bending
moments for the flexible and rigid wing cases. For a rigid fixed root wing, the lift per unit span due to
control rotation is

dL

& yeach. 9.32)
dy

The total static bending moment due to control rotation for the rigid wing is

gesac

f gcacBydy = Tﬂ- (9.33)
0

The static moment effectiveness is then found by combining Equations (9.29) and (9.33) to give

static bending moment (flexible) _ 1 —q/Grey

Sstati = - - — = 9.34
Pstatie moment static bending moment (rigid) 1—q/qw ©34)

Figure 9.6 compares the constant roll rate and static moment effectiveness expressions, Equations (9.15)
and (9.34), for the case where the reversal speed is 80% of the divergence speed. It can be seen that
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Figure 9.6 Control effectiveness for constant roll rate and static moment cases.
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although the estimated reversal speed is the same for both approaches, there is a significant difference
between the two curves in the subcritical region.

The actual dynamic roll performance of the aircraft may be examined further when the flight
mechanics model is used with the flight control system (FCS) represented and with flexible modes
included or with relevant aerodynamic terms corrected for flexible effects (see Chapter 15). The scheduling
of different controls (e.g. inboard and outboard ailerons and spoilers) may be adjusted as necessary.

9.3 EFFECT OF SPANWISE POSITION OF THE CONTROL SURFACE

In practice there are usually a number of ailerons along the wings of commercial and military aircraft.
They can be used in combination, often to reduce the root bending moment in manoeuvres, and also
when a gust load alleviation (or suppression) system is installed.
Consider the same fixed root wing as above, but this time in two different configurations: one with
a control surface positioned on the inboard half of the wing and the other with a control surface on the
outboard half. Following the same procedure as above, the only difference in the incremental work done
occurs in the last term of Equation (9.22), where the control surface term integral has limits 0 — s/2 for
the inboard control surface and limits s/2 — s for the outboard control surface. The root moments for
each configuration are found as
q CZS(IW ac

Minboard = gC58° bc +— | B. 9.35
bourd = 43 |:24(GJ/s—qczsbw/3) et P ©-35)

and

. ;

qc-saw ac
be+ — | B. 9.36

Gl/s —qc>sby/3) < 2 p ©-36)

M ouboara = qCS2 |:8 (

As might be expected, the moment due to the outboard control surface is greater than that for the inboard
control surface. Note that if Equations (9.35) and (9.36) are added together, then the same total moment
is obtained as that found in Equation (9.29).
Once again, the reversal speed occurs when the moment for each of the two cases is equal to zero,
giving
qwace qwdace

o _4wace S .S 9.37
Grevinboard ace — be /4 revounom ace — 3bc/4 ( )

and hence the outboard aileron reaches the reversal speed first (since bc is negative), due to the increased
outboard twist. It is common practice in large commercial aircraft to ‘lock’ the outboard ailerons during
cruise, as they might otherwise be operating beyond the reversal speed, and to control the aircraft using
the inboard ailerons. Alternatively, the controls may be scheduled via the FCS.

9.4 FULL AIRCRAFT MODEL - CONTROL EFFECTIVENESS

In practice, when dealing with the general form of the full aircraft model for static aeroelastic consider-
ations, the generalized (or modal) coordinate equations are used to represent the rigid body and flexible
modes (see Chapter 3). In Chapter 23, it is explained that similar approaches to those shown in this
chapter may be used in industry to estimate the reversal speed. For the approach considered in Section
9.2, the aircraft is constrained (e.g. fixed wing root) so that no rigid body motion occurs when the control
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is moved. Then a relevant internal load (such as the wing root bending moment) is examined. However,
rather than calculate the internal load directly as in this chapter, a constraint approach may be employed.
For the constant roll rate example given above, consider the generalized coordinate vector

(9.38)

Or

]9 rigid body roll angle (constrained to zero),
P= wing twist (assume oo fuselage pitch inertia).

Then a constraining moment M needs to be imposed against the roll such that there is no allowed roll
angle or roll rate, and Equation (9.8) becomes

—2gcs’ay

1 )
3 é ges’ac
M = = Reon, 9.39
2GJ  2qctsby { } * {qczsbc } p 039

3

0

where R.,, is the vector of control generalized forces. As the rigid body roll angle is constrained to zero,
then

Z.p =0, (9.40)

where Z. = [ 1 0] is a constraint matrix. Combining Equations (9.39) and (9.40) leads to

—2gcs’ay )
3 ¢ ges’ac
2GJ  2qcishy : br | = | gc*sbc | B, 9.41)
s 3 M 0
1 0 | 0

which leads to the constraining moment

M = ges? __gcfsbe aw + ac | B. (9.42)
3GJ /s — qcisby

Once this constraining moment is determined, the ratio of the flexible to rigid moments yields the static
effectiveness and the same reversal speed as for the previous approaches.

In general, for an aircraft manoeuvring in roll, pitch or yaw, the constraining equation in matrix
form becomes

(E+pV?C) p + ZIF = Reon, (943)
where E is the generalized stiffness matrix, C is the aerodynamic generalized stiffness matrix (see Chapter

10), F are the forces/moments required to constrain the relevant displacements/rotations to zero and Z.
is the physical constraint matrix setting the relevant displacements/rotations to zero via Z.p = 0. This

leads to
E +pV3C Z Reon
p ¢ P = . (9.44)
Z. 0 F 0

The upper equation is the overall force/moment balance and the lower equation constrains the defined
displacement/rotation to be zero. The effectiveness may be obtained from any of the constraint forces or
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moments. The same approach may be employed for elevator reversal by constraining the aircraft in the
centre fuselage.

9.5 EFFECT OF TRIM ON REVERSAL SPEED

So far it has been assumed that the aircraft can reach and exceed the calculated reversal speed if the
wing is sufficiently flexible. However, in practice the trim of the aircraft needs to be maintained by slight
adjustments of the controls, i.e. ailerons/rudder for lateral trim and elevator for longitudinal trim. As the
reversal condition is approached, the relevant control becomes less effective, not only at controlling the
aircraft but also at adjusting trim. Thus the aircraft may ‘run out of trim’ prior to reversal being reached.
Use of multiple control surfaces could mean that one control reaches reversal while the combination of
controls retains some effectiveness.

9.6 EXAMPLES
1. Investigate the effect that varying the position of the flexural axis (ec) and the chord/aileron ratio (Ec)
have upon the reversal and divergence speeds.

2. For the fixed root case, determine the combinations of e and E that produce the best effectiveness
values below the reversal speed.

3. For the fixed root case, explore the effect of the ratio between the dynamic pressures at divergence
and reversal on the aileron effectiveness

4. For a wing containing two ailerons that together total the entire semi-span of the wing, determine the
size of the two parts such that they have the same reversal speed.

5. For a wing containing two ailerons that together total the entire semi-span of the wing, determine the
size of the two parts such that they each give the same root bending moment.
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Introduction to Unsteady Aerodynamics

So far, when considering static aeroelastic effects in Chapters 8 and 9, the aerodynamic surfaces (such
as wings) have been in a steady condition and so the resulting forces and moments have been steady
(i.e. constant with time). However, for flutter, manoeuvre and gust response analyses the behaviour of
aerodynamic surfaces under dynamic motion is required and it is necessary to include the effect of the
aerodynamic surface motion upon the resulting forces and moments. These so-called unsteady effects
are an outcome of the changing circulation and wake acting upon a moving aerofoil, and can have
a considerable influence upon the resulting aerodynamic forces and moments. Consequently, a more
sophisticated analysis is required than simply considering the angle of incidence. Most aeroelasticity
textbooks cover unsteady aerodynamic effects (Scanlan and Rosenbaum, 1960; Fung, 1969; Bisplinghoff
et al., 1996; Hodges and Pierce, 2002; Dowell et al., 2004).

In this chapter, the two-dimensional inviscid, incompressible flow over a thin, rigid section aerofoil
undergoing small amplitude heave and pitch motions will be considered. Starting with the effect of a
sudden step change in incidence on the lift acting on an aerofoil, the lift and moment resulting from a
harmonically oscillating aerofoil in a steady flow will be investigated, followed by consideration of how
a general motion would be dealt with. Analytical models, using the so-called oscillatory aerodynamic
derivatives, will be developed to show how the aerodynamic forces and moments can be expressed via
aerodynamic damping and stiffness terms. The results will be used in Chapter 11 on flutter, albeit using
a highly simplified version of the derivatives. The related issue of unsteady aerodynamic effects for the
aerofoil encountering a sharp-edged or harmonic gust will also be considered, as this will be required
for the discrete gust and continuous turbulence response analysis in Chapter 16. Unsteady aerodynamics
will not be considered for flight and ground manoeuvres in Chapters 13, 14, 15 and 17.

Simple examples will be used to illustrate the underlying principles rather than addressing the
most up-to-date aerodynamic methods. There is a wide range of more advanced methods for computing
unsteady aerodynamics for more general three-dimensional geometries and these will be addressed briefly
in Chapters 19 and 20.

10.1 QUASI-STEADY AERODYNAMICS

So far in this book, the static aeroelastic cases considered in Chapters 8 and 9 have been for aerofoils
fixed relative to the air flow and where the aerodynamic forces and moments are constant with time, i.e.
the so-called steady aerodynamics case (see Chapter 5).

Where the aerofoil is undergoing a general motion in heave and/or pitch relative to the upstream
flow, then the forces and moments vary with time. One simple approach for the calculation of such forces
and moments is to assume that at any instant of time the aerofoil behaves with the characteristics of the
same aerofoil moving with constant heave and/or pitch velocities equal to the instantaneous values. This
is known as the quasi-steady assumption and implies that there are no frequency-dependent effects.

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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10.2 UNSTEADY AERODYNAMICS

The quasi-steady assumption, while attractive in its simplicity, is not sufficiently accurate for flutter and
gust response calculations and a more advanced unsteady aerodynamic analysis must be used in order
to predict accurately the dependency of aerodynamic forces and moments on the frequency content of
dynamic motions.

In order to understand the effect of aerofoil heave and/or pitch motions on the aerodynamic loads
and moments generated, the result of instantaneous changes in the angle of incidence and harmonic
motion of the aerofoil need to be considered. The key tools to analyse these effects are Wagner’s and
Theodorsen’s functions respectively (Fung, 1969; Bisplinghoff et al., 1996). Wagner’s function can be
used to consider the case of general motion (in the time domain), whereas the related Theodorsen’s
function is an important component in predicting the onset of flutter (in the frequency domain) and in
the analysis of the response to continuous turbulence.

10.2.1 Instantaneous Change in Angle of Incidence — Wagner’s Function

Consider a two-dimensional aerofoil of chord c, initially at some small angle of incidence & and moving
at air speed V in still air; assume inviscid and incompressible flow. The aerofoil is then subjected to an
instantaneous change in angle of incidence of Aa = «/2. If a quasi-steady aerodynamic model were
used, the lift would increase instantaneously by 50 %, but this does not occur in practice.

Normalizing the lift force so that the initial value is unity in this example, then Figure 10.1 shows
how the unsteady lift changes instantaneously to half of the difference between the initial and final steady
values, and then increases asymptotically towards the final steady value. Approximately 90 % of the
change in lift is achieved after 15 semi-chords have been travelled by the aerofoil; however, there is
clearly a considerable delay after the change in incidence before the quasi-steady value is reached. The
delay in achieving the new steady lift value occurs due to the time taken for the circulation around the
aerofoil to change to that of the new steady flow condition and for changes in the wake to reach a steady
state. Since the results are expressed in terms of semi-chords travelled by the aerofoil, a nondimensional
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Figure 10.1 Effect on aerofoil lift of a sudden change in the angle of incidence.
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measure, this behaviour is independent of chord size or air speed. Note also that the same effect would
be found if the air speed were to change suddenly instead.

Wagner’s function (Fung, 1969; Bisplinghoff et al., 1996) is used to model how the lift acting at the
quarter chord on the aerofoil builds up following the step change of incidence (or air speed) by obtaining
the effective downwash at the three-quarter chord point. Downwash is the velocity component normal to
the airflow. In terms of nondimensional time t = 2V't/c = V1t /b (i.e. the time taken for the flow to cross
a semi-chord b of the aerodynamic surface), the increase in lift per unit span following the step change
in incidence A« is expressed as

AL = 1pVicaiAa®(t) = 1 pVeawd(r), (10.1)

where w =VsinAa &~ VA« is the change in downwash on the aerofoil (the symbol w is not to be confused
with its later usage for the flight mechanics model in Chapters 14 and 15) and ®(7) is Wagner’s function,
defined approximately for the incompressible case as (Fung, 1969; Bisplinghoff et al., 1996)

P(r) =0, <0 and d(7) =

. >0 (10.2)

Wagner’s function is often defined using exponential functions as they are easier to manipulate using
Laplace transforms when compared to the simple expression in Equation (10.2), but they will not be
considered here.

10.2.2 Harmonic Motion — Convolution using Wagner’s Function

For a general heave and pitch motion of the aerofoil, Wagner’s function may be used to find the lift
by obtaining the effective downwash w at the three-quarter chord point and using a convolution integral
approach (see Chapter 1). This approach is analogous to determining the response of a system to a general
excitation expressed as a superposition of a series of steps, and knowing the step response function. The
downwash is then represented by a series of step changes that follow the motion of the aerofoil.

By considering the step change in downwash dw over time dt, the lift may be written as

1 v d
L) = ~pVea [wo +/ ®(r — ro)—wdro} , (10.3)
2 =0 dro

where ®(t — 1p)(dw/d7y)dr defines the lift at T due to the step change in downwash at 7. The overall
lift time history is obtained by summing (or integrating) the lift obtained from each step.

Figure 10.2 shows the result of the convolution process for the aerofoil oscillating sinusoidally in
pitch with an angle of incidence varying as & = & sin wt. When the time step is large, the predicted lift
time history is somewhat uneven and in error. However, if the time step is reduced then, in the limit, the
resulting lift is sinusoidal and of the same frequency as the oscillation of the aerofoil.

Figure 10.2 Resultant lift for an oscillating aerofoil using the convolution process with decreasing time
increments.
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10.2.3 Harmonic Motion — Theodorsen’s Function

For flutter calculations, the general unsteady aerodynamic behaviour in the time domain is rarely used,
since the motion at a single oscillation frequency is of more interest (note, however, that the general
motion in the time domain is of interest for the gust response; see Chapter 16). Returning to the example
in the previous section, with an aerofoil oscillating in pitch at frequency w, and applying the convolution
approach using Wagner’s function to obtain the lift time history, the effect of varying the frequency of
the oscillation is now examined. Figure 10.3 shows that, compared to the quasi-steady lift values, there
is a reduction in the magnitude of the lift and an introduction of a phase lag between the aerofoil motion
and the unsteady forces (the quasi-steady values are always in-phase by definition). As the frequency
increases, the unsteady force amplitude decreases and the phase lag changes.

Further investigation shows that the amplitude attenuation and phase lag are a function of the
dimensionless frequency parameter v, defined as

V= —, (10.4)

which can be interpreted as the number of oscillations undergone by the aerofoil during the time taken
for the airflow to travel across the chord of the aerofoil, multiplied by 27 (the frequency is defined in
radians per second). However, often the so-called reduced frequency k is used, as in Figure 10.3, and this
is defined in terms of the semi-chord b = ¢/2 such that

wb wc v

_we_v 10.5
vV _o2v 2 (10.5)

Historically, the fundamental work on unsteady aerodynamics and aeroelasticity in the UK (Frazer and
Duncan, 1928; Collar, 1978) used the frequency parameter v, whereas the equivalent research in the
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Figure 10.3 Unsteady lift for an oscillating aerofoil at different reduced frequencies.
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USA (Theodorsen, 1935) was based upon the reduced frequency, k. For most of this book the reduced
frequency k will be employed as this has been used in the classic aeroelasticity textbooks (Fung, 1969;
Bisplinghoff et al., 1996). Every time that the reduced frequency is mentioned in a descriptive part of the
text, it can simply be replaced with the frequency parameter.

Theodorsen’s function is used to model the changes in amplitude and phase of the sinusoidal unsteady
aerodynamic forces relative to the quasi-steady forces for different reduced frequencies (or frequency
parameter). The function behaves, effectively, as the Fourier transform of Wagner’s function, and can be
thought of as a filter that modifies the input to a system (i.e. the quasi-steady lift for aerofoil oscillations
at some frequency) to give an output (i.e. the unsteady air forces) depending upon the reduced frequency.
Theodorsen’s function C(k) = F (k) + i G(k), where C (k) is a complex quantity (required since both the
amplitude and phase need to change), is expressed (Fung, 1969) as a function of reduced frequency such
that

H?(k) K (ik)

C(k) = F(k) +iG(k) = = .
® (&) +1GE) HP (k) +iHP (k) Ko(ik) + K (ik)

(10.6)

where the K ;(ik) (j = 0,1,...) terms are modified Bessel functions of the second kind and H'?(k) are
Hankel functions of the second kind. Although an explanation of Bessel and Hankel functions is beyond
the scope of this book, these functions are included in many software libraries and are easy to calculate.
Approximate expressions for C(k) have been found as (Fung, 1969; Bisplinghoff et al., 1996)

0.165 0.335
Ck) =1 — , k<05,
) 0.045 . 0.30. -
1 — i 1——i
k k
0.165 0.335
=1- - ., k>05. 10.7
0.041 . 0.32, ( )
1 - i 1——i
k k

Figure 10.4 shows the real and imaginary parts, and amplitude and phase, of Theodorsen’s function in
graphical form. Note that as k increases the magnitude decreases, and the phase lag increases up to a value
of around k = 0.3 and then reduces again. The complex plane representation is shown in Figure 10.5,
with the function following the curve in a clockwise direction for increasing frequency.

For the quasi-steady aerodynamics case then w = 0, thus k = v = 0 and hence F =1 and G = 0,
so the unsteady lift may be seen to tend towards the quasi-steady values. In the limit as k — oo, then
F — 0.5and G — 0, but typically for full size aircraft k£ has a maximum value of the order of unity.

10.3 AERODYNAMIC LIFT AND MOMENT FOR A HARMONICALLY
OSCILLATING AEROFOIL

The solution of the flow around the aerofoil undergoing harmonic oscillations can be divided into two
parts:

(a) Circulatory terms. Lift and moment terms occurring due to the vorticity in the flow (related to
Theodorsen’s function).

(b) Noncirculatory terms. ‘Apparent inertia’ forces whose creation is not related to vorticity, i.e. as the
aerofoil moves, a cylindrical mass of air accelerates with the aerofoil and introduces a reactive force
and moment upon the aerofoil. These terms are of minor importance for bending/torsion type flutter
of cantilever wings at low reduced frequencies, but are more important for flutter of control surfaces
at higher reduced frequencies.
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Figure 10.4 Theodorsen’s function.
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Figure 10.5 Complex plane representation of Theodorsen’s function.



OSCILLATORY AERODYNAMIC DERIVATIVES 159

==

Flexural Axis

Figure 10.6 Two-dimensional aerofoil undergoing heave and pitch motion.

Consider a symmetric two-dimensional aerofoil (Cy,, = 0) of chord ¢, with the flexural axis po-
sitioned at distance ab(= ac/2) aft of the mid-chord as shown in Figure 10.6. The aerofoil undergoes
oscillatory harmonic motion in heave z = zpe™' (positive downwards) and pitch § = 6,e'® (positive nose
up). The classical solution for the lift and moment about the flexural axis, both expressed per unit span,
may be written (Theodorsen, 1935; Fung, 1969; Bisplinghoff et al., 1996) as

L = mph? [+ VO — badl] + 2xpVbCW)[2 + VO +b (1 — a) 8], (10.8)

M = mpb?[baz = Vb (§ —a) 6 — b ( +a?) O]
+21pV (a+ 3) CO[2+ VO +b (3 —a)8]. (10.9)

The derivation of these two equations is beyond the scope of this book, but they are included as they help
to describe how the aerodynamic lift and moment vary with reduced frequency. The first part of each
expression shows the noncirculatory terms and the second part shows the circulatory terms which are
dependent upon the value of Theodorsen’s function. There are terms dependent upon the displacement,
velocity and acceleration of both heave and pitch motions, except for the heave displacement term (the
vertical aerofoil position does not affect the lift and moment). Here the two-dimensional lift curve slope
has been taken as a; = 2.

10.4 OSCILLATORY AERODYNAMIC DERIVATIVES

Taking the above expressions for the lift and moment about the flexural axis of the oscillating aerofoil and
substituting for the complex form of Theodorsen’s function and the heave and pitch motions in complex
algebra form (see Chapter 1), then Equations (10.8) and (10.9) become

L = {mpb’ [—w’z0 + i0V6y + @’baby| + 2mp Vb (F +iG) [iwzo + V6o + iwb (3 — a) 6]} ',

(10.10)
M = {npb2 (—a)zbazo —iwVb (% — a) 0o + b*w* (é + a2) 90)
+2mpVb* (a+ 1) (F+iG) (iwzo + VO + iwb (3 — a) 6y) } e’ (10.11)
These equations can then be written in the oscillatory derivative form
L=pV% [(LZ kL) %‘) + (Lo + ikL@)@o] et
(10.12)

M = pV?h? [(Mz +ikM.) %" + (M, + ika-,)eo] e,

where L,, M, etc., are the nondimensional oscillatory aerodynamic derivatives (not to be confused with
classical aerodynamic or stability and control derivatives; see Chapters 13 and 14). These derivatives are
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expressed in terms of the normalised displacement and velocity for heave and pitch, so, for example,
aC aC aC
Li=—r, Li=———, Lj=—7—,
d(z/b) a(z/V) 3 (bc/V)

etc. (10.13)

Note that there are no acceleration-based terms as they have now been included in the displacement
terms via the conversion of the double differentiation to the frequency domain. In terms of Theodorsen’s
function, comparison of Equations (10.10) and (10.12) leads to the lift derivatives being expressed as

k2

Ly =22 |59 o F () Ly=2m |24 F (L ;¢
A AR =S SR

and, from comparison of Equations (10.11) and (10.12), the relevant moment derivatives are

=22 -5 (e N6 Mo=2r(a+ L) F
=2 |——k|a+ = , c=2wrla+ = | F,
: |72 2 ¢ 2

k21 1 1 (1
My =2m [ K (L +kF<—|—l : + 8 +1>
o= (5-a) +r (o+3) (3-0)+ 2 (o+3) ]

Apart from L, and L, the derivative values depend upon where the flexural axis is located on the chord.
The quasi-steady values of the aerodynamic derivatives (k — 0, F — 1, G — 0) can be found as

(10.14)

L.=0, L;=2m, Ly=2m,  kL;=0, M.=0,
M:=2m(a+3), My=2m(a+3), kM;=0. (10.16)

Note the singularity in the expressions for My and L; as k — 0. However, since both kL, and k M, tend to
zero, then the contribution to the lift and moment from these derivatives is also zero as k — 0. Therefore
the concept of quasi-steady derivatives does not apply to the  derivatives (Hancock et al., 1985). The
other derivatives agree with the expressions found earlier for the quasi-steady forces and moments.

10.5 AERODYNAMIC DAMPING AND STIFFNESS

Further insight into the effect of the unsteady aerodynamic forces can be obtained by considering

b . , , . .
k= “’7 1=z200, i =iwze®,  0=6e” and 0 =iwhe®.  (10.17)
Substituting these expressions into the lift and moment equations (10.12) gives
) bz b*0 ) b’z ) b0
L=pV?(L.z+L:— 4+ Lgb0+Ly— |, M =pV?( M.bz + M. == + Myb*0 + My—- |,
Vv Vv 14 Vv
(10.18)

and this can be written in the matrix form

L bL. Ly ||z L. bLy |z z z
=pV ‘ . v e =pVB{ Vv2C )
{ M } P [1721\4i b3M9:| {9 KGR YRSV B N Bkl W e 6

(10.19)
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It can be seen that one term is proportional to the heave and pitch velocities, while the other term is
proportional to the heave and pitch displacements. Thus, the aerodynamic forces acting on an aerofoil
undergoing oscillatory motion can be considered to behave in a similar way to that of damping and stiffness
in a structure. Thus B and C are termed the aerodynamic damping and stiffness matrices respectively.
A key difference to structural damping and stiffness matrices is that the aerodynamic matrices are
nonsymmetric, and this helps lead to the flutter aeroelastic instability (see Chapter 11); also, the damping
and stiffness depend upon the flight condition, including the Mach number.

When applied to aeroelastic systems, as will be shown in the next chapter, the aerodynamic forces
are considered together with the structural equations and this leads to equations of motion in the classical
form of

Aj+ (pVB+D)g+ (pV*C+E)g =0, (10.20)

where A, B, C, D, E are the structural inertia, aerodynamic damping, aerodynamic stiffness, structural
damping and structural stiffness matrices respectively, and g are the generalized coordinates (typically
modal coordinates). It is important to note that the B, C matrices only apply for the reduced frequency
for which they are defined; this can cause some difficulty for flutter calculations and will be discussed
later in Chapter 11.

Equation (10.20) is one of the most important equations in this book and describes the fundamental
interaction between the flexible structure and the aerodynamic forces. Note that it is usual when con-
sidering aeroelastic systems to write the structural inertia, damping and stiffness matrices as A, D, E
respectively, rather than the M, C, K notation often used in classical structural dynamics (see Chapter 2).

10.6 UNSTEADY AERODYNAMICS RELATED TO GUSTS

Similar changes in the aerodynamic forces, as shown above for aerofoil heave and pitch motions, occur
when the aerofoil encounters a gust field, with the aerodynamic forces also taking time to build up. Here,
the gust analysis equivalent of Wagner’s and Theodorsen’s functions will be briefly considered. The
response to ‘sharp-edged’ and ‘sinusoidal’ gusts will provide the unsteady aerodynamic tools used for
the cases of a rigid or flexible aircraft encountering a discrete gust or continuous turbulence, considered
later in Chapter 16.

10.6.1 Lift due to a Sharp-Edged Gust — Kiissner’s Function

Consider a rigid aerofoil of chord ¢ and unit span moving at air speed V in still air and suddenly
encountering a vertical sharp-edged gust of velocity w,. The increment in lift acting upon the aerofoil is
due to the effective change in the angle of incidence caused by the vertical gust velocity, namely

tan Aa ~ Aa = % (10.21)

A quasi-steady analysis of this situation assumes that the lift per unit span is developed, as soon as the
aircraft enters the gust, according to the expression

1 1
L= Eszcal% = Echalwg. (10.22)

However, in practice, the lift takes time to build up and this effect can be modelled by rewriting the lift as

L =1pVajcwy¥(z), (10.23)
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Kussner Function

Semi-Chords

Figure 10.7 Kiissner’s function.

where W(7) is Kiissner’s function which describes how the aerodynamic forces build up upon entering a
gust. The function (Bisplinghoff et al., 1996) is defined approximately in terms of nondimensional time
T (= distance travelled in semi-chords) as

247

W)= —
()= 580 1080

(10.24)

Figure 10.7 shows how this function builds up from zero, when the aerofoil starts to enter the gust,
and asymptotically tends towards unity. As with Wagner’s function, there is a significant delay before
the quasi-steady value is reached. The response to any arbitrary gust field could be determined using a
convolution approach (see Chapter 16) similar to that demonstrated earlier with Wagner’s function.

10.6.2 Lift due to a Sinusoidal Gust — Sears’ Function

Clearly, the response to a general time varying gust velocity field may be obtained using Kiissner’s
function and a convolution approach. However, an alternative way of modelling the response of an aerofoil
subjected to continuous turbulence is to perform a frequency domain power spectral density (PSD) based
analysis (see Chapters 1, 16 and 18), which is the approach adopted in industry (see Chapter 24). In order
to include the unsteady aerodynamic effects in a frequency domain analysis, the effect at each frequency
must be evaluated. The resulting force and moment acting on an aerofoil encountering a sinusoidal gust
will be attenuated and delayed in-phase with respect to the quasi-steady result, in much the same way
as was seen earlier for an oscillating aerofoil in a steady flow field. These effects are dependent on the
reduced frequency.

Consider an aerofoil of chord ¢ moving at air speed V within a sinusoidal gust field having a vertical
velocity expressed as a function of time as

Wy = wee'. (10.25)
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The lift acting at the quarter chord of the aerofoil can be written as a function of the reduced
frequency such that

L = 1pVcaywge (k). (10.26)

Here ¢(k) is Sears’ function, which is defined as
(k) = [Jo(k) —iJ1(k)] C(k) +1J,(k), (10.27)

where C(k) is Theodorsen’s function and J;(k)(j = 0,1, ...) are Bessel functions of the first kind. An
approximation of the magnitude of the complex Sears function (Fung, 1969) is

Bk = dtk (10.28)
T d+Gd + Dk + 27k’ '

where constant d = 0.1811 and the phase can be approximated as

k<061, Zpk) = —48.095k> + 87.297k* — 61.470k> + 21.917k*> — 3.664k,
k>0.61, Z¢k)= 0982k —0.597. (10.29)

The variation of the real and imaginary parts, and amplitude and phase, of Sears’ function for different
values is shown in Figure 10.8, and the complex plane form is shown in Figure 10.9 to have a characteristic
spiral shape.
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Figure 10.8 Sears’ function.
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Figure 10.9 Sears’ function: complex plane representation.

If the temporal variation of gust velocity is transformed into a spatial variation using k = wb/V and
xg = Vi, then

ikV i k
Wy = Wy EXP (%t) = Wy EXP (%xg> . (10.30)

The wavelength of the sinusoidal gust is then given by A, = 27 b/ k, which may be compared to the chord
length ¢ = 2b for different values of k.

At first sight, it might be thought that the forces developed on an aerofoil that is not moving in
heave due to the harmonic gust would be the same as those developed for the aerofoil itself moving with
a harmonic heave velocity in a steady air stream. In fact, this is more or less true for gusts where the
wavelength is large in comparison with the chord (A, > ¢, i.e. a small reduced frequency) and so the gust
velocity is almost constant across the chord, as seen in Figure 10.10. However, where the wavelength is
small compared to the chord (A, < ¢, i.e. a high reduced frequency) there will be a significant difference
between the two results because the downwash due to the gust velocity will vary significantly across the
chord. This argument corresponds to saying that the Theodorsen and Sears functions are very similar for
a small reduced frequency, as seen by comparing Figure 10.5 with Figure 10.9.
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Figure 10.10 Effect of the gust wavelength compared to the chord.
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10.7 EXAMPLES

1. Write a MATLAB program to model the change in lift for a step change in incidence for a two-
dimensional aerofoil making use of Wagner’s function. Apply this approach for a harmonically
oscillating aerofoil and explore the effect of different frequency parameters and convolution time
steps.

2. Making use of the besselk function, write a MATLAB program to determine the Theodorsen function
for 0 < k < 10. Compare these results with the approximation given in Equation (10.7).

3. Write a MATLAB program to determine how the oscillatory aerodynamic derivatives vary with
reduced frequency. How great is the difference from the quasi-steady values?

4. Write a MATLAB program to model the change in lift for a two-dimensional aerofoil entering a
sharp-edged gust making use of the Kiissner function. Extend this to develop a convolution approach
for a harmonically oscillating aerofoil and explore the effect of different frequency parameters and
convolution time steps.

5. Making use of the besselj function, write a MATLAB program to determine Sears’ function for
0 < k < 10. Compare these results with the approximation given in Equations (10.28) and (10.29).

6. Compare the Theodorsen and Sears’ functions. For what values of gust wavelengths and reduced
frequencies can they be considered to be the same?
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Dynamic Aeroelasticity — Flutter

Flutter is arguably the most important of all the aeroelastic phenomena (Collar, 1978; Garrick and Reid,
1981) and is the most difficult to predict. It is an unstable self-excited vibration in which the structure
extracts energy from the air stream and often results in catastrophic structural failure. Classical binary
flutter (Scanlan and Rosenbaum, 1960; Fung, 1969; Hancock er al., 1985; Niblett, 1998; Bisplinghoff
etal., 1996; Hodges and Pierce, 2002; Dowell et al., 2004) occurs when the aerodynamic forces associated
with motion in two modes of vibration cause the modes to couple in an unfavourable manner, although
there have been cases where more than two modes have combined to cause flutter and in industry the
mathematical models employ many modes (see Chapters 22 and 23 where a typical industry approach is
described).

At some critical speed, known as the flutter speed, the structure sustains oscillations following some
initial disturbance. Below this speed the oscillations are damped, whereas above it one of the modes
becomes negatively damped and (often violent) unstable oscillations occur, unless some form of nonlin-
earity (not considered in detail here) bounds the motion. Flutter can take various forms involving different
pairs of interacting modes, e.g. wing bending/torsion, wing torsion/control surface, wing/engine, etc.

In this chapter, a simple binary flutter model is developed, making use of strip theory with simplified
unsteady aerodynamic terms; the model is then used to illustrate the dynamic characteristics of aeroelastic
systems, considering the effect of varying the position of the flexural axis, the mass distribution and the
frequency spacing between the two modes. Various methods for determining the critical flutter speeds and
associated flutter frequencies are examined, including the realistic case where the aerodynamic terms are
reduced frequency-dependent. The final part of the chapter considers the phenomenon of control surface
flutter; it also briefly explores flutter in the transonic and supersonic flight regimes, and introduces some
effects of nonlinearities. It will be shown that it is important to include unsteady aerodynamic terms
and reduced frequency effects in the dynamic models that are used to predict the subcritical aeroelastic
behaviour and the onset of flutter. A number of MATLAB codes related to this chapter are included in
appendix H in the companion website.

11.1 SIMPLIFIED UNSTEADY AERODYNAMIC MODEL

The full two-dimensional unsteady aerodynamic model was described in Chapter 10 for a harmonically
oscillating aerofoil, but here a simplified unsteady aerodynamic model will be introduced. Consider, once
again, the two-dimensional aerofoil shown in Figure 11.1 with the flexural axis positioned a distance ec
aft of the aerodynamic centre and ab aft of the mid chord, where

a
5

o

ec:%—i—ab: + (11.1)

A~
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Flexural Axis

Figure 11.1 Two-dimensional aerofoil.

It was shown in Chapter 10 that the lift and moment per unit span for an aerofoil may be expressed, for
a particular reduced frequency, as

b3 20 b2 )
L=pV? (Lzz +szZ 4 Lybo +L97> . M=pV? (Mzbz + szz + Myb%0 + M97) .

(11.2)

In this chapter, V will be taken as the true air speed and p is the density at a prescribed altitude.
Taking the quasi-steady assumption (k — 0, F — 1, G — 0) for all of the aerodynamic derivatives,
then the lift and pitching moment per unit span about the flexural axis become

L—lvlca 9+3 M—lvzecza 9+3 (11.3)
= 2P 1 V) = 2,0 1 v ) .
Compared to the lift force used in the static aeroelastic case, there is now an extra term due to the
effective incidence associated with the aerofoil moving downwards with constant heave velocity z,
causing an effective ‘upwash’. The quasi-steady assumption implies that the aerodynamic loads acting
on an aerofoil undergoing variable heave and pitch motions are equal, at any moment in time, to the
characteristics of the same aerofoil with constant position and velocity values.

The major drawback in using quasi-steady aerodynamics is that no account is made for the time
that it takes for changes in the wake associated with the aerofoil motion to develop (as defined by
Wagner’s function) and this can lead to serious aeroelastic modelling errors. Consequently, the M
unsteady aerodynamic derivative term in Equation (11.2) will be retained as it has been shown [Hancock
et al., 1985] that this has an important effect on the unsteady aerodynamic behaviour. It adds a pitch
damping term to the pitching moment Equation (11.3) and the model then becomes

1 z 1 z c
L= Eszcal (0 + V) , M= EszcZ [ea. <9 + V) + MQW} ) (11.4)

where M, is negative and will initially be assumed to be constant. This ‘simplified unsteady aerodynamic’
model will now be used to develop a binary aeroelastic model. Note that the pitch damping term here
differs numerically from that in Hancock et al. (1985) by a factor of four, which occurs because the
unsteady aerodynamic derivatives are derived in terms of the reduced frequency & rather than the frequency
parameter v.

11.2 BINARY AEROELASTIC MODEL

11.2.1 Aeroelastic Equations of Motion

The simple unswept/untapered (i.e. rectangular) wing model (Hancock et al., 1985) shown in Figure 11.2
is used throughout this chapter to illustrate classical binary flutter. The rectangular wing of span s and
chord c is rigid but has two rotational springs at the root to provide flap (k) and pitch (6) degrees of
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Figure 11.2 Binary aeroelastic model.

freedom. Note that there is no stiffness coupling between the two motions. The springs are attached at a

distance ec behind the aerodynamic centre (on the quarter chord), defining the position of the flexural axis.

The wing is assumed to have a uniform mass distribution and thus the mass axis lies on the mid-chord.
The displacement z (downwards +ve) of a general point on the wing is

2(x, y, 1) = ye(t) + (x — x)0(t) = derc + Pp0, (1L.5)

where « and 0 are generalized coordinates and ¢, and ¢, are simple assumed shapes. They are actually
normal mode shapes (i.e. pure flap and pitch) if there is no inertia coupling about the flexural axis.

The equations of motion can be found using Lagrange’s equations. The kinetic energy now exists
due to the dynamic motion and is

Lo, m [, 2
T = —dmz* = — (vk + (x — xp)f)” dx dy, (11.6)
wing 2 2 0 Jo

where m is the mass per unit area of the wing. The potential (or strain) energy is due solely to the springs
at the root, such that

U=1K«*+1Kq0%, (11.7)

-2

whereas for a general bending and torsional vibration of a flexible wing it would take the form (see

Chapter 3)
U—I/EI &z 2d +1/GJ do 2d (11.8)
=2 42 ) VT2 ay) '

Note that for a dynamic analysis any initial angle of incidence can be ignored as vibrations about the
trim condition are considered. Applying Lagrange’s equations for both generalized coordinates gives

L N O Y
a e —mOOyK y(x —x¢ xdy =m 31( >3 XfC s
(11.9)

dr (9T ce , G 3 ,
E(ﬁ):m/(; /0 [y(x—xf)i('—l—(x—xf)ZG]dxdy:m[%(%—xn)k’—i—s(%—cZXf-i-xfzc)Q].

and

1 k1
— = K,«k, — = Ky0, (11.10)
0Kk
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leading to the equations of motion for the wing, without any aerodynamic forces acting, as

ms3c m52 C2
3 S\ e

K K. 0 | 0 1111
ms? <02 > <c3 ) 2) 0 + 0 Ky o ol atin
— | =— —cx¢ ms g_C.Xf'f'er

The inertia matrix takes the form
I K I, K6
Lo Iy

which can also be determined from the expressions

I,(=/ yzdm, 19=/ (x—xf)zdm and Ing/ / (x —x¢) ydm.
0 0 0o Jo

These terms are the moments of inertia in the flap and pitch, and the product moment of inertia, respec-
tively.
If there is no inertial coupling (1,4 = 0, i.e. x; = ¢/2 for this model) then the flap and pitch natural

frequencies are
KK KH
e = [ =, wy = | —. (11.12)
I, Iy

However, the presence of a nonzero value for /.4 couples the two motions in the mode shapes and the
natural frequencies differ.

Generalized forces Q, and Qy act on the system in the form of unsteady aerodynamic forces; for an
oscillatory motion they may be written in terms of the aerodynamic derivatives for a particular reduced
frequency k = wc/(2V). As shown in Chapter 10, these forces are complex but can be expressed in terms
of displacements and velocities, bearing in mind that the result only applies the relevant reduced frequency
value. Applying strip theory, together with the simplified unsteady aerodynamics representation, leads
to expressions for lift and pitching moment (about the flexural axis) for each elemental strip dy of

1 VK 1 VK Oc
dL = 5pv2cdy aw (7 +9) , dM = 5,oV2c2dy [eaw <7 +9> + M{,W} . (11.13)

where y« is the effective heave velocity (+ve downwards) and M, < 0 (Hancock er al., 1985).
The incremental work done over the wing, corresponding to the aerodynamic force/moment doing
work through incremental deflections é«, 50 of the wing is

SW =/ [dL(—y 8k) + dM 56] (11.14)
wing

and so the generalized forces are

0. = 2EW) _ / I ks 0)
T 60 - )T T A estaw | 3y + 5

Qp = B(BW) / dM = szczs |:eaw (— +9) + My— i ]

(11.15)

9(50) 2v 4v
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Thus, the full aeroelastic equations of motion become

csay

0
I, 1 i K
K K6 N + ,OV 6 ‘
IKG ]0 0 eczszaw C3S 0
—— M

4

0 cs’ay
+ {pV? 4 + K. 0 10 (11.16)
P o _ectsan 0 K, o[ ol '

2

and it may be seen that the mass and stiffness matrices are symmetric while the aerodynamic matrices
are nonsymmetric. Thus the two DoF are coupled and it is this coupling that can give rise to flutter.

11.3 GENERAL FORM OF THE AEROELASTIC EQUATIONS
Equation (11.16) is in the classical second-order form for N DoF discussed earlier in Chapter 10, namely
A+ (pVB +D)g + (pV>*C+E)g = 0. (11.17)

As is often the case, structural damping has been ignored in the model developed here (i.e. D = 0). An
alternative representation that is sometimes used is to reform Equation (11.17) in terms of the equivalent
air speed VEas such that

AG + (pov/o VeasB +D) ¢ + (00 VirsC + E) g = 0, (11.18)

where 0 = p/py is the ratio of air densities at altitude and sea level, defined in Chapter 5.

As these aeroelastic equations have a zero right-hand side (and so are homogeneous), it is not
possible to determine the absolute values of the model response. Instead, the stability of the system needs
to be explored using an eigenvalue approach.

11.4 EIGENVALUE SOLUTION OF FLUTTER EQUATIONS

The aeroelastic Equation (11.17) can be solved efficiently for an N DoF system using an eigenvalue
solution to determine the system frequencies and damping ratios at a particular flight condition (air speed
and altitude). Introducing the (trivial) expression

Iy —1§ =0, (11.19)

where I is the N x N identity matrix, and combining it with Equation (11.17) in partitioned form gives
the formulation

[‘I’ KHZ}_[—(W?CW) —(va+1))“;}:{2}' (120

This equation may be rewritten as

1 0 I 1 _y ' —0. (1121
i | -A(pvicHE) A vBiD) |40 T Q=0 12D
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Equations (11.21) are now in first-order form but note that the Q matrix is 2N x 2N, double the size of
the matrices in the aeroelastic Equation (11.17). The equation can be solved by assuming x = xye* and
thus Equation (11.21) becomes

IX-=Q)xy =0 or Q—-IV)xy =0, (11.22)

which is in the classical eigensolution form (A — It) x = 0.
For an oscillatory system, such as the aeroelastic system considered here, the eigenvalues A of the
system matrix Q occur in complex conjugate pairs and are in the form (Fraser et al., 1938; Collar and

Simpson, 1987)
)\j=—§ja)j:|:iwj1/l—§j2, j=1,2,...,N, (11.23)

where w;, j = 1,2, ..., N, are the natural frequencies and ¢;, j = 1,2, ..., N, are the damping ratios.
The corresponding eigenvectors appear in complex conjugate columns and take the form

PR e N (11.24)
qu

Thus the upper (or lower) halves of the eigenvectors yield the mode shapes in terms of generalized
coordinates. Note that due to the influence of the non-symmetric aerodynamic terms these are complex
modes (see Chapter 2).

If the real part of the complex eigenvalues is positive then the system becomes unstable. However,
if the eigenvalues are real, then the roots are nonoscillatory and do not occur in complex conjugate pairs,
although, if the real part becomes positive, the system becomes statically unstable (i.e. divergent; see
Chapter 8).

11.5 AEROELASTIC BEHAVIOUR OF THE BINARY MODEL

The dynamic aeroelastic behaviour for the flapping/pitching wing can now be determined at different
air speeds and altitudes by forming the eigensolution of matrix Q in Equation (11.21) for each flight
condition and then calculating the corresponding frequencies and damping ratios. In the following section,
the effect of varying different structural and aerodynamic parameters on the frequency and damping trends
(so-called Vw and Vg plots) is investigated.

The baseline system parameters considered are shown in Table 11.1, noting that the mass axis is
at the semi-chord (x,, = 0.5¢) and the flexural axis is at x; = 0.48¢ from the leading edge. Note also
that the flap and pitch stiffnesses are determined by choosing the desired wind-off (i.e. zero air speed)
frequencies for the system without including inertia coupling terms.

Table 11.1 Baseline parameters for the binary flutter model

Semi-span (s) 7.5m Flap stiffness (K,) I.(5 x 2m)* N m/rad
Chord (¢) 2m Pitch stiffness (Ky) I,(10 x 27)* N m/rad
Flexural axis (xg) 0.48¢ Lift curve slope (aw) 2

Mass axis 0.5¢ Nondimensional pitch damping —1.2

derivative (M)
Mass per unit area 100 kg/m? Air density (p) 1.225 kg/m?
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Figure11.3 Frequency and damping trends for the baseline system with zero aerodynamic and structural
damping (x; = 0.48c¢, x,, = 0.5¢).

11.5.1 Zero Aerodynamic Damping

If the structural and aerodynamic damping related terms in Equation (11.17) are ignored (i.e. B=D =0)
then the Vg and Vw trends in Figure 11.3 for the baseline system show that as the air speed increases,
the two frequencies move closer to each other; however, the damping of both modes remains at zero.
Once the two frequencies become equal at around 200 m/s, the modes are said to ‘coalesce’; one of the
damping ratios becomes positive and the other negative. Hence the system becomes unstable, which is
the flutter condition. Beyond V = 264 m/s, the frequency coalescence stops and both modes become
undamped once again.

It is often stated that the frequencies of an aeroelastic system must coalesce for flutter to occur, as
in this case of zero aerodynamic damping. However, this is not true for general aeroelastic systems, as
will be seen in the later examples when aerodynamic damping is included.

11.5.2 Aerodynamic Damping with Quasi-Steady Aerodynamics
11.5.2.1 Baseline system

When the quasi-steady aerodynamic damping terms due to the flap (and therefore heave) velocity in
Equation (11.13) are included in the computations, but the M; term is still set to zero, then the frequency
and damping behaviour become markedly different. The frequencies in Figure 11.4 start to converge
gradually with an increase in air speed but do not coalesce at the flutter condition. Both of the damping
ratios initially rise with increasing air speed; however, one of them then reduces and becomes zero at the
flutter speed of 62.4 m/s. Flutter occurs beyond this speed when this damping ratio becomes negative
and the system then becomes unstable.
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Figure 11.4 Frequency and damping trends for the baseline system with quasi-steady aerodynamic
damping included (M, = 0, x; = 0.48c¢, x,, = 0.5¢).

11.5.2.2 Modified system

Although the Vw and Vg trends for the baseline system show some typical characteristics of an aeroelastic
system, only quasi-steady aerodynamics terms have been included, which can lead to significant modelling
errors. For example, consider the same system as in the previous example but now modified to have both the
flexural and mass axes on the mid-chord (x; = 0.5¢). Figure 11.5 shows that flutter occurs at all speeds
above zero air speed (the lowest damping ratio trend is always negative). The unsteady aerodynamic
terms must be included for accurate aeroelastic modelling. If only the flutter speed (i.e. searching for
zero damping ratios) was sought, then such unrealistic behaviour would not be identified and it is therefore
good practice to observe the entire subcritical behaviour.

11.5.3 Aerodynamic Damping with Unsteady Aerodynamics
11.5.3.1 Modified system

The full aeroelastic equations defined in Equation (11.16) are now considered for the modified case
considered above in Section 11.5.2, with the flexural axis on the mid-chord (x; = 0.5¢). However, now
the unsteady aerodynamic term M; is included (taken here as —1.2, equivalent to the value of —0.3 used
in Hancock et al. (1985)).

Figure 11.6 shows how the frequency and damping values for this modified system demonstrate
classical binary flutter behaviour. As the air speed increases, the frequencies begin to converge. Initially,
both of the damping ratios increase, but whereas one of them continues to increase, the second damping
starts to decrease and becomes zero at the flutter speed of around 151 m/s. Beyond this air speed the
second damping ratio becomes negative and flutter occurs. Note again that the two frequencies do not
coalesce, but rather move close enough in frequency for the two modes to couple unfavourably.
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Figure 11.7 Frequency, damping and mode shape trends for the baseline system with M, = —1.2.

Including the unsteady aerodynamic term makes the model more representative of what occurs in
practice. This issue is discussed more fully in Hancock et al. (1985).

11.5.3.2 Baseline system

Consider the baseline system (x,,, = 0.48¢) again, but now with the inclusion of the unsteady aerodynamic
term M. The coupling between the modes is illustrated in Figure 11.7. The flutter speed has changed
significantly compared to the case without the unsteady aerodynamics term (62.4 m/s) and is now 154 m/s.

The top-right hand plot in Figure 11.7 shows the ratio of the amplitudes of the flap () to the pitch
(0) degrees of freedom. Initially the flap mode contains only a small amount of pitch, and vice versa, but
as flutter is approached there is a significant amount of both degrees of freedom in each mode. The bottom
right-hand corner plot shows the phase difference between the flap and pitch components in each mode
against air speed. As flutter is approached, the phase difference between the two critical components
changes to enable the interactions that extract energy from the airflow.

11.5.4 TIllustration of Phasing for Flutter

A simplistic illustration as to how the phasing between the pitch and flap motions enables their corre-
sponding lift components to work together to extract energy from the airflow at the flutter condition is
shown in Figure 11.8. The quasi-steady aerodynamic components of a two-dimensional aerofoil oscillat-
ing in both flap and pitch are considered. In the upper plot, the motions of the flap and pitch components
are in phase with each other, and the maximum and minimum values of the resulting lift forces are
90° out-of-phase. However, in the lower plot the flap and pitch motions are 90° out-of-phase, and thus
the maximum and minimum lift components are in-phase. This behaviour is illustrated in Figure 11.7.
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Figure 11.8 Lift due to flap and pitch components for a two-dimensional aerofoil with different phasing
between motions.

Note that, in practice, the presence of unsteady aerodynamic terms means that the phasing of the critical
motions at flutter is not 90°.

11.5.5 Soft and Hard Flutter

If the critical damping ratio trend approaches the critical speed with a shallow gradient, this is known as
a soft flutter. Figure 11.9 shows a case where the system parameters were modified such that the system
becomes unstable at 81.4 m/s but becomes stable again beyond 212 m/s. Of course, in practice it would
not be possible to fly to this second stable region without flutter occurring first. The presence of structural

Freq (Hz)

0 50 100 150 200 250

Damping Ratio (%)

Air Speed (m/s)

Figure 11.9 Frequency and damping ratio trends for the system with soft flutter.
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damping may prevent such a flutter from occurring. If there is a very sudden drop in the damping values
with increasing speed towards the flutter condition then this is known as a hard flutter. This latter case is
of greatest concern during flight flutter testing (see Chapter 26) as a stable system may suddenly become
unstable with a relatively small increase in air speed.

11.5.6 Inclusion of Structural Damping

The aeroelastic behaviour will be altered somewhat if structural damping is present. Consider the general
aeroelastic model, but now with the addition of a proportional structural damping matrix based upon the
structural mass and stiffness matrices (see Chapter 2), namely

D = oA + BE. (11.25)

In order to obtain values of the Rayleigh coefficients «, 8 for the system, a range of frequencies w, and
wp, must be chosen. It can be shown (NAFEMS, 1987) that in order to achieve damping ratios ¢, ¢y at
these frequencies, the Rayleigh coefficients must be defined as

20,0y (§awp — §rwa)

w0y ’
11.26
/3 — 2 (;i\wa - {bwb) ( )
0} —w?

However, the damping ratios do not remain constant over the specified range of frequencies. If there are
only two modes, then the values of w, and w;, may be taken as being equal to the natural frequencies and
so dampings for the two modes are defined.

For the baseline system, the two natural frequencies were chosen in this way so as to yield damping
ratios of 3 % critical per mode. Figure 11.10 shows the trends of the frequency and damping ratios versus
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Figure 11.10 Effect of viscous structural damping (— —) on frequency and damping trends.
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air speed for the baseline system considered in Figure 11.7 overlaid with the results obtained when
damping ratios of 3 % critical are present for each of the modes. Similar trends are obtained as before,
with very little change to the frequency behaviour; however, there is a change in the damping trends and
the onset of flutter is delayed from 154 to 173 m/s. In general, the presence of structural damping is
always beneficial in terms of flutter.

A more usual approach to modelling damping is not to use a Rayleigh model but rather to transform
the equations into modal form and then to add a diagonal modal damping matrix where the damping terms
are of the form 2¢;w;m;, j = 1,2, ..., N. The damping ratios ¢ ; may be defined based on experience or
from a ground vibration test (see Chapter 26). It is explained in Part III how the certification requirements
allow some damping to be included, although it is often ignored in aeroelastic models since it can
only be determined from measurement; aerodynamic damping tends to dominate anyhow and the flutter
predictions will be conservative.

11.5.7 Effect of Changes in Position of the Flexural and Mass Axes

An understanding of how the position of the wing flexural and mass axes affects the aeroelastic behaviour
is of great importance in designing wings such that flutter will not occur inside the flight envelope. A
slightly modified binary model is now considered compared to the one above, where a strip of mass M
per unit length is now attached along the wing leading edge. It can be shown that this now gives the
position of the mass axis at a distance

I”’lC2

=— (11.27)
2(mc+ M)

me

from the leading edge. Changes in the mass axis position can then be investigated by varying the value
of M, though it is appreciated that the overall mass will alter.

The equations of motion can be found using Lagrange’s equations in the same way as before, except
now the kinetic energy term contains an extra term such that

1 S . M [ .
T = / —dmw® = %/ / [y + (x — x0)0]" dx dy + 5 / (yk — x:6)’ dy, (11.28)
wing 0 Jo 0

and this changes the form of the inertia matrix A to be

ms3c  Ms? ms? [ c? Ms?x;
— = —cx) =
3 3 2 2 2
A= . (11.29)
ms* [ c* Ms?x; J 2t ex? ) + Mo
— | = —cx¢ ) — ms | — — c¢“xp 4 cx sX
2 \2 ! 2 3 rr f

The spring stiffnesses are determined from the pre-defined natural frequencies in the same way as before,
with Equation (11.12) adjusted to include the extra mass in the diagonal terms of the inertia matrix in
Equation (11.29).

Figure 11.11 shows how the flutter speed varies due to changes in the position of the flexural and
mass axes. By keeping the position of the flexural axis constant, moving the mass axis forward increases
the flutter speed. The addition of mass at the wing tip or control surface leading edge is a solution often
used by aircraft designers to prevent flutter at too low a speed. When the mass axis is kept constant
and the flexural axis is changed, decreasing the distance between the flexural axis and aerodynamic
centre increases the flutter speed. Even when the mass and flexural axes are aligned with the aerody-
namic centre on the quarter chord, flutter can still occur when unsteady damping terms are included.
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Figure 11.11 Effect of flexural and mass axes position on flutter speed.

11.5.8 Effect of Spacing Between Wind-Off Frequencies

The spacing of the structural (wind-off) natural frequencies has a major influence on the flutter speed as
this value influences the interactions that lead to flutter. Figure 11.12 shows the aeroelastic behaviour of
the baseline system compared to that when the two structural frequencies are closer together. In general,
the closer the wind-off frequencies become, the more rapidly the critical interaction between the modes
occurs and the flutter speed reduces. Designers often try to increase the frequency gap between modes
(by changing the mass distribution or increasing stiffness) to increase the flutter speed; however, for a
complete aircraft, care must be taken to ensure that in solving one problem a different critical flutter
mechanism is not created.

11.6 AEROELASTIC BEHAVIOUR OF A FLEXIBLE WING

The same modelling approach as above can be used for the more realistic case of a flexible rectangular
wing with a built-in root. Consider the model used in Section 11.2 butignore the springs and set the flexural
and torsional rigidities to be EI and GJ respectively. Consider the modal behaviour to be represented by
bending and torsion assumed modes (see Chapter 3). The deflection of some point (x, y) on the wing can
then be written in the same notation as before as

z2=yq + y(x — xpg, (11.30)

where ¢, and g, are generalized coordinates. For each elemental chordwise strip, g;y* is the bending
deflection and ¢y is the angle of twist.
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Figure 11.12 Frequency and damping ratio trends for systems with different wind-off frequencies.

Determining the kinetic and potential (or strain) energy and incremental work terms as before may
be shown to lead to the equations

cs’ st [ c? caws®
5 PR ~ 0
m ?l +pV ?l
st [ c? s3 /e 5 q2 eays* As3My q2
s\ 7)) g -outen T8 T
0 cstaw
) 8 4Els 0 q1 0
+ 1 pVv + = . (11.31)
0 ec’s3ay 0 GJs 92 0
-

These are in the same classical form as Equation (11.17) except that now the solution is in terms of the
generalized coordinates ¢g; and g, and not physical coordinates. Solutions are found in exactly the same
way as for the binary aeroelastic model considered previously and Vw and Vg trends can be plotted for
different flight conditions using the same eigensolution approach. Having determined the complex mode
shapes in generalised coordinates from the corresponding eigenvectors, physical coordinate mode shapes
can be found from the expression z = y2q; + y(x — x)q2.

It is possible to improve the model further by introducing more terms into the definition of the
deflection shape; e.g. for two bending and two torsion assumed modes, the deflection could be modelled
as

2= Y01+ V' + y(x — x5 + Y (x — x0)qa. (11.32)

The more terms that are included in the model, the more accurate the results (see Chapter 3).
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Figure 11.13 Example frequency and damping ratio trends for an aircraft model.

11.7 AEROELASTIC BEHAVIOUR OF A MULTIPLE MODE SYSTEM

If the aerodynamic and structural matrices are known, then the process for plotting the Vw and Vg plots
for a full-scale aircraft model is exactly the same as that described above, making use of the eigensolution
approach in Equation (11.22). Figure 11.13 shows a typical set of the first 10 symmetric modes for an
aircraft model with unsteady aerodynamics evaluated at a single reduced frequency. The behaviour is
much more complicated than for the binary systems considered previously; however, it can be seen that
the flutter speed occurs at around 190 m/s, is due to the interaction of the first and third modes, and is a
moderately hard flutter. A further multiple mode example is shown in Chapter 20.

11.8 FLUTTER SPEED PREDICTION FOR BINARY SYSTEMS

Instead of plotting the damping trends for different speeds and determining the flutter speed by eye, or
by trial and error from the air speed at which zero damping ratio occurs, it is more accurate to calculate
the flutter condition directly. This process is straightforward when frequency-independent aerodynamics
is considered, but not for frequency-dependent aerodynamics (see later). The approach shown here is
based upon the Routh—Hurwitz method described in Chapter 7.

Consider a binary aeroelastic system with frequency-independent aerodynamics, whose equation
of motion is

g b b / 0 0
app ap ?1 Ly 11 12 71 + V2 Ci1 Ci2 + el q1 _ .
ax axn q2 by by q2 € € 0 €22 q2 0

(11.33)
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{ql } {ql } ’
= e
q2 q2 0

XV2=€11, € = [ey =MXV2, (11.34)

Assume a solution of the form

and also make the substitutions

where u is the ratio between the two spring stiffnesses and x is an unknown that has to be found. The
nontrivial solution of the equations is defined by

all}L2+b11V)L+(Cll +X)V2 6112)\.2+b12V)\.+612V2

anr\ +buVi+cnV?  and*+bnVi+ (cn + px) V2 =0 (133

Solving the determinant gives the quartic equation
byt + b3A? + byd? + bid + by = 0, (11.36)
where by, ..., by are functions of the parameters in Equation (11.35). The roots of the equation are in

two complex conjugate pairs, namely
Mo =—liw Lion/1—¢E, hia = —Gwy Fiwgy /1 — &3, (11.37)
and at the flutter speed, since one of the damping ratios becomes zero, then one of the root pairs becomes
A = tiw. (11.38)

Substituting Equation (11.38) into the quartic Equation (11.36) gives
bsw* — ib3w® — byw? +ibjw 4+ by = 0 and by’ + ib3w’ — byw* — ibjw + by = 0.

(11.39)
Now, adding and subtracting Equations (11.39) gives
byw' —byo* +by=0 and  ibsw’ —ibjw =0. (11.40)
Hence the frequency at the flutter condition is given by
by (11.41)
w = —. B
by

Equation (11.41) can be substituted into the quadratic part of Equations (11.40) to give an expression,
namely

byb? — bibybs + byb} = 0, (11.42)
from which the flutter speed may be obtained since the parameters in the equation are functions of V. The
same result can be obtained by considering the Routh—Hurwitz stability criteria for the quartic Equation

(11.36), leading to the condition for stability

bi1byby — byb? — byb; > 0. (11.43)



184 DYNAMIC AEROELASTICITY — FLUTTER

Knowing the matrix terms in Equation (11.33) it is possible to determine directly the critical flutter
speeds and frequencies of a binary aeroelastic system using the following procedure. On a historical
note, this procedure was used by Bairstow and Fage (1916) to investigate the flutter incident of the
Handley Page 0-400 bomber (see the book front cover), the first documented flutter analysis.

Expanding the determinant in Equation (11.35) gives the fourth-order characteristic polynomial
Equation (11.36) where

by = ayaxn — anai,

by = (ay1by + bijaxn — ax by — apnby) V,

by = [(nan + axn) x + (a11cxn + bi1byn + ciian — axciy — biby — caan)] V2
= (p1x + po) V2,

by = [(ubiy + bn) x + (biicxn + ciibyn — baicio — c21bi)] V3 = (qix + qo) V2,

by = [ux? + (e + pei) x + crien — cipcar | VA = (rax® + rix +1rg) V4.

(11.44)

Substituting Equations (11.44) into expression (11.42) for the critical condition and eliminating a
factor of V®, gives a quadratic equation in terms of the unknown x such that

(bagi — b3qip1 + b3r2) X% + (2b4g1go — b3qop1 — b3qi p2 + biry) x + (bagg — bsqops + birg) =0
(11.45)

The two roots of this equation are then put into Equation (11.34), giving the two critical flutter speeds
between which the system is unstable. Obviously the lowest speed is the one that is of interest, since any
aircraft will probably have been destroyed long before the second critical condition has been reached.
The corresponding flutter frequencies are then found by substituting the estimated flutter speeds and x
values into Equation (11.41).

Application of this approach to the baseline model gives critical flutter speeds of 36.6 and 104.5 m/s,
with corresponding frequencies of 8.08 and 5.05 Hz respectively, which agree exactly with the predictions
obtained from the Vw and Vg plots.

11.9 FLUTTER CONIC
Further insight into the characteristics of binary flutter systems can be found through the use of the flutter

conic (Niblett, 1988). In this case a graphical approach is employed to study the flutter behaviour.
Taking the standard flutter equation without structural damping

Aq+pVBG + (pV’C+E)qg =0 (11.46)
and assuming a solution of the form ¢ = g,€'*’ then the nontrivial solution is defined by

—Aw’ +iwpVB + pV?C +E| = 0. (11.47)
In the form of the binary flutter system, Equation (11.33), this becomes

—ajw* +iwVby + Viey + e —apw® +iwVb;, + Viepn

2 2 2 . ) =0. (11.48)
—ayw” +iwVby + Vicy —anw” +iwVby + Ve +exn

Expanding the determinant of this complex matrix leads to real and imaginary parts that may be separated,
since both of these must equal zero at the flutter condition.
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The real part of Equation (11.48) gives a quadratic relation between the squares of the frequency
and velocity:

rot + V2l + V4 re® +rsV: +re =0,
where

apjdyy — apdyy,

r

a1 + biabyy +aziciy — aycn — bbby — ancyy,

]
3 = €112 — €202y,

ry = —endyp — a €, (11.49)
rs = e11¢xn + enciy,

e = €11€22,

which is in the mathematical form of a conic when (frequency)’ is plotted against (velocity)®. The
imaginary part of Equation (11.48) gives a linear relation between w? and V? such that

s10° +5V2 4+ 53 =0,
where
s1 = apbyy + aybin — anby — anby,
s3 = bi1can + c1ibyy — biaca — byjcn, (11.50)
s3 = bijey + byey.

The intersection of the lines formed by these two equations, shown in Figure 11.14 for the baseline
system, indicates where the flutter point occurs. The two parts of the conic represent the real part of the
equation whereas the straight line represents the imaginary part. The corresponding flutter speed and
frequency can be determined from the intersections of the conic and the straight lines and the values
agree with those obtained above. If there is no intersection then flutter cannot occur. Note that the flutter
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Figure 11.14 Flutter conic plot for the baseline system.
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speed can be calculated directly by substituting Equation (11.50) into Equation (11.49). The divergence
speed can also be determined from the point where the conic intersects the w = 0 axis.

The main advantages of using the flutter conic is that it does not matter if the eigenvalues give
nonoscillatory solutions and it can be seen immediately whether flutter actually occurs. However, the
approach does not lend itself to the analysis of systems greater than second order.

11.10 DIVERGENCE OF AEROELASTIC SYSTEMS

So far, this chapter has only been concerned with determining the flutter speed; flutter normally occurs
before divergence but the latter condition does have to be checked. Taking the baseline aeroelastic system
of Section 11.5, but this time with the natural frequencies of the pitch and flap modes reversed (somewhat
unusual) in order to ‘force’ divergence to occur at a lower air speed than flutter, Figure 11.15 shows
how the frequency, damping and real and imaginary parts of the eigenvalues change with air speed. The
pitch mode reduces in frequency and splits into two nonoscillatory solutions at around 136.2 m/s; this
is where the imaginary part of the eigenvalue becomes zero. With a further increase in air speed, the
system undergoes divergence at 136.7 m/s when the real part of one of the nonoscillatory eigenvalues
becomes positive. The Vw plot indicates a zero frequency at the divergence speed but, as discussed earlier,
great care must be taken in interpreting nonoscillatory eigenvalues. The frequency trends do not have
any meaning for the nonoscillatory solutions. The divergence speed solution is considered further in
Chapter 23.

It is instructive to examine the eigenvalue behaviour on a root locus plot (see Chapter 7), shown
in Figure 11.16. The complex conjugate pair of eigenvalues corresponding to the mode that remains
oscillatory moves from A to B throughout the speed range. The second mode starts off as a complex
conjugate pair at point C; however, at point D the imaginary part becomes zero and the oscillatory motion
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Figure 11.15 Trends of frequency, damping and real/imaginary parts of eigenvalues for the system with
reversed order of frequencies (f, = 10Hz, f, = 5Hz).



INCLUSION OF UNSTEADY REDUCED FREQUENCY EFFECTS 187

80
L e
e S N

20

Imaginary Part of Eigenvalue

-20 -15 -10 -5 0 5 10 15
Real Part of Eigenvalue

Figure 11.16 Real and imaginary parts of eigenvalues ( f, = 10Hz, f; = SHz).

ceases. The eigenvalues then split and move along the real axis in both directions towards points E and
G. Once the eigenvalue heading for point G crosses the imaginary axis at point F the system becomes
statically unstable and divergence occurs.

An exact calculation of the divergence speed for the general aeroelastic system in Equation (11.17)
can be found by considering only the displacement related terms, leading to

(PV’C+E)g=0. (11.51)
Divergence then occurs at the nontrivial solution defined by
|pV*C +E| =0, (11.52)
or this could be expressed as an eigenvalue problem. When applied to the system considered in this
section, a divergence speed of 136.7 m/s is found; this is exactly the same as that obtained from the Vo
plot above and also from the flutter conic method.
In order to determine the static aeroelastic deflections, the initial deformed shape (e.g. wing root
incidence) must be included as a right-hand side term (see Chapters 8, 15 and 20). Equation (11.51) then
becomes

(pV*C+E)q=—pV'Cq,, (11.53)

where g, defines the initial deflection at zero air speed.

11.11 INCLUSION OF UNSTEADY REDUCED FREQUENCY EFFECTS

It has been seen that in order to model aeroelastic systems correctly, the unsteady aerodynamics described
in Chapter 10 need to be accounted for. However, so far only the very simplistic approach of including
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a constant M, term has been used. In practice, as shown in Chapter 10, the aerodynamic stiffness and
damping matrices are reduced frequency-dependent, which leads to the so-called ‘frequency matching’
problem. If the B and C matrices in the aeroelastic Equation (11.17) are known, then the eigenproblem
posed in Equation (11.21) can be solved. However, the B and C matrices cannot be formed unless the
reduced frequency of interest is known, and this cannot be determined until the eigensolution of the
system matrix, Q, involving both the B and C matrices has been solved. There is no direct way of solving
this ‘chicken and egg’ problem and some form of iterative approach, known as ‘frequency matching’,
must be used.

There are a number of ad hoc approaches that have been developed to solve the frequency matching
problem. Here, simplified versions of two commonly used approaches, the so-called ‘k’ and ‘p—k’ methods
(Hassig, 1971), will be illustrated on the binary system considered above. Both methods are based upon
the assumption that the aerodynamics behaviour is dependent upon a harmonic response. This is fine
at the flutter condition but is not true below (and above) this speed; consequently the methods give the
same flutter speed and frequency but predict different subcritical behaviour. The methods tend to be
fairly robust in their use, although there are concerns about the damping ratio trend predictions for the
‘k’ method.

Here, in order to illustrate the two methods, the baseline binary aeroelastic system will be used with
a simplified approximation for the frequency dependency of M; such that

5

My = =375t

(11.54)

Clearly, in practice the full unsteady expressions described in Chapter 10 need to be used.

11.11.1 Frequency Matching — ‘> Method

Consider the classical form of the aeroelastic Equations (11.17), with B and C now being functions of
reduced frequency k = wb/V, and also include structural (or hysteretic) damping in the form D = igE
(see Chapter 1), where g is the symbol commonly used for the structural damping coefficient in flutter
calculations (not to be confused with the symbol for acceleration due to gravity). Assuming a harmonic
solution in the form g = g,e'’, and dividing throughout by —w?, then Equation (11.17) becomes

b b\’ 1+i
|:A—ip (z>B—p<E> C- Z;gE}qO:O. (11.55)

This equation is solely in terms of the reduced frequency &, and is a generalized eigenvalue problem

b b\? 1+i
(F—AE)g, =0 where F= |:A—i,o <7>B—p <7) C} and )= +2‘g. (11.56)
w

k k

Thus it may be seen that

! — o = Im®) v =% (11.57)
SR T TRy =% '

where ¢ is the equivalent viscous damping ratio for motion at the natural frequency (see Chapter 1). The
‘k’ method is applied in the following manner.
For each reduced frequency of interest:

(a) Calculate the corresponding B and C matrices.
(b) Solve the complex eigenproblem in Equation (11.56) to yield complex eigenvalues A.
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Figure 11.17 The ‘k’ method — presentation of frequency points for lines of constant .

(c) Determine the frequencies and damping coefficients (or ratios) from the eigenvalues using Equa-
tion (11.57).
(d) Relate these to the air speed via the definition of the reduced frequency & in Equation (11.57).

Consider the next reduced frequency and keep repeating the process until all k£ values have been investi-
gated.

Then join up the frequencies and corresponding damping coefficients (or ratios) to form Vw and
Vg plots. Care must be taken in interpreting the results since it is possible for the frequency and damp-
ing values to ‘fold back’, i.e. to have more than one solution for a particular mode at some flight
condition.

A sample result is shown in Figure 11.17 where three different reduced frequencies have been
considered for a three DOF aeroelastic system. At each reduced frequency k, there are three eigenvalues
A that correspond to natural frequencies w and speeds V determined from Equations (11.57). The Vo
and corresponding Vg trends (the latter not shown here) can then be formed, giving an estimate of the
aeroelastic behaviour of the system.

The addition of the damping terms in this solution is somewhat artificial; the eigenvalues that are
being found actually allow determination of the structural damping required (Garrick and Reid, 1981)
to give zero overall damping at that flight condition. Consequently, for a stable condition the dampings
that are determined are negative, and vice versa for a fluttering system. It is often the convention that
flutter plots use these damping coefficients g plotted against air speed and so flutter occurs for positive
‘required” damping; this is why the classical flutter plot is known as a Vg plot. Care must be taken to
confirm what is meant by damping in the interpretation of such plots. In this book true damping values
are presented and damping results are a factor of —2 different from the required structural damping
approach.

11.11.2 Frequency Matching - ‘p—k’ Method

The ‘p—k’ method is a widely used frequency matching method and is applied in the following manner.
For each air speed of interest in the flight envelope and for each mode of interest:

(a) Make an initial guess of the frequency for the mode (often the previous air speed or wind-off results
are used) and calculate the corresponding reduced frequency for the speed/frequency combination.

(b) Determine the aerodynamic stiffness and damping matrices B, C using this reduced frequency.

(c) Determine the frequencies for the system at this flight condition using the eigenvalue solution of the
real matrix shown in Equation (11.21) for the first-order form,
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(d) Take the frequency solution closest to the initial guess and repeat the process.
(e) Continue until the frequency converges (usually after four or five iterations) and note the correspond-
ing damping ratio.

Consider the next mode of interest and repeat until all modes of interest have been investigated. Then
consider the next flight speed and repeat until all air speeds of interest have been explored.

A set of frequency, damping and air speed values will then be assembled and plotted, each cor-
responding to the correct reduced frequency, and the flutter speed may be found where the damping is
zZero.

11.11.3 Comparison of Results for ‘k’ and ‘p—-k’ Methods

Using the baseline binary aeroelastic system, but with the frequency-dependent M, term described above
in Equation (11.54), Figure 11.18 shows the frequency and true damping ratio (not ‘required’ structural
damping coefficient) trends for the ‘k” and ‘p—k’ methods, where it can be seen that there are some
differences in the subcritical behaviour but that, as expected, the same solution is found at the flutter
speed.

One major difficulty with these approaches is that, whereas at the flutter condition the critical mode
dominates the motion, at subcritical speeds the motion is made up of a number of different modes. The
frequency matching process must be undertaken for each mode at a particular flight condition. However,
since the aerodynamics is assumed to occur at a single frequency, there will be some error in the estimates.
Consequently, the various frequency matching methods give different frequency and damping values at
subcritical speeds (or beyond flutter), but give the same estimate at the flutter condition.

More sophisticated frequency matching methods exist (Chen, 2000; Edwards and Weiseman, 2003)
but are beyond the scope of this book.

Frequency (Hz)
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Figure 11.18 Frequency and damping ratio trends from the ‘4’ (dashed) and ‘p—k’ (solid) methods.
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Figure 11.19  Aeroelastic model including a full span control surface.

11.12 CONTROL SURFACE FLUTTER

Historically, flutter involving the control surfaces has occurred more frequently than classical wing
bending/torsion flutter. This has often resulted in the loss of control surfaces and/or part of the wing/tail
structure but the aircraft has survived. Usually the flutter mechanism still occurs due to the interaction
of two modes.

To illustrate some of the characteristics of control surface flutter, consider the three DoF aeroelastic
system shown in Figure 11.19. The binary aeroelastic model has now been altered so that a full span
control surface is attached to the wing by a torsional spring of stiffness K. As before, the nondimensional
pitch damping derivative M, is included in order to approximate the unsteady aerodynamic behaviour,
but now a control aecrodynamic damping derivative My is also included (Wright ez al., 2003).

The vertical deflection (4+ve downwards) is expressed as

z=yk+(x —x)0 + [x —x5] B, (11.58)

where [X] is the Heaviside function defined by [X] = 0 if X < 0 and [X] = X if X > 0. The kinetic energy
is given by

T:ﬂ./ /‘uﬁ{yk—k(x—xf)@}zdxdy-i-ﬂ‘// {yk+(x—xf)9+(x—x,g)/'3}2dxdy
2 Jo Jo 2 Jo Jy

(11.59)
and thus the acceleration terms in Lagrange’s equations can be found as
d /0T
dr \ 9k
d /ar
dr \ 36
d /0T
dr \ B
s §2 /c? $2 {2 xé N
3 2\ AT
I’
I v e Xg Axp XX i CZX5 P
=m s| = —c™xp+cx s|l—+—— — — — +cxpxg — —— ,
3 e 376 2 o
3 x3
_symmetric K (% - ?ﬁ —cPxg + cxé) |

(11.60)
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which can also be expressed in terms of inertias /,,,,, etc. The potential (or strain) energy is defined as
U=3Ku?+3K,07+ 1K, (11.61)

and the incremental work done by the aerodynamic force and moments is

SW = — / dLysic + / dM;,80 + / dMy.88 (11.62)
0 0 0

where My, and M,, are the aerodynamic moments calculated about the flexural axis and hinge line
respectively. The lift and pitching moment about the flexural axis on an elemental strip of the wing are

1 VK 1 VK Oc
dL = —pV? 04+ — Bl dMp = =pV? |bw [0+ = ) + b + My—
2 [aw(+v)+aﬁ] = 1n [w(+v)+ B+ gw]

(11.63)

The pitching moment about the hinge line can also be shown to be
1 VK Be
dM,, = 5,oV2 |:Cw (6‘+ 7) +CCﬁ+M5W:|’ (11.64)

where the lift, pitching moment and hinge moment coefficients may be estimated as in Chapter 5 (Fung,
1969):

ow=2m, ac=2 [cos*(l _2E)+2JEQ —E)],
T
by = ecay.  be=—-Y1-E)VE1—-E),

b4
T]Z TIZT]()
=_2 o= — 0 11.65
Cw ) cc b ( )
Tw=+v1—d>+cos™'d, Tp=+1-d*>Q+d)+cos"'d2d+1),
2
d:ﬁfl, Ec=c—x,.
c
Using Lagrange’s energy equations as before yields the aeroelastic equations
3
cs ay 0 0
I Lo Lg| (& 6 , &
Lo Iy Igg 6t +pV _osbw —c My 0 0
Lg lop I B cs2cw 0 —CZM,'S B
4 8
2 2
o SSTaw  csac
4 4 K. 0 0 K 0
+lpvr] o _esbw _esbe 11l 0 Kk, 0 ot =10 (11.66)
2 2 0 0 K, B 0
cscew csce
0 — _
2 2

The flutter behaviour of this system depends upon the interaction of the wing flap, pitch and control
rotation motions. In practice, the control stiffness will be low if a mechanical linkage is employed and
high if a hydraulic power control unit is used.

The frequency and damping ratio trends in Figure 11.20 show sample characteristics of the three-
mode system and it can be seen for the parameters chosen that flutter occurs due to an interaction
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Figure 11.20 Sample wing and control surface frequency and damping ratio trends.

between the flap mode and the control surface rotation. It would also be possible for flutter to occur due
to pitch/control rotation coupling, and if a larger value of control stiffness is used, the dominant flutter
mechanism would be wing flap/pitch.

The key approach used classically to eliminate control surface flutter is to add extra mass to the
control surface in order to change the inertia characteristics (so-called ‘mass balancing’). The use of a
‘horn balance’ to move the control surface centre of mass on to the hinge line is sometimes seen on
aircraft control surfaces. In terms of the model above, adding extra mass on the control surface will affect
the Ig, Ipp and I,4 terms. However, whereas adding mass can improve the critical speed of one flutter
mechanism, if too great a mass is added it is possible for a different flutter mechanism to occur instead.
An alternative way to delay the onset of control surface flutter is to increase the control stiffness.

11.13 WHOLE AIRCRAFT MODEL - INCLUSION OF RIGID BODY MODES

In this chapter, the behaviour of a simple ‘wing-alone’ has been considered, either with a hinged or
built-in root; the equations were derived in terms of displacements and/or rotations relative to inertial
axes. Historically, flutter calculations were often performed for individual lifting surfaces built in at their
root because the natural frequencies were significantly higher than the rigid body frequencies and the
aim was for the calculation to be kept at a low model order. However, in recent years it has been normal
practice to carry out whole aircraft flutter calculations including both flexible and rigid body modes
since computational power is now much greater and rigid body and flexible mode frequencies are often
sufficiently close for coupling terms to be relevant and for the flutter behaviour to be influenced somewhat
by the rigid body modes. The flutter analysis presented in this chapter can readily be extended to include
rigid body modes if desired.
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Figure 11.21 Typical flutter speed behaviour in a transonic regime.

In the later chapters on loads, examples of simple models with both rigid body and flexible modes
are presented. The inertial axes representation is employed for the equilibrium manoeuvre, gusts and
ground loads (see Chapters 13, 16 and 17) whereas the body fixed axes (or so-called flight mechanics)
model is used for dynamic manoeuvres (see Chapters 14 and 15). This flight mechanics model with
flexible effects included is also used to assess the impact of flexibility upon the aircraft handling, but
could also provide another view of any particular flutter mechanism encountered where rigid body effects
were important. The inclusion of unsteady aerodynamic effects on the rigid body and flexible modes is
considered in Chapter 19.

11.14 FLUTTER IN THE TRANSONIC REGIME

One major limitation with strip theory and panel method aerodynamics (see Chapters 19 and 20) is that
they are unable to predict the occurrence of shock waves in the transonic flight regime. A consequence
of this is that the prediction of the corresponding flutter boundaries can become inaccurate. Figure 11.21
shows a typical plot of flutter speed versus Mach number, and it can be seen that in the transonic region
there is a dramatic reduction in the flutter speed for certain flow conditions. This is known as the ‘transonic
dip’ (or ‘flutter bucket’) and this cannot be predicted accurately using linear aerodynamic methods;
either Euler or Navier-Stokes CFD aerodynamic modelling techniques must be used, coupled with a
structural model. It is, however, possible to determine corrections to panel method aerodynamic influence
coefficients (AICs) using wind tunnel test or CFD data where transonic effects can be incorporated (see
Part II).

11.15 FLUTTER IN THE SUPERSONIC REGIME - WING AND
PANEL FLUTTER

Aircraft operating at supersonic speeds have to be cleared for flutter in a similar manner as for those
flying at subsonic speeds. For high aspect ratio wings the aerodynamic centre acts at the mid-chord; a
similar analysis to that for subsonic flow could be performed. However, aircraft operating at supersonic
speeds tend to have delta wings and it is appropriate to use more advanced aerodynamic models such as
the Mach “Box” approach.

An aeroelastic phenomenon that occurs solely in supersonic flight is panel flutter. This is character-
ized by an unstable out-of-plane motion of an aircraft panel, limited in amplitude by nonlinear effects.
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Figure 11.22 Flexible panel subjected to supersonic flow.

Panel flutter can cause unwanted vibrations that can lead to fatigue problems. In supersonic flight, the
panels are also subjected to surface heating from the airflow, which tends to cause compressive stresses
in the panels.

This section uses a simple two-dimensional model to illustrate the mechanism underlying panel
flutter, making use of the piston theory aerodynamics (Dowell et al., 1995) introduced in Chapter 5.

11.15.1 Model of a Panel in Supersonic Flow

Consider the panel of length L, width A, mass per unit length ;1 and flexural rigidity EI, subjected to a
supersonic flow parallel to the surface of speed V, Mach number M and air density p. The panel is simply
supported at x = 0, L but free along the edges parallel to the x axis, as shown in Figure 11.22.

Assume that the out-of-plane displacement of the panel takes the form (see Chapter 3)

2(x t)—sin( ) o +sin [ 22 000, (11.67)
, 1) = I qi L q2 .

where each of the sinusoidal shapes satisfies the boundary conditions. From piston theory (Dowell et al.,
1995; see Chapter 5), the pressure acting upon an element of the panel for deflection z is given by

p_ pVidz _ pV? (nx) N 27 2mwx (1168)
— 7co - “cos| == , .
Md . M |L )4 L )

where M is the Mach number. The panel velocity term, which would add aerodynamic damping, has been

neglected.
Once again Lagrange’s equations will be used. The kinetic energy for the entire panel is given by

the expression
T I/L ‘ (”)' wsin (22 “d (11.69)
= - sm | — sm| —— X. .
2 ) 123 I qi L q2

The potential (or strain) energy is

1 r (9% 1t 2 4 2 :
U= —/ EI 7= dx :—/ EI —n—sm<nx)q1 - Lsin il q> | dx. (11.70)
2 J 3x2 2/ L2 L L2 L

Finally, the incremental work done by the aerodynamic force acting upon the panel (4-ve downwards) is
given by

V2 TX 2 2mx TX 2w x
SW = / oV (ZCO ( )q1—|——cos< >q2> <s1n< )8q1+s1n< T )8q2>hdx,

(11.71)
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so the generalized aerodynamic forces are given by

(W) Lpv? (o X 2 2mx . o/mx 4pV2h
= —— | —cos (—) g1+ —cos | — ) ¢z |sin (—) hdx = — 9,
3 (8q1) o M \L L L L L 3M

(11.72)
(W) Lpv? (o X 2 2mx . (2nx 4pV2h
= —— | —cos (—) g1+ —cos| — ) g2 )sin| — ) hdx = qi.
306g)  Jo M \L L L L L 3M
Applying Lagrange’s equations (see Chapter 3 for a similar example) gives
uL 0 Elx* 4o V2h
2 {?1}+ 2L M {‘1'}:{0}, (11.73)
o HEla 4pV2h  SEIr* 0@ 0

2 3M L3

which can be seen to be in the form of a vibrating system with no damping. However, the stiffness matrix
is skew-symmetric, with the off-diagonal terms defined by the aerodynamics.

Assuming a solution of the form ¢ = ¢, sinwt leads to a non-trivial solution (see Chapter 2)
given by

(—a® + A) -B _ _ n'El _ 8pV°h
B (—a? +164)| = 0 where A= P and B = ML (11.74)

Solving the resulting quadratic equation in w? then gives an expression for the frequencies at which
undamped oscillations can occur in the presence of a supersonic air flow, such that

174 | V/289A% — 4(16A2 + B?)
2 2 '

(11.75)

The critical condition is reached when the two frequency solutions are the same (there is no aerodynamic
damping); thus the critical frequency and speed condition for the panel are defined as

17A ASTMEI
w= ]2 and 254> —4B*=0 = V= |22 (11.76)
2 16pL°h

Finally, the critical mode shape is found from the solution of Equation (11.73) and so
<__2 +A>q1 = Bq, = = =-1 11.77)

and this ratio may be converted into a physical shape. Figure 11.23 shows the critical flutter mode shape

Figure 11.23  Critical mode shape for a panel flutter.
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Figure 11.24 Typical structural nonlinearities.

11.16 EFFECT OF NONLINEARITIES - LIMIT CYCLE OSCILLATIONS

All of the aeroelastic modelling that has been considered so far in this book has made the assumption
of linearity; the structural deflections are small, the aerodynamic forces are linearly proportional to the
response and the control system elements respond linearly with amplitude. In practice, nonlinearities can
be present in an aeroelastic system (Dowell et al., 2003) via structural, aerodynamic and control system
phenomena. These nonlinearities affect the aeroelastic behaviour and cannot be predicted using linear
analysis methods.

Structural nonlinearities occur primarily as nonuniform stiffness effects, including cubic stiffening
root attachments of engine pylons, bilinear stiffness of structural joints and freeplay of control surface
attachments. Figure 11.24 shows some typical restoring force versus displacement plots for different
stiffness nonlinearities. Very flexible aircraft exhibit geometric stiffness nonlinearities due to the large
deflections that can occur.

Aerodynamic nonlinearities occur primarily in the transonic flight regime, where shock waves are
present upon the wing or control surfaces, and the position of the shock waves changes in response to
motion of the wings; the interaction of control surfaces with shock waves is sometimes referred to as
‘buzz’. A further aerodynamic nonlinearity is ‘stall flutter’ when stall occurs at the wing tips and lift is
lost on the outer part of the wing.

Control nonlinearities include control surface deflection and rate limits where the control surfaces
cannot respond in the manner that is required by control laws. Also, the control surface actuation mech-
anism tends to be nonlinear as well as the control laws that are used. The use of nonlinear, or multiple,
control laws and time delays in their application also leads to nonlinear aeroelastic behaviour.

The main nonlinear aeroelastic response phenomena are limit cycle oscillations (LCOs) which can
be considered as bounded flutter and an example of which is shown in Figure 11.25. Sometimes this
is referred to as nonlinear flutter. If an aeroelastic system is considered that includes the cubic stiffness
shown in Figure 11.24, then at some air speed, depending upon the stiffness at zero deflection, flutter
will start to occur and an unstable motion results. However, as the deflections get larger, the stiffness

Figure 11.25 Typical limit cycle oscillation.
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Figure 11.26 Typical limit cycle amplitude versus speed behaviour.

will become greater and the motion will be limited. In some cases the LCOs are made up of multiple
sinusoids.

Figure 11.26 shows a typical steady-state LCO amplitude versus speed plot, where it can be seen that
below the linear flutter speed the response of the system containing a cubic stiffness following some initial
input decays to zero. Beyond the linear flutter speed at point A, an LCO develops and its amplitude grows
with speed until finally flutter occurs. Such a response occurs for most of the nonlinearities described
above. One exception is the freeplay nonlinearity where, at some critical speed below the linear flutter
speed, a limit cycle suddenly occurs with a jump to point B. Much research is currently being undertaken
to investigate accurate and efficient ways of predicting LCOs, including nonlinear FE and aerodynamic
models.

11.17 EXAMPLES

1. Using the MATLAB code given in Appendix H in the companion website, generate Vw and Vg plots
for the binary flutter system and explore the effect of the following on the aeroelastic behaviour:

(a) Effect of ratio and spacing between wind-off torsion and bending natural frequencies.
(b) Effect of position of flexural and mass axes.

(c) Inclusion of structural damping.

(d) Altitude and hence plot Mach number vs. speed at flutter.

2. Using the MATLAB code given in Appendix H, examine the effect of the above parameters on the
shape of the flutter conic.

3. Develop a MATLAB code to determine the aeroelastic behaviour of the assumed mode representation
described in Section 11.6 and explore the effect of including more modes in the mathematical model.
Take EI = 10° Nm?, GJ =10 Nm?, ¢ =1.5mand s =7 m.

4. A wing bending—torsion system (in SI units) is described in terms of coordinates g, and g, as
14D* +6VD 4+ 0 —6V? —2D>4+ VD + V? [ql] [o]
—2D* —2VD — 5V? D>+VD+V? |la] [0]

where D = d/dt and 0 = 1 x 10° N/rad. Determine the critical flutter speeds and corresponding
frequencies using the Routh—-Hurwitz approach and the flutter conic.
[73.35 m/s 13.92 Hz, 132.89 m/s 17.74 Hz]
5. A wing bending—torsion system (in SI units) is modelled in terms of coordinates « and 6:
126 + 6Va + (4 x 10° —9V?) o +3VH + 3V = 0,
- 3Va+6+Vo+ V6 =0.
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Determine the critical flutter speeds and corresponding frequencies using the Routh—Hurwitz approach
and the flutter conic.

[115.5 m/s 26 Hz, 365 m/s 41 Hz]

6. A binary aeroelastic system (in SI units) takes the form

(7 m) () (5 2 G ()-C)

Find the stiffness value k that gives a critical flutter speed of V = 250 m/s and the corresponding flutter
frequency. Also find the divergence speed. Confirm these estimates using the flutter conic.

[1.173 x 10° N/m, 11.33 Hz, 279.6 m/s]

7. A binary aeroelastic system (in SI units) takes the form

(0% D)) (0)=0)

where k; = 5 x 10* Nm/rad and k, = 7 x 10* Nm/rad. Determine the critical flutter speeds and
corresponding frequencies using the Routh—Hurwitz and flutter conic approaches. Also, obtain the
divergence speed.

[256.8 m/s, 3.29 Hz; 131.9 m/s, 7.30 Hz; 152.8 m/s]

8. The aircraft panel shown in Figure 11.27 (after Dowell ez al., 2004) is subjected to a supersonic flow
of speed V along its surface. The panel consists of three rigid plates of length L and mass M or 2M,
hinged at each end, and attached to springs of stiffness K and 2K, as shown in the figure. Making use
of piston theory determine the speed at which panel flutter occurs and the shape of the flutter mode in
terms of the spring deflections.

|:,‘>V

M K 2M ZKMk

Figure 11.27
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Aeroservoelasticity

The science of aeroservoelasticity (ASE) extends the aeroelastic interactions between aerodynamic forces
and a flexible structure, discussed in Chapters 8, 9 and 11, to include a control system, introduced in
Chapter 7. The classic Collar aeroelastic triangle can be extended to form the aeroservoelastic pyramid
shown in Figure 12.1, where there are now forces resulting from the control system as well as the
aerodynamic, elastic and inertial forces. ASE effects (Zimmermann, 1991; Pratt, 2000; Librescu, 2005)
are becoming of increasing importance in modern aircraft design as it is usual nowadays to employ some
form of flight control system (FCS) (Pratt, 2000; see also Chapter 14) to improve the handling and stability,
flight performance and ride quality throughout the flight envelope, and also to reduce loads and improve
service life. For commercial aircraft, the FCS might include a gust and/or manoeuvre load alleviation
system in addition to a control system that meets the basic handling requirements. Modern military
aircraft are often designed for carefree handling and the ability to fly with reduced, or unstable, open loop
static stability so as to improve their manoeuvrability; however, they can only stay airborne through the
use of the FCS. All control implementations involve the use of sensors, usually accelerometers and rate
gyros placed at the aircraft centre of mass and air data sensors (e.g. angle of incidence, air speed). Some
form of control input (defined by a control law; see Chapter 7) is then applied via the control surfaces.
It is feasible to develop flutter suppression systems that enable aircraft to fly beyond the flutter speed;
however, such an approach has a very high risk and so far has only been demonstrated on wind tunnel
models.

ASE effects, sometimes referred to as ‘structural coupling’, can potentially cause a major structural
failure due to flutter involving coupling of the aeroelastic and control systems. However, there is also the
possibility of causing fatigue damage and reducing control surface actuator performance. Most structural
coupling problems occur when the motion sensors detect not only the aircraft rigid body motion but
also the motion in the flexible modes, and these vibrations are fed back into the FCS. In this case, the
movement of the control surfaces is then likely to excite the flexible modes, so causing the aircraft to
vibrate further. Notch filters are often used to remedy this problem by introducing significant attenuation
of the response in the region of critical frequencies.

In this chapter, the use of feedback control on a simple binary aeroelastic system with a control
surface is considered and the effects of the control law on the stability and response investigated. A simple
PI controller (see Chapter 7) is used to demonstrate how the gust response can be reduced and the flutter
speed increased. Modelling of ASE systems in the time or frequency domain is also considered, including
representation of reduced frequency-dependent aerodynamics and control effects along with the use of
state space models. A number of MATLAB codes related to this chapter are included in appendix H in
the companion website.

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
© 2007 John Wiley & Sons, Ltd
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Figure 12.1 Aeroservoelastic pyramid.

12.1 MATHEMATICAL MODELLING OF A SIMPLE AEROELASTIC
SYSTEM WITH A CONTROL SURFACE

Consider the binary aeroelastic model examined for its flutter behaviour in Chapter 11; it is composed of
a uniform rigid rectangular wing with pitch 6 and flap « degrees of freedom introduced via two springs
at the root. As can be seen in Figure 12.2, a full span rigid control surface is now included. It has an
infinite stiffness attachment to the wing but can be moved to any angle 8 that is demanded. The inertial
effects of the control surface are ignored. Thus the control surface is not involved in the basic dynamics
of the wing but simply acts as an excitation device.

The lift and pitching moment acting upon an elemental strip of wing can be written using the same
assumptions and notation as considered before in Chapters 5 and 11, with the M, term being included to
allow for simple unsteady aerodynamic effects on the aerofoil, such that

dL = %pvzcdy |:aw (9 + %) + acﬂ] and dM = %szczdy |:eaw (9 + %) + Mgf—‘c/ + bcﬂ] ,
(12.1)
where there are now lift and moment components due to the application of the control surface through
angle B (Fung, 1969), as shown in Chapters 5 and 11.
Evaluation of Lagrange’s equations across the entire semi-span of the wing (as in Chapter 11) and

adding in the prescribed motion of the control surface gives the expression for the open loop system

cs’ay 0 0 cstay
I, Lol [k 6 K ) 4 K, o] {K}
Loy il ov +
[he 1@]{9} p ecs’ay s {9} ? ec’say [0 Ky 0
- M 0-—;

(12.2)

Figure 12.2 Binary flutter system with a control surface.
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Figure 12.3 Effective angle of incidence due to the vertical gust.

It can be seen that there is now a forcing term on the right-hand side of the equations due to the control
surface deflection. Equation (12.2) can be written more compactly in the form

AG +pVBg + (pV’C +E)q = gp, (12.3)

where for convenience the term pV? is embedded in the excitation vector g. Then, using the approach
of Chapter 2, a harmonic excitation 8 = Bye'’ and response ¢ = g€’ lead to the frequency response
function between the response degrees of freedom and the control surface rotation. A frequency domain
approach may then be used to determine the response of the system due to the input of the control system
at any point in the flight envelope. Alternatively, an approach based on time domain numerical integration
could be employed for any general excitation input.

For the complete aircraft, the free—free rigid body and flexible modes need to be incorporated,
together with the basic FCS. Although some explanation of the FCS model is given in Chapters 14 and
22, and the importance of the FCS emphasized elsewhere, a detailed consideration of the FCS is beyond
the scope of this book.

12.2 INCLUSION OF GUST TERMS

The effect of gusts and turbulence will be considered in much greater detail in Chapter 16. However,
it is useful here to include the effect of a uniform vertical gust of velocity w, encountered along the
whole span of the wing in order to provide a disturbance to the wing (this simplified approach contains
a number of assumptions). Figure 12.3 shows that a gust gives rise to an effective instantaneous change
of incidence A6 of
Wy + 2
v
Thus there is an extra lift term due to the gust velocity, together with that from the vertical velocity
term and the incidence due to pitch already considered. The lift and pitching moment of an elemental
streamwise strip on the wing now become

Af = (12.4)

1 .
dL = —pV3cdy [aw (0 + % + &) +acl3] ,

2 Vv
aM = Loy ol Y L 0e Ly 5] (12.5)
= 2p cay | eaw v % 94V C | ) .
and hence the open loop equations of motion are found as
csPay 0 cstaw ]
I. Lol [# 6 K ) 4 K. 0] {K}
s+ oV A+ eV +
[lxe 19] {9 } p cs%eaw s {9 } p cseay [ 0 Ky 6
_ Y 2y, 0 ——W
4 8 2
sac s
_ 2 4_1 _ )& h
= pV-<ecs che B+ pVes c w, = {gz}ﬁ—l—{hz}wg, (12.6)
2 2
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or in a general form,
A+ pVBg + (pV’C+E)q = gB + hw,. 12.7)

Again, for convenience, the term p V is embedded in the gust excitation vector . Now the gust disturbance
term is seen to appear on the right-hand side of the equations together with the control surface input.
Clearly, the response due to a known gust time history may now be calculated.

12.3 IMPLEMENTATION OF A CONTROL SYSTEM

One of the simplest forms of control system is the PI approach (see Chapter 7), and when implemented
here the control surface demand angle is linearly proportional to the velocity and displacement of the
system. For simplicity, consider that there is a transducer at the wing leading edge a distance s, from the
root, and the control surface deflection is taken as being proportional to its displacement and velocity
such that

c

:B = Kvaing + KdZwing = KV (ks() - 92) + Kd (KSO - 9%)

R [N AT

where K, and K, are weightings (commonly called feedback ‘gains’; see Chapter 7) applied to the
velocity and displacement terms respectively. Thus the aircraft response is fed back via the control
surface to modify the aircraft characteristics. This mathematical model of the wing with gust and control
input, modified by the feedback law, can be represented by the block diagram shown in Figure 12.4,
where the system is generalized to that of an aircraft (not just a wing) (see also Chapters 14 and 22).

12.4 DETERMINATION OF CLOSED LOOP SYSTEM STABILITY
In order to examine the stability of the closed loop system, the feedback law in Equation (12.8) must be

combined with the basic wing equations in (12.3). Thus, the closed loop equations of motion (12.3) of
the wing plus control surface (but in the absence of a gust disturbance) becomes

weomvresma-s-x gl il oxfz]le -1

82 82
giso —gic/2| |k 8150 —glc/2] {K } .
= KV . K :F G N
|:g2s0 —g26/2:| {9} + K |:g2so —gc/2| |0 q+0q
(12.9)

Gust/Turbulence Input Aircraft

. Aircraft Response

Equations of >
Control » Motion
Surface Measured
Input Response

Control Law

Figure 12.4 Block diagram of an aeroservoelastic system.
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Figure 12.5 System eigenvalues for varying control system gain.

where F, G are composite feedback matrices with coefficients that are a function of the control gains,
density and air speed. This equation can be rearranged as

Aj+ (pVB-—F)g+ (pV’C+E—-G)g=0 (12.10)

and the closed loop system can now be solved to examine its stability. Clearly, the dynamics of the system
have now been altered since there are extra stiffness and damping matrices present due to the control
system, and this will affect the aeroelastic behaviour including the flutter speed. Equation (12.10) is still
in the same general form of the aeroelastic equations and the analysis can be carried out in exactly the
same way as in Chapter 11 on flutter, determining the natural frequencies and damping ratios at different
flight conditions for different combinations of constant feedback gains K,, K.

The effect of using gain Ky alone (K, = 0) for the baseline binary aeroelastic system can be seen in
Figures 12.5 and 12.6. In Figure 12.5 the changes in the system eigenvalues are plotted for —6 < K4 < 4
at an air speed of 100 m/s. The circles indicate the open loop system characteristics (i.e. K4 = 0), and
it can be seen that when Ky reaches 3.6 the system becomes unstable (i.e. a root enters the positive
right-hand plane; see Chapter 7). The effect on the flutter speed of changing the gain is shown Figure
12.6, and it can be seen how the flutter speed can be increased or decreased from the open loop value of
154 m/s by changing the gain.

12.5 GUST RESPONSE OF THE CLOSED LOOP SYSTEM

Inclusion of the gust excitation terms on the right-hand side of Equation (12.10) for the closed loop
system gives

Aj+ (pVB—F)g + (pV’C+E—G)q = hw,, (12.11)
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Figure 12.6 Effect of gain K, on flutter speed.

from which the response of the system to gusts with the inclusion of the feedback control can be
calculated. Having determined the responses, the required control angle deflection can be found using
Equation (12.8).

Figure 12.7 shows the leading edge tip displacement of the wing for a rapid ‘1-cosine’ gust input to
the open loop system and also to the closed loop system employing a different control law (K, = —0.01).
The control surface demand angle, determined from Equation (12.8) using the model response, is also
shown with the control law applied. It can be seen that the control can be used to reduce the time that it
takes for the response to decay. In practice much more sophisticated control laws are used.

One problem with this implementation of control is that the control surface deflection is taken to be
linearly related to the wing displacement and velocity. There will be limits to both the control deflection
(e.g. £15°) and rate (e.g. 60 °/s) that can be realized. Unsteady aerodynamic effects also reduce the control
surface effectiveness as the application frequency increases. In practice, more sophisticated models need
to be developed to allow for the unsteady aerodynamic behaviour including reduced frequency effects.

12.6 INCLUSION OF CONTROL LAW FREQUENCY DEPENDENCY
IN STABILITY CALCULATIONS

In practice, the control gains will also be frequency-dependent due to the presence of so-called ‘shaping’
(e.g. notch) filters, but these effects can be dealt with through the use of a frequency domain representation
in a similar way to that for frequency-dependent aerodynamics (see Chapter 11).

Consider the same ASE system as above, but now with a velocity feedback gain of K, T (s), where
the shaping filter 7'(s) is frequency dependent. For example, 7'(s) could have a simple Laplace domain
representation of

a

T6)=——. (12.12)
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Figure 12.7 Leading edge tip response of wing to gust with/without the control law and control surface
demand angle.

where a is a constant and s is the Laplace variable (see Chapter 7); this filter reduces the effective gain
and introduces a phase lag as frequency increases. In order to simplify the expressions involved, consider
the measurement transducer being moved to the wing elastic axis and only velocity feedback. Then the
demanded control angle is given by

B =K.T 2ying = K, T 5ok = K,T {so 0} {’; } =K, T{sy 0}q. (12.13)

where the dependency of 7 on the Laplace variable s has been omitted from this time domain description
for the moment. Then the time domain closed loop equations become

) o 07«
Aj +pVBg + (pV’C+E)q = gB = K,T [Z’;g o] {g } = K,TFq. (12.14)

Transformation to the frequency domain using ¢ = g,e'*’ and s = iw gives
[~0’A +iw(pVB — K,TF) + (0V>*C +E)} g0 = 0, (12.15)

where matrices B, C are reduced frequency (k) dependent and the filter 7 is frequency (@) dependent.
In Chapter 11, the reduced frequency dependency of the B, C matrices was handled by seeking
a matched frequency solution; this approach determined the correct aerodynamic terms at each flight
condition and thus the flutter speed was determined. The presence of the shaping filter in this equation
may be dealt with in exactly the same way since, for a particular reduced frequency k and air speed V,
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the frequency w = 2kV/c in T will be known and the shaping filter contribution to the equation can
be evaluated. More complicated control laws can be utilized using this approach as long as they can
be approximated in the form shown above; nonlinear control laws must be approximated by a linear
representation.

12.7 RESPONSE DETERMINATION VIA THE FREQUENCY DOMAIN

As the aerodynamic and control terms may be determined for particular reduced frequencies (or frequen-
cies) for a given air speed, it is possible to determine the response to turbulence using a frequency domain
representation (see Chapter 16 for a full explanation). Assuming that the ASE system considered above
with velocity feedback control including a shaping filter behaves in a linear manner, then encountering a
harmonic gust of the form w, = w,oe'’ results in a harmonic response ¢, = ¢,¢e'’, and Equation (12.11)
then becomes

(—’A+iw(pVB — K,TF) + (pV>C + E)) go = hwy, (12.16)

where B, C and T are evaluated at the appropriate k and w. Hence, the vector of closed loop transfer
functions between the generalized coordinates and the gust excitation (see Chapter 16) is defined by

g0 = Hy(w)wg where  Hg(w)=(—0’A +iw(pVB — K,TF) + (pV>C + E))’1 h o (12.17)

and that between the deflection at the leading edge (chosen for simplicity) and the gust excitation for the
closed loop system is

[ c
2uine = {50 =5 a0 = 50 =5 | Hop@pweo = Hylwrwg. (12.18)

The Von Karman frequency representation of turbulence (see Chapter 16) can be used to provide
the power spectral density (PSD) input to the system from which the response PSD for the closed
loop system can be calculated using Equation (12.17). The control system gains can then be designed
such that the resulting deflections and loads are reduced to required levels and required gain and phase
margins are achieved.

12.8 STATE SPACE MODELLING

An alternative approach to using second-order models is to employ the first-order state space represen-
tation introduced in Chapter 7. The state space formulation is particularly useful for the application of
many control design techniques (e.g. optimal control theory).

Equation (12.7) for the open loop system with control and gust input can be reformulated into the
first-order state space form, such that

q| _ 0 I q 0 0
[ii] - [—A” (pV?C +E) —A”(pVB>] [q] " [A*‘g}“ [A*‘h e (125
or as shown in Chapter 7,
X = Ayx + B + Eqwy, y = Cx + Dgu. (12.20)

Here the control input # = {8} and a gust disturbance term are now present and, when velocity-only
measurement on the leading edge is considered, the measured output y is given by

y =t} = [0 =5 00]{# bk 0} =Cux, (1221)
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since Dy= 0 is normally assumed. In order to avoid confusion with the notation used earlier in the flutter
equation, the subscript ‘s’ has been used here to denote the state space matrices.

To introduce the feedback effect, the control input is written in terms of the measured response y
(in this case a velocity), namely

u = (B} = [Ky] {Zwing} = Koy, (12.22)

where K is the state space gain matrix. Then substituting Equation (12.22) into Equation (12.20) and
simplifying leads to the revised state equation for the closed loop system

X = [A+B,K,C,] x+Ew,. (12.23)

In the same way that a frequency domain representation was used with the second order form of the
equations, it is possible to determine the frequencies and damping ratios at a particular flight condition
and gain value using the eigensolution of the system matrix [A;+BKC;] that has been revised to account
for control feedback effects. As with the frequency domain approach, the effects of frequency-dependent
unsteady aerodynamics and control shaping filters need to be taken into account if accurate models are
required. The frequency domain gust response transfer function may also be derived from the state space
equations.

These state space equations, and indeed the earlier second-order equations, can be solved in the time
domain to give the state response x, and hence the measured output y, for the closed loop system due
to any gust input. In this case, representation of frequency-dependent aerodynamic effects is achieved
through the use of so-called rational fraction aerodynamics, which is described in Chapter 20. The effects
of structural and control law nonlinearities can be included when a simulation is carried out in the time
domain.

12.9 EXAMPLES

Make use of the MATLAB and SIMULINK routines shown in Appendix H in the companion website
for the baseline binary aeroelastic system with feedback control input and gust excitation.

1. Determine the response due to ‘1-cosine’ gusts and explore the effect of different gust wavelengths.

2. Determine the response to a ‘chirp’ (fast sinusoidal sweep) control input of linearly varying frequency
and explore the effect of changing the start and end frequencies of the ‘chirp’.

3. Explore the effect of varying the gains K, and Ky on the flutter and divergence speed of the system.

4. Determine the range of gains K, and K, that will enable the flutter speed of the baseline system with
the control system to be increased by 30 m/s.

5. For ‘1-cosine’ gusts of duration 0.005, 0.01 and 0.05 s, explore the effect of varying the gains K, and
K4 on the closed loop system response.
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Equilibrium Manoeuvres

Aircraft are controlled by the pilot using the control surfaces (namely aileron/spoiler for roll, rudder for
yaw and elevator for pitch) singly or in combination for a range of different manoeuvres. The structure
must be designed to withstand these manoeuvres and these load calculations are a critical stage in the
aircraft clearance, often involving many thousands of cases. A useful background to meeting most of
the loads requirements in the certification specifications (CS-25 and FAR-25) is given in (Howe, 2004,
Lomax, 1996).

There is a difference between manoeuvres performed by commercial and military aircraft. Military
aircraft (excepting transport and bomber aircraft) are subject to far more severe manoeuvres, involving
higher g levels, control angles and rates. However, military combat aircraft are generally stiffer than com-
mercial aircraft, with natural frequencies usually greater than 5 Hz, so the manoeuvre loads calculations
are sometimes carried out using a rigid aircraft model, often with corrections made to the aerodynamics
for flexible effects, though this is changing for more highly flexible combat aircraft and unmanned air
vehicles (UAVs). In contrast, although their manoeuvres are less severe, large commercial aircraft are
generally significantly more flexible, some (e.g. Airbus A380) with modes of vibration that are even
lower than 1 Hz; thus it is becoming more essential to perform loads calculations using a flexible (or
elastic) aircraft model that incorporates the rigid aircraft characteristics. This means that the aeroelastic
and loads domains are becoming more interdependent, a key reason why this book seeks to balance these
two aspects.

There are two types of flight manoeuvre that have to be considered in the design of an aircraft, often
referred to as:

® equilibrium (or balanced/steady) manoeuvres and
® dynamic manoeuvres.

The calculation methodology is different in each case and these will be addressed in separate chapters.

The term equilibrium (or balanced) manoeuvre refers to the case where the aircraft is in a steady
manoeuvre. In the symmetric case where pitching at a steady pitch rate is usually involved (i.e. zero
pitch acceleration), the aircraft will experience accelerations normal to the flight path. Such manoeuvres
are intended to represent the aircraft in an emergency pull-up or push-down situation, with the wings
idealized as being horizontal; this load case is important for the design of inboard parts of aerodynamic
surfaces as well as possibly for engine pylons and fuselage components. A steady banked turn is also
an equilibrium manoeuvre. In such accelerated conditions, the aircraft is in effective equilibrium once
D’Alembert’s principle is used to add inertia forces. The symmetric equilibrium manoeuvre is consid-
ered in Howe (2004), Lomax (1996) and Megson (1999) and in ESDU Data Sheets 94009, 97032 and
99033.

Introduction to Aircraft Aeroelasticity and Loads J. R. Wright and J. E. Cooper
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In this chapter, the process of determining the balanced response (deformation and component loads)
in a number of symmetric equilibrium (or steady) manoeuvres will be considered, using a progression of
fairly basic mathematical models for both rigid and simple flexible aircraft. The flexible aircraft needs
to be considered since flexibility can affect the loads distribution; CS-25 states: ‘If deflections under
load would significantly change the distribution of internal or external loads, this redistribution must be
taken into account’. In effect, this is a statement that aeroelastic effects must be accounted for in loads
calculations. The ability to correct the rigid aircraft derivatives for flexible effects will also be considered.
Note that the axes system used in this chapter will be inertial, i.e. earth fixed, and the unknowns will be
displacements, angles and generalized coordinates.

However, there are a number of asymmetric manoeuvres involving rolling and yawing that may
also be classed as equilibrium manoeuvres, but these make use of simplified aircraft representations.
Some are steady and involve a balance of aerodynamic moments from different sources, while others
involve abrupt application of a control and require an inertia couple to balance the aerodynamic control
moment at that instant, so leading to a conservative (i.e. over) estimate of loads. In this chapter, these
rolling and yawing manoeuvres will be considered briefly, quoting, but not deriving, the models used
since these will be considered further in Chapter 14. These balanced manoeuvres for pitching, rolling
and yawing are known as bookcase manoeuvres, where the load case is often somewhat artificial but will
yield load estimates at an early stage in the aircraft life prior to carrying out full dynamic simulations of
the aircraft behaviour in time (so-called rational cases where a more realistic model and load case are
considered; see Chapter 15). Rolling manoeuvres are often important for the outer wing design whereas
yawing manoeuvres contribute to rear fuselage and fin design. Note that the treatment of symmetric and
asymmetric equilibrium manoeuvres is further considered in Chapter 24. The longitudinal case is the
main focus of the book. Some background to static aeroelastic effects for the lateral case may be found
in ESDU Data Sheets 01010 and 03011.

Inadynamic manoeuvre, the variation with time of the response and loads of the aircraft is determined
using arepresentative dynamic model of the aircraft and performing a rational simulation; both symmetric
and asymmetric manoeuvres are possible and the types of case will be considered later in Chapter 24.
Often, the nonlinear (large angle) flight mechanics model of the aircraft is used, sometimes with flexible
modes included especially for highly flexible aircraft; alternatively, a linear (small angle) model may
be employed but this is less accurate for manoeuvres with substantial changes of altitude and angle.
Therefore, in Chapter 14, the flight mechanics model of the rigid aircraft will be introduced, where axes
fixed in the aircraft are used, unknowns are velocities and large angle manoeuvres may be handled. The
extension to the flexible aircraft will be considered since flexibility effects are important. In Chapter
15, the application of this flight mechanics model to simple dynamic heave/pitch and roll manoeuvre
examples will be considered for both rigid and simple flexible aircraft.

In Chapter 16, the related issues of the response to gusts and continuous turbulence will be consid-
ered, though of course these are not deliberate flight manoeuvres. In Chapter 17, the treatment of ground
manoeuvres (e.g